ECONOMICAL COMPARISON OF A KBI NFORCED CONCRETE HIGHWAY ARCH BRİDCE AND REİNFORCED CONCRETE HIGHWAY BEAM BRIDGE.

A Thesis
Submitted in partial fulfillement of the requirements for the Dagree of Master of Science in Civil Engineering •
by
LEON BALAMUTOGLU.
B.S. in C.E. , 1938

Robert College,istanbul, Turkey.

```
Georgia School of Technology
    Atlanta,Ga.
        I939
```

Submitted by: C
Approved by:
1

Date:
Mrve 1419.39.

PRIFACE

The purpose of this thosis is to give the designs of a reinforsed conerete highway beam bridge and relaforeed conorete highway aroh bridge. Also to give an economioal discusaion about both types of conorete highway bridges. The two bridges are to have the sase apans as they are designed for the sand oroseing. Throughout the thesis it is aimod to put the material in suoh a form and layout as to holp a student or an experienoeless engineer to be able to follow it with ease.

The most used reference books in order to obtain neoosesary infor mation for writing the thesis have been the following: "Prinoiplos of Highway Fagineering, " by Willey; "Reinforced Conorete Construction, by Hool, Volume III; " Reinforced Conorote Design, " by Sutherland and Clifford; "Handbook of Reinforoed Conorete" by Arthur R. Lord; " Beonom mios of Highmay Bridge Types, " by Mo. Cullough; "Class Notes on Reinforcod Conorete Arch Design, " by Prof. F. C. Snow, of the Georgia School of Technology.

Sincere appreciation is wishod to express to Prof. F. C. Snow, of Georgia Sohool of Teohnology, for his kind assistance and willing guidance given throughout the preparation of this thesis.

Most of the design computations are given as slide-rule results, which are beloived to be acourate enough for all practical purposes.

INDEX

Pages
INTRODUCTION 1-2
 $3=32$
Beara Bridge Design
Slab Deaiga 6
Interior Bea m Design 11
Find Boam Design 22
Girder Design 25
End Bearing Dosign 30
PART II
Arch Bridge Design $35=83$
Slab Dosign 36
Interior Beaz Design 40
 51
 54
Colum Design 64
Arch Desigra 67
Part III
Disoussion of Reinforced-Conorete Beam \& Arch Bridges 84-98
Economic Analysis \& Type Seleotion 85
Economios 92

INDEX (Continuod)

Figuree a Drawinga
Pages

Intorior Beam (Fig. 2) © o *
Steel in Beams (Pige. Sa and b) 17, 18
Bent Up in Beam (Fig. 4) 19
(Fig. 5)
Benct Down in Beam 20
Stirrup Spacing in Bean (Fig. 6) 21
Bent Up in Girder (Fig. 7) 27
Stirrup in Girder (Fig. 8) 29
Rooker (Fig. 9) 32
Floer System of Arch Bridge (Fig. 10) 37
Intertor Beam of Aroh Bridge (Fig. 11) 46
Steel in Beam of Arch Bridge (Fige 12) 47
Bent Up and Bent Down of Arch Btidge (Fige. $13 \& 14$)afe. $48-49$
Stirrup Spacing in Beam of Arch Bridgo (Fig. 15) 50
Position of Beam and Columas on Arch (Fig. 16) 55
Bent Down and Bent Up of Bars in Girder (Figs. 17 \& 18) 61-62
Pogition of Steol in Girder of Aroh Bridge (Fig. 19) 63
CrossmSeotion of Columa (Fig. 20) 66
Brinted Computations of Arch (Tablea 1-9) $74=83$
Dravings I, II; and III are at the end of the thenis.

- Mryboduction

The two bridges whioh are designed in this thesis do not refor to any partioular oroseing; but rather to denign suoh types of bridgen which are mostly used in the cowntry where I oome from, and where prom bably wiy whole engineering career is going to take place. Thus the major object of this theaie was to got a valuable experionoe in the deaign of such types of bridges which will be motily bemefactory in wy future engineoring work.

There are no wide rivers in Turkey where I live, so that the demand for the conatruction of long span bridges is very little. This was particularly the ohief reason for adopting a short span of 60 feet for both types of bridges designed in the thesis. The conorete bridgen are preforred over steel bridges in turkey, for the simple reasen that there are more conorete factorien than steel mills, and thus conorete is mach more abuadant and relatively oheaper than steel, as compared to some other countries. Dae to these facts, at least for the ooming fow years moet of the bridges will be made of reinforced-conorote. At this stage since the two bridges wore not built for a partioular orossing, it was impossible to state without further investigation whioh of the two is the more eoonomico bridgej and would prove to be the most auitable.

The ecomomics of the two types of bridges is fully disoussed at the end of the thesis giving all the important elements which enter to suoh a disoussion. The following items wore mostly stressed upon suoh as

Abstract

-2 the floor system of the two types comparing the slab, bean and girder of one type with the other, and showing how they differ in size and amount of tension and compresesion steel bars. Coltume and an aroh; whioh are not necoessary in the bean bridge; are required in the aroh bridge, whereag in the beam bridge heavier girders are used.

Important considerations aro also entered in this diseussion concerning the econory in this design, and construction of such types of concrete bridges are generally disouged, which oonoludes the thesis.

PART I

DESIGN OF THE REINFORCED-CONCRETE BRAM BRIDGE

DESIGN OF REENFORCED CONCRETE HIGHYAY BEAM BRIDGE

Highway bridges of reinforced oonerete are built an arches, as cantilevers and as continuous or non-continuous beams. The type to be dem signed in the following pages is the nost common of these forms namely the beam bridge. These type of bridges are conaidered more oconomioal over other type of bridges up to 60 feet spans. In a beam bridge the load of the read slab is carried by beans which rest on the abutments.

The clear span of this beam bridge is takon as 60 feet, while the width of the roadway is 18 feet. Materials used are 2000 lbs, of conerete with maximm aggregate of 1 inoh. Curbs are dimensioned by 9 inches wide by 12 inches above surface of paving, 2 inches of bituminous wearing surface being used for paving. The railing is to be oonstructed by concrete 3 feet 6 inchos above road surface. H-15 loading is used in this dosign which gives a total load on each traafio lane cormposed of a uniform load of 450 lbs . per linoar foot plus a single ooncentrated load of $21,000 \mathrm{lbs}$.

The slab is treated as a rectangular beas, continuous over the several longitudinal supporting beams, and with a widh whioh is equal to the length of the bridge. For simplieity a simple gtrip one foot wide is used in the conputations.

In this beam bridge bean are nsed at 7 feet 6 inches apart. As shown in Fig. 1 the width of the slab in feet is found by using the folm lowing formula:

$$
W=\frac{4 x}{3}+T
$$

In wioh the axles of the wheel of the truck are parallel to the supports. in which $\quad W=$ Tidth of strip in feet

T = Width of tire in feot, taken as one inch for each 1000 lbs. of wheel load.
$x=$ Distance in feet from ocenter of the nearer support to the middle point of the line of contact of the tire with the slab. For shear x will be taken as $2 \frac{1}{2}$ times the offective depth of the slab.

The total moment is found by adding live load, impact and dead load moments, In order to find the dead laad moment, the thickness of the slab is meocessary to be asermed, and if it comes out to be too big, corrections aremade. Then the total shear is found by adding the live load, dead load and impact shears. The depth of the slab may then be foumd by using both total shear and total moment in their pespective formalas and seleotion is given to the larger depth found mich shows whether shear or moment governs the design. Then using the corrected depth the whole design

Girder

Fig. 1
Floor system of beam bridge
is repeated until the results oheck with the assumed dimensions.
The are of the steel required is obtained by the following formula
$A_{B}=\frac{M}{f_{8} j d}$ in which
$A_{B}=$ Area of steel in square inches.
$\mathbf{M}=$ Total moment.
$\mathbf{f}_{\text {a }}=20,000$, fiber stress for tension.
$j=7 / 8 ;$
$\mathrm{d}=$ Depth of the slab.
After the area of ateel required is fowa, the number, size and spacing of the ateel bars are detiormined.

Computations

$X=L / 2=7.5 / 2=3.75 \mathrm{ft}$.
whore L is the distance from beam to beam.
Di stribution of Loads for Truck ($\mathrm{H}-15$)
front
ax/e

It is assumed that the front axle takes .2 of the total of the truck while the rear axle takes os of the load. Thus each front wheel carries only 1 of the load of the truck, which is

Load Carried by Each Front Wheel
$.1 \times 15=1.5$ tons .
Load Carrted by Each Rear Wheel
$.4 \times 15$ ㅇ. 6.0 tons. $=12,000 \mathrm{lbs}$.

Widt of Tire

$$
\begin{aligned}
& T=\frac{12,000}{1000}=12 \mathrm{in}=1 \mathrm{ft} \\
& T=\frac{4 x}{3} \nmid \mathrm{~T}=4 / 3(3.75) \neq 1=6 \mathrm{ft}
\end{aligned}
$$

Moment
Asaume 25" Beans
Clear Span of Slab
$7.50=1.25=6.25 \mathrm{ft}$.
Live Ioad
$P=12,000 / 6 \mathrm{lbs}$. per ft. of span
Live Load Moment

Impact Moment
30% Lite Load Moment $=.30 \times 2500=750{ }^{\prime} 1 \mathrm{bs}$.
Dead Inad
Bituminous wearing surface of $2^{\prime \prime}$ of thiolcness is taken as 25 1bs./sq.ft.

Assume 8 in. of slab
Conrete Weight = 150 lbs./cu.ft.
Weight of Slab $=8 / 12 \times 150=100 \mathrm{lbs} . / \mathrm{sq} . \mathrm{ft}_{*}$
Total Dead Load $=100 \neq 25=125 \mathrm{lbs} . / \mathrm{sq}_{.} \mathrm{ft}$.

Dead Load Momont

$125 \times(6,25)^{2} \times 1 / 8 \times 8 / 10=490$ 'lbs.
Total Moment

$$
2500 \not \subset 750 \not \subset 490=3,740{ }^{1} 1 \mathrm{bs}
$$

Shear

Depth（a）
For Moment

$$
\mathrm{d}=\sqrt{\frac{3,740 \times 12}{12 \times 131}}=5.35 \mathrm{in}
$$

For Shear

$$
a=\frac{1690}{12 \times 7 / 8 \times 40}=4.00 \mathrm{in} .
$$

Use $7^{\text {T }} \mathrm{Slab} \quad\left(\mathrm{d}=5.5^{\mathrm{n}}\right)$
Correction
Dead Load thment

$$
\begin{aligned}
& 2^{\text {n }} \text { Surface }=25 \mathrm{lbs} \text { 。/8q.ft. } \\
& 7^{*} \text { Slab }=87.5 \# / 8 q_{。} \text { ft. } \\
& 112.5 \text { \#/sq.ft. } \times(6.25)^{2} \times 1 / 8 \times 8 / 10=440 \text { 䜤 }
\end{aligned}
$$

Total Moment

$$
2,500 \not \subset 750 / \nmid 440.0=3,690 \text { 'lbs. }
$$

Dead Load Shear

$$
112.5 \times 6.25 \times \frac{1}{2}=350 \mathrm{lbs} .
$$

Total Shear

$$
1000 \nrightarrow 300 \nrightarrow 350=1,650 \mathrm{lbs}
$$

Depth (d)
For Koment

$$
d=\sqrt{\frac{3,690 \times 12}{12 \times 131}}=5.31 \mathrm{in} .
$$

For Shear

$$
\mathrm{d}=\frac{1650}{12 \times 7 / 8 \times 40}=3.93 \mathrm{in} .
$$

Use $\quad 7^{n}$ Slab $\left(a=5.5^{\text {n }}\right)$

Steel
Area of Steol

$$
A_{5}=\frac{M}{f_{8} j d}=\frac{3,690 \times 12}{20,000 \times 7 / 8 \times 5.5}=.46 \text { aq.in. } / \text { ft. width. }
$$

Try ${ }^{2}{ }^{n}$ Round Bars

$$
\begin{aligned}
& A=.196 \mathrm{sq.in} . \\
& \text { Speoing }=\frac{.196}{.0383}=5.1^{\prime \prime} \text { use } 5^{\prime \prime} \\
& \mathrm{V}=\mathrm{V} / \mathrm{bjd}=\frac{1650}{12 \times 7 / 8 \times 5.5}=28.6 \mathrm{lbs} . / \mathrm{in}^{2} . \\
& u=v b / 20=\frac{28.6 \times 5}{1.57}=91 \mathrm{lbs} \cdot / \mathrm{in}^{2} . \quad \begin{array}{c}
\text { (leas than 100) } \\
0 . K_{.}
\end{array}
\end{aligned}
$$

Use $\frac{1}{2}{ }^{\prime \prime}$ Round Bars $5^{\prime \prime}$ (Alternate Bars Bent)

In designing the beakn, loads on it must be put in suoh a position as to give maximum moment and maxinam shear. This loading is shown in the Fig. 2, where two rear wheels of each of two truoks fall on the beam. In maximum moment, comptation is carried both for maximm positive and maxinnm negative moment. It is also found out whother maximum moment or maxImum shear governs the design. In finding the dead load of the boam assumption is neccessary for its size and is corrected later on, if neccesse ary. The number and size of bars are determined by the area of steel required; oheoking for bond stress is done by the following formula:

$$
u=V / \sum o^{j d} \text { in which, }
$$

$u=$ Bnit bond, and should not exceed $100 \mathrm{lbs} . / \mathrm{in}^{2}$
V. Meximum shear.
$\mathbf{L}_{0}=$ Total perimetor of bars in inches.
$j=7 / 8 ;$
$\mathrm{d}=$ Depth of bean in inches.
It will be foum that ohoioe was given to two layers of bars, 6 on the top and 7 on the bottom layer. As trial calculations show, the use of more number of bars will make it neocessary to use three layers of rods, which is not desirable. The requirements as to bar clearances are illustruted by the figure used later in the design. The minimum oenter to center distanco between parallel bars being 2㐘 timos the dianoter for round bare, or three times the side dimension for square bars; and is in no case the clear spacing between bars is teken lest than 1 inch. The bending up or the bending down of the rods are caloulated by the following formala:

$$
d_{1}^{2} / d_{2}^{2}=a / b
$$

Fig. 2
Interior beam

The wse of this formula is readily seen in Fig. 4 and Fig. 5 and thus needs no firther explanation.

