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SUMMARY

We design and analyze algorithms for the following two robot navigation problems:

1. TARGET SEARCH. Given a robot located at a point l in the plane, how will a robot navigate

to a goal 2 in the presence of unknown obstacles ?

2. LOCALIZATION. A robot is “lost” in an environment with a map of its surroundings. How

will it find its true location by traveling the minimum distance ?

Since efficient algorithms for these two problems will make a robot completely autonomous,

they have held the interest of both robotics and computer science communities.

Previous work has focussed mainly on designing competitive algorithms where the robot’s per-

formance is compared to that of an omniscient adversary. For example, a competitive algorithm for

target search will compare the distance traveled by the robot with the shortest path from l to 2 .
We analyze these problems from the worst-case perspective, which, in our view, is a more

appropriate measure. Our results are :

1. For target search, we analyze an algorithm called Dynamic m � . The robot continuously moves

to the goal on the shortest path which it recomputes on the discovery of obstacles. A variant

of this algorithm has been employed in Mars Rover prototypes.

We show that
� �

takes �U���	��

�n��� time on planar graphs and also show an �����	�o

� � ��� bound

on arbitrary graphs. Thus, our results show that
� �

combines the optimistic possibility of

reaching the goal very soon while competing with depth-first search within a logarithmic

factor.

2. For the localization problem, worst-case analysis compares the performance of the robot with

the optimal decision tree over the set of possible locations.

ix



No approximation algorithm has been known. We give an �U�^��

� % ��� -approximation algo-

rithm and also show a RA�^��

� � 4qp ��� lower bound for the grid graphs commonly used in prac-

tice. The key idea is to plan travel on a “majority-rule map” which eliminates uncertainty

and permits a link to the �� -Group Steiner problem. We also extend the problem to polygonal

maps by discretizing the domain using novel geometric techniques.
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CHAPTER I

INTRODUCTION

This thesis involves the study of robot navigation problems in deterministic environments. These

problems are special cases of planning problems where we have partial information about our mod-

els.

There are three central problems to robot navigation : (i) searching for a goal, (ii) localization

i.e., finding one’s location and (iii) mapping.

Of these three, we design and analyse algorithms for the first two problems. Our results involve

finding the exact combinatorial and algorithmic complexity of theoretical problems inspired from

real-life applications.

Traditionally, robot navigation problems have been studied from a competitive viewpoint i.e.,

the robot’s performance in the presence of uncertainities is compared with that of a robot with

perfect information about the “world”.

Our main thesis is that it is more natural to look at robot navigation problems from the worst-

case viewpoint. Thus, we compare the quality of our plans with the best plans any other robot can

come up with, given the same partial information about its world.

Rather than making greedy or locally-optimal decisions, our robot navigation routines allow the

robot to make long-term and globally-optimal decisions. Thus, a robot following our algorithms

has the ability to make choices which may appear sub-optimal in near future but can lead to huge

savings in the long run.

1.1 Models

We study localization within two well-studied two-dimensional models: models based on grid

graphs and models based on polygons. The most intuitive of them is a grid graph or an occupancy

grid.

A grid graph D is a finite rectangular region consisting of a union of unit square cells, as shown

in Figure 1.1(a). Each cell can be either blocked or traversable. In the grid graph model, a robot is

1



always in exactly one traversable cell. It starts in a traversable cell and can move in a single step to

any neighboring traversable cell, to its north, south, east or west. Tactile sensors allow the robot to

determine the states (blocked / traversable) of its four neighboring cells.

In the polygonal model [56, 12], the environment is a polygon , and the robot occupies exactly

one point rtsu, . The robot is equipped with a range finder, a device that emits a beam (laser or

sonic) and determines the distance to the first point of contact with , ’s boundary in that direction.

The robot sends out a series of beams spaced at regular angular intervals about its position, mea-

suring the distance to the boundary at each of these angles. The points of contact are then joined

together to obtain a visibility polygon � (see Figure 1.1(b)). In other words, the visibility polygon

is the part of the polygon visible to a person by turning around by k
v*f degrees.

We use � to denote the combinatorial size of the map: for grid graphs � is the number of cells

in D , and for a polygonal model � is the number of vertices in the map polygon , .

observationobservation

wyx{z}|Y~5x��$���U� �0�*��� ~ �5� � ����� |�� �

� z<��z}��z � z�� � � �5��� ~ �*�c�����0�
�

�

Figure 1: Two basic models : grid graphs and polygons

A third model consists of planar embedded graphs (see Figure 2). The environment � is modeled

as a graph Dc��T #�� � embedded in the plane. The nodes correspond to locations of the robot in � and

the edges (which may be curved) correspond to paths the robot can take to go from one node to

another inside � . At any time the robot is located at a node or is traversing an edge between two

nodes. Some of the edges and vertices in the graph may be blocked due to debris, crevices, or other

obstacles. An obstacle is not known until the robot’s sensors detect it, for example, as the robot

attempts to move to it.

Example. (Dual of a grid graph) Given a grid graph D , we can construct an associated embed-

ded planar graph
� ��D	���J��T #�� � as follows : (i) for each traversable cell ��stD , we introduce a

2



��  ¡5¢o£(¤
Figure 2: Planar embedded graphs

vertex Q
¥¦s§T . We make two vertices Q # QZ¨ adjacent iff they correspond to adjacent traversable cells

in the grid graph D (see Figure 3).
� ��D	� is called the dual to grid graph D .

©aª*«$¬®­�¯±°5²Z³"´©aª5µ¶²·©�ª5«"¬N­

Figure 3: The dual of a grid graph

We note that the graph formulation can also be applied to other situations such as visibility

graphs or a network of roads.

1.2 Assumptions regarding the robot

1. The robot is point-sized, omnidirectional and is capable of movement in the two dimensional

plane. Clearly, these assumptions are exactly true for the polygonal model. In the grid graph

model, one can assume that at any moment the robot is located at a point of the unit square

lattice in the plane and is capable of making a move to any neighbouring lattice point.

2. The robot has perfect sensing : its computation of the visibility polygon is exact. The same

holds true for the states of the four neighbouring cells in the grid graph model.

3. The robot is equipped with a compass. This allows it to know whether it points to the north,

east, west or south. In the polygonal model, it amounts to exactly knowing the angle ¸ it

makes with the ¹ -axis.

3



4. The robot is equipped with a perfect odometer which allows it to exactly calculate the distance

traveled by its wheels.

Clearly, a robot with an odometer and a compass can exactly calculate the path it has traversed

in the map. This is straightforward to see in the grid graph model. For the polygonal model, our

algorithms make the robot move on piecewise-linear paths , (as the shortest distances between two

points inside a polygon are piecewise linear). By maintaining the angle of rotation at each new

discontinuity of the piecewise-linear path , using the compass and the distance traveled along the

straight line segments using the odometer, the robot can maintain an exact estimate of its position.

If one fixes an origin in the euclidean plane, the position of the robot at any moment is given

by a set of coordinates ��¹ # b&� . For the grid graph model, these numbers are integers whereas for the

polygonal model they can be arbitrary real numbers. A complete description of the robot’s state will

by given by three coordinates ��¹ # b # ¸�� where ¸ is the angle with respect to the ¹ -axis.

Our assumptions amount to the following :

Assumption 1 (Perfect Locomotion Assumption) If the robot’s initial position r is given a co-

ordinate �^f # f�� , after any sequence of rotations about its axis and translations the robot correctly

knows its current coordinate ��¹ # b&� with respect to r

This brings us to the following question : how is the performance of a robot navigation algorithm

to be measured ? The answer to this is unanimous : robots move much more slowly than computers

process and hence we seek to minimize the total distance traveled by the robot. The only constraint

that we impose on our algorithms is that they take polynomial computation time in the size of the

problem instance. In other words, they should belong to complexity class , (for an introduction to

complexity classes and the notion of polynomial-time algorithms, see [45]). We now state this as

our assumption :

Assumption 2 (Minimizing Travel Distance) As long as the algorithms on-board a robot’s com-

puter are polynomial-time in the problem size, their performance will be measured with respect to

the total distance traveled by the robot.

4



Note. We warn the reader that whereas Assumption 2 holds for real-world applications, the

assumptions regarding perfect locomotion in Assumption 1 are not true due to mechanical drift and

sensor noise. The robot’s wheels can rotate on slippery floors and the odometer may give a false

postive reading. These errors are particularly common when the robot makes sharp turns and moves

on rough terrains. Similarly, due to changes in the environment (fogs, dim lighting etc.) the robot’s

sensors may give only partially correct information.

1.3 Problem Description

We now come to description of the problems considered in this thesis. We have looked at two

distinct problems : target search and robot localization.

Both target search and localization are well-known in robotics literature as they form the core

of a robot’s locomotion routines. To make things clear, let us first describe these problems in the

most general form.

TARGET SEARCH: Given the initial location l and the final destination 2 of a mobile robot,

how will it find its way to the target in the presence of unknown obstacles ?

LOCALIZATION: A robot is “lost” in an environment. How will it find its location given a

map of the environment ?

As one can see, a combination of these two subroutines will make a robot completely au-

tonomous and therefore designing good algorithms for them is an important task. As such these

problems in one form or another have carried the interest of both robotics and theoretical computer

science communities. We leave the issues of practical robotics and instead focus on the algorithmic

aspects.

We now summarize the models and informational assumptions underlying the problems studied.

In the target search problem, the position of the robot is exactly known but the map is only partially

known i.e., there are unknown obstacles. We will study the target search problem on two models

: (i) grid graphs, and (ii) planar embedded graphs. In the robot localization problem, the position

is known only upto a finite set � but the map is known exactly. We will describe approximation

algorithms for the localization problem on (i) grid graphs, and (ii) the polygonal model.

In other words, there are two uncertainties involved. The first is incomplete knowledge of the
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map. This is the informational uncertainty for target search. The second is incomplete knowledge

of one’s position. This is the informational uncertainty for optimal robot localization.

1.4 Target Search

For target search, we analyze an algorithm called
� �

(due to Anthony Stentz [47, 48, 49]) or greedy

target search. The name derives from the fact that it is a dynamic version of m � , the ubiquitous

best-first search algorithm in Artificial Intelligence.
� �

continuously directs the robot on the optimal path to the goal given the current information

about the map. It optimistically presumes that there are no undetected obstacles. The robot starts

from the source vertex l and starts traveling on the presumed shortest path to the goal 2 . This

shortest path is computed based on the robot’s current knowledge of the map. If it encounters an

obstacle on its path, the robot updates its map and then recomputes the shortest path from its current

location to the goal. This process is repeated until either the robot reaches the goal vertex 2 or finds

that it is unreachable given its present knowledge of obstacles.

Example. We consider a typical situation with an autonomous robot trying to reach a goal

point in an unknown terrain (see Figure 4). The environment is a v�º¼» grid graph and the robot

has neighbourhood sensors. All cells are presumed to be traversable unless the robot makes an

observation and finds that they are blocked.

The robot is initially located at l��½�^f # f�� and the goal is at 2 �½�^f # B�� . Figure 4 illustrates an

example run of
� �

. The robot recomputes the shortest path four times before it reaches the goal.

The obstacles discovered by the robot are the cells at �^f # �¾� # ��d # �¾� # �1� # B�� # and �^f # k¾� respectively.

The total distance traveled by the robot is ¿ steps.

In the first part of the thesis, we will try to answer the following question :

Question 1 We are given a ÀÁº¼� grid graph D , a starting location l and a target location 2 .
A subset O of cells is blocked, of which the robot has no knowledge. Suppose the robot tries to

reach 2 using successive iterations of
� �

. What is the maximum number of steps it can take in the

worst-case ?

Whereas the question is asked for grid graphs, we will instead study the maximum number of

steps taken by
� �

on planar embedded graphs Dc��T #�� � .

6



Figure 4: Example run of
� �

Clearly, a grid graph D can be modeled as a planar embedded graph by constructing its dual
� ��D	� . Thus we can derive the results for grid graphs as a special case.

Planar embedded graphs D���T #�� � as a model for robot navigation were described in Section

1.1. At any time the robot occupies a vertex Q�s§T . The robot can travel from one vertex to another

along the edges. We assume that the travel cost of the robot along any edge is d .
From its current vertex, the robot can sense its environment. Any sensing operation returns a

subset ÂÄÃ½T of vertices which are found to be blocked. For example, in Figure 4, the sensing

operation at vertex �^f # d$� returned the singleton set ÂÅ� ���^f # �¾�Æ) .
However, the robot’s sensors can range from tactile to sonars and lasers. For robots with long-

range sensors, the set Â will usually consist of more than one vertices. Further, in the presence of

already discovered obstacles, the set of new blocked vertices may have gaps and may also contain

later vertices on the current shortest path. This may complicate our analysis considerably.

We resolve this problem as follows. First we prove our theorems for a robot with purely tactile

sensors : the only way the robot can discover that a vertex Q·s§T is blocked is by trying to move to

it from its current postions ÇÈsÈT along edge ��Ç # Q>� .
Then we show that our upper and lower bounds on

� �
can be extended to robots with arbitrary

sensors (this includes lasers, sonars, limited-range range-finders etc.) as long as they are at least as

powerful as purely tactile sensors.
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Our main result is an �����	�o

�n��� upper bound on the maximum travel distance for
� �

on planar

embedded graphs. The approach can be extended to give an �U���	��

� � ��� upper bound for
� �

on

general graphs :

Theorem 1 For robot sensors satisfying the purely tactile property,
� �

traverses �U���	��

� � ��� edges

on connected (general) graphs DÉ�Ê��T #�� � . It traverses �����	�o

����� edges on connected planar

graphs D �e��T #�� � .

Note that in principle the robot can take R	��� � � steps, as it may oscillate and replan � times, each

time taking close to linear in � steps. Before our work, the best bound known was ����� %�Ë � � [28].

We also show that the upper bound is not far from optimal as we also prove the following

theorem :

Theorem 2 The worst-case travel distance of
� �

on vertex-blocked grids as well as planar graphs

D±�Ì��T #�� � is R	�:Í®ÎÐÏ3ÑZÍÎÐÏ3ÑZÎÐÏ3Ñ�Í � steps.

A worst-case performance of �U���	��

����� for
� �

is very surprising, when one observes that

unlike breadth-first or depth-first search, the robot keeps no extra information (such as parent-child

pointers, marking times, last node visited, queues etc.) on the graph except whether the nodes were

last found to be blocked or traversable.

The gap between the best known lower and upper bounds is now quite small, namely ���^��

�Ò��

�n���
for planar graphs, and ���^��

�:�	��

����

�:��� on arbitrary graphs. We leave it as an open question to

close the gap between the upper and lower bounds for planar graphs.

However,
� �

is not an interesting algorithm from the point of view of competitive analysis. We

will show in Section 1.8 that
� �

can have an arbitrarily bad performance competitively whereas

there exist �U�¶Ó �Ô� competitive algorithms for target search in environments with rectangular obsta-

cles.

1.5 Localization

Consider the following problem: a mobile robot is placed at an unknown position in an environment

for which it has a map � . The robot constructs a map �.¨ of its local environment by going to different
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places and sensing the environment from there. It rules out positions whose local environment does

not agree with map ��¨ , until it infers the unique position where it was originally located. The

objective is to complete this task by traveling the minimum possible distance. This is known as the

kidnapped robot or localization problem [12, 55].

In general, robots must localize when they are switched on because they may have been moved

while switched off. Also, the control systems guiding a robot gradually accumulate error due to

mechanical drift and sensor noise [14]. Thus, it is necessary to localize from time to time to verify

the actual position of the robot in the map, and then apply corrections. In this context, localization

eliminates the need for complex and expensive position-guidance systems, such as radio beacons

[40, 12], to be installed in buildings or streets with tall buildings, where three satellites are not in

view and so GPS is not effective. For situations in which such systems cannot be built, such as a

Mars rover (see [32]), localization is the only possibility.

Following Dudek et al. [15], we view the localization problem as having two phases: hypothesis

generation and hypothesis elimination. The first phase is to determine the set � of hypothetical

locations, or hypotheses, that are consistent with the sensing data obtained by the robot from its

initial location (see Figure 5). The second phase is to determine which location !ÕsÕ� is the true

location of the robot. (The second phase is unnecessary if Ö �uÖ
�×d .)
We first briefly describe hypothesis generation. In the following, we will use � to denote the

number of hypothetical locations. For the grid graph model, � is simply the set of all traversable

cells, and therefore ���ØÖ �\Ö is less than or equal to � , the size of the grid graph.

For the polygonal model, a simple algorithm to construct the set � of hypothetical locations

is as follows. First, pick a reflex vertex Q of the visibility polygon � (if the visibility polygon has

no reflex vertices, the map polygon will be convex and hence the robot will immediately localize).

Then try all placements of � such that Q coincides with a vertex of the map polygon , . If the

visibility polygon for the initial position ! of the robot given by a placement coincides with the

initial observation � , output ! into the set of hypothetical locations. Since the number of placements

is at most the number of vertices in , , the set � of hypothetical locations obtained by this algorithm

will have size at most � . Figure 5 gives an example where one obtains a set of �Ù�eB hypotheses

from the initial visibility polygon � .
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Guibas, Motwani and Raghavan [20] describe how to implement the above algorithm in ����ÀP���
time where À and � are the number of vertices in � and , respectively. They also describe a way

to preprocess the polygon so that any hypothesis generation query can be answered quickly. Their

algorithm preprocesses , in �����ÛÚ@� time and space, and generates hypotheses in ����ÀÌÜÅ��

�:�YÜÕ�&�
time, where À is the number of vertices in the observed visibility polygon � , and �Ý�JÖ �uÖ is the

number of hypotheses generated.

The above discussion shows that the hypothesis generation phase for both grid graphs and poly-

gons produces a set of at most �ÝÞ�� hypotheses, where � is the size of the map (for grid graphs,

� is the total number of cells and for polygons, � is the total number of vertices). Therefore, in this

thesis, we will focus on the hypothesis elimination problem.

ßHà
áß{âß{ã

ä�ånæ ß�ç^è}ß{ã¶èéß â è}ß à¶ê
ß ç

Figure 5: Hypothesis generation. Based on the observed visibility polygon � , we generate the set
��� �"! �@# ! � # !&% # !&'*) of hypotheses as the possible locations of the robot.

By a strategy Â we mean the hypothesis elimination routine employed in the robot’s computer.

We measure the effectiveness of a strategy based on its worst-case performance. For strategy Â ,

let ëÄ�1! # Ân� be the distance traveled to localize if the robot is placed at hypothesis !tsì� . Then

the cost ëí��Â�� of strategy Â is defined to be the maximum distance, ëÄ��Ân�a�íÀïî�¹�ð*ñ � ëÄ�1! # Ân� ,
traveled for any starting position ! . An optimal strategy Â � has cost ëÄ��Â � �·��ò�óoô&õ ñ"ö ëÄ��Ân� ,
where ÷ denotes the set of all possible localization strategies. OPT( D , � ) denotes the cost of an

optimal strategy, where D is the map and � is the set of hypotheses. We say that a strategy is

ø -approximate ( øÕù d ) if its cost is at most ønú OPT( D , � ).

Fig. 6 gives an example of a localization strategy. Fig 6(a) shows the map in which the robot

is located. We assume that the robot has already made an observation from its current location and

has generated a set of four hypothetical positions �J�û�"! � # ! � # ! % # ! ' ) .
Fig. 6(b) describes an “execution” of the hypothesis elimination routine which can also be
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Figure 6: Hypothesis elimination

modeled as a decision tree [15]. The red arrows describe the next move made by the robot. First,

the robot moves down to the left-right corridor and makes an observation. According to its position

inside it, the robot is able to distinguish between � � �Ä�"! �@# !&%5) and � � � �"! � # !&'*) . Once it has

decided between the two sets � � and � � , it needs to know whether it is in the top corridor or the

bottom corridor. It does so by going west till it can make a measurement in the north-south corridor.

The length of the path traveled in the two cases is different, with the longer distance being traveled

for set � � . Clearly, we have that ëí�1! �g# Ân�y�ÌëÄ�1!&% # Ân� �û/AÜì/ � and ëÄ�1! � # Ân�¦�ÌëÄ�1!&' # Ân�¦�
/cÜ / � with / � � / � . The cost of the strategy is given by the maximum of these two quantities

which is ëÄ��Ân�n� /aÜ\/ � . The green arrow describes the path taken by a robot if it were “actually”

located at ! � .
Our main contribution is a polynomial-time strategy, Repeated Half Localization, which local-

izes the robot with travel distance within a factor �U�^��

� % ��� of that of an optimal strategy; more

precisely, the approximation factor is �U�^��

� � �	��

�i�&� , where �\�ÉÖ �uÖnÞí� is the number of hy-

potheses. The key algorithmic idea is to plan travel in a “majority-rule” map, which eliminates

uncertainty and permits a link to the �� -Group Steiner (not Group Steiner) problem.

An instance of the Group Steiner problem consists of a weighted graph Dc��T #�� � with � groups

of vertices � �@# � � # hghgh # ��
��ØT . The objective is to find a minimum weight tree which contains at

least one vertex from each group. In the �� -Group Steiner problem, the objective is to find a mini-

mum weight tree which contains at least one vertex from half the groups. Both these problems are
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� , -complete and we refer the reader to Section 2.2 for a discussion of approximation algorithms

available for them.

The approximation factor of our localization strategy, Repeated Half Localization, is not far

from optimal: we prove a �N��

� � 4qp � lower bound, assuming
� , �Ã�������� � ��������� ` � �"! � Í � � , for

the grid graphs commonly used in practice. We also extend the algorithm to polygonal maps by

discretizing the problem using novel geometric techniques.

The basic framework of the strategy is to break localization into a sequence of half-localize

steps:

HALF-LOCALIZE ( D , � ): Devise a strategy by which the robot can correctly eliminate at

least half of the hypotheses in � . The robot should travel (worst-case) distance as small as possible

to achieve this. HALF-OPT( D , � ) denotes the cost of the optimal strategy.

Intuitively it might appear that an �U�^��

� � ��� algorithm for half-localization should be a by-

product of our ���^�o

� % ��� localization strategy and not vice-versa. As an example of this, consider

the �� -Set Cover problem, in which the objective is to cover half the elements at minimum cost.

There is a constant factor approximation for this; and it is obtained by stopping the ���^��

�:��� greedy

algorithm for Set Cover as soon as we cover half the elements. (Another example is the algorithm

for �� -Group Steiner [16], which is obtained by stopping the rounding scheme of [19] as soon as the

tree covers half the groups.)

However, half-localize seems to play a more fundamental role in our context. We briefly discuss

only the simpler grid graph case here. We construct a “majority-rule map”, in which each cell is

blocked or unblocked depending on what the majority of the current hypotheses in � assert. This

majority-rule map permits three inter-related simplifications. If the robot tries to follow a route

within the majority-rule map, but makes a minority observation (one inconsistent with at least half

of the hypotheses), then the robot has half-localized. This permits a plan to be a path rather than

a decision tree. Distances in the real environment are uncertain, but distances on the majority-rule

map are fixed. This permits us to model half-localization as a Steiner type problem on a graph,

although we are not able to model localization as such. Finally, there is an essential equivalence
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between optimally half-localizing and halving paths on the majority-rule map.

