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“Human influence on the climate system is clear, and recent anthropogenic emissions of

greenhouse gases are the highest in history. Recent climate changes have had widespread

impacts on human and natural systems. Warming of the climate system is unequivocal,

and since the 1950s, many of the observed changes are unprecedented over decades to

millennia. The atmosphere and ocean have warmed, the amounts of snow and ice have

diminished, and sea level has risen.”

Intergovernmental Panel on Climate Change

“To truly transform our economy, protect our security, and save our planet from the

ravages of climate change, we need to ultimately make clean, renewable energy the

profitable kind of energy”

Barack Obama
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SUMMARY

The objective of this research is to demonstrate a high-efficiency, low-voltage Soft-

Switching Solid-State Transformer (S4T) enabled by the Synchronous Reverse Blocking

(RB) Switch, a patent-pending method to seamlessly integrate dual-active-switch structures

into the S4T topology to minimize conduction losses in low-voltage, high-current applica-

tions. The S4T is a universal converter with the ability to interface single-phase, three-

phase, and DC sources, and features bidirectional power transfer, buck-boost functionality,

high-frequency isolation, low electromagnetic interference (EMI) through controlled dv/dt,

and zero-voltage switching (ZVS) operation for all main devices over the entire load range

to minimize switching losses. Significant success has been achieved in applying the S4T

to industrial voltages (600 VAC and 1000 VDC) and medium voltage AC and DC (MVDC

and MVAC) through the use of 3.3 kV silicon-carbide (SiC) devices and series connection

of multiple S4T modules.

However, applying the topology to interface with low-voltage, high-current sources and

loads has been challenging due to the high conduction losses associated with conventional

reverse blocking switch structures composed of one active switching device, such as an

IGBT or a MOSFET, in series with a diode, usually a SiC Schottky diode. Replacing

the conventional RB switch structure with a dual-active-switch configuration, specifically

one composed of two low-RDS(ON) N-channel MOSFETs, presents an opportunity to signifi-

cantly reduce semiconductor conduction losses and increase converter efficiency. However,

as the PN-junction MOSFET body diode replaces the series SiC Schottky diode of conven-

tional RB structures, body diode reverse recovery must be mitigated to prevent large device

voltage stresses, increased device losses, additional EMI, and reduced converter reliability.

This thesis first presents the device-level validation of the Synchronous Reverse Block-

ing Switch within the S4T, showcasing the ability of the method to significantly reduce

conduction losses while also evidencing benign reverse recovery behavior. Key contribu-
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tions include the design of a simple and robust gate control method and the characterization

of the switching dynamics of the underlying dual-MOSFET RB switch structure within

the unique switching environment of the S4T. Then, the patent-pending Synchronous RB

Switch is introduced, pairing the dual-MOSFET RB switch structure with custom gate drive

and protection circuitry that leverages the S4T switching environment to eliminate parasitic

body diode reverse recovery, mitigate the complexity of controlling the two active switch

gates, and enable simple fault protection through dedicated hardware at the gate driver

level. Experimental results are presented to demonstrate that the Synchronous RB Switch

enables the conduction loss reduction of the dual-MOSFET structure to be exploited with

minimal additional cost and no additional control complexity when compared to a conven-

tional RB switch structure. This analysis has been published in the proceedings of the 2020

IEEE Energy Conversion Congress and Exposition (ECCE).

System-level validation of the Synchronous RB Switch is conducted through the design

and performance analysis of a low-voltage, high-current S4T bridge intended to interface

with a variety of low-voltage sources, including lithium batteries, photovoltaic (PV) panels,

and fuel cells. The low-voltage S4T bridge is critical in enabling the S4T topology to

address upcoming low-voltage power conversion needs, representing large technology and

market opportunities.

Two specific low-voltage S4T applications unlocked by the Synchronous RB Switch

are presented and analyzed. The first application, referred to as the AC Cube, is a single-

stage multi-port structure that converts power from two low-voltage DC sources, PV and

a 48 VDC battery, into a 120 VAC single-phase output, with intended use in rapid deploy-

ment AC power sources following grid contingencies. Due to the current-source nature

of the topology, parallelization on the 120 VAC side enables the construction of modular

microgrids. An arbitrarily scalable microgrid based on AC Cube modular building blocks

represents a large opportunity to deliver electricity solutions to off-grid and poor-grid com-

munities, and is a key avenue of future work.
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The second low-voltage S4T application converts power from a single DC input, a 48

VDC battery, and produces a three-phase 480 VAC output, enabling a radical, touch-safe,

modular electric vehicle (EV) powertrain. Due to the bidirectional power flow capability

of the topology, the second low-voltage S4T variant can also be used for power delivery

applications in data centers and upcoming 5G access points. The design of this second low-

voltage S4T variant has been published in the proceedings of the 2020 IEEE Transportation

Electrification Conference & Expo (ITEC).
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CHAPTER 1

INTRODUCTION AND BACKGROUND

As the world’s nations grow to more fully embrace the impacts of climate change and the

inherent non-sustainability of certain ways of modern life, there is a significant trend to-

wards technologies that enable more sustainable generation and consumption of energy.

Large changes are occurring across practically every social and economic cross section,

with critical examples including the push to increase electrification of transportation, the

reduction of carbon intensity of manufacturing, increased grid penetration of renewable

energy technologies, a growing realization of the need to reduce the greenhouse gas in-

tensity of conventional agricultural techniques, and an increased focus on residential and

commercial building energy efficiency. These shifts in technology are rooted in science

and economics, underpinned by the growing body of unequivocal evidence linking hu-

man activity to the observed degradation of the Earth’s natural atmospheric and ecological

systems [1] and the improving cost-effectiveness of renewable energy resources and high-

efficiency end-use technologies [2, 3]. Importantly, the technology shifts also stem from a

uniquely human desire to unlock pathways of human life that are sustainable not only for

our foreseeable posterity, but are sustainable on the order of centuries to millennia, with

the potential to allow human civilization to grow and flourish indefinitely.

The field of power electronics is a key enabler of the push towards a sustainable energy

future. The past 60 years have produced tremendous technical achievements, including the

invention and refinement of efficient power semiconductor devices, deep explorations into

numerous power converter topologies and an evaluation of their trade-offs, and significant

growth in the grid integration of low-cost renewable energy technologies whose prices con-

tinue to decrease [4]. As the field of power electronics matures and as converter topologies

reach their practically achievable efficiency limits, new research directions include investi-
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gations of increasingly integrated conversion functionalities, minimization of converter cost

to enable ubiquitous market uptake, a broader consideration of converter mission profiles

for system-level performance optimization, and an embrace of wide-bandgap semiconduc-

tor technologies, namely gallium nitride (GaN) and silicon-carbide (SiC), that promise to

extend the field of power electronics past the switching frequency and breakdown voltage

limitations of the industry’s current workhorse, silicon (Si).

Within the field of power electronics, one specific area of growth has been the low-

voltage power conversion market, which has seen significant expansion due to the expo-

nential growth of both residential and utility-scale photovoltaic systems [5, 6]. Between

2009 and 2019, the total installed capacity of PV systems in the United States increased

from 1.2 GW to 74.8 GW, representing more than a 60-fold increase in just one decade.

Over the same time period, the cumulative capacity of US residential solar has grown from

422 MW to 15.4 GW, a 36-fold increase [7]. In addition, the decreasing costs of lithium-

ion batteries have increased the cost-effectiveness of pairing PV installations with energy

storage to enable backup power, peak-load shifting, and electricity price arbitrage func-

tions. Market forecasts from Wood Mackenzie estimate that by 2025, more than one-third

of new residential solar systems and more than one-quarter of new non-residential solar

systems will be paired with energy storage [8]. Key products related to this effort on the

utility scale include the Tesla Powerpack and Megapack and the Fluence Gridstack, while

product offerings at the residential level include the Tesla Powerwall, the Sonnen ecoLinx,

and the Panasonic EverVolt.

As the limits of performance, power density, and cost of existing power converter de-

signs related to photovoltaic and energy storage applications are reached, there exists a

growing market opportunity for increasingly integrated and feature-rich converter topolo-

gies. For instance, the concept of a high-efficiency, isolated, multi-port power converter for

the upcoming shift to a ubiquitous 48 VDC bus voltage, with the ability to interface both

standard residential AC voltages (120 or 240 VAC) and touch-safe low-voltage (<60 VDC)
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sources, such as commonly available photovoltaic panels and lead or lithium batteries, is

absent from current market offerings.

To demonstrate the market need and opportunity for such a power converter, consider

the following power conversion applications requiring low-voltage interfaces. Upcoming

5G telecommunications infrastructure and data centers require conversion between 480

VAC and 48 VDC, and may additionally utilize 48 VDC batteries for backup power and

fault ride-through capabilities [9]. Mild hybrid vehicles, featuring engine quick-start to

reduce idling fuel consumption and regenerative breaking to recuperate kinetic energy, have

emerged as low-cost modifications to vehicle designs that can improve fuel economy by

10% [10]. This functionality requires conversion from 48 VDC, often from a lithium-ion

battery, to 480 VAC to drive the hybrid traction motor. Some automotive suppliers such as

Continental are considering 48 VDC systems for standard and plug-in hybrid applications

rated at 30 kW [11]. Furthermore, a modular, high efficiency 48 VDC to 480 VAC power

converter would enable the realization of an intrinsically safe, low-voltage EV powertrain

that could mitigate the critical risk of high voltage DC shock pervading all current and

planned EV designs [12].

In addition to the power conversion needs mentioned above, the need for modular,

rapid-deployment AC power sources has been evidenced by the forced grid outages follow-

ing the 2019 wildfires in California [13] and the widespread, long-duration (>120 days)

loss of electricity in Puerto Rico due to Hurricane Maria in 2017 [14]. These examples

particularly evidence the need for conversion from easily procurable low-voltage sources

(photovoltaic panels and batteries) to standard mains voltage levels (120 VAC or 240 VAC).

Given that the severity and frequency of extreme weather events and the related risks of grid

contingencies will increase until global carbon emissions abate [1, 15], this need will be

further pronounced in the years to come.

The Soft-Switching Solid-State Transformer (S4T), initially proposed in 2016 [16], is

an isolated, multi-port, buck-boost converter that can address many of the aforementioned
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needs for highly integrated, efficient, and feature-rich power conversion. The S4T is a

universal converter with the ability to interface single-phase, three-phase, and DC sources,

and features bidirectional power transfer, buck-boost functionality, high-frequency isola-

tion, low electromagnetic interference (EMI) through controlled dv/dt, and zero-voltage

switching (ZVS) for all main devices over the entire load range. Significant success has

been achieved in applying the S4T to industrial power conversion applications at 600 VAC

and 1000 VDC, and to medium voltage AC and DC (MVDC and MVAC) applications,

such as grid power flow controllers and medium voltage solid-state transformers, through

the use of 3.3 kV SiC devices and series stacking of modules [17–22]. However, applying

the topology to interface with low-voltage, high-current sources and loads has been chal-

lenging due to the high conduction losses of conventional reverse blocking (RB) switch

structures, required due to the current-source nature of the topology. This challenge has

thus far prevented the S4T from being applied to address the growing market need for

highly integrated, efficient, and feature-rich power converters with low-voltage interfaces.

