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SUMMARY

Chemical reactions are among the most fundamental phenomena within the field of chemistry.

In many contexts, reactions are conducted or occur in condensed phase environments. Environ-

mental effects can cause a host of complicated changes to a given chemical process, such as al-

tering thermodynamic equilibrium, reaction rates or the associated mechanism. Solvents can thus

be used to tune a given reaction. In particular, ionic media can cause substantial changes to a

reaction due to the long-range Coulombic interactions between the reacting complex and solvent

molecules, which, energetically, can be quite large in magnitude. Further study of reactions within

ionic solvents would allow for modulating these interactions for selected applications. Theoretical

approaches, such as quantum chemistry, represent one tract of methods that can be applied for

this purpose. However, while quantum chemical techniques can effectively investigate many gas

phase reactions, condensed phase reactions are much more challenging to investigate. The many

degrees of freedom associated with the bulk solvent makes first principles modeling infeasible due

to unfavorable scaling with respect to system size.

Force fields derived from ab initio methods specifically designed for simulating reactions can

significantly enhance insight into solvent modulation of chemical reactions. A sufficiently accu-

rate force field can be used to perform molecular dynamics at quantum chemistry-level accuracy

within an external environment at a fraction of the cost. However, such reactive force fields have

been challenging to parameterize and use, as typical physics-based expressions used in force fields

are better suited for asymptotic interactions than describing short-ranged effects associated with

chemical bond-breaking/formation. Recent machine learning approaches have proved effective at

learning a wide range of physical interactions, however, and can potentially be combined with

standard force fields in order to build an extensive framework for modeling chemical reactions.

This thesis details our development of a reactive force field framework that combines these two

methodologies.

Chapter 2 contains the framework of our reactive force field approach, named PB/NN. It is
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in the form of an empirical valence bond (EVB) Hamiltonian and uses ab initio force fields for

describing long-range effects and machine learning models for all short-range interactions. We

demonstrate how to build each term in the model for the deprotonation of the ionic liquid cation

EMIM+ by acetate in order to form a N-heterocyclic carbene (NHC) and acetic acid. We show

that the force field can produce reaction free energy profiles that are in semiquantitative agreement

with AIMD for the gas phase dimer and a four ion model solvation environment.

Chapter 3 extends the model to simulations of the deprotonation reaction in the bulk ionic

liquid, where proton sharing between acetic acid and acetate can occur. We investigate the effects

of various solvation environments on the free energy required for formation of the NHC, including

the gas phase, the bulk liquid and the air-liquid interface. We find that the bulk liquid lowers the

free energy barrier for forming the products in comparison to the gas phase, partially due to local

solvation of the reacting complex. We also find that there is stabilization of the NHC at the interface

in comparison to the liquid, due to both solvophobic interactions with the NHC and destabilization

of the ionic [EMIM+][OAc−] pair.

We use the MS-EVB reactive force field to simulate proton transport in [BMIM+][BF−
4 ] /water

mixtures in Chapter 4. We analyze the effect varying water concentration has on proton transport

rates and conductivity. We also examine the structure of the hydrogen bonded water network

and determine at which concentration a percolating network forms in these systems. We find that

proton diffusion increases linearly with water content along our studied concentration range and

we find the BF−
4 anions stabilize the nonreactive Eigen form of H3O+.

In Chapter 5, we utilize an ab initio force field in order to examine various liquid properties

of propylene carbonate. We examine the phenomenon known as density scaling in particular and

connect it with intramolecular vibrations in the liquid. We also compare scattering functions com-

puted from the force field with those from quasi-elastic neutron scattering experiments. While not

a reaction, this connects with the previous chapters as it demonstrates the ability of ab initio force

fields, which are a key part of our reactive force field methodology as explained in Chapters 2

and 3, to make predictions in agreement with experiment; it is useful to understand the level of
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accuracy attained with such approaches with respect to experimental liquid properties.

In Chapter 6, we train neural network potentials to DFT data for the negative thermal expansion

(NTE) materials ScF3 and CaZrF6. We assess the accuracy between DFT and experiment for equa-

tions of state in these systems. We also quantify the extent to which nuclear quantum effects matter

for predicting various NTE-related properties. We find these are significant at low temperature.

We conclude in Chapter 7 with future plans and directions for the work in this thesis.

xviii



CHAPTER 1

THEORETICAL APPROACHES FOR MODELING CHEMICAL REACTIONS IN

SOLUTION

Solvent effects on reactions are ubiquitous within chemistry. External environments play a key

role from fields as diverse as biochemistry, where protein residues and solvent molecules influence

numerous catalytic processes, to organic chemistry, where solvents modulate reaction rates and

equilibria. It is well known that solvation can affect chemical reactivity through a number of

methods, such as stabilization of reactants/products/transition states (TS), creation of new reaction

pathways through interactions with the reacting molecules and alteration of product selectivity.1 Of

particular relevance to this thesis is the effect of ionic media on reactions. As Coulombic ion-ion

interactions can rival the strength of a covalent chemical bond, ionic media can have a particularly

strong influence. This is seen often in biochemistry, where charged groups aid in many catalytic

steps necessary for sustaining life.2 Nature has essentially optimized the use of ionic forces in these

pathways through evolution. With further study, similar electrostatic interactions can be utilized

by chemists to intelligently design new powerful reactions.

The effects a particular solvent will have on a given reaction may be difficult to predict. Em-

pirical models based on concepts such as solvent polarity or other bulk solvent properties can

often be useful for establishing qualitative relationships between solvation and reactivity. These

approaches can sometimes lead to incorrect conjectures, however, and quantitative prediction is

generally beyond the scope of such methods.3 Thus more extensive modeling explicitly consider-

ing the molecular-scale interactions between the reacting complex (which we will refer to as the

solute) and the solvent is required for further in-depth understanding of the relationship between

solvent effects and reactions.

The explosive development of molecular simulation, namely molecular dynamics (MD) and

Monte Carlo methods, over the past several decades has brought about its application in essen-

1



tially every branch of chemistry. Modern computers allow for the routine use of quantum mechan-

ics (QM) and molecular mechanics (MM) for the study and discovery of chemical phenomena

in fields as diverse as biochemistry to materials science, including the study of chemical reac-

tions in environments. As chemical bond breaking/forming is an inherently quantum mechanical

process, QM-based methods such as ab initio molecular dynamics (AIMD) and quantum mechan-

ics/molecular mechanics (QM/MM) make up the most robust methods for the simulation of reac-

tions in the condensed phase. The unfavorable scaling of both methods (with respect to system

size for AIMD and with respect to the QM region for QM/MM) limits the amount of statistical

sampling that can be performed with such simulations, however. This hinders examination of re-

actions that proceed over long time-scales and often prevents simulation of a sufficiently large

solvent environment, which can introduce finite size effects.4 For these reasons it is more desirable

to use MM methods, which have a greatly reduced computational cost compared to the aforemen-

tioned QM approaches. Constructing a MM-based potential energy surface (essentially a force

field,5 which is a collection of parameters and potential functions, as we shall discuss later) that is

sufficiently representative of the QM surface for a specific reaction has traditionally been a diffi-

cult and time-intensive process; this is mainly due to the lack of analytic classical analogs for all

the effects associated with bond-breaking/formation. However, recent work in machine learning

(ML) algorithms and methods has significantly aided in the development of such force fields and

has already opened up exciting new possibilities for simulation within the condensed phase, as is

partially described in this dissertation.

We present a method for the construction of reactive force fields based on physics-based and

machine-learned potentials that can be applied to simulate reactions in diverse condensed phase

environments; this is the focus of this work. A full introduction in this area would include a

summary of all existing QM and MM approaches used for computational modeling of chemical

reactions. We neglect such a thorough review here in the favor of brevity. Instead, we restrict

ourselves to a selection of some of the most powerful existing simulation methods for the study

of a reacting complex within explicit solvent and discuss their strengths and weaknesses. We start
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with a brief summary of density functional theory (DFT), which both the QM and MM methods

used here rely on, as we discuss. We follow with a description of AIMD and QM/MM, and then

proceed with the empirical valence bond (EVB) model, a MM-based method which we use as a

framework for our approach. We additionally present a short summary of some of the promising

ML models developed in recent years for simulating reactions within solvent environments.

1.1 Density Functional Theory

In principle, the Schrödinger equation contains all the information needed for the study of a reac-

tion within a solvent:

ĤΨ(x1,x2...xN) = EΨ(x1,x2...xN) (1.1)

Equation 1.1 is the nonrelativistic time-independent Schrödinger equation for a N-electron system.

In this equation, Ψ(xN) is the wavefunction, with coordinates xN corresponding to 3N spatial co-

ordinates (r3N ) and N spin coordinates (sN ), E is the energy of the system and Ĥ is the electronic

Hamiltonian operator and is given in atomic units by:

Ĥ = T̂e + V̂en + V̂ee + V̂nn =
N∑
i=1

(−1

2
∇2) +

N∑
i=1

M∑
α=1

(−Zα

riα
) +

N∑
i<j

1

rij
+

M∑
α<β

ZαZβ

Rαβ

(1.2)

where we have assumed stationary nuclei in comparison to the electrons under the Born-Oppenheimer

approximation.6 T̂e is the electron kinetic energy operator, V̂en is the electron-nucleus attraction

operator, V̂ee is the electron-electron repulsion operator and V̂nn is the nucleus-nucleus repulsion

operator for a system with N electrons and M nuclei. An exact solution would allow for the calcu-

lation of any observable property of the system through the wavefunction. However, Equation 1.1

is unsolvable for all but the simplest cases.

Fortunately, a host of useful approximations for Equation 1.1 have been developed. These

approximate methods generally fall under two categories. In the first category, the wavefunction is

the central quantity; this includes methods such as Hartree-Fock, many-body perturbation theory,

configuration interaction and others.7 The electron density, ρ(r), is the central quantity in a second
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category of approximations named density functional theory (DFT). Due to its favorable balance

between accuracy and computational cost in comparison to wavefunction-based methods, DFT has

had a meteoric rise in computational chemistry as attested by its share of the Nobel Prize in 1998

and the continuously growing number of publications using DFT in some form.8 We shall give a

brief review over the fundamental points of the methodology here, as we use it in various ways

throughout this thesis.

First, we rewrite the electron-nuclear attraction term in Equation 1.2:

V̂en =
N∑
i=1

M∑
α=1

(−Zα

riα
) =

N∑
i=1

v(ri) (1.3)

where v(ri) is defined as

v(ri) = −
M∑
α=1

Zα

riα
(1.4)

The electron-nuclear attraction can be considered as an external potential on the electrons due to

the nuclei. Rewriting Equation 1.2 with only the terms corresponding to the electrons, we have

Ĥ = T̂e + V̂en + V̂ee =
N∑
i=1

(−1

2
∇2) +

N∑
i=1

v(ri) +
N∑
i<j

1

rij
(1.5)

Looking at Equation 1.5, the first and third terms will be the same for any N-electron system; it is

only the middle term that will be system specific as determined by the identity of the nuclei. Thus,

knowledge of v determines the Hamiltonian for a given number of electrons. The first Hohenberg-

Kohn theorem, produced in 1964, states that this external potential is uniquely determined by

the electron density.9 As the number of electrons can also be determined through integrating the

density: ∫
drρ(r) = N (1.6)

both N and v can be calculated using ρ, which in principle allows calculation of the wavefunc-

tion from the Hamiltonian and thus any ground-state property. This is an immensely powerful

statement, as it signifies that the three-dimensional electron density ultimately provides equivalent
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information to the many-dimensional wave function.

The second Hohenberg-Kohn theorem provides a variational principle for determining the elec-

tron density. As the density must determine all properties of the system per theorem 1, let us write

the operators in Equation 1.5 as functionals of ρ:

E[ρ] = Te[ρ] + Ven[ρ] + Vee[ρ] = F [ρ] + Ven[ρ] (1.7)

The F [ρ] term is said to be a universal functional and encapsulates the kinetic energy and

electron-electron repulsion terms. The second Hohenberg-Kohn theorem states that any trial den-

sity (subject to ρ̃(r) ≥ 0,
∫
drρ̃(r) = N and the condition that ρ must correspond to some external

potential v)10 provides an upper bound to the ground state energy:

E0[ρ0] ≤ E[ρ̃] (1.8)

Minimizing the energy with respect to the density thus provides a route to the ground-state energy.

Note, however, we do not know what the form of the universal functional F [ρ] is, which prevents

us from performing this procedure in practice. We do know that F [ρ] contains the kinetic energy

and electron-electron repulsion interactions, so we can write:

F [ρ] = Te[ρ] + J [ρ] + EQM [ρ] (1.9)

where Te[ρ] is the electron kinetic energy, J [ρ] is classical Coulomb repulsion of a charge cloud

with itself and EQM [ρ] is nonclassical electron repulsion, which we discuss further in the next

paragraph. The J [ρ] term can be written exactly, but not the kinetic energy or nonclassical repulsion

terms.