In finding out the stirrup requirements the maximum shear at the center line and the maximum shear at the support are calctulated and a straight line variation is drawn between the two, because any possible shear ourve due to any loading will fall within the shoar curve thus drawn and accordingly the reinforeement is proportioned by its use. The totel stress in the stirrup is computed by the following formala:

$$
s=\Lambda_{8} f_{s}
$$

in which $\quad S=$ Strength of stirrup.

$$
f_{b}=16,000 \mathrm{lbs} . / \mathrm{sq} / \mathrm{fn}_{\text {. }}
$$

The spacing botween the stirrups are found by the following formalaz

$$
\theta=S / \nabla^{\prime} b
$$

in which

$$
s \text { = Spacing in inches. }
$$

$v^{2}=$ Total unit shear at the section = ultimate wit shear of concrete which is taken as $40 \mathrm{Ibs} / \mathrm{sq}$.in.

The size of stirrups are taiken as $7 / 8$ inches in diamoter. The spacing and the number of stirrups used are shown clearly in Fig. 6.

Computations

Moment
Live Load Moment

$$
24,000 \times 9-12,000 \times 7,5-12,000 \times 1.5=1,300,000
$$

Doad Load

$$
\begin{array}{ll}
2^{\prime \prime} \text { surface } & =251 \mathrm{bs} / \mathrm{ft}{ }_{6}^{2} \\
7^{\prime \prime} \text { Slab } & =87.5 \mathrm{~m} \\
& =112.5 \mathrm{lbs}_{*} / \mathrm{fi}_{4}^{2}
\end{array}
$$

$112.5 \times 7.5=845 \mathrm{lbs} . / \mathrm{ft}_{\mathrm{t}}$.
Assumed Sterm = 255 1bs. $/ \mathrm{ft}$ 。
$\mathrm{w}=\quad 1,100 \mathrm{ibs}_{*} / \mathrm{ft}$.
Dead Load Moment (Positive)
$M=1 / 8 \mathrm{wl}^{2}=1 / 8 \times 1100 \times(18)^{2} \times 12=535,000 \mathrm{n} 1 \mathrm{bs}$.
Dead Load Moment (Negative)
$M=1 / 20 m^{2}=1 \not / 20 \times 1100 \times(18)^{2} \times 12 \times 214,000 \mathrm{Mlbs}$.
Inpaot. Monmint

$$
.30 \times I, 300,000=390,000 \text { " } 1 \mathrm{bs} \text {. }
$$

Totel Moment (Positive)
$1,300,000 \nmid 390,000 \not f 535,000=2,225,000{ }^{n} 1 \mathrm{bs}$.
Total Moment (Nogative)
$8 / 20 \times 2,225,000=890,000^{71} 1 \mathrm{bs}$.
Shear

Live Load Shear	$=24,000 \mathrm{lbs}$.
Impact Shear	$=7,200 \mathrm{lbs}$.

Dead Load Shear
$\frac{1}{2} \times 1100 \times 18=9,9001 \mathrm{bs}$.

Total Haximan Shear $=41,100$ lbs.
Depth (d)
For Positive Moment

$$
a=\sqrt{\frac{2,225,000}{131 \times 54}}=17.8 \mathrm{in} . \quad b=\frac{4}{4} \times \frac{12}{18}=54^{\prime \prime}
$$

For Negative Moment

$$
d=\sqrt{\frac{890,000}{157 \times 16}}=18.8 \text { in. Assume } 16^{\prime \prime} \text { Beam }
$$

For Shoar

$$
d=\frac{41,100}{120 \times 7 / 8 \times 16}=24.5 \text { in. Shear Governs. }
$$

Try $b=14^{\text {m }}$

$$
d_{v}=\frac{41,100}{120 \times 7 / 8 \times 14}=28 \mathrm{in} .
$$

Use $14^{\mathrm{n}} \times 30^{\mathrm{n}}$ Beam $\quad\left(\mathrm{d}=28^{\mathrm{n}}\right)$
Correction
Dead Load Moment

$$
\begin{array}{ll}
\text { Surface } / \mathrm{slab} & =845 \mathrm{lbs} / \mathrm{ft} \\
\text { Sten }=\frac{30-7}{12} \times 14 / 12 \times 160 & =335 \mathrm{lbs} / \mathrm{ft}_{*} \\
& =1180 \mathrm{lbs} / \mathrm{ft}
\end{array}
$$

Maximum Positive Moment

$$
1,360,000 \neq 390,000 \nmid 3 / 8 \times 1180 \times(18)^{2} \times 12=2,265,000 \mathrm{n} \mathrm{\#}
$$

Maxinim Negative Moment

$$
8 / 20 \times 2,265,000=905,000 \text { " } 1 \mathrm{bs}
$$

Maximun Dead Load Shear

$$
\frac{1}{2} \times 1180 \times 18=10,600 \mathrm{lbs} .
$$

Maxinmam Total Shear

$$
\begin{aligned}
& 10,600 \neq 7,200 \neq 24,000=41,800 \mathrm{lbs} \\
& d_{v}=\frac{41,800}{120 \times 7 / 8 \times 14}=28.4 \mathrm{in} .
\end{aligned}
$$

Steel
Area for Positive Moment

$$
A_{1}=\frac{2,265,000}{20,000 \times 7 / 8 \times 28}=4.61 \mathrm{sq.in} .
$$

Area for Negative Moment

$$
A_{1}=\frac{905,000}{20,000 \times 7 / 8 \times 28}=2.85 \mathrm{Eq}, 1 n_{*}
$$

Total $\mathrm{A}_{\mathbf{5}}=4.94$ sq. in .

Bond

$$
u=\frac{41,800 \times 8}{16.5 \times 28 \times 7}=1031 \mathrm{bs} . / \mathrm{in}^{2} \quad 0 . K_{*}
$$

Bent Up

$$
\begin{aligned}
d_{1}{ }^{2} /(108)^{2} & =\cdot 61 / 4,94 \\
d_{1} & =38 \text { in. } \\
& =108-38=70 \text { in. from ond of beame } \\
d_{2} & =\sqrt{\frac{1.23 \times(108)^{2}}{4.94}=54 \text { in. }} \\
& =108-54=54 \text { in. from and of beame } \\
d_{3} & =\sqrt{\frac{1.84 \times(108)^{2}}{4 \cdot 94}=66 \text { in. }} \\
& =108-66=42 \text { in. from and of beame }
\end{aligned}
$$

Bond up 2 bars at a distence of 70 in. from ond of bealla

Bent Down

$$
\begin{aligned}
d_{1} & =\sqrt{\frac{13 x(108)^{2}}{15}}=100.5 \text { in. } \\
& =108-100.5=7.5 \text { in. from ond. } \\
d_{2} & =\sqrt{\frac{11 x(108)^{2}}{15}=92.5 \text { in. }} \\
& =108-92.5=15.5 \mathrm{in} . \text { from end. } \\
& =\sqrt{\frac{9 x(108)^{2}}{15}}=83.5 \text { in. } \\
& =108-83.5=24.5 \text { in. from ond. }
\end{aligned}
$$

Bend down 2 bars at a distanoe of 24.5 in . from and of beans.

$$
\begin{aligned}
& V=\frac{41_{\theta} 800}{14 \times 7 / 8 \times 28}=122 \mathrm{lbs} \cdot / 1 n_{0}^{2} \\
& V^{2}=122-40=82 \mathrm{lbs} / 4 \mathrm{n}^{2}
\end{aligned}
$$

Maximin Shear at Center Line

Maximum Sh oar

$$
\begin{aligned}
& \mathrm{R}_{2}=\frac{12,000 \times 3 \not 12,000 \times 9}{18}=8,000 \mathrm{lbs} . \\
& V=\frac{8,000}{14 \times 7 / 8 \times 28}=23.4 \mathrm{lbs} / 4 \mathrm{n}_{*}^{2} \text { at } 0 . \mathrm{L}_{4}
\end{aligned}
$$

Stirrup u
Use $\frac{1}{\mathbf{m}^{\prime \prime}}$ Round Bars

$$
\begin{aligned}
& S=24_{8} r_{m}=.39 \times 16,000=6,240 \mathrm{lbs} . \\
& =\frac{16,000 \times 39}{28 \times 14}=16 \mathrm{in} \quad \text { Use } 12^{n}
\end{aligned}
$$

Heximpai Spacing

$$
.6 \mathrm{~d}=.6 \times 28=16.8 \mathrm{in} .
$$

Use 12" spacing for all atirrups after the bent bars.

$$
\begin{aligned}
& { }^{1}=\frac{16,000 \times .39}{13 \times 14}=6 \mathrm{in} \\
& 2=\frac{16,000 \times .39}{82 \times 14}=5.5 \text { in. Min. and spacing. }
\end{aligned}
$$

Use First Stirrup 3 in. From Bid.
Second " 9 in. " *
Third n 12 in. " \quad.
All Other Stirrups 12 in, Apart.

Spacing for Bent Bars

True spacing

$$
s=s / v^{\prime}(\operatorname{sina}) \equiv \frac{16,000 \times .61 \times 2^{\frac{1}{8}}}{}=15.2 \text { in. Use } 12^{\prime \prime} \text {. }
$$

Use $\quad 12$ " Spacing For the Other Bent Bars Also.

Steel in beam

Fig 3 (b)

Bent down in beam

In the design of the end beam, the same mothod is followed as used in the design of the interior beam, the only difference between the two be ing that the interior beam is a T beam while the and beam is an L boam.

Conputations

Noment

Assume 14" Beam

$\mathrm{b}=7.5 / 2 \times 12 \neq 7=52^{\prime \prime}$
Live Load Moment

$$
\text { 108,000 llbs. x } 12=1,300,000 \text { " } 1 \mathrm{lbs} \text {. }
$$

Impaot Momeat

$$
60 \% \times 1,300,000=780,000 \text { "lbs. }
$$

Dead Load

$2^{\prime \prime}$ Surface	$=25 \mathrm{lbs}_{\circ} / \mathrm{ft}_{4}^{2}$
$7^{\text {¹ }}$ Slab	$=87.5 \mathrm{lbs} / \mathrm{ft}_{0}^{2}$

Dead Load Moment

$$
1 / 8 \times 800 \times(18)^{2} \times 12=390,000 \mathrm{llbs}
$$

Total Moment (Positive)

$$
1,300,000 \not \subset 780,000 \neq 390,000=2,470,000 \text { " } \mathrm{lbs} .
$$

Total Moment (Negative)

$$
2,470,000 \times 8 / 20=987,000 \mathrm{llbs} .
$$

Shear

Live Load Shear
$=24,000$ lbs.
Impact (60\%)

Dead Load Shear

$$
\frac{1}{2} \times 870 \times 18=7,850 \mathrm{lbs} .
$$

Maximum Shear

$$
7,850 \not f 24,000 \not f 14,400=45,600 \text { lbe. }
$$

Depth
For Positive Moment

$$
d=\sqrt{\frac{2.470_{0} 000}{151 \times 62}}=19.1 \mathrm{in} .
$$

Por Negative Nomant

$$
d=\sqrt{\frac{987,000}{157 \times 14}}=21.2 \mathrm{in} .
$$

For Shear

$$
d=\frac{45,600}{120 \times 7 / 8 \times 14}=31 \mathrm{in}
$$

Try 14" x 3st Bean
Corraction
Homent for Dead Load
Surface f Slab $=490 \mathrm{lbs}_{0} / \mathrm{ft}$.

w = $870 \mathrm{lbs} . / \mathrm{ft}$.

Total Moment (Positive)
$423,000 \not \subset 1,300,000 \nmid 780,000=2,503,000$: 1 Bb 。
Total Negative Moment
$2,503,000 \times 8 / 20=1,000,000 \mathrm{llbs}$.
Dead Load Shear

$$
\frac{1}{2} \times 870 \times 18=7,850 \text { 1bs. }
$$

Total Shear

$$
24,000 \nmid 14,400 \nmid 7,850=46,250 \text { lbs. }
$$

$$
\mathrm{d} v \frac{46,250}{120 \times 7 / 8 \times 14}=31.5 \mathrm{in}
$$

Use $14^{\prime \prime} \times 35^{\prime \prime}$ Bear. ($\mathrm{d}=32^{\text {\# }}$)
Steel
Area of Steel for Positive Moment

$$
A_{4}=\frac{2,503,000}{20,000 \times 7 / 8 \times 32}=4.48 \mathrm{sq.in}
$$

Area of Steel for Negative Moment

$$
A_{1}=\frac{1,000,000}{20,000 \times 7 / 8 \times 32}=1.79 \text { zq.in. }
$$

Dse

$$
\begin{array}{cc}
7=3 / 4^{n} \text { Round Bars (Stirrup) } & 3.1 \mathrm{sq.in} . \\
6=5 / 8^{n} \text { Round Bars (Bont) } & 1.84 \mathrm{sq.in} . \\
\text { Total } A_{s} & \\
4.948 q_{.} n_{*}
\end{array}
$$

Bond

$$
u=\frac{46,250}{16.5 \times 32 \times 7 / 8}=100 \mathrm{Ibs} / \mathrm{in}_{*}^{2} \quad 0 . \mathrm{K}_{4}
$$

Por the Bend Dp and Bend Down of bars for the end beam use same as the inm terior beam.