We refer the reader to the introduction to Chapter B for a detailed discussion of the ideas under-

lying our algorithm for the grid graph model. Similarly, the introduction to Chapter » describes the

basic ideas underlying our lower bound.

The following figure illustrates the structure of our results :

#%$�&�'�(�)+*-,/.0(�1�2�3546$�7
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Figure 7: Logical Structure of Our Results

Note that relationships are one-way. The only way we know of deriving an algorithm for the

robot localization problem is by connecting the half-localization problem using majority-rule maps

to the �� -Group Steiner problem. On the other hand, the hardness of approximation is obtained by a

direct reduction (by direct we mean of the
� , -hardness type) from the Group Steiner problem.

1.6 Polygonal Model

The third part of the thesis is an extension of the algorithm for grid graph localization to the polyg-

onal model. We note that the hardness of approximation extends in a straightforward fashion to

polygons (by adding “twists” to block the laser sensors) (see Chapter » ).
We consider the extension of our algorithm to the polygonal model as the most technical part of

the thesis.

The main difficulty in the polygonal model is that the number of robot positions ��¹ # b&� is not

finite. Instead the robot can occupy any of the inifinite positions in the interior of the map polygon

, i.e., the number of positions is of the same cardinality as the real numbers.

We first describe the standard approach to this problem. Cell decompositions of a set of points

and lines have been known for a long time such that all points within a cell g satisfy the same

properties (Delaunay triangulation, Voronoi diagrams etc.).
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Here we need decompositions of the map polygon into cells so that the robot makes essentially

the same observation within the same cell (for example, sees the same set of edges or vertices in , ).

Once we have such a decomposition, by cleverly choosing a set of “representative points” within

each cell, one can discretize the map polygon into a finite set of points Â each with its associated

observation h � # r�stÂ . This is the line of approach used in the papers by Guibas et. al. [20] and

Dudek,Romanik and Whitesides [15].

A preliminary version of this work tried to adapt these ideas to our case. We first constructed

visibility decomposition for pairs of hypotheses �"! - # ! G ) such that each cell g was either able to

distinguish between them or was unable to distinguish betweem them. By overlaying these � � pairs

over each other, we were able to construct a partition
� �^, # �Ý� of the plane such that within each cell

the majority observation and sets remain the same. The complexity of
� �^, # �Ý� was �����/i@� ' � and

after choosing representative points for the �� -Group Steiner problem the exponent nearly doubled !

Even if we assume that in real situations that �kjlju� , our algorithms were not practical because

of the large order ����� �nm � in the map size � . Therefore, reducing the number of representative points

was important for making our algorithms practical.

Note that we are now concerned with reducing the computation time of the robot’s computer

rather than its travel distance.

The sizes of Group Steiner instances constructed for the grid graph model are of order �U�1�Z��� .
The bound is linear in � and so computation is not an issue (though the map size � here is the

number of grid cells in D ). We would like to have a similar performance for the polygonal model.

In fact, the results of Chapter v take us almost to this goal.

In Chapter v , we will show that for the polygonal model one can get a set of representative

points of size �U���Ô� � M�Ë�% ø �����Z��

� Ú Ë�% �&� where ø ����� is the inverse of the Ackermann function. Note

that this bound is nearly linear in � (the inverse of the Ackermann function grows so extremely

slowly that for all practical purposes it can be taken to be less than B�� and one may expect that, in

practice, �kjlj\� .

In Section 6.7, we further reduce the set of representative points to ���1� � �o

�Ò�&� . Note that this

bound is independent of � and hence the size of Group Steiner instance constructed is just quadratic

in the number of hypotheses � . We adapt the same ideas to get a set of ���1!�� � �o

�Ò�&� representative
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points for the half-localization problem in polygons with convex holes. For polygons with non-

convex holes, we get a set of ����[¾� � ��

�Ò�&� reference points, where [ is the number of reflex vertices

on the boundary of holes.

The argument which gives �U���Ô� � M�Ë�% ø �����Z�o

� Ú Ë�% �&� points for polygons, gives ���1� % � ' � refer-

ence points for polygons with holes (see Section 7.1.3). The new argument leads to a considerable

improvement by lowering this number to �U��[¾� � ��

�Ò�&� .
Thus we can say that our algorithms are now practical for the polygonal model with arbitrary

holes. Note that by practical we mean the computation time needed to construct the Group Steiner

problems for half-localization. The current algorithms for Group Steiner have large running times,

however that doesn’t concern us here. For a discussion of their running times, see section 2.2 of this

thesis.

To get a construction with a small number of points we needed to introduce several novel geo-

metric and combinatorial ideas suited to the structure of our algorithm. Even a general overview of

them is difficult to give and instead we refer the reader to Chapter v of the dissertation.

We would like to thank Prof. J. S. B. Mitchell for helping us adapt our algorithm to the

polygonal model. Several of the results, improvements and theorems in Chapter v are due to him

and they use state-of-the-art machinery in computational geometry.

1.7 Extensions to other models

One unifying theme in our work on the robot localization problem is that the algorithms and lower

bounds obtained for the simplest model of grid graphs generalize to wide variety of models with

appropriate modifications. In Chapter v , we will look at some of these generalizations. The follow-

ing Figure describes the set of models for which the results for grid graphs can be generalized (An

arrow between models d and � denotes that the second one is a generalization of the first one) :

One feature of our strategy is that after every half-localize phase the robot returns to the origin.

In Section 7.2 we show that a variant of our strategy which doesn’t return to the origin after each

half-localize step performs very poorly.
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Figure 8: Models for the Localization Problem

1.8 Competitive Analysis vs. Worst-case analysis

As noted above, a large part of previous work on robot navigation problems is with reference to

competitive analysis or online algorithms. Competitive analysis compares the performance of a

robot navigation algorithm with respect to an omniscient adversary. For the robot navigation prob-

lems considered in this thesis, an omniscient adversary will have complete knowledge of both the

map and the robot’s position inside it. We now convey the flavor of results achieved in this direction

and compare them with our results. The reader can refer to Chapter � for a detailed description.

Now let us first look at results for the target search problem. Since the target search problem

becomes trivial if the map is known, it makes sense only with respect to scenarios where the robot

has no or little knowledge of the obstacles. As discussed above, competitive analysis will compare

the performance of the robot with respect to an omniscient adversary. For target search, full knowl-

edge of the map and the robot’s position inside it will allow the omniscient adversary to compute the

shortest path to the goal. Hence, the performance ratio of competitive algorithms for target search

is measured with respect to the length of the shortest path.

Consider an environment with rectangular obstacles where the robot has to go from l to 2 but

has no knowledge of the obstacles. It is known that the best competitive ratio achievable for this

problem is �c� Ó ��� , where � is the length of the shortest path. Blum, Raghavan and Schieber [6]

showed that there is an algorithm which always makes the robot travel distance within �U� Ó ��� times

the shortest path. On the other hand, Papadimitriou and Yannakakis [39] showed that an adversary

can choose the location of obstacles to force the robot to travel at least R	� Ó �Ô� times the shortest
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path.

For target search, we have analyzed a shortest-path heuristic called
� �

: given the current

knowledge of the robot about its environment, the robot always moves on the shortest path from

the current position to the goal 2 . We have shown that its worst-case performance is �����	��

�n��� for

planar embedded and vertex-blocked grid graphs.

However,
� �

can perform arbitrarily badly when considered competitively. Fig. 9(a) gives an

example of an environment with rectangular obstacles.

A tactile robot has to go from l to 2 in a room where there is a long and thin rectangular

obstacle. The robot is much closer to the southern tip of the obstacle. The first time the robot hits

the obstacle, it needs to move on the new shortest path. If the robot chooses to move up, it will keep

going upwards till it comes out of the top of the obstacle.

Thus, the shortest path has length �Ä/ � , whereas the path taken by
� �

has length � � ú / � Ü
/ � . The competitive ratio is then given by

�	� � ý 6 � =� = . Choosing / � �	�Ä/ � , this ratio can be made

arbitrarily large.

We note that the same example can be adapted to work for robots with range finders (see Fig.

9(b)). The obstacle now extends across the height of the room with evenly spaced east-west corri-

dors along its boundary. The robot can go to the other side of the room by passing through one of

these east west corridors. However, only the top and the bottom corridors are unblocked. The width

of the corridors is so small that even a robot with range finders has to occupy the cell in front of

them to find out whether they are blocked or traversable. One can then show similarly that
� �

will

make the robot move upward and then check each corridor for blockage till it comes out of the top

corridor. However, the optimal plan consists of taking the bottom corridor. One gets similarly that

if
� ý� =R�¡  , then the robot performs arbitrarily badly.

Our motivation for analyzing the performance of
� �

lies in the fact that it gives empirically good

performance on real terrains and is widely used in practice. On the other hand, algorithms with

good competitive ratios are rarely used in practical robotics. However, theoretically
� �

gives an

arbitrarily bad competitive ratio even in very simple environments. This difficulty is taken care of in

algorithms with good competitive ratios by doing a “spiral search” [2] or “sweeps” with increasing

window sizes [6].

17



¢F£�¤t¥ ¦�§-¨n£n§-¤~©

ª §-¤~©�¤~§�«�¬]­f® ¯�°�±

²-³

²�´
µ §�¶ µ ®�¶

· ·¤ ¤

Figure 9: Competitive performance of
� �

The notion of competitive analysis leads to a subtle definition when applied to robot localization.

The main issue here is that the map is known but the location is unknown. Thus both the robot

and the omniscient adversary have a map of the environment. If the adversary even knows its initial

location, what will we compare the robot’s performance with ? We make a comparison with the

optimal verification tour i.e., the distance the adversary needs to travel to confirm for himself that

his belief about his location is correct. We stipulate that the optimal verification tour always returns

back to the origin.

Dudek, Romanik and Whitesides [15] show that the competitive complexity of this problem for

polygons is exactly � ? d where � is the number of possible candidate (or hypothetical) locations.

Their algorithm greedily takes the robot to the next informative location and then retraces its path

back to the origin. As each new information rules out at least one location, the robot finds its

location in � phases.

The upper bound is as follows. Suppose the robot is located at !�sì� . Suppose the strategy

makes À phases and let �U- denote the set of hypotheses at the start of the ¸ th phase. Since !§s �P- ,
the distance to the nearest informative point will be at most the minimum verification tour T for ! .
For consider the first point r on T where the robot distinguishes ! from at least one other hypothesis

in �c- . This point r is then an informative point for phase ¸ and hence lies at a distance greater than

the nearest informative point. Since there are at most � ? d steps, the strategy localizes by traveling
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distance within � ? d of the optimal verification tour.

The lower bound consists of � buildings where each building has � spoke-like corridors around

a central common area (see Fig. 10). The corridors are distinguished as follows : in building ¸ , the

¸ th corridor has a “hook” on its end. To localize, the robot needs to search for a corridor with a

hook.
¹ º ¹ º

»
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»

¼
½�¾�¿�À]Á�¿XÂ�Ã ¹ ½�¾�¿�ÀvÁU¿-ÂSÃ »

Figure 10: Lower bound for greedy localization

If the robot knows its building number ¸ , it can go to the end of spoke ¸ and verify its location

by checking for the hook and return back to the origin. Thus the optimal verification tour for any

hypotheses is equal to twice the spoke length.

On the other hand, any strategy which visits the spokes in a given order can be defeated by

putting the robot in the building corresponding to the last spoke visited. Thus, in the worst-case

(competitively) the robot will check � ? d spokes whereas an omniscient verifier will just check one

spoke. Note that if the robot does not find a hook in � ? d spokes, it automatically localizes to the

remaining spoke.

Since we stipulate that the robot always returns to the origin, the robot will travel distance equal

to � ? d times twice the length of a hook. Thus, an omniscient adversary can make the robot travel

� ? d times the minimum verification tour.

However, we believe that it is more natural to look at the robot localization problem from the

worst-case perspective. Here we list some points which make a strong case of using worst-case

robot localization over the competitive approach :

1. In online navigation problems, the map is not known and hence the informational assumption

of competitive analysis holds for the robot. But in the localization problem the map is given a
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priori to the robot. Hence the information available to the robot is precisely what is needed for

standard worst-case analysis. A competitive analysis assumes too little information available

to the robot, and too much to the omniscient verifier, than is realistic.

2. From a practical standpoint, it better matches the roboticist’s concerns with guaranteed rapid

localization, rather than with comparisons against a nonexistent omniscient verifier.

3. From a theoretical standpoint, it admits an ���^�o

� % ��� approximation algorithm, whereas it is

NP-hard even to achieve a strategy with competitive ratio h>� Ó �Ô� on polygons [15]. Thus the

planner now has a much more richer structure, which he/she can exploit and adjust according

to the application.

4. It turns out that the simplest greedy strategy to localize is also the optimal from a competitive

viewpoint and it consists of always going to the next informative point on the map. However

this strategy uses absolutely no structure of the map (even when the robot has it) and for all

purposes takes the map as a black box. On the other hand, our localization routines make

essential use of the map by using them to compute the majority-rule map.

1.9 Outline

Figure 11 describes the organization of the thesis and the dependencies among the various chapters.

In chapter � , we discuss the previous work on both target search and robot localization prob-

lems. Chapter k contains the lower and upper bounds for the performance of
� �

in planar and gen-

eral graphs. Chapter B describes the ���^��

� % ��� -approximate localization strategy for grid graphs.

In chapter » , we show an �U�^��

� � 4qp ��� lower bound on the performance of any polynomial-time

computable localization strategy. Chapter v forms the most technical part of the thesis where we

extend the localization results for grid graphs to the the polygonal model. Chapter Ä describes vari-

ous other extensions of our localization algorithms such as those for three-dimensional grid graphs,

limited-range sensors, geometric trees etc. The general rule is that our algorithm can be extended

to any model provided we define the majority-rule map and give a finite set of coordinates for the

�� -Group Steiner problem inside it. Finally chapter ¿ summarizes our results and lists some open

problems for future work.
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CHAPTER II

PREVIOUS WORK

2.1 Competitive Analysis

2.1.1 Target Search

The motivation for competitive algorithms comes from theoretical work of a similar flavor on robot

navigation in unknown environments. The objective of the robot is to navigate from a point l to

a target 2 while avoiding obstacles/walls in the scene, which are not known to the robot a priori,

but which the robot learns by encountering them. The goal is to minimize the competitive ratio

of the distance traveled by the robot to the length of the shortest obstacle-free path from l to 2 .
Papadimitriou and Yannakakis [39] gave the first such results, achieving a competitive ratio of d*h�»
(which they show is best possible) in the case that obstacles are unit squares. They, along with

Eades, Lin and Wormald [38] also give a lower bound of R	�3Ó ��� on the competitive ratio in the

case that 2 is an infinite wall and the obstacles are axis-aligned rectangles. Baeza-Yates, Culberson

and Rawlins [2] introduce the technique of spiral search, with which they obtain a ��ðYÜñh(��d$�3� -
competitive algorithm for finding a point on a line, and a d@kZh�¿>d -competitive algorithm to search for

a line at distance � from the origin. A restricted spiral search in a geometric tree forms the first part

of Kleinberg’s localization algorithm. Blum, Raghavan and Schieber [6] use a variant of the spiral

search technique to give a strategy that matches the R	� Ó �Ô� lower bound for navigating between two

points among axis-aligned rectangular obstacles. The navigation problem has also been studied in

the polygonal model, for which Klein [24] gives a lower bound of Ó � on the competitive ratio and

gives a »Zh Ä*� -competitive algorithm for a subclass known as street polygons. Later, Kleinberg [26]

improved the ratio to � Ó � , and Datta and Icking [13] gave a 9.06-competitive algorithm for the

broader class of generalized streets.

2.1.2 Robot Localization Problem

Despite the considerable attention it has received in the robotics literature (e.g. [12, 55, 43, 53,

56]), localization has been the subject of relatively little theoretical work. Guibas, Motwani, and
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Raghavan [20] show how to preprocess the polygon , so that the set of hypotheses � consistent

with a single observation � can be returned quickly. Their algorithm preprocesses , in �U����Ú@� time

and space, and generates hypotheses in ����ÀíÜ\�o

���·Üu�&� time, where À is the number of vertices

in the observed visibility polygon � , and �¼� Ö �uÖ is the number of hypotheses generated. (Note

that �ïÞ\� , and, in fact, � is at most the number of reflex vertices of , .)

Kleinberg [25] was the first to give interactive strategies for the hypothesis elimination problem.

He measures the performance of his strategies using the competitive ratio criterion, in contrast with

our worst-case criterion. The competitive ratio compares the distance traveled by a robot following

a strategy to that traveled by an omniscient verifier, i.e., a robot that has a priori knowledge of its

position !§sP� and probes the environment just to verify this information. The distance traveled by

an omniscient verifier at hypothesis ! is exactly Àk¸�� õ ñ"ö ëí�1! # Ân� , and an ø -competitive strategy

enables a robot initially located at hypothesis ! to travel distance at most øUú Àk¸��:õ ñ5ö ëÄ�1! # Ân� prior

to completing localization.

In Kleinberg’s model the environment is a geometric tree, Dc��T #�� � , where T is a set of points in
ò �

and � is a set of line segments whose endpoints all lie in T . The edges do not intersect except at

T and do not form cycles. The robot occupies a point on one of the edges, and is capable of moving

along an edge in either direction. Kleinberg further assumes that the only information available to

the robot is the orientation of all edges incident at its current position r§s � . He gives an ����� � Ë�% � -
competitive algorithm on geometric trees having bounded degree, and he gives an R	� Ó ��� lower

bound. He also gives an �����
ó
ÎÐÏ3Ñ�ÍÎÐÏ3ÑZÎÐÏ3ÑZÍ � -competitive algorithm for a geometric model consisting of

a packing of rectangles (obstacles) in the plane, with no two rectangles “stuck together” (i.e., two

rectangles can nearly touch, but there remains a traversable gap between them) and each rectangle

having at least unit width. In Section 7.1.4, we give an �U�^��

� % ��� -approximate strategy not just for

geometric trees, but for geometric graphs in any Euclidean space
ò �

.

Dudek, Romanik and Whitesides [15] consider the problem of designing competitive strategies

for the polygonal model; however, they assume that the robot can only compute the visibility skele-

ton � � �<rN� , which is an approximation of visibility polygon ���<rN� . The visibility skeleton � � �<rN� (see

[20]) is a contraction of �a�<r®� , consisting of only those vertices in �a�<rN� that can be certified to be

vertices of , . For this model, they give a greedy �(�1� ? d$� -competitive strategy MDL (stands for
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Minimum Distance Localization) for hypothesis elimination, where � � Ö �\Ö is the number of hy-

potheses. They also show that there are polygons , and sets of hypotheses � for which the best

strategy is �(�1� ? d$� -competitive. We believe that this line of work stands closest to ours in both

geometric and algorithmic structure. We refer the reader to Section 6.8.1 for a discussion of the

recent work on this strategy as well as a comparison with our results.

Dudek, Romanik and Whitesides were also the first to study the localization problem from the

worst-case perspective, which they describe as the height of a localizing decision tree. They prove

that computing an optimal localizing decision tree (i.e., an optimal worst-case strategy) is NP-hard

by a reduction from the Abstract Decision Tree problem [23]. Tovey and Koenig [54] show that it is

NP-hard even to find a � ú �o

��� -approximate strategy, both for grid graphs and for polygons, using a

reduction from the Set Cover problem [30]. Schuierer [44] proposes a technique that uses geometric

overlay trees to reduce the running time of Dudek et al.’s greedy strategy. His technique, along with

a careful choice of data structures, allows the robot to localize in computation time ���1�Z�	�o

�n��� and

space �U�1�Z��� .
Brown and Donald [7] describe algorithms for localization that allow for uncertainty in the

measurements of range sensors. Fox, Burgard and Thrun [18] use Markov localization to deduce

the position of the robot from sensor data. In their work, global localization is achieved as a side

effect of robot movement, and the length of the localizing trajectory relative to the optimum is not

considered. In Markov localization and related approaches, localization and action are viewed in

a compound setting; the effects of various actions are interpreted probabilistically and the robot is

able to predict the belief states ensuing from various actions. Long-range path planning using these

approaches remains problematic because of the large state space involved.

2.2 Group Steiner Problem

The Group Steiner problem is the following:

(Rooted) Group Steiner Problem. Given a weighted graph D �í��T #�� � with � groups of ver-

tices � � # � � # hghgh # �G
ô� T , find a minimum weight tree that contains at least one vertex from each

group. There is a distinguished vertex [ (the root vertex) that must be included in the tree.
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The Group Steiner problem generalizes both minimum Steiner tree and set cover problems. For

purposes of our algorithm, we need a variant called the �� -Group Steiner problem [16], in which the

goal is to find a minimum-weight tree that contains vertices from at least half of the groups.

An �U�^��

� � ��� algorithm for Group Steiner on trees is given by Garg, Konjevod and Ravi [19].

They first solve a linear programming relaxation to get a fractional solution and then use an in-

novative randomized rounding scheme. A modification of the algorithm, by Even, Kostartz and

Slany [16], yields an ���^��

�:��� -approximation for the �� -Group Steiner problem on trees. For general

graphs, one can first probabilistically approximate the graph by a tree, using a result of Fakcharoen-

phol, Rao, and Talwar [17] (which is a recent improvement to Bartal [4]), losing an ���^�o

����� fac-

tor in the process. Then the algorithm of Garg et al. [19] is applied to the resulting tree, giving

an �U�^��

� % ��� -approximation for Group Steiner and an ���^��

� � ��� -approximation for the �� -Group

Steiner problem:

Theorem 3 [19, 16, 17] There exists an �U�^��

� � ��� -approximation algorithm õ for the rooted �� -
Group Steiner problem that runs in randomized polynomial time.

The running time of this algorithm is high, and hence the computation time of the robot will

be large. As the approximation algorithm is used only as a black box, we will denote the running

time by the (polynomial) öU��� ¨ � , and instead concentrate on reducing the size � ¨ of the instance.

However, if we are willing to trade off between running time and approximation factor, there are

much faster algorithms available. Bateman et al. [5] give a Ó �i�oôy� -approximation algorithm that

runs in �����Ô� � ��

�Ò�&� time. Their algorithm is based on the fact that there exists a Group Steiner

tree of depth � rooted at [ with cost within Ó � of the optimal. By adapting their algorithm to the

�� -Group Steiner problem, we get an ��� Ó �a�o

� � ��� -approximation strategy for localization on grid

graphs with computation time ����� % ��

� � ��� (the best previous factor was R	����� ). A more smooth

trade-off can be obtained by using the algorithm of Charikar et al. [10] for the Directed Steiner tree

problem (which includes the �� -Group Steiner problem as a special case), yielding an ¸ �X¸ ? d$��� � � Ë{-]� -
approximation with running time ����� - � � - � . For any ÷y�ìf , the robot localizes by traveling distance

within factor �U� ÍGøp ý ú ��

����� of the optimal and spending computation time �U��� �
ø ��

�
� ��� . We hope
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that future work on the �� -Group Steiner problem will lead to algorithms with better running times.

