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Abstract— We analyze an important class of feedback con-
trollers for curve tracking problems for robotics. Earlier
experimental work suggested the robust performance of the
control laws under perturbations. In this note, we use input-to-
state stability to prove predictable tolerance and safety bounds
that guarantee robust performance. Our work uses an invariant
polygon argument and a new strict Lyapunov function design.
We demonstrate our findings in simulations.
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I. INTRODUCTION

Curve tracking plays a key role in control and path
planning for mobile robots. The work [5] showed that if
a mobile robot can follow boundaries of obstacles in a
two dimensional environment, then simple path planning
“bug” algorithms can make the robot navigate to any ac-
cessible location from any initial position. Subsequent work
[7] provided generic feedback control laws that achieve
autonomous curve tracking for curves that are either an
obstacle boundary or a desired smooth path. The original
work [7] was for wheeled mobile robots and was based on
the “unicycle model”. The interaction between a unit speed
mobile robot and its projection on a curve can be modeled by
two nonlinear equations, one for the distance, and the other
for the bearing between the robot and the curve, namely,{

ρ̇ = −sinφ

φ̇ = κ cosφ

1+κρ
−u2

(1)

where ρ is the relative distance, φ is the bearing, κ is the
(positive) curvature at the closest point, u2 is the steering
control, and the state space is X = (0,+∞)× (−π/2,π/2).
Using a nonstrict Lyapunov function, one can design a
feedback control law to achieve asymptotic stabilization of an
equilibrium state corresponding to constant distance (ρ = ρ0)
and zero bearing (φ = 0), which occurs when the robot moves
parallel to the curve [13]. Later generalizations covered chain
form systems [9] that capture the nonholonomic kinematics
of a large scope of mobile robots, including a kinematic
car with trailers. This led to extended curve tracking control
laws.
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There were several recent improvements for curve tracking
control [8]. For example, [2] reformulated the two dimen-
sional model (1) using Lie group theory and gave a natural
extension to curve tracking in three dimensional space. Curve
tracking controllers also serve as foundations for cooperative
controllers that track motion patterns for multiple mobile
robots, including applications to ocean sensing [12], [14].
The control laws have been tested in other real life situations,
including farming [4], obstacle avoidance in corridors [15],
and ocean sampling [12], where they have been shown to
give reliable performance under severe perturbations in ρ ,
φ , κ , and u2. Such experiments strongly suggest that the
curve tracking control laws are robust, so it is worthwhile to
justify the robustness using analytical tools. This theoretical
understanding is important for giving predictable tolerance
and safety bounds for the curve tracking control laws that
are used in mobile robot applications.

Input-to-state stability (ISS) was introduced in [10] and is
a powerful framework for studying robustness of nonlinear
controllers under actuator errors; see [11] for a survey.
Actuator errors naturally arise from uncertainty in controller
implementations, and can be modeled as additive perturba-
tions on the controllers. It is natural to use ISS in robotics, to
obtain a quantitative measure of the performance of the curve
tracking. Certain curve tracking control laws for chained
form systems [8] lead to linear closed loop dynamics, but
the linear dynamics lack the required invariance properties
for the restricted state space X . To see how, note that if we
take the new state variable z = sinφ , then (1) becomes{

ρ̇ = −z

ż = κ(1−z2)
1+κρ

−
√

1− z2u2.
(2)

Given any constant positive control gains K1 and K2, the
feedback linearizing control law

u2 =
1√

1−z2

{
κ(1−z2)

1+κρ
−K1(ρ−ρ0)+K2z

}
(3)

gives the linear closed loop dynamics{
ρ̇ = −z
ż = K1(ρ−ρ0)−K2z . (4)

Since (4) is a linear system in (ρ − ρ0,φ), exponential
stability of the equilibrium requires no more than asymptotic
stability, and such exponential stability ensures ISS for
linear systems [3]. However, there is no possible choice
of the constants Ki’s such that Xnew = (0,+∞)× (−1,1) is
forwardly invariant for (4). In fact, if we take any constant
vector (K1,K2)∈ (0,+∞)2 and the initial state (ρ(0),z(0)) =



([K2ρ0 + 2K1ρ2
0 + 0.5]/{K1ρ0},0.5) for (4), then the z(t)

component of the trajectory of (4) reaches 1 by time t =
ρ0 and therefore leaves the state space. Hence, (3) cannot
be used to give ISS or even global stability of the curve
tracking dynamics (1). Instead, there are other curve tracking
controllers that lead to nonlinear closed loop dynamics. For
example, the control laws in [13] achieve obstacle avoidance
and avoid possible singular configurations of the mobile
robot, and also provide curve tracking. Even for systems
in chained form, controllers with nonlinear closed loop
dynamics are typically used [8].