Kohn-Sham DFT, published in 1965, provides some approximations for the unknown terms

within the universal functional; this set the foundation for DFT as a practical method.11 In Kohn-

Sham DFT, a set of noninteracting orbitals {ψi(r)} are introduced. Note that the density corre-
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sponding to these orbitals can be determined through:

ρ(r) =
N∑
i

|ψi(r)|2 (1.10)

For such a system, the kinetic energy is

Ts[ρ] =
∑
i

⟨ψi| −
1

2
∇2|ψi⟩ (1.11)

While Ts[ρ] is not the exact kinetic energy functional Te[ρ], Kohn and Sham set up a problem where

Equation 1.11 is the exact kinetic energy. Their treatment starts with rewriting Equation 1.9 as

F [ρ] = Ts[ρ] + J [ρ] + Exc[ρ] (1.12)

with Exc[ρ] defined as

Exc[ρ] = Te[ρ]− Ts[ρ] + Vee[ρ]− J [ρ] (1.13)

Equation 1.13 is the exchange-correlation energy, and absorbs the residual kinetic energy from

the difference of Te[ρ] and Ts[ρ] (which is presumably relatively small), as well as the nonclassical

electron-electron interactions. The total energy expression in Equation 1.7 is now written as:

E[ρ] = Ts[ρ] + Ven[ρ] + J [ρ] + Exc[ρ] (1.14)

Kohn-Sham DFT proceeds by defining an effective external potential:

veff (r) = v(r) +

∫
dr′

ρ(r′)

|r − r′| + vxc(r) (1.15)

which is a sum of the electron-nuclear attraction potential, the classical Coulomb potential and the

exchange-correlation potential. Using this effective potential, a set of N one electron equations can
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be written:

[−1

2
∇2 + veff (r)]ψi = ϵiψi (1.16)

These equations need to be solved iteratively through a self-consistent field (SCF) treatment, sim-

ilar to the Hartree-Fock equations.7,12 Equation 1.16 would be an exact treatment if Equation 1.13

was known. Of course, it is not, but many density functionals provide a good approximation, and

can be used to carry out the procedure Equation 1.16. The reader is directed to the excellent article

by Kaplan et al. [13] for a review of various exchange-correlation functionals and the constraints

the exact exchange-correlation functional must obey.

DFT can be used to generate classical dynamic trajectories through AIMD and QM/MM, which

we provide brief reviews of in the following two sections.

1.2 Ab initio molecular dynamics

AIMD simulations propagate trajectories by evaluating the forces on nuclei as calculated by an

electronic structure method, such as DFT.14 As these forces are evaluated on the fly, they natu-

rally allow for bond-breaking/forming events to occur. Modern software packages can perform

AIMD simulations with O(102) up to O(103) atoms on picosecond timescales, which allows for

the modeling of condensed phase environments.15–19

There are two types of schemes for running AIMD simulations.20 The first is typically referred

to as Born-Oppenheimer molecular dynamics. The total energy in these simulations is given by

the DFT energy plus the nuclei kinetic energy:

E = EDFT (r) +
3Natom∑

i

1

2
miv

2
i (1.17)

where we have noted that the DFT energy is dependent on the system positions. The equation of

motion is written from Newton’s second law:

mir̈i = fi = −∂EDFT (r)

∂ri
(1.18)
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Unless mentioned otherwise, this is the form of the standard equation of motion used for all meth-

ods mentioned in this Introduction. This formulation requires a full SCF calculation at each time

step, which is typically chosen to be 1.0 fs.

The other type of AIMD is referred to as Car-Parrinello molecular dynamics.21 This approach

treats both the nuclei and electrons as dynamic variables by assigning a fictitious time-dependence

to the orbitals. This allows the minimized orbitals to be propagated in response to the movement

of the nuclei, which avoids performance of a SCF calculation at each time step. The Car-Parrinello

Lagrangian is:

L =
3Natom∑

i

1

2
miv

2
i +

1

2
µ
∑
i

∫
dr|ψ̇i(r, t)|2 − EDFT (r, {ψ(r, t)})

+
∑
i,j

Λi,j[

∫
drψ∗

i (r, t)ψj(r, t)− δi,j]

(1.19)

where the first term is the nuclei kinetic energy, the second term is the electron kinetic energy (with

µ the fictitious electron mass), the third term is the DFT potential energy (where we have noted

that the energy will depend on both the positions and the time-dependent orbitals) and the last term

is a Lagrange multiplier designed to keep the orbitals orthonormal. The equations of motion are

now:

mir̈i = fi = −∂EDFT (r, {ψ(r, t)})
∂ri

(1.20)

for the nuclei and

µψ̈i(r, t) = − ∂

∂ψ∗
i (r, t)

EDFT (r, {ψ(r, t)}) +
∑
k

Λi,kψk(r, t) (1.21)

for the electrons. The CP approach requires a smaller time step than Born-Oppenheimer MD due

to the electron degrees of freedom, with typical values set to 0.1 fs.

AIMD is powerful in that dynamics are allowed to evolve from first principles: no a priori

division of the system between reacting complex and solution needs to be made, as we shall see is

required in some of the methods we discuss later. This allows it to be used for either investigating
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a particular reaction path or for the ab initio identification of new novel reactions.22 However, even

with system sizes including O(103) atoms, which is approximately the current limit that DFT-based

AIMD can handle, finite size effects can still be introduced; additionally, these simulations are

only able to achieve picosecond timescales. Many interesting reactions occur at timescales beyond

these, which then requires biased sampling, and the associated computational expense may hinder

obtaining converged statistics for some systems.

1.3 Quantum Mechanics/Molecular Mechanics (QM/MM)

QM/MM is another method for studying reactions in the condensed phase. The work on this

methodology was part of the 2013 Nobel Prize in Chemistry. The first QM/MM simulation was

presented in 1976 by Warshel and Levitt.23 The idea of QM/MM is to partition a system into a

QM region, like a reacting complex, and an environmental region, which is modeled classically.

This allows for restricting the expensive QM calculations to a relatively small number of degrees

of freedom for the interesting part of the system while still accounting for the extended environ-

ment. The QM region can again be modeled by DFT, while the surrounding region is modeled by

force fields, which are a collection of simple analytic potential functions and parameters that de-

scribe intramolecular bond vibrations, angle bending, classical electrostatic interactions, etc. There

are many different formulations of QM/MM that exist.23–32 We shall only discuss QM/MM with

electrostatic embedding here.

The QM/MM Hamiltonian is:

Ĥ = ĤQM + ĤMM + ĤQM/MM (1.22)

The first two terms represent the energy corresponding to the QM region and the energy corre-

sponding to the MM region. The last term is the key part and describes the coupling between QM

and MM atoms. ĤQM/MM in electrostatic embedding contains van der Waals interactions between

QM and MM atoms, which is modeled through the force field, and electrostatic interactions be-
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tween a field of point charges from the MM atoms and the QM density. This modifies the DFT

calculation. The new DFT energy incorporating this external set of point charges takes the form:

E[ρ] = Ts[ρ] + J [ρ] + Exc[ρ] + Ven[ρ] +

∫
drρ(r)vMM(r) (1.23)

There is now an additional term so that the QM charge density interacts with the MM point charges.

The integrals can be evaluated analogously to the Ven term. The difficulty lies in determining how

to treat the set of MM charges surrounding the reacting complex. The most common approach is

to use a cutoff, in which the point charges within a selected radial distance of the QM region are

included and everything beyond the cutoff is truncated. However, very large cutoffs are generally

required for converging the electrostatics, and the cutoff approach leads to some artifacts, particu-

larly for ionic systems.31,33–35 Our group has developed a method for exact electrostatic embedding

using the particle-mesh Ewald (PME) approach commonly found in force field MD packages,

which fixes the aforementioned truncation errors.31,36

One of the advantages of QM/MM is that it allows for simulation of a reaction within a large

environment, as the QM calculation is generally the rate limiting step. Thus QM/MM can simulate

reactions within larger proteins or within bulk solvents.2,37,38 One limitation is that the QM part

again generally limits QM/MM to picosecond timescales. Also, it is difficult to model diffusive

processes using QM/MM simulations, as the reaction site is usually restricted to a fixed region.

Extending QM/MM to studies where the reactive complex can change during a simulation, such

as proton solvation and transport, requires adaptive schemes that either add artificial forces or are

non-Hamiltonian.39–41

1.4 Empirical Valence Bond (EVB) Approach

The empirical valence bond (EVB) model is not an ab initio approach like the previously discussed

methods, but can be considered as a type of reactive force field. The EVB model was introduced

by Warshel in 1980 and has been used to investigate reactions such as proton transfer, electron
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transfer and others within solution and protein environments.42–51 The basic idea of the method is

to treat the reactant and product states in a single step reaction as diagonal elements of a matrix

(“diabatic states”), which can be modeled as two standard force fields. The off-diagonal elements

(Hij = Hji) couple the two states together in order to model transition states.

HPB/NN =

H11 H12

H12 H22

 (1.24)

The energy is obtained from the lower eigenvalue of the matrix. Equation 1.24 has been used for

obtaining free energies through a free energy perturbation/umbrella sampling procedure.47 Alterna-

tively, one can use the EVB model to run direct dynamics simulations. Forces from Equation 1.24

can be obtained from the Hellmann-Feynman theorem:

Fi = −
∑
m,n

cmcn
∂Hmn

∂ri
(1.25)

with cm and cn obtained from the ground-state eigenvector of the Hamiltonian.

The ansatz of the EVB model is that the off-diagonal elements of the Hamiltonian are inde-

pendent of the environment; this assumption has been empirically justified.38,47 The result is that

the Hamiltonian can be parameterized to reproduce a gas phase ab initio potential energy sur-

face and still be transferable to different solution environments. The user is free to choose the

form of the off-diagonal element, as there is no prescribed function. Different EVB-based models

have employed a wide range of functions for this term, ranging from exponentials to Gaussians to

splines and others.42,51,52 In Chapters 2 and 3, we show how to implement a neural network for the

off-diagonal element, which we show provides a fit to gas-phase potential energy surfaces within

chemical accuracy.

In Chapter 4, we use the multistate empirical valence bond model (MS-EVB), extensively

developed by Voth and coworkers,53,54 in order to simulate proton solvation and transport within

ionic liquid/water mixtures. An excess proton in water will convert between Eigen and Zundel
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species as part of the Grotthuss mechanism, which gives the proton an exceptionally fast diffusion

coefficient in comparison to other similarly sized cations.55 Additionally, the proton is delocalized

through multiple solvation shells due to the hydrogen bond water network. Appropriately modeling

this effect requires large system sizes. The MS-EVB model is explicitly designed to simulate these

processes, making it one of the most efficient methods available for modeling proton solvation and

transport. It is a nontrivial extension to the EVB model, with a much larger matrix (Equation 1.24)

in order to account for all possible diabats within three solvation shells of the excess proton. It uses

a novel selection algorithm in order to identify every “hydronium” state that should be included

within the Hamiltonian.53

There are a few key advantages of the EVB model. For one, the fact that it can be trained to gas

phase ab initio data and then applied to different solvent environments makes it highly practical for

investigating solvation effects on a given reaction at greatly reduced computational cost in com-

parison to AIMD or QM/MM. Also, the EVB approach allows for the use of standard nonreactive

force fields for reactant and product states; building such force fields is fairly routine with modern

software, and the “diabat” model is intimately connected to how we think of reactions in terms

of reactants and products.56 An important disadvantage is that high quality training data must be

assembled in order to parameterize this model. As we are attempting to perform direct dynamics

in this thesis, many individual QM calculations are required to properly fit the Hamiltonian. This

can take a significant amount of time and makes application less straightforward than the previ-

ously mentioned ab initio methods. Another disadvantage is that the given reaction studied must

be known a priori. AIMD and QM/MM allow for the identification of new reactions, as bond-

breaking/forming events can occur on the fly. The EVB model is fit to a specific reaction, which

restricts its use as a tool for chemical discovery.

1.5 Machine Learning Approaches

Machine learning (ML) as a technique has rapidly been adopted in theoretical chemistry within the

last few years. The development of computer hardware (namely GPUs) and software packages like
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PyTorch and Tensorflow have allowed for the fast construction of deep learning models that can be

trained to QM data.57,58 MD simulations performed using these potentials can obtain properties at

nearly quantum chemistry accuracy at orders of magnitude reduced computational cost. The most

popular deep learning approaches are neural networks and kernel methods. We focus on neural

network-based models here, as they make up the deep learning approach used in this manuscript.

The work from Behler and Parrinello [59] in 2007, which demonstrated how to generate a fea-

ture representation suitable for training a neural network to DFT data for silicon, initiated increased

interest in machine learning for chemistry. Since then, there has been an extraordinary amount of

progress in the field, from building ML force fields to learning new density functionals.60–68 Much

of the work focused on training ML force fields has been focused on gas phase or crystalline sys-

tems than for liquids; modern QM software packages allow for routinely running QM calculations

on a small number of gas phase molecules, and plane wave formulations of DFT can efficiently

model crystal supercells.69–71 There are a few ML packages that allow for training and simulation

within liquid environments, however, and we discuss two of them below.

The DeePMD package has been used to model a diverse range of large-scale systems,68 includ-

ing liquid water,68,72,73 molten salts,74 and ionic liquids,75 among others. It has also been used in

order to model some chemical reactions within condensed phases, such as carboxylic acid depro-

tonation and reactions with CO2 in molten alkali carbonate-hydroxide salts.76,77 DeePMD has an

interface to AIMD packages, like CP2K and Quantum Espresso, that allow it to read in DFT energy,

forces and stress tensor calculations. It employs a descriptor network to convert the environment

around each atom into a set of features that respect translational, rotational and permutational in-

variance, which is then passed to a second fitting network that makes predictions for properties like

the energy. This neural network, like many others in the literature, represents the total energy of a

system as a sum of atom energies:

E =
∑
i

Ei (1.26)

This theoretically allows for the model to be extensive and be used for the simulation of larger

systems than those the model has been trained on (see Chapter 6 for example). Note that the ability
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of the partitioning in Equation 1.26 for modeling smooth potential energy surfaces for interactions

between separate molecules has been called into question and should be investigated further.78

The second method we discuss here is called FieldSchNet.79 SchNet is a convolutional graph

neural network. Upon its introduction, it demonstrated state of the art predictions for energy and

force calculations.60 FieldSchNet was created in order to include the response to external fields

within the ML model. FieldSchNet adds a predicted atomic dipole as one of the features to SchNet.