Chekuri and P ùî l [11] have recently described a ���^��

� � ��� -factor quasi-polynomial time algo-

rithm for the Group Steiner problem. Since the algorithm involves set cover style arguments, this

gives a �U�^��

����� algorithm for the �� -Group Steiner problem by stopping it when it covers half the

groups. Thus our approximation algorithm is optimal if we allow for quasi-polynomial time.

The problem they solve is actually the SOP or sub-modular orienteering problem. Here each

subset ú Ã T of a directed graph Dc��T #�� � has a reward function û8�XúÙ� which satisfies the sub-

modular property. The objective is to construct a walk with maximum given length O such that the

subset of vertices T ¨ Ã T covered by the walk has maximum reward û8��T ¨ � . Their algorithm is

reminiscent of Savitch’s algorithm : the algorithm guesses the middle node of the optimal walk and

then recurses two times. However here the second recursive call is dependent on the output of the

first recursive call (i.e., the subset of vertices covered by it), unlike in Savitch’s algorithm where the

two calls are independent. We add that the question of a polynomial-time ���^��

� � ��� algorithm for

Group Steiner is still open.
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CHAPTER III

MARS ROVER

3.1 Introduction

� �
is a greedy heuristic planning method that is widely used to direct a robot in a terrain with

initially unknown obstacles from given start to given goal coordinates.
� �

always moves the robot

along a shortest presumed unblocked path from its current coordinates to the goal coordinates,

presuming that as-yet-unobserved portions of the terrain have no obstacles. It stops when it has

reached the goal coordinates or determined that this is impossible. If movement along the current

path is blocked by an obstacle, the shortest presumed unblocked path changes and
� �

needs to

replan. This can be implemented efficiently [48] and easily [27].

In robotics applications, the continuous terrain is usually discretized into a grid. Robot move-

ment then corresponds to traversal from vertex to adjacent vertex in a grid graph. The graph is

known in the sense that the vertices (grid cells) and edges are known. Impassable features of the

terrain, which determine the graph’s structure, may be known via satellite reconaissance, prior ex-

ploration, or mapping. The graph is unknown in the sense that vertices of the graph may be blocked

by debris, crevices, or other obstacles. An obstacle is not known until the robot’s sensors detect it,

for example, as the robot attempts to move to it.
� �

is also used in other AI applications to reach a desired goal state from an initial starting state

[51, 22, 31, 52]. In these applications, and in some terrains such as buildings, the graph may be

a Voronoi or other type of graph rather than a grid graph. In all of these applications the vertices

can be recognized – in the case of robot movement, by the physical coordinates; in other planning

problems by state identifiers.

The
� �

algorithm has some advantages over depth first search (DFS) in practice, including

ease of replanning if the robot is moved to a new location, empirically good average performance,

and effective use of partial terrain information ([29]).
� �

has been used outdoors on an autonomous

high-mobility multi-wheeled vehicle that navigated 1,410 meters to the goal location in an unknown
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area of flat terrain with sparse mounds of slag as well as trees, bushes, rocks, and debris [51]. As

a result of this demonstration,
� �

is now widely used in the DARPA Unmanned Ground Vehicle

(UGV) program, for example, on the UGV Demo II vehicles.
� �

is also being integrated into a Mars

Rover prototype (according to Anthony Stentz), tactical mobile robot prototypes and other military

robot prototypes for urban reconnaissance [22, 31, 52]. Furthermore, it has been used indoors on

Nomad 150 mobile robots in robot-programming classes to reach a goal location in unknown mazes

[37, 36].
� �

has also been used as the key method in various robot-navigation software [8, 50].

Given its simple form and many applications it would be quite interesting to know analytically

how well
� �

performs. The measure by which we assess performance here is the worst case distance

traveled by the robot. We focus on travel distance in the terrain rather than travel planning time

because robots move so slowly that the task-completion times are completely dominated by their

travel times.

For the rest of the chapter, � denotes the number of vertices in the terrain graph D �J��T #�� � .
In practice

� �
seems to perform reasonably well and, in many domains, exhibits a performance

that is linear in � [29], i.e. the same order as DFS, but it is not known whether this is due to

properties of the test terrains or whether the plan-execution times are indeed guaranteed to be good

in any terrain. However, in [29] it was also shown that for arbitrary graphs the performance is

R	���	��

���TüÛ��

�:��

�:��� (see section 3.5). A considerably modified version of the construction in [29]

gives the same R	���	��

���TüÛ��

�:��

����� bound for grid graphs [35]. This part of the research was done

jointly with Sam Greenberg and Craig Tovey. This establishes that
� �

has superlinear worst case

performance on the class of graphs used in real robotics applications.

The best upper bound on
� �

previously known was �U��� %�Ë � � [28]. We prove an upper bound

of �����	��

�n��� for planar graphs. This leaves only a ��

�:��

��� gap, and establishes that
� �

is only

slightly inferior to DFS in this worst-case performance sense. As mentioned above,
� �

is also

employed for other applications in which the graph may not possess the grid structure. For arbitrary

graphs we prove an upper bound of �U���	��

� � ��� . Thus
� �

has a rather good performance guarantee

in general.

In sections kZh�� ? kZh�k we assume that the robot has tactile (short-range) sensors. In section 3.4.1
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we extend the results to long-range sensors. In particular, the lower bound applies to any line-of-

sight sensor, and the upper bounds apply to all sensor types. In section 3.4.2 we extend results to

the case where both vertices and edges may be blocked.

3.2 Definitions

We assume that the robot is omni-directional, point-sized, equipped with a tactile (short-distance)

sensor, and capable of error-free motion and sensing. The sensors on board the robot uniquely

identify its location. We model the terrain as a graph. Vertices in the graph represent locations in

the terrain. Traversing an edge in the graph corresponds to traveling from one location to an adjacent

location in the terrain. We are interested in the quality of the plans determined by
� �

as a function

of the number of vertices of the graph.

With these assumptions, we can formalize the behavior of
� �

as follows. We call a graph

� � ��T #�� � vertex-blocked by Oý�eT if O is the set of blocked vertices, vertices that cannot be

traversed. On a finite undirected graph �I� ��T #�� � vertex-blocked by O , a robot has to reach a

designated goal vertex 2 from a start vertex l . � � always moves the robot from its current vertex

along a shortest presumed unblocked path to the goal vertex. A presumed unblocked path is one that

contains no vertices which are known to be blocked. Initially, the robot has no information about

O except that lk�sÙO . If the robot attempts to move to a blocked vertex Q , it learns that QïsÙO .
� �

then recomputes a new presumed unblocked path to begin the next iteration.
� �

terminates when

the robot reaches the goal vertex or there are no presumed unblocked paths to the goal vertex, in

which case the goal vertex is unreachable from the start vertex. Additional notation to formalize the

information state of the robot is given in the next section

3.3 þ � : An ÿ��������	�
��� Upper Bound

3.3.1 Notation

As defined in section kZh�� , the robot knows the graph � � ��T #�� � , the starting location lìsÌT
and a goal vertex 2 s\T . However, it does not know which vertices in T are blocked.

� �
travels

along a shortest presumed unblocked path to 2 . If the robot has tactile sensors it replans whenever

it encounters a blocked vertex along its currently planned path. To prepare the way for an extension

to long-range sensors in the next section, we analyze here a slightly more general case. We permit
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the robot to detect a blocked vertex some distance ahead on its planned path. For example, in

Figure 12, the robot starting from 0 might travel as far as � , and then detect blocked vertex v . Note

that an earlier vertex such as 4 might be blocked, but go undetected at this iteration.

0 1
bbbs t

765432
− +

Figure 12: When the blockage at + of ,.- is detected, /��1� #32 � increases by at most /��1+*4 # +76.� �:9<;(=�?�A�CB .

We assume that the initial graph � � ��T #�� � given to the robot is connected with �û� ÖÐT�Ö
vertices (if not, take the component containing the starting vertex). The starting and target vertices

are denoted l #32 sÝT respectively. At the start of the ¸ th iteration of
� �

, let Q
- 4 � denote the robot’s

location and � - �É��T #�� -¶� denote its current information about the environment. � - is obtained

from � by removing all edges incident on vertices that have been found to be blocked. Initially

Q
MY�Äl and � � �í� . Let ,�- denote the shortest path in � - from Q
- 4 � to 2 that the robot decides

to follow. If ¸ is not the final iteration, let +@- be the vertex found to be blocked by the robot while

following ,Û- . � - 6 � is obtained from � - by removing edges incident on +7- . Let + 4- and + 6- denote

respectively the vertices preceding and following +$- on ,�- . See Figure 12. Let Q
- be the starting

vertex for the next iteration. Clearly Q�- either is or precedes + 4- in ,Ô- and the subpath of ,Û- between

Q*- and + 4- exists in � - 6 � . Also, the subpath of ,Û- from + 6- to 2 exists in � - 6 � .
Let /0��Ç # Q>� � denote the shortest distance between vertices Ç and Q in graph � . If Ç and Q are

not connected then /���Ç # Q>� � �   .

Let Q
M # Q �@# hghgh # Q�
 be a run of the method.This captures a run up to ties in shortest viable paths.

If the robot reaches 2 then QL
�� 2 . The total distance traveled by the robot is:

g �



-�� � /0��Q5- 4 �@# Q*-¶�

� 9

3.3.2 Telescoping

Lemma 1 g×Þu�·Ü�� 
 4 �-�� � /��1+ 4- # + 6- � � 9};>=
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Proof: Since Q
- lies on the shortest path ,.- from Q
- 4 � to 2 in � - , by the principle of optimality:

g��



-�� � /0��Q*- 4 �@# Q*-¶�

� 9 �



-�� � �^/0��Q5- 4 �$#32 �

� 9 ? /���Q*- #32 � � 9 �

� /���Q
M #32 � � = ? /0��Q�
 #32 � ��� Ü

 4 �

-�� � �^/���Q*- #32 �

� 9<;(= ? /���Q*- #32 � � 9 �

Þu�·Ü

 4 �

-�� � �^/0��Q*- #32 �

� 9<;(= ? /���Q*- #32 � � 9 �jh
This formula has the following intuitive explanation: the robot optimistically thinks that unde-

tected vertices are unblocked. When the robot gets to QZ- and detects a blockage, it is set back in the

distance it thinks it is from 2 , by the amount �^/���Q�- #32 � �:9<;(=�? /���Q*- #32 � �:9 � . The sum of these setbacks,

plus the initial optimistic distance to 2 , equals the total distance traveled by the robot.

By the triangle inequality,

/0��Q5- #32 � � 9};>= Þì/0��Q*- # + 4- � � 9<;>= Ü\/0�1+ 4- # + 6- � � 9<;(= Ü /��1+ 6- #32 � � 9<;(= h (1)

By the principle of optimality, the subpath of , - from Q - to + 4- in � - has length /0��Q - # + 4- � �:9 , the

subpath of ,Û- from + 4- to + 6- has length /��1+ 4- # + 6- � � 9 �±� , and the subpath of ,.- from + 6- to 2 in � -
has length /��1+ 6- #32 � ��9 . Hence,

/0��Q*- #32 � �:9 � /���Q*- # + 4- � ��9 Üu�yÜ\/��1+ 6- #32 � ��9 h (2)

Observe that the first and third of these subpaths exist in � - 6 � . Only the path of length 2 through

+ - between + 4- and + 6- is no longer viable in � - 6 � . Therefore, /0��Q - # + 4- � �:9 � /���Q - # + 4- � �:9<;(= and

/��1+ 6- #32 � � 9 � /��1+ 6- #32 � � 9};>= . Plugging these equations, inequality 1 and equation 2 into the bound

for g above yields the lemma.

In words, the amount of the setback when at Q�- can’t be more than the revised distance /��1+ 4- # + 6- � � 9<;(=g?
� since the robot could splice in that path to replace the blocked + 4- # + - # + 6- portion of , - . Notice that

/��1+ 4- # + 6- � � 9};>= j   because the following pairs are all in the same connected component in � - 6 � :
Q - and + 4- ; Q - and 2 ; + 6- and 2 .
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3.3.3 Time Reversal and Weighted Edges

Define the following function:

CYCLE-WEIGHT �c� # Ân� . Input: a tree � �e��T # S�� and an ordered list ÂÅ�û�"VG
 # V�
 4 � # hghgh # V � )
of distinct edges from the complete graph on T such that Â��\SI��� . Define the weight W�-
of edge V@-·sØÂ to be the length of a shortest cycle that contains V*- in the graph �®-Y�Á��T # S��
�"V�
 # V�
 4 � # hghgh # Vg-{)5� .
Output: � 
-�� � W¦- .

We next show that � 
 4 �-�� � /0�1+ 4- # + 6- � �:9<;(= Þ CYCLE-WEIGHT �c� # Ân� for a suitably constructed

tree � and ÂÕ� �"V@-Ô�e�1+ 4- # +j-�����d	Þ ¸�Þt� ? d5) .
The basic idea relating the edge weights in CYCLE-WEIGHT to the /0�1+ 4- # + 6- � � 9};>= values can

be understood by considering a special case. Suppose � 
 is connected except for the isolated

vertices + �7# + � # hghgh # +P
 4 � . Reverse the time perspective so that the robot motion adds edges, first the

edges incident on +@
 4 � , then the edges incident on +F
 4 � , and so on. Pick � to be a spanning tree of

the graph ��T #�� 
������1+ �@# + 6 � � # �1+ � # + 6� � # hghgh # �1+	
 4 � # + 6
 4 � �Æ)5� and Â to be V@-Ô�e�1+ 4- # +j-1���&dAÞ ¸:Þt� ? d .
Then W¦- ù �NÜ·/��1+ 4- # + 6- � � 9<;(= because any cycle containing �1+ 4- # +j-�� in �N- must also contain �1+ - # + 6- � .

Unfortunately such a simple construction does not work in the general case as multiple con-

nected components may be formed when the edges incident to a blocked vertex are removed. To get

around this problem, we define a new sequence of graphs S�
 # SB
 4 � # hghgh # S � as follows:

1. SB
 is a spanning forest of � 
 .

2. For dAÞ ¸iÞ�� ? d , let g - be the connected component of � - 6 � containing + 6- and + 4- . Then

S�- is a spanning forest of � - containing the subgraph S.- 6 ��� ���1+j- # + 6- �Æ) .
The following lemma follows by induction directly from the definition of S - :

Lemma 2 For d�Þ ¸ÒÞt� and all vertices Ç and Q , S8- is acyclic; /���Ç # Q>�! 9 j   iff /���Ç # Q>� � 9 j   ;

and /0��Ç # Q(�  9 ù /���Ç # Q(� ��9 .
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Consider the cycle weight problem with � � S � and ÂÅ�û�"Vg-Ô�e�1+j- # + 4- ���&d	Þ ¸�Þ�� ? d5) . The

next lemma bounds the cost of our method by CYCLE-WEIGHT(T,S):

Lemma 3 Let � � # �
�
# hghgh # � 
 be a sequence of graphs as defined in section 3.3.1. Let � �ÄS �

and Â¼� �"V - �×�1+ 4- # + - ���qd�Þ ¸ÒÞt� ? d5) . Then � 
 4 �-�� � /0�1+ 4- # + 6- � �:9<;(= Þ CYCLE-WEIGHT( � , Â ).

Proof: According to Lemma 2, S.- 6 � and � - 6 � have the same connected components. The sub-

graph of S � induced by g - is connected since g - is a component of � - 6 � . The edges V G for

¸ j#" j � are contained in g - since + 4G # +�G # + 6G s g - for all ¸ j$" j � . Thus, the graph

obtained by contracting all vertices of g - in �N- 6 � is acyclic. Since �®- is obtained from �®- 6 � by

adding V@- , every cycle that contains V"-�� �1+ 4- # +j-�� in �N- must also contain �1+7- # + 6- � . Thus, Wy- is

equal to 2 plus the distance between + 4- and + 6- in the subgraph D ¨ of �N- induced by g - . But

D ¨ is also a subgraph of � - 6 � and hence it holds that W - ù ��Ü±/��1+ 4- # + 6- � ��9};>= . Consequently,

� 
 4 �-�� � /��1+ 4- # + 6- � ��9};>= Þ � 
 4 �-�� � W¦-Ô� CYCLE-WEIGHT �c� # Ân� .

3.3.4 An Extremal Problem on Graphs

We now bound CYCLE-WEIGHT �3��T #�� � # Ân� in terms of ÖÐT�Ö and ÖÐÂyÖ . Let �&% �Ø�"V@-!'3W¦- ù WA) be

the set of edges with weight at least W . Recall that the girth of a graph is the length of its shortest

cycle. Define (:��� # W�� (respectively (*)¦��� # Wa� ) to denote the maximum number of edges in a graph

(respectively planar graph) with � vertices and a girth of at least W . The following lemma relates

�+% and (:��� # Wa� .
Lemma 4 Ö � % Ö>Þ,(Ò��ÖÐT�Ö # Wa� ? ÖÐT�ÖgÜ d for all CYCLE-WEIGHT �3��T #�� � # Ân� and all W .

Proof: Consider the graph � % � ��T #�� � �-% � . We claim that � % has a girth of at least W . To

see this, assume that it does not and thus has a cycle g of length WA¨�jûW . Since ��T #�� � is a tree,

at least one edge of g must belong to �.% . Consider the edge V GÈs �+% �ôg with the smallest " .

Then � G contains g and thus W G ÞÌW ¨ jeW . On the other hand, W G ù W since V G s � % , which

is a contradiction. Thus, � % has a girth of at least W . This implies that (:��ÖÐT�Ö # Wa� ù Ö � � �&% Ö0�
Ö � Ö$Ü�Ö � % Ö
�ÌÖÐT�Ö ? d:Ü�Ö � % Ö and the lemma follows.
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Corollary 1 Ö �/% ÖZÞ,(0)i��ÖÐT�Ö # Wa� ? ÖÐTPÖoÜïd for all CYCLE-WEIGHT �3��T #�� � # Ân� such that ��T #�� � Ân�
is planar, and all W .

Proof: In the proof of lemma 4, � % is planar because it is a subgraph of planar graph ��T #�� �ÈÂn� .
Hence (Ò��ÖÐT�Ö # Wa� may be replaced by (1)i��ÖÐT�Ö # Wa� .

We now bound CYCLE-WEIGHT �3��T #�� � # Ân� by making use of bounds on (Ò��� # Wa� , a well

studied problem in extremal combinatorics. We first consider the case that the graph ��T #�� �ÈÂn� is

planar.

Lemma 5 ( ) ��� # W��¦Þ % Í% 4 � for all � and W .

Proof: Since the sum of the lengths of all faces of any planar graph D±�e��T #�� � is at most �&Ö � Ö and

every face has length at least W , the number of its faces can be at most �&Ö � Ö=ü"W . The bound of the

lemma follows from substituting this relationship in Euler’s formula.

Note that the weight of any edge in Â is at most ÖÐT·Ö . Define � % þ � % � �"V - s§Â2�¾WûÞuW - jt�5W	) .
Then, by corollary 1 and lemma 5 it holds that

CYCLE-WEIGHT �3��T #�� � # Â�� Þ
ÎÐÏ3Ñ�3 453

-�� � �

- 6 � Ö � � 9 þ � 9};>= Ö

Þ ����ÖÐÂyÖÐ�ÔÜ ÎÐÏ3Ñ�3 453

-��N% � - 6 � Ö � � 9 Ö

Þ ����ÖÐÂyÖÐ�ÔÜ ÎÐÏ3Ñ�3 453

-��N% � - 6 � �6(0)¦��ÖÐT�Ö # � - � ? ÖÐT�ÖgÜ d$�

Þ ����ÖÐÂyÖÐ�ÔÜ ÎÐÏ3Ñ�3 453

-��N% � - 6 � � �

- ÖÐT�Ö
� - ? �

? ÖÐT·Ö$ÜCd$�

Þ ����ÖÐÂyÖÐ�ÔÜ ÎÐÏ3Ñ�3 453

-��N% � - 6 � B�ÖÐT�Ö=ü*� -

� ����ÖÐT�Ö{��

��ÖÐT·ÖÐ�jh
The last inequality depends on planarity (so ÂÌ������ÖÐT�ÖÐ� ) and ÖÐT�Ö ù v . We now repeat the

analysis for general graphs. In this case, we use a recent result by Alon, Hoory and Linial that states

that any graph D��e��T #�� � with average degree /·��� has a girth of at most �o

� � 4 � ÖÐT�Ö [1], resulting

in the following lemma.

34



Lemma 6 (:��� # W��iÞu����� =7 Ü d$��ü*� for all � and W .

Proof: Consider any graph D �É��T #�� � with ÖÐT�ÖÔ� � , Ö � Ö ù ÖÐT·Ö�Üûd and a girth of at least W .

Then, its average degree is /P�Ø�&Ö � Ö=ü"�C� � and thus, according to the result by Alon, Hoory and

Linial, W Þì�o

� � 3 853 Ë Í 4 � � . Solving this inequality for Ö � Ö yields the lemma.

This lemma allows us to bound CYCLE-WEIGHT �3��T #�� � # Â�� for general graphs.

Lemma 7 WX��ÖÐT�Öé��ÖÐT�Ö =7 ? d$�3�����U��ÖÐT·Ö{��

��ÖÐT�ÖÐ� for ÖÐT·Ö ù Wû�ì�o

� � ÖÐT�Ö .

Proof: Let � �ÊÖÐT�Ö and remove the common factor ÖÐT·Ö from the statement of the lemma. The

resulting left hand side defines the function û8��W��n�CWY��� =7 ? d$� . Its derivative is

û ¨ ��W����C� =7 ��d ? �oôi�W � ? d
and its second derivative is

û ¨ ¨ ��Wa�:� �
=7 �oô � �
W % �ìf>h

Therefore û is convex (in the range W �ûf ). Hence 9;:��Òò<9>= Í@? % ?&ÎÐÏ3Ñ ý Í û8��W�� occurs at one of the

endpoints of the range, � or ��

� � � . We will show that û8��Wa�n���U�^��

����� for both endpoints.