Since the flow map of a nonlinear system cannot in
general be given in closed form, one cannot prove ISS by
directly constructing trajectories. Instead, it is convenient
to use control analogs of Lyapunov’s direct method, i.e.,
first construct a strict Lyapunov function for the closed loop
dynamics, and then apply [3, Theorem 4.19]. However, the
construction of the required global strict Lyapunov function
for the curve tracking problem is challenging. While many
Lyapunov functions have been built to establish asymptotic
convergence of the closed loop tracking dynamics, to the
best of our knowledge, they are all local [1] or non-strict.
This does not pose a problem if the closed loop dynamics are
linear, because in that case one can explicitly locate the poles
of the linear system and prove exponential stability. On the
other hand, for nonlinear dynamics, the existing convergence
results rely on LaSalle Invariance Principle or variations of
the Barbalat lemma, and so do not lend themselves to ISS.

In this note, we provide a method to construct a strict
Lyapunov function for the curve tracking control law from
[13] with nonlinear closed loop dynamics. The approach is
a variant of the auxiliary function method from Matrosov
theorems [6]. We found that applying the well known result
[3, Theorem 4.19] on a sublevel set of a strict Lyapunov
function establishes ISS with very small tolerance on the
magnitude of the perturbations. To allow larger perturbations,
we therefore developed a new ISS technique based on
analyzing the forward invariance of a hexagonal region in
the state space. This alternative method achieves ISS results
for significantly larger perturbations on the control inputs and
the states. We believe that our new work can be extended to
other curve tracking controllers with nonlinear closed loop
dynamics, and therefore allow more choices for robust curve
tracking control laws in many other applications.

II. NOTATION AND DEFINITIONS

A continuous function γ : [0,+∞)→ [0,+∞) belongs to
class K (written γ ∈K ) provided it is strictly increasing
and γ(0) = 0; if, in addition, γ(r)→+∞ as r→+∞, then it
belongs to class K∞ (written γ ∈K∞). A continuous function
β : [0,+∞)× [0,+∞)→ [0,+∞) is of class K L (written
β ∈ K L ) provided (i) for each fixed s ≥ 0, the function
β (·,s) belongs to class K , and (ii) for each fixed r≥ 0, the
function β (r, ·) is non-increasing and β (r,s)→ 0 as s→+∞.
Let U be any subset of a Euclidean space such that 0 ∈U
and MU denote the set of all measurable locally essentially
bounded functions δ : [0,+∞)→ U . For all δ ∈MU and

real constants a and b with b > a≥ 0, let |δ |[a,b] denote the
essential supremum of the restriction of δ to [a,b], and |δ |∞
its essential supremum on [0,+∞).

Consider any open subset X of a Euclidean space and any
point E ∈X . A continuous function V : X → [0,+∞) is
positive semi-definite with respect to E provided V (E ) = 0;
if, in addition, V (q) > 0 for all q ∈X \ {E }, then V is
positive definite with respect to E . A function V is negative
semi-definite (resp., definite) with respect to E provided
−V is positive semi-definite (resp., definite) with respect
to E . Let |p|E = |p− E | denote the distance between any
point p ∈ X and the point E , where the distance is in
the usual Euclidean metric. A function V : X → [0,+∞)
is a modulus with respect to (E ,X ) provided it is positive
definite with respect to E and radially unbounded in the
following sense: For each constant M > 0, there is a constant
δM > 0 (depending on M) such that V (x)≥M for all x ∈X
that satisfy either distance(x,boundary(X ))≤ δM or |x|E ≥
1/δM .

Consider a forward complete system ẋ = F (x,δ ) with
state space X and disturbances δ ∈MU , where F : X ×
U →X satisfies the standard existence and uniqueness of
solutions properties for all initial conditions x(0) = x0 ∈X
and all disturbances δ ∈MU , and F (E ,0) = 0. Let S ⊆X
be any neighborhood of E . The system is input-to-state
stable (ISS) with respect to (U ,E ,S ) provided there are
functions β ∈ K L and γ ∈ K∞ such that |x(t,x0,δ )|E ≤
β (|x0|E , t)+γ(|δ |[0,t]) for all t ≥ 0, all solutions x(t,x0,δ ) of
the system with initial states x0 ∈S , and all δ ∈MU . This
agrees with the usual ISS condition when X = S = Rn

and E = 0 [11]. A set S is forwardly invariant for the
system with disturbances in U provided all trajectories with
initial states in S remain in S for all positive times and all
δ ∈MU . The special case of ISS where F only depends
on x and the γ term in the ISS estimate is not present is
global asymptotic stability (GAS) with respect to (E ,S ).
In that case, a nonstrict (resp., strict) Lyapunov function for
the system with respect to (E ,X ) is any C1 modulus V :
X → [0,+∞) with respect to (E ,X ) such that the function
V̇ : X →R defined by V̇ (q) =∇V (q)F (q) is negative semi-
definite (resp., definite) with respect to E . If ẋ=F (x) admits
a strict Lyapunov function with respect to (E ,X ), then it is
GAS with respect to (E ,X ).