Stirrups

$$
\begin{aligned}
& v=\frac{46_{,} 250}{14 \times 7 / 8 \times 32}=118 \mathrm{lbs} / \mathrm{yn}_{4}^{2} \\
& \nabla^{2}=118-40=78 \mathrm{lbs} / \mathrm{sn} 2
\end{aligned}
$$

Maximum Shear at Center Line of Beam 8 8,000 $\mathrm{lbs}_{\text {. }}$

$$
\mathrm{T}=\frac{8,000}{14 \times 7 / 8 \times 32}=20.4 \mathrm{lbs} / \mathrm{in}^{2} \text { at C.L. }
$$

Use the same detailing as for interior beam; because maximan unit stresses at the support and the center line are just a little less than the ones used in the beam, thus the same detailing makes the design on the safe side.

The design of the girder is very similar to the design of the end beam both being in L shape. The maximum noment and shear are foumd by the usual methods already explained for beam design. Assumption for the dead weight of the girder is first made and correoted later on. In the total dead load caloulations, dead loads of the beam are transformed from cono entrated loads to miform load by dividing half the weight of a beam by the clear span between beans which simplifies the work a great deal and is also accurate enough for practical purposes. Curb and railing leads are also included in the totalling of dead loads.

Steel and stirrup designs are similar to the ones used in beam design. Pig. 7 and 8 show clearly the debailing of the bars and stirrups.

Computations

Moment

Dead Load

$2^{\prime \prime}$ Surface $=25$ lbs./ft ${ }^{\text {\% }}$		
$7^{\text {H Slab }}=87.5$		
$=112.5$		
112.5×9.		
Bean : $24 / 12 \times 14 / 12 \times 9 \times 150 \times 1 / 7.5 \pm 420$ *		
Curb = 9/12 $\times 12 / 12 \times 150$		
Reiling : 3.5×150 (5		
Girder : Assume $=1,530$ "		
*	$=3,600$	s./ft.

Dead Load Moment

$$
1 / 8 \times 3600 \times(60)^{2} \times 12=19,500,000{ }^{\text {" } 1 \mathrm{bs} .}
$$

Live Load Moment

$$
1 / 8 \times 450 \times(60)^{2} \times 12 \nmid \frac{1}{4} \times 21,000 \times 60 \times 12 \times 200,000 \mathrm{llbs} .
$$

Impaot Moment

$$
30 \% \times 6,200,000=1,860,000 \text { " } 1 \mathrm{lbs} \text {. }
$$

Totel Momont

$$
19,500,000 \not f 6,200,000 \not f 1,860,000=27,560,000{ }^{\text {" } 1 \mathrm{bs} .}
$$

$$
\begin{aligned}
\text { Assume } b^{*} & =28^{\prime \prime} \\
b & =6 \times 7 \neq 28=70^{\prime \prime} \\
& =1 / 12 \times 60 \times 12=88^{\prime \prime}
\end{aligned}
$$

Shear
Dead Load Shear
$\frac{7}{a} \times 3600 \times 60$
n 108,000 1bs.

Live Load Shear
$\frac{1}{2} \times 450 \times 60 \neq 21,000=34,500$ lbs.
Impact Shear
$30 \% \times 34,500$

Total Shear
$=10,300$ 1bs.
$=152,800$ 1bs.

Depth (d)
For Koment

$$
\mathrm{d}=\frac{27,560,000}{131 \pi 70}=54.8 \mathrm{in} .
$$

Fig 7
Bent up in Girder

For Shear

$$
d=\frac{152,800}{120 \times 7 / 8 \times 28}=52 \mathrm{in}
$$

Moment Govern:
Try $28^{\prime \prime} \times 59^{\prime \prime}$ Girder (d. $55^{\prime \prime}$)
True Dead Load of Girder

$$
\begin{aligned}
& 28 / 12 \times 59 / 12 \times 150=1720 \mathrm{lbs} . / \mathrm{ft} \\
& \mathrm{~T}=3600-1530 \neq 1720=3790 \mathrm{lbs} . / \mathrm{ft} .
\end{aligned}
$$

Use
$28^{\prime \prime} \times 66^{\prime \prime}$ Girder $\quad\left(\mathrm{d}=63^{\prime \prime}\right)$
Steel
$A_{\text {a }}=\frac{27,560,000}{20,000 \times 7 / 8 \times 63}=25 \mathrm{sq}$, in.
Use
8 - $\mathbf{1 \frac { 1 } { 4 }}^{\text {" }}$ Square Bars St. (Lower Layer).
8 - $1^{\frac{1}{4}}{ }^{n}$ Square Bars Bt. (Upper Layer).
Bond

$$
u=\frac{152,800}{40 \times 7 / 8 \times 63}=69.5 \quad \begin{gathered}
(1 \text { iss than } 100) \\
0 . K_{.}
\end{gathered}
$$

Bend Up

$$
\begin{aligned}
& d_{1}=\sqrt{\frac{2 x(360)^{2}}{16}=128^{n} \text { from C. L. }} \\
& d_{2}=\sqrt{\frac{4 x(360)^{2}}{16}}=180^{n} \\
& d_{3}=\sqrt{\frac{6 x(360)^{2}}{16}}=220^{\prime \prime} \quad \text { " } \\
& d_{4}=\sqrt{\frac{8 x(360)^{2}}{16}}=256^{\prime \prime} \quad \text { " }
\end{aligned}
$$

Maximum Shear

Fig 8
Stirrup
in Girder

$$
\begin{aligned}
& R=\frac{21,000}{2} \not \subset(450 \times 30) \times 1 / 60 \times 30 / 2=13,880 \text { 1bs. } \\
& \mathrm{V}=\frac{13,880}{28 \times 7 / 8 \times 63}=9 \mathrm{lbs} / \mathrm{in}_{\mathrm{t}}^{2} \\
& \nabla^{4}=\frac{152,800}{28 \times 7 / 8 \times 65}-40=59 \text { lbs. } / \mathrm{In}_{6}^{2}
\end{aligned}
$$

Bent Bars

$$
s=\frac{16,000 \times 3.12 \times 2^{\frac{1}{3}}}{54 \times 28}=46.5 \text { in. Usb } 3 \frac{1}{2} 4 \text { for all Bent }
$$

Fnd Spacing

$$
s=\frac{16,000 \times .39}{66 \times 28}=4 \mathrm{in}
$$

Maximum Spacing

$$
\begin{aligned}
& .6 \times 63=37.8 \mathrm{in} . \\
& =\frac{16,000 \pi .39}{15 \times 28}=14.8 \mathrm{in} . \quad \text { Jse } 12^{\prime \prime} .
\end{aligned}
$$

END BEARING DESIGN

Find bearings are neocessary at one end of the bridge for preventing high temperature stresses and undesirable crackings, thus provision is made for free expansion and contraction of the structure with temperature changes. A rocker is designed and show in Fig. 9 placed between steel bearings plates, , proportioned to bring the bearing streeses on the concrete within the given limit of 500 lbs. per quare inoh. The bearing of the cast iron rocker on steel is limited to $30{ }^{d}$ lbs. per inch of length, where dis the diameter of the rounded surface of contact.

Computation

Fixed Find $: \mathrm{f}_{\mathrm{b}}=600 \mathrm{Ib} \cdot \mathrm{c} / \mathrm{in}{ }^{2}$

$$
\begin{aligned}
& A=\frac{152,800}{500}=305 s q_{4} i n_{\varphi} \\
& 28^{n}=36^{n}=1010 \mathrm{sq} q_{*}
\end{aligned}
$$

Use 3^{2} Abutments
Expansion Bad : C. I. Rocker

> Allowable bearing of Rocker on Steel PLate
> $f_{b}=300 \mathrm{D}$ per inoh length
> L_{6} D. $\frac{152,800}{300}=510$
> $D=24 \mathrm{in}$.
> $L=22 \mathrm{in}$.

Expansion (Asswing $80^{\circ} \mathrm{F}$. in difference of temperature)
$80 \times .0000065 \times 63 \times 12=.394$ in.
Plates $22^{\text {\# }} \times 16^{\text {" }}=352$ (groator than 305)
Rooker Thickness

$$
f_{b}=\frac{152,800}{22 \times 4}=1720 \text { 1bs. } / 1 n_{0}^{2} \quad O_{0} K_{0}
$$

See Fig. 9 for Rooker.

PART II

DESIGE OF THE REINFOROED-CONGRETE ARCH BRIDGE.

DESIGII OF CONCREFE AROH BRIDGE

Oxdinary way of contitiotion of a concrete areh with fixed onds is done by the elastic theory' because it is atatically indeterninate. The aroh ring is nothing but a ourved blag and is so eamatacred.

In arohes made of etone, it is eacential that the line of pressure of any possible loading should pass through the middle third of each joint of the arch ring, in order to avoid a tendenoy for any joint to open. But in arches made of ooncrete, the struature considered may be made monolithic and thus be oapable of withatanding temsion, which means that the line of pressure may pass outside of the middle third without andengering the structure, An arch being mostly in compression, reinforcing it with steel plays very little part in its strength. However it is oustomary to use reinforcement for some dietance at least, near both upper and lowor surfo aoes and carry both rows of stoel throughout the entire span, thus elindnating any possible failure due to inadequate provision for tensile atreases. In order to prevent buckiling, the upper and lower reinforcoment is tied together. There are several methods todesign a hingenless arch. The method used here is taken from the " Bureau of Public Roads "publications "Public Road. Vol VIII Nos. 4 ± 5 for sale at 10 conts a oopy by the Supt. of Dooumants, D.S. Printing Office; Fashington D.C."

The design of the aroh bridge is carried in steps, starting with the floor system design which inoludes designe of alabs, bean and girder; then the columns are designed. In designing the girder the Theorem of Three moments is used. The span for the arch is taken as 60 feet. The width of roadway used is 18 feet, and loading $\#-15$.

Also the following data and information is used in the design of the bridges

 Aggregate $=1$ in

Streateat $f_{0}=800$ lbmo/in\%
$f_{E}=20 ; 000 \mathrm{lbs} / \mathrm{In}_{6}^{2}$
$n=15$.
$\mathrm{V}=40 \mathrm{lbs} / \mathrm{in} \%$ or $120 \mathrm{lbs} / \mathrm{in}_{0}^{2}$
$u=100$ lbs. $/ \mathrm{zn}$?
Curbs are $9^{\prime \prime}$ wide by $12^{\text {n }}$ above Surface of Paving.
Paving is done by $2^{\prime \prime}$ of Biturinous Wearing.
Railing is constructed by Concrete $3^{\text {t }}-6^{\prime \prime}$ above Road Surface.

Beame are placed 7 feet 6 inches apart; center to center with a total number of 9 beate, two being the end beams as ehow in Fig. 10. In finding the thiomess of the slab; the Ketchumis formala has been ueed, the explenation of whioh is already givea in the first part of this thesis in the diagram of the Bean Bridge. The design is oarriad out in the follown ing order: Firtb the maxinam moment is found by taking the tan of the dead load; live load and impact moments; Then the total shear is caloulated. The dopth of the slab is next oalculated by the use of depth formalas for moment and shear and choies is given to the bigger depth to take care of bothe Then the number, size and epacing of bars are determined by calon lating the required area of steel.

Beams are asoumed 16 inches wide for obtaining the olear span of the slab.

Computations (Altornate Dosign for Slab)

Method Used: Fron Ketohum*s Speoifioations, in Weinforoed Conorete Design ", by Sutheriand and clifford.

$$
\begin{aligned}
& W=2 / 3 \mathrm{~s} \neq \mathrm{T} \\
& \mathrm{~S}=\text { Spaoing of floorbeams in feet. } \\
& \mathrm{T}=2 / 3 \times 7.5 \neq 1=6 \mathrm{ft} .
\end{aligned}
$$

Moment
LIve Loed Moment $=2500$ Ibs.
Impact Noment $\quad=750$ ibs.

Plo system of Arch bridge

Dead Load Moment

$$
\begin{aligned}
& 2^{n} \text { Surface }=25 \mathrm{lbs} . / \mathrm{sq.ft} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& 112.5 \times(6.25)^{2} \times 1 / 8 \times 8 / 10=440 \text { 1bs. }
\end{aligned}
$$

Totel Moment

$$
2500 \not \subset 750 \not \subset 440=3,690 \text { ' } 1 \text { bse }
$$

Shear

Live Load Shear

$$
12,000 / 6 \times \frac{1}{2} \quad=1,000 \mathrm{lbs}
$$

Impact Load Shear

$$
30 \% \times 1000=300 \mathrm{lbs}
$$

Dead Load Shear

$112.5 \times 6.25 \times \frac{1}{2}$	$=350 \mathrm{lbs}$.
Total Shear	$=1,650 \mathrm{lbs}$.