At W � � , let 2 � ÎBA&ÍÍ � f as � �   . The Taylor series for VDC around f then gives

� =E ? d ��VGF H EE ? d � V C ? d � �_ôi�� Ü ]L�
� �
�5� � Ü h(��� 4 � �n���U� ��

���� �jh

Thus û8�����Û�±���^��

�:��� .
At W � ��

� � � , let 2 � ÎBA �ÎÐÏ3Ñ�Í , so

û8��W��
��

�n� � ��

�:�����

=F IKJ ý E � ? d �C�o

�����1V F H EF IKJ ý E ? d$�n� �o

�����1V F H ýF IKJ E ? d$�n� �_ôy�2 �1V C ? d$�jh
Again using the Taylor series we get L � % �

ÎÐÏ3Ñ�Í � �oôy�(��d:Ü C� Ü C ým Ü�hghghé�8� �oôy�(��dÒÜ h(��d$�3�����U��d$�jh
Using lemmata 7, 4 and 6, we have
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CYCLE-WEIGHT �3��T #�� � # Ân� �



-NM % 9NO ÎÐÏ3Ñ ý 3 4�3
W¦-&Ü 


-NM % 96P ÎÐÏ3Ñ ý 3 4�3
W¦-

Þ ÖÐÂ Ö{��

� � ÖÐT�ÖgÜ ÎÐÏ3Ñ�3 4Q3

-�� � ÎÐÏ3ÑZÎÐÏ3Ñ�3 453 �

- 6 � Ö � � 9 þ � 9};>= Ö

Þ ÖÐÂ Ö{��

� � ÖÐT�ÖgÜ ÎÐÏ3Ñ�3 4Q3

-�� � ÎÐÏ3ÑZÎÐÏ3Ñ�3 453 �

- 6 � Ö � � 9 Ö

Þ ÖÐÂ Ö{��

� � ÖÐT�ÖgÜ ÎÐÏ3Ñ�3 4Q3

-�� � ÎÐÏ3ÑZÎÐÏ3Ñ�3 453 �

- 6 � �6(Ò��ÖÐT�Ö # � - � ? ÖÐT·ÖgÜ d$�
� ÖÐÂ Ö{��

� � ÖÐT�ÖgÜ ÎÐÏ3Ñ�3 4Q3


-�� � ÎÐÏ3ÑZÎÐÏ3Ñ�3 453 �
- 6 � ��ÖÐT�Öé��ÖÐT�Ö =ý 9 ? d$��ü*� Ü d$�

� ÖÐÂ Ö{��

� � ÖÐT�ÖgÜ ÎÐÏ3Ñ�3 4Q3

-�� � ÎÐÏ3ÑZÎÐÏ3Ñ�3 453 ����ÖÐT�Ö{��

�aÖÐT�ÖÐ�� �U�3��ÖÐT�ÖgÜ�ÖÐÂyÖÐ�Z��

� � ÖÐT·ÖÐ�jh

We now state these results as a lemma.

Lemma 8 CYCLE-WEIGHT �3��T #�� � # Ân� � �U�3��ÖÐT�Ö�Ü ÖÐÂyÖÐ�Z��

�
� ÖÐT·ÖÐ� . If the graph ��T #�� �\Ân� is

planar, CYCLE-WEIGHT �3��T #�� � # Ân�Ò������ÖÐT�Ö{��

��ÖÐT·ÖÐ� .
3.3.5 Worst-Case Travel Bound

We are now ready to prove an upper bound on the worst-case travel distance of
� �

.

Theorem 4 For robot sensors as described in section 3.3.1,
� �

traverses �����	��

� � ��� edges on

connected graphs D �Ê��T #�� � . It traverses �U���	��

�n��� edges on connected planar graphs DÉ�
��T #�� � .

Proof: According to Lemmata 1 and 3,
� �

traverses at most ��������ÜR� 
 4 �-�� � /��1+ 4- # + 6- � � 9};>= Þ��U������Ü
CYCLE-WEIGHT �3��T #�� ¨ � # Â�� edges, where ÖÐÂ ÖSju� and ��T #�� ¨ � Ân� is a subgraph of D . According

to Lemma 8, it holds that CYCLE-WEIGHT �3��T #�� ¨L� # Ân�n���U�3���iÜÈÖÐÂyÖÐ�Z��

�
� ���8�±�����	��

� � ��� and,

if D and thus ��T #�� ¨ �ïÂn� are planar, CYCLE-WEIGHT �3��T #�� ¨ � # Ân�n�±�����	��

�n��� .
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3.4 Extensions

3.4.1 Long Range Sensors

The upper bounds of the previous sections extend to the case of long range sensors, rather than the

tactile sensors we have assumed so far. Many real robots are equipped with sonar, radar, or laser

sensors, so it is worthwhile to consider this case. In directions where the view is not blocked by

obstacles, these sensors can detect at moderate or even unlimited distances.

We now extend the upper bound to the case of long range sensors. We will not require that the

sensors be field-of-vision. They may see around corners, have gaps in their vision, etc. We only

require that if the robot attempts to move to vertex Q�sïO from a vertex adjacent to Q , then the robot

will detect that Q�sïO . This is a minimal property required for any functioning robot.

Theorem 5 Suppose that the robot follows the
� �

algorithm on graph � � ��T #�� � . Each time

the robot attempts to move to an adjacent vertex, it either moves successfully or it detects that

the vertex is blocked. After an attempted move (whether successful or not) the robot may detect

additional blocked vertices in � . Then the bounds of Theorem 4 apply.

Proof:

Our proof consists of two parts. Part 1 shows that our bounds apply if the robot detects blocked

vertices that are not on the planned path to the target. Part 2 shows that if more than one blocked

vertex on the planned path is detected, then there exists a different robot whose movements are the

same, but which does not detect more than one blocked vertex on the planned path.

We preface part 1 by stating the very simple ideas hidden in the technical statements. Blocked

vertices off the path do not affect the telescoping formula of Lemma 1, because, by definition, they

don’t affect the current path. When we reverse time and add the special edges VL
 # hghgh # V � , we add

extra edges (those connected to the off-path vertices). Our upper bound is on the length of a smallest

cycle containing V$- , so adding extra edges can only make this smaller. Therefore the upper bound,

which is computed in Lemma 8 as though there were no extra edges, is still valid.

Let O -R�ÄT denote the off-path vertices detected as blocked in iteration ¸ . The definitions of

Q - and � - remain the same as in section 3.3.1, but now � - 6 � is obtained from � - by removing all

edges incident on +7- or incident on any +�suO�- . Lemma 1 remains true in this setting because no
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vertices in Oa- are on the path ,Û- . In particular, the subpaths of ,.- from Q*- to + 4- and from + 6- to 2
still exist in � - 6 � . Intuitively, the blockages O	- contribute to the setback amount suffered by the

robot, but this setback is still bounded by the change in distance from + 4- to + 6- .

For the associated cycle weight problem, we define a sequence of forests Så
 # SB
 4 � # hghgh # S � . As

before, SB
 is a spanning forest of �O
 and S�- is a spanning forest of �U- containing the subgraph

S - 6 � � ���1+ - # + 6- �Æ) . It is easy to show that taking � �±S � and Â �e�"V - �í�1+ - # + 4- �+�0dYÞ ¸iÞ � ? d5)
satisfies Lemma 3. Therefore we’ve verified part 1.

Based on part 1, the bounds of Theorem 4 apply as long as the robot never detects more than

one blocked vertex on the current planned path to 2 . For the second part of the proof, whenever the

robot detects more than one such blocked vertex, categorize the detected vertices as follows:

off-path all vertices not on the current planned (shortest presumed unblocked) path to 2 .
first-path the nearest detected blocked vertex on the current planned path to 2 .
more-path all other detected blocked vertices on the current planned path to 2 .

Consider now a fictional robot whose movements have been identical to the real one, and which

until the present step has detected the same set of blocked vertices. Now, however, our fictional robot

only detects the off-path vertices and first-path vertex. It replans the shortest presumed unblocked

path to 2 , moves zero steps, and then considers detecting the more-path vertices (more-path with

respect to the original plan, not the new plan). It detects all of those which are off the newly

replanned path. It can also detect one vertex on the new path, if there is one. If more than one

of these are on the new path it re-categorizes them with respect to the new path and repeats the

procedure.

This procedure must terminate, because each replan strictly decreases the number of more-

path vertices. At termination, the fictional robot has performed precisely the same set of physical

movements as has the real robot, and it has detected the same set of blocked vertices. The fictional

robot has never detected more than one blocked vertex on its current planned path. The desired

bounds therefore apply to both it and the real robot.
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3.4.2 Blocked Edges

Another natural extension is when in addition to blocked vertices O �½T , some edges O�¨�� �
might also be blocked. This can be reduced to the vertex blocking case by adding a new vertex QTS
in the middle of every edge V�s � . Blocking of V then corresponds to blocking of vertex Q S in the

tranformed graph. We consider two cases.

First assume that the robot does not expend travel cost to detect an incident blocked edge. Then

if the robot encounters a blocked edge ��Ç # Q(� while going from Ç to Q , it can sense all other edges

emanating from Ç to check which ones are blocked at zero additional cost. Thus the robot will stop

in at most � iterations. To bound the travel cost, let �1+ 4- # + 6- � be the edge found blocked by the robot

in iteration ¸ . Lemma 1 remains true in this setting as the subpaths of ,:- from Q
- to + 4- and from + 6-
to 2 still exist in � - 6 � . For the associated cycle weight problem, � - 6 � is now obtained from � - by

removing all edges found blocked by the robot in iteration ¸ . Define the sequence S:
 # ST
 4 � # hghgh # S �
by taking SB
 a spanning forest of � 
 and S�- a spanning forest of � - containing the subgraph S.- 6 � .
Similar arguments show that �½� S �@# Âû�����1+ 4- # + 6- ���Òd§Þ ¸cÞ � ? d5) satisfies Lemma 3. By

arguments for long-range sensors above, the bounds in Theorem 4 also hold when the robot detects

a combination of blocked vertices and edges in each iteration.

Next we assume that the robot must traverse an edge in order to detect edge blockage. In this

case detecting blocked V in the original graph corresponds to traveling to vertex Q S in the transformed

graph. However the number of vertices in the transformed graph is ÖÐT�Ö^ÜÝÖ � Ö and theorem 4 gives an

����Ö � Ö{��

�	Ö � ÖÐ� upper bound for planar graphs and �U��Ö � Ö{��

�
� Ö � ÖÐ� upper bound for general graphs.

For planar graphs this is still �����	�o

����� since Ö � Ö¾���U����� . We next show a lower bound of R	��Ö � ÖÐ�
for
� �

on general graphs. Thus our bounds leave a ���^�o

� � Ö � ÖÐ���±���^��

�
� ��� gap.

Consider the graph � � �H�"l #32 ) � ú �VU #�� � as shown in Figure 13 where Ö úuÖÔ� Ö U Ö � Í � .
Assume that all edges � ¨B� � between ú and U are blocked without the knowledge of the robot.

Imagine a little twist towards the end of each edge VYs � ¨ , so the robot has to travel to the twist to

find out whether V is blocked. Now consider running
� �

with start vertex l and target vertex 2 . As

long as there exists a “presumed unblocked” edge ��¹ # b&�Ys � ¨ at the start of iteration ¸ , the robot

has a length � path Q - 4 � ? b ? 2 or a length B path Q - 4 � ? l ? ¹ ? b ? 2 available to it. Therefore
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Figure 13: Lower bound example for blocked edges.
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Figure 14: Example Graph for Lower Bound [29]

the robot will not take the length v path Q�- 4 � ? l ? Ç ? hghgh ? Q ? 2 until iteration Ö � ¨¶ÖgÜCd . In each

preceding iteration, the robot will travel on edge ��¹ # b&� till the twist near b , find it to be blocked and

then come back to ¹ . Therefore its travel cost is at least R	��Ö � ¨¶ÖÐ�n� R	��Ö � ÖÐ� steps on � .

3.5 þ � : Lower Bound on Planar Graphs

We review the construction of [46, 29], which employs the key idea of tricking the robot into travers-

ing the same long path back and forth many times. Second, we give an overview of how to transform

that example into a grid without losing the key idea. Third, we explain exactly how the grid is con-

structed. Last, we analyze the worst-case travel distance of
� �

on our grid graph, proving the lower

bound.

The analysis of [46, 29] proved that the worst-case travel distance of
� �

is RA�:Í®ÎÐÏ3Ñ�ÍÎÐÏ3Ñ�ÎÐÏ3ÑZÍ � steps

on vertex-blocked graphs �Ê�½��T #�� � . This lower bound is achieved with graphs of the structure
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shown in Figure 14. We now sketch the main idea of its construction, but with our own “rim-and-

spoke” terminology, in order to introduce our much more complex grid construction.

The graph of Figure 14 consists of a long horizontal path of length / � (where / is a integer

parameter), which we call the “rim”, and a set of “spokes” of varying lengths attached to the rim

at various vertices. The uppermost “tip” vertex of each spoke is blocked and connected to the goal

vertex by an edge. Note that the edges from the tips to the goal are physically unrealistic edges,

because they allow the robot to move from any tip to the goal in one step. The possible spoke

lengths are � ð-��NM / - for the nonnegative integers !�� fihghghj/ ? d . We refer to a spoke of length

� ð-��NM / - as a “class ! spoke”. Longer spokes are spaced farther apart from each other than short

spokes. In particular, the vertices where class ! spokes attach to the rim have distance / ð 6 � from

each other. Hence, if the robot is at a vertex where a class ! spoke attaches to the rim, then it is

shorter to go to the goal along the rim to the next class ! spoke, than it is to go via any class !cÜ d
spoke.

In particular, in Figure 14 there are three classes of spokes: 0,1 and 2. The robot does not know

that the shortest unblocked path to the goal from starting vertex Q(M is to traverse the rim to Q �XW , then

the long class 2 spoke, and reach the goal vertex. Instead, the robot tries to reach the goal through

the shortest presumed unblocked path via the short class 0 spoke at Q(% , then the class 0 spoke at Q m ,

and so on until it tries the class 0 spoke at the right end of the rim, Q �XW . From there, the shortest

presumed unblocked path to the goal is via the class 1 spoke at Q � i . Thus the robot is led to traverse

the rim from right to left, checking each class 1 spoke. Finally the robot traverses the rim a 3rd time,

reaching the goal via the class 2 spoke.

In general, the robot starts at vertex Q�M ; it traverses the rim from left to right, checking the class

0 spokes for a path to the goal vertex; then it returns along the rim from right to left, checking class

1 spokes for a path to the goal vertex, and so on. Each class forces the robot to traverse the rim

once. Thus the total travel distance is ù / � 6 � . A computation shows that there are �U�^/ � � vertices

in the graph, and hence the total travel distance is R	�yÍ®ÎÐÏ3ÑZÍÎÐÏ3Ñ�ÎÐÏ3ÑZÍ � .
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CHAPTER IV

GRID GRAPH LOCALIZATION

4.1 Introduction

To understand the ideas underlying our algorithm, let us assume a robot Y with neighbourhood

sensors moving on a grid graph D . The set of hypotheses � is a subset of traversable cells in D .

Place the robot at the origin of an infinite grid. For each grid cell KÅ� �X¸ # "�� , we can break the

set of hypotheses into two sets �X�LK®� and OP�LK®� . �X�LK � consists of all hypotheses ! sï� such that the

grid cell !XÜ K in the map D is traversable. OP�LK®� consists of all !§sP� for which it is blocked.

We make cell KP�e�X¸ # "Z� traversable or blocked according to whether Ö �X�LK �gÖ(� �� Ö �\Ö or not. The

set of all traversable cells reachable from the origin is called the majority-rule map. We denote it by

D EÒFHG (see Fig. 15). Note that in general the majority-rule map will have holes.

The first thing to note is that any deviation from the majority-rule map will half-localize the

robot. For if it finds an interior cell to be blocked, it will localize to Ö OP�LK �gÖNÞ �� Ö �uÖ . On the other

hand, if it finds a cell on the boundary ZND	EÒFHG to be traversable, it will half-localize to �X�LK � which

is again less than �� Ö �uÖ .
This has two interesting consequences. First, a half-localizing robot will never cross the bound-

ary of DaEÒFHG . Thus the execution of any half-localizing strategy Â will lie inside the majority-rule

map. Further, if the robot makes an observation h at a coordinate KCsCDXE:FHG , it will half-localize

unless h “agrees” with the majority-rule map. We call the observation consistent with the majority-

rule map at K the majority observation. The set of hypotheses !¼s¼� for which a robot located at

!YÜ¼K makes the majority observation is denoted by �±î;"q�LK � (see Fig. 15).

Now, let Â be a half-localizing strategy. Place the robot at a hypothesis !ÄsØ� for which

it travels the maximum distance. Call the path traced by the robot with respect to the origin , .

The only information gathered by the robot is at the observation points �LKNM # K �@# hghgh # K�E�� . If the

robot’s observation at coordinate K - differs from the majority-rule map, it will half-localize and

stop excecuting the strategy. Therefore, if the robot reaches K�E , it means that it has made the

42



[]\

^V_a`]bdcae6fKghbjilkdmlcjn;_>foeobdp
[]q
[sr
[]t
[]\

[@u
[]r

[ q []t
[ u

vw_]x�n>e6p	y{zXbdpT|De6fKeobdp }o~ \�B� q ^V_a`	� [ ��� }>� ur } v�}
Figure 15: Majority-rule map D	EÒFHG with a halving path

majority observation at all previous K&- . The set of hypotheses consistent with this are given by the

set � E-��NM � î;"q�LK�-H� . Since the robot has half-localized, we get the condition that Öa� E-��NM �±î;"q�LKZ-¶�gÖ>Þ
�� Ö �uÖ (see Fig. 15 for an example with À �CB ).

We call paths in the majority-rule map satisfying this condition Öa� E-��NM �±î;"q�LKZ-��gÖ(Þ �� Ö �\Ö “halv-

ing paths”. We have just shown that a half-localization strategy gives a halving path of cost WX��Â�� .
The converse is also true : a halving path , gives a strategy Â of cost Ö ,�Ö !

The strategy given by , consists of moving the robot along , and making observations at

�LKZM # K �@# hghgh # K�E�� . The above argument shows that the robot will half-localize if (i) it makes a mi-

nority observation at K>- , or (ii) if it makes majority observations at all Kq- , this being a consequence

of the halving condition.

However, the proof is still not complete. We are left with one more possibility : what if the

robot detects a blocked cell Kìs¼, ? In this case, the robot will not be able to execute its strategy

any further.

Here, the majority-rule map comes to our rescue again ! Since K sCDXE:F{G , finding it blocked

will give us a deviation from the majority-rule map. Thus, the robot will half-localize to a subset of

OP�LK®� which is less than �� Ö �\Ö . (If it were otherwise, applying the majority-rule would have made

cell K blocked).

The second part of the algorithm consists of computing near-optimal halving paths in the majority-

rule map. Let us try to find the exact algorithmic problem that captures this notion.
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First, we will complement the sets � î>"��LK®� so that the constraints on a halving path correspond

to union of sets rather than their intersections. Thus, we will instead require that Ö � - �±î;"q�LKZ-��$Ö is
at least �� Ö �\Ö .

Let Dc��T #�� � be the dual graph of the grid graph DAE:FHG . This problem can now be visualized as

follows : with each node QPs§T of Dc��T #�� � is associated a set Â0� (this we take to be �±î;"q��Q(� ). We

want to visit a set of vertices TY¨:ÃØT at minimum cost such that the union of their sets equals at

least half the universe � .

We will strengthen this condition and instead require that the union equals the whole universe

� .

Clearly this problem contains Set Cover as a special case. Given any instance ��� # �5Â � # Â � # hghgh # Â E )5�
of set cover make a star of size À (a star is a tree with a single root and À leaves). We associate set

Â - with the ¸ th leaf.

On the other hand, one finds that Steiner Tree is also a special case. Given graph Dc��T #�� � with

required vertices Y , we associate to each QÅsVY a unique set �$î � ) . The symbols �$î � ) � ñ;� are all

distinct. Then a tree covering the universe � � �$îG�¾)j� ñ]� will be a tree covering all required vertices

Y .

Now, it turns out that there is exactly one algorithmic problem which generalizes both Set Cover

and Steiner Tree : the Group Steiner problem.

The formulation is a little different : instead of sets attached to vertices, we make sets of vertices

(which we call “groups”) � � # � � # hghgh # � 3 � 3 where set � - consists of all vertices such that ! - s±Â � .
Covering all elements in � is then equivalent to covering at least one vertex from each group. This

gives the following definition :

(Rooted) Group Steiner Problem. Given a weighted graph D �í��T #�� � with � groups of ver-

tices � �@# � � # hghgh # �G
ô� T , find a minimum weight tree that contains at least one vertex from each

group. There is a distinguished vertex [ (the root vertex) that must be included in the tree.

The first polylogarithmic approximation algorithm for Group Steiner problem was given by

Garg, Konjevod and Ravi [19]. Their algorithm computes a Group Steiner tree of cost at most

���^�o

� � �	��

�Ò�&� in randomized polynomial time (see Section 2.2 and theorem 3).
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To compute halving paths, we need to cover half the groups, therefore we use a variant, the

�� -Group Steiner problem [16], for which we have a ���^��

� � ��� algorithm.

Applying this algorithm to the halving path problem on D�E:F{G with the root [ as the origin

KZM gives as an ���^�o

� � ��� -approximate half-localization algorithm. By repeatedly half-localizing at

most ��

�:� times, we get an ���^�o

� � �	��

�:�&� -approximate localization strategy.

We will now describe our algorithm in detail.

4.2 Preliminaries

During localization the robot makes observations from different positions in its environment (grid

graph D ) to make a larger and larger local map DA¨ , until there is exactly one hypothesis in � that is

consistent with D ¨ . We say that a hypothesis !ÕsÅ� is active if the robot’s local map is consistent

with it being located at ! . We denote the set of active hypotheses by �¼¨ .
We distinguish between the absolute (global) position of the robot in the grid graph D , and its

relative (local) position in D	¨ by using Greek letters for the latter (whenever possible). Let K0M denote

the initial position of the robot with respect to the local map D ¨ . We call K>M the origin, and denote

any other position in D	¨ by a pair of coordinates. Coordinate Kï�e��¹ # b&� denotes the cell in DX¨ lying

¹ units to the east and b units to the north of KqM . Negative values of ¹ # b denote west and south,

respectively. Thus a robot at coordinate K s�DA¨ will be located at position r M Ü�K in grid graph

D , where r0MXs D is its initial position. The robot can keep track of its local coordinates by taking

successive readings on the compass and odometer (we assume error-free motion and sensing during

localization). At any point of time, the robot is sure of its local coordinates but knows its global

position only up to cells in �Ý¨
ÜÕK .
Suppose the robot makes an observation when at coordinate KesûD ¨ . The outcome depends

on its starting location !usu� . If the robot started from hypothesis ! , the observation will be the

same as that by a robot located at !AÜÅK in D . We denote this observation by ���1! # K®� and call it the

opinion of ! about K . If !UÜìK is blocked, we set ���1! # K ����� . The hypothesis partition �Ý�LK®� is

a partition of the set of hypotheses according to the following equivalence relation: ! � � ! � if and

only if ���1! � # K®�������1! � # K � . �±î;"q�LK � denotes the largest size class of �Ù�LK � .
The “majority opinion” at K is the opinion common to the plurality of hypotheses !§s%� î>"��LK®� .
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Note it may occur that Ö � î>"��LK®�gÖJj �� Ö �\Ö . The lemmas that follow are valid in this case because

the robot immediately half-localizes. Since there are two choices, blocked or traversable, for each

of the four neighboring cells of K , an observation h can be written h s �"+ #32 ) ' � �D��) , and we let

Dc�LK # h
� denote the class of �Ù�LK � with opinion h at K .
4.3 The Majority-Rule Map

We now describe the majority-rule map DAE:F{G , a data structure central to our half-localization algo-

rithm.