III. FEEDBACK DESIGN

We next review the controller design from [13], which
uses the Lyapunov function candidate

V (ρ,φ) =− ln
(

cos(φ)
)
+h(ρ) , (5)

on X = (0,+∞)× (−π/2,π/2), where:
Assumption 1: The function h : (0,+∞) → [0,+∞) is

C1, h′ has only finitely many zeros, limρ→0+ h(ρ) =
limρ→+∞ h(ρ) = +∞, and there is a constant ρ0 > 0 such
that h(ρ0) = 0. �

The motivation for (5) is that the term − ln(cos(φ))
penalizes the misalignment of the tangent vector to the curve
at the closest point with the tangent vector of the moving



vehicle, while the h(ρ) term measures the separation between
the moving vehicle and the obstacle. The time derivative
of V along all trajectories of (1) on the state space X =
(0,+∞)× (−π/2,π/2) is

V̇ = sin(φ)
cos(φ) φ̇ +h′(ρ)ρ̇

= sin(φ)
cos(φ)

[
κ cos(φ)
1+κρ

−u2

]
−h′(ρ)sin(φ)

= sin(φ)
cos(φ)

[
κ cos(φ)
1+κρ

−u2−h′(ρ)cos(φ)
]
.

Taking the controller

u2 =
κ cos(φ)
1+κρ

−h′(ρ)cos(φ)+µ sin(φ) (6)

from [13] where µ > 0 is a steering constant gives

V̇ = −µ
sin2(φ)
cos(φ) ≤ 0 . (7)

This implies that V is a nonstrict Lyapunov function for the
corresponding closed-loop system{

ρ̇ = −sin(φ)
φ̇ = h′(ρ)cos(φ)−µ sin(φ) (8)

with respect to (E ,X ) for the state space X and the equi-
librium E = (ρ0,0). Then [13] uses the LaSalle Invariance
Principle to get global asymptotic stability properties for (8).
However, robustness results are not considered in [13].

IV. STRICT LYAPUNOV FUNCTION

As we noted in the introduction, strict Lyapunov functions
have the advantage that they can be used to certify important
robustness features such as ISS. In this section, we transform
the nonstrict Lyapunov function (5) into a strict Lyapunov
function for (8), which will lead to our proof of ISS perfor-
mance in Section VI. To define the transformation, we use
the following additional condition:

Assumption 2: The C2 function h : (0,+∞) → [0,+∞)
satisfies Assumption 1 and the following three conditions:
(i) There is an increasing C1 function γ : [0,+∞)→ [µ,+∞)

such that for all ρ > 0,

γ(h(ρ)) ≥ max
{

µ,1+0.5µ2 +h′′(ρ)
}
. (9)

(ii) There is a function Γ∈K∞∩C1 such that for all ρ > 0,

Γ(h(ρ)) ≥ h′(ρ)2 . (10)

(iii) The function
h′(ρ)(ρ−ρ0) (11)

is positive for all ρ > 0 with ρ 6= ρ0,
where ρ0 > 0 is from Assumption 1. �

Remark 1: Assumption 2 is satisfied by

h(ρ) = α

{
ρ +

ρ2
0

ρ
−2ρ0

}
(12)

for any constants α > 0 and ρ0 > 0, if we take

γ(q) = 2
α2ρ4

0
(q+2αρ0)

3 +1+0.5µ2 +µ (13)

and Γ(q) = 4qh′′(ρ0) + K̄q4 for a large enough constant
K̄ > 0. In fact, since l’Hopital’s Rule and (12) give

limρ→ρ0{h′(ρ)2/h(ρ)}= 2h′′(ρ0)> 0, we can find an open
interval I ⊆ (0,+∞) containing ρ0 such that Γ(h(ρ))−
h′(ρ)2 = h(ρ)[4h′′(ρ0)+K̄h(ρ)3−{h′(ρ)2/h(ρ)}]> 0 for all
ρ ∈I \{ρ0} and any choice of K̄. Then we can choose K̄
such that K̄ ≥ h′(ρ)2/h(ρ)4 for all ρ ∈ (0,+∞)\I , which
gives (10). �

Our strict Lyapunov function construction is:
Theorem 1: If Assumption 2 holds, then

U2(ρ,φ) = −h′(ρ)sin(φ)+ 1
µ

∫ V (ρ,φ)
0 γ(m)dm

+Γ(V (ρ,φ))+V (ρ,φ)
(14)

is a strict Lyapunov function for (8) with respect to (E ,X )
when V is given by (5) and E = (ρ0,0).