Depth
For Moment

$$
d=\sqrt{\frac{3,690 \times 12}{12 \pi 131}}=5.31 \mathrm{in} .
$$

For Shear

$$
d=\frac{1650}{12 \pi 7 / 8 \times 40}=3.93 \mathrm{in} .
$$

Use
Slab ($\mathrm{d}=5.5^{\#}$)
Steel
Area of Steel

$$
A_{a}=m / f_{z} j d=\frac{3,690 \times 12}{20,000 \times 7 / 8 \times 5.5}=.46 \mathrm{sq} \cdot \mathrm{In}_{0} / \mathrm{ft} . \text { width }
$$

Try $\frac{7^{\prime \prime}}{}{ }^{\prime \prime}$ round Bars

$$
\begin{aligned}
& A=.196 \text { sq.in} \\
& \text { Spacing }=\frac{.196}{.0865}=5.1^{\prime \prime} \text { use in. }
\end{aligned}
$$

$$
\begin{aligned}
& \nabla=\nabla / \mathrm{bja}=\frac{1,650}{12 \times 7 / 8 \times 5.5}=28,6 \mathrm{ibs} . / \mathrm{in}{ }^{2}
\end{aligned}
$$

Use $\boldsymbol{z}^{\prime \prime}$ Round Bare 5" (Alternate Bars Bent)

REAM DISIGN (Fig. 11, 12, 13, 14, 15.)

Interior beams oarry the load ooming from the alab. The bonn is de: signed very similar to the slab design. Formilas used in the beam design are the same as in the slab design, except for few additional formalas which are used in order to find the area of tension steel and for beat bars which are as follows:

$$
A_{a}=\boldsymbol{m} / \mathbf{x}_{g} j d
$$

In which,
M $=$ Maximum total moment either positive or negative.
$f_{g}=$ Unit tension etress.
d = Depth of slab from top up to the oenter of the steel bars used for reinforcement.
$j=7 / 8$.
To find the places where the bars are to be bent either up or dow, we use the following formonat
$\mathrm{d}_{1}{ }^{2} / \mathrm{d}_{2}{ }^{2}=a / b$
where the poaition of the maximum momont can be obtained and shown in Fig. 11.

The size of the beam used is first assumed to be corrected later on, after corrected depth is caloulated.

The procedure for the design of the end beam is exactly the same as in the interior beam and the sane formias are used. Computations (Interior Beam)

Moment
Live Load Moment

$$
24,000 \times 9=12,000 \times 7.5-12,000 \times 1.5=1,300,000 \text { 唶 }
$$

Dead Load

$2^{\prime \prime}$ Surface	$=25 \mathrm{lbsift}$
7" Slab	= 87. $5^{\#} / \mathrm{ft}$ \%
	112.5 ${ }^{\text {/ / } \mathrm{ft} \text { \% }}$
112.5×7.5	$=845 \mathrm{lbs} / \mathrm{ft}$.
Asaumbd Stor	- $255 \mathrm{lbs} . / \mathrm{ft}$.
* $=$	1,100 lbs./ft.

Dead Load Moment (Positive)

$$
M=1 / 8 \mathrm{wl}^{2}=1 / 8 \times 1100 \vec{x}(18)^{2} \times 12=535,000 \mathrm{Mbs} .
$$

Dead Lead Moment (Nogative)

$$
M=1 / 20 \operatorname{mi}^{2}=1 / 20 \times 1100 \times(18)^{2} n \times 12=214,000 \text { " } 1 \mathrm{bs}
$$

Inpaot Moxsent

$$
M=.30 \times 1,300,000=390,000 \mathrm{Hlbs}
$$

Total Moment (Positivo)

$$
M=1,300,000 \neq 390,000 \nmid 535,000=2,225,000{ }^{n} \mathrm{lbs} \text { 。 }
$$

Total Moment (Nogative)

$$
\mathrm{M}=8 / 20 \times 2,225,000=890,000{ }^{\mathrm{n}} \mathrm{lbs} .
$$

Shear

Livo Load Shear	$=24,000 \mathrm{lbs}$.
Impact Shear	$=7,200$ lbs.
Dead Load Shear	

$\frac{1}{2} \times 1100 \times 18$	$=9,900 \mathrm{lbe}$
Total Maximam Shear	$=41,100$ lbs.

Dopth (d)
For Megthive Moment

$$
d=\sqrt{\frac{890,000}{157 \times 16}}=18.8 \text { in. Assume } 16^{n} \text { Beam }
$$

For Positive Moment

$$
d=\sqrt{\frac{2,226,000}{131 \times 54}}=17.8 \mathrm{in} . \quad b=7 \times 18=4.5^{\circ}=54^{n}
$$

For Shdar

$$
d=\frac{41,100}{120 \times 7 / 8 \times 16}=24.5 \text { in. Shear Governe. }
$$

Try $b=14^{n}$

$$
d_{v}=\frac{41,100}{120 \times 7 / 8 \times 14}=28 \mathrm{in}
$$

Use $14^{\# 4} \times 30^{\prime \prime}$ Bearm $\left(\mathrm{d}=28^{\mathrm{H}}\right)$

Correction

Maximum Positive Moment

$$
1,300,000 \not \neq 390,000 \not f \text { Correoted Dead Load Moment. }
$$

Dead Loed Moment

$$
\begin{aligned}
\text { Surface } \neq \text { Slab } & =845 \mathrm{lbs} . \mathrm{ft} \\
\text { Stem }=\frac{30-7}{12} \times 14 / 12 \times 150 & =336 \mathrm{lbs} . f t / \\
& =1180 \mathrm{lbs} / \mathrm{ft} \\
& = \\
M=1 / 8 \times 1180 \times(18)^{2} \times 12 & =575,000 \mathrm{lbs}
\end{aligned}
$$

Total Maximum Positive Moment

$$
1,300,000 \neq 390,000 \neq 575,000=2,265,000 \text { "1be. }
$$

Maxinuma Nogative Moment

$$
8 / 20 \times 2,265,000=905,000{ }^{\mathrm{H}} \mathrm{Ibs}
$$

Maximem Total Shear $=$ Maximuth Correoted Dead Load Shear \neq

Maximam Dead Load Shear

$$
\frac{7}{8} \times 1180 \times 18=10,600 \text { lbs. }
$$

Maximam Total Shear

$$
\begin{aligned}
& 10,600 \neq 7,200 \nmid 24,000=41,800 \text { lbs. } \\
& d_{v}=\frac{41,800}{120 \times 7 / 8 \times 14}=28,4 \text { in. }
\end{aligned}
$$

Steel

Area for Positive Moment

$$
A_{E}=\frac{2,265,000}{20,000 \times 7 / 8 \times 28}=4.61 \mathrm{sq} . \ln
$$

Area for Negative Moment

$$
A_{m}=\frac{905,000}{20,000 \times 7 / 8 \times 28}=1.85 \mathrm{mq} . \operatorname{in}
$$

Use

$$
\begin{aligned}
& \text { 7-3/4" Round Bar steel } \\
& A_{5}=3.1 \text { aq.in. } \\
& \text { 6-5/8 Round Bar Steel } \quad A_{1}=1.84 \text { in.sq. } \\
& \text { Total } A_{\mathrm{B}} \text {. } \quad=4.94 \text { sq.in. } \\
& u=\frac{41 ; 800 \times 8}{16.5 \times 28 \times 7}=103 \mathrm{lbs} . / \mathrm{tn}_{6}^{2} \quad 0, \mathrm{~K}_{\text {。 }}
\end{aligned}
$$

Bent Up

$$
\begin{aligned}
d_{4} & =\sqrt{\frac{1.23 x(108)^{2}}{4.94}}=54 \mathrm{in} . \\
& =108-54=54 \text { in from and of beam. } \\
d s & =\sqrt{\frac{1.84 \times(108)^{2}}{4.94}}=66 \mathrm{in} . \\
& =108-66=42 \mathrm{in} . \text { from end. } \\
d_{1} & =\sqrt{61 \times(108)^{2}=88 \mathrm{in} .} \\
& =108-50 \equiv 70 \mathrm{in} .
\end{aligned}
$$

Bend up 2 bars at a distance of 70 in . from ond of beam.

Bent Down

$$
\begin{aligned}
& d_{1}=\sqrt{\frac{13 \times(108)^{2}}{15}}=100.5 \mathrm{in} . \\
& =108-100.5=7.5 \mathrm{in} \text {. from end. } \\
& \mathrm{d}_{2}=\sqrt{\frac{11 \times(108)}{15}}=92.5 \mathrm{in} . \\
& \text { = } 108 \text { - } 92.5=15.5 \text { in. from and. } \\
& d_{3}=\sqrt{\frac{9 \times(108)^{2}}{15}}=83.5 \mathrm{in} . \\
& =108-93.5=24.5 \mathrm{in} \text {. from md. } \\
& \text { Bend down } 2 \text { bars at a distance of } 24.5 \text { in.from end of beam. }
\end{aligned}
$$

$$
\begin{aligned}
& T=\frac{41,800}{14 \times 7 / 8 \times 28}=122 \mathrm{lbs}_{4} / \mathrm{in}^{2} \\
& \nabla^{*}=122 \text { - } 40=82 \mathrm{lbs} . / \mathrm{in}^{2}
\end{aligned}
$$

Maximum Shear at Center Line

$$
\begin{aligned}
& \mathrm{R}_{2}=12,000 \times 3 \neq 12,000 \times 9=8,000 \mathrm{lbs} \\
& v=\frac{8,000}{14 \times 7 / 8 \times 28}=23.4 \mathrm{lbs} / \mathrm{in}_{\circ}^{2} \text { at C.L. }
\end{aligned}
$$

Stirrups
Use $\frac{\mathbf{z}^{\prime \prime}}{}{ }^{n}$ Round Bars

$$
\begin{aligned}
& S=24_{\mathrm{g}} \mathrm{I}_{\mathrm{g}}=.39 \times 16,000=6,240 \text { lbs. } \\
& \mathrm{s}=\frac{16,000 \times \cdot 39}{28 \times 14}=16 \text { in. Use } 12! \\
& \text { Maximum Spaoing }
\end{aligned}
$$

$$
.6 \mathrm{~d}=.6 \times 28=16.8 \mathrm{in} .
$$

Use $12^{\prime \prime}$ spacing for all stirrups after the bent bars.

$$
\begin{aligned}
& s_{1}=\frac{16,000 \times .39}{73 \times 14}=6 \text { in. } \\
& s_{2}=\frac{16,000 \times \cdot 39}{82 \times 14}=5.5 \text { in. Min. and spacing. }
\end{aligned}
$$

Us.
Pirgt Stirruy 5 in. From Rad.

Second * 9 in. **
Third $n \quad 12$ in. $\#$.
A11 other Stirrupe 12 in. Apart.

Spaoing for Bent Bart

True Spacing

$$
E=\mathbb{G} \mathrm{V}^{1}(\sin a)=\frac{16,000 \times, 61 \times 2^{\frac{1}{3}}}{6 B \times 14}=15.2 \text { ine Use } 12^{n}
$$

Use $12^{\prime \prime}$ Spacing For the other Bars also.

Fig //
Interior beam of Arch bridge

Fig 12

Steel in beam of Arch bridge

$F_{19} 13$
Bent up in beam of Arch bridge

Assumo 14" Beam
$\mathrm{b}=7.5 / 2 \times 12 \neq 7=B 2^{\prime \prime}$
Moment
Live Load Koment
108,000 $\times 12$ E 1,300,000 "2b*。

Impact Moment
$60 \% \times 1,300,000=780,000$ "lbs.
Dead Load

Dead Load Moment
$1 / 8 \times 800 \times(18)^{2} \times 12=390,000$ "1bs.
Total Moment (Positive)
$1,300,000 \neq 780,000 \neq 390,000=2,470,000{ }^{71} 1 \mathrm{bs}$.
Total Moment (Negative)

$$
2,470,000 \times 8 / 20=987,000 \text { "lbs. }
$$

Shear

Live Load Shear	$=24,000$ lbs.
Dead Load Shear	$=7,850 \mathrm{lbs}=\frac{1}{2} \times 18 \times 870$
Inpact Shear (30%)	$=14,400 \mathrm{lbs}$.
Total Shear	$=45,600$ lbs.

Depth

For Positive Moment

$\mathrm{d}=\frac{2,470,000}{131 \times \frac{52}{5}}=19.1 \mathrm{in}$.
For Negative Moment
$\mathrm{d}=\frac{987,000}{157 \times 14}=21.2$ in.
For Shear
$d=\frac{45,600}{120 \times 7 / 8 \times 14}=31 \mathrm{in}$.
Try $14^{\prime \prime} \times 33^{\prime \prime}$ Beam

Corrections

Dead Load Moment
Surface $/ \mathrm{slab}$
Stem $=\frac{33-7}{12} \times \frac{490 \mathrm{lbs} / \mathrm{ft} .}{12} \times 150=\frac{380 \mathrm{lbs} / \mathrm{ft} .}{870 \mathrm{lbs} / \mathrm{ft} .}$
$\mathrm{w}=$
$M=1 / 8 \times 870 \times(18)^{2} \times 12=423,000 \mathrm{llbs}$.