Definition 1 The majority-rule map D E:FHG is a local map in which each cell is blocked or traversable

according to what the majority of hypotheses have to say about it (in case of a tie, we consider the

cell to be traversable). The majority-rule map also includes the hypothesis partitions for all local

coordinates.

In other words, a cell KÈs§D	E:FHG is blocked if and only if �����±î;"q�LK � # K®�Ò� + i.e., the opinion of

the majority hypotheses is blocked.

If D is a ]:ºÙÀ grid graph, the majority-rule map has size bounded by �1�*] ? d$� ºì�1�5À ? d$� ,
since the absolute values of ¹ - and b -coordinates for any hypothesis are at most �^] ? d$� and ��À ? d$� ,
respectively. Clearly, D	E:F{G requires space B
�Ô� (there are at most B
� cells, and we need to store

the partition for each cell) and can be computed in time �U���Ô�&� . Figure 16 shows the majority-

rule map for grid graph D and � �Á�"! �@# ! � # !&% # !('*) . The black region is unreachable by the

robot for any starting hypothesis. The hypothesis partition is constant within each of the regions

YaM # Y �@# Y � # Ya% # Y ' # Y Ú and Y m . Y Ú and Y m lie outside the grid graph for k different hypotheses

and are blocked. Thus the only traversable regions are YXM # Y �@# Y � # Ya% and Ya' , with � î>"��6YaM$�a�
�"! � # ! � # ! % # ! ' ) , �±î;"q�6Y � � �Ä�"! � # ! % # ! ' ) , � î;"q�6Y � � � �"! � # ! � # ! % ) , � î>"��6Y % �y� �"! % # ! ' ) and

� î>"��6Y '*�8� �"! �@# ! � ) .
4.4 Halving Paths

We now define the notion of a halving path in the majority-rule map:

Definition 2 A halving path is a (possibly self-intersecting) path �u� �LK M , K � , K � , hghgh # K E � in the

majority-rule map satisfying Ö � E-��NM �±î;"q�LKZ-��gÖ(Þ �� Ö �\Ö .
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Figure 16: (a) A half-localization problem with grid graph D and � � �"! �$# ! � # !&% # !('*) . (b) The
majority-rule map for HALF-LOCALIZE(G,H) with two halving paths �LKNM # K �@# K � � and �LKZM # K>%$� .

The next two lemmas show an essential equivalence between half-localization strategies and

halving paths.

Lemma 9 Let � be a halving path. There exists a strategy Â¦��� � for half-localizing the robot with

travel cost at most Ö ��Ö .
Proof. Let ��� �LK M # K � # K � # hghgh # K E � , where K - 6 � is a neighbor of K - in D EÒFHG . A description of

strategy Â¦��� � is as follows (see Algorithm 1): the robot traces path � from its initial position, taking

observation h - at each new coordinate K - . If the robot finds that the next coordinate is blocked, it

stops. We next show that this will half-localize the robot correctly.

After observation h - , the robot keeps only those hypotheses whose opinion at K - is h - . Thus, it

updates �§¨ (the set of active hypotheses) correctly. We show that Â¦���Ô� reduces the set of hypotheses

by half. If the robot finds that the cell at coordinate Kq- is blocked, it localizes to a set of size at most

ÖÐDc�LKZ- # �¾�gÖ�Þ �� Ö �uÖ (since KZ-	s D E:F{G ). If observation h*- is different from the majority opinion at

K�- , � ¨ ÃCD��LK�- # h5-1� , which has size at most �� Ö �\Ö . Thus the robot reaches K(E if and only if for each

K�- # f Þ ¸cÞÌÀ ? d , h5- is the majority opinion at K(- . Now there are two cases: if h¾E is different

from the majority opinion, the robot half-localizes; otherwise � ¨ ��� E-��NM � î;"q�LK�-¶� which is again

at most �� Ö �\Ö (since � is a halving path)

In Figure 16, the halving path � � �×�LKZM # K �@# K � � satisfies ÖX� �-��NM � î>"��LK�-¶�gÖ¾�ÌÖ��"! � # !&%*)ZÖ(Þ �� Ö �\Ö .
The path �LK(M # KZ%$� is an optimal halving path, with Ö �±î;"q�LKqM"� � � î;"q�LKZ%$�gÖÛ� Ö��"! �$# ! � )ZÖnÞÊ�� Ö �\Ö .
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Data : Grid graph D , set of hypotheses � and a halving path �LK M # K � # hghgh # K E �is§D E:FHG .
Result : The robot half-localizes in at most À steps.
Initialize �È¨q�C�
for ¸Û� f to À ? d do

begin
Make observation h
- at coordinate K>-
Update �§¨(� � ¨ � Dc�<r�- # h5-¶� . Stop if Ö �§¨�Ö>Þ �� Ö �uÖ
Move to coordinate K - 6 �

end
end
Make observation h E at K E ; Update �§¨q� �§¨ � Dc�LK E # h E � . Stop.

Algorithm 1: Strategy Â¦���Ô�
For brevity we did not include intermediate uninformative cells in the description, assuming that the

robot uses any shortest path in the majority-rule map to go from K�- to K�- 6 � . The behavior of a robot

following strategy Â¦��� � � will be as follows. If it was placed at ! � , it will hit a wall at K � and stop

with �§¨��Ì�"! � ) . If it was placed at !q' , it will see a wall at K � , and stop with �È¨0�e�"!('*) . If it was

placed at either ! � or !&% , it will make majority observations at both K �@# K � and half-localize to the

set �"! � # !q%5) of hypotheses.

The next lemma shows that any half-localization strategy Â has an associated halving path with

length at most ëÄ��Ân� (compare this with localization, for which strategies are decision trees [15],

and hence hard to compute):

Lemma 10 Let Â be a strategy for half-localization. There exists a halving path �8��Ân� of length at

most ëÄ��Ân� , the cost of the strategy Â .

Proof. Consider a robot guided by Â that stops as soon as it half-localizes. Let �n��Ân�n�e�LK M # K � # K � # hghgh # K E �
be the maximum length path traced by the robot in its local map D ¨ for any starting position in � .

Let � - denote the set of active hypotheses just after the robot makes an observation at coordinate K - .
For f�Þ ¸�juÀ , Ö ��-�Ö>� �� Ö �uÖ , since otherwise the robot would have stopped at Kq- itself. Each coor-

dinate K - is unblocked for at least Ö � - Ö(� �� Ö �\Ö hypotheses, and hence �n��Ân� lies in the majority-rule

map DaE:F{G .
We claim that �·� � E-��NM � î;"q�LK - � is of size at most �� Ö �uÖ . Consider a robot initially located at

some !ts � . Guided by Â , the robot will follow path �n��Ân� and make the majority observation hZ-
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at all coordinates K(- (since � �ñ�±î;"q�LKZ-¶� ). But then ÖX� E-��NM � î;"q�LK�-¶�gÖ(� Ö ��EXÖ0Þ �� Ö �uÖ , and hence

�n��Ân� is a halving path.

4.5 Computing halving paths

Let � �� denote an optimal halving path for the set of hypotheses ��� �"! �@# ! � # hghgh # !f
�) . We approx-

imate the problem of computing an optimal halving path by reducing it to an instance ��  þ � of the

�� -Group Steiner problem.

The reduction is a restatement of the problem in terms of groups: we take T as the set of

traversable coordinates in the majority-rule map. The weight of edge �LK # K ¨ � is the length of the

shortest path joining cells K and K ¨ in DaE:FHG . Origin K>M is taken as the root vertex. We make �
groups, one for each hypothesis !�-¦sÝ� . Group �*- is the set of all coordinates K\sÕT such that !0-
does not share the majority opinion at K , i.e., !0- üsô�±î;"q�LK � . Thus a tree � covers �(¨ groups if and

only if �R¡ ñD¢ �±î;"q��¹®� has size � ? � ¨ . In particular, � covers at least half the groups if and only if

Ö �{£ ñD¢ �±î;"q�LK �gÖ(Þ �� Ö �uÖ . In particular, every halving path is a �� -Group Steiner tree:

Lemma 11 There exists an ���^�o

� � ��� -approximation algorithm for computing an optimal halving

path.

Proof. Let � be the tree output by algorithm õ (see Theorem 3 in section �Zh�� ) on instance ��  þ � .

Then, the weight of � is at most ���^��

� � ��� ú WX�c� � � , where � � is an optimal �� -Group Steiner tree.

Let � be the path of length at most � ú WX�c�a� traced by a depth-first search on � starting from the

origin. � is a halving path since Öl�R£ ñ¥¤ � î>"���¹N�gÖN�½Ö¦�R£ ñ¥¢ � î>"���¹N�gÖ�Þ �� Ö �uÖ . Since any optimal

halving path � �� covers half the groups, WX�c� � �ÒÞ Ö � �� Ö . Therefore Ö �nÖ¾�±���^��

� � ��� ú Ö � �� Ö
4.6 Strategy RHL

The overall strategy is as follows (see Algorithm � ). In each half-localize phase, the robot computes

a near-optimal halving path � , then traces � to reduce the set of (active) hypotheses by half. It

retraces � to move back to its initial position, and proceeds with the next phase. We now bound the

approximation factor and computation time of strategy RHL:
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Data : Grid graph D , the set of hypotheses �
Result : The robot localizes to its initial position !§sï�
while Ö �\Ö>�±d do

begin
Compute the majority-rule map D	E:FHG
Make instance �   þ � of �� -Group Steiner problem
Solve �0  þ � to compute a halving path � (lemma 11)
Half-localize by strategy Â¦��� � (lemma 10)
Move back to the starting location

end
end

Algorithm 2: Strategy RHL - Repeated Half Localization

Theorem 6 A robot guided by strategy RHL(Algorithm � ) correctly determines its initial position

!§sP� by traveling at most ���^��

� � �	�o

�Ò�&� ú ��, �X��D # �Ý� distance where ���ÌÖ �\Ö and � is the size

of D . Further, the computation time of the robot is polynomial in � .

Proof. Since the number of active hypotheses reduces by at least half after each phase, the robot

localizes in À Þ¨§���

��Ö �\Ö ©§��§���

�i�ª© phases. Let �·- denote the set of active hypotheses at the

start of the ¸ th phase. By lemma 11, the distance traveled by the robot in the ¸ th phase is at most

���^�o

� � ��� ú Ö � �� 9 Ö . By lemma 10, Ö � �� 9 ÖZÞ HALF-OPT( D , ��- ) Þ OPT( D , � ), where the last inequality

follows from the fact that any localization plan also reduces the set of hypotheses by half. Therefore,

the distance traveled by the robot in each phase is at most ���^��

� � ��� ú OPT( D , � ). Since there are

���^�o

�Ò�&� phases, the total worst-case travel distance is ���^��

� � �	��

�Ò�&� úOPT( D , � ). Since instance

�Ô� can be constructed in �U���Ô�&� time, the computation time is at most ���XöU���Ô�&� ú �o

�:��� where öU��� (a
polynomial) is the time taken by the approximation algorithm for �� -Group Steiner (see Section 2.2).

The above theorem shows the performance ratio for a robot with very weak sensors; the robot

can only “see” four neighboring cells. We note that all of the theorems of this section hold for robots

on grid graphs with other kinds of sensors such as range-finders or sonar. An interesting feature of

our strategy is that it is well-suited to handling the problem of accumulation of errors caused by

successive motion in the estimates of orientation, distance and velocity by the robot’s odometer.

This is because after each half-localize phase the robot always returns to the origin, which it can use

to recalibrate its sensors [15].
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CHAPTER V

INAPPROXIMABILITY

5.1 Introduction

We now show a R	�^�o

� � 4qp � lower bound for localization by a reduction from the hardness of Group

Steiner problem.

Recently, Halperin and Krauthgamer [21] showed that there is no R	�^�o

� � 4qp ��� algorithm for

Group Steiner problem unless
� ,ØÃ ������� � �������H� ` � ��! � Í � � . This was one of the first problems for

which polylogarithmic inapproximability was shown.

In this chapter we show that their construction can be used to derive a R	�^��

� � 4qp � lower bound

for the robot localization problem.

First we note the following fact : the gap instances constructed by Halperin and Krauthgamer

are rooted trees �X��T #�� � and the groups are the subsets of their leaves. Note that the edges of a tree

also have weights. An example instance is shown in Figure 5.1.

One can embed a weighted tree into a grid graph by making vertical corridors for edges and

horizontal corridors for connecting all siblings of a parent. The width of the horizontal corridors

can be kept small enough so that distances on the grid graph are within a constant factor of the

distances on the tree. Figure 5.1 shows how to construct a grid graph for a tree with height � and B
leaves.

«­¬�®¯®	°±>²�³ °­´±>²�³ °	µ
Figure 17: Inapproximability

Now we come to defining our localization problem. We will make � disjoint copies D �@# D � # hghgh # D6

of the grid graph embedding, one for each group � - in the tree. The robot will be located at the root
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of one of these copies and the localization task will consist of finding the index of the copy.

To complete the reduction, we add distinguishing signatures at the leaves of these copies : copy

D - contains signature ¸ at all leaves which belong to group ¸ . For the example in Figure 5.1, we make

two distinct copies D � and D � . Signature d (red) is placed on leaves d and k of D � and signature

� (green) is placed on leaves � and B of D � . We also add a dummy copy DAM with no signatures at

leaves.

Thus, there are � distinct signatures and once the robot reaches a leaf with a signature in its

component it finds the index of its copy.

Any localization plan for the robot consists of visiting a sequence of leaves ] �7# ] � # hghgh # ]_E and

reading the signatures at them. If the leaves do not cover a group � - , a robot located in the ¸ th copy

will not be able to distinguish it from the dummy copy DXM .
For the example in Figure 5.1, this translates to saying that a localization plan should visit at

least one red vertex and at least one green vertex. For if the robot just visits red vertices, it can never

know whether vertices � or B have a signature at them. Hence it cannot distinguish between D � and

the dummy D�M .
Thus any localization plan , visits at least one leaf from each group. The subtree consisting

of ] �g# ] � # hghgh # ]_E will then be a Group Steiner tree of cost at most �
�^,�� . The converse is also true :

given a Group Steiner tree, we can get a plan of twice that cost by doing a depth-first search.

This gives us a factor � reduction between Group Steiner problem on trees and robot localization.

Applying it to the gap instances of Halperin and Krauthgamer [21] leads to an RA�^��

� � 4qp ��� lower

bound.

5.2 Hardness of Group Steiner

A tree is said to be of arity / if each non-leaf vertex has exactly / children. A rooted tree has height

� if all of its leaves are at distance � from the root. As usual, the level of a vertex is its distance

from the root; the root itself is at level f and there are � Ü d levels.

Definition 3 [4] A hierarchically well-separated tree (HST) is defined to be a rooted, weighted tree

in which (i) all leaves are at the same distance from the root; and (ii) the weight of each edge is

exactly �¶ times the weight of its parent edge, where · ù d is any desired constant.
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To prove the lower bound, we use the recent result of Halperin et al. [21] which establishes

R	�^��

� � 4qp ��� hardness for Group Steiner problem on HSTs. The next theorem, extracted from their

proof, states their result in a detailed form suited to our purpose:

Theorem 7 [21] Let ¸ be any NP-complete language. Then there exist constant � M and an algo-

rithm õ that, given an instance � and a sufficiently large constant ø , produces in expected running

time ����Ö �aÖ ���H� ` �~��! � 3 ¹�3 � � an instance �Ò¨�� �c� # [ #lº � ( [ is also the root of � ) of the Group Steiner

problem such that:

1. For some À ÞÁÖ �aÖ ¥o» , � is a HST with height � �I�^��

�:À§�¦¼ , arity /�� À¾½ � ÎÐÏ3Ñ Eå� and

·ì� À ÎÐÏ3Ñ E . Further, each group �ts º is a subset of the leaves of � and there are �u�
À ½ �v� ÎÐÏ3Ñ Eå��¿$;>=�� groups.

2. If �tsÀ¸ , then there is a (rooted) tree �a¨®Ã � of weight �^��

��À§�!¼ covering all the groups.

3. If � üsÀ¸ , then every tree � ¨ Ã � covering all the groups has weight R	�3�^��

�:À§� % ¼ 6 � � .
5.3 Reduction from trees

The next theorem describes the reduction to an instance of the localization problem:

Theorem 8 Let ¸ be any NP-complete language. Then there exist constant �*M and an algorithm

õX¨ that, given an instance � and a sufficiently large constant ø , produces in expected running time

����Ö ��Ö ���H� ` �~��! � 3 ¹�3 � � an instance � ¨ ¨ � ��D # �Ý� of the robot localization problem on grid graphs such

that

1. For some À Þ Ö ��Ö ¥ » , D has
� �CÀ ½ �c� ÎÐÏ3Ñ Eå� ¿$;>= � cells and � has À ½ �v� ÎÐÏ3Ñ E:� ¿$;>= � hypotheses.

2. For some ÁÝ�CÀ¾½ �v� ÎÐÏ3Ñ E:� ¿$;(= � :
(a) If �tsÀ¸ , then there exists a localization plan with worst-case cost �U�NÁ ú �^��

��À§�Â¼q� .
(b) If � üsÀ¸ , every localization plan has cost R	�NÁ ú �^�o

��À§� % ¼ 6 � � .
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Proof. Let � ¨ �É�c�Y��T #�� � # [ #lº � be the instance of Group Steiner on HSTs obtained by running

algorithm õ on � (see Theorem 7 above). Let / # � and · denote the arity, height and weight

factor of HST � , and � denote the number of groups in º . D consists of �UÜûd (disjoint) copies

OaM # O �@# hghgh # O6
 of grid graph O , where O is an ‘embedding’ of HST � respecting the weights on

its edges.

The embedding O is best described inductively. Let OP��Q>� denote the embedding of the subtree

rooted at vertex Q�s � . Cell �a� at the southwest corner of each OP��Q(� corresponds to vertex Q . For a

leaf ] , OP�^]1� is a kUºÕ�j§���

�¦�ª©iÜt»¾� rectangle with a single traversable cell � � at its southwest corner

(Figure 18(b)). The reason for adding blocked space to � � will be clear later, when we use it to

add “signatures” to leaf ] . For a non-leaf vertex Q , OP��Q>� is formed by combining the embeddings

of the subtrees rooted at its / children Q �@# Q � # hghgh # Q � (see Figure 18(a)). OP��Q � � # OP��Q � � # hghgh # OP��Q � �
are positioned along the top edge of OP��Q>� separated by north-south walls of width d . There is an

east-west corridor V@W-� running along the bottom edge of OP��Q>� . Cell �j� 9 is connected to this corridor

by a north-south corridor �Ôl � 9 which corresponds to edge Q�Q - s � . We make the length of �Ôl � 9
proportional to the weight of Q�Q�- : if Q is at level ! , Ö �ÔlD� 9 Ö¾�ÃÁ ú �¶jÄ , where Á is a scaling factor to be

chosen later. Finally Oe� O���[�� where [ is the root of � .

Let îZð # + ð be the length and breadth of the grid required to embed the subtree rooted at a level

! vertex Qus � . To see that the tree “fits”, observe that OP��Q>� fits in an îqðPºÕ+jð rectangle where

îZðY�±/ ú î�ð 6 � Ü �^/ ? d$� and + ðY� + ð 6 � ÜÆÅ¶ Ä . Hence +7ðX�Ä�j§���

�i�ª©iÜì»¾��ÜVÁ ú � � 4 �¼ � ð �¶ ¿ , and by

induction one can show that î(ðA�CB ú / � 4 ð ? d .

ÇsÈBÉKÊ!Ë ÇsÈBÉoÌ¦Ë
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ÞKßáàÓß�âÂã6äåß6æoçoèêé¦ë	ì Û Ù�Ø
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Figure 18: (a) Block OP��Q>� . (b) A leaf block with signature.
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Let W ¡ ` denote the weight of path connecting ¹ # bïs � . Let ,�ý¥� be the unique path connecting

cells �dý and �Â� in O . We show that choosing Á � »*/ � ú · � makes O an embedding of � in the

following sense: for all vertices ¹ # b�s � , Á ú W ¡ ` Þ Ö , ¡ `(Ö¦Þ �>Á ú W ¡ ` . First observe that the

length of any north-south corridor �Ôl;� is now at least »*/ � while any east-west corridor is less than

B¾/ � . Therefore Ö VgW ¡ Ö®Þ Ö �Ôl¥��Ö for all Ç # Q¼s � . We charge the distances traveled along east-west

corridors to the north-south corridors immediately preceding it. First assume ¹ is the parent of b .
Then , ¡ ` consists of the north-south hallway �Ôl*` along with portion of VgW ¡ connecting � ¡ to �Ôl@` .
Clearly, Á ú W ¡ ` �½Ö �Ôl ` Ö ÞÄÖ , ¡ ` ÖNÞ Ö �Ôl ` Ö5ÜûÖ VgW ¡ ÖNÞû�>Á ú W ¡ ` . Next consider the case when ¹ # b
are siblings with common parent þ . , ¡ ` consists of north-south corridors �Ôl ¡ # �Ôl$` along with the

portion of V@W-ÿ connecting them. Hence, Á ú W ¡ ` ��Á ú ��W ¡ ÿ¦ÜìW+ÿ ` �a� Ö �Ôl ¡ Ö"Ü×Ö �Ôl ` Ö Þ Ö , ¡ ` ÖÔÞ
Ö �Ôl ¡ Ö7Ü Ö �Ôl$`ZÖ7Ü Ö VgW ÿ ÖZÞt�>Á ú W ¡ ÿ Ü Á ú W ÿ `�Þt�>Á ú W ¡ ` . For general ¹ # b , let � ÿá» � ¡ # � ÿ = # hghgh # � ÿ �5�0`
be be the cells corresponding to vertices of � , in the order they occur along path , ý¥� . By the

construction of O , we know that for each ¸ either (i) þ
- 6 � is a parent of þ"- or vice-versa, or (ii)

þ - # þ - 6 � are siblings. Therefore Á ú W.ÿ 9 ÿ 9<;(= ÞÄÖ ,0ÿ 9 ÿ 9<;(= Ö0Þ±�>Á ú W+ÿ 9 ÿ 9<;(= . Since Ö , ¡ ` Ö(� � Ö ,0ÿ 9 ÿ 9<;(= Ö ,
the length of ,1ýj� is within factor � of Á ú � W ÿ 9 ÿ 9<;(= � Á ú W ¡ ` .

Let � � # � � # hghgh # ��
 be the � groups in º . We make ��Ü¼d copies O M # O � # hghgh # O6
 of embedding O .

O - ’s are the same except for distinguishing ‘signatures’ at some leaf blocks. OcM ��O is the dummy

copy and contains no signatures. For ¸:�tf , O - is formed by adding signature l - (a binary encoding

of ¸ ) to every leaf block O��^]�� of O such that ].s ��- (Figure 18(b)). To add l"- , first cell � � is extended

to a north-south corridor along the left edge of OP�^]�� . Then a set of ��

�Ò� eastern “alcoves” encoding

¸ in binary are placed along the eastern edge: the " th alcove from the top is blocked if and only if

the " th bit in the binary form is f . A robot located at � � can read the value of ¸ by going north and

sensing the alcoves to its right for blockage.