Proof: The proof is a variant of the Matrosov ap-
proach from [6, Chapter 5], using the auxiliary function
N(ρ,φ) = −h′(ρ)sin(φ), which is the Lie derivative of
h along all trajectories of (8). Along all trajectories of
(8), we have Ṅ =−[h′(ρ)cos(φ)]2 +h′(ρ)cos(φ)µ sin(φ)+
h′′(ρ)sin2(φ). For all (ρ,φ) ∈ X , the triangle in-
equality gives h′(ρ)cos(φ)µ sin(φ) ≤ 0.5[h′(ρ)cos(φ)]2 +
0.5µ2 sin2(φ), hence

Ṅ ≤ −0.5[h′(ρ)cos(φ)]2

+
[
0.5µ2 +h′′(ρ)

]
sin2(φ) .

(15)

From (9) and the fact that cos(φ) ∈ (0,1] for all φ ∈
(−π/2,π/2), we get

Ṅ ≤ −0.5[h′(ρ)cos(φ)]2 + γ(h(ρ))sin2(φ)

−sin2(φ)

≤ −0.5[h′(ρ)cos(φ)]2− sin2(φ)

+γ(V (ρ,φ)) sin2(φ)
cos(φ) .

(16)

Choose

U1(ρ,φ) = N(ρ,φ)+
1
µ

∫ V (ρ,φ)

0
γ(m)dm. (17)

By (7) and (16), we have

U̇1 ≤ −0.5[h′(ρ)cos(φ)]2− sin2(φ) . (18)

The quantity α(ρ,φ) =−0.5[h′(ρ)cos(φ)]2−sin2(φ) is neg-
ative definite with respect to E = (ρ0,0). However, U1 is not
necessarily a modulus with respect to (E ,X ).

On the other hand, we have U2 = U1 +Γ(V )+V , so (7)
and (18) combine to give

U̇2 ≤ −0.5[h′(ρ)cos(φ)]2− sin2(φ)

−[Γ′(V (ρ,φ))+1]µ sin2(φ)
cos(φ) .

(19)

Therefore, U̇2 is negative definite with respect to E along all
trajectories of (8). By (10), (14), and the inequality

−h′(ρ)sin(φ)≥−h′(ρ)2− 1
4

sin2(φ), (20)

we deduce that

U2(ρ,φ) ≥ − 1
4 sin2(φ)− ln(cos(φ))

+ 1
µ

∫ V (ρ,φ)
0 γ(m)dm .

(21)



Also, for all φ ∈ (−π/2,π/2), we have

− ln(cos(φ)) = −0.5ln(1− sin2(φ)) ≥ 0.5sin2(φ) . (22)

Using (21)-(22) and the fact that γ ≥ µ everywhere, we get

U2(ρ,φ) ≥ 1
4 sin2(φ)+ 1

µ

∫ V (ρ,φ)
0 γ(m)dm

≥ 1
µ

∫ V (ρ,φ)
0 γ(m)dm

≥ V (ρ,φ) .

(23)

We conclude that U2 is a modulus with respect to (E ,X )
for which U̇2 is negative definite with respect to E along all
trajectories of (8). This proves the theorem.

V. FORWARDLY INVARIANT HEXAGONS

We saw in the introduction how the feedback linearization
control law (3) produced a closed loop linear dynamics (4)
that violated the necessary forward invariance condition of
X = (0,+∞)× (−π/2,π/2). By contrast, we show next
how the nonlinear controller (6) from [13] satisfies the
required invariance conditions, even under perturbations of
sufficiently small magnitude acting on the controller. In fact,
a byproduct of our work is that for any compact subset
D ⊆X , we can build a closed hexagon H in X such that
for all trajectories (ρ(t),φ(t)) for the closed loop perturbed
system starting in D , we have (ρ(t),φ(t)) ∈H for all t ≥ 0.

Therefore, consider the perturbed dynamics{
ρ̇ = −sin(φ)
φ̇ = h′(ρ)cos(φ)−µ sin(φ)+δ ,