A molecule’s response to a field is modeled using message passing neural networks, incorporating

both interactions for the atomic dipole with the applied electric field and between pairs of the

constructed dipoles. As one of their examples, QM/MM simulations of the Claisen rearrangement

were used to train the FieldSchNet model. The NN model was able to predict energies and forces

within chemical accuracy of those from QM/MM, which makes this method highly promising for

future studies.

ML is powerful in that it provides highly accurate simulations for a fraction of the computa-

tional cost of quantum chemistry, as mentioned. However, there are a few issues plaguing the field

today. Creation of sufficient training data is again a significant problem as with any parameterized

method. Often many data points are needed for a complete training set, as most NN architectures

today are not aware of basic physical laws. This requires training data generation and curation over

a broad region of phase space, and ensuring all necessary regions are covered within the training

set is difficult. Active learning strategies are being developed to aid in this process.80 In addition,

the “cutoff” nature of many ML models – only neighbors within a certain radius of each atom

are included in the model – can lead to notable problems such as incorrect asymptotic behavior

and unsmooth forces. Another set of issues is related to their relative computational expense. ML

models are often much more expensive than force fields, in some cases by an order of magnitude.

Most optimized MD software packages do not support ML potentials yet, which further hinders

sampling. Progress on all of these issues will likely be made in the coming years as the field

continues to grow.
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1.6 Thesis Organization

The remaining chapters of this thesis include the following topics:

Chapters 2 and 3 describe the development of our reactive force field approach, named PB/NN.

We study the deprotonation of EMIM+ by acetate to form a N-heterocyclic carbene in the gas

phase and in condensed phase bulk liquid environments. Chapter 4 contains an application of

a currently developed reactive force field, named MS-EVB, to simulate proton transport within

[BMIM+][BF−
4 ] /water mixtures. We demonstrate that combining the MS-EVB approach with ab

initio force field provides accurate predictions with respect to experiment for properties such as

the conductivity. Next, in Chapter 5 we use an ab initio force field to study the liquid dynamics of

propylene carbonate, a commonly used electrolyte. We further demonstrate here the ability of these

force fields to make largely accurate experimental properties over a wide range of thermodynamic

conditions. Finally, in Chapter 6 we study the negative thermal expansion materials ScF3 and

CaZrF6 using neural networks trained to DFT. We obtain state-of-the art theoretical predictions

for the experimental properties we examine, which serves as a demonstration of machine learning

approaches for the condensed phase.
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CHAPTER 2

PHYSICS-BASED, NEURAL NETWORK FORCE FIELDS FOR REACTIVE

MOLECULAR DYNAMICS: INVESTIGATION OF CARBENE FORMATION FROM

[EMIM+][OAC−]

The following is reproduced from Ref. [81] and [82]

2.1 Abstract

Reactive molecular dynamics simulations enable detailed understanding of solvent effects on chem-

ical reaction mechanisms and reaction rates. While classical molecular dynamics using reactive

force fields allows significantly longer simulation time scales and larger system sizes compared

with ab initio molecular dynamics, constructing reactive force fields is a difficult and complex

task. In this work, we describe a general approach following the Empirical Valence Bond (EVB)

framework for constructing ab initio reactive force fields for condensed phase simulations by

combining physics-based methods with neural networks (PB/NN). The physics-based terms en-

sure correct asymptotic behavior of electrostatic, polarization, and dispersion interactions, and are

compatible with existing solvent force fields. Neural networks are utilized for versatile descrip-

tion of short-range orbital interactions within the transition state region, and accurate rendering

of vibrational motion of the reacting complex. We demonstrate our methodology for a simple

deprotonation reaction of the 1-ethyl-3-methylimidazolium (EMIM+) cation with acetate to form

1-ethyl-3-methylimidazol-2-ylidene and acetic acid. Our PB/NN force field exhibits ∼ 1 kJ mol−1

MAE accuracy within the transition state region for the gas-phase complex. To characterize solvent

modulation of the reaction profile, we compute potentials of mean force (PMFs) for the gas-phase

reaction as well as the reaction within a four ion cluster, and benchmark against ab initio molecular

dynamics simulations. We find that the surrounding ionic environment significantly destabilizes

formation of the carbene product, and we show that this effect is accurately captured by the reac-
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tive force field. By construction, the PB/NN potential may be directly employed for simulations of

other solvents/chemical environments without additional parameterization.

2.2 Introduction

Solvent effects on chemical reactions are ubiquitous in chemistry and biology, and are an impor-

tant consideration when optimizing catalytic processes. The solvent may modulate the kinetics,

mechanism, and/or the selectivity of a reaction, and unraveling such effects can be difficult, partic-

ularly in the presence of other catalytic species. Computational methods are useful in this regard,

and approaches that involve a quantum mechanical (QM) treatment of the reacting species with

implicit or continuum description of the solvent have become increasingly refined.83,84 However,

going beyond such a continuum description to a full atomistic representation of the solvent gen-

erally requires molecular dynamics (MD) simulations. MD simulations have provided significant

insight into a variety of biological and chemical processes, and can, in principle, provide similar

insights into the mechanisms associated with solution phase reactions.85–90 However, MD simula-

tions typically rely on classical force fields to describe the potential energy of the system, and these

force fields generally do not describe bond-breaking/bond-forming processes, preventing their use

for studying reactions. Quantum mechanical (QM) simulation methods, such as ab initio molecu-

lar dynamics (AIMD) or quantum mechanical/molecular mechanics (QM/MM), explicitly treat the

electronic degrees of freedom involved in a reaction, but are computationally costly and are lim-

ited to small time scales and/or system sizes.19,37 Furthermore, statistical sampling of the reaction

coordinate and solvation environment is limited with these QM approaches, which may preclude

their application to certain problems of interest.

Reactive force fields can potentially be used to simulate reactions in solution at a greatly re-

duced computational cost compared to either AIMD or QM/MM methods. A variety of such

force fields exist including ReaxFF, COMB, REBO and others,5,91–94 often utilizing the concept

of bond-order to describe bond-breaking/forming. These force fields are designed with the goal

of developing general parameters that allow for study and discovery of reactions in a variety of
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environments. Parameterization of such reactive force fields is intrinsically complex, however, due

to the fact that transition states cannot be expressed as low-order expansions of either the reactant

or product molecular properties. This is in contrast to standard (non-reactive) force fields, that

make extensive use of harmonic approximations and expansions of molecular properties (charges,

polarizabilities, etc.) to model intermolecular interactions. The consequence is that reactive force

fields often utilize complex functional forms requiring numerous parameters, making parameter

fitting/optimization difficult. Additionally, system-specific functions may be required, inhibiting

the development of a general framework for modeling chemical reactions.95 Achieving the desired

level of accuracy/stability for these types of force fields is an ongoing challenge.96,97

The empirical valence bond (EVB) method, originally developed by Warshel,42,47 represents

another force field approach capable of simulating reactions within condensed phase environments.

In contrast to previously discussed approaches, EVB Hamiltonians are typically parameterized on

a reaction-specific basis, requiring new parameterization for each different reaction of interest.

The intent is thus primarily to investigate solvent effects on a particular target reaction, and not to

explore or discover new or unknown chemical reactions. Within the EVB approach, a Hamilto-

nian is constructed with diagonal elements that represent the reactant/product/intermediate states,

and off-diagonal coupling elements mediate transitions between these states. The diagonal terms

typically employ standard functional forms and may consist entirely of existing force fields, while

the off-diagonal elements are system-specific and generally fit to reproduce the gas-phase poten-

tial energy surface. A common ansatz of the EVB approach is that solvent effects are included

purely within the diagonal elements of the Hamiltonian; within this ansatz, an EVB Hamiltonian

may thus be used to study a particular reaction within different chemical environments.38,47,98 Note,

however, that other approaches incorporate solvent degrees of freedom in the off-diagonal elements

as well.99 EVB and similar approaches have been used to investigate a variety of applications, such

as enzyme catalysis,44,100 proton transport in water,53,54,101,102 and various other solution-phase re-

actions.47,103–106 A particular difficulty is that there is no consensus for the functional form of the

off-diagonal elements; previous work has employed constants, exponentials, distributed Gaussians
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and spline fits.42,47,51–53 Parameterization of EVB models to ab initio potential energy surfaces

would require sufficiently versatile functional forms for the off-diagonal elements in order to gen-

erally achieve chemical accuracy within the transition state region.

Recent advances in machine learning and neural network parameterization offer new avenues

for progress in reactive force field development. Particularly, these methods provide a general and

versatile framework for accurately rendering “difficult-to-capture” regions of high dimensional,

potential energy surfaces. Artificial neural networks (NNs) are universal function approximators,

with demonstrated ability to accurately model chemical bond-breaking and forming processes.64

Various neural network architectures have successfully reproduced reaction potential energy sur-

faces, such as PhysNet, DeepPot and others.62,107,108 However, there are some key limitations as-

sociated with using neural network potentials to simulate reactions in solution. Most commonly,

neural network potentials use a sum of atomic energies to represent the total energy of the sys-

tem, generated from a set of descriptors that encode the atomic environment.109 Descriptors are

computed with a distance-based cutoff,109 which may prevent encoding of the correct long-range

physics, particularly for electrostatic interactions. Indeed short-range truncations in both physics-

based potentials,110–112 as well as in machine learning contexts,113 have been shown to cause un-

physical artifacts in MD simulations. A related issue is the limited extrapolation capability of NNs,

with unreliable predictions outside of the scope of the training data.64. A promising solution is to

restrict the required range of the neural network by supplementing with physics-based terms, such

as explicit Coulombic interactions.62 Parameters for the physics-based terms can either be devel-

oped from direct quantum chemical calculations, or may themselves be predicted with machine

learning techniques.114,115 Further considerations for NN potentials include the large amount of

training data required for parameterization, as well as simulation speed; while orders of magni-

tude faster than QM calculations, NNs are still generally an order of magnitude slower than the

empirical reactive force fields mentioned previously.5

In this work, we demonstrate a general method for developing ab initio, reactive force fields by

combining both physics-based and neural network terms within an EVB framework. The reaction
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that we consider is N-heterocyclic carbene (NHC) formation from 1-ethyl-3-methylimidazolium

(EMIM+) cation and acetate (OAc−) anion; these ions constitute the [EMIM+][OAc−] ionic liquid

(IL). In this reaction, EMIM+undergoes deprotonation by acetate to form 1-ethyl-3-methylimidazol-

2-ylidene (NHC) and acetic acid (AcOH):

EMIM+ +OAc− −−⇀↽−− NHC+ AcOH (2.1)

NHCs are highly reactive catalysts and rank among the most important tools in organocataly-

sis.116,117 Imidazolium-based ionic liquids are commonly used solvents in organic chemistry due

to their low vapor pressure and thermal/chemical stability;118 because of the acidic proton of the

imidazolium ring, there has been interest in using these ILs as both reagents and solvents.119 A

strong base or electrochemical reduction is often used to carry out the deprotonation of the imida-

zolium ring.120,121 However, recent experimental work has suggested spontaneous NHC formation

in ILs such as [EMIM+][OAc−] due to deprotonation of the imidazolium ring by weak base coun-

terions.119,122–124 While the formation of neutral species from two ions would seem unfavorable in

ionic media, several NHC-catalyzed reactions have been shown to occur in imidazolium acetate

ILs such as benzoin condensation, which may suggest carbene presence;125–127 however, it has

been pointed out there are alternative reaction pathways for formation of these products that do not

involve direct carbene formation.123 NHC content in these ILs has been characterized with cyclic

voltammetry, yet interpretation of these results is somewhat inconclusive as the electrode can act

as a carbene trap.123,128–130 Due to the short lifetimes of any produced NHCs, it is difficult to devise

experiments that directly measure carbene formation in ILs.

Understanding NHC formation within imidazolium-based ionic liquids is important for a va-

riety of applications due to the innate reactivity of carbene species. As ILs are continually used

as electrolytes in energy-storage devices, it is important to know the extent to which the liquid is

chemically stable.131 Presumably, more native NHC content would lead to reduced chemical sta-

bility due to facile degradation pathways catalyzed by carbene intermediates. This could be either

20



beneficial or disadvantageous, depending on the application. For example, imidazolium ILs are

used in hypergolic fuels,132 and NHCs are thought to be involved in important steps of the spon-

taneous ignition process.133 Better knowledge of the solvent/environmental conditions that lead to

enhanced NHC content would be important for optimizing such processes. Beyond these energy

and electrochemical applications, better characterization of NHC formation may allow ILs to find

further use in novel organocatalysis applications.

Due to the difficulty of direct experimental measurement, computational approaches provide

an important tool for investigating relative NHC stability in ILs and other environments. For ex-

ample, equilibrium coefficients (e.g. for the reaction in Equation 2.1) can be derived from reaction

free energies computed from enhanced sampling molecular dynamics approaches; this of course

assumes an approach that allows modeling the chemical reaction in the condensed phase (vide

supra). As an illustration, in Figure 2.1 we show the free energy surface for Equation 2.1 in the

gas-phase, projected along the bond breaking (C–H distance) and bond forming (O–H distance)

coordinates (see Results for calculation details). This free energy surface highlights several im-

portant aspects about the carbene formation reaction. The reaction is observed to be barrierless, as

is typically true for similar proton transfer reactions (in absence of solvent effects). The reactants

(EMIM+and acetate) are more stable than the products (NHC and acetic acid), but only by a rela-

tively modest ∼ 10 kJ mol−1 which implies significant fraction of all species in the gas phase. The

global minimum occurs at rCH ≈ 1.1 Å and rOH ≈ 1.8 Å, within a broad minima basin that spans

∼ 0.75 Å along the O–H coordinate. Because of the barrierless transition state, there is no local

minima basin associated with the products, but rather they are inferred by approximate distance

criteria of rCH > 1.6 Å and rOH ∼ 1.1 Å. In the Supporting Information, we compare this free

energy surface to the potential energy surface, and entropic effects are found to make only a rela-

tively small quantitative contribution to the gas-phase reaction profile. Note that while Figure 2.1

indicates significant formation of carbene products in the gas-phase, large solvation energies of the

reactant ions will substantially shift the equilibrium towards the reactants in solution. Developing

a reactive force field that allows investigation of such solvent/environmental effects on the reaction
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Figure 2.1: Free energy as a function of C–H and O–H bond distance for the deprotonation of
EMIM+by acetate in the gas-phase. Arrows are drawn to the reactants and products to indicate
their respective location on the surface.

free energy profile is the primary goal of this work.