Let ¹C�J� ú îZM ú + M . Grid graph D is a ��¹ Ü î>M$�aºC�3�1�UÜed$� ú + M Ü�� ? d$� rectangle formed

by connecting group blocks �$O�-{)@- as shown in Figure 19. O	M # O �@# O � # hghghÆO6
 are placed along the

right edge of D separated by east-west walls of width d . A north-south corridor
� Â of width d runs

alongside the left edge of D . The south-west cell of each block OX- is connected to this corridor by

an east-west corridor � ëÝ- of length ¹ . The set of hypotheses � equals �"!NM # ! �@# hghgh # !f
¾) where

!(- denotes the cell at the south-west corner of block O�- . Substituting values of � # � # / # · as given
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Figure 19: Grid graph D

by Theorem 7, we get Á�� »*/ � ú · � � À ½ �c� ÎÐÏ3Ñ Eå��¿$;>="� , ÖÐD�ÖÛ�½���^îZM@+ �M �&�A� À ½ �v� ÎÐÏ3Ñ E:��¿$;(="� and

Ö �uÖ(�×�ï� À�½ �v� ÎÐÏ3Ñ E:� ¿$;>= � , where À ÞØÖ ��Ö ¥o» . We complete the proof by showing that the optimal

localization plans for � ¨ ¨ �e��D # �Ý� in the ‘yes’ (�CsÀ¸ ) and ‘no’ (� üs�¸ ) cases differ by a factor of

R	�3�^��

�:À§� � ¼ 6 � � .
‘Yes’ case: Suppose �CsÀ¸ . By theorem 7, there exists a tree � ¨ Ã � of weight �^��

��À§� ¼ , which

covers all groups in º . As all groups ��sÙD consist of leaves of � , without loss of generality every

root to leaf path in � ¨ ends at a leaf of � . Let ]�M # ] �@# hghgh # ] C^4 � be the leaves of � ¨ in the order they

are visited by a depth-first search from the root. Consider the following plan: read the signatures at

leaf blocks OP�^]LM@� # OP�^] � � # hghgh # OP�^] C^4 � � in that order. As soon as a non-zero signature l
- » # ¸¶M��ûf is

read, localize to ! - » . Otherwise, localize to ! M .
To prove correctness, assume the robot was placed (without its knowledge) at hypothesis !Ô- » . If

¸ M �Ìf , the robot will read zero signatures at all leaf blocks and correctly localize to ! M . Suppose

¸¶M·�±f . Since � ¨ covers all groups, group �
- » contains at least one leaf vertex from �a¨ . The robot

will read signature l - » at the first such vertex in the sequence ] M # ] � # hghgh # ] C^4 � and localize to ! - » .
The total travel cost of the robot is Ö , � � » Ö�Ü � C^4 �-��NM Ö , � 9 � 9};>= ÖyÞ��>Á ú ��W!� � » Ü � C^4 �-��NM W � 9 � 9<;(= �	Þ

�>Á ú WX�c� ¨_�n���U�NÁ ú �^�o

��À§� ¼q� . We neglect the cost of reading signatures at ] - , as it is ��� 2 ú �o

�:�&�n�
���^/ � �o

�Ò�&�ÒÞ�Á .

‘No’ case: Suppose ��üs�¸ . Assume that we have found a localization plan with cost h(��g ú
�^��

�:À§� % ¼ 6 � � . The number of movements for the plan is no larger than the length of an east-west

hallway � ë - . Now assume the robot starts at cell ! M . Thus, it cannot visit a different east-west
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hallway and, as part of the localization, must determine that no leaf block in its group block has a

non-zero signature. Let OP�^]�M@� # OP�^] � � # hghgh # OP�^] C^4 � � be all the leaf blocks, in the order they are visited

by the robot. The collection of groups that these leaves cover must equal º , for otherwise the robot

could not distinguish between hypotheses !®M and !&- for the groups �
- not covered by them.

Let � ¨ be the Group Steiner tree formed by taking the union of paths connecting [ to ]HM and ]o-
to ] - 6 � for fÈÞ ¸�Þ 2 ? � . By Theorem 7, weight of � is R	�3�^��

�:À§� % ¼ 6 � � . Therefore, the cost of

the localization plan is at least Ö ,"� � » Ö"Ü � C^4 �M Ö , � 9 � 9};>= Ö ù Á ú ��W!� � » Ü � C^4 �-��NM W � 9 � 9};>= � ù Á ú WX�c� ¨ �Ò�
R	�NÁ ú �^��

��À§� % ¼ 6 � �
Corollary 2 For every fixed ÷���f , the robot localization problem cannot be approximated within

ratio ��

� � 4qp � on grid graphs of size
�

, unless
� ,ÌÃ � �R��� � ��� ���H� ` �~��! � Í � � .

Proof. Apply the algorithm in Theorem 8 with ø �e� ú � �p
? d$� . The logarithm of the size of grid

graph D is ��

� � �û�U�3�^��

��À§� ¼ 6 � � , where À ÞC� ¥ » . The optimum localization plans in the ‘yes’

and ‘no’ case differ by a factor of R	�3�^��

�:À§� � ¼ 6 � �8� R	�3�^��

� � � � 4qp �

Corollary 3 For every fixed ÷���f , the robot localization problem cannot be approximated within

ratio ��

� � 4qp � on polygons with
�

vertices, unless
� ,ÌÃ ������� � ��� ���H� ` �~��! � Í � � .

Proof. The grid graph D in Theorem 8 above can be viewed as a polygon , with at most
�

vertices.

Let !&¨- denote the center of the cell !�- in D . Consider the localization problem on , with hypothesis

set �§¨q� �"!(¨M # !&¨ � # hghgh # !(¨ 
 ) . The optimal localization plan in the ‘yes’ case has cost ���NÁ ú �^��

�nÀ§�Ó¼q� ,
as a robot with a range finder can only do better. However when � üs ¸ , a robot with a range

finder may read the signatures from a distance, and localize at lesser cost. To rule this out, put small

‘twists’ in polygon , just before every signature. Thus the robot cannot read the signatures at a

distance, and therefore will travel at least R	�NÁ ú �^�o

�nÀ§� % ¼ 6 � � distance as in Theorem 7 above. The

‘yes’ and ‘no’ cases differ by R	�3�^��

�:À§�¦¼ 6 � � and the bound follows by choosing ø �Ì� ú ��d ? �p �

5.4 Reduction from grid graphs

We note that any lower bound for Group Steiner on grid graphs can be extended to a similar lower

bound for localization on grid graphs. The main idea is the same as above: take a hard instance
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��D # [ #lº � of Group Steiner on grid graphs. Suppose D is an À ºc� grid graph, and there are ���ØÖ º Ö
groups. Make a map D�¨ that consists of � disjoint copies D �@# D � # hghgh # D6
 of D . Each copy D�- is

a scaled up (by a factor of Á ) version of D . Thus, each cell of D corresponds to a ÁCº Á block

in Da- . For each cell in group �
- s º , put a k�º §���

�i�ª© “signature” in the upper left corner of the

corresponding block of D	- . As before, choose the scaling factor large enough so that the distance

between signatures is much larger than their size. A good choice is Á � � . Initially, the robot is

placed at the center of block corresponding to [ in one of the DX- ’s.

In order to localize, the robot has to find the index of its component and, hence, must visit a

set of blocks that covers all of the groups. This path can be translated to a Group Steiner tree of

proportional cost (divided by Á ) in D (since Á is much larger than ��

�Ò� ). Conversely, we can convert

any Group Steiner tree in D into a path by doing depth-first search and then using that path in the

scaled grid Da¨ as a localization plan. It is easy to see that this extends the same hardness factor to

localization on grids.

Thus, it seems that further improvement (in either the lower bound or upper bound) in the

approximation factor of our algorithm can come only after progress on the Group Steiner problem

on grid graphs.

Note. Fig. 20 describes a version of the above reduction which is similar to that for trees, since

it gives a reduction from the Group Steiner problem on the dual graph
� ��D	� of D .

Let D Å be a copy of D scaled by Á . We will embed a stretched version (by a factor of Á ) of the

dual graph
� ��DA� in D Å .

For each vertex QCs � ��D	� , take the center cell �¥� of the corresponding Á�º Á block in D Å .

Connect these cells using unit length north-south and east-west corridors to represent the edges

in
� ��D	� . We assume that all other cells in D Å are blocked. Thus D Å represents a Á -stretched

embedding of
� ��DA� .

We now make � disjoint copies D �@# D � # hghgh # D6
 of D Å . For each vertex Q in group �
-¦s º , we

add a k·º §���

�i�ª© signature at the cell � units up the northern corridor at cell �>� (see Fig. 20). (If

there is no northern corridor at �j� , we connect the signature to �a� using a north-south corridor of

length � ).
We choose the scaling factor so that it allows us to fit a signature at every vertex cell �;� . A
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good choice is Á �e�.��

�i� . Initially, the robot is placed at the cell � � corresponding to [ in one of

the Da- ’s.

#�$ %'&)(

* *+

Figure 20: Inapproximability for grid graphs

In order to localize, the robot has to find the index of its component and, hence, must visit a set

of vertex cells �d� that cover all of the groups. This path in D Å can be translated to a Group Steiner

tree of proportional cost (divided by Á ) in
� ��D	� . Conversely, we can convert any Group Steiner

tree in
� ��DA� into a path by doing depth-first search and then using that path in the scaled grid D Å

as a localization plan. This extends the same hardness factor to localization on grids.
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CHAPTER VI

LOCALIZATION ON POLYGONS

We will now adapt our algorithm to polygonal environments. In this chapter, we will assume that

the map polygon has no holes.

As discussed in chapter 1, using visibility cell decompositions one can decompose the plane

into polygonal cells such that within each cell the majority observation is the same. The groups can

then be formed by including cells � into groups ��- such that hypotheses !q- üs �±î;"q���Ô� does not

belong to the majority opinion at � .

Later, we will introduce new ideas which bypass cell decompositions and instead directly com-

pute the group boundaries ,·- . The crucial idea is that they will be polygons inside the majority-rule

map containing the origin. To half-localize, the robot will need to visit (or cross) the boundaries of

at least half the ,·- ’s.

6.1 Introduction

In chapter B , we have described our algorithm with respect to the grid graph model. We now show

how we can adapt it to the polygonal model.

We focus here on the case of simple polygons; in Section 7.1 we discuss the extension to the

case of polygons with holes. The outline of the algorithm is the same: the robot works in phases;

in each phase reducing the set of hypotheses by half. However, since the robot moves continuously,

local coordinates K lie in the Euclidean plane
ò �

(for grid graphs, they were points on the integral

lattice). As before, let opinion ���1! # K®� denote the observation i.e., the visibility polygon observed

by a robot at position !·Ü�K±sC, . If the point !�Ü�K lies outside , , we take ���1! # K®�Y� � . For

a coordinate K�s ò �
, the hypothesis partition �Ý�LK®� partitions hypotheses in � according to their

opinions ���1! # K®� . The majority-rule map denotes the subset of coordinates that lie inside , for the

majority of hypotheses. In Section 6.2, we will show that the majority-rule map is a polygon with

holes of total size ���1� � � � � and that this bound is tight in the worst case. We let , EÒFHG denote the

connected component of the majority-rule map that contains the origin KNM , and often refer to ,.E:FHG
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simply as the majority-rule map, since ,8E:F{G is the component of interest to us.

In the polygonal model, a halving path � is a curve in the majority-rule map with one endpoint

at the origin K(M such that ÖX�R¡ ñ¥¤ � î;"q��¹N�gÖ Þ �� Ö �uÖ . (Parameter ¹ varies over the continuum of

coordinates along the path � .) It is straightforward to extend Lemmas 9 and 10 to the case of

polygons with this new definition. A shortest path ,	î 2 !��LK # K ¨ � between any two coordinates K # K ¨ s
, E:FHG is piecewise linear with bend points at vertices (this includes the vertices of holes) of , E:F{G .
Hence, we can specify a halving path by a sequence �LKqM # K �@# hghgh # KZEa� where ÖX� E-��NM �±î;"q�LKZ-¶�gÖiÞ
�� Ö �uÖ , and a shortest path ,Aî 2 !Ô�LK - # K - 6 � � is used to go from K - to K - 6 � .

Since ,�EÒFHG consists of an infinite number of points, one cannot compute an approximation

to the optimal halving path � �� by reducing it to a �� -Group Steiner problem on a finite number

of coordinates, as in Section 4.5 for the case of grids. Instead, we discretize the problem to a

finite, polynomial-size set of coordinates � � � , E:F{G such that there exists a halving path ���
�LKZM # K �@# hghgh # K�E�� such that KZ-nsÝ�	� , and the length of � is at most � times the length of an optimal

halving path. To do so, we first calculate the boundaries of groups � - (i.e., coordinates K such that

!(-ôüs �±î;"q�LK � ), which are polygons ,·- ��,ÔEÒFHG with holes (see section 6.3). Hence the robot

just needs to visit the boundary of at least half of the , - ’s. In Section 6.4, we describe a way to

select a special set of discrete points on the boundary of the ,ï- ’s so that a halving path of length

at most � times that of optimal passes through these points. Next, we construct the instance � ) þ �
of the �� -Group Steiner problem on the finite set of coordinates ��� , as we did for the case of grid

graphs in Section 6.5. Finally, in Section 6.6 we combine all of the ingredients above to get an

���^�o

� � �	��

�Ò�&� -approximation algorithm for the polygonal model.

6.2 Computing the majority-rule map

The boundary of the majority-rule map can be constructed as follows. Let , - denote a translation-

congruent copy of the map polygon with hypothesis !N- at the origin K(M . Clearly, coordinate K is

traversable for hypothesis ! - if and only if it lies inside polygon , - . The overlay of all of these

polygons, �aQ>Vg[
]^î�b®�^, �@# , � # hghgh # ,T
¾� , partitions the plane into polygonal regions, known as cells.

Each cell g either lies completely inside copy , - or lies completely outside it. The majority-

rule map is formed by the union of all cells g that lie inside , for the majority of hypotheses
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(equivalently, for the majority of ,8- ’s). By this construction, the majority-rule map is a union of

polygons (possibly with holes). For computing a half-localization strategy, the robot needs to plan

only over the connected component containing the origin. The next lemma gives a tight bound on

its worst-case complexity:

Lemma 12 Let m �g# m � # hghgh # m�
 be � polygons (possibly with holes), each containing the origin

and each with ������� vertices. Then, the face, m E:F{G , containing the origin in the majority-rule map

they define has ���1� � � � � vertices and can be constructed in time ���1� � � � � . Furthermore, the upper

bound of �U�1� � � � � on the number of vertices is tight, even if the m - ’s are translates of the same

simple polygon.

Proof. The upper bound is immediate, since the set of �U�1�Z��� line segments that constitute the edges

of the � polygons define an arrangement having at most ���1� � � � � vertices in total. The lower bound

is illustrated in Figure 21. The time to construct m	E:F{G follows from the fact that an arrangement of

À segments in the plane can be constructed in time ����À � � , and, within this same time bound, the

faces of the majority-rule map can be identified, after which the face containing the origin can be

constructed by breadth-first search in the dual graph of the arrangement. In fact, using the algorithm

of Balaban [3], the arrangement can be constructed in output-sensitive time.

The above lemma also bounds the complexity of ,nE:FHG and shows that it is tight, since it arises

from the majority-rule map associated with translates of , .

6.3 Computing the group boundaries

6.3.1 Introduction

To compute the groups, we instead construct their complements -�Z- , where -�*- is the maximal region

containing the origin such that a robot at its boundary will distinguish ! - from at least half the

hypotheses.

It is instructive to first consider the case when one has just two hypotheses ! � and ! � . Group -� �
will then be the region at whose boundary the robot can distinguish ! � from ! � .

What if there are � hypotheses instead of � ? It turns out that one can use the construction for

two hypotheses as a building block for computing the groups -�Z- in the general case.
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Figure 21: An example with complexity R	�1� � � � � of the majority-rule map obtained by overlaying
translates of copies of a simple polygon. The solid dots denote the set of hypotheses.

This can be seen as follows. Let us define polygon ,P- G to be the maximal connected region

containing the origin such that a robot will distinguish !N- from !�G by visiting its boundary. There

are �®�1� ? d$� such polygons, one for each pair �"!0- # !�G*) where "��� ¸ . One can construct them in the

same way as we construct , � � for two hypotheses ! � and ! � .
Now let us construct the group -�¾- . Take the � ? d polygons ,·- G where "·sÙ��d # � # hghgh # ¸ ? d # ¸0Ü

d # hghgh # ��) . A robot will distinguish !q- from at least 
 � hypotheses if it crosses the boundary of at

least half the ,U- G ’s. Now shoot a ray in any given direction. The line segment inside -�Z- will extend

from the origin to the 
 � th intersection point of the ray with ,�- G ’s. By rotating the ray around the

origin, group-boundary -�¾- can be computed as the majority-rule map of polygons �I,P- G*) G@^�0- .
Following the definition in Section 4.5, the group ��- is defined to be the set of all coordinates

KÈs ,ÔEÒFHG such that !q- does not have the majority opinion at K , i.e., !0-^üs%� î>"��LK®� . The complement

-�*- of �*- is the set of points -�¾-Ô� ,ÔEÒFHG@_��5- not in �*- .
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6.3.2 Case �·� �
Consider a hypothesis !ZG ( !�G ��Ä!(- ), and let S�- G denote the face in �aQ>Vg[
]^î�b®�^,Û- # ,NG"� that contains

the origin, K M (see Figure 22). First, we note that:

Lemma 13 The face S.-ÐG has at most �5� edges.

Proof. Consider an edge V of S.-ÐG . If V is a subsegment of both ,.- and ,NG , then one of its endpoints

must be a vertex Q of ,Û- or ,NG , and we can “charge” V to that vertex. If V is a subsegment of ,�- but

not of ,NG , then it forms a chord of , G and can be charged off to the vertex of ,ÔG it occludes. Since

each vertex is charged at most once, S.- G has at most �5� edges.

Each of the ������� edges V0��Z�SÛ- G is of one of three types: (i) V lies on the boundary of ,n- , but

not of ,NG ; (ii). V lies on the boundary of ,ÔG , but not of ,Û- ; or, (iii). V lies on the boundary of both ,8-
and ,NG . A robot can distinguish between !�- and !�G if and only if the robot sees an edge V of type (i)

or (ii).

h1

h2

γ0

F12

Figure 22: Top: A polygon , with two hypotheses ! � and ! � . Bottom: The overlap of , � and , � ,
with the face S � � containing K>M highlighted.
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Figure 23: Left: The visibility polygon, TA,U�1V"� , is shown for an edge V of type (i), and the corre-
sponding chord (window) WY�1V"� is shown highlighted. Right: The arrangement of all windows WX�1V5�
for edges of type (i) or (ii) is shown, and the face, D � � , containing K M is shaded.

If K>M sees any edge of type (i) or type (ii), then the robot can distinguish between ! - and !�G
without moving from the origin K M . Thus, assume that all edges of S -ÐG that are visible from K M are

of type (iii). Let V be an edge of S.- G of type (i) or of type (ii). The set T	,·�1V"� of points of Sn-ÐG that

are visible to some point of V is a simple polygon (the visibility polygon of V ) within S - G , which

we know, by assumption, does not include point K�M . There is a chord of SÛ- G , WX�1V"� , that lies on the

boundary of T�,U�1V"� , separating V from K M . The line segment WY�1V"� is often called a window (see

Figure 23).

Consider now the arrangement of the �U����� boundary edges of S�- G together with the set of all

������� windows WY�1V"� for edges V of type (i) or (ii). Let DA- G denote the face in this arrangement that

contains the origin K&M . Since Da- G is a face in an arrangement of chords of a simple polygon, it is

a simple polygon having linear ( ������� ) complexity. (No chord can contribute more than once to

the face.) Note too that D�- G%�ûS�- G �×,�- and that by maximality the elements of the boundary of

D - G are of two types: (a) polygonal chains of type (iii) edges, which is on the common boundary,

Z�,Ô-���Zq,NG , of ,�- and ,NG , and (b) window-chains consisting of convex polygonal chains composed

of subsegments of windows. A window-chain of D�-ÐG separates K(M from one or more edges of S.- G of

type (i) or type (ii). The next lemma follows from the definition of DX- G :

Lemma 14 A robot can distinguish between hypothesis !N- and hypothesis !�G if and only if it visits

a window-chain on the boundary, ZND	- G , of D - G .

65



Proof. Each window WY�1V"� cuts off the part of polygon TA,U�1V5� from which V of type �X¸{� or �X¸�¸{� is

visible. In other words, as soon as the robot crosses WY�1V"� , it can use its sensors to check whether V
exists or not, and hence will be able to distinguish !N- from !�G . Since D - G is what remains after all

visibility polygons TA,U�1V5� of edges of type (i) or (ii) have been chopped off, it satisfies the lemma

(see Figure 23).

In other words, D�-ÐG is the connected component of coordinates including the origin KNM for which

���1!(- # K �n�����1!�G # K®� i.e., the opinions of !q- and !�G are the same. Next we use the D	-ÐG ’s to construct

the complement, -�
- , of group �*- .
If the robot had tactile sensors, S � � will form our group -� � . However, laser sensors allow it to

see an edge of type (i) before actually reaching it and hence the group will be a smaller subset of

S � � .
6.3.3 Case �ï�t�
Let ,�- be the face containing K(M in the majority-rule map of the � ? d polygons DA-ÐG , for " �� ¸ .
Thus, the boundary of , - consists of polygonal chains on the boundary of , - and polygonal chains

comprising of segments and subsegments of the window-chains that appear on the boundaries of

the polygons D - G . We refer to Z�, � _+Zq, - as the window-boundary of , - .
It is clear that ,U- Ã×,ÔEÒFHG , since each point of ,·- lies within a majority of the polygons D	- G ,

and therefore of the polygons , G .
Lemma 15 ,U- is a connected component of the set -��- . A robot initially located at hypothesis !0-
will half-localize if and only if it travels to the window-boundary of , - .
Proof. We first show that , - �û, E:FHG . Let � denote the set of � ? d indices `éd.hghghj�bac_U¸ . Consider

any coordinate K\sd,U- . Let ��¨�� � denote the set of indices " such that Kus DA- G . Any coordinate

inside D - G clearly belongs to both polygons , - and , G . Hence, K is inside polygon , for at least

Ö �¾¨¶Ö
Ü×d ù § 
 4 �� © Ü×d ù § 
 � © hypotheses. Thus, ,·- �í,�E:F{G . Further, the opinions ���1!�- # K®�X����1! G # K®� are the same for any "§sô��¨ . Thus, the majority opinion at K is the same as ���1! - # K®� and

hence !&-8s � î>"��LK®� .
For the second statement, note that if the robot crosses the boundary of , - , it will lie outside

at least half of the � ? d sets D�- �@# D - � # hghgh # D - 
 and hence by making an observation will be able
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to distinguish !q- from at least § 
 4 �� © hypotheses. In the worst case (if the robot is initially at

!(- ), we will be left with at most � ? § 
 4 �� ©tÞ § 
 � © hypotheses, and hence the robot will half-

localize. (Note that the set of hypotheses remaining can be one more than that required for half-

localization; however, the number of iterations remains �U�^��

�Ò�&� , and hence the approximation

factor is unchanged.)