Total Moment (Positive)
$423,000 \not \subset 1,300,000 \ngtr 780,000=2,503,000$ "lbs.
Total Moment (Negative
$2,503,000 \times 8 / 20=1,000,000$ " 1 bs.
Doad Load Shear
$\frac{1}{2} \times 870 \times 18=7,8501 \mathrm{lbs}$.
Total Shear
$24,000 \not f 14,400 \not f 7,850=46,250 \mathrm{lbs}$.
$d_{v}=\frac{46,250}{120 \times 7 / 8 \times 14}=31.5$ in.
Use $14^{\mathrm{n}} \times 35^{\mathrm{n}}$ Boarn ($\mathrm{d}=32^{\mathrm{n}}$)

Steel
Area of Steol for Positive Moment

$$
A_{B}=\frac{2,503,000}{20,000 \times 7 / 8 \times 32}=4.48 \mathrm{sq} . \mathrm{in}
$$

Area of Steol for Hegative Momont

$$
A_{s}=\frac{1,000,000}{20,000 \times 7 / 8 \times 32}=1.79 \text { sq.in. }
$$

Use
7 - 3/4" Round st, bars 3.1 sq.in.
$6-5 / 8^{\text {I }}$ Round Bent Bars
Bond

$$
u=\frac{46,250}{16.5 \times 7 / 8 \times 32}=100 \quad \text { O. K. }
$$

Use same bend up and bend down of bars for the ond boams as those of the interior beams.

Stirrups
$\nabla=\frac{46,250}{14 \times 7 / 8 \times 32}=118 \mathrm{lbs} . / \mathrm{An}_{0}^{2}$
$\nabla^{+}=118-40-78 \mathrm{lbs} / \mathrm{in}^{2}$
Maximim Shear at C. L. of Bearll$=2,000$ lbs.
$\nabla=\frac{8,000}{14 \times 7 / 8 \times 32}=20.4 \mathrm{lbs} . / \mathrm{in}$. at C. L.
Use the same detailing as in the interior beams. This makes it on the safe side es the maximum unit stresses at the support and the center line are just a little less then the ones used.

GIRDER DESIGN

The girder to be deaigned in this oase is one which is continuous and is supported by six colwiss．That is 60 feot of the span of the bridge 1＊divided into 5 spans at 12 feet．It $1 s$ ovident that the moments and the sheart in such a girder that which is rigid over the oolumg，camot be de－ termined by prineiple of statics alone，since there are two tonkon end mom sents，two ulonown vertioal resotiongfind possibly two uknovn horisortal reactions whio nakes a possible total of six uknown while there are only three equations in statics for bodies in equilibrium．There are several methods for finding mpments for such continuous girders such as the Theorem of Three Moments，Least Work Metod and Slope Defleotion Method．The three moments method was uded in our thesis．

By the use of the first（thres moment）mothod，moment factors are found for beams and girder carrying uniform load and oontinuous over sever＝ al spens．A table of these coesficients for maximun moment in continuous beams is given by Sutherland and Clifford in their book of Reinforced Concm rete Design on pege 174．In finding the maximan mowents in the above girder desigin the use of this table will be made whioh isbelieved to give aocurate mough results for practical purposes．The formala to be used to get the moment factor is，

$$
\mathbf{H}=x L^{2}
$$

where
M is the maximum moment．
x is the moment factor．
W Is the uniform load（dead or I1ve）．
L is the span length．

The equivaleat uniform load for $\mathrm{E}-15$ loading is found to be 480 lbs. per linear foot of lane and a concentrated load of 13,000 lbs. for moment and 19,500 lbs. for shear these being found in Design of Steel Struoture by Urquhart and 0^{\prime} Rourice on page 422. The maziman shear is obtained by the use of the following formilat

$$
\mathrm{V}=\mathrm{owL}
$$

where
0 is the coofficient and is .6 for end beam and .5 for interior beari.

The depth of the girder and the steel reinforcement used are found in similar processes as in the oase of the beans.
 obtain approximately the clear span of the girder between the colvmas. This is obtained to be 11 foet.

Computations

Dead Concentrated Load Garried to Girder
Dead Load of Slab (carried by $\frac{1}{2}$ of oach beam)

$$
7 / 12 \times 9 \times 7.5 \times 150=5,900 \text { lbs. }
$$

Dead Load of $\frac{2}{2}$ Beam

$$
14 / 12 \times 30 / 12 \times 9 \times 150=3,930 \text { lbs. }
$$

2" Bituminous Surface

$25 \times 9 \times 7.5$	$=1,690 \mathrm{lbs}$.
DeadC Concentrated Load	$=10,5201 \mathrm{bs}$

Live Concentrated Load Carried to Girder

$$
\begin{aligned}
& \text { Live Load } \\
& \qquad \begin{aligned}
& 480 \times 7.5=3,600 \mathrm{lbs} \\
& \text { Inquot Load } \\
& 60 \% \times 3600=2,160 \mathrm{lbs} \\
& 5,760 \mathrm{lbs}
\end{aligned}
\end{aligned}
$$

Total Concentrated Load Carried to Girder

$$
10,520 \neq 5,760=16,280 \text { lbs. }
$$

Uniform Dead Load

$$
\begin{aligned}
& \text { Assume Dead Load of Girder }=500 \mathrm{lbs} . / \mathrm{ft} \text {. } \\
& \text { Railing } 3.5 \times 1 \times 150=525 \mathrm{lbs} . / \mathrm{ft} \text {. } \\
& \text { Curbs } 9 / 12 \times 1 \times 150=110 \mathrm{lbs} . / \mathrm{ft} . \\
& \text { 红 }=1135 \mathrm{Ibs} / \mathrm{ft} . \\
& \text { Reactions } \\
& \mathrm{R}_{\mathrm{B}}=2.5 / 11 \times 16,280 \nmid 10 / 11 \times 16,280=18,500 \mathrm{lbs} . \\
& Z_{A}=16,280 \nmid 16,280-18,500=14,060 \text { lbs. }
\end{aligned}
$$

Shear

R_{B}（Beam Reaction）	$=18,500 \mathrm{lbs}$.
Live Load Shear（from Table）	$=19,500 \mathrm{lbs}$.
Impact Shear（60\％）	$=11,700 \mathrm{lbs}$.
Uniform Dead Load Shear	
$6 \times 1135 \times 11$	$=7,500 \mathrm{lbs}$
Total Shear	$=57,200 \mathrm{lbs}$.

Uni form Dead Load Moment

$$
\begin{aligned}
& \text { (Positive) . } 072 \times 1135 \times(11)^{2}=10,900 \text { 'lbs. at center. } \\
& \text { (Negative) . } 105 \times 1155 \times(11)^{2}=14,400 \text { ' lbs. }
\end{aligned}
$$

Moment at the Reactions

(Negative) $M_{B}=\frac{16,280 \times 8,5 \times(2.5)^{2}}{(11)^{2}} \neq \frac{16,280 \times 1 \times(10)^{2}}{(11)^{2}}$
$=20,500$ ' 1 bs.
(Positive) MC.L. $=-20,500 \neq 18,500 \times 5.5-16,280 \times 4.5$ - 8000 'lbs.

Concentrated Live Load Moment (from table)

$$
\begin{aligned}
& \text { (Negative) } \quad M_{A * B}=\frac{13,000 \times 5,5 \times(5,5)^{2}}{(11)^{2}}=17,900 \text { lbs. } \\
& \text { (Positive) M Center }{ }^{-}=6,500 \times 5.5-17,900 \equiv 17,900^{\prime} \text { lbs. }
\end{aligned}
$$

Impact Moment
Negative Moment $30 \% \times 17,900=5,370$ 'lbs.
Positive Moment $30 \% \times 17,900=5,370$ 'lbs.
Total Negative Moment

$$
14,400 \nmid 20,500 \nmid 17,900 \nmid 5,370=58,170 \text { tbs. }
$$

Total Positive Moment

$$
8,000 \not \subset 9,900 \not \subset 17,900 \not \subset 5,370=41,170 \text { 'lbs. }
$$

Depth
For Positive Moment

$$
\begin{aligned}
d=\sqrt{\frac{41,170 \times 12}{131 \times 35}}=11 \text { in. } \quad b=\frac{1}{4} \operatorname{span} & =\frac{1}{4(11)(12)} \\
& =33^{\prime \prime}
\end{aligned}
$$

For Negative Moment

$$
\mathrm{d}=\sqrt{\frac{58,170 \times 12}{157 \times 18}}=16 \mathrm{in} . \quad \text { Trying } \mathrm{b}=18^{\prime \prime}
$$

For Shear

$$
\mathrm{d}=\frac{57,200}{120 \times 7 / 8 \times 18}=33 \mathrm{in} . \quad \text { Shear Governs }
$$

Uge

$$
18^{\prime \prime} \times 36^{\prime \prime} \quad\left(\mathrm{d}=33^{\prime \prime}\right)
$$

Steel

Area of Steel For Positive Moment

$$
\begin{aligned}
& \mathrm{A}_{3}=\frac{41,170 \times 12}{20,000 \times 7 / 8 \times 33}=8.55 \mathrm{sq.in} \\
& \text { Use } 9-1^{\text {N Square Bers }}
\end{aligned}
$$

Bond

$$
u=\frac{57,200}{36 \times 7 / 8 \times 33}+55 \quad \begin{gathered}
\text { (less then } 100) \\
0 . K_{.}
\end{gathered}
$$

Area of Stee for Negative Moment

$$
\begin{aligned}
& A_{s}=\frac{58,170 \times 12}{20,000 \times 7 / 8 \times 33}=10,90 \mathrm{sq.in} \\
& \text { Ose } 11-1^{11} \text { Squaro Bars }
\end{aligned}
$$

Bond

$$
u=\frac{57,200}{44 \times 7 / 8 \times 33}=67 \quad \begin{gathered}
\text { (lees then 100) } \\
0 . \mathbb{H} .
\end{gathered}
$$

Use
9-1" Square Bars
11-1" Square Bars

Bend Down

$$
\begin{aligned}
& \mathrm{d}_{1}=\sqrt{\frac{5 \times(5.5)^{2}}{13}}=3.4 \mathrm{in} \\
& \mathrm{~d}_{2}=\sqrt{\frac{6 \times 5.5 \times 5.5}{13}}=3.75 \mathrm{in}
\end{aligned}
$$

Bend Down 1 Bar $2^{2}-4^{\prime \prime}$ from Fnde " $\quad 2 \quad$ " 1 - -10^{n} "

Bend Up

$$
\begin{aligned}
& d_{1}=\sqrt{\frac{2 x(6,5)^{2}}{10.7}}=2,38 \mathrm{in} \\
& d_{2}=\sqrt{\frac{4 x(5.5)^{2}}{10.7}}=3,35 \mathrm{in}
\end{aligned}
$$

Bend 2 Bars Up at 3t from Find.

Use 1 - $1^{\text {" }}$ Square Bars. Straight at Top.
$3-1^{\text {n }}$ Square Bars. Bent Down.
(Fig. 9)
4-1" Square Bars. Bent Up.

Stirrups

Rad Spacing

$$
s=S / \tau^{r} b=\frac{3540}{70 \times 18}=2.8 \mathrm{in}
$$

$$
\nabla^{\prime}=\frac{3,640}{6 x 18}=32.8
$$

$$
x=\frac{70 x 66}{92}=50
$$

$$
d=\frac{33 \times 50}{70}=23.5 \text { in. or } 26.5 \text { in. from End. }
$$

Jse $\quad 3 / 8$ Round Stirrups 1 (2"

$5 \oplus 6^{\prime \prime}$	$\left(30^{17}\right)$
$3 \oplus 8^{\prime \prime}$	$\left(84^{11}\right)$

E
Fig 17
Bent down of bars in Girder

Bent up of bars in Girder

Fig 19
Position of steel
in Girder.

COLTMN DESIGN
Columa oarry the loads coming from girdere to the arch. Six colume are used in the design, three on each half of the bridge. The oross-sectional area of the colums is found simply by using the formalas

$$
A_{g}=\operatorname{Load} / f_{c}
$$

where A_{G} is the orossmsectional are and f_{0} equals 4501bs. $/$ in 2

Computatione

Total Load on Coluna
Girdor

$$
150 \times \frac{18 \times 36}{144} \times 12=
$$

- 8,100 lbs.

Slab

$$
7 / 12 \times 52.5 \times 9 / 4 \times 150
$$

$=10,400 \mathrm{lbs}$.

Bean

$$
7 \times 9 \times \frac{14 \times 30 \times 160}{4 \times 144}
$$

$$
=6,900 \mathrm{lbs}
$$

$2^{\text {" Bituminous Surface }}$

$$
\frac{25 \times 52,5 \pi 9}{4}
$$

$=3,000$ lbs.

Railing

$$
3.5 \times 3805 \times 1 \times 12
$$

Curbs

$$
9 / 12 \times 1 \times 150 \times 12
$$

= 1,350 lbs.
Live Load

$$
480 \times 12
$$

$=5,750 \mathrm{lbs}$.

Impaot

$$
30 \% \times 5,750
$$

$=1,225 \mathrm{lbs}$.

Conoentrated Load
$=19,500 \mathrm{lbs}$.

Impact for Conoentrated $L_{\text {mad }}$
$50 \% \times 19,500=5,850$ 1bs.

Total Load
$=60,275 \mathrm{lbs}$.
$f_{0}=450 \% / \operatorname{in}^{2}$
Croes-sectionaliArea
$A_{g}=\frac{60,275}{450}=134 \mathrm{qq.in}$.