(24)

where the measurable essentially bounded functions δ rep-
resent actuator disturbances, the constant µ > 0 is to be
chosen, and h satisfies Assumption 2. To ensure that X =
(0,+∞)× (−π/2,π/2) is forwardly invariant for (24), we
must restrict the magnitude of δ . To see why, notice that
if we choose (ρ(0),φ(0)) = (2ρ0,0) and δ ≡ µ +π/(2ρ0),
then we have ρ(t) ≥ ρ0 and so also φ(t) ≥ πt/(2ρ0) for
all t ∈ [0,ρ0], which gives φ(ρ0) ≥ π/2. From now on, we
add the assumption that h′′(ρ)> 0 for all ρ > 0; this holds
for (12). For all constants ρ∗ ∈ (0,ρ0/3), µ ∈ (0,π/(2ρ∗)),
and K > 2, let H(ρ∗,µ,K) denote the hexagon in the (ρ,φ)-
plane having the vertices A = (ρ∗,0), B = (2ρ∗,µρ∗), C =
(ρ∗+Kρ0,µρ∗), D = (ρ∗+Kρ0,0), E = (Kρ0,−µρ∗), and
F = (ρ∗,−µρ∗). Hence, H(ρ∗,µ,K) has a flat top and a flat
bottom, and its other legs are vertical or have slope µ .

For each compact subset D ⊆X , we can choose ρ∗, µ ,
and K such that D ⊆ H(ρ∗,µ,K); see Fig. 1. Set

∆∗ = −h′(3ρ∗)cos(µρ∗),

∆∗∗ = −|h′|[ρ∗,ρ∗+Kρ0] cos(µρ∗)+µ sin(0.5µρ∗),

∆∗∗∗ = h′(0.5Kρ0)cos(µρ∗), and
δ∗ = min{∆∗,∆∗∗,∆∗∗∗} .

(25)

For each ρ∗ ∈ (0,ρ0/3) and K > 2, we can choose µ

close enough to π/(2ρ∗) to ensure that ∆∗∗ > 0, because
−|h′|[ρ∗,ρ∗+Kρo ] cos(µρ∗) is then close to 0 and µ sin(0.5µρ∗)
is close to µ/

√
2. This gives δ∗ > 0, since h′ < 0 on (0,ρ0)

and h′ > 0 on (ρ0,+∞). We prove:

Fig. 1. Forwardly Invariant Hexagon H(ρ∗,µ,K) in (ρ,φ) Plane

Theorem 2: Let ρ∗ ∈ (0,ρ0/3), µ ∈ (0,π/(2ρ∗)), and K >
2 be constants such that δ∗ > 0. Then H(ρ∗,µ,K) is for-
wardly invariant for (24) with disturbances in U = [−δ∗,δ∗].

Proof: Our strategy is to prove that for all δ ∈MU ,
the vector field (ρ̇, φ̇) points into the hexagon at all points
on the boundary of the hexagon, so no trajectory can leave
the hexagon. Throughout the proof, we fix any δ ∈MU . For
each pair (ρ,φ) ∈X , the function I : X → R defined by
I (ρ,φ) = φ −µρ satisfies the following: For each (ρ,φ) ∈
X , we have y = µx+I (ρ,φ) when (x,y) = (ρ,φ). Hence,
I (ρ,φ) equals the φ axis intercept of the line that has
the slope µ and passes through (ρ,φ). On the leg AB of
H(ρ∗,µ,K), we have ρ ≤ 2ρ∗ < ρo, so İ = h′(ρ)cos(φ)+
δ ≤ h′(2ρ∗)cos(φ)+δ ≤ h′(2ρ∗)cos(µρ∗)+δ < 0 along all
trajectories of (24), where the first two inequalities follow
because cos(φ) > 0 for all φ ∈ (−π/2,π/2), h′′(ρ) > 0 for
all ρ > 0, and h′(ρ) < 0 on (0,ρo); and the last inequality
follows because δ∗ ≤ ∆∗ and because h′′(ρ)> 0 everywhere.
Since AB has slope µ , it follows that no trajectory starting
in H(ρ∗,µ,K) can exit H(ρ∗,µ,K) by passing through AB
except possibly through A or B (because if it did so at some
time t∗> 0, then for each constant ε > 0, we could find a time
t̃ ∈ (t∗, t∗ + ε) such that I (ρ(t̃),φ(t̃)) > I (ρ(t∗),φ(t∗)),
which is impossible, because İ ≤ h′(2ρ∗)cos(µρ∗)+δ∗ < 0
at time t∗ and İ is continuous in the state). Also, ρ̇ =
−sin(φ) > 0 all along the leg AF except at A. At A, we
have ρ̇ = 0 and φ̇ ≤ h′(ρ∗)+δ∗ < 0, because the negativity
of h′ on (0,ρo) and positivity of h′′ imply that δ∗ ≤ ∆∗ <
−h′(3ρ∗)<−h′(ρ∗). Hence, ρ(t)> ρ∗ and φ(t)< 0 for small
enough times t > 0 for all trajectories starting at A. Hence,
no trajectory of (24) can exit H(ρ∗,µ,K) by passing through
the left legs of H(ρ∗,µ,K), except possibly through B or F .
We will rule out exits from B and F when we consider the
top and bottom legs.