In this paper, we develop a reactive force field for the carbene formation reaction (Equation 2.1)

that combines both physics-based and neural network terms within an EVB approach. While neu-

ral networks and physics-based potentials have been combined before,134–136 there are specific

considerations for doing this within reactive force field development. Our approach, which we

term “PB/NN potentials”, is entirely general and is applicable to other chemical reactions in con-

densed phase environments. The ansatz of our PB/NN construction is the following: Physics-based

terms are utilized for all long-range intermolecular interactions, which ensures correct asymptotic
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behavior and facilitates transferability to various condensed-phase, solution environments. For

the reacting complex, neural networks are utilized to describe all molecular vibrations in order

to avoid inaccuracies associated with standard harmonic functional forms. In the transition state

region, physics-based terms break down at close contact distances (e.g. Coulombic interactions),

which is fixed by introducing short-range neural networks as residual corrections. Finally, the re-

actant and product “states” are coupled within an EVB-like Hamiltonian using a neural network

for off-diagonal coupling which improves versatility and accuracy compared to analytic functional

forms. The final PB/NN potential exhibits an accuracy of ∼ 1 kJ mol−1 MAE for the reacting

complex within the transition state region, and can be directly used in condensed phase, molecular

dynamics simulations. Overall, more than 1 million electronic structure calculations were used to

parameterize the final PB/NN potential. It is expected that this amount of training/parameterization

data could be greatly reduced in future work, as we made no effort to optimize training data sam-

pling/generation.

The manuscript is structured as follows: In the Methods section, we explain the motivation and

construction of the PB/NN force field and our procedure to generate the necessary training data for

parameterization. In the Results section, we validate each component of the force field, and present

accuracy benchmarks by comparing to free energy profiles generated by AIMD simulations. While

the overarching motivation is to explore solvent/environment effects on the carbene formation

reaction, in this work we restrict analysis to systems that can be benchmarked with AIMD. Thus the

“solvent” environment considered is a simple ionic cluster consisting of two additional solvating

ions in addition to the reactant species. Investigation of this reaction in more complex condensed-

phase environments will be the subject of future work.

2.3 Methods

We first describe the general form of our PB/NN force field and the procedure for training and

validating its individual components. We then discuss the electronic structure calculations used

to generate the training data sets for the different force field components. Finally, we describe in
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detail the functional forms of the individual components of the force field and specific process for

fitting each component.

2.3.1 General Functional Form

Our PB/NN force field has the generic functional form of a 2x2 Hamiltonian written in the basis of

diabatic “reactant” and “product” states. This is similar to the empirical valence bond (EVB)

method, multiscale-reactive molecular dynamics (MS-RMD) and other reactive force field ap-

proaches.42,47,50–52,137,138 For a single step reaction, the total Hamiltonian and ground state energy

are:

HPB/NN =

H11 H12

H12 H22

 (2.2)

Eg =
1

2
[(H11 +H22)−

√
(H11 −H22)2 + 4H2

12] (2.3)

The atomistic forces on each atom i are obtained using the Hellmann-Feynmann theorem in

terms of the ground-state eigenvector (c1, c2)

Fi = −
∑
m,n

cmcn
∂Hmn

∂ri
(2.4)

In Equation 2.2, the diagonal elements,Hii, correspond to the “reactant” and “product” diabatic

states, and the off-diagonal element (Hij = Hji) represents the coupling between these states. For

the carbene formation reaction studied in this work, we refer to EMIM+/acetate configuration

as diabat 1, represented with H11, and NHC/acetic acid configurations as diabat 2, represented

with H22. Throughout the method discussion, we use the terminology “solute” to refer to the

reacting complex, and “solvent” to refer to an arbitrary chemical environment encompassing all

non-reacting species. The diagonal elements H11 and H22 consist of the following terms, with

subscripts identifying whether the energy contribution is specific to the reacting “solute” or the

24



“solvent”, and superscript indicating the type of interaction:

Hii = EMorse
Solute + EIntra,NN

Solute + EInter,NN
Solute + EBonded,FF

Solvent

+ENonbonded,FF
Solute,Solvent + Eα

Solute (2.5)

The terms EMorse
Solute and EIntra,NN

Solute constitute the intra-molecular energy of the reacting complex

in the specific diabatic topology; EMorse
Solute is a Morse potential describing the chemical bond(s) that

break/form during the reaction, and EIntra,NN
Solute represents all (non-reactive) intra-molecular vibra-

tional energy contributions described by neural networks. The term EBonded,FF
Solvent is the contribution

from standard harmonic bond, angle, and dihedral force field terms for all solvent molecules. The

ENonbonded,FF
Solute,Solvent refers to physics-based, force field terms accounting for all solvent-solvent, solute-

solvent and solute-solute non-covalent, intermolecular interactions. These interactions must be

corrected at short-range for the reacting species (e.g. transition state region) where the physics-

based terms break down, and this correction is given by EInter,NN
Solute modeled with a neural net-

work. We note the subtle distinction between “Intra”,“Inter” and “Bonded”,“Nonbonded” label-

ing of the terms: EIntra,NN
Solute refers to the full intra-molecular energy of the solute molecules (albeit

with/without the bond dissociation EMorse
Solute term), whereas EBonded,FF

Solvent is only part of the intra-

molecular energy of solvent molecules, as there is additionally the usual contribution from non-

bonded interactions (ENonbonded,FF
Solute,Solvent ) for atoms separated by three or more bonds. Finally, Eα

Solute is

the gas-phase electronic energy of the isolated monomers at infinite separation. The rationale and

specific expressions used for each of these terms will be explained in further detail. It is important

to note that solvent effects on the reaction energetics are mediated entirely by the ENonbonded,FF
Solute,Solvent

term, which in principle is given by an existing classical force field. This follows the ansatz of

the EVB method, and implies that parameterization of the reactive force field (e.g. off-diagonal

elements) can be done entirely based on the gas-phase potential energy surface of the reacting

complex.38,47
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For the Hij off-diagonal coupling element, we utilize a neural network for enhanced accuracy

and generality. We note that an alternative, analytic functional form would likely limit the ex-

tension of the model for more complex reactions, even if sufficient for the simple proton transfer

reaction considered here.53. Utilizing a neural network for Hij enables versatile description of

complex energy dependence in a high dimensional coordinate space, and thus should be applicable

for a wide variety of reaction coordinates. The exact structure of the Hij neural network will be

explained in detail in a later section.

2.3.2 Training Data Generation

Training data for the force field parameterization falls into three categories: 1) monomer DFT cal-

culations, 2) dimer DFT calculations, and 3) dimer perturbation theory (SAPT0) calculations. Con-

figurations were generated from (gas-phase) AIMD simulations of the EMIM+/acetate (NHC/acetic

acid) reaction complex, which were then input to the three types of calculations. To parameterize

a reactive force field, it is essential to generate sufficient training data in the transition state region.

Because the carbene formation reaction is barrierless (Figure 2.1), the transition state (and proton

transfer reactions) is adequately sampled by direct AIMD simulations of 1-10 ps trajectories. For a

more complex reaction with significant reaction barrier, enhanced sampling approaches would be

necessary to generate sufficient training data spanning the transition state region.

For the AIMD simulations, the QUICKSTEP method in the CP2k software package was used,19

with PBE-D3(BJ) density functional and a mixed Gaussian/plane-wave basis set.139–141 The basis

set consisted of the aug-DZVP Gaussian atomic basis set, a cutoff of 280 Ry to expand the aux-

iliary electron density and Goedecker-Teter-Hutter pseudopotentials for the core electrons.142 The

Pulay mixing scheme is used for SCF convergence, with a convergence criterion of 10−7 au.143

We run NVT simulations using a Langevin thermostat at 300, 400, 500 and 600K of each of the

individual monomers and the dimer, with the higher temperatures allowing sampling of higher en-

ergy configurations. A 0.005 fs−1 friction coefficient was used for these simulations, with a 1.0 fs

timestep for integrating the nuclear equations of motion.
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Table 2.1: Summary of training data sets, including type and number of calculations in each set.
Each data set is used to parameterize a particular neural network within the force field; the neural
network architecture is listed as well as the number of atomic degrees of freedom that the neural
network depends on (note that the total degrees of freedom is equal to 3N-6, with N equal to the
number of atoms).

dataset no. reference data # of calculations Neural Network Architecture Atomic DOF
1 EMIM+DFT energies/forces 403625 CNN(EMIM+) SchNet 19
2 Acetate DFT energies/forces 406173 CNN(OAc−) SchNet 7
3 NHC DFT energies/forces 404705 CNN(NHC) SchNet 18
4 Acetic acid DFT energies/forces 421764 CNN(AcOH) SchNet 8
5 Dimer DFT energies/forces 226075 H12 AP-Net 26
6 EMIM+/acetate SAPT0 energies 427004 H11 : E

Inter,NN
Solute AP-Net 26

7 NHC/acetic acid SAPT0 energies 265343 H22 : E
Inter,NN
Solute AP-Net 26

The Psi4 electronic structure package was then utilized to generate training data from these

AIMD configurations.69 For the DFT calculations, we use the PBE-D3(BJ)/aug-cc-pVTZ level of

theory. Calculations employing the SAPT0/aug-cc-pVTZ flavor of symmetry adapted perturbation

theory were conducted for geometries in the dimer training set; here, the dimers were partitioned

into either diabat 1 (EMIM+/acetate) or diabat 2 (NHC/acetic acid) configurations for defining the

SAPT0 monomer wavefunctions. Note that the commonly employed δEHF term in SAPT0 is ex-

cluded, for reasons discussed later. Table 2.1 summarizes the different training datasets that were

constructed, including the number of geometries/configurations in each dataset, the type of calcula-

tion, and whether energies/forces were calculated. In addition, this table lists the type/architecture

of the neural network that each dataset was used to train, along with the number of atomic degrees

of freedom built in to the corresponding neural network; such details are explained in the following

sections. Throughout the remainder of the work, each dataset will be referenced by its correspond-

ing number given in the first column of Table 2.1. We note that over 1 million monomer/dimer

geometries/configurations were used in the training data generation. Because we made no attempt

to optimize or reduce the amount of training data, it is likely that significant reductions could be

achieved with more efficiently designed data generation approaches.
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2.3.3 Force Field Components

Bonded Force Field Terms (EMorse
Solute and EBonded,FF

Solvent )

The bond formation/dissociation that occurs during the reaction is modeled with Morse potential(s)

EMorse
Solute = D(1− e−a(r−ro))2 (2.6)

In our case, we use two Morse potentials for the bonds involved in the deprotonation reaction;

one is for the C–H bond of EMIM+in diabat 1 (H11), and the other is for the O–H bond of acetic

acid in diabat 2 (H22). As will be discussed in Section 2.4.1, there are distinct advantages to

separating out these bond dissociation/formation coordinates from the rest of the intramolecular

energy (within EIntra,NN
Solute ). The Morse potentials provide a physical way to account for this bond

breaking/forming energy, with correct asymptotic behavior, while a neural network would not

correctly extrapolate to the bond dissociation limit unless explicitly trained in that region. In short,

using Morse potentials for dissociation coordinates restricts the remaining intra-molecular energy

term EIntra,NN
Solute to a much smaller region of phase space (non-dissociative vibrations) which is

important for stability of the neural network (and force field). Fitting the Morse potentials involves

straightforward bond dissociation scans, and the resulting parameters are found in Table S1 of the

Supporting Information.

The bonded terms for the solvent molecules comprising EBonded,FF
Solvent are standard harmonic

bond, angles, and dihedral terms and thus require no elaboration. In general, these may be taken

from standard, existing force fields.144–146 In this particular case, the solvent that we study is

EMIM+and PF−
6 ions (Section 2.4.4), and bonded parameters are taken from previous work.147,148

Intramolecular Neural Network (EIntra,NN
Solute )

For the reacting “Solute” complex, we use a neural network for each monomer to capture all intra-

molecular energetics besides the explicit bond dissociation (the latter accounted for by EMorse
Solute ).

The motivation for this is that standard harmonic bond, angle, and dihedral potentials introduce
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errors on the order of ∼ 10 kJ mol−1 or larger for these energetic contributions near the transition

state region, which would likely preclude chemical accuracy (Section 2.4.1). In Figure S2 of the

Supporting Information, we show an example of the error introduced when a standard bonded

potential is alternatively used for the reacting complex. In contrast, the neural networks provide

very accurate renderings of EIntra,NN
Solute , with errors on the order of ∼ 0.1 kJ mol−1 as demonstrated

in Section 2.4.1.