HF Transformer

Input CSI Bridge

Output LC FiltersAuxiliary 
Resonant Circuit

Input LC Filters

Lr

Cr Cr

Lr

Auxiliary 
Resonant Circuit

Lm

Dr Dr = or

Output CSI Bridge

SRes

SRes

Figure 1.1: Standard 3-phase to 3-phase bidirectional configuration of the S4T.

To illustrate the challenge of achieving high efficiency in low-voltage S4T applications,

consider the standard 3-phase to 3-phase AC configuration of the S4T topology presented in

Fig. 1.1. Conventionally, each RB switch is formed by the series combination of an active

switching device (an IGBT or MOSFET) and a diode, generally a SiC Schottky diode due

to minimal reverse recovery charge. In applications where the channel voltage drop of a

MOSFET is significantly smaller than a diode voltage drop, significant converter losses
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originate from the conduction loss of the series diodes. This scenario is especially common

in low-voltage, high-current applications where silicon MOSFETs exhibit a voltage drop

an order of magnitude lower than similarly rated diodes. To reduce the conduction loss, the

series diode of conventional RB switch structures can be replaced by a second MOSFET,

yielding a dual-MOSFET RB switch.

While the steady-state conduction loss reduction from the dual-MOSFET structure is

apparent, all negative consequences of the structure must be mitigated to have a truly vi-

able alternative to the robust conventional RB switch structures. Importantly, since the PN-

junction body diode of the MOSFET replaces the series SiC Schottky diode of conventional

RB structures, the reverse recovery of the body diode must be mitigated to avoid reverse

recovery induced device voltage stresses, additional EMI, and converter reliability degra-

dation. A novel, patent-pending gate control methodology for dual-active-switch structures

that uniquely leverages the switching environment of the S4T has been designed and val-

idated to address the trade-offs stemming from the dual-MOSFET RB switch structure.

Referred to as the Synchronous Reverse Blocking Switch, the gate control methodology is

implemented within a dedicated, low-cost gate driver and enables significant conduction

loss reduction, mitigation of body diode reverse recovery, and simplification of the control

requirements to enable a single-gate-signal interface per RB switch position and integra-

tion into standard power module designs. The Synchronous RB Switch enables a seamless

integration of dual-active-switch structures into the S4T topology, making the S4T a com-

petitive option to address upcoming low-voltage power conversion opportunities.

This work presents the device-level validation of the gating principles and switching

dynamics of the Synchronous Reverse Blocking Switch, and system-level validation of a

high-efficiency, low-voltage S4T bridge enabled by the novel, dual-active-switch gating

technique. An overview of the following chapters is presented as follows. Chapter 2 in-

troduces the concept of the low-voltage S4T and presents the trade-offs of the use of the

Synchronous RB Switch built around an RB switch structure composed of two N-channel
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MOSFETs. Chapter 3 presents the device-level experimental validation of the Synchronous

RB Switch, demonstrating reverse recovery mitigation within a switching environment that

emulates true S4T operation. Chapter 4 presents the experimental validation and perfor-

mance measurement of a low-voltage S4T bridge built to verify the conduction loss reduc-

tion and benign reverse recovery properties of the Synchronous RB Switch. The design of

an integrated, low-cost, and single-gate-signal driver circuit specifically suited to the S4T

is also presented. Lastly, Chapter 5 presents the conclusion and directions for future work.
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CHAPTER 2

LOW-VOLTAGE SOFT-SWITCHING SOLID-STATE TRANSFORMER (S4T)

2.1 Introduction & Challenges

The Soft-Switching Solid-State Transformer (S4T) introduced in [16] proposed a unique,

single-stage, and self-contained soft-switching current-source topology with attractive fea-

tures including high-frequency isolation, zero-voltage switching across the entire load range

with controlled dv/dt, flexible AC/DC inputs and outputs, voltage buck-boost conversion

capabilities, and bi-directional power flow. To realize the three-quadrant reverse blocking

(RB) switch necessary due to the current-source nature of the topology, the switch positions

in the S4T typically consist of the series connection of an active switch, in the form of a Si

IGBT or SiC MOSFET, and a SiC Schottky diode, preferred over traditional Si diodes due

to their characteristic of zero reverse recovery charge. These conventional RB structures

are shown in Fig. 2.1(a).

Active Switch, SA

Rectifier Switch, SR 

Dual-MOSFET RB Switch

I

Conventional RB Switches

Active Switch, SA

II Series Diode, DSer

(a) (b)

Figure 2.1: (a) Conventional RB switch structures, where the series diode is often a SiC
Schottky diode. (b) Dual-MOSFET RB switch structure, showing the direction of current
flow through the structure, and the active and rectifier switch designations.

Despite the apparent conduction loss penalty caused by the series connection of two

devices per switch position, common to all current-source converter topologies, the virtual

elimination of switching losses in the S4T and the removal of the device in series with the

transformer in the original S4T configuration [22] yield excellent efficiency levels, compa-

rable to or exceeding efficiencies of traditional voltage-source converter counterparts in the
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voltage ranges considered thus far.

The S4T topology is now being considered for high-current, low-voltage applications,

to interface with touch-safe 48 VDC sources (lithium batteries and photovoltaic panels)

and to address upcoming low-voltage power conversion needs. Some examples include

48 VDC hybrid vehicle systems, intrinsically safe low-voltage modular electric vehicle

(EV) powertrains [12], power delivery for 5G wireless access points and data centers [9],

and rapid deployment AC power sources for use after grid contingencies and in scalable,

modular microgrids.

In this new application space, ultra-low RDS(ON) Si MOSFETs are routinely available at

competitive price-points from multiple vendors and in appropriately high-current ratings.

They can replace the Si IGBT to significantly reduce the voltage drop across the active

device. However, the forward voltage drop of the series low-voltage diode remains, similar

to that of the higher-voltage class diodes used in S4T applications thus far, and is respon-

sible for most of the conduction loss in the switch position. The conduction loss of the

MOSFET plus series diode RB structure is quantified in Table 2.1, scaled appropriately for

a 3 kW 48 VDC S4T bridge. For this target application, the device current and voltage rat-

ings are 100 A and 100 V, respectively. At 100 A of current conduction, and considering a

commercially-available 1.3 mΩ Si MOSFET, the conduction voltage drop of the MOSFET

is a mere 0.13 V while the forward voltage of the series SiC diode is 1.45 V at the low-

est. The total conduction losses of the MOSFET plus series diode RB structure translate

into a 5.3% efficiency loss in the 48 VDC bridge alone, with over 92% of these losses tak-

ing place in the series diode. This is a well-known challenge in high-current, low-voltage

applications and has motivated the development of synchronous rectifier configurations in

conventional voltage-source converters [23], and more recently, similar structures for stan-

dard current-source inverters [24–28], all with the objective of eliminating the conduction

loss of the series diode.
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Table 2.1: Comparison of a Conventional MOSFET Plus Series Diode Reverse Blocking
Switch and the Dual-MOSFET Reverse Blocking Switch

RB Switch 
Configuration

Circuit
Symbol

Forward Conduction Voltage 
Drop @ 100A

Conduction
Loss 

@100A

Voltage Blocking
Capability

Reverse
Recovery
Charge

Dual-MOSFET
2 × 1.3mΩ × 100A

= 0.26V
26W 100V 166nC

MOSFET and
Series Diode

SiC Schottky: 1.45-1.95V
MOSFET: 1.3mΩ × 100A = 0.13V

Combined: 1.58-2.08V
158W 100V

SiC Schottky:
0nC

Infineon IAUT300N10S5N015

Cree CVFD20065A

I

I

In this work, a dual-MOSFET RB switch structure, composed of two N-channel MOS-

FETs in a common-source configuration as shown in Fig. 2.1(b), is paired with a robust

and simple gate drive methodology that uniquely leverages the operating principles and

switching environment of the S4T topology to exploit the conduction loss reduction of the

dual-MOSFET structure while mitigating the concerns of reverse recovery and sensitivity

to shoot-through faults that typically plague this kind of structure.

In the dual-MOSFET RB switch configuration, the body diode of the rectifier switch,

SR, acts as the series diode of the conventional RB switch. To reduce conduction loss, the

general philosophy is to turn the MOSFET channel of switch SR on to minimize the con-

duction time of the body diode. The critical trade-off in replacing the series SiC Schottky

diode of conventional RB structures with a Si MOSFET lies in the reverse recovery inherent

to the Si MOSFET’s PN-junction body diode. Inadequate mitigation of body diode reverse

recovery would lead to large device voltage stresses, increased device losses, additional

EMI, and reduced converter reliability.

The patent-pending Synchronous Reverse Blocking Switch combines the dual-MOSFET

RB structure with a dedicated, low-cost gate driver and protection circuitry designed to en-

able significant conduction loss reduction, mitigation of the reverse recovery of the SR body

diode, and simplification of the control requirements to enable a single-gate-signal inter-

face per RB switch position and integration into standard power module designs. This work

presents the theory of operation and experimental validation of the Synchronous RB Switch
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and demonstrates its potential to unlock a high-efficiency S4T for wide scale application in

upcoming low-voltage power conversion needs. Key low-voltage S4T topology examples

unlocked by the novel, dual-active-switch gating technique are presented in the following

section.

2.2 Topology Examples

2.2.1 Rapid Deployment AC Power Sources

The growing risk of climate change induced grid contingencies has increased the market

need for rapid deployment AC power sources that can interface with low-voltage, touch-

safe, and commonly available DC power sources [13–15]. The Synchronous RB Switch

enables a low-voltage S4T variant that can be applied to address this market need. The

topology, referred to as the AC Cube, is presented in Fig. 2.2. The implementation shown

features two DC ports, one for PV and another for a battery, both at 48 VDC. The AC bridge

depicted is rated at 120 VAC single-phase, although the rating can be easily increased to

240 VAC through selection of AC bridge devices with appropriate breakdown voltage. The

AC bridge can similarly be adapted to produce three-phase voltages (208, 240, or 480

VAC).

HF Transformer

Resonant 
Tank

Resonant 
Tank

DC Bridge

C Filter48 VDC

PV Array

C Filters

=

48 VDC

Battery 120 VAC

AC Bridge

Lr

Cr

Lm

Dr Dr

Cr

Lr

SRES

SRES

Figure 2.2: 1 kW, 48 VDC (dual DC Port) to 120 VAC S4T with intended use as a rapid
deployment AC power source following grid contingencies.
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Due to the bidirectional power flow capability of the AC Cube, several operating modes

exist. For instance, after a grid contingency, easily obtainable photovoltaic panels can be

connected to the PV port to charge the batteries. When needing to serve an AC load, the

two DC sources are both used to produce the 120 VAC output. During periods of stable

grid operation, the AC port can be plugged into a standard residential wall outlet to charge

the battery, acting as a backup power source. In addition, AC Cube modules can easily be

connected in parallel on the AC bridge due to the current-source nature of the converter,

allowing for a scalable modular microgrid installation. While not shown in Fig. 2.2, an

additional battery port on the DC bridge can be added to utilize a large, low-cost battery in

addition to the power-dense lithium battery integrated into the AC Cube module.