For the converse, let , be a half-localization path which does not cross the window-boundary

of ,U- . Then a robot following , will remain inside at least half of the � ? d sets DY- �@# Da- � # hghgh # D - 
 .

Let Â be the set of indices "�se`éd*h�hÐ�bac_���¸3) such that , does not cross the window-boundary of D - G .
We have that ÖÐÂyÖ ù § 
 4 �� © . By lemma 14, a robot initially located at !N- will be unable to distinguish

! - from any hypothesis in Â . This will leave the robot with a set of at least ÖÐÂyÖ�Ü§d ù § 
 � © hypotheses

if it reaches the end of path , . This leads to a contradiction, as , is a half-localization path

Lemma 16 , - has �����Ô� 'ÆË�% ø �����Z�o

� � Ë�% �&� edges, where ø � ú � denotes the inverse Ackermann func-

tion.

Proof. First note that the boundary of ,�- that is not part of the window-boundary has complexity

������� , since it is boundary shared with ,8- . Thus, it suffices to bound the complexity of the window-

boundary of ,U- .
Each of the �����Ô�&� edges of the window-chains of the regions D�- G can be mapped to a (finite

length) curve in a “polar geodesic” coordinate system defined by the family of all shortest (geodesic)

paths within ,�- from K>M to points 2 s Zq,Û- on the boundary. Then, we appeal to the fact that the � -
level in an arrangement of a set of À pseudo-segments has complexity �U��À � � Ë�% ø ��À�ü*�&�Z��

� � Ë�% �&� [9].

Since we have À �������Ô�&� , the total complexity of ,�- is �U���Ô� 'ÆË�% ø �����Z�o

� � Ë�% �&� .
(We suspect that the true complexity of ,�- is �����Ô� 'ÆË�% ø �����3� , which is the complexity of the

� -level in an arrangement of (straight) line segments.)

Each region ,U-��f-�*- shares one or more polygonal chains on its window-boundary with the

boundary of set �
- . In order to half-localize, the robot needs to visit at least half of the groups

�*- . Thus, the robot needs to visit at least half of the window-boundaries of the , - ’s (i.e., at least

half of the sets Z4, - �¾Z�� - ), each of which consists of �U���Ô� 'ÆË�% ø �����Z��

� � Ë�% �&� edges that lie within
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the majority map ,ÛE:F{G . Our goal is to find a path within ,.E:F{G that visits at least half of the sets

Z�,�-T� Z �5- .
This makes us compute the majority-rule map � and the � group boundaries -�>- . A half-

localization plan starts from the origin and visits 
 � group boundaries inside � . However, here

we are faced with another problem. The number of points inside the region � is infinite, whereas

we need a finite set of coordinates for the Group Steiner problem.

6.4 The Set of Coordinates g �
6.4.1 Basic Geometric Ideas

In order to solve our half-localization problem, we define a discrete set �U� of points on the edges

of Z�, - � Z � - , and then solve an instance of the �� -Group Steiner problem on the corresponding point

set.

To achieve this, we discretize the problem and choose a set � � of representative points. As

expected, these special points will lie along the edges of the group boundaries. The new halving

paths will be obtained by shifting the first point where the robot visits a group boundary to the

nearest special point on the same crossing edge.

The crucial idea is this : at distance [ from the origin, it is enough to have a grid resolution of
�
 . This is because we will shift the halving path at most � times once for each hypothesis and the

total change will then be at most ��[æü*�&� ú �¼�½����[�� , which is within a constant factor of the total

path length..

The set of points is picked as follows. First find the minimum distance [ � such that at least half

the group boundaries are within distance [ � . Any halving path will have cost at least [ � . Further, it

will be at most �
� ú [ � as a robot can visit each group boundary at cost �5[ � and return to the origin.

This gives us a lower and upper bound on the size of the halving path. To complete the con-

struction, we break this interval into powers of � and for each power � - [ � we construct a square grid

of that size with ��º � cells. Thus we have ��

�i� such grids.

For each edge on a group boundary, we add all points at which it intersects the ��

�:� grids into

the special point set �X� . This gives us a total of ���1�¦�o

�:�&� points per edge. To see why this works,

note that if the robot visits group boundary -��- at distance [$- one can take the grid within a factor �
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of this distance and shift to a special point at cost Þ�� ú ��[
-�ü*�&� .
6.4.2 Discretizing the polygon

We now describe the construction of the discrete set ��� that we use for our approximation. Con-

sider an optimal halving path � �� �ì, E:FHG , which visits at least § 
 � © of the sets Z�, - � Z � - .
Let [ � be the (geodesic) radius of the smallest geodesic disk, centered on KNM , that contains � �� .

Here, “geodesic” refers to shortest path distance within the majority-rule map , E:FHG (A geodesic

will be a piecewise linear curve). Let [*E�- Í be the (geodesic) radius of the smallest geodesic disk,

centered on K M , that intersects at least § 
 � © of the boundaries Z�� - . Clearly, [ � ù [ E:- Í . Further, we

know that the length of � �� is at most � ú [$E�- Í , since one possible halving path stays within the

geodesic disk,
� M , of radius [ E:- Í centered at K M , and travels at most distance �5[ E:- Í between any

two consecutive groups visited by the path (just go via K�M , using geodesic paths to get to and from

K M ). Note too that it is easy to compute [ E:- Í by computing the shortest path map with respect to

source K>M within ,�EÒFHG ; see [34].

Consider the sequence of radii, [ E:- Í # �5[ E:- Í # B
[ E:- Í # hghgh # �Lh ÎÐÏ3Ñ ý 
ji [ E�- Í . Note that [ � sk`Ð� -ml [ E�- Í # � -nl 6 � [ E�- Í a
for some choice of ¸H¨ among the ���^�o

�Ò�&� possibilities in the sequence. For each choice of ¸�¨ , we

consider the axis-aligned square (this square is not with respect to geodesic distance), centered at

KZM , of side length � ú � - l [@E:- Í , and decompose the square into a � -by- � grid of subsquares using � ? d
evenly spaced horizontal/vertical lines. For each segment o that is an edge of some Z�,§- �ÀZ �*- , we

mark on o the crossing points (if any) where o crosses a grid line (i.e., where o crosses between sub-

squares). This results in at most �
� ? � marked points along o , for each choice of ¸ ¨ , so �U�1�¦��

�:�&�
marked points in total along o .

We let �A� be the union of the set of all marked points for all edges on the boundaries Z4, - �
Z �5- , together with the endpoints of these edges. Since there are � sets Z�,ï-���Z �5- , each with

�����Ô� 'ÆË�% ø �����Z��

� � Ë�% �&� edges/vertices, and we place ���1�y��

�Ò�&� marked points per edge, this yields

a total of �����Ô� � M�Ë�% ø �����Z��

� Ú Ë�% �&� points in �A� . (Note that this bound is nearly linear in � , and one

may expect that, in practice, � jlj\� .)

Lemma 17 Suppose that an optimal halving path � �� visits Z � �@# Z � � # hghgh # Z��*E , with À �$§^� ü*�>© ,
and let edge V@-J� Z��*- be the first edge of �
- visited along � �� (after leaving K(M ). Then there exists a
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piecewise-linear halving path �Å�Ä�LK&M # K �@# hghgh # K�E	� of length at most � ú Ö � �� ÖÐ� such that KZ-ÒsÅ�	� ,

and the shortest (geodesic) path in ,8E:F{G is used to go from K>- to KZ- 6 � .

Proof. Let r�-¼sJVg- be the first point where � �� visits Z��*- . Let [ � be the geodesic radius of

the smallest geodesic disk
� M (within , E:F{G ) centered at K M that contains � �� ; let ¸�¨ be such that

[ � sp`Ð� -ml [$E�- Í # � -ml 6 � [@E�- Í a . Then, we know that each segment V5- intersects
� M and therefore also

intersects the axis-aligned square of side length � ú � - l 6 � [ E�- Í centered at K M . Thus, within distance

��d�ü*�&��� -ml 6 � [@E�- Í of rq- along the line segment containing V"- there is a marked point K>- of �A� associ-

ated with the corresponding grid partition into subsquares; in case the endpoint of V - is encountered

along the segment before the marked point, we redefine Kq- to be this endpoint. We can modify the

path to go through each K - (this is possible, by sliding the endpoint continuously along the edge to

the coordinate in ��� ), adding distance at most ��d�ü*�&�H[ � per ¸ . In total, the cost of these detours is at

most � ú ��d�ü*�&�H[ � �C[ � , thus proving the claim.

6.5 Reduction to �� -Group Steiner

We formulate now the instance of the �� -Group Steiner problem that we need to solve for half-

localization:

INSTANCE � ) þ � : Take D as the complete graph on � � . Define the cost of an edge �LK # K®¨_� to

be the length of a shortest path joining K # K ¨ in the majority-rule map ,.E:F{G . Take the root as the

origin K M . Make � groups of points of � � corresponding to the sets � � # � � # hghgh # ��
 .

As in section 4.5, a tree � covers � ¨ groups if and only if �{£ ñD¢ �±î;"q�LK � has size � ? � ¨ . In

particular, � covers at least half the groups if and only if Ö �R£ ñD¢ �±î;"q�LK �gÖ¦Þ �� Ö �uÖ . Also every

halving path gives a �� -Group Steiner tree of the same cost. Lemma 11 extends to this case, given

that a halving path of cost within twice of the optimal passes through points in �·� (by lemma 17).

6.6 Putting everything together

The overall strategy for polygons is as follows (see Algorithm 3). Theorem 9 bounds the approxi-

mation factor and computation time of strategy RHL.
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Data : Map polygon , , the set of hypotheses �
Result : The robot localizes to its initial position !§sï�
while Ö �\Ö>�±d do

begin
Compute the polygons D�- G for each pair of hypotheses, !�- and !�G
Compute the polygons � -
Compute the majority-rule map ,.E:F{G
Compute the set of coordinates �X�
Make instance � ) þ � of �� -Group Steiner problem
Solve � ) þ � to compute a halving path � �ì,.E:F{G (lemma 11)
Half-localize by tracing � and making observations at coordinates in � �
Move back to the starting location

end
end

Algorithm 3: Strategy RHL for polygons

Theorem 9 A robot guided by strategy RHL (Algorithm 3) correctly determines its initial position

!�sì� by traveling at most distance �U�^��

� � �	��

�:�&� ú �	,6�X�^, # �Ý� , where �¼� Ö �\Ö and � is the

number of vertices in polygon , . Further, the computation time of the robot is polynomial in �
and � .

Proof. By lemma 17, an optimal halving path on the coordinates ��� is of length �U����,6�X�^, # �Ù�3� .
Since the number of vertices in � � is polynomial (bounded by �����Ô� � M�Ë�% ø �����Z�o

� Ú Ë�% �&� ), an ���^��

� � ��� -
approximate halving path can be computed in polynomial time by using algorithm õ (see Theorem

3). Since there are ��

�aÖ �\Ö phases, this gives an �U�^��

� � �	��

� Ö �uÖÐ� -factor strategy.

6.7 Improving the number of reference points

We will now describe how to adapt the above construction to decrease the number of reference

points to ���1� � ��

�i�&� from �����Ô� � M�Ë�% ø �����Z��

� Ú Ë�% �&� (see lemma 16).

Steps d (majority-rule map) and k (discretizing the boundaries of regions Z�, - ) will remain the

same. A convex chain is a piecewise linear function with the slopes of linear segments decreasing

from left to right. We will modify the definition of ,P- so that their boundaries are convex chains

with at most [ edges. Here [ is the number of reflex vertices in the map polygon , .

Since a convex chain can intersect a �nºi� grid in at most k
� points, we will get k
�¦��

�Ò� reference

points for each boundary Z4,�- . Since there are � such boundaries, we have a total of �U�1� � �o

�:�&�
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reference points. Note that convexity is crucial to reducing the number of reference points for each

chain.

In the following, ,ÛEÒFHG denotes the majority-rule map and T0E:F{G��LK � denotes the visibility poly-

gon observed by a robot located at coordinate K in ,nE:F{G . We distinguish it from T·�<rN� which is the

visibility polygon for a robot located at point r in the original map polygon.

We first make the following observation :

At any coordinate Kíse,ÛEÒFHG , the majority observation is the same as the visibility polygon

T E:FHG �LK®� .
This is true because if a robot at coordinate K sees a visibility polygon T ¨ different from TqEÒFHG��LK �

it immediately reduces the set of hypotheses by half, since it has found a deviation from the majority-

rule map.

Fig 24 shows this for grid graphs. The majority-rule map is shown on the left with three coordi-

nates � �@# � � and �7% . The observations consistent with the majority-rule map h �g# h � # h*% are shown on

the right. If a robot at � - makes an observation different from h - it will either find that a cell inside

D EÒFHG is blocked or that a cell outside D	EÒFHG is traversable. In both cases, it will half-localize as a

cell is inside D E:FHG based on whether it is blocked or traversable for more than half the hypotheses.

q>r
qSs
qIt

uwvSx q>ySz|{~}�qD�j�>�jyD� v {WzWq>���
�8s

�7t ��r

Figure 24: Majority observations inside the majority-rule map

We will change the definitions of ,�- ’s accordingly :

Definition 4 ,U- is the maximal connected region in ,8EÒFHG such that for each Kusk,·- the visibility

polygon TU�1!q-8Ü±K � seen by a robot initially located at !�- is the same as the visibility polygon

T&E:FHG��LK®� for K in the majority-rule map.

We denote the number of reflex vertices in the map polygon , by [ .
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Theorem 10 ,·- ’s are polygons with ������� edges of which at most [ lie on Z�,P- (i.e., lie inside

,�E:FHG ). Further, the edges composing Z4,�- form a convex chain.

Proof. Superimpose the polygon ,8- on the majority-rule map. Each edge VAsï,8- will be broken into

sub-edges V � # V � # hghgh # V E such that each V G either : (i) lies inside , E:F{G (except for its end points) (ii)

lies outside ,�EÒFHG , or (iii) lies on the boundary of ,.EÒFHG .
We can call this the subdivision Â - of , - induced by the majority-rule map. Let us first count

the number of new edges introduced.

The endpoint of each edge in Â - is the intersection of polygon , - with some polygon , G for

" �� ¸ . For " �� ¸ , ,�- can intersect ,®G in at most �U��� � � points and therefore the total number of

subdivisions of , - will be ���1�Z� � � .
Now a robot located at !�- will find a deviation from ,ÛEÒFHG only when it observes an edge V of

type (i) or (ii). As before, there is a window WX�1V5� of the visibility polygon T	,·�1V"� for any such edge

which separates K(M from V . A robot located at K(M will see edge V as soon as it crosses WY�1V"� .
We want the interesection of the regions containing the origin for all WY�1V"� , where V is an edge

of type �X¸�� or �X¸n¸{� in the subdivision of ,.- . Each window is a line with its two end points on the

boundary of ,Û- . The window-boundary will be the lower envelope of the arrangement formed by

these lines with respect to the origin (see Figure 23). Therefore, each window will occur at most

once on the window-boundary, in analogy with the lower envelope of an arrangement of lines in the

plane. Further, the slopes of the edges will decrease from left to right and hence the boundary will

be a convex chain. A first bound gives us ���1�Z� � � as the size of Z4,·- .
Now we reduce it to [ , the number of reflex vertices in ,n- .
Note that each window WX�1V"� starts at a reflex vertex of , . Let Q be such a vertex and let

W �@# W � # hghgh # W � be the windows associated with Q . This constitutes a “fan” of line segments and

we just need to take the last window W � to get the region containing the origin for all windows

W �@# W � # hghgh # W � (see Fig. 25).

Therefore, each reflex vertex contributes one window. Z4,ï- is obtained by taking the lower

envelope of these edges with respect to the origin. Therefore, its boundary has at most [ window

edges.

73



������

���
�

Figure 25: Fan of windows at a reflex vertex [

The other edges bounding ,�- belong to ,Û- and are of type �X¸n¸�¸{� . Hence, they also form a part of

the majority-rule map.

Our version of lemma 15 will be different. A robot may located at !®- may half-localize even

inside ,U- , however the fact that any half-localization path has to cross half the , - ’s still holds.

Lemma 18 Any half-localization path crosses the boundary of at least half the , - ’s.

Proof. Let , be a half-localization path. Let Â be the set of indices ¸Ys�`éd # ��a such that , stays

inside ,U- for each ¸YsCÂ . Then a robot located at !�- # ¸YsCÂ will see TqE:F{G��LK®� at each coordinate

KÈs , . Hence it will be unable to distinguish between any two hypotheses in Â . Hence, on reaching

the end of , , the robot will be left with a superset of �"!N-�Ö ¸ s¼Â:) which is greater than �� Ö �uÖ . This

contradicts the fact that , is a halving path.

The converse is simple :

Lemma 19 Any path , inside the majority-rule map which crosses the boundary of at least half

the ,U- ’s gives a half-localization strategy of cost Ö ,·Ö .

Proof. Let Â be the set of indices ¸Usp`éd # ��a such that , crosses the boundary of ,ï- . The half-

localization strategy will follow , and make an observation only when the robot crosses a region

boundary Z�,U- . A robot initially located at !�- for ¸:s§Â will find a deviation from majority-rule map

when it crosses the boundary Z4,�- . Thus the robot will reach the end of path , only when it belongs

to the !&- where ¸ üs¼Â . By the assumption ÖÐÂyÖ ù �� Ö �uÖ , the set � ¨ �Ø�"!(- # ¸ÉüsÅÂ:) has cardinality at

most �� Ö �uÖ . Hence the robot will also half-localize if it reaches the end of , .

Now the only step remaining is to choose �Y� . Here we will use the intersection of Z4,�- ’s with

the �o

�:���ïº � grids constructed in section 6.4.
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By theorem 10, Z�,·- ’s are convex chains. A convex chain can intersect a �ïºÙ� grid in at most

k
� points. Since there are � chains Z4,�- and ��

�:� grids, the total number of reference points is at

most k
�i��

� � � . Thus, we have that :

Theorem 11 For polygons , without holes, the set of reference points has size �U�1� � ��

�Ò�&� where

� is the number of hypotheses.

Note that this bound doesn’t hold when the boundaries are � -levels in arrangments of pseudoseg-

ments as they are non-convex. Further, our bounds don’t involve the size � of the map polygon.

Polygons with holes. For polygons with convex holes the above construction gives us !�� � �o

�Ò�
grid points, where ! is the number of holes. This is because each Z�,ï- will now consist of at most

!YÜCd disjoint convex chains.

To see this, note that ,·- is a region in the translated polygon ,8- containing the origin K&M . Edges

from each hole in , will form a contiguous chain on , - and this chain will occur only once. In

between the chains for two holes, we will have a convex chain due to edge windows. Thus one can

consider the boundary of , - as a circle with !�Ü×d disjoint segments, one for each hole and one

for the boundary of ,·- common with the map polygon. The boundary of ,P- then consists of the

remaining segments of which there are at most !�Ü d .
Let us state this as a theorem :

Theorem 12 For polygons , with convex holes, the set of reference points has size �U�1!q� � �o

�:�&�
where ! is the number of holes and � is the number of hypotheses.

When the holes are non-convex, each hole can occur more than once on the boundary of , - .
Thus, there can be as many as [ convex chains in each ,P- , where [ is the number of reflex vertices

in the holes.

Therefore, we get ����[¾� � ��

�Ò�&� reference points :

Theorem 13 For polygons , with non-convex holes, the set of reference points has size ����[¾� � �o

�Ò�&�
where [ is the number of reflex vertices in holes and � is the number of hypotheses.

We note that this bound is much better than what we will prove when we discuss polygons with

holes in the next chapter.
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6.8 Additional Remarks

6.8.1 Bibliographic note

We now compare previous work based on the greedy strategy of Dudek et al. [15] with our own

algorithms. The greedy strategy MDL (stands for Minimum Distance Localization) always goes to

the nearest informative point at each iteration.

For the grid graph model, a robot following MDL first computes a unanimous-rule map i.e.,

the connected component � of all grid cells which are traversable for all hypotheses. A cell at the

boundary of � is blocked if it is blocked relative to at least one hypothesis.

Strategy MDL (Minimum Distance Localization) visits the nearest blocked cell in � and makes

an observation. It updates the set of hypotheses using this observation and then retraces its path

back to the origin. We repeat this till we localize.

Clearly, each iteration removes at least one hypothesis, so there will be at most � such iterations.

Further, the travel cost in each iteration is less than the optimal verification tour, which is itself less

than the optimal strategy. This gives a �U�1�&� -competitive algorithm. The same analysis holds for the

approximation algorithm.

Note that the majority-rule map allows for the removal of at least half the hypotheses, whereas

a robot using unanimous-rule map might remove just one hypothesis in each iteration. This allows

for the significantly better approximation factor of strategy RHL.

To extend their algorithm to the polygonal model, they compute � by taking the intersection of

shifted copies , �@# , � # hghgh # ,B
 of the polygon with respect to different hypotheses. A robot has to

check the boundary of � to get new information. However, a robot may check whether an edge VAs
� exists by going to the boundary of its window WX�1V5� inside � . Therefore, we take the intersection

of the regions formed by cutting off � at the various edge windows WY�1V � � # WX�1V � � # hghgh # WY�1V E � . We

call this restricted region � . The robot then needs to visit the nearest point on the boundary of � to

get new information.

We refer the reader to the paper by Rao et al [41, 42] for the above construction as well as

randomized variants of MDL.
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6.8.2 Is a factor of � necessary ?

We first note that there does not exist a polynomial-size set of coordinates �U� such that every

optimal path that half-localizes has bend points in � � . In particular, in Figure 26 we illustrate

that there can be an exponential number of distinct points at which an optimal path visits a given

subset, Â , of a sequence of segments, “reflecting” off of each segment, according to the usual local

optimality condition. In particular, there are �
�AÜ d line segments, arranged in two parallel rows of

� segments each. Let ]�M # ] � # hghgh # ] � 
 4 � denote the line segments in the top row and ] �@# ] � # hghgh # ] � 
 4 �
the line segments in the bottom row. The origin K�M is located symmetrically to the left of ]1M and

] � . The remaining line segment ] � 
 is placed opposite to the origin on the other side of the rows.

Let Â Ã�` f # �
� ? d�a denote a subset of the line segments forming the two rows. Let g õ denote

the shortest length path visiting segments in Â in increasing order of index and ending at segment

] � 
 . Then one can show that the �)� � 
 � spanning paths contain an exponential number of distinct

reflection points. Figure 26 shows this for the case ��� � .