The SchNet architecture is used to train convolution neural networks (CNNs) for each monomer

in the reacting complex.60 The CNN architecture within SchNet has previously been shown to

provide accurate potential energy surfaces of isolated molecules.60 Specifically, EIntra,NN
Solute for H11

and H22 are given by

H11 : E
Intra,NN
Solute = CNN(EMIM+)f(rCH) + CNN(OAc−) (2.7)

H22 : E
Intra,NN
Solute = CNN(NHC) + CNN(AcOH)f(rOH) (2.8)

with

f(r) =
1

(eβ(r−µro) + 1)
(2.9)

The output of the CNN is thus multiplied by a Fermi-Dirac like damping function for the

monomers with dissociative bonds. The argument of the damping function is the length of the

dissociating bond, e.g. rCH for EMIM+and rOH for acetic acid. The motivation is that these

neural networks will predict uncontrolled values in the dissociated regime which is outside the

scope of the training data. Introduction of the damping function does not adversely effect the

accuracy of the force field; in the damped regime, the bond dissociation energy EMorse
Solute is very

large, and thus the contribution of this diabat to the total energy will be small. The parameters of

the damping function are found in Table S2 of the Supporting information. Specifically, ro, is the

equilibrium bond length, and µ is a “scaling factor” for which we assign the value µ = 2.25, so

that the damping occurs at just over twice the equilibrium bond length.

Datasets 1-4 in Table 2.1 are used to train the monomer CNNs in Equations Equation 2.7 and
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Equation 2.8. Before training, all energies are converted to relative values by subtracting off the

energy of the minimized monomer geometry. For the monomers with an EMorse
Solute contribution, we

fit to the energy difference between the QM energy and Morse energy. Because the damping func-

tion doesn’t “turn on” until approximately twice the equilibrium bond length, the CNN(EMIM+)

and CNN(AcOH) which involve bond dissociation coordinates must be fit to an expanded dataset.

To fit these specific monomers, Datasets 1 and 4 are supplemented with “dissociation” configu-

rations from Dataset 5 in which the appropriate bond is stretched to distances longer than twice

the equilibrium bond length. The importance of adding such additional “dissociation” data will be

further discussed in the Results section. The hyperparameters used to train the CNNs are similar

to default SchNet values,60 and are explicitly discussed in the Supporting Information. We use the

combined energy and force mean-squared error loss function from Schütt et al. [60] in order to

train the neural networks (shown in Equation S1 in the Supporting Information).

Nonbonded Force Field (ENonbonded,FF
Solute,Solvent ) and Intermolecular Neural Network (EInter,NN

Solute )

In principle, any standard force field could be utilized for the diabatic ENonbonded,FF
Solute,Solvent terms, which

contain contributions from all nonbonded interactions. We choose to use the SAPT-FF force

field149,150 for ENonbonded,FF
Solute,Solvent , which has been previously developed based on symmetry adapted

perturbation theory calculations. The SAPT-FF force field utilizes Drude oscillators to model elec-

tronic polarization, meaning that polarization is explicitly included in the ENonbonded,FF
Solute,Solvent terms; the

complete functional form can be found in the work of McDaniel and Schmidt [150]. SAPT-FF has

been demonstrated to be very accurate for organic ions constituting ionic liquids,151,152 such as the

species studied in this work.

The SAPT-FF parameters for each monomer are listed in Tables S3-S6 of the Supporting Infor-

mation. A virtual site was added to acetate in order to better describe the electrostatic interactions,

as described in the Supporting Information. The EMIM+and NHC monomers share the same

parameters, except for those associated with the reactive sp2 carbon; we adjusted these parame-

ters in order to better fit NHC/acetic acid SAPT0 energies, which we show in Figure S10 of the
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Supporting Information. All intra-molecular, nonbonded interactions within the reacting “Solute”

complex are purposely excluded, as the full intra-molecular energy is captured in the EIntra,NN
Solute

term. For the solvent, 1-4 and greater intra-molecular nonbonded interations are included in the

standard way. It is well-known that Drude oscillator models exhibit “polarization catastrophe” at

short distances/large electric fields.153 Without modification, this would inevitably be problematic

for a reactive force field in the transition state region at short atom-atom contact distances. To fix

this issue, we introduce an anharmonic restraining potential on each Drude oscillator in order to

avoid polarization catastrophe, as described in Huang et al. [154]. Further details of the Drude

oscillator approach are given in the Supporting Information.

Standard force fields account for long-range interactions (i.e. electrostatics, dispersion), and

short range repulsion, and are designed to be accurate at van der Waals (VDWs) contact distances.

At distances much shorter than the VDWs contact distance, these force fields will inevitably break

down due to their limiting functional forms.155,156. To ensure accuracy of the diabatic H11 and

H22 terms within the transition state region, we thus supplement ENonbonded,FF
Solute,Solvent with a “correction”

term, EInter,NN
Solute . The EInter,NN

Solute term is only for the reacting “Solute” species, and is modeled

by a neural network; it is designed to compensate for breakdown of the analytic functional forms

within ENonbonded,FF
Solute,Solvent that occur at distances significantly shorter than the VDWs contact distance

(i.e. within transition state region).

Care must be taken to parameterize EInter,NN
Solute consistently with the diabatic representation

ansatz of the force field (Equation 2.2). As EInter,NN
Solute enters into the diagonal elements (H11,

H22), it should not include orbital interactions related to breaking/forming chemical bonds, the

latter of which are accounted for by the off-diagonal coupling, H12 . The standard approach for

parameterizing diabatic Hamiltonian terms is using constrained DFT.38,47,157 Here, we propose to

use symmetry adapted perturbation theory instead, in the form of SAPT0. Our choice of SAPT0

is for two reasons: First, it is consistent with the SAPT-FF force field used for ENonbonded,FF
Solute,Solvent , and

second, it provides a mechanism for interpretting solvent effects on the reaction profile utilizing

the explicit energy decomposition.158 We note that SAPT0 generally incorporates a variational
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“delta-Hartree Fock” (δEHF ) correction to the interaction energy.159 Here, we exclude the δEHF

term to avoid variational energy contributions in the diabatic parameterization.156 The criteria for a

“good” diabatic state definition in the context of a reactive force field is the capability of accurately

capturing solvation effects on the reaction profile; this is benchmarked for our approach in Section

2.4.4.

The EInter,NN
Solute term is then parameterized to the residual difference between SAPT0 energies

and the energy contribution of ENonbonded,FF
Solute,Solvent . Specifically datasets 6 and 7 listed in Table 2.1 are

employed for this parameterization. A subtle issue is that SAPT0 was used to generate datasets

6 and 7, while DFT-SAPT was primarilly used in prior parameterization of SAPT-FF for the

ENonbonded,FF
Solute,Solvent term;147,150 this leads to a minor discrepancy between levels of theory. For the cal-

culations in this work, we have utilized SAPT0 purely for reasons of computational efficiency, and

the small errors introduced relative to a higher-level method will be discussed within the context

of analyzing our results (Section 2.4.4).

We utilize a different neural network architecture forEInter,NN
Solute than was used for theEIntra,NN

Solute

terms in Section 2.3.3.2. The AP-Net neural network architecture78 is used for EInter,NN
Solute , which

partitions the total energy into contributions from atom pairs (rather than individual atoms) and

thus is compatible with typically used pairwise interaction energy expansions. Importantly, we

find that AP-Net provides a much smoother potential energy surface for intermolecular interactions

compared to other neural network architectures (see Supporting Information), which is an essential

requirement for use in MD simulations. We modify the AP-Net output slightly from the original

work,78 to explicitly restrict the energy contribution to configurations where the molecules are at

close range (≤ 4Å):

EInter,NN
Solute =

∑
i∈A,j∈B

(Eijfc(rij))f(rbond) (2.10)
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fc(rij) =


1
2
(cos(

πrij
rc

) + 1) rij ≤ rc

0 rij > rc

(2.11)

Here, Eij is the pairwise energy contribution predicted by the neural network (equivalent to

∆Eab labeled in Glick et al. [78]) and the cutoff function fc(rij) is applied to pairs of atoms in

the dimer and is the same form as that commonly used for gathering the atomic neighbors in

many neural network frameworks.78,109 For example, if an atom pair has a distance larger than rc,

then the particular pairwise energy is zero. This restricts EInter,NN
Solute to only correct the interaction

energy between dimers at relatively close distances. The f(rbond) is the same Fermi-Dirac damping

function as in Equation 2.9, and is a function of the dissociating bond length of the particular

diabat. This additional damping function zeroes the EInter,NN
Solute energy contribution when the bond

has stretched too far (and the system has switched to the opposite diabat). The parameters for

the Fermi-Dirac functions used for the EInter,NN
Solute neural networks are given in Table S7 of the

Supporting Information.

The majority of the hyperparameters used in the construction of the EInter,NN
Solute neural network

are the default values given in Glick et al. [78]. The small differences in our present implementation

are as follows. While the ReLU activation function was used in the original AP-Net paper, we use

the shifted softplus activation function as implemented in SchNet.60 We set ρ in Equation S1 to 1, as

we are only fitting energies in this case. We also use a batch size of 100 for training as we used for

training the intramolecular neural networks, and we used the same learning rate decay procedure

as mentioned earlier, except we start with an initial learning rate of 5.0 x 10−4 due to observing

improved results. Our train-test-validation split was the same as was used for the intramolecular

neural networks.

H12 Neural Network

We lastly discuss the H12 coupling term, which is also modeled with a neural network. As noted

by Chang and Miller [138], it is only necessary to define H12 for the intermediate transition state
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region between reactants and products; the system is well-described by the diagonal elements of

the Hamiltonian for asymptotic reactant and product configurations, and H12 may be set to zero.

We use a similar pairwise representation and neural network architecture as AP-Net to model H12;

however, we no longer restrict the pairs of atoms to be in different monomers, as there is no way

to distinguish between monomers while the reaction is occurring.

H12 = (|
∑
i,j ̸=i

Ei,j|)fc(rCH)fc(rOH) (2.12)

Here, labels ‘i’ and ‘j’ indicate any atom in the reacting complex. The absolute value of the sum

of pairwise energies from the neural network is taken in order to ensure thatH12 is strictly positive.

The neural network output is also multiplied by Fermi-Dirac functions with both bond distances,

rCH and rOH . This ensures that the off-diagonal element will be zero and that the total energy will

follow the lowest energy diabatic state in the asymptotic limit. The parameters for the Fermi-Dirac

function are the same as those used for EInter,NN
Solute Our procedure for identifying configurations

from the DFT dimer dataset 5 to use for training H12 is described in the Supporting Information

Figure S8, and we also explain how to obtain energies and forces from these configurations suitable

for training H12 in the Supporting Information. The structures in dataset 5 have geometries that

fall within the range of the Fermi-Dirac damping functions i.e. have C–H distances less than the

cutoff distance for the C–H damping function and O–H distances less than the cutoff for the O–

H damping function. We use the same loss function as was used for training EIntra,NN
Solute , and the

hyperparameters for the neural network are the same as were used for training EInter,NN
Solute .

2.4 Results and Discussion

We organize the discussion of our results as follows. In Sections subsection 2.4.1 and subsec-

tion 2.4.2, we first discuss accuracy benchmarks of the different force field components. Within

this discussion, the rationale for our particular choice of force field components is elucidated by

comparison to alternative choices/models. In Section 2.4.4, we evaluate the accuracy of the total
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PB/NN force field within the transition state region of the reacting complex. Lastly in Section

2.4.4, we evaluate the ability of the force field to accurately capture solvent effects on the reaction

profile. This is benchmarked by computing reaction free energies with and without the presence

of a “model” solvation environment, and comparing to explicit AIMD free energy predictions.

2.4.1 Intramolecular Neural Network: (EIntra,NN
Solute )

In Figure 2.2, we show the energy predictions of the intramolecular neural networks compared to

DFT relative energies for each monomer involved in the reaction. The test sets have approximately

20,000 structures for each monomer sampled from datasets 1-4 in Table 2.1, with the test data

not included in the training data. The energy from the Morse potential is added to EIntra,NN
Solute for

EMIM+and acetic acid to obtain the total energy. The energy MAEs for each figure are listed in

the figure; they are also listed in Table S8 along with the force MAEs. The largest energy MAE is

0.34 kJ mol−1 for EMIM+, as well as the largest force MAE of 0.85 kJ mol−1 Å−1. These errors

are comparable to those computed by SchNet neural networks for similarly sized molecules.60

For acetate and NHC, the two monomers that do not have a reacting bond, there are no significant

outliers. In contrast, there are a few outliers for EMIM+and acetic acid that occur for configurations

with the C–H and O–H bond dissociated, respectively. For these configurations, the Fermi-Dirac

functions in Equation 2.9 damp the neural network prediction and lead to the associated errors.

Note however that these outliers are at very high energy (above 400 kJ mol−1), and thus will not

affect the accuracy of the full PB/NN potential (the system will have switched to the opposite

diabatic state).

As mentioned, there is a significant improvement in accuracy for EIntra,NN
Solute when using neu-

ral networks compared to typical force field expressions. This is demonstrated in Figure S2 of

the Supporting Information. Standard force field expressions (harmonic bonds, angles, dihedrals)

would introduce errors of at least several to tens of kJ mol−1 even after optimizing the parameters.

This introduced error would have one of two effects; it would either hinder the total accuracy of

the force field, or these errors would be compensated when fitting the H12 coupling term to the
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adiabatic surface. If the latter case, then H12 would have diminished physical meaning for the

diabatic representation. At this point, one can only speculate how this would effect the ability to

capture solvent effects in the condensed phase and/or the stability of the neural network.