2.2.2 Modular Electric Vehicle Powertrains

With electric vehicles estimated to represent 30% of new passenger vehicle sales by 2030

[29], and given that EV manufacturers are pushing system voltages from 400 VDC to 800

VDC to further increase power density and reduce vehicle charging times [30, 31], there

exists a growing concern about the risk of high-voltage DC shock to passengers, first-

responders, and maintenance workers following EV accidents [32]. While the touch-safety

of low-voltage motor drives is well understood, scaling low-voltage motor drives to the

current EV power levels of 100-200 kW has challenged existing technology. Recently,

Continental introduced a 48 VDC, 30 kW hybrid powertrain which requires 625 A of bat-

tery current at full power, increasing the complexity of the power distribution system as

well as the power converter [11].

The Synchronous RB Switch enables another low-voltage S4T variant that directly and

efficiently converts 48 VDC to three-phase 480 VAC to drive an EV traction motor. Ad-

ditionally, the ease of parallelization on the 480 VAC bridge lends itself to a modular,

low-voltage powertrain architecture, where the highest voltage present in the vehicle when

parked or at rest is 48 VDC. This low-voltage S4T variant is referred to as the AC Cube
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modular drive unit, and is pictured in Fig. 2.3. With module power ratings of 3 kW con-

tinuous and 6 kW peak, and with module energy storage ratings of 3 kWh, 33 modules

could be connected in parallel to meet the performance and range requirements of most

planned EVs today. In addition, with three additional bridge legs on the AC bridge, the

topology enables a multi-distribution capable vehicle fast charging port, allowing charging

from flexible available AC or DC sources, while maintaining compatibility with current

DC fast charging stations and isolating the traction battery from the grid and third party

converters and interfaces. The additional weight and volume of the high-frequency trans-

former is traded off with the fact that the single-stage S4T replaces a DC/DC converter,

inverter with low-pass and EMI filters, an on-board charger, and a universal fast charger.

In addition, the design flexibility of the battery pack is increased, and the utilization of a

mixed chemistry battery pack, consisting of modules with energy dense batteries for ex-

tended range and modules with power dense batteries for peak power, enables system-level

performance and range optimization.
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Figure 2.3: Modular, low-voltage EV powertrain built around a low-voltage S4T building
block that converts power from a 48 VDC battery to produce a three-phase 480 VAC output
used to drive an EV traction motor. Three additional bridge legs on the 480 VAC bridge
enable compatibility with single-phase AC, three-phase AC, and DC vehicle fast charging
technologies.
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2.3 Principle of Operation of the Low-Voltage S4T

The operating principles of the low-voltage S4T follow the initial derivation presented in

[16, 17], and are briefly summarized here. On a switching cycle basis, the transformer

magnetizing inductance is used as an energy storage element to transfer power between the

AC and DC bridges with isolation. Thus, the bridge sourcing energy charges the magne-

tizing inductance for a portion of the cycle by applying a series of positive voltages called

active vectors across the transformer. The bridge sinking energy to the load subsequently

discharges the magnetizing inductance via the application of active vectors with negative

voltage across the transformer. To maintain a constant switching frequency, the rest of the

cycle is padded with a freewheeling state where both transformer windings are shorted by

turning a full leg per bridge on. The operating principle of the S4T, specifically applied

to the 48 VDC to 480 VAC conversion in the AC Cube modular drive unit, is depicted in

Fig. 2.4 where the magnetizing current is charged by the application of the battery voltage,

VBat, and is discharged using two negative active vectors, VAC1 and VAC2, corresponding to

two motor phase-to-phase voltages.

The soft-switching operation of the converter is enabled by the two resonant tanks con-

nected across the transformer windings as shown in Figs. 2.2 and 2.3. By appropriately

sorting the active vectors so that the voltage levels applied to the transformer decrease

continuously throughout the cycle, it is possible to leverage the discharge of the resonant

capacitors by the magnetizing current during the transition period between the active vec-

tors to achieve ZVS operation. At the end of the cycle, the resonant switches SRES are gated

on to initiate a resonance between the resonant capacitor Cr and resonant inductor Lr and

flip the capacitor voltage so that a new switching cycle can begin. This process is explained

in detail in [16, 17], and all switching states are shown in Fig. 2.5.
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Figure 2.4: Operating principle of the AC Cube modular drive unit showing the voltage
across and the current through the magnetizing inductance, Lm.

HF Transformer

Resonant 
Tank

Resonant 
Tank

C filters

LC filter

48 VDC

Battery
480VAC

Motor

S1R

S1A

S2R

S2A

S3R

S3A

S4R

S4A

SRES
SRES

HF Transformer

Resonant 
Tank

Resonant 
Tank

C filters

LC filter

48 VDC

Battery
480VAC

Motor

S1R

S1A

S2R

S2A

S3R

S3A

S4R

S4A

SRES
SRES

HF Transformer

Resonant 
Tank

Resonant 
Tank

C filters

LC filter

48 VDC

Battery
480VAC

Motor

S1R

S1A

S2R

S2A

S3R

S3A

S4R

S4A

SRES
SRES

HF Transformer

Resonant 
Tank

Resonant 
Tank

C filters

LC filter

48 VDC

Battery
480VAC

Motor

S1R

S1A

S2R

S2A

S3R

S3A

S4R

S4A

SRES
SRES

HF Transformer

Resonant 
Tank

Resonant 
Tank

C filters

LC filter

48 VDC

Battery
480VAC

Motor

S1R

S1A

S2R

S2A

S3R

S3A

S4R

S4A

SRES
SRES

HF Transformer

Resonant 
Tank

Resonant 
Tank

C filters

LC filter

48 VDC

Battery
480VAC

Motor

S1R

S1A

S2R

S2A

S3R

S3A

S4R

S4A

SRES
SRES

Lm

Cr

Lr

Cr

Lr

Lm

Cr

Lr

Cr

Lr

Lm

Cr

Lr

Cr

Lr

Lm

Cr

Lr

Cr

Lr

Lm

Cr

Lr

Cr

Lr

Lm

Cr

Lr

Cr

Lr

State 1: Charging Lm with 48 VDC Battery State 2: Freewheeling Phase

State 3: Discharging Lm with First Line-to-Line Output Voltage State 4: Discharging Lm with Second Line-to-Line Output Voltage

State 0: ZVS Transition State State 5: Resonance Phase
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2.4 Competing Approaches to Improve Efficiency in Low-Voltage Current-Source

Converters

Due to their improved performance and robustness, novel gallium-nitride (GaN) and silicon-

carbide (SiC) power device structures present new opportunities to enable high-efficiency

low-voltage current-source converters to address the aforementioned needs for highly ef-

ficient low-voltage interfaces. Several device structures have been proposed to realize 3-

quadrant reverse blocking switches and 4-quadrant fully bidirectional (BD) switches. Key

examples are monolithic bidirectional GaN switches based on high-electron-mobility tran-

sistors (HEMTs) [24, 25] and bidirectional SiC structures based on MOSFETs with inte-

grated junction barrier Schottky (JBS) diodes [26], both of which boast lower conduction

losses than their discrete-device-based counterparts.

While GaN and SiC RB and BD structures do offer strong promise in reducing con-

duction losses in low-voltage current-source converters and simplifying semiconductor

packaging, significant converter-level tradeoffs must still be managed. For instance, the

difficulty in the control of a 4-quadrant switch in conventional current-source topologies,

particularly during the switching transitions, was detailed in [33]. Using a systematic ap-

proach, the author showed that a safe commutation between any two switch positions was

only possible through a complex gating scheme requiring constant knowledge of both the

switched current direction and the blocked voltage polarity. In addition, due to the rela-

tively high reverse conduction voltage drops of SiC and GaN structures as compared to Si

devices, the required commutation dead-times lead to lossy third-quadrant conduction, di-

minishing the advantage of reduced forward conduction loss [34]. Furthermore, the faster

switching dynamics of wide bandgap structures as compared to Si devices increase the

sensitivity to shoot-through, requiring precise and coordinated control of device gates and

dedicated high-speed protection circuits, increasing control cost and complexity.

In [27, 28], a dual-MOSFET RB switch based on discrete SiC MOSFETs was pro-
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posed to reduce conduction losses in a standard three-phase current-source inverter. While

conduction loss reduction was achieved, the topology mandates another multi-step gating

sequence during the switching transitions in which body diode conduction is required. This

leads to lower conduction loss reduction and importantly, does not eliminate reverse recov-

ery losses and associated voltage stresses, especially when standard Si devices are used.

Lastly, the practical performance metrics of available SiC and GaN devices for low-

voltage current-source converter applications are lower than those of Si MOSFETs with

appropriate voltage ratings. With respect to SiC MOSFETs and SiC Schottky diodes, the

lowest available voltage class is 650 V, and while SiC devices have faster switching dy-

namics and lower on-resistances than Si counterparts of the same voltage rating, lower

voltage class Si MOSFETs offer significantly lower on-resistances than 650 V Si MOS-

FETs. As an example, the Wolfspeed C3M0015065K 650 V SiC MOSFET features an

RDS(ON) of 15 mΩ (Wolfspeed’s lowest on-resistance discrete SiC MOSFET), while the In-

fineon IAUT300N10S5N015 100 V Si MOSFET features an RDS(ON) of 1.3 mΩ, that too,

at a fraction of the cost. While SiC MOSFETs can be connected in parallel to reduce

the effective on-resistance, a further cost penalty must be paid. On the other hand, GaN

HEMTs are offered in lower voltage classes, but their usefulness in soft-switching low-

voltage current-source converters, whose losses are dominated by conduction losses, is less

than that of Si MOSFETs. For example the lowest on-resistance GaN HEMT from Efficient

Power Conversion (EPC) in the 100 V category is the EPC2022, which has an RDS(ON) of

3.2 mΩ, more than double of that of the mentioned Si MOSFET. Indeed, GaN HEMTs also

present a cost premium over Si MOSFETs of the same voltage class.
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CHAPTER 3

DEVICE-LEVEL VALIDATION OF THE SYNCHRONOUS REVERSE

BLOCKING SWITCH

3.1 Introduction

Specifically adapted for use in the S4T and its variants, the Synchronous Reverse Blocking

Switch leverages the unique switching environment of the topology to enable utilization of

dual-active-switch structures to significantly reduce conduction losses while minimizing or

eliminating reverse recovery losses. The approach relies on simple control principles im-

plemented at the gate driver level, enabling single-gate-signal control of the structure, and

reducing the control complexity to the requirements of a standard RB switch with a series

diode. This is in stark contrast to the devices and methods presented in Section 2.4 that

require separate and tightly coordinated drivers for both switches in a dual-active-switch

structure, and do not eliminate reverse recovery. In addition, the Synchronous RB Switch

enables these benefits in all device technologies, from low-cost, legacy silicon devices to

the newest wide bandgap switches.