Along the bottom EF , we get φ̇ ≥ −µ sin(−µρ∗) −
|h′(ρ)cos(−µρ∗)| − |δ | ≥ −|h′|[ρ∗ ,ρ∗+Kρo ] cos(µρ∗) +
µ sin(µρ∗)−δ∗ > 0, since δ∗ ≤ ∆∗∗. Similarly, along the top
leg BC, we have φ̇ ≤ −µ sin(µρ∗)+ |h′(ρ)cos(µρ∗)|+ |δ | ≤
|h′|[2ρ∗ ,ρ∗+Kρo] cos(µρ∗) − µ sin(µρ∗) + δ∗ < 0, because
|h′|[ρ∗ ,Kρo+ρ∗ ] ≥ |h′|[2ρ∗ ,Kρo+ρ∗ ], which follows because
h′ < 0 < h′′ on (0,2ρ∗). Combined with the preceding
paragraph, we conclude that no trajectory starting in
H(ρ∗,µ,K) can exit through the left legs, top, or bottom of



H(ρ∗,µ,K), except possibly through C or E. We next rule
out exits from C and E by considering the right legs of the
hexagon. Along CD, we have ρ̇ < 0, except at D. At D, we
have ρ̇ = 0 and φ̇ = h′(ρ∗+Kρo)+δ > h′(0.5Kρo)−δ∗ > 0,
because h′′ > 0 everywhere and δ∗ ≤ ∆∗∗∗. It follows that
ρ(t) < ρ∗ + Kρo and φ(t) > 0 hold for small enough
times t > 0 along trajectories starting at D. Moreover,
İ ≥ h′(Kρo)cos(µρ∗) + δ > 0 along DE, because
δ∗ ≤ ∆∗∗∗. Hence, arguing as we did for AB, we conclude
that no trajectory can exit H(ρ∗,µ,K) through the right
legs. This proves the result.

VI. INPUT-TO-STATE STABILITY

We next combine our strict Lyapunov function and invari-
ant hexagon constructions to prove:

Theorem 3: Let h satisfy Assumption 2 and D ⊆X be
any compact neighborhood of (ρ0,0). Assume that h′′(ρ)>
0 for all ρ > 0. Choose any constants ρ∗ ∈ (0,ρ0/3), µ ∈
(0,π/(2ρ∗)), and K > 2 such that D ⊆H(ρ∗,µ,K) and δ∗ >
0. Then we can find constants γ̄i > 0 (depending on ρ∗, µ ,
and K) such that∣∣(ρ(t),φ(t))∣∣

E
≤ γ̄1e−γ̄2t ∣∣(ρ(0),φ(0))∣∣

E
+ γ̄3|δ |[0,t] (26)

for all perturbations δ ∈M[−δ∗,δ∗], all trajectories (ρ,φ) :
[0,+∞)→R2 of (24) starting in D , and all t ≥ 0. In particu-
lar, (24) is ISS with respect to (U ,E ,D) for the equilibrium
E = (ρ0,0) and the disturbance set U = [−δ∗,δ∗].

Proof: In what follows, all (in)equalities should be
understood to hold globally unless otherwise indicated, and
we only consider trajectories that start in D , and therefore
remain in H(ρ∗,µ,K) by Theorem 2. Along all trajectories
of (24) with δ ∈M[−δ∗,δ∗], (19) gives

U̇2 ≤ −0.5[h′(ρ)cos(φ)]2− sin2(φ)

−[Γ′(V (ρ,φ))+1]µ sin2(φ)
cos(φ) +

∂U2
∂φ

(ρ,φ)δ (t) .
(27)

Recalling the formula (14) for U2 gives

∂U2
∂φ

(ρ,φ) = −h′(ρ)cos(φ)+
{

1
µ

γ(V (ρ,φ))

+Γ′(V (ρ,φ))+1
} sin(φ)

cos(φ) .
(28)

Combining (27)-(28) gives

U̇2 ≤ −0.5[h′(ρ)cos(φ)]2− sin2(φ)

− [Γ′(V (ρ,φ))+1]µ sin2(φ)
cos(φ)

+
[
|h′(ρ)cos(φ)|+

{
1
µ

γ(V (ρ,φ))

+Γ′(V (ρ,φ))+1
}∣∣∣ sin(φ)

cos(φ)

∣∣∣] |δ (t)| .
(29)

Since |h′(ρ)cos(φ)||δ (t)| ≤ 1
4 [h
′(ρ)cos(φ)]2 +δ (t)2, we get

U̇2 ≤ − 1
4 [h
′(ρ)cos(φ)]2− sin2(φ)

−[Γ′(V (ρ,φ))+1]µ sin2(φ)
cos(φ)

+
{

1
µ

γ(V (ρ,φ))

+Γ′(V (ρ,φ))+1
}∣∣∣ sin(φ)

cos(φ)

∣∣∣ |δ (t)|+δ (t)2 .