Stool Required
$1 \% \mathrm{Ag}=.01 \times 144=1.44 \mathrm{sq} . \mathrm{in}$.
Use $4-3 / 4^{\text {II }}$ Round
$\frac{1}{4}$ Rouna Ties $12{ }^{n}$

Fig 20
Cross Section
of Column

The hingeleas aroh is etitically indetermate as there are only three equation for six waknowns thus three additional equations are required. Theas are derived from the elantic property of the aroh; the derivation can be found in the book" Analysis of Conorete Arches" which is a roprint from the Bureau of Publio Road Aublications. Arch oomputetions are best handled on tabulated forms as shown in the prints Tables 1-9.

The thiokness of the arch at various points is found by a trial arch as show in Fig. 19 where where the graphimal mothod is used. To find the shape of the ceenter line of the arch, half of the arch is divided into ten equal parts and midpoints of these are dram rertically. The respective" $y^{\prime \prime}$ of these are found by the use of the formula:

$$
y=b-\frac{8 r L}{6 \not f 5 r}\left(3 e^{2} \not f 10 o^{4} r\right)
$$

in whioh
$b y$ the rise of the arch and is taken as 10 foet.
$r=b / L$
$0=\frac{.5-x}{L}$
$x=$ horizontal distance from the point o to verious points as shown in Fig. 19.

After the ' y ' a of each point are found the shape of the arch is drawn to scale. The thickaess of the crow is found by the following formula:

$$
h=.0001\left(11,000 \not f^{2}\right)=\text { crown thiokness }
$$

where 1 is the span.

Thickness of springing line is obtained by a general rule, by taking 2.5 lines the thiokness of the orome.

The various thicinesses of the arch is found by stretohing the arch axis into a stright line as shown in fig. 19 and drawing in the thiokness of the orown and the springing line. There we obtain the thickness of the arch at various points and the $d^{\boldsymbol{4}} \mathrm{s}$ of points from one to ten. Then these informations being used as flnding the stresses of all the arohh completely designed. The stresses are foum on the tabulated forms, tables 1-9. Fxplanation of these tables are found below.

The value of h_{x} for eaoh of the ton points between 1 and 10 , are oomputed by the above formula and entered in

Col. 2 of table 1, Prints. Col. 3 to 5, follow the table. Col. $6 \mathrm{~d}^{\prime}=$ Firoproofing or steel cover $=2^{\prime \prime}=.17 \mathrm{Ft}$. Col. $8 n=10,12$ or 15 according to the velue of I_{o} : used.
$\mathrm{A}_{\mathrm{s}}=$ Total area of steel per Ft. of aroh ring in Sq. Ft. Usually $1^{\prime \prime}, 1^{1} / 8^{\text {" }}$ or $1^{\prime \prime \prime}$ " Sq. bars are used, one per Foot at both top and bottom of aroh ring.

Col. 9 Add values in Col. 4 and in Col. 8.
Col. $10 \mathrm{ds}=$ langth of arch axis for each aroh division, Soaled from drawing. Ds is not constant as dx is. See Pt. 3, Fig. 1 , Col. 11 Sum of this Gol. $=(1 / 2)$ as in this column only one half of the arch ring is used. Col. $12 \mathrm{dx}=0,05 \mathrm{~L}$. The values in this col, are the same for all arches. Col. 13 Multiply values in Col. 12 by those in Col. 11. Add oolum.

Col. 14 Start at Pt. 1 with value as in Col. 13, with the aign oharged. (89.3) Priata. Add 89.3 and $171.7=261,0$ for valuc at Pt. 2. 261.0 and $243.0=504.0$ for value at Pt. 3. Continue this mothod and add columa.

Col. 15 Vaule at Pt. $10=$ Sum of Col. 14. Value at Pt. 9 = value at Pt. 10 in Col. 15 plus value at Pt. 9 in Col. 14. Value at Pt. $8=$ Value at Pt. 9 in Col. 15 plus value at Pt. 8 in Col. 14. Continue this process to top of Col..

Since Pt.l in not far from 0 and sinoe ∇_{0} should be vary nearly 1 for a unit load at Pt. 1. the value of F from the formala should be very nearly to the value at Pt. 1 in Col. 15. In oomputed aroh it is equal.

Col. 16 Follow the table of the computed aroh. Same for all arches.
Col. 17 Products of velues in Col. 16 by those in Col. 11.
Col. 18 Compute F by formula. Divide values in Col. 15 by Fe
Col. 20 Values of y are computed by formula for y.
Col. 21 Same as col. 11.
Col. 22 Produots of values in Col. 20 by those in Col. 21. Add oolumen to obtain $(1 / 2) \sum y \Delta$ $\Sigma \mathrm{y} \Delta / \mathrm{za}_{\mathrm{a}}=$ Sum of Col, 22 divided by Sum of Col. 11 .

Col. 23 Subtract this value from each value of y in Col. 20.
Col. 24 Products of values in Col. 21 by those in Eol. 23.
Col. 25 Obtained from Col. 24 in thi same manner as in Col. 14 from Col. 13. Add the oolume.

Col. 26 at Pt. 1 value is 0 . at Pt, 2 value is the value of Pt . 1 in Col. 26 plus the value in Col. 26 at Pt. 2 plus the value at Pt. 2 in Col. 25. Continue this method. The signe are all negatime.

Col. 27 Values are the produets of values in Col. 20 by those in 24. Add for $(1 / 2) \Sigma y \Delta / y-(\Sigma y \Delta) / \Sigma \Delta]$
Col. 28 Computelby formala for Tan 0 or scole from drawing. \emptyset is the angle betwean the horizontal and a tangent to the arch axis at the point. Look up CoEs. 0 .

Col. 29 Divide values in Col. 28 those in Col. 2. A a oross seotional area of the aroh ringe Sinoe the ring that is being designed is 1Ft. wide $h=A$. Add col. for $\frac{(1 / 2) \cos , \Phi_{0}}{4}$

Col. 30 Compute 0 by formula.
$0=(1 / 0.05 \mathrm{~L})$ times twice the aum of Col. 27 pisus twice the sum of col. 29. $H_{0}=$ Values in col. 26 divided by C_{0} Compute H_{t} by $H_{t}=34560 t / \mathrm{C}$. See print.
$34560=20 \mathrm{Ee}=20(144)(2000000)(0.000006)$.
Col. 32 To obtain Z, subtract 0.5 from the point and maltiply by 2 . As at Pt. $10.2=(10-0.5) / 2=19$. Also for Pt. 10^{\prime}.

Col. 33 Same as Col. for Pts. 1 to 10 and Pts. 1 to 10°.
Col. 34 Same as Col. 18 for Pts. 1 to 10. Values between 10^{\prime} and 1 ' are found by subtracting the corresponding values for Pts, betwoen 1 and 10 fron l. at Pt. $7^{4 t}$ value $=1-79915$.

Col. 35 Same as Col. 11 for Pts, between 1 and 10 and 10° and 1^{\prime}.
Col. 36 Value at Pt. $1^{1 /}$ is Value at Pt. 2^{8} In the gum of values at
 sum of values at $\mathrm{Pt}^{2} 2^{\prime}$ in COI. 35 and 2^{\prime} in Col. 36. Continue this process.

Col. 37 Value at Pt. 1' is 0 . Valuo at Dt. $^{28}=$ Value at Pt. $1^{\prime \prime}$ in Col. 37 plus value at $\mathrm{Pt} .2^{2}$ in Col. 36. Value at $\mathrm{Pt}_{\mathrm{a}} \mathbf{3 '}^{\prime \prime}=$ Value at Pt. 2^{2} in Col. 37 plus value at Pt. 3^{2} in Col. 36. Continue this method.

Col. 38
Conpute $d x / \Sigma \Delta \cdot \Sigma \Delta$-twiee the sum of Cel. 11. Multiply each vaine in $00=$ luman 37 by thit constants

Col. 39 yultiply the values in Col. 33 by $\Sigma \Varangle \Delta / \Sigma \Delta$ as oomputed for une in Col. 23.

Col. 40 Compute $20 \mathrm{ax} / 2$ and maltiply values in Col. 34 by it.
Col. 41 Value for each point in this Col $=$ Some of the values for the amo point in cole. 38; 39; 40. Sum the Cols. 38,39; 40; 41 and apply the following check, Sum

Cols, 43, 44, 45. Same as colvinas 35, 34, 35.
Col. $46 \quad Z_{3}=2 x 3 / d x=2(7.5) / 3=5 . y_{3}=3.51$. Compute $V_{0} Z_{3}{ }^{\circ}$
 Pt. 2, $\mathrm{Z}_{3}-2 \mathrm{z} / \mathrm{dx}=562(4,5) / 3=2$ eto.

Col. 48 For Pts. up to but not including No. 3 maltiply the values in Cel. 47 by $d x / 2=3 / 2=1,5$. For Pt. 3 and beyond, multiply the Talues of \boldsymbol{T}_{0} in Col. 44 by $Z 3 \mathrm{dx} / 2=5(5 / 2=7.5$.

Col. 49. Multiply values of H_{0} in col. 43 by - 73 .
Col. 50 Value at any point $=$ Sum of values for same points in Col. 45, 48 and 49. See formula on printe

Cols. $51,52,53,54$, and 55 , are computed In like manner to Cols. 46,47, 48. 49. and 50. Carry 51 and 52 to Pt. 7 inolusive.

Col. 56; 57, 58, 59, 60. are conputed in same manner as colse 46, 47, 48; 49, and 50. Cariy to Pt. 10 inclusive $C_{0 l}$. 56 and 57. For oheoks see computations and equations on page or print 4.

Cols. 61 to 67 (inolusive). Copy Cols. $43,44,45,50,55,60$.
Col. 68. $D . L$. Dead Loads are reatily the woights of the arch ring in Open

Spandril Arches and the weighte of the arch ring plus the woighta of the fill for Filled Spendril Arohes. Se doad load at sach point in the weight of the eoetion of aroh ring and fill which is de long. In the dead load table on print 3 only Cols. 1, 2, and 3 are noeddd for open apandril arches.

Col. 69 are Cols. Where the values are obtained by multiplydng the values to 74 in Cols. 62 to 67 by velues in Col. 68 . Sum of Col. 69 n H for $D_{.}$ L. and is entered on table 9 Col. 77 as shown. Sum of C_{0}. $70=$ V for doad load at Pt, 0 and is entered an table 9 at Pt, 0 as chown. Sums of Cos. 71; 72, 73; and 74 are the doad load moments for Pts. 0, 3, 8, and 10.5 and aro entered on table 9 in Col. 78 as shown.

Computations

Sample to find the y for the rosportive x.
$b=10 \mathrm{ft}$.
$r=10 / 60=1 / 6$
0 $=.5-x / L \quad$ for $x_{1}=1.5$
$=.6-1.5 / 60=.475$.
$\begin{aligned} y_{1} & =b-\frac{8 r \mathrm{~L}}{675 r\left(3 c^{2} \nmid 10 o^{4} r\right)=} \\ & \left.=10-\frac{8(1 / 6) 60}{675(1 / 6)} \frac{(3}{} \times(4.75)^{2} \neq 10(.475)^{4} 1 / 6\right)=3.05\end{aligned}$
Thus for the reppective values of x values for y are foum in this manaer and the curve of the arch can be plotted. The values of y for the different valuen of x are tab tablated below, the oalculation being performed for oach one as above.

$x_{1}=1.5$	$y_{1}=1.12$
$x_{2}=4.5$	$y_{2}=3.05$
$x_{3}=7.5$	$y_{3}=4.70$
$x_{4}=10.5$	$y_{4}=6.10$
$x_{5}=13.5$	$y_{5}=7.26$
$x_{6}=16.5$	$y_{6}=8.18$
$x_{7}=19.5$	$y_{7}=8.90$
$x_{8}=22.5$	$y_{8}=9.45$
$x_{9}=25.5$	$y_{9}=9.803$
$x_{10}=28.5$	$y_{10}=9.98$
$x_{10} .530 .0$	$y_{10}=5=10.00$

Crowa Thickness (Samplo)
$\mathrm{h}=.001\left(11,000 \neq 1^{2}\right)=.001(11,000 \neq 36)=1.46 \mathrm{ft}$.
Thiolmess of Springing
$h=1.46 \times 2.5=3.65 \mathrm{ft}$.
Values Obtained from $D_{\text {rawing }}$ Number F

$h_{0}=3.65{ }^{\prime}$	$\mathrm{ds}{ }_{1}=4.00$	01- 41.5°
$\mathrm{h}_{2}=3.50^{\prime}$	$\mathrm{ds}_{2}=3.70$	$\theta_{2}=37.00$
$h_{3}=3.30 \%$	$\mathrm{ds}_{3}=3.57$	$\theta_{3}=33.0{ }^{\circ}$
$\mathrm{h}_{4}=3.00^{1}$	$\mathrm{ds}_{4}=3.45$	$\theta_{4}=28.5^{\circ}$
$\mathrm{h}_{5}=2.80^{1}$	$\mathrm{ds}_{5}=3.25$	$\theta_{5}=38.5^{0}$
$h_{6}=2.50{ }^{\circ}$	$\mathrm{dis}_{6}=3.10$	$\theta_{6}=19.0{ }^{\circ}$
$h_{7}=2.35{ }^{\circ}$	$\mathrm{ds}_{7}=3.05$	$0_{7}=15.0{ }^{\circ}$
$h_{8}=2.10^{\prime}$	$\mathrm{ds}_{8}=3.02$	$0_{8}=11.5^{\circ}$
$\mathrm{h} 9=1.901$	$\mathrm{ds} 8_{9}=3.00$	$\theta_{9}=7.0{ }^{\circ}$
$\mathrm{h}_{10}=1.50^{\prime}$	ds $10=3.00$	$\theta_{10}{ }^{\circ} 3.0^{\circ}$
$\mathrm{h}_{10.5}=1.46^{\prime}$	$\mathrm{ds}_{10.5}=3.00$	