3.2 Principle of Operation of the Synchronous Reverse Blocking Switch

The principle of operation of the Synchronous Reverse Blocking Switch is detailed by

analyzing the operation of a high-current 48 VDC S4T bridge, depicted in Fig. 3.1, which

allows for the application of all S4T switching states, while abstracting the high-voltage

S4T bridge to focus the analysis on the gating and dynamics of the dual-MOSFET structure.

In the 48 VDC bridge, the current in the inductor Lm, ILm, is regulated on a switching

cycle basis through the application of positive active vectors (shown as State 1 in Fig.

3.1) to charge the inductor current, and the application of negative active vectors (State
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3) to discharge the inductor current. A freewheeling state (State 2) is added to maintain

a constant switching frequency. By applying the active vectors in order of descending

voltage, the resonant capacitor, Cr, can be discharged by ILm during the transition periods

between the active vectors, enabling ZVS operation (State 0). At the end of the cycle,

the resonant switch SRES is gated on to initiate a resonance between Cr and the resonant

inductor, Lr, flipping the capacitor voltage to begin the next switching cycle (State 4).

As seen in Fig. 3.1, for any Synchronous RB Switch, the SR MOSFET blocks a positive

voltage (the body diode is reverse-biased) for the portion of the switching cycle before

the switch position is activated, and does not block a voltage (the body diode is forward-

biased) for the rest of the switching cycle until the resonance phase. This is true for any

switch position in the bridge under all normal operating conditions of the S4T due to the

modulation scheme used to enable the soft-switching feature of the topology [16, 17].

During the ZVS transition preceding the turn-on of a switch position (State 0), the

voltage across SR of the corresponding Synchronous RB Switch decreases with a controlled

dv/dt until it reaches zero and the body diode of SR starts conducting, signaling the end

of the transition and the beginning of the conduction phase of the active vector. At this

point, switch SA of the Synchronous RB Switch must be turned on, and switch SR can be

safely gated on to shift from body diode conduction to MOSFET channel conduction and

to reduce the conduction voltage drop. This is achieved by synchronizing the gate turn-

on signal of switch SA with the turn-on signal generated by the controller for the switch

position, and by delaying the gate turn-on signal of switch SR by a fixed delay tdON with

respect to the controller signal, as shown in Fig. 3.1.
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Figure 3.1: Switching states, converter waveforms, and gating signals for one switching
cycle of the 48 VDC S4T bridge, showing circulation of a regulated current through Lm.
For each Synchronous Reverse Blocking Switch, gating signals for the rectifier switches
(SR) are given in red and those for the active switches (SA) are given in black.
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From the above analysis, to ensure a proper ZVS turn-on of the switch position, the

turn-on delay tdON must be such that:

tdON > tS0 (3.1)

with tS0 being the duration of the ZVS transition to the active vector (State 0). To maximize

the conduction loss reduction of the structure, tdON should be minimized, which is possible

because the duration of State 0, tS0, is typically < 1% of the active state duration. In the

case where condition (3.1) is not met (tdON ≤ tS0), the ZVS transition to the active vector

will be aborted and a hard-switching transition event will occur. This does not result in

a catastrophic failure mode or possible shoot-through condition, making the above gating

scheme robust and simple to implement in terms of possible delay slack.

At the end of the active state, signaled by the controller, switch SA of the corresponding

Synchronous RB Switch must be gated off to trigger the ZVS transition to the next active

state. Thus, the gate turn-off of SA is synchronized with the turn-off signal generated by

the controller for the switch position. During the ZVS transition that follows, the voltage

across switch SA increases with a controlled dv/dt until it reaches the input voltage, 48

VDC in this case. Simultaneously, the voltage across switch SR remains at zero during

the transition, and until the resonance phase, as explained above. This enables a unique

mechanism for preventing reverse recovery of the body diode of switch SR. By delaying

the turn-off gate signal of SR with respect to the controller turn-off signal by a fixed delay,

tdOFF, it is possible to ensure that the body diode of the SR MOSFET only conducts for the

few initial instants at the active switch turn on, and does not conduct again when the active

switch SA is turned off to break the current. This in turn ensures that the reverse recovery

of the body diode of SR is minimized, if not eliminated, when the switch starts blocking

a voltage again during the resonance phase. The maximum applicable tdOFF is determined

by the minimum time-to-resonance, t2R, defined as the time between the turn-off of the last
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active state and the point at which the resonant capacitor voltage, VCr, equals the voltage of

the last active vector (while still in the resonance phase), as shown in Fig. 3.1. Thus, tdOFF

must be such that:

tdOFF < t2R (3.2)

Extensive device characterization has been conducted to determine the minimum tdOFF re-

quired to effectively minimize reverse recovery in standard Si MOSFETs. This was found

to be well below the upper limit set by condition (3.2) for the devices tested considering

typical S4T resonant tank dynamics and design tradeoffs [35].

The proposed method of gating the Synchronous RB Switch utilizes the resonant ca-

pacitor in the S4T topology to provide a path for the inductor current during state transi-

tions, allowing the outgoing SR MOSFET channel to remain gated on during the transition

and eliminating conduction and reverse recovery of the SR MOSFET body diode. If this

technique were to be used in standard current-source inverters, hazardous short-circuit con-

ditions would arise, making the performance gains of the Synchronous RB Switch unique

to the S4T and its variants.

The S4T topology is intrinsically immune to shoot-through conditions when using the

conventional 3-quadrant RB switch presented in [16, 17]. However, the Synchronous RB

Switch is capable of 4-quadrant operation and introduces a risk for shoot-through condi-

tions, under abnormal converter operation, where the sources or loads could produce a

short circuit through two Synchronous RB Switches in the same switching cell. To elimi-

nate these potential shoot-through conditions, a simple fault protection logic can be imple-

mented at the gate driver level to block the 4th quadrant operation of the switch structure.
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3.3 Experimental Apparatus

Device-level experimental validation of the Synchronous RB Switch was conducted to

demonstrate the feasibility of the proposed dual-active-switch gating technique, particu-

larly in terms of timing requirements to achieve the desired reverse recovery mitigation

while meeting conditions (3.1) and (3.2). The test apparatus, shown in Fig. 3.2(a), con-

sisted of a full-bridge square wave generator, the device under test (DUT), and an isolated

gate driver. Since only the rectifier switch, SR, of any Synchronous RB Switch undergoes

3rd quadrant conduction and potential reverse recovery, the test apparatus was designed to

apply onto the DUT the voltage profile faced by the SR switch during S4T operation. An

FPGA clocked at 50 MHz was used to control the gates of the full-bridge MOSFETs and

the DUT. The measured quantities included DUT drain-source voltage, VDS, DUT gate-

source voltage, VGS, DUT source-drain current, ISD, and full-bridge output voltage, VSquare.

ISD was measured using a CWT Ultra-mini 30 MHz Rogowski coil, and voltage measure-

ments were conducted using 120 MHz Teledyne HVD3106 isolated probes. Table 3.1 lists

the set of MOSFET and diodes tested.

Full Bridge 
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VTest

RTest

FPGA

Gate Driver

ISD

+

-
VDS

+

VSquare

-

(a)
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Gating Preempt
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Turn-On Delay 
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Experimental Apparatus
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Characterization

VSquare

VDS

ISD

VGS

VF
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Sec. Current Spike
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Figure 3.2: (a) Rectifier switch SR reverse recovery study experimental apparatus, consist-
ing of a full-bridge, an isolated gate driver circuit, and the device under test. (b) Hard-
switching characterization of the SR MOSFET with active gating, leading to MOSFET
channel conduction. (c) Characterization of the SR MOSFET under S4T-like switching
waveforms. Note that the gate signal can remain asserted into the zero-voltage segment
duration, tZVS, with a gate turn-off delay of tdOFF.
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Figure 3.3: Picture of the SR reverse recovery study experimental apparatus, showing (a)
the DUT mounting board, and (b) the full-bridge based on the EasyController2 [36]. An
additional picture of the experimental setup is given in Appendix A.

Table 3.1: List of Si MOSFETs and Si PN-Junction Fast-Recovery Diodes Characterized
in the SR Reverse Recovery Experiment

MOSFET Name Breakdown Voltage (V) Current Rating (A) RDS(ON) @ 25 C (mΩ)

IAUT300N10S5N015 100 300 1.3

FCH023N65S3 650 75 23

Diode Name Breakdown Voltage (V) Current Rating (A) VF @ IF_Rated , 25 C (V)

VS-EPU6006-N3 600 60 1.2

APT75DQ120BG 1200 75 2.8

3.4 Two-Level Hard-Switching Characterization

To establish a baseline reverse recovery level, the devices considered were first tested un-

der a standard two-level hard-switching configuration, similar to the conditions the rectifier

switch would face in a standard current-source inverter. The hard-switching characteri-

zation of the rectifier switch follows the gating sequence depicted in Fig. 3.2(b), and an

example trial is given in Fig. 3.4. In the hard-switching characterization trials, the full-

bridge was configured to output a square wave, VSquare, with a voltage magnitude below the

DUT breakdown voltage and a period of 6 µs at 50% duty cycle. When VSquare switched
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from positive to negative, the body diode of the DUT became forward-biased, resulting

in the buildup of device source-drain current. After a turn on delay of tdON, the MOSFET

channel was gated, as shown in the green trace in Fig. 3.4, forcing the current to commutate

to the MOSFET channel. The gate was held high until a period tpreempt before the reversal

of polarity of VSquare.

VDS

ISD

VGS

VSquare

Reverse Recovery

tdON tpreempt

SR Hard-Switching
Characterization

Figure 3.4: Hard-switching reverse recovery trial of rectifier switch, SR using the 100 V, 1.3
mΩ MOSFET. The square wave voltage magnitude was 25 V, the peak device source-drain
current was 111.3 A, and the gating preempt, tpreempt, was -200 ns.

Three switching performance criteria were quantified as functions of the gating pre-

empt, tpreempt, including peak reverse recovery current, IRR Peak, total charge, QTotal, and

turn-off energy, EOFF. Fig. 3.5 shows the results of the hard-switching SR characterization

using the 100 V, 1.3 mΩ MOSFET from Table 3.1 at varying VSquare and ISD. While all

switching performance metrics improved as tpreempt increased from -300 ns to 0 ns, gat-

ing preempts greater than 0 ns caused shoot-through conditions of the full-bridge in the

hard-switching case, as expected. This is shown in Fig. 3.5 by the sudden increase of the

measured IRR Peak corresponding to a 4th quadrant conduction of a reverse polarity current

through the RB switch position during shoot-through. It should be noted that EOFF and

QTotal were not computed for the experimental conditions producing shoot-through, as they
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would not have had any physical meaning.