(30)

Also, limρ→ρ0 h(ρ)/h′(ρ)2 = limρ→ρ0 1/{2h′′(ρ)} > 0 and
limφ→0[− ln(cos(φ))/sin2(φ)] = 0.5, by l’Hopital’s Rule.
Hence, can find a constant c̄ such that − ln(cos(φ)) ≤
c̄sin2(φ) and h(ρ) ≤ c̄h′(ρ)2 hold for all (ρ,φ) ∈
H(ρ∗,µ,K). Set J = max{V (ρ,φ) : (ρ,φ) ∈ H(ρ∗,µ,K)}
and c̄1 = 1+{γ(J)/µ}+max{Γ′(r) : 0≤ r ≤ J}. Then (14)
gives

U2(ρ,φ) ≤ {|h′(ρ)|}{|sin(φ)|}+ c̄1V (ρ,φ)

≤ 0.5h′(ρ)2 +0.5sin2(φ)

+c̄1[h(ρ)− ln(cos(φ))]
≤ [0.5+ c̄c̄1]

[
h′(ρ)2 + sin2(φ)

)
]

≤ [0.5+c̄c̄1]
cos2(µρ∗)

[
(h′(ρ)cos(φ))2 + sin2(φ)

)
]

(31)

and[
1
µ

γ(V (ρ,φ))+Γ′(V (ρ,φ))+1
]∣∣∣ sin(φ)

cos(φ)

∣∣∣ |δ |
≤
{
√

µ
|sin(φ)|√

cos(φ)

}{
c̄1|δ |√
µ cos(φ)

}
≤ µ sin2(φ)

2cos(φ) +
c̄2

1
2µ cos(µρ∗)

δ 2

hold for all δ ∈ R and all (ρ,φ) ∈ H(ρ∗,µ,K), by ap-
plying the triangle inequality ab ≤ 1

2 a2 + 1
2 b2 to the terms

in braces. Therefore, our decay estimate (30) on U2 gives
U̇2 ≤ −c̄2U2 + c̄3|δ |2∞ along all trajectories of (24) in the
hexagon, where c̄2 = 0.25cos2(µρ∗)/{0.5+ c̄c̄1} and c̄3 =
1 + c̄2

1/{2µ cos(µρ∗)}. Applying Variation of Parameters
now gives U2(ρ(t),φ(t)) ≤ e−c̄2tU2(ρ(0),φ(0))+ c̄3|δ |2∞/c̄2
along all trajectories of (24) in the hexagon for which δ ∈
M[−δ∗,δ∗]. Using (23) and (31), we can find positive constants
c̄4 and c̄5 such that

c̄4|(ρ,φ)|2E ≤ V (ρ,φ) ≤ U2(ρ,φ) ≤ c̄5|(ρ,φ)|2E (32)

for all (ρ,φ) ∈ H(ρ∗,µ,K). Since causality implies that
the trajectory at time t does not depend on values of the
disturbance at later times, we therefore get the ISS estimate
(26) with the choices γ̄1 =

√
c̄5/c̄4, γ̄2 = 0.5c̄2, and γ̄3 =√

c̄3/{c̄2c̄4}, by applying the general relation
√

p+q ≤√
p+
√

q, which holds for all p≥ 0 and q≥ 0.

VII. SIMULATIONS

To demonstrate our ISS results, we simulated the perturbed
curve tracking dynamics (24) with the choice

h(ρ) = 10
{

ρ + 1
ρ
−2
}

(33)

for h. This is the special case of (12) with α = 10 and
ρ0 = 1. Therefore, it satisfies our Assumption 2 on h; see
Fig. 2. We took ρ∗ = 0.22, µ = 6.42 and K = 20, to get
the compact invariant hexagon H(0.22,6.42,20)⊆X . Using
the notation from (25) gives ∆∗ =−h′(3ρ∗)cos(µρ∗) = 2.03,
∆∗∗=−|h′|[ρ∗,ρ∗+Kρ0] cos(µρ∗)+µ sin(0.5µρ∗) = 2.612, and
∆∗∗∗ = h′(0.5Kρ0)cos(µρ∗) = 1.55. Hence, our bound on δ

to maintain forward invariance of H(0.22,6.42,20) for (24)
is δ∗ = min{∆∗,∆∗∗,∆∗∗∗}= 1.55.