All the remalning results of the arch are show in tables l-9 which are in the thesis in blueprinted forme

Table / Computations of Δ

1	2	3	4	5	6	7	8	9	10	//
$\frac{x^{n}}{0^{0}}$	$\begin{gathered} \mathbb{N} \\ \text { " } \end{gathered}$	3	$\begin{gathered} \text { Fiv } \\ \text { u゙ } \\ \text { Min } \end{gathered}$	©N	$\begin{gathered} d^{\prime}=.17^{\prime} \\ i \\ i \\ d^{\prime} \end{gathered}$	$\begin{gathered} v \\ N \\ 0 \\ 1 \\ A \\ A \end{gathered}$			\%	${\underset{n}{n} / 4}_{n}^{n}$
0	3.65	48.5	4.04	1.82	1.65	2.72	1.135	5.175		
1	3.50	42.7	3.56	1.75	1.58	2.50	1.042	4.602	4.00	. 870
2	3.30	36.0	3.00	1.65	1.48	2.18	. 825	3.825	3.700	. 967
3	3.00	27.0	2.25	1.50	1.33	1.78	. 742	2.992	3.57	1.193
4	2.80	22.0	1.83	1.40	1.23	1.51	. 629	2.459	3.45	1.400
5	2.50	16.0	1.33	1.25	1.08	1.17	. 487	1.817	3.25	1.790
6	2.35	13.0	1.08	1.175	1.005	1.05	. 437	1.517	3.10	2.044
7	2.10	9.3	. 715	1.05	. 88	. 773	. 322	1.097	3.05	2.780
8	1.90	6.84	. 570	. 95	. 78	. 608	. 253	. 823	3.02	3.680
9	1.70	4.90	. 408	. 85	. 68	. 462	. 192	. 600	3.00	5.000
10	1.50	3.35	. 280	. 75	. 58	. 336	. 140	. 420	3.00	7.150
									$1 / 2 \leq 4$	26.874

Table 2 Computations of V_{0}

$$
V_{0}=\frac{-1 / 2 \Sigma_{0}^{4}\left(z-\frac{2 a}{2 x}\right)(z-20) \Delta}{F}
$$

$F=\frac{1}{2} \sum z^{2} \Delta-200 \Sigma \Delta=1770.4$
$H_{t}=20 e t E=\frac{345.60 t}{100.78}$

$$
=+10300 \text { fort }=-40^{+50^{\circ}}
$$

span $=\angle=60^{\circ}$
$d x=\frac{L}{20}=3.00^{\prime}$
Rise $=10.0^{\prime}$
$z=\frac{2 x}{d x} \quad \frac{\sum y \Delta}{\sum \Delta}=\frac{226.725}{26.874}=8.44$

Table 3 Computation of Ho

$$
\begin{aligned}
H_{0}=\frac{-\frac{1}{z} \sum_{0}^{2}\left(z-\frac{20}{x}\right)\left(y-\frac{\Sigma y_{\Delta}}{z \Delta}\right) \Delta}{C} \quad C & =\frac{1}{d x} \sum_{0}^{2} y_{\Delta}\left(y-\frac{\Sigma y_{\Delta}}{\Sigma \Delta}\right)+\sum \frac{\cos \phi}{A} \\
& =100.78
\end{aligned}
$$

Computation of DeadL.

AR	hds	$150 h{ }^{2}$	$D . L$
1	14.0	2100	2100
2	12.2	1830	1830
3	10.7	1605	1605
4	9.65	1450	1450
5	8.12	1220	1220
6	7.27	1090	1090
7	6.40	960	960
8	5.74	860	860
49	5.1	765	765
40	4.5	675	675

Table 4 Computations for Mo

Table 5 Computation of M_{3}

$M_{x}=M_{0}+m x_{x}-H_{0} Y$
$m_{x}=\left[V_{0} Z_{x}-\left(Z_{x}-\frac{2 a}{d x}\right)\right] \frac{d x}{2}$ when $z>\frac{20}{d x}$ $m_{x}=V_{0} Z_{x} \frac{d x}{2}$ when $z \frac{20}{d x}$
check.
Sum, $45+48+49=50$
$-16.046-59.202+64.495$
$=10.70 . \mathrm{K}$.

Table 6 Computation of M_{8}

Check: Sums $45+53+54=$ sum of 55° $-16.046+143.11-119.034=7.03$

Table 7 Computation of M101/2

Check: 5 ums $45+58+59=$ sum 60 $-16.046+149.000-126.020=6.94$ aK.

Table 8 Computations of $H . V$, and M for D.L.

6	62	63	64	165	166	67	68	69	70	7	72	73	74
			Unit	$1{ }^{\circ}$	oads		Deod		Deod	$\angle 0$			
	H_{0}	Vo	M	M_{3}	Ms	Mase	ad	H_{0}	Vo	M	M	Mo	M"\%
,							2100		2100	-1995	1154	1154	1154
2							1830	80.5	1800	-5620	-723	1040	936
							1605	233.0	1550	-7250	3180	1105	562
4							1150	450.0	1355	-7570	478	1220	319
5		1			5	\bigcirc	1220	600.0	1090	-6500	-1/50	1380	98
6	क	3	\checkmark	b	b	6	1090	758.0	920	-5100	-1750	1920	218
7	F						960	870.0	755	-3710	-2120	-680	173
8	5						860	945.0	615	-2130	-1950	2780	413
9	5	*	:	*	:	:	765	9570	485	-735	-1600	1120	787
10	0						675	907.0	367	385	-1/30	41	1320
10^{\prime}							675	907.0	308	1114	-855	-540	1270
$9{ }^{\prime}$	0	*	,				765	957.0	280	1880	-520	-864	700°
8	0						860	9150.0	245	2380	-224	1260	-595
7	E						960	870.0	206	2520	-29	-1075	-10
6	0	*	:	:	:	-	1090	750.0	169	2340	44	-1020	-175
5	n						1220	600.0	128	1790	-61	-987	-357
4							1250	450.0	94	1475	29	-687	-224
3							1605	2530	56	696	-70	-446	-135
2							1830	80.5	3	-161	\bigcirc	-225	-33
7							2100	0.	0	0	0	,	0
	22.602	10.0	3/1/56-	13.529	+Moss	2352	25710	116410	12554	-40610	-12182	17166	7955
			$15.1 / 1$	2.919	-7835	-6342				+14550	-4885	-7184	
			-1/6.086.	-10.610]	7030	77.010				-26221	-7297	3982	6419

$83-$
Table 9 Computation of Maximum Stresses

$$
N=H \cos \phi+V \sin \phi
$$

Temperature Mom.

$$
M_{t}=-H_{t}\left(Y-\frac{\Sigma Y_{\Delta}}{\Sigma \Delta}\right)
$$

For Ht see table 2 $\gamma-\frac{\sum Y_{\Delta}}{\Sigma \Delta}$ from col 23
point

$$
\begin{aligned}
& \text { (} M_{t}=-\left\{\begin{array}{l}
10300 \\
-13810
\end{array}\right\} \times(-8.44)=\left\{\begin{array}{l}
+86800 \\
-116500
\end{array}\right. \\
& 8
\end{aligned} M_{t}=-\left\{\begin{array}{l}
10300 \\
-13810
\end{array}\right\} \times(1.01)=\left\{\begin{array}{l}
-10400 \\
+13950
\end{array}\right.
$$

PART III

ECONOMICAL DISCUSSION

REIMPORCED-GONCRETE BEAM A ARCH B. RIDGES.

ECOHOMIC AKALYSIS AFD TYPE SELPGCIOI

Type selection is mquestionably the higheet; most diffioult and most important feature of bridge engineoring from start to finish. Millions of dollare oan be and have been wasted through inproper type adaptation reaultine in mavaranted first costs, or meedles maintanance expensese Correot type of eelection is the very comer atone of econong. A failure to recognise the prinoiples involved, or to evaluate correetly the factore entering into the problem may frequently result in a waste many times. greator than any saving which may realt from refinements in atress anolysis and design. It is the truth that type seleotion oalls for the exercise of the rarest judgement, tempered by long experience in the design; construotion, maintanance and operation of bridges mader a wide varioty of conditions and it is also true that as a general rule, nothing but time will give the bridge emgineer the maturity of judgoment needed. It is quite possible however; to analyze this problem, to seperate it, an it were, into its component parts, to state certain fundamental fundamentals and aubrit oertain data which may aid in forming judgementa as to probable flrst costs maintanance costs, renewilal costs, ote., for the various construotion types comonily cuployed. After the preliminary surveys have been computed, for any bridge atruoture and before any work can be done on the detailed design or preparation of plans, it becomes neccessary to make at least a tentative seleation of the type of constructions best aited to the particular needs involved. The question of economy in first oost, maintence, and renewals is naturally a major controlling consideration and one whioh in order of importance should possibly, receive first mention. The economios of any bridge
problen however, are gemerally investigated after certain other controlling conditions have reocived consideration. The major controlling factors are conveniently grouped as follows:

A- Stream behavior.
B- Requirements of navigaticer.
C. Traffic oonsiderations.

D- Arobitectural features and soemic oonsiderations.
Z Condition of available fuds.
The term "strean behavior" is here used to signify the peouliar oharacteriatios of the waterway during periods of high wator as regards erosion ofped and banks, lateral shift ing of ohamels, carriage of drift. ice and debris, etc. Such characteristios many times operate to place oortain lisits upon type selection entirely independent of comsiderations of coonory and it is with such tendencies that this article has to deal.

The second factor, namely, requiramente of navigation, will generally affect type asleotion; as regards both vertical and horizontal clearances for the main channel span. Where movable spans are used, the type of design for the moving leaves may also be controlled by consiaerations of water traffic.

Pactor D in the above list, which is the architectural feature and scenie considerations, has in ceratin case a very important role in diotating type selection. Grouped in order of their architectural possibilities bridge types may be clessified, as follows:
(4) Masonry arch construction.
b) Reinforced conorete deok construction.
c) Deck tru*s or plate girder construction with oonorete deck and railing.
-) Through truss or girdor conetruotion
f) Timber construction

The last factor listed as controlling the coonomios of any bridge problea was the condition of available funds. In certain instancos the ohoice botwoen types may hinge urion the amount of money actually available for conatruotion purposes and thus rendor of no avail any theoretieal oongideration of the coonomios of flrst cost, mintmannoe, renewals, ete, Porhaps the seleotion of a ohoaper construotion type even, in this case; yay be felse econony, but it is apparent that if there are no additiomel fonds. available and no legal maohinary provided for the borrowing of the sams, the garment must, to a cortain extent, be out in acoordance with the olothi.

Having dispoped of the general features controlling type selection for highway bridges, the question of economic analywis may now be considm ored.

FUNDAMENTALS OF ECOHOMIC ANALYSIS
Souroe of fumds for highway bridge improvemonts
Funds for the conetruotion of highway bridges are in genoral derived from two main sourcos, as followse
a) From direot revanue (property tax, lioense fees, gasoline tax, otc.)
b) By borrowing (issuing bonds).

In oither oase a fund is created tormed the "Capital locount" out of which the money necessary for construction oan be dram. Capital oosts

Let us consider the case of a bridge oosting C dollark; butlt of absolutely permenant oonstruction and upon which there is no need for maintananoe expenditures. The capital acoount is charged with C dollars,
withdram but credited with a bridge worth C dollare，so that the balanes remains wohanged．In other words；the total wealth of the state is in no way ohanged by exchanging C doliars in money to C dollare in bridge congm truction．However，the state has by no means received a big free，owing to the fact that the C dollars in liquid funds had an earning of rC oapaoity per annth，r being the interest reate，wile the \mathbf{C} dollers in the bridge has no earning oapaoity．The net reavit of the state therefore；is the gain of a bridge bat the $10 s s$ of rC dollars interest noney per year．The oap－ ital cost of any bridge etruoture therefore，oan be represented by an annual charge representing the interegt on the anount expended；thus for permenent construction without maintenanee and oosting C dollars，the annal expense is equal to re dollars．

Maintanance and Renemal Costs
It is apparent that no bridge can be built satisfying the above requirements．Regardlens of its acellance，some money for maintenence is required and at some future period the struoture is bound to be worn out and zeed complete renerral．

If we assume that the average maintenance cost per year is estimm ated M dollars and that the profitable life of struoture is equal to n years，the amount of money R ，which mast be deposited at the ond of each year to accumalate with the compound interest at 1% per year，an amount equal to C dollars in n yearst time is given by the expression

$$
R=\frac{C r}{(1 f r)^{2}-1}
$$

The term R obviously represents the meesures of the renewal charges against the structure．The total annual eost for capital，maintemance and renemal is therefore represented by the expression
$E=r \ln / \mathrm{R}$
Gillette's Hendbook of Cost Data and other handbooke contain tablea which aid in the oalculation of annual expensea of ronewal fonds, giving the anomit accumiated when one dollar is doposited amually in a frod drawing compound interest at the rates from three to ten pereent and for time periods one to fifty years.