These results corroborate previous study results demonstrating a reduction in IRR Peak

and QRR with reduced dead times in synchronous rectifier configurations [23], and im-

portantly, demonstrate the critical difficulty of optimizing commutation dead-times across

wide operating ranges in standard hard-switching current-source converters. While conser-

vative gating preempts do not maximize MOSFET channel conduction, narrowly optimized

gating preempts (minimized tpreempt) may present shoot-through hazards at other operating

points, especially with variable and unknown propagation delays in the control chain.

Shoot-Through Caused by 
Gating Preempts > 0 ns

Figure 3.5: Hard-switching SR characterization using the 100 V, 1.3 mΩ MOSFET, showing
switching performance metrics improving as gating preempts near 0 ns. IRR Peak increases
after 0 ns, representing a shoot-through condition.
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3.5 Characterization under S4T-Like Switching Waveforms

3.5.1 100 V Si MOSFET (Infineon IAUT300N10S5N015)

The rectifier switch of the Synchronous RB Switch was then tested under conditions repre-

sentative of the switching environment of the S4T. The same three switching performance

criteria were quantified. However, the full-bridge output voltage VSquare was modified to

include a zero-voltage segment, as shown in Fig. 3.2. The positive and negative VSquare

segment durations were 2 µs each, and the zero-voltage segment duration, tZVS, was varied

between 0 and 1 µs. As opposed to the standard hard-switching case, VGS can be safely

held high into the zero-voltage segment with a varying gate turn-off delay, tdOFF, which is

bounded by tZVS (after which a shoot-through would occur similar to the hard-switching

case). A positive turn-off delay corresponds to the condition in which the MOSFET chan-

nel, and not the body diode, carries the full ISD as the current is interrupted.

An example experimental trial of the 100 V, 1.3 mΩ MOSFET under S4T-like switching

waveforms is shown in Fig. 3.6, where tZVS was 550 ns and tdOFF was 350 ns. Additional

experimental trials for this device are given in Fig. B.1 of Appendix B. The gate turn-on

delay, tdON, was fixed at a typical S4T ZVS transition time of 300 ns to closely match the

turn-on of the rectifier switch. As observed in Fig. 3.6, the voltage applied to the DUT

emulates the drain-source voltage of the SR switch during S4T operation, as previously

presented in Fig. 3.1. The DUT blocks a positive voltage (+50 V segment of VSquare) before

it is activated (-50 V segment of VSquare) and does not block a voltage for the remainder of

the switching cycle (0 V segment of VSquare). When the square wave reached -50 V, a

source-drain current of 94.7 A was developed in the DUT. When the square wave voltage

increased to 0 V, a minimal reverse recovery induced current spike was observed. When the

square wave voltage increased further to +50 V, a secondary current spike was observed, as

noted in Fig. 3.6. The nature of this secondary current spike was investigated by integrating

the spike charge at varying blocked voltages and conducted currents as shown in Fig. 3.7.
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The charge of the secondary current spike was a weak function of conducted current but

a strong function of blocked voltage, evidencing the hypothesis that the secondary current

spike was capacitive in nature and was caused by the charging of the MOSFET output

source capacitance, COSS.
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Zero-Voltage
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Secondary
Current Spike

SR S4T Waveform
Characterization

Figure 3.6: S4T-like switching waveform characterization of SR using the 100 V, 1.3 mΩ
MOSFET. The square wave voltage magnitude was 50 V, the peak device source-drain
current was 94.7 A, the zero-voltage segment duration, tZVS, was 550 ns, and the gate turn-
off delay, tdOFF, was 350 ns.
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Figure 3.7: Integrated charge under the secondary current spike from SR characterization
trials under S4T-like switching waveforms for the 100 V, 1.3 mΩ MOSFET. Secondary
spike charge is a weak function of current, but a strong function of voltage.
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Figs. 3.8 and 3.9 present the results of the S4T-like switching waveform characteriza-

tion of the 100 V, 1.3 mΩ MOSFET as functions of zero-voltage segment duration, tZVS,

and gate turn-off delay, tdOFF, respectively. As shown in Fig. 3.8, a tZVS of roughly 200 ns is

sufficient to reduce all three switching performance criteria to their baseline levels, regard-

less of tdOFF. Specifically, as reverse recovery charge is eliminated, total charge extracted at

turn-off is reduced by 42.8%, reaching the baseline set by the device COSS. Similarly, the

peak reverse recovery current and turn-off energy were reduced to 33.0% of the maximum

values recorded under two-level hard-switching characterization (tZVS = 0 ns). From Fig.

3.9, it is apparent that gate turn-off delay does have a large influence in reducing device

stresses with tZVS below 200 ns, which agrees with the hard-switching characterization re-

sults from the previous section. Importantly, a small tdOFF delay, around 100 ns for this

device, together with a tZVS of around 100 ns yields the same reduction in switching met-

rics as a tZVS of 200 ns alone with no turn-off delay. This seems to indicate that the turn-off

delay helps achieve the same reverse recovery reduction at smaller zero-voltage segment

durations.
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Figure 3.8: S4T-like switching waveform characterization of SR using the 100 V, 1.3 mΩ
Si MOSFET (IAUT300N10S5N015). The x-axis represents zero-voltage segment duration,
and the plots are parameterized by gate turn-off delay.

Figure 3.9: S4T-like switching waveform characterization of SR using the 100 V, 1.3 mΩ Si
MOSFET (IAUT300N10S5N015). The x-axis represents gate turn-off delay, and the plots
are parameterized by zero-voltage segment duration.
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3.5.2 650 V Si MOSFET (ON Semiconductor FCH023N65S3)

The 650 V, 23 mΩ Si MOSFET was then characterized to investigate if the reverse recovery

mitigation technique scaled to higher voltage devices. For conciseness, experimental trials

for this device are given in Fig. B.2 of Appendix B. The results of the rectifier switch

characterization experiments of the 650 V MOSFET under S4T-like switching waveforms

are given in Fig. 3.10 and 3.11. These results elucidate the relative magnitudes of the

effects of gate turn-off delay and zero-voltage segment duration. As observed in Fig. 3.10,

a zero-voltage segment duration of 1 µs alone is not able to reduce reverse recovery current

and charge to their baseline values. Instead, a gate turn-off delay of slightly more than 120

ns can minimize all switching performance metrics, for tZVS as low as 200ns. The charge at

turn-off was thus reduced by 68.8%, while the reverse recovery current and turn-off energy

were reduced by more than 35.0% in this device. Put together, these results suggest that

the effect of gate turn-off delay, which ensures the absence of minority carriers in the PN-

junction of the body diode at turn off, is stronger than the effect of the zero-voltage segment

duration, which likely relies on recombination to mitigate reverse recovery. This trend

seems to be stronger as the voltage rating of the device increases. It should be noted that

the 650 V MOSFET features a significantly larger COSS, especially at low-voltage, causing

a larger level of minimum total charge (capacitive charge) than the 100 V MOSFET.
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Figure 3.10: S4T-like switching waveform characterization of SR using the 650 V, 23 mΩ
Si MOSFET (FCH023N65S3). The x-axis represents zero-voltage segment duration, and
the plots are parameterized by gate turn-off delay.

Figure 3.11: S4T-like switching waveform characterization of SR using the 650 V, 23 mΩ
Si MOSFET (FCH023N65S3). The x-axis represents gate turn-off delay, and the plots are
parameterized by zero-voltage segment duration.
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3.6 Mitigation of Reverse Recovery of Silicon PN Junction Diodes under S4T-Like

Switching Waveforms

The hypothesis that a zero-voltage segment can mitigate reverse recovery in Si fast-recovery

PN-junction diodes was tested on the diodes listed in Table 3.1. The zero-voltage segment

duration was varied between 0 and 1 µs as in the S4T-like switching waveform characteri-

zation experiments, but no active gating was possible given that the DUTs were diodes. The

same three switching performance criteria were quantified. Without the influence of active

gating, the results of the diode characterization trials can help compare different diodes

based on the speed of their recombination dynamics.

Two experimental trials of the 600 V, 60 A Si fast-recovery diode (VS-EPU6006-N3)

are given in Fig. 3.12. The full results from the characterization of both the 600 V and

1200 V diodes are presented in Fig. 3.13, with the key takeaway being that a zero voltage

segment duration of roughly 250 ns was sufficient to minimize all switching performance

metrics to their baseline values. Additionally, due to the relatively small device capaci-

tance as compared to the previously tested MOSFETs, a secondary current spike was not

observed at the end of the zero-voltage segment. These results evidence the opportunity to

use fast-recovery Si diodes to replace the SiC Schottky series diodes of conventional RB

structures in cost-critical S4T applications.
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Figure 3.12: S4T-like switching waveform characterization of the 600 V, 60 A Si fast-
recovery diode (VS-EPU6006-N3). The switching waveforms emulate the switching con-
ditions of the series SiC Schottky diode in conventional RB switch structures. The square
wave voltage magnitude was 35 V, the peak device current was 64.0 A. The zero-voltage
segment duration, tZVS, was 0 ns in (a) and 500 ns in (b).

Figure 3.13: S4T-like switching waveform reverse recovery study of the 600 V, 60 A (VS-
EPU6006-N3) and 1200 V, 75 A (APT75DQ120BG) Si PN-junction fast-recovery diodes
showing switching performance metrics as a function of zero-voltage segment duration.
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3.7 Conclusion

The experimental results presented in this chapter evidence the alignment between the gate

control timing requirements of the Synchronous Reverse Blocking Switch and the inher-

ent dynamics and operating principles of the S4T. Specifically, during S4T operation, the

smallest tZVS throughout the switching cycle is the time-to-resonance t2R, and is well above

500 ns in typical resonant tank designs [35]. Thus, for the MOSFETs tested, the reverse

recovery phenomenon of the anti-parallel body diodes can be effectively mitigated with

tZVS as low as 200 ns and tdOFF slightly above 120 ns. This is well aligned with condition

(3.2) from Section 3.2 (requiring that the turn-off delay be less than the time-to-resonance)

and validates the applicability of the proposed Synchronous RB Switch gate control and

reverse recovery mitigation methods to the S4T topology. In addition, since a tZVS of 200

ns alone mitigated reverse recovery in the 100 V, 1.3 mΩ MOSFET, this device is a particu-

larly good candidate for a robust, low-cost, and module-integrated Synchronous RB Switch

with a passive delay generation circuit. This device has been used to build a 48 VDC S4T

bridge based on Synchronous RB Switches as detailed in the following chapter.
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CHAPTER 4

DESIGN AND PERFORMANCE ANALYSIS OF A LOW-VOLTAGE,

HIGH-CURRENT S4T BRIDGE

4.1 Introduction & Hardware Design

Following the verification of the fundamental principles of the Synchronous Reverse Block-

ing Switch at the device-level, system-level experiments were conducted to measure the

impact on converter operation and conduction loss. The 48 VDC S4T bridge, analyzed in

Chapter 2, was built around Synchronous RB Switches composed of the previously tested

100 V, 1.3 mΩ MOSFETs. The component specifications of the 48 VDC bridge are given

in Table 4.1, the circuit schematic and built PCB are shown in Fig. 4.1, and the experimen-

tal apparatus is shown in Fig. 4.2. The design documents of the 48 VDC bridge are given

in Appendix C, and the design documents of the isolated, +15 V / -5 V dual-MOSFET RB

switch gate drivers are given in Appendix D. With this gate driver design, tdON and tdOFF

were programmed into the upstream FPGA controller, allowing for testing of multiple gate

delay options. An updated gate driver with a simplified control interface and integrated

rectifier switch delay generation was also designed and is presented in Section 4.4. Ap-

pendix F presents an additional image of the experimental apparatus, showing the custom

FPGA/DSP-based controller used to control the DC bridge.