The need for the Morse potential for EMIM+and acetic acid monomers is shown in Figure

S4 and S5. We compare predicted energies for bond dissociation scans of EMIM+and acetic acid

for two different neural networks trained to datasets 1 and 4 in Table 2.1; one has been trained

to residual energies including the Morse potential, and the other is trained “stand-alone”. While

the stand-alone neural network accurately predicts the QM energy for short bond distances, it

produces severe, uncontrolled errors for longer bond lengths toward the dissociation limit. Clearly,

such error would be unacceptable in a working reactive force field. While presumably this issue

could be fixed by introducing more training data in the dissociation region, there are practical

difficulties such as SCF instability, etc., and supplementing with a Morse potential is likely the

best solution. The final intra-molecular potential including the Morse potential and damped CNN

accurately reproduce the bond dissociation scans, as shown in Figure S5.

We note that it is important to include stretched geometries sampled from the dimer AIMD

simulations to the training datasets 1-4 in Table 2.1 for all monomers. As mentioned, the intra-

molecular neural networks for EMIM+and acetic acid are damped at approximately twice the

equilibrium bond length, and so training data spanning this regime is included in datasets 1 and 4

(Table 2.1) to ensure stability of the neural networks.

2.4.2 Nonbonded Force Field (ENonbonded,FF
Solute,Solvent ) and Intermolecular Neural Network (EInter,NN

Solute )

As discussed in the Methods section, the EInter,NN
Solute term is designed to be a short-range correction

to the SAPT-FF intermolecular interactions (ENonbonded,FF
Solute,Solvent ) for the reacting complex. In Figures

S9 and S10, we show the accuracy of SAPT-FF for describing intermolecular interactions for non-

reactive configurations of the dimer (see Supporting Information for details). It is clear that the

accuracy for these configurations is fairly good, on par with previous work for this specific force

field.147,150 However, the accuracy of SAPT-FF breaks down for close range “reactive” configura-
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Figure 2.2: PBE-D3(BJ)/aug-cc-pVTZ vs. neural network energy predictions for each monomer
involved in the reaction. We have added EMorse

Solute to the neural network prediction for EMIM+and
acetic acid. Each plot shows 5000 randomly-selected structures from the test set; the MAE listed
corresponds to the full test set for each monomer.
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tions in dataset 5 (Table 2.1) generated from the AIMD simulations. This breakdown is expected

due to limitations in functional form, as these configurations are significantly closer than the VDWs

contact distance. The motivation for adding the EInter,NN
Solute term is to improve the diabatic energy

(as compared to SAPT0) for such close distances within the transition state regime.

In Figure 2.3, we benchmark the total intermolecular interaction energy,EInter,NN
Solute +ENonbonded,FF

Solute ,

compared to test data taken from datasets 6 and 7 in Table 2.1. For greater insight, we have divided

each test set into 3 different subsets to illustrate the accuracy at distinct regions of the potential

energy surface. The three subsets are generated by computing the diabatic expansion coefficient

“c1” for each configuration utilizing the final Hamiltonian. The first subset corresponds to the

“Diabat 1” region, categorized by c21 > 0.8; the second subset is the “Transition State” region,

corresponding to 0.2 < c21 < 0.8; and the third subset is the “Diabat 2” region, corresponding to

c21 < 0.2. In Figure 2.3, we show the MAE of EInter,NN
Solute + ENonbonded,FF

Solute for the three regions,

for both H11 and H22 force field elements. In Figure S11 of the Supporting Information, we show

corresponding plots for the stand-alone force field energy (ENonbonded,FF
Solute ); thus comparison of

Figure 2.3 and Figure S11 indicates the contribution of the neural network term, EInter,NN
Solute . The

EInter,NN
Solute term greatly improves the agreement with the SAPT0 energies compared to the test sets.

The effect is most significant in the transition state region and dissociation limit, where the force

field is clearly expected to breakdown. Figure S11 indicates that the stand-alone force field terms

(ENonbonded,FF
Solute ) of bothH11 andH22 lose predictive ability in the transition state region. The neural

network (EInter,NN
Solute ) substantially improves accuracy in all regions of the potential energy surface,

for both H11 and H22 force field elements. The most pertinent MAE is for the particular subset in

which the diabatic region and Hamiltonian element correspond, i.e. H11 ⇔ “Diabat 1”, and H22

⇔ “Diabat 2”; here, the MAEs are 1.32 kJ mol−1 and 0.50 kJ mol−1 respectively. Furthermore,

corresponding MAEs within the transition state region are 1.34 kJ mol−1 and 0.73 kJ mol−1, which

is also well within chemical accuracy. The only significant breakdown occurs in regions where the

Hamiltonian element and diabat do not correspond, e.g. H22 ⇔ “Diabat 1”, which has MAE =

8.28 kJ mol−1. However, for this region the contribution to the total energy from H22 diminishes
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Figure 2.3: SAPT0 vs. EInter,NN
Solute + ENonbonded,FF

Solvent predictions for both H11 and H22. Diabat 1,
Transition state and Diabat 2 regions are defined with respect to their value of c21 as discussed in
the main text.

to the extent that the error is largely inconsequential.

The potential energy surface generated by EInter,NN
Solute must be smooth in order to run MD sim-

ulations. As noted by Glick et al. [78], neural network potentials that utilize a sum of atom ener-

gies to represent the total energy often do not generate smooth potential surfaces for intermolec-

ular interactions, leaving them unsuitable for running MD simulations. While our final working

EInter,NN
Solute terms employ AP-Net type neural network architectures (Section 2.3.3.3), the SchNet

architecture was also tested in preliminary stages of the force field development. In Figure S12

and S13 of the Supporting Information, we compare scans of EInter,NN
Solute for [EMIM+][OAc−] as

predicted with either the SchNet or AP-Net architecture. For the SchNet architecure, the scan

is not smooth and exhibits somewhat uncontrolled behavior at longer distances. In contrast, the
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Figure 2.4: PBE-D3(BJ)/aug-cc-pVTZ energies vs the force field HPB/NN energies with C–H
bond distances less than 1.8 Å and O–H bond distances less than 1.8 Å. The plot shows 5000
randomly-selected structures from the test set; the MAE listed corresponds to the full test set.

EInter,NN
Solute term constructed from the AP-Net architecture exhibits smooth behavior over the full

scan region. The final, EInter,NN
Solute +ENonbonded,FF

Solute term thus utilizes the AP-Net architecture, with

the EInter,NN
Solute contribution damped at longer distances, such that the total intermolecular interac-

tion energy asymptotically matches SAPT0 ab initio values.

2.4.3 PB/NN Force Field Total Energy

In the previous Sections 2.4.1 and 2.4.2, the intra- and inter-molecular components of the diagonal

H11 and H22 force field terms were benchmarked and discussed. The final stage in the PB/NN

force field development is parameterization of the H12 off-diagonal coupling to the adiabatic po-

tential energy surface (dataset 5, Table 2.1). As discussed in Section 2.3.3.4, the H12 term consists

of an AP-Net type neural network architecture. In Figure 2.4, we compare the total PB/NN energy

(Equation 2.3) to test set energies from dataset 5 in Table 2.1; this comparison effectively demon-

strates the accuracy of the H12 neural network. We note that in this comparison, the energies of

the isolated monomers in their equilibrium geometries have been subtracted out (i.e. relative en-

ergies). The MAE for these configurations is 1.10 kJ mol−1, which is within chemical accuracy.

Furthermore, the force field matches well with DFT energies for high energy configurations, ap-
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Figure 2.5: a) Diabatic expansion of PB/NN force field in terms of c21 coefficient, compared to b)
reaction free energy surface projected onto C–H and O–H bond distances Configurations are taken
from dataset 5 in Table 2.1, and the lines drawn in the plot qualitatively separate the diabat 1, diabat
2, and transition state regions.

proximately 250 kJ mol−1 above the minimum. We list the energy MAE with the force MAE in

Table S9 in the Supporting Information. The force MAE is 2.55 kJ mol−1 Å−1, demonstrating high

fidelity in force predictions as well. In Figure S14 (Supporting Information) we also show DFT vs.

PB/NN energy comparison from an MD trajectory, which gives a similar MAE of 1.14 kJ mol−1.

The primary motivation for the diabatic representation utilized within our PB/NN force field is

to enable direct incorporation of solvent effects in condensed-phase simulations. In this context,

it is insightful to analyze the diabatic decomposition of the final force field after H12 parameteri-

zation (Figure 2.4). In Figure 2.5, we reproduce the AIMD free energy surface of the gas-phase

reaction alongside a plot of the expansion coefficient c21 of the reactant (EMIM+/acetate) state. The

configurations in Figure 2.5 are from dataset 5 in Table 2.1, and the reaction coordinate is projected

onto the C–H and O–H bond distances. It is evident that the diabatic representation of the force

field matches the respective “reactant”, “transition state”, and “product” regions of the reaction

free energy surface. The wide minimum in the free energy profile (dark blue region, Figure 2.5b)

corresponds to the EMIM+/acetate “reactant” state with O–H distance approximately greater than

1.5 Å. For this region, the force field predicts values of c21 > 0.8, indicating that the system is
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mostly composed of the EMIM+/acetate “reactant” state. Indeed, at the center of this minimum re-

gion, the force field predicts values close to c21 = 1 corresponding to pure EMIM+/acetate reactant.

Figure 2.5a) clearly indicates the transition between diabatic states in the force field representation

as the reaction proceeds through the transition state region. At intermediate values for both C–H

and O–H bond lengths, the force field predicts a mixed state consisting of significant fraction of

both “reactant” and “product” diabats. For example, the center of the “transition state” region

with c21 = 0.5 (and c22 = 0.5) is roughly located at rOH = 1.25 Å and rCH = 1.35 Å. As the

reaction continues to longer C–H distances (and shorter O–H distances), the force field gives small

c21 values, indicating that the system has largely transitioned to the product diabatic state. For

rCH > 1.8Å, the system is essentially entirely composed of the product diabat, with c21 = 0 (and

c22=1 ).

The analysis in Figure 2.5 confirms that the force field gives a physically meaningful descrip-

tion of the reaction profile in terms of “reactant” and “product” diabatic states. The diabatic repre-

sentation was parameterized to SAPT0 calculations (subsubsection 2.3.3), and the realistic nature

of the force field’s diabatic expansion lends merit to this approach. However, the essential test of

the diabatic representation is the ability for the force field to accurately capture solvent effects on

the reaction profile. This criteria is benchmarked next, for which we consider a “model” solvation

environment that is amenable to explicit AIMD benchmark calculations.

2.4.4 EMIM+/Acetate Reaction Free Energies with/without “Solvation” Environment

We now benchmark the ability of the PB/NN force field to capture solvent effects on the EMIM+/

acetate reaction profile. For this purpose, we consider a “model” solvation environment consisting

of a gas-phase ion cluster. This choice enables tractable AIMD simulations, whereas explicit

AIMD benchmarks would be intractable for alternative liquid phase environments. Our “model”

solvation environment is a four ion cluster, created by adding two additional ions, EMIM+cation

and PF−
6 anion, to the EMIM+/acetate reacting dimer. The PF−

6 anion is not basic and cannot

deprotonate EMIM+, which is the motivation for adding this species rather than another acetate
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anion. While this “model” solvation environment is clearly not the same as a liquid or condensed

phase system, the surrounding ions will create large electric fields felt by the reacting complex.

We thus believe that this provides a good test of the force field’s ability to capture modulation

of the reaction profile by external electric fields, while simultaneously enabling tractable AIMD

benchmarks.

We compute free energy reaction profiles with both the PB/NN force field and also explicit

AIMD simulations. Potentials of mean force (PMFs) are computed as a function of two coor-

dinates, namely the C–H and O–H (reacting proton) distances, using umbrella sampling. The

umbrella sampling utilized harmonic potentials with a 0.01 au force constant. The C–H and O–H

distances at which the umbrella potentials are centered are described in the Supporting Informa-

tion. Each simulation window was started with an initial configuration from an equilibrated simu-

lation of the previous window. The Weighted Histogram Analysis Method (WHAM) was used in

order to compute the PMF from the umbrella sampling simulations.160 Free energy profiles were

computed for both the isolated reacting complex (two ion system), as well as with the “model”

solvation environment (four ion system). For the two ion system, each window consisted of 40-50

ps simulations, with 5 ps used as equilibration. For the four ion system, the simulations for each

window were run for ∼200 ps, with 10 ps used as equilibration. The AIMD simulations were run at

300K in CP2k, using the same simulation settings as mentioned in the Methods section. The force

field simulations were run using an ASE calculator;161,162 the calculator combined the energies and

forces of the force field expressions, computed using the OpenMM software package,163 and the

neural network energies and forces, which are computed using PyTorch.57 The simulations were

also run at 300K with a Langevin integrator. A 0.005 fs−1 friction coefficient was used, and a 0.5 fs

time step was used to integrate the nuclear equations of motion. The 0.5 fs time step is needed for

good energy conservation with the anharmonic restraining potential used for the Drude oscillators

(discussed in the Supporting Information).164 These simulations were performed in vacuo, as were

the AIMD simulations. A benchmark of the energy conservation of the PB/NN force field for a

NVE simulation of the two-ion system is shown in the Supporting Information Figure S15.
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Figure 2.6: Free energy surfaces for the EMIM+/acetate deprotonation reaction with/without the
“model” solvation environment. PMFs computed from AIMD simulations are shown in a) and c)
for the two ion and four ion systems, respectively. PMFs computed from the PB/NN force field are
shown in b) and d) for the two ion and four ion systems, respectively.
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Figure 2.6a and Figure 2.6b show the free energy reaction profiles of the two ion system as

computed from AIMD and the PB/NN force field respectively; for the two-ion PMF from the force

field, we added an arbitrary shift of 3 kJ mol−1 in order to better compare its features to the AIMD

result. Overall, there is good agreement between the free energy profiles, and the PB/NN force

field predicts the reaction free energy with close to quantitative accuracy as compared to AIMD.