Insurance Costa
Fire insuranoe in highway bridgee is only neevensary whon the briage is of tinber constraction. In certain case the danger from flood loss is so great as to warrant the consideration, an annual itelif for flood insurance. In gemeral this item is not considered except when it becomes neccessary to determine the relative econong of two type of oonstructions which differ in regard to their respective liabilities for flood loss. In such a case the proper annual oharge for flood insurance can be determined from the probable frequency of flood losses in obmeotion with the probable serviee life of the structure by a consideration of the theory of probablitition. Operation Costs

In addition to the foregoiag the last item of annual expense to be considered is that of operation. Opertion expenses may be divided into two main olasses as follows:
a) Operation of the bridge.
b) Traffic operation.

The firat operating cost mentioned above is simply an annual oharge oocuring in the case of movable bridges or in oomneotion with the operation of orossing gatel, the employment of watchmen, eto. The second operating cost is the cost to the traffic operating over the bridge.

This cost can be determined from the length of the bridge, the traffic demsity and the mit traffic oont, whioh latter value may be expressed in terms of oither vohicle mile orton-mile units. The latter is the more nocurate but the former lends itself more readily to this type of oconomic analysis since the use of the ton-mile requires that the traffic mits be cegregated. The vehiole mile wit will therefore, be used here although the ton mile may be used if desired.

As an illustration of the mothod of arriving at traffic operation oosta oonsider a bridge 1000 feet in length carrying an average traffic of 1000 vehioles per day. At an average cost of 8 cents per vehicle mile the total annual operation costs

$$
\frac{(1000)}{(5280)}(\$ 0.08)(1000)(365)=\$ 553.30
$$

It is true that the cost of traffic operation is paid for ous of a different fund than that from whioh other amual costs are paid, it is however, none the less a legitinate oharge against the structure and should be considered in any eoonomic comparison.

The cost per vehicle mile varies with a large number of factors and data at hand arc not sufficient to place anything more than a very rough estimate of evaluation upon the same. The following disoussion of transportation oosts, as affeoted by bridge desiga may prove anlightening, in so far as general principles are conoerned, even though no definite or accurate quantitative conclusions are reached. Among the faotors involved in bridge construotion whioh affeot transportation eosts may be mentioned the following:
a) Charaoter of roadway surface.
b) Width of roadway.
o) Horizontal aligment of struoture.
d) Grade line treatnents.

The oharacter of the roadway surface (a) adopted for the bridge affeots transportation costs in a varioty of ways. First of all, a rough roadway murface inoreases the relling reaistance of the vehiole and in this mase ure opmater to increase the fuel consumption. The prosemoo of a rough aurface also inoreases the tire expense and in addition, intreduces oortain inpeot and vibration strains in the vehiole itself, wich result in a faster dopreoiation of the equipment. These vibrations are not altogether a funotion of the bridge floor surface, but may result from a vibration sot up through out the entire superstruoture during the passage of a load.

The offeot of an unduly restricted roadway is a slackoning in the average speed of traffic movenent and a oonsequent increase in tino element tranaportation oosts. Narrow roadways also operate to introdnce greater liability of acoident, not only major acoidents; but also injury to fenders, bumpers and other like minor damagea growing out of the olosely reatrieted olearance between vehicle and rail.

The effect of sharp ourvature is to increase the liability of ool. lision, to slacken the average of safe traffic speed and to introtuce an eloment of added wear on tires due to longitudinal and lateral alippage whioh results. A general stress upon the entire vehioular mechanisn also results fron travel over an alignment having madue ourvature.

The introduotion of grades operaten to increase the rolling resistance of the vehiole and therefore, the fuel consumption. Sharp changes in the direotion of grade, unless modified by long vertioal ourves, introduce an added impact, bot to the structure and to the vehiele, Conditions of this kind are generally observed either at grade vertices or at the end of the structure
where the same joine the roadway approach.
In general it may be stated that any condition whioh will impair the riding qualities of the bridge roadway surface, operates to inorease trangportation costs.

ECOMONICS OF RRIMFORCRD-GONCRETE BRIDGES

Reinforced concrete structures being the moat modern of all the general typen of bridge congtruction, the oconozios of their designing if not so highly developed as compared with the older typer. In studying their oconomy, it is convenient to divide it to difforent topion and disousa ther one by one. REINFORCED STHEL

One of the inportnent points in the designing speoifleatione for rem inforoed conorete bridges is the proper intensity of working stress for the reinforcing oonor⿻t bers. It is generally conceled that it should not exceed one-half of the elastio limit of the materlals and in conequemee, the practice in engineering in the past has livited it to $18,00016 s{ }^{\circ} / \mathrm{in}_{0}{ }^{2}$ but using a highor carbon-steel many manufacturer's are trying to raise it to $20,00016 s . / \mathrm{in}^{2}$. The higher intensity aven in the quantity ateel, but generally increases the anount of concrete used. That id due to the fact that the higher stress in the steel roduces the moment of rosistance of the conerete about 6 peroent. If the anomt of conorete is inoreased, the net saving is about 2 percent in slabs and 5 percent in beans: but if the seotion of the conerete is deternined by shear or other considerations, so
that no inorease is neocossarys those perconteges will be inereased by wity. There are two great objection to use higher ateal. The first one is that when beat cold it is liable to oraok on aocount of its inoreased harde ness. The second it opmas up orack in the conorete. IMPEASITY OF WORKITG STRESS IH COHCRETE

Por many year the practiee has been to stress the conorete in compression only $600 \mathrm{lbs} / \mathrm{in}^{2}$., but lately the Joint Comenttee of Teoh nifal Societies hes reported in favor of adopting $650 \mathrm{lbs} . / \mathrm{in}^{2}$. When a good aggregate is proourable, there is no objection to this inorease of 8 peraent. The actual reduction in the amount of concrete of a beam due to this difference of intensity of working stress is about 6 peroent, but this is partially offset by the increase in the anount of steel required. PAVINGS

With a conorete base any desired type of paving oan be erployed as wood blocks, briok, asphalt, or any other kind of bituminous paving, plain ooncrete or granitoid. Wood blook is the most expenaive as fer as first oost is conoerned, but it makes a monh bettor showing in the comparison whem maintmane and renewals are considered. Briek por 80 is less expentive, but it is heary and in consequence, requires more metal to carry it. This is not a serious drawback in shortmspan bridges, but on long-span ones it is almost prohibitory.

Asphalt and bituminous bridges in general are good; and usually they are not heavier then the wooden-blook ones. Unfortunately they require an extemsive plant to lay them; and as the total area of pared surface on most bridges is comparatively small, the oharge per square yard for use of plant will be oxcessive, whess there be a nearby plant available. To adopt an asphalt or bithulitic pating on a bridge in a small tow is,
for that reason rarely eoonomic practice. This difficulty however, can be overoome by adopting an asphalt blook pavement, whioh requires no plant for its oonstruction.

A concrete wearing-surface in many cases is both satisfactory and comparatively inexpensive, for it requires mo speoial plant to lay its noverthless an extra hard and durable aggregate is obligatory, and the ooncrete mast be oarefully idxed, placed, and finished, and mast be kept properly wot while ouring, especially in hot, dry weather. Unless these pre cautions be observed, the onorete pavement will not prove economio because of short life and the expense of repairs and replacements. It will be found advisable to design with an allowanoe in dead load for an extra two inohes of concrete, so that a thicker wearing surface may be put on, if over desired, whout overloading the floor-aystem or the trusses. DESIGNS

The eoonomios of design are rayher diffioult to determine, as the quantities involved are influenced quite largely by the individual tastes of the designor. The problem is also complicated by the facts that the umit costs of the vapious portions of a structure may be more or less differsent, and that the unit costs of different types of construction may be decidedly malike. In general, it may be said that the unit costs are lower for those structures whioh have the simplest form-work; and a reduction will also be offected by deoreasing the area of formesurface per cuble yard of conorete. For instance, in the oase of a wall or slab, the form-cost per oubic yard will vary practically inversely as the thiokess of the said wall or slab. Boldently therefore, it is desirable to concentrate the oonorete into a feim large members, rather than to employ a great number of small ones. The economics of the designing of the different parts of reinforced conorete atruct-
ures are disoussed in logioal order beow. SLABS

A primary eoonomio problem in slab designing is that of two-way veraus one-may reinforcing. Twomay reinforcing involves less conerete but more steel than does enemay reinforcing; henoe it has but little advantage miess the reduction of d ad-load to a minimw be of prime importance.

Barring most of those in railway bridges, slabs are usually continuous over panel pointe, excepting at the expansion pointwis There ia but a Iittle difference in the aotual costs of continuous and non-continaua alabs but contimity is desititble from the standpoint of paring and drainage; also with continuous sints T-beans construction oan be orployed. The continuity of slabs and girders complicates oonstruction problens sometimed very seriously. The varions prooesses of the contrinotion of a proposed design chould be atudied through completely in order to make certain that no impraotioable or wnecoensarily expensive work is involved. GIRDERS

Girdera are of two main types, single or continuous; and there is no great difference in their costs, there being more concrete but lese steel in their epans of the aingle-span type. The tw-span oontiatuous type is nearly always more expensive than the singlo-span type. Couparing sixple girders and continuous ones having three or more spans, the following obe servations may be made:

If there is no T-bean action, the simple spans will be the more expensire; but if the bottoms of all girders are curved, the continuous girders will be cheaper there being deoidedly nemoh less concrete required for them.

The character of the foundations should be duly considered in deoiding between simple and the continuous girders; for if there is a danger of settlement, the aimple-girder is the preferrable type - in fact it is ob1igatory.
columars
Colums are gentrally square or rectangular in cross-seetion for constructive or architectural reasons. A romd or octogonal coluna is in reality a better struotural mamber; and if the lines of the bridge are also worked in accordanoe with it, there should seldom be ary difficulty in the mattor of appearance. A round colurin can be hooped or beaded botter than any other type. Frequently for the sake of appearance, the sise of the colma ranst be made greater than that neccessitated by theoretical requiremente. FOOTINGS

Footings may be oither plain or reinforoed, and the question as to which style to adopt is one solely of eoonomice, beoause as they are buried out of sight, the consideration of appearance will not apply. If the area of the footing is a little larger than that of the colum supported, plain conoret will be oheaper; while for a spread foundation reinforced concrete will be always found to be more economical. If a footing has to be poared mader water, plain concrete should invariably ouployed.

Plain footings are made of $1=3: 5$ conorete or sometimes $1: 3: 6$ but the latter, is considered too wesk. The use of $1: 2: 4$ concrete permite thinner footinge, but this is not of meh importance when plain conorete bases are used.

In respect to the economics of girder bridges resting on ooluma, the following points anst be considered: I. The penel length; 2. The numb ber and spaoing of the longitudinal girders; 3. The number of colume per
bent; 4. The apan length.
ARGH BRIDGES
The eoonomics of aroh bridges are mach more complicated than those of girder bridges. The important factors tobleoneidered are the costs of aroh ribs and those of the abutments; and the main ocomonic point to determine is the ratio of rise to apan-length. For any fixed apan length, the greater the rise the amaller will be the oost of both arch ribs and abutments. By inereaing further, the cost of the rib will be but little augmented whereas the cost of the abutments above the springing will be increased while the port below will be deoreased. If the increase in rise is seoured by lowering the springingw, the greater the rise the greater the oconony of material and cost; but if the inorease must be seoured by raising the grade, the springing remaining at a fixed elevation, it will rarely be coonomical to inorease the rise above the limit of one-third of the opening.

The principle economic problem in the ardh bridges is the determination of the best span-length. The principle factors to be considered are the following:
A. The rise of the arch.
B. The distanoe from springing to bottom of base.
C. The character of the substructure work.
D.The massiveness or lightnass of the piert, determined from the aesthetic viempoint.

The rise of the arch is evidently of greatestt iaportance, because the greater it is, the greater will be the oconomic length of the spen. The distance from springing to bottoli of base is another very inportant factor. In general, for ribbed arohes, when the adjoining spans are of
equal length and when the springings are a short distance above the bottom of the base, a ratio of rise to span leagth of one-third or oven less will be quite economic; while if the tpringings are a considerable distanoe above the botton, a ratio of one-half will be better. Generally speaking; low ratios of rise to span are more pleasing to the oye than higher ones, so that the use of langer spans is preforrable from the view of apPearanoe. Also longer spans involve larger members, and consequently lower umit costs.

Difficult foundations favor long spans, not only beoause in the reduction of the number of piers but also because the unit costs of small piers is much higher than those for large ones. On the other hand, if the foundations are trery deep, the offect of unbalanoed thrust becomes of great irportance, and this favors shorter apans.

If it be decided for the sake of appearance to make the piors heavy and massive, this will tend towards greater span length; because an inem rease in span length will augment the size of each individual pier but little, if any. It will rarely pay to reduce the span length, if such reduction will not decrease the size of the pier of piers. COMPARISON OF SOLID-SPRANDEL WITH OPET-SPRANDEL

In highway struotures, the open-sprandel type is generally proferred to the filled type, for various good and economic reasons, as it is a fact that with the latter type, it will be foum desirable for the sake of appearance, to make the ring the full widh of the deck; whereas for the former type it will be satisfactory to carry a part of the deok on cantilevers. The consequent narrowing of the arch-rings and shortening of the piers involve quite saving in cost.

DRAWINGS .