Conduction loss through the DC bridge was measured at voltages from 10 V to 50 V

and currents up to 30 A. Power was circulated through the bridge by applying the S4T

switching states described in Fig. 3.1 of Chapter 3, and total power loss was measured as

the input power from the DC power supply. In addition, each power loss component of DC

bridge operation was calculated analytically, including losses due to dual-MOSFET RB

switch conduction, the main inductor Lm (DC, AC, and core loss), the resonant inductor
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Lr (DC and AC loss), auxiliary resonant switch conduction, and PCB trace resistance. The

measured loss from the DC supply was used to validate the analytical loss calculations.

Table 4.1: Component Specifications of the 48 VDC S4T Bridge

Power Semiconductors Devices

Synchronous RB Switch
Semiconductor Device

100 V, 1.3 mΩ Si MOSFET
(IAUT300N10S5N015)

Resonant Switch Diode
650 V, 30 A SiC Schottky Diode

(2× FFSB3065B-F085)

Passive Power Components

Resonant Inductor, Lr 160 nH Air Core Solenoid

Resonant Capacitor, Cr
544 nF Film Capacitor

(8× B32621A3683J000)

Main Inductor, Lm 72 μH Nanocrystalline Core Inductor

Dual-MOSFET 
RB Switch

Resonant Inductor 
Connectors

Auxiliary 
Resonant 

Switch

HF XFMR/Inductor 
Connector

Resonant
Capacitor

(b)(a)

48 VDC Bridge

Resonant 
Tank

LC
Filter

48 VDC

Battery

S1R

S1A

S2R

S2A

S3R

S3A

S4R

S4A

Lm

Lr

Cr

SRES

ILm

Figure 4.1: Schematic (a) and built PCB (b) of the high-current, 48 VDC S4T bridge circuit
built around Synchronous RB Switches composed of two 100 V, 1.3 mΩ MOSFETs.
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48 VDC Bridge
with Gate Drivers

Nanocrystalline 
Core Inductor

Figure 4.2: Experimental apparatus of the high-current 48 VDC S4T bridge showing the
resonant inductor, gate drivers, and nanocrystalline core inductor. An extended picture of
the experimental apparatus is given in Appendix F.
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4.2 Experimental Validation

4.2.1 Results from Continuous Operation at 10 V, 10 A

The 48 VDC bridge was first tested using a DC input voltage of 10 V, and by circulating 10

A through Lm. Assuming that half of the switching period could be used to deliver power

to the output bridge, this 10 V, 10 A operating point represented a 50 W power circulation

level. An oscillogram of the 48 VDC bridge under continuous operation at the 50 W power

circulation level is given in Fig. 4.3, and the measured electrical and thermal operating

conditions are given in Table 4.2. Table 4.3 presents the itemized power loss components

within the bridge, calculated using the operating conditions from Table 4.2. The last row

of Table 4.3 shows a comparison between the measured loss and the sum of the calculated

loss components.

Table 4.4 contains the results of a pair of tests at 10 V, 10 A. For the first test, switch

SR in each Synchronous Reverse Blocking Switch was not gated, leading to complete con-

duction through the devices’ body diodes, and falling back to the conventional RB switch

configuration traditionally used in the S4T. In the second test, the SR switches were gated

with a tdON of 1.2 µs and a tdOFF of 330 ns, leading to MOSFET channel conduction, and

allowing for a direct evaluation of the impact of the novel Synchronous Reverse Blocking

Switch in terms of conduction loss reduction. As shown in Table 4.4, total semiconductor

conduction loss was decreased by more than an order magnitude, from 13.99 W to 0.47 W

with the gating of the SR switches. This represents a 29.8-fold reduction in semiconductor

conduction loss, increasing the efficiency of power circulation through the DC bridge from

66.6% to 94.3% at the 10 V, 10 A operating point.
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VCr

VDS_S3R

ILm

VDS_S1A

Figure 4.3: Experimental waveforms of the 48 VDC S4T bridge operating at 10 V, 10 A
(50 W power circulation level). The rectifier switches were gated with appropriate tdON and
tdOFF.

Table 4.2: Operating Conditions of the DC Bridge at the 10 V, 10 A (50 W Power Circula-
tion) Operating Point

MOSFET Parameters

RDS (ON ) @ Top VFSi BD @ 29.75 A TopMOSFET

1.42 mΩ 0.80 V 30 °C

Main Inductor 𝐋𝐦 Parameters

RLm DC
RLmAC

@ 15kHz ILm AVG
ILm RIPPLE RMS

2.20 mΩ 42.00 mΩ 9.55 A 0.97 A

Resonant Circuit Parameters

ILrpk
VFSiC Schottky

@ 47.55 A
(Note: 2 diodes in parallel)

tRES RLrDC

95.10 A 1.88 V 1.33 µs 0.98 mΩ

ILrRMS RLrAC @ 500 kHz Top DIODE

9.48 A 8.82 mΩ 30 °C

PCB Parameters

RTRACE Top PCB

1.85 mΩ 30 °C

39



Table 4.3: Comparison of the Calculated DC Bridge Loss Components to the Measured
Loss at the 10 V, 10 A (50 W Power Circulation) Operating Point

Loss Calculation Method Loss Component Total

𝐏𝐌𝐎𝐒𝐅𝐄𝐓𝐜𝐨𝐧𝐝 4 × ILm
2

AVG
× RDS (ON ) 0.47 W 0.47 W

𝐏𝐋𝐦𝐃𝐂
ILm AVG

2 × RLm DC 0.20 W

0.28 W𝐏𝐋𝐦𝐀𝐂
ILm RIPPLE RMS

2 × RLm AC
0.04 W

𝐏𝐋𝐦𝐂𝐨𝐫𝐞
8 × Fsw

1.62 × ΔB 1.98 × Volumecore 0.04 W

𝐏𝐋𝐫𝐃𝐂
tRES
TSW

ILrpk × VFSiC Schottky
+

ILrpk
2 × RDS (ON )

1.54 W
2.04 W

𝐏𝐋𝐫𝐀𝐂 ILrRMS
2 × RLrAC 0.50 W

𝐏𝐏𝐂𝐁𝐓𝐑𝐀𝐂𝐄
RTRACE =

ρL

TW
1 + αCu Top − 25°C

ILmAVG

2 × RTRACE

0.15 W 0.15 W

Measured
𝐏𝐃𝐂𝐒𝐮𝐩𝐩𝐥𝐲

2.70 W Total Calculated 2.94 W

Table 4.4: Efficiency of the DC bridge test circuit quantified in a pair of experiments at 10
V, 10 A (50 W power circulation level). In the first experiment, the rectifier switch of each
Synchronous Reverse Blocking Switch was left un-gated (left, blue), and in the second
experiment, the rectifier switches were gated with appropriate tdON and tdOFF (right, green),
yielding a 29.8X reduction in semiconductor loss.

50 W Power Circulation
𝐈𝐋𝐦𝐀𝐕𝐆

= 9.55 A
𝐕𝐃𝐂 = 10 V

SR Body Diode
Conduction Only
(SR Not Gated)

SR MOSFET
Channel Conduction

(SR Gated)

Body Diode Conduction Loss 13.75 W 0

MOSFET Conduction Loss 0.24 W 0.47W

Inductor Lm Loss 0.28 W

PCB Trace Loss 0.15 W

Resonant Tank Loss 2.04 W

Calculated Loss 16.46 W 2.94W

Measured Loss 16.00 W 2.70W

Efficiency 66.6 % 94.3%
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4.2.2 Results from Continuous Operation at 50 V, 30 A

After the 10 V, 10 A experiment evidenced the efficacy of the Synchronous Reverse Block-

ing Switch in reducing conduction loss, the DC bridge test circuit was then characterized at

50 V, 30 A, corresponding to a power deliver level of 750 W in the S4T. The experimental

waveforms are given in Fig. 4.4. The operating conditions are given in Table 4.5, and the

itemized power loss components are given in Table 4.6. It is important to note that leaving

the SR switches ungated at the 50 V, 30 A operating point would have yielded a total semi-

conductor conduction power loss of 51.49 W, with 48.84 W of loss shared between two SR

switch body diodes per switching state.

To avoid thermal damage to the test apparatus, the Synchronous Reverse Blocking

Switches were only tested with appropriate gating of the SR switches at the 50V, 30A

operating point, with tdON and tdOFF set to 1.45 µs and 330 ns, respectively. Even without

this direct experimental comparison, however, the fact that the total loss measured from

the DC source (16.94 W) was less than the theoretical semiconductor loss calculated for

the case in which SR switches are left ungated evidences the efficacy of the Synchronous

Reverse Blocking Switch in significantly reducing conduction losses. At the 750 W power

circulation level, gating the SR switches resulted in a 9.7-fold reduction in semiconductor

conduction loss, increasing the DC bridge efficiency from 91.7% to 97.8% as shown in

Table 4.7. Lastly, given that the 5.29 W of semiconductor conduction loss occurs through 4

individual MOSFETs in any switching state, the results from the usage of the Synchronous

RB Switch at the 50 V, 30 A operating point evidence the viability of a passively cooled

design, allowing for tightly integrated and power dense low-voltage S4T bridges.
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VDS_S3R

Figure 4.4: Experimental waveforms of the 48 VDC S4T bridge operating at 50 V, 30 A
(750 W power circulation level). The rectifier switches were gated with appropriate tdON

and tdOFF. The waveforms are void of reverse recovery induced device voltage stresses.