���
�m�

���

���

���

� �

Figure 26: The construction showing the need for approximation with �ï�e� . Four shortest paths
for the sequences of cells �^]^M # ] �@# ] � # ]L% # ]o'"� , �^]LM # ] � # ]_'"� , �^]_M # ]L% # ]o'"� and �^]LM # ] � # ]_'"� are also shown.

6.8.3 Comparison with visibility skeleton

In section vZh�kZh�� we construct cells of the majority-rule map which distinguish between hypotheses

according to their visibility polygons. On the other hand, the previous constructions of Guibas

et. al. [20] and Dudek et al. [15] decompose the plane according to an approximation called the

visibility skeleton. We now show that an algorithm using visibility skeletons can perform much

worse than one using visibility polygons.

Intuitively, a visibility skeleton is a contraction of the visibility polygon � so that the skeleton

boundary consists of only those vertices that can be certified to be the vertices of T . The main

loss in information is as follows : there may be a partial edge in the visibility polygon whose end

points are blocked by two reflex vertices. The visibility skeleton remembers the “slope” of the line
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containing this edge but not its visible distance and length.

���

 c¡   �
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Figure 27: Comparison with visibility skeleton

Figure 27 illustrates the advantage gained by describing decompositions with respect to vis-

ibility polygons. The north-south corridors
�
� and

� � are very long compared to the east-west

corridors � � and � � . Edges V � and V � have the same slopes but edge V � is “nearer” than edge V � .
The robot is located at one of the two hypotheses ! � and ! � .

A robot using visibility polygons will localize as soon as it enters the north-south corridor. This

is because the distance and length of partial edge V � for a robot located at the start of
�
� will be

smaller than that of partial edge V � for a robot located at the start of
� � .

On the other hand, a robot using visibility skeletons will need to go up its northern corridor till

it finds a new vertex. The earliest such vertex is Q � for hypothesis ! � . Therefore the robot will go

up the northern corridor till the window formed by Q � . If the robot sees Q � it concludes that it is at

hypothesis ! � , otherwise it localizes to ! � .
Thus our algorithm performs considerably better if we use visibility polygons instead of visibil-

ity skeletons.
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CHAPTER VII

EXTENSIONS AND ADDITIONAL QUESTIONS

7.1 Extensions to Other Models

Here we sketch some extensions of our algorithm.

7.1.1 Robot without compass

If the robot does not possess a compass, but has no actuator uncertainty with respect to changes

in orientation, the lower bound remains valid. For the algorithm, redefine a hypothesis to be a

(location, orientation) pair. For grid graphs, with B axis-parallel orientations per cell, the size of

the set � of possible hypotheses remains ������� , and the algorithm extends naturally as the robot

operates on the majority-rule map relative to (location, orientation) pairs in � .

For polygons there are at most � distinct embeddings, corresponding to rotations, of the visi-

bility polygon ���1!q-¶� for each choice of !q- . This follows since any one edge of �a�1!0-¶� that is not

collinear with !&- (as is the case for “shadow edges” or “windows” of ���1!N-¶� ) must fall on one of the

� edges of , in any candidate pose. Thus, � consists of at most � different poses, �1!Ô- # ¸7G"� , each

specified as a (location, orientation) pair. For each pose �1!®- # ¸7G"� , we construct a copy ,.- þ G of the

map polygon , . ,Û- þ G is formed by first translating , so that !�- coincides with the origin, and then

rotating it about !q- so that direction ¸gG points to the north. The majority-rule map and Algorithm k
are then directly applied to the polygons ,8- þ G , as in the translation-only case.

7.1.2 The limited-range version

Practical sensors have a limited range,
�

, beyond which the noise levels are too high to give reliable

measurements [33]. Our algorithm for grids already assumes limited range of visibility, since we

assume that the robot senses only the immediate neighboring grid cell; this can readily be extended

to allow the robot to sense all cells within grid graph distance
�

. Our algorithm for localization in

polygons can also be extended to the limited-range case, as we now describe.

In order to distinguish between hypothesis ! - and hypothesis ! G , the robot must get within
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distance
�

of an edge of type (i) or type (ii) in the polygon S�- G . If K>M sees (within distance
�

) any

point on an edge of type (i) or type (ii), then the robot can distinguish between ! - and !�G without

moving from the origin K(M . Thus, assume that all edges of S.- G that are visible (within distance
�

)

from K>M are of type (iii). Let V be an edge of S8- G of type (i) or of type (ii). Assuming an unobstructed

space, the set of points within distance
�

from some point of V is a region bounded by straight edges

and circular arcs (of radius
�

). The portion of the boundary of T�, �m¥ � �1V5� that separates K M from

V defines the window, WX�1V5� , of V ; it consists now of ����d$� curves (straight segments and radius-
�

arcs), instead of a single chord, as in the
� �   case. We now define D �m¥ �- G to be the face

containing the origin K(M in the arrangement of the �U����� boundary edges of S8- G together with the

set of all �U����� windows WX�1V5� for edges V of type (i) or (ii). Again, as in lemma 14, we have that a

robot can distinguish between hypothesis !0- and hypothesis !ZG if and only if it visits the boundary,

ZND �m¥ �- G . This allows us to define the majority-rule map regions � - , the discrete point set � � , and

the half-localization algorithm as before. The only technical difference is the presence of straight

segments and (fixed radius) circular arcs in the arrangements; this does not affect the polynomiality

or the correctness of the algorithm.

7.1.3 Polygons with holes

We note that by Theorem 13, one can construct a set of at most ���1!�� � ��

�i�&� reference points for

polygons with ! convex holes. For non-convex holes, our construction gives a set of ����[¾� � �o

�:�&�
reference points, where [ is the total number of reflex vertices on the boundary of holes.

However, the analysis below is given for the definition of ,P- in lemma 15.

In the case that the map polygon , is a polygonal domain with holes � �g# � � # hghgh # �cE , our

method still applies, but the complexity of the structures increases. Let � be the total number of

vertices in the polygon (including the holes).

First, the polygons S.- G are now polygons with holes of complexity �U����� . A single edge can

now have as many as ������� windows (one for each hole). The D�- G ’s are formed as before by taking

the intersection of the regions chopped off by these windows; each has complexity �U��� � � since

each window-edge can occur only once. Finally, the majority-rule map’s , - ’s are also polygons

with holes; each is formed from D	- G # " �� ¸ and hence has complexity ���1� � � ' � . The specification
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of the discrete points ��� applies to the case of multiply-connected domains, and the argument of

lemma 17 applies as well. And hence the set of coordinates now has complexity ���1� % � ' � . These

bounds can be improved somewhat when the holes are convex.

From the above section, it is clear that the same framework works for a robot with limited range

sensors inside a polygonal map with holes.

7.1.4 Geometric Trees

As described before, a geometric tree D � ��T #�� � is a tree with T a set of points in
ò �

, and �
a set of non-intersecting line segments whose endpoints all lie in T [25]. An ����� ý� � -competitive

localization strategy for bounded-degree geometric trees was given by Kleinberg [25]. His strategy

is RA����� -competitive for trees with arbitrary degree.

Our approach gives an ���^�o

� � �	��

�:�&� algorithm for any geometric graph D � ��T #�� � in the

plane, not just trees. First we can assume that the robot begins at some vertex of D , since the robot

can initially perform a two-way spiral search to reach the closest vertex, while traveling at most

9 times the cost of optimal strategy [2, 25]. The set of hypotheses is now of size � � �U����� and

consists only of vertices. Make �È� Ö �uÖ translation-congruent copies of D , with the ¸ ’th copy Dc-
having ! - at the origin. To construct the majority-rule map, overlay the copies D - # duÞ ¸ Þ �
and form the arrangement

� ��D # �Ù� of line segments in � - D - . Each edge in the arrangement has

the same hypothesis partition, and and hence the robot gains new information only by visiting new

edges. Note that several edges may be collinear, since new points are added by translation. Next,

construct the majority-rule map DAE:FHG by finding the set of all half-traversable edges reachable from

the origin K(M . As the robot can visit an edge of only through one of its endpoints, an ���^��

� � ��� -
factor halving path can be found by solving the �� -Group Steiner problem on vertices of D	EÒFHG . Since
� ��D # �Ù� is formed by the intersection of � ú Ö � Ö edges, it has complexity at most ���1� � Ö � Ö

� � and

can be computed in ���1� � Ö � Ö
� � time by standard methods [3]. Since at least one endpoint of every

edge in the majority-rule map D	E:F{G is a vertex QÕs � - D - , DaE:F{G has �����:Ö � ÖÐ� edges. Hence the

computation time of the robot is öU���:Ö � ÖÐ� ú ��

��� , where öU� ú � is the running time for approximating

�� -Group Steiner problem. Since a grid graph is a geometric graph in
ò �

, corollary 2 gives an

R	�^��

� � 4qp ��� lower bound.
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7.1.5 Three-dimensional grid graphs

Finally, we consider a three-dimensional grid graph D , which can be used to model buildings or

offices with several floors. The majority-rule map D EÒFHG is a local-map in which each cell is blocked

or unblocked based on what the majority of hypotheses have to say about it. If D is a ] � º§] � ºÈ]_%
cuboid, the majority-rule map has size �1�*] � ? d$�iºÅ�1�*] � ? d$�iºÅ�1�*]L% ? d$� , since the absolute values

of of ¹ -, b - and þ -coordinates for each hypothesis are ] � ? d , ] � ? d and ]L% ? d , respectively. Hence

D EÒFHG requires space at most ¿5� , and can be computed in �����Ô�&� time. By making one vertex for

each cell in DaEÒFHG , we solve a �� -Group Steiner problem �*  þ � of size ������� . The performance ratio

remains �U�^��

� � �	��

�:�&� , and the running time is öU�1¿5���Z��

�:� .

7.2 Is returning to the origin necessary?

In this section, we show that RHL performs very poorly if we do not stipulate that the robot returns

to its starting position after each half-localize step. In Section 7.2.1, we construct a grid graph D
and a set of hypotheses � such that a robot not returning to the origin travels distance �1� ? d ? ÷j� ú
��, �X��D # �Ý� where �U�ØÖ �\Ö is the number of hypotheses and ÷y�ìf is an arbitrarily small constant.

In Section 7.2.2, we show that our lower bound is tight by proving that a robot not returning to the

origin always localizes in at most �1� ? d$� ú ��,6�X��D # �Ù� steps.

7.2.1 Lower Bound

The grid graph D for the lower bound is reminiscent of the Group Steiner tree construction. Let �
be the number of hypotheses and ¹ be an integer greater than or equal to k .

The building block O consists of two orthogonal corridors meeting at a corner where the robot

is located (see Figure 28(a)) The northern corridor has length ¹	Üud.ÜÙ��

�Ò� and the eastern corridor

has length �1� ? d$� ú ¹
We make � copies O�M # O �@# hghgh # O6
 4 � of block O . O ` ’s are the same except for distinguishing

“alcoves” along their northern and eastern corridors.

We now describe the construction of O	` . A set of �o

�:� alcoves encoding b in binary are added

along the western edge of the northern corridor (see Figure 28(a)). The " th alcove from the bottom

is blocked iff the " th bit in the binary encoding of b is f .

82



¦

§

§ ¨

¨
§

© ¦
ªm«W¬ªn­�¬

¦�® ¨ ®°¯²±�³�´
µ

¶ ®·¦ ¸ ª ´�¹ ¨ ¬

§ §

¨§ §

ª ¶�º »~¼�½ ¹ ¨ ¬ ¸W¦ © ¦ ¦ ¨§ª ¶�º »~¼@½ ¹ ¨ ¬ ¸W¦

Figure 28: (a) Block O ` where bU�×dgfihghgh f . (b) The northern corridor is bent at k units.

In addition to this, we add ��

�Ò� alcoves encoding b in binary along the eastern corridor. The ¸ th
alcove is placed at distance �1� - ? d$�H¹ and is blocked iff the ¸ th bit in binary encoding of b is f .

Observe that Oa` fits in a î�º§+ rectangle where î�� � Üu¹ ú �1� ÎÐÏ3Ñ 
 ? d$�:�û� Ü\¹ ú �1� ? d$� and

+ �±¹�Üu��

�:� . One can further reduce the height of O	` by bending the northern corridor as shown

in Figure 28(b). After this reduction, each block fits in a �1� Ü ¹ ú �1� ? d$�3�yºï» rectangle.
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Figure 29: Grid graph D

Grid graph D is a �1�ÔÜP¹ ú ��ÜP��

�Ò�&�Nº·�1v
� ? d$� rectangle formed by connecting blocks �$O�`¾)@` as

shown in Figure 29. O M # O � # hghgh # O6
 4 � are placed along the left edge of D separated by east-west

walls of width d . A north-south corridor of width d runs alongside the right edge of D . The south-

west cell of each block is connected to this corridor by an east-west corridor of length ¹�ÜC��

�:� .
This distance is chosen so that a robot located inside a block O�` never goes outside it to half-

localize. Finally, the set of hypotheses � equals �"!®M # ! �"# hghgh # ! 
 4 � ) where !&` denotes the cell at

the intersection of the two orthogonal corridors in OA` .

Theorem 14 Let D be the �1�XÜC¹ ú �UÜ ��

�i�&�aºt�1v
� ? d$� grid graph as constructed above and

� � �"!&M # ! �@# hghgh # !f
 4 � ) . Then a robot which computes the optimal half-localization strategy but
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does not return to the origin travels to the end of the eastern corridor of its block Oc` before it

localizes.

Proof. Consider a robot located at !�` where fUÞ�bPÞ�� ? d . To find its location the robot needs to

find all bits in the binary representation of b . To half-localize, it suffices to read d new bit in each

phase.

The robot can either read the first alcove on the northern corridor or the first alcove on the

eastern corridor. Since the alcove on the eastern corridor is nearer by one grid cell, the robot moves

¹ units east and “reads” the first alcove.

Suppose that the alcove is blocked i.e., the first bit in the binary encoding of b is f (the case

when it is d is similar). To read the next bit, the robot can either read the second alcove on the

eastern corridor at cost �5¹ , or it can go back to the origin and then read the second alcove on the

northern corridor at cost �5¹YÜ � . Since the former is optimal, the robot moves �5¹ units west to read

the second alcove on the eastern corridor.

In general, at the start of the ¸ th phase ( ¸ ù � ) the robot has read the first ¸ ? d bits of the binary

encoding of b and is located at alcove ¸ ? d on the eastern corridor. Either it can move � - 4 � ¹ steps

to the west and check the ¸ th alcove on the eastern corridor or it can go back to read the ¸ th alcove

at the northern corridor at cost � - 4 � ¹YÜ ¸ . The optimal half-localization plan consists of going west

to read the ¸ th alcove on the eastern corridor.

Thus in each half-localize phase the robot goes west to read the next alcove on its eastern

corridor. The robot will localize after it has gone till the end of the eastern corridor and checked the

last alcove. The total distance traveled by the robot is �1� ? d$� ú ¹

Corollary 4 For every fixed ÷��Øf , there is a grid graph D and a set of hypotheses � such that

a robot following RHL without returning to the origin travels at least �1� ? d ? ÷j� ú ��,6�Y��D # �Ù�
distance before determining its location !ïsï� .

Proof. Take the grid graph D and the set of hypotheses � constructed above. By Theorem 14 a

robot not returning to the origin travels distance �1� ? d$� ú ¹ to the end of the eastern corridor to

determine its initial position ! ` sP�

84



The optimal localization strategy consists of going ¹ units up the northern corridor and then

reading the ��

�Ò� bit signature. It has cost �	,6� �C¹cÜ\��

�:� .
The approximation factor is

� 
 4 � � � ¡¡ 6 ÎÐÏ3Ñ 
 . If we take ¹P� � 
 4 � � ÎÐÏ3Ñ 
p , this is at least � ? d ? ÷
The next corollary shows that the lower bound in terms of the size of the grid graph is RA�·Õ ÍÎÐÏ3ÑZÍ � .

Corollary 5 There is a grid graph D and set of hypotheses � such that a robot following RHL

without returning to origin travels distance RA� Õ ÍÎÐÏ3Ñ�Í �
ú �	,6� , where �\� ÖÐD�Ö is the size of the grid

graph.

Proof. Take ¹���k in Theorem 14. The grid graph now has size �§�e�1�ÛÜÈk
�iÜ§��

�:�&�Ôº��1v
� ? d$�8�
¸q�1� � � . The optimal localization strategy has cost k�Ü ��

�i� . The robot travels distance k(�1� ? d$� . The

approximation factor is
% � 
 4 � �% 6 ÎÐÏ3Ñ 
 . Since �U� ¸q� Ó ��� , this is R	� Õ ÍÎÐÏ3Ñ�Í �

7.2.2 Upper Bound

We now show that a robot following strategy RHL without returning to origin localizes in at most

�1� ? d$� ú ��,6� steps.

Theorem 15 Consider a robot which computes the optimal half-localization strategy in each phase,

but does not return to the origin after each phase. Then it travels distance at most �1� ? d$� ú ��,6�
before determining its initial position !ïs � , where ���ÌÖ �uÖ is the number of hypotheses and ��,6�
is the cost of the optimal localization plan.

Proof. Let ,�- 4 � denote the path traced by the robot relative to the origin before the start of the ¸ th
half-localize phase. Let � - denote the path traced by the robot during the ¸ th phase. Then we have

that ,�-Ô� ,�- 4 �ÓÖ �a- is the concatentation of ,.- 4 � followed by �	- .
Since the robot always chooses the optimal half-localization strategy, the length of � - is less

than or equal to any half-localization strategy for phase ¸ . One such strategy makes the robot re-

trace the path , - 4 � back to the origin and then run the optimal localization plan till the robot

half-localizes. This has cost at most Ö ,8- 4 � ÖgÜu�	,6� and hence we have that ÖÐ�	-�Ö>Þ Ö ,�- 4 � Ö7Üì��,6� .

Therefore we get that Ö , - Ö:�ÊÖ , - 4 � Ö � - Ö:�ÊÖ , - 4 � Ö�ÜØÖÐ� - Ö¦Þ Ö , - 4 � Ö�ÜÌ��Ö , - 4 � Ö�Üû��,6�����
� ú Ö ,�- 4 � Ö@Üu��,6� .
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Since Ö ,.M�Ö¾� f , we see that Ö ,Û-�ÖZÞ �1� -0? d$� ú �	,6� . As the robot localizes in at most À Þì�o

�Ò�
half-localize steps, the distance traveled Ö ,nEYÖ is at most �1� E ? d$� ú �	,6�ÌÞe�1� ÎÐÏ3Ñ 
 ? d$� ú �	,6� �
�1� ? d$� ú ��,6�

7.2.3 Discussion

This feature may become a problem in probabilistic environments where the robot may incur noise

by returning back to the origin, or if the robot gets trapped in a small corner from which it is hard to

get out. However, we still feel our algorithm makes sense, due to the large decrease in uncertainty

brought about by each half-localize step. If the robot motion is sufficiently correct, this decrease

should more than offset the noise incurred by coming back to the origin. Further, the robot does

not need to return to the origin “exactly”. Rather, it suffices that the robot be present within a small

distance of the origin with high probability, as this will allow for near-optimal behavior in the next

step. If continuous sensing and updating while returning back is allowed, the robot should perform

reliably with small corrections.

The robot may get trapped in a corner, but in maps with “signatures” (such as the ones we

constructed above, as well as those in the NP-hardness construction of Dudek et al. [15]), this

may be the only way to localize efficiently. In fact, it seems that only in such highly-replicated

environments do such localization strategies make sense.

Further, the task of localization is just a prelude to the robot performing other tasks, such as

going to a particular location. This new location may lie anywhere in the map, so the robot will not

lose by coming back to its starting place.

Finally, it seems that there is no way to bypass this return-to-origin constraint, as not allowing

the robot to return to origin leads to exceptionally bad performance. In fact, we believe that no

reasonable algorithm for localization can be found unless we stipulate that the robot returns to the

starting location after each half-localize step.

We add that a robot following strategy ×ÙØÌÚ (see section 6.8.1) which does not return to the

origin may travel �1� 
 ? d$� ú �	,6� distance in the worst-case and that this bound is tight.
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CHAPTER VIII

CONCLUSION

The popular robot-navigation method that we have analyzed in this thesis,
� �

, is appealingly simple

and easy to implement from a robotics point of view and appealingly complicated to analyze from

a mathematical point of view. Our results, likewise, are satisfying in two ways. First, our tighter

upper bounds on worst-case travel distances guarantee that
� �

cannot perform badly at all. Second,

the gap between the best known lower and upper bounds is now quite small, namely �U�^��

�:�o

�n���
for planar graphs, and ���^��

�:�	��

����

�:��� on arbitrary graphs. An open question is to close the gap

between the upper and lower bounds.

The main ideas of our localization algorithm are half-localization and the majority-rule map,

which permit us to eliminate half the hypotheses in each step. Earlier strategies for localization

could eliminate only ����d$� hypotheses in each step, thus leading to R	����� -approximations for general

models. There is a ��

�:� factor gap between the upper and lower bounds; it appears that this gap

can only be closed by progress on the Group Steiner problem in grid graphs (and also those given

by Euclidean shortest path metrics inside a constrained region).

An appealing feature of our algorithm is its wide adaptability over a variety of robot models: the

only issue is to devise algorithms for computing the majority-rule map and the set of coordinates

for the model at hand. We believe that the majority-rule map will play an important part in other

robot navigation problems.

While our algorithms for localization in polygons have been restricted to two dimensions, we

expect that the results can be extended to three dimensional polyhedral domains , in which the

robot moves inside , and sends out a series of beams spaced at small solid angles over the sphere

and joins them to compute the visibility polyhedron TU�<r®� . Modern 3D-range finders allow one to

estimate the visibility polyhedron from the robot [57].

In this thesis, we do not address models with sensor noise, imperfections in the robot’s map and

odometer errors. While sensor noise can be easily accommodated [7], devising a good strategy for
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a model with odometer errors remains a major open problem. This not only entails redefining what

we mean by localization, but also requires devising strategies that balance the need for resolving

global position with the need for removing local pose estimation errors.

The best model for odometer and sensor errors is probabilistic robotics. As a simple example,

take a grid graph. If the robot ”decides” to move North, it may do so only by probability 0.7. On

the other hand, it may instead move S, E and W with probability 0.1 each.

Recently (since late 90s), probabilistic robotics has become a major paradigm of applied robotics,

but has not been imported into theoretical studies. Thus, we model the environment as a Par-

tially Observable Markov Decision Process (POMDP). To be exact, here we are dealing with maze

POMDPs. At any time, the robot’s position will be known upto a probability distribution over the

set of possible locations. This distribution will be updated using bayesian method based on the next

move and sensor observation. The general case is expected to be very hard (above PSPACE etc.).

However, a good research direction is to explore some simple problems within the probabilistic

framework.

We firmly believe that accurate theoretical analysis of real-life problems in a variety of models

is useful for practical robotics. A correct understanding of the hard cases and the underlying struc-

ture allows the implementor to design more meaningful heuristics. These heuristics may not be

analyzable rigorously but will have a theoretical watermark with respect to which their performance

can be measured and intuited.
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