We obtained two simulations for (24). First we took the
initial state (1,1.4) ∈ H(0.22,6.42,20) and the zero distur-
bance δ ≡ 0. In Figs. 3-4, we plot the corresponding trajec-
tories for ρ(t) and φ(t), which show convergence toward the



equilibrium E = (1,0). Our second simulation used the same
data as our first, except we took the disturbance δ ≡ 1.55.
With the added disturbance, the convergence φ(t)→ 0 is
maintained, but we no longer have ρ(t)→ ρ0 = 1; see Figs.
5-6. This illustrates the effect of the perturbation through the
overflow term in the ISS estimate.

Fig. 2. Choice of h(ρ) = 10(ρ +{1/ρ}−2) from (33)

Fig. 3. ρ(t) with Perturbation δ ≡ 0

Fig. 4. φ(t) with Perturbation δ ≡ 0

VIII. CONCLUSIONS

Curve tracking is a fundamental behavior in robotics.
While the two dimensional tracking dynamics are feedback
linearizable, the linear system does not satisfy the necessary
invariance properties. Although Lyapunov functions have
been used for curve tracking, to the best of our knowledge,
the earlier Lyapunov functions are all nonstrict and so do
not lend themselves to ISS performance analysis. Our strict
Lyapunov function construction enabled us to use ISS to
quantify the robust performance of the controller design from
[13]. It would be useful to extend our analysis to three
dimensional curve tracking problems and feedback delays.

REFERENCES

[1] Z-P. Jiang and H. Nijmeijer. “Tracking control of mobile robots: A
case study in backstepping,” Automatica, Volume 33, Number 7, pp.
1393-1399, 1997.

Fig. 5. ρ(t) with Perturbation δ ≡ 1.55

Fig. 6. φ(t) with Perturbation δ ≡ 1.55

[2] E. Justh and P. Krishnaprasad, “Natural frames and interacting parti-
cles in three dimensions,” in Proceedings of the 44th IEEE Conference
on Decision and Control and European Control Conference (Seville,
Spain, December 2005), pp. 2841-2846.

[3] H. Khalil, Nonlinear Systems, Third Edition, Prentice Hall, Upper
Saddle River, NJ, 2002.

[4] R. Lenain, B. Thuilot, C. Cariou, and P. Martinet, “High accuracy
path tracking for vehicles in presence of sliding: Application to
farm vehicle automatic guidance for agricultural tasks,” Autonomous
Robots, Volume 21, Number 1, pp. 79-97, 2006.

[5] V. Lumelsky and A. Stepanov, “Path planning strategies for a point
mobile automaton moving amidst unknown obstacles of arbitrary
shape,” Algorithmica, Volume 2, Number 2, pp. 403-430, 1987.

[6] M. Malisoff and F. Mazenc, Constructions of Strict Lyapunov Func-
tions, Communications and Control Engineering Series, Springer-
London Ltd., London, UK, 2009.

[7] A. Micaelli and C. Samson, “Trajectory tracking for unicycle-type and
two-steering-wheels mobile robots,” INRIA Report 2097, 1993.

[8] P. Morin and C. Samson, “Motion control of wheeled mobile robots,”
in B. Siciliano and O. Khatib, editors, Springer Handbook of Robotics,
pages 799-826. Springer-Verlag, Berlin, Germany, 2008.

[9] C. Samson, “Control of chained systems: Application to path-
following and time-varying point-stabilization of mobile robots,” IEEE
Transactions on Automatic Control, Volume 40, Number 1, pp. 64-77,
1995.

[10] E.D. Sontag, “Stabilizability, i/o stability and coprime factorizations,”
in Proceedings of the IEEE Conference on Decision and Control
(Austin,TX, December 1988), pp. 457-458.

[11] E.D. Sontag, “Input-to-state stability: Basic concepts and results,”
in P. Nistri and G. Stefani, editors, Nonlinear and Optimal Control
Theory. Springer, Berlin, Germany, 2008.

[12] F. Zhang, D.M. Fratantoni, D. Paley, J. Lund, and N. Leonard,
“Control of coordinated patterns for ocean sampling,” International
Journal of Control, Volume 80, Number 7, pp. 1186-1199, 2007.

[13] F. Zhang, E. Justh, and P. Krishnaprasad, “Boundary following using
gyroscopic control,” in Proceedings of the 43rd IEEE Conference on
Decision and Control (Paradise Island, Bahamas, December 2004),
pp. 5204-5209.

[14] F. Zhang and N. Leonard, “Coordinated patterns of unit speed particles
on a closed curve,” Systems and Control Letters, Volume 56, Number
6, pp. 397-407, 2007.

[15] F. Zhang, A. O’Connor, D. Luebke, and P. Krishnaprasad, “Experi-
mental study of curvature-based control laws for obstacle avoidance,”
in Proceedings of IEEE International Conference on Robotics and
Automation (New Orleans, LA, April-May 2004), pp. 3849-3854.