Table 4.5: Operating Conditions of the DC Bridge at the 50 V, 30 A (750 W Power Circu-
lation) Operating Point

MOSFET Parameters

RDS (ON ) @ Top TopMOSFET

1.42 mΩ 50 °C

Main Inductor 𝐋𝐦 Parameters

RLm DC
RLmAC

@ 15kHz ILm AVG
ILm RIPPLE RMS

2.20 mΩ 42.00 mΩ 30.53 A 4.38 A

Resonant Circuit Parameters

ILrpk
VFSiC Schottky

@ 61.3 A
(Note: 2 diodes in parallel)

tRES RLrDC

122.60 A 2.13 V 1.20 µs 0.98 mΩ

ILrRMS RLrAC @ 500 kHz Top DIODE

11.43 A 8.82 mΩ 70 °C

PCB Parameters

RTRACE Top PCB

1.91 mΩ 65 °C
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Table 4.6: Comparison of the Calculated DC Bridge Loss Components to the Measured
Loss at the 50 V, 30 A (750 W Power Circulation) Operating Point

Loss Calculation Method Loss Component Total

𝐏𝐌𝐎𝐒𝐅𝐄𝐓𝐜𝐨𝐧𝐝 4 × ILm
2

AVG
× RDS (ON ) 5.29 W 5.29 W

𝐏𝐋𝐦𝐃𝐂
ILm AVG

2 × RLm DC 2.05 W

3.60 W𝐏𝐋𝐦𝐀𝐂
ILm RIPPLE RMS

2 × RLm AC
0.81 W

𝐏𝐋𝐦𝐂𝐨𝐫𝐞
8 × Fsw

1.62 × ΔB 1.98 × Volumecore 0.74 W

𝐏𝐋𝐫𝐃𝐂
tRES
TSW

ILrpk × VFSiC Schottky
+

ILrpk
2 × RDS (ON )

5.06 W
6.21 W

𝐏𝐋𝐫𝐀𝐂 ILrRMS
2 × RLrAC 1.15 W

𝐏𝐏𝐂𝐁𝐓𝐑𝐀𝐂𝐄
RTRACE =

ρL

TW
1 + αCu Top − 25°C

ILmAVG

2 × RTRACE

1.78 W 1.78 W

Measured
𝐏𝐃𝐂𝐒𝐮𝐩𝐩𝐥𝐲

16.94 W Total Calculated 16.88 W

Table 4.7: Efficiency of the DC bridge test circuit at 50 V, 30 A (750 W power circulation
level). Total semiconductor loss with the rectifier switches gated appropriately was cal-
culated as 5.29 W, 9.7X lower than the loss calculated for the case in which the rectifier
switches were left ungated (body diode conduction only).

750 W Power Circulation
𝐈𝐋𝐦𝐀𝐕𝐆

= 30.53 A
𝐕𝐃𝐂 = 50 V

SR Body Diode
Conduction Only
(SR Not Gated)

SR MOSFET
Channel Conduction

(SR Gated)

Body Diode Conduction Loss 48.84 W 0

MOSFET Conduction Loss 2.65 W 5.29 W

Inductor Lm Loss 3.60 W

PCB Trace Loss 1.78 W

Resonant Tank Loss 6.21 W

Calculated Loss 63.07 W 16.88 W

Measured Loss 16.94 W

Efficiency 91.7 % 97.8 %
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A zoomed view of one switching cycle observed experimentally is given in Fig. 4.5,

showing that the drain-source voltage across switch S3R, VDS S3R, matches the derivations

from Fig. 3.1 in Chapter 3. As seen in both Fig. 4.4 and Fig. 4.5, the converter waveforms

are void of reverse recovery related current spikes and resultant device voltage stresses,

evidencing the ability of the Synchronous Reverse Blocking Switch to offer significant

conduction loss reduction while maintaining benign reverse recovery behavior.

Figure 4.5: Zoomed experimental waveforms of the 48 VDC bridge operating at 50 V, 30 A
(750 W power circulation level), confirming that the drain-source voltage of S3R matches
the analysis from Chapter 3.
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4.3 System-Level Impacts

4.3.1 1 kW, 48 VDC to 120 VAC AC Cube

The system-level impacts of the conduction loss reduction enabled by the Synchronous RB

Switch in the S4T are considered by analyzing the AC Cube, previously presented in Fig.

2.2 in Chapter 2. Fig. 4.6 presents the impact of the Synchronous RB Switch on projected

converter efficiency of the AC Cube. By replacing the conventional MOSFET and SiC

Schottky RB structure with the Synchronous RB Switch on the 48 VDC bridge, converter

efficiency is improved by 9.6% at full load. Additionally, by utilizing Synchronous RB

Switches on both the 48 VDC and the 120 VAC bridges, a further 1.5% efficiency increase

can be unlocked.
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Projected Efficiency of the 1kW, 48 VDC to 120 VAC S4T

with Different RB Switch Structures

Synchronous RB Switch on 48 VDC and 120 VAC bridges

Synchronous RB Switch on 48 VDC bridge only

Conventional RB Switch (MOSFET + SiC Schottky)

on 48 VDC and 120 VAC bridges

Figure 4.6: Projected efficiency of the 48 VDC to 120 VAC application of the S4T. The
Synchronous RB Switch enables an 11.1% increase in efficiency at full load when com-
pared to the case in which a conventional RB switch is used.
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4.3.2 3 kW, 48 VDC to 480 VAC AC Cube Modular Drive Unit

The system-level impacts of the Synchronous RB Switch are also analyzed in the case of the

AC Cube modular drive unit, previously presented in Fig. 2.3 in Chapter 2. To demonstrate

the ability of the Synchronous RB Switch to enable high efficiency in the AC Cube modular

drive unit, a 3 kW, 48 VDC to 480 VAC system has been modeled and simulated using the

parameters given in Table 4.8. As seen in Fig. 4.7(a) below, the magnetizing current

is controlled on a switching cycle basis and the switching dv/dt is under 500 V/µs at 3

kW and rated voltage stresses, demonstrating the soft-switching operation at full power

and maximum voltage boost. As shown in Fig. 4.7(b), the magnetizing current, Im, is

regulated to the reference value of 140 ADC (referred to the 48 VDC bridge) throughout the

simulation with a controlled soft-start (no inrush current), thus validating the controllability

of the structure across the load and voltage boost range required. At the rated output power,

the output waveforms have low harmonic content, with THD < 4% and < 2.5% for the

voltages and currents, respectively. Similarly, the battery current THD is controlled under

7% at full power. Losses are low, with an estimated efficiency of 96.5% at rated power,

increasing to 98.2% at partial load levels, as shown in the red curve of Fig. 4.7(c). This

includes losses in the devices, transformer, and filters and compares with DC/DC converter

and inverter losses in comparable high-voltage EV powertrains. Extension of the dual-

MOSFET RB switch structure and the gating principles of the Synchronous RB Switch

to 1200 V SiC MOSFETs for the 480 VAC bridge can enable further improvements in

efficiency, as shown in the black curve of Fig. 4.7(c).

Table 4.8: Simulation Parameters of the 48 VDC to 480 VAC AC Cube Modular Drive Unit

𝐟𝐬𝐰 𝐋𝐦 𝐂𝐢𝐧 𝐂𝐨𝐮𝐭
𝐈𝐦

(48 VDCBridge / 480 VAC Bridge)
𝐏𝐫𝐚𝐭𝐞𝐝

Transformer
Ratio

Rated
Input
Voltage

Rated
Output
Voltage

Rated
Output
Frequency

15 kHz 25 μH 140 μF 4.7 μF 140 A / 11.7 A 3 kW 1:12 48 VDC 480 VLL_RMS 60 Hz
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Figure 4.7: (a) Soft-switching waveforms of the AC Cube modular drive unit at 3 kW
showing the magnetizing current, Im, and resonant capacitor voltage, VCr, both referenced
to the 480 VAC bridge. (b) 200 ms simulation of the AC Cube modular drive unit showing
output waveforms, battery current, and magnetizing inductance current. (c) Efficiency over
the converter operating range for different configurations of the reverse blocking switches
used on the 480 VAC bridge.

4.4 Prototype of the Synchronous RB Switch Gate Driver with Integrated Delay

Generation

The rectifier switch gate delay generation strategy of the Synchronous Reverse Blocking

Switch, validated in the device-level experiments in Chapter 3 and in the system-level tests

of this chapter, is simple enough to be implemented with a dedicated and cost-effective

hardware solution. The delay generation mechanism is integrated into the gate driver con-

trolling the dual-MOSFET RB structure to form the proposed Synchronous Reverse Block-

ing Switch as shown in Fig. 4.8(a). The implementation shown features an “Enable Signal”

in addition to the single control signal generated by the controller. This allows for both nor-

mally on and normally off versions of the gate driver circuit, but may not be needed in all

applications. As shown in Fig. 4.8(a), the single control signal is directly used to control

switch SA. A fixed delay generator is used to delay the control signal by tdON and tdOFF, at

turn on and turn off, respectively. This delayed signal is then fed into an AND gate together

with the fault protection signal and the result is used to drive switch SR. The fault protection

signal is generated within the fault detection block by sensing the voltage across switch SR,

VDS SR, as described in Chapter 3. A single, isolated power supply is used to control both
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MOSFETs owing to the common source configuration. As previously mentioned, a further

reduction in cost and an implementation compatible with standard power module packag-

ing techniques can be achieved using a simplified, passive SR delay generation circuit, as

shown in Fig. 4.8(b), in this case without the VDS SR measurement circuitry.

(a)
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Gate
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Power 
Supply

Synchronous Reverse Blocking Switch

Dual-MOSFET RB Switch

Active Switch
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Rectifier Switch 
SR 

SR Drain-Source 
Voltage 

Measurement

Fault Protection Logic

if (VDS_SR > 0): output 0
else: output 1

Digital 
Isolator

Dual-MOSFET RB Switch Power Module
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SR 

Enable
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Enable
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Gate
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Gate Driver
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Digital 
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Circuitry (Passive)Gate 
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Figure 4.8: (a) Block diagram of the Synchronous RB Switch, showing the gate driver with
integrated delay generation for the rectifier switch and fault protection through measure-
ment of the rectifier switch drain-source voltage. (b) Low-cost, power module compatible
implementation of the Synchronous RB Switch.

A prototype of the Synchronous RB Switch gate driver with integrated delay generation

has been constructed, and the design documents are given in Appendix E. As the required

turn-on delay tdON is larger than the turn-off delay tdOFF, one implementation is to use an

RC circuit in combination with a comparator with hysteresis, as shown in Fig. 4.9. This

method yields a compact and easily re-configurable delay circuit, while also presenting an

extremely economical design. The analysis of the RC delay generation stage is given on

the following page. Validation of converter operation using the Synchronous RB Switch

gate driver with integrated delay generation is a significant direction for future work.
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SA Gate Signal

Comparator 
Reference, VREF

RLPF RFB1

RFB2

VCC

CLPF
SR Gate Signal

VLPF

Figure 4.9: SR gate delay generation method using an RC circuit and a comparator with
hysteresis.