Both PB/NN and AIMD predict a broad minimum basis for the EMIM+/acetate reactants, and a

barrierless transition state for the deprotonation reaction. There is no local minimum corresponding

to the NHC/acetic acid products, and both PB/NN and AIMD predict that at 1.75 Å C–H distance,

the NHC/acetic acid products are ∼ 8-10 kJ/mol higher in free energy than the reactants. There

do exist small discrepancies between the PB/NN and AIMD free energy profiles, in terms of both

the width of the reactant minimum along the C–H distance, and also the center of the reactant

minimum; these discrepancies will be explained after first discussing the solvation effect.

Solvent effects on the reaction profile are analyzed by comparing predicted free energy sur-

faces of the “model solvent” four ion system, to corresponding profiles of the isolated reacting

complex (two ion system). Free energy surfaces for the four ion, model solvent system are shown

in Figures Figure 2.6c and Figure 2.6d as computed from AIMD and with the PB/NN force field

respectively. Comparing Figures Figure 2.6a)-d), several observations are made concerning the

solvent effects on the reaction profile. First, the electrostatic interactions from the solvating ions

broaden the minimum region associated with the reactant species (EMIM+/acetate). This is seen

by comparing e.g. Figure 2.6a) and Figure 2.6c), where the EMIM+/acetate reactant minima (blue

region) is signficantly broader when the reacting complex is solvated by the additional ions (four

ion system, Figure 2.6c). Because the electrostatic interactions with “solvent” are much stronger

for the EMIM+/acetate ions in the “reactant” state compared to neutral NHC/acetic acid molecules

in the product state, there is a substantial shift in the relative reactant/product free energies for the

four ion compared to two ion systems. For example, the NHC/acetic acid products are ∼ 40-50 kJ

mol−1 higher in free energy than EMIM+/acetate reactions in presence of the two “solvating” ions,

whereas the difference was only ∼ 10 kJ mol−1 for the isolated complex (note the difference in
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energy scales between Figures Figure 2.6a,b and Figures Figure 2.6c,d). This qualitative conclu-

sion that carbene formation from EMIM+/acetate ions is destabilized in the presence of solvent,

due to the large solvation energy of the reactants, is intuitive and is expected to be general to any

condensed phase, chemical environment.

The PB/NN force field reproduces the solvation effect on the reaction profile in semi-quantiative

agreement with the AIMD benchmarks. Note that exact quantitative agreement is not expected, for

reasons discussed subsequently. The PB/NN force field predicts similar changes in the reaction

profile with/without solvating ions (Figure 2.6b vs Figure 2.6d) relative to the AIMD benchmarks

(Figure 2.6a vs Figure 2.6c). Although this benchmark is for a “model” solvation environment

consisting of two additional solvating ions, the external electric field on the reacting complex is

large and causes pronounced shifts of the reaction profile and resulting reactant/product relative

free energies. We thus expect that the PB/NN force field should provide comparable accuracy for

predicting solvation effects on the reaction profile in arbitrary condensed phase environments that

exhibit strong electrostatic interactions. Such quantitative predictions would be important and nec-

essary for evaluating the presence of trace, catalytic carbene species in imidazolium-based ionic

liquids. Recall that similar to the EVB framework, the ansatz of the PB/NN force field construction

is that solvent effects enter only through the diagonal Hamiltonian elements corresponding to the

pure diabatic states (Section 2.3.3). Therefore, the accuracy of the PB/NN force field in capturing

the solvent modulation of the reaction profile validates the diabatic decomposition of the force

field, which was parameterized to symmetry adapted perturbation theory.

We finally discuss the subtle quantitative differences between free energy profiles predicted by

the PB/NN force field (Figure 2.6b,d) and AIMD (Figure 2.6a,c). As always, there is the pos-

sibility that discrepancies are due to parameterization deficiencies; note, however, the very high

accuracy of the energetic benchmarks of force field components in Figures Figure 2.2, Figure 2.3,

and Figure 2.4. A more likely source of discrepancy is the fundamental difference in electronic

structure theory: the level of theory between PB/NN and AIMD is consistent only in the transition

state region, but not in the asymptotic region of dissociated reactants/products. The PB/NN force
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field was trained to match (adiabatic) PBE-D3(BJ) energies/forces in the transition state region,

but asymptotically matches SAPT description of intermolecular interactions in reactant/product

regions. Even more subtle is that the EInter,NN
Solute term is parameterized at SAPT0 level of theory,

while force field interactions contributing to ENonbonded,FF
Solute,Solvent were previously parameterized to DFT-

SAPT (Section 2.3.3.3). Thus the asymptotic reactant and product states in the free energy profiles

(Figures Figure 2.6a-d) fundamentally differ in electronic structure description between the PB/NN

and AIMD Hamiltonians. We believe this is the primary reason for why the solvent destabilization

of the carbene products is predicted to be more extreme by PB/NN compared to AIMD. The ques-

tion of which prediction (PB/NN or AIMD) is more accurate requires consideration of the relative

accuracy of PBE-D3(BJ) vs SAPT level of theory, which is beyond the scope of this work.

In future work, it may be profitable to explore other electronic structure choices for parameter-

izing the diabatic (Section 2.3.3.3) and coupling elements (Section 2.3.3.4) of the PB/NN potential.

At the intersection of the pure diabat (reactant/product) and transition state region, the force field

switches from SAPT0 to PBE-D3(BJ) parameterization. Due to differences in these electronic

structure theories, there is no rigorous guarantee that the diabatic state will be strictly higher energy

(or equal) compared to the underlying PBE-D3(BJ) adiabatic description (this would be rigorously

true for equivalent levels of theory). Inspecting the free energy profile of the (two ion) reacting

complex predicted by PB/NN (Figure 2.6b), slight error is observed in the center of the minimum

(blue region) corresponding to the EMIM+/acetate reactant at 1.2 Å C–H distance/1.8 Å O–H dis-

tance. This error is most likely due to the imperfect coupling of SAPT0/PBE-D3(BJ) descriptions

as the force field transitions from the pure diabatic state. Alternative utilization of constrained DFT

for diabatic parameterization would resolve this problem, but would likely sacrifice accuracy for

asymptotic interactions for which SAPT is known to be very accurate.159 It may be that a different

flavor of SAPT, particularly DFT-SAPT, would lead to better coupling of the diabat/transition state

region, and this will be explored in future work.
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2.5 Conclusion

We have described a new approach for developing physics-based/neural network (PB/NN) reactive

force fields with the central goal of predicting solvent effects on reaction free energies with chem-

ical accuracy. This approach follows an ansatz similar to the widely utilized EVB framework, but

proposes novel combination of neural network and physics-based terms that follow a general ab

initio parameterization approach. We have applied this methodology to study the deprotonation

reaction between EMIM+and acetate ions to form NHC and acetic acid, and analyze electric field

modulation of the reaction free energy profile from a “model solvent” environment. Free energy

profiles predicted by PB/NN are in good agreement with AIMD benchmarks, demonstrating that

our PB/NN framework can accurately predict reaction free energy profiles in different chemical en-

vironments. In agreement with physical intuition, we show that the surrounding ionic environment

significantly destabilizes carbene formation relative to the gas-phase, due to the large solvation

energies of the ionic reactant species. Our newly developed PB/NN force field should allow pre-

diction of reaction free energies and equilibrium constants for carbene formation within various

ionic liquid and solvent environments, to evaluate when and if trace amounts of these catalytic

species are present.

While this work has focused on one specific reaction, our PB/NN approach is entirely general

and can be applied to a wide variety of reactions. Additionally, as solvent interactions with the

reacting complex are incorporated through physics-based force field terms, one can readily study

the effects of a large number of different solvents for which force fields either already exist or

can be constructed utilizing well-established methodology. This is the primary advantage of our

PB/NN approach as compared to stand-alone neural network potentials, as solvent effects are not

easily incorporated within neural network potentials in a general way. We have proposed the uti-

lization of symmetry-adapted perturbation theory for parameterizing diabatic states of the PB/NN

force field, as opposed to more traditionally utilized constrained DFT approaches. The advantage

is that SAPT exhibits rigorous connection to intermolecular interaction terms of a force field and is
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highly accurate for describing non-covalent interactions. The disadvantage is the lack of rigorous

connection between SAPT and the variational approach (DFT) used to parameterize the adiabatic

reaction surface; however in this work, such introduced error is found to be small. It is possible that

different flavors of SAPT, particularly DFT-SAPT may enhance accuracy and this will be explored

in future work.

There are two aspects of our training data generation that will require greater attention when

developing PB/NN force fields for more complex reactions. The first is adequately sampling the

transition state region of the reaction surface; for the deprotonation reaction studied in this work,

this was straightforward (direct AIMD) due to the lack of reaction barrier. However, reactions

exhibiting significant barriers would require biased sampling approaches (with AIMD) to generate

training data spanning the entire reaction coordinate, particularly in the transition state region. The

second consideration is the total amount of training data required for full force field parameteri-

zation. Over one million quantum chemistry calculations were utilized for training, with the vast

majority used for neural network parameterization. A more efficient approach would focus the

training data by identifying the regions of configuration space where the neural networks exhibit

the most uncertainty, using e.g. clustering or active learning approaches.[165–167] It is important

to note however that this is a general issue for any neural network potential; in fact the issue is

actually simplified for our PB/NN framework, as all of the employed neural networks are short-

range, and confined to minimal regions of phase space. We believe that restricting neural networks

to small regions of phase space, and utilizing physics-based terms for asymptotic intermolecular

interactions, is a robust approach for incorporating machine learning techniques within force field

development.
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CHAPTER 3

N-HETEROCYCLIC CARBENE FORMATION IN THE IONIC LIQUID

[EMIM+][OAC−]: ELUCIDATING SOLVATION EFFECTS WITH REACTIVE

MOLECULAR DYNAMICS

The following is reproduced from Ref. [168]

3.1 Abstract

Recent experimental and theoretical work has debated whether N-heterocyclic carbenes (NHCs)

are natively present in imidazolium-based ionic liquids (ILs) such as 1-ethyl-3-methylimidazolium

acetate ([EMIM+][OAc−]) at room temperature. Since NHCs are powerful catalysts, determining

their presence within imidazolium-based ILs is important, but experimental characterization is

difficult due to the transient nature of the carbene species. Because the carbene formation reaction

involves acid-base neutralization of two ions, ion solvation will largely dominate the reaction free

energy, and thus must be considered in any quantum chemical investigation of the reaction. To

computationally study the NHC formation reaction, we develop physics-based, neural network

reactive force fields to enable free energy calculations for the reaction in bulk [EMIM+][OAc−].

Our force field explicitly captures the formation of NHC and acetic acid by deprotonation of a

EMIM+ molecule by acetate, and in addition describes the dimerization of acetic acid and acetate.

Using umbrella sampling, we compute reaction free energy profiles within the bulk IL and at

the liquid/vapor interface to understand the influence of the environment on ion solvation and

reaction free energies. Compared to reaction of the EMIM+/OAc− dimer in the gas phase, the

bulk environment destabilizes formation of the NHC as expected, due to the large ion solvation

energies. Our simulations reveal a preference for the product acetic acid to share its proton with

an acetate in solution and at the interface. We predict NHC content in bulk [EMIM+][OAc−] to

be on the order of parts-per-million (ppm) levels, with order of magnitude enhancement of NHC
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concentration at the liquid/vapor interface. The interfacial enhancement of NHC content is due to

both poorer solvation of the ionic reactants as well as solvophobic stabilization of the neutral NHC

molecule at the liquid/vapor interface.

3.2 Introduction

N-heterocyclic carbenes (NHCs) are important catalysts in organic chemistry.117,169,170 The synthe-

sis of the first isolable NHC by Arduengo and coworkers171–173 has led to an enormous number of

applications in diverse fields, such as heterogenous catalysis,174–176 formation of metal clusters and

nanoparticles,177–183 development of pharmaceutical compounds,184–186 organocatalysis116,187–190

and more.117,170,191 While a variety of methods exist for NHC synthesis, deprotonation of imi-

dazole or imidazolium cations represents one of the most common procedures.192,193 In addition

to being precursors to NHCs, imidazolium cations are very commonly the cationic component of

room-temperature ionic liquids (ILs).194–199 Because ILs are utilized both as solvents in organic

synthesis118,200,201 and electrolytes in electrochemical applications,196 the formation/presence of

NHCs in such ILs would have important consequences for catalysis, reactivity, and stability.202

The presence of NHCs in ILs could be both beneficial (catalysis) or detrimental (electrolyte degra-

dation), but regardless is essential to characterize for mechanistic determination.