The gate delay timings, tdON and tdOFF, can be calculated using the formulas

VLPF (t) = VCC ×
(

1 − e
−t

RLPFCLPF

)
(4.1)

VTHRESHI
= VREF ×

(
RFB1 +RFB2

RFB2

)
+ VCOMP offset

(4.2)

VTHRESLO
= VREF ×

(
RFB1 +RFB2 − (RFB1 × VCC)

RFB2

)
+ VCOMP offset

(4.3)

tdON = −RLPFCLPF × log

(
1 − VTHRESHI

VCC

)
+ tCOMP delay

(4.4)

tdOFF = −RLPFCLPF × log

(
VTHRESLO

VLPF (tduty)

)
+ tCOMP delay

(4.5)

where

VLPF is the voltage at the node following the RC delay circuit

VCC is the comparator supply voltage

RLPF , CLPF are the RC delay resistor and capacitor

RFB1, RFB2 are the comparator feedback resistors, as shown in Fig. 4.9

VTHRESHI
is the upper level of the hysteresis band of the comparator

VTHRESLO
is the lower level of the hysteresis band of the comparator

tCOMP delay
is the propagation delay of the comparator

VCOMP offset
is the comparator input offset voltage

tduty is the duty time of the switch position, as determined by the system controller
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4.5 Conclusion

The experimental results presented in this chapter demonstrate that the Synchronous RB

Switch can unlock significant conduction loss reduction under true S4T operation while

also mitigating the reverse recovery of the SR body diode in the dual-MOSFET RB switch

structure, preventing large device voltage stresses, additional device losses, and increased

EMI. In the 1 kW, 48 VDC to 120 VAC AC Cube, the Synchronous RB Switch enables an

11.1% efficiency improvement over conventional RB switch structures. In the case of the

AC Cube modular drive unit, the Synchronous RB Switch enables a peak system efficiency

of 98.4%. While not shown in Fig. 4.7(c), usage of the conventional MOSFET plus series

SiC Schottky diode RB structure on both the 48 VDC and 480 VAC bridges would have

yielded a peak efficiency of only 91.6%, decreasing to less than 80% at full load. Further-

more, each conventional RB switch position on the 48 VDC bridge would require three

SiC Schottky diodes in parallel to reach this subpar efficiency, significantly increasing cost,

cooling requirements, and converter size. Put together, these results evidence the ability

of the Synchronous RB Switch to open application areas for the S4T previously rendered

impractical due to the high conduction losses of conventional RB switch structures.
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CHAPTER 5

CONCLUSIONS

The Synchronous Reverse Blocking Switch proposed and validated in this work offers a

seamless method to integrate dual-active-switch structures into the S4T topology to en-

able high-efficiency low-voltage applications to address the growing market need for effi-

cient, highly integrated, and feature rich low-voltage power interfaces. Together with the

integrated gate driver and protection circuitry, the method is agnostic to the higher-level

control architecture, applies to all variants of the S4T, and significantly reduces converter

conduction losses by replacing diode conduction with MOSFET channel conduction. The

control method leverages the unique switching environment of the S4T topology to virtu-

ally eliminate reverse recovery and the associated voltage stress and loss when standard

silicon devices are used.

Compared to the use of dual-active-switch configurations in hard-switching current-

source topologies, the Synchronous RB Switch within the S4T relies on simple and robust

control principles, and yields a rugged and cost-effective solution applicable to all power

device technologies, including newer silicon-carbide and gallium-nitride devices to scale

in voltage and current. Device-level experiments have demonstrated the ability of the Syn-

chronous RB Switch to mitigate the reverse recovery phenomenon of the body diodes of

100 V and 650 V Si MOSFETs and Si PN-junction fast-recovery diodes.

System-level experiments evidenced the alignment of the gate signal timing require-

ments of the Synchronous RB Switch to the inherent dynamics of the S4T. In a 750 W

48 VDC bridge power circulation experiment, the Synchronous RB Switch demonstrated

conduction loss savings of 46.20 W, a 90% reduction, and in an example 1 kW 48 VDC to

120 VAC S4T, the Synchronous RB Switch offers an 11.1% efficiency improvement at full

power when compared to conventional RB switch structures. For these reasons, the novel
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Synchronous RB Switch is seen as a unique drop-in replacement solution for S4T convert-

ers to unlock ubiquitous, high-efficiency low-voltage power conversion applications.

5.1 Contributions and Directions for Future Work

The analysis presented in this thesis has produced two conference papers. The experimental

validation of the switching dynamics of the dual-MOSFET RB structure and the gating

principles of the Synchronous RB Switch have been published in the proceedings of the

2020 IEEE Energy Conversion Congress and Exposition (ECCE) [37]. In addition, the

design and impact of the AC Cube modular drive unit, featuring a parallel stack of 48 VDC

to 480 VAC low-voltage S4T modules and enabling a mixed-chemistry battery pack for

system-level performance and range optimization, have been published in the proceedings

of the 2020 IEEE Transportation Electrification Conference & Expo (ITEC) [12].

Future work will explore the characterization of Synchronous RB Switches at higher

voltages and composed of wide-bandgap semiconductors, the simple and integrated fault

protection mechanism preventing converter failure in case of transients or faults, the de-

sign and analysis of a low-cost and high efficiency low-voltage S4T converter using the

Synchronous RB Switch gating technique, and the verification of benign interconnection

dynamics in massively output-parallel low-voltage S4T based systems. One example of a

modular AC Cube based system is presented in Fig. 5.1, targeted towards scalable, touch-

safe, and low-cost electricity solutions for off-grid and poor-grid communities.
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Figure 5.1: System-level diagram of an ad-hoc, multi-home microgrid based on the AC
Cube 48 VDC to 120 VAC building block. Multiple AC Cubes can be interconnected
to form a larger power subsystem to serve a single home. Multiple subsystems can be
interconnected to form a larger multi-user system, enabling a scalable, modular microgrid
architecture.
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APPENDIX A

ADDITIONAL IMAGE OF THE SR REVERSE RECOVERY TEST APPARATUS

DUT 
MOSFET

DUT MOSFET
Isolated Gate

Driver

Headers for adjustable 
drain-source resistance

Intel DE0-CV
FGPA Development Kit

Figure A.1: SR reverse recovery test apparatus showing the modified full-bridge based on
the EasyController2 [36] in green, 50 MHz FPGA, DUT mounting board, and isolated DUT
gate driver. Device drain-source current, ISD, was varied by adjusting the value of resistor
placed across the drain-source headers and by varying the full-bridge DC input voltage.
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APPENDIX B

ADDITIONAL SR REVERSE RECOVERY EXPERIMENT WAVEFORMS
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Figure B.1: Additional SR characterization trials of the 100 V, 1.3 mΩ MOSFET (IAUT3-
00N10S5N015). The oscillograms in (a) and (b) stem from trials with tZVS of 0 ns (hard-
switching characterization). The oscillograms in (c), (d), (e), and (f) stem from trials with
non zero tZVS, representing characterization under S4T-like switching waveforms. In each
row, the left-side trial features negative or insufficient gate turn-off delay, tdOFF, while the
right-side trial features a positive tdOFF.
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Figure B.2: Additional SR characterization trials of the 650 V, 23 mΩ MOSFET (FCH02-
3N65S3). The oscillograms in (a) and (b) stem from trials with tZVS of 0 ns (hard-switching
characterization). The oscillograms in (c), (d), (e), and (f) stem from trials with non zero
tZVS, representing characterization under S4T-like switching waveforms. In each row, the
left-side trial features negative or insufficient gate turn-off delay, tdOFF, while the right-side
trial features a positive tdOFF.
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APPENDIX C

48 VDC S4T BRIDGE SCHEMATICS AND PCB DESIGN

C.1 48 VDC Bridge Schematic
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Figure C.1: High-current, 48 VDC S4T bridge circuit schematic drawn in OrCAD Capture
CIS.
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C.2 48 VDC Bridge PCB Design
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Figure C.2: Low-inductance PCB design of the 48 VDC S4T bridge, showing the top
copper layer (layer 1 of 2).
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Figure C.3: Low-inductance PCB design of the 48 VDC S4T bridge, showing the bottom
copper layer (layer 2 of 2).
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C.3 48 VDC Bridge Built PCB Images

Dual-MOSFET 
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Resonant Inductor 
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Auxiliary 
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HF XFMR/Inductor 
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Resonant 
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Figure C.4: High resolution picture of the built PCB of the 48 VDC S4T bridge. One
dual-MOSFET RB switch, the auxiliary resonant switch, the resonant capacitors, and the
Lm and Lr connectors are labelled.

Figure C.5: High resolution side-view picture of the built PCB of the 48 VDC S4T bridge.
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APPENDIX D

48 VDC BRIDGE GATE DRIVER SCHEMATICS AND PCB DESIGN

D.1 Gate Driver Schematics
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Figure D.1: Circuit schematic of the isolated +15 V / -5 V gate driver for the dual-MOSFET
RB switch. Gating delays tdON and tdOFF are implemented in an upstream FPGA. Shown is
page 1 of a single gate drive channel (corresponding to one dual-MOSFET RB structure).
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Figure D.2: Circuit schematic of the isolated +15 V / -5 V gate driver for the dual-MOSFET
RB switch. Shown is page 2 of a single gate drive channel (corresponding to one dual-
MOSFET RB structure).
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D.2 Gate Driver PCB Design
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Figure D.3: PCB design of the 48 VDC S4T bridge gate driver, showing the top copper
layer (layer 1 of 4).

Figure D.4: PCB design of the 48 VDC S4T bridge gate driver, showing the second copper
layer (layer 2 of 4).
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Figure D.5: PCB design of the 48 VDC S4T bridge gate driver, showing the third copper
layer (layer 3 of 4).
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Figure D.6: PCB design of the 48 VDC S4T bridge gate driver, showing the fourth copper
layer (layer 4 of 4).
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D.3 Gate Driver Built PCB Image

Figure D.7: High resolution picture of the built PCB of the 48 VDC S4T bridge gate driver.
The gate driver mounts in a perpendicular manner to the power stage using the pin headers
at the top of the PCB.
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APPENDIX E

PROTOTYPE SYNCHRONOUS RB SWITCH GATE DRIVER DESIGN

E.1 Prototype Synchronous RB Switch Gate Driver Schematic
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Figure E.1: Circuit schematic of the isolated +12 V / -5 V Synchronous RB Switch gate
driver with integrated delay generation for the rectifier switch SR. Shown is a single gate
drive channel corresponding to one dual-MOSFET RB structure. The gate signal for the
active switch SA is provided by the upstream FPGA, while the gate delay timings tdON and
tdOFF for SR are implemented on board using the RC circuit plus comparator with hysteresis
analyzed in Chapter 4.
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E.2 Prototype Synchronous RB Switch Gate Driver PCB Design
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Figure E.2: PCB design of the prototype Synchronous RB Switch gate driver, showing the
top copper layer (layer 1 of 4).

Figure E.3: PCB design of the prototype Synchronous RB Switch gate driver, showing the
second copper layer (layer 2 of 4).

Figure E.4: PCB design of the prototype Synchronous RB Switch gate driver, showing the
third copper layer (layer 3 of 4).
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Figure E.5: PCB design of the prototype Synchronous RB Switch gate driver, showing the
fourth copper layer (layer 4 of 4).

E.3 Prototype Synchronous RB Switch Gate Driver Built PCB Image
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Figure E.6: High resolution picture of the built PCB of the prototype Synchronous RB
Switch gate driver.
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APPENDIX F

ADDITIONAL IMAGE OF THE 48 VDC S4T BRIDGE EXPERIMENTAL

APPARATUS

48 VDC
Bridge Test

Circuit

FPGA/DSP 
Controller

Nanocrystalline 
Core Inductor

Figure F.1: Additional image of the experimental apparatus of the 48 VDC S4T bridge, pic-
tured with the FPGA/DSP controller, gate drivers, the 72 µH nanocrystalline core inductor,
and the 160 nH resonant inductor.
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