As imidazolium cations have high pKa values (∼22),198 formation of NHCs from these pre-

cursors typically requires addition of medium to strong bases203,204, electrochemical reduction,205

and/or elevated temperatures133,206,207. Furthermore formation of NHCs from imidazolium cations

and base must overcome the large solvation energies of the ionic reactants, the magnitude of which

may depend on chemical environment. However, recent work suggests spontaneous NHC for-

mation in imidazolium acetate ILs, despite the acetate ion being only a weak/mild base. For ex-

ample, several NHC-catalyzed reactions have been found to occur in the ILs [EMIM+][OAc−]

and [BMIM+][OAc−], such as benzoin condensation,125 formation of imidazol-2-thiones,208 poly-

merization of epoxy resins209 and others, which provides indirect evidence.126,127,210 While mass

spectrometry measurements show existence of NHCs in vaporized samples of [EMIM+][OAc−]
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and related ILs,211,212 the vapor phase may not be representative of the liquid due to the expected

large contribution of ion solvation to the reaction free energy. No direct experimental observation

of NHC formation in the liquid phase has been made, as their inherently short lifetime makes such

characterization challenging. Chiarotto et al. [129] performed cyclic voltammetry experiments and

observed an oxidation peak corresponding to a NHC in [BMIM+][OAc−] at elevated temperatures

(120 ◦C), but it was noted that the electrode itself may act as a carbene trap and thus influence the

reaction.123 The lack of direct evidence has led to several works questioning the extent to which

free carbenes exist in these systems.119,123,124,213 Alternative reaction pathways that do not require

NHC content have been proposed for many of the aforementioned reactions, casting further doubt

on whether they are spontaneously formed in these ILs at ambient conditions.213

Various computational/theoretical methods have been employed in order to rationalize these

experimental observations. Reaction free energies calculated using implicit solvent models for

both [MMIM+][OAc−] and [EMIM+][OAc−] indicate that forming the NHC is unfavorable for

dielectric constant values corresponding to these ILs.214,215 Additionally, Gehrke et al. [124] cal-

culated a free energy profile of deprotonation of EMIM+ by acetate using ab initio molecular

dynamics (AIMD) simulations of a 26 ion pair [EMIM+][OAc−] system. The calculated free

energy (26 kcal mol−1) indicates that the formation of NHCs is minimal at room temperature. Ad-

ditional AIMD simulations of [EMIM+][OAc−] from Brehm et al. [216] seemed to indicate that

the deprotonation of EMIM+ by acetate does not occur readily; however, further simulations of

a free NHC in [EMIM+][OAc−] showed an interesting C· · ·H–C bond between the carbene car-

bon and the EMIM+ methyl group that may stabilize NHCs in solution.122 It has been suggested

that the presence of impurities or gas molecules such as CO2 may influence carbene formation in

[EMIM+][OAc−] and similar ILs, due to the possible formation of adducts.217

In this work, we further investigate carbene formation in the [EMIM+][OAc−] IL through re-

active molecular dynamics simulations. [EMIM+][OAc−] is a common ionic liquid, that has been

widely studied for use in biomass processing,218–221 among other applications. The motivation to

develop a reactive force field to study NHC formation in [EMIM+][OAc−] is based on the expected
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importance of ion solvation energetics on the reaction free energy, and the corresponding difficulty

of adequate statistical sampling of the viscous ionic liquid environment. For example, our devel-

oped approach enables much enhanced statistical sampling compared to alternative computational

approaches such as ab initio molecular dynamics (AIMD) or hybrid quantum mechanics/molecular

mechanics (QM/MM) methods.14,222 Our reactive force field combines physics-based expressions

with neural networks and is termed “PB/NN”,81 and constructed with an ansatz similar to the Em-

pirical Valence Bond (EVB) approach.47 In previous work,81 we demonstrated the ability of the

PB/NN force field to capture solvation effects on the deprotonation of EMIM+ by acetate, but this

prior work was limited to one reactive ion pair and only ion clusters (not condensed phase environ-

ments) were studied. In this work, we extend the PB/NN approach for computing NHC formation

reaction free energies in the bulk [EMIM+][OAc−] ionic liquid.

Gehrke et al. [124] have previously investigated the deprotonation of EMIM+ by acetate using

AIMD simulations. This and studies of related systems show that there are a variety of possi-

ble proton transfer processes, including shuttling of the proton between acetic acid and acetate

molecules.223,224 In [EMIM+][OAc−], the acetic acid formed from the deprotonation of EMIM+

may share the proton with other acetate ions, with the acetic acid/acetate “dimer” being lower

in free energy than a bare acetic acid molecule. To this end, our PB/NN force field is explicitly

designed to model both of the following reactions:

EMIM+ +OAc− −−⇀↽−− NHC+ AcOH (3.1)

AcOH +OAc− −−⇀↽−− [AcO− · · ·H+ · · ·OAc−] −−⇀↽−− OAc− +AcOH (3.2)

Equation 3.2 takes into account the possible sharing of the proton between acetate molecules. We

note that our PB/NN force field does not explicitly model possible deprotonation of EMIM+ by the

newly formed NHC, since the purpose of the study is to investigate the initial carbene formation.

In addition to the bulk [EMIM+][OAc−] ionic liquid, we also investigate the NHC forma-

tion reaction at the ionic liquid/vapor interface. The motivation is that, since ion solvation is an
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important contribution to the reaction free energy, the equilibria might be significantly altered

(shifted towards NHC product) due to decreased solvation at the liquid/vapor interface relative to

the bulk liquid. Indeed, prior work has found that a variety of reactions involving ions may have

increased propensity to occur at the liquid/vapor interface,225–227 and the liquid/vapor interface will

have pronounced importance for organic synthesis conducted in ionic liquid microdroplets.228,229

Whether there is enhanced formation of NHCs in [EMIM+][OAc−] at the liquid/vapor interface is

of fundamental interest in light of recent reports of accelerated reactions in microdroplets and thin

films,230–236 and thus may have practical importance for applications involving this IL.

Our free energy simulations show two minima in the proton transfer reaction profile, corre-

sponding to the ionic reactants and the NHC product state with the proton shared as an acetic

acid/acetate (AcOH/OAc−) dimer. Largely due to the solvation energies of the reactant ions, the

computed reaction free energy is endergonic by ∼ 70 kJ mol−1 in the bulk ionic liquid. We com-

pare the proton transfer reaction in the bulk to the analogous reaction in the EMIM+/(OAc−)2 ion

trimer, which is the smallest cluster enabling formation of both the NHC species and AcOH/OAc−

dimer with shared proton. This comparison allows elucidation of both transition state geometric

effects and long-range solvation effects on the reaction free energy profile. We additionally com-

pute the proton transfer reaction at the [EMIM+][OAc−] liquid/vapor interface, and predict order

of magnitude enhancement of interfacial NHC resulting from solvation modulation of the interfa-

cial environment. After describing in detail the computational PB/NN reactive force field approach

in Section 3.3, our simulation results are presented in Section 3.4.

3.3 Methods

We describe our 3x3 multistate PB/NN Hamiltonian utilized to simulate both reactions in Equa-

tion 3.1 and Equation 3.2 in the bulk ionic liquid, and discuss the energy partitioning of matrix

elements. We then briefly discuss functional forms and parameterization approach, building off of

our previous work.81. Finally, we detail the algorithms and software implementation utilized for

our reactive molecular dynamics simulations and free energy sampling.
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3.3.1 Multistate PB/NN Hamiltonian

We utilize a multistate Hamiltonian in order to simulate both reactions in Equation 3.1 and Equa-

tion 3.2 in the condensed phase; note that similar multistate Hamiltonians have been constructed

in other EVB-like force fields for reactive molecular dynamics simulations.49,52–54,102,104,106,237–240

Our multistate PB/NN Hamiltonian used here is of 3x3 form, with matrix elements composed of

both physics-based terms and neural networks as will be discussed:

HPB/NN =


H11 H12 H13

H21 H22 H23

H31 H32 H33

 (3.3)

Following the EVB ansatz,42,47,50,52 the diagonal terms correspond to diabatic states that have

direct chemical interpretation as reactant and product species. In this case, the three different

diabatic states correspond to different chemical bond topologies involving the single acidic/reactive

proton, as schematically depicted in Figure 3.1. The off-diagonal elements couple the diabatic

states to mediate the chemical reaction(s), in this case proton transfer, between the reactant(s) and

product(s). Note that in the ionic liquid [EMIM+][OAc−], while every EMIM+ cation has an acidic

proton that in principle could react, only a single tagged EMIM+ cation is considered “reactive” in

the simulation, along with its two closest acetate ions, and this choice defines the reacting complex

and diabatic states (Figure 3.1).

Our parameterization procedure for the multi-state Hamiltonian utilizing both physics-based

and neural network terms has been described in our prior work.81,82 The reader is referred to the

previous publication for more in-depth discussion,81 while we summarize the key aspects of the

methodology here. The diagonal elements of the Hamiltonian Hii are represented by the following

energy partitioning

Hii = EMorse
Solute + EIntra,NN

Solute + EInter,NN
Solute + EBonded,FF

Solvent + ENonbonded,FF
Solute,Solvent + Eelectronic

Solute (3.4)
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Figure 3.1: Depiction of the chemical bond topology for the three diabatic states of the reacting
complex. The dashed ovals depict the molecule associated with the reacting proton in each diabatic
state.

In Equation 3.4, each energy term is labeled according to whether it applies to the reacting com-

plex (depicted in Figure 3.1 and referred to as the “Solute”) or to non-reacting solvent molecules

(labeled as “Solvent”). Equation 3.4 employs both physics-based terms and neural networks. The

physics-based terms are: EMorse
Solute is a Morse potential modeling bonds involving the reactive pro-

ton (which can break and form); EBonded,FF
Solvent are standard harmonic bond, angle, and dihedral

terms144,241 describing intramolecular flexibility of solvent molecules; ENonbonded,FF
Solute,Solvent encompasses

physics-based, nonbonded interactions between solute/solute, solute/solvent, and solvent/solvent

molecules. While in principleENonbonded,FF
Solute,Solvent could consist of generic Coulomb plus Lennard-Jones

terms using parameters from standard force fields, in our implementation we utilize the SAPT-FF

force field149,242 parameterized on the basis of symmetry-adapted perturbation theory (SAPT), so as

to be consistent with our ab initio diabatization scheme (vide infra). The constant term Eelectronic
Solute

is the electronic energy of the non-interacting Solute molecules in the reacting complex, for the

particular chemical bond topology of the diabatic state (and minimum energy molecular geome-

tries).

The two remaining terms in Equation 3.4, EIntra,NN
Solute and EInter,NN

Solute , are described by neural

networks. EIntra,NN
Solute is composed of energetics from monomer-based neural networks, one for

each molecule in the reacting complex, accounting for the intramolecular vibrational energetics.
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These neural networks replace bonded force field terms for these molecules (e.g. bond/angle/dihedral

potentials), the motivation being that the latter analytic expressions are generally not flexible

enough to describe intramolecular energetics with chemical accuracy, particularly near a transition

state and far from the equilibrium monomer geometries. Note that EIntra,NN
Solute describes all non-

dissociative, intramolecular vibrations, while bonds involving the reactive proton are described by

the Morse potential, EMorse
Solute (the motivation for this partitioning is to remedy asymptotic instabili-

ties of the neural networks, as discussed in our previous work81). The final term EInter,NN
Solute is com-

posed of energetics from short-range, dimer-based neural networks, that account for breakdown

of the physics-based interaction terms ENonbonded,FF
Solute,Solvent at very close monomer/monomer distances.

Note that the diabatic decomposition of the Hamiltonian (Equation 3.3) inherently leads to inac-

curate intermolecular interactions at unphysically close distances for one or more of the diabats,

for which a standard force field will exhibit uncontrolled behavior/divergence. EInter,NN
Solute is meant

to correct this divergent behavior, without modifying long-range physics-based interactions (e.g.

electrostatics, induction, dispersion), and is discussed in detail in our previous work.81

The off-diagonal terms of the Hamiltonian (Equation 3.3), Hij , are symmetric (Hij = Hji)

and describe the coupling between diabatic states along the reaction coordinate. While prior EVB

approaches typically have employed analytic functional forms for these off-diagonal elements,47,137

we choose to utilize neural networks for the Hij to provide a more versatile description of the

diabatic coupling, and enable accurate rendering of the adiabatic potential energy surface (PES)

for general dimensionality. The neural networks utilized for Hij depend on coordinates of the

dimer (acid/base) for which the bond topology changes between diabats i and j. Note that there is

no dependence ofHij on the solvent; this is in line with the ansatz of previous EVB approaches,46,47

and means that solvent interactions with the reacting complex are only explicitly incorporated into

the diagonal terms. The success of this ansatz for capturing solvent modulation of reaction free

energies has been previously demonstrated by others,42,47 as well as in our recent work.81
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3.3.2 PB/NN Parameterization and Neural Network Architecture:

The terms EMorse
Solute , EIntra,NN

Solute , EBonded,FF
Solvent , ENonbonded,FF

Solute,Solvent , and Eelectronic
Solute have been parameterized

in our previous work,81 and will only be briefly discussed. The monomer neural networks con-

stituting EIntra,NN
Solute utilize the SchNet architecture,61 and are trained to AIMD generated data at

the PBE-D3(BJ)/aug-cc-pVTZ level of theory, as consistent with our prior work.81 We note that

prior studies have benchmarked DFT functionals for their ability to accurately model the electronic

structure and reactivity of various carbene species.243–245 In this work, we have refined the origi-

nal parameterization of EIntra,NN
Solute terms to better capture the anti configuration of acetic acid in

the condensed phase (see Supporting Information). EBonded,FF
Solvent handles all bonded terms within

the solvent. The EMIM+ parameters are taken from prior work,147 and the acetate parameters

were fit using the ForceBalance package.56 These force field parameters can be found within the

Supporting Information. ENonbonded,FF
Solute,Solvent handles nonbonded intramolecular interactions in solvent

molecules, all intermolecular solvent-solvent and solvent-solute interactions, and all asymptotic

intermolecular interactions between solute molecules. We use the SAPT-FF force field for this

term,242 as parameterized previously.81 The final term in the diagonal Hamiltonian elements (Equa-

tion 3.4) that needs to be parameterized is EInter,NN
Solute ; as mentioned, this is effectively a correction

to the intermolecular interaction at small separation distances. We utilize the AP-Net architec-

ture for these neural networks, as AP-Net has been explicitly designed for modeling intermolec-

ular interactions.78 EInter,NN
Solute is then trained to the difference between SAPT0 ab initio data159

and the ENonbonded,FF
Solute,Solvent energy (SAPT-FF) for dimer configurations. For this fitting, the so-called

“delta Hartree Fock” term is not included, so that the energy is non-variational and purely based

on intermolecular perturbation theory. Thus the “diabatization” defining the diagonal elements

(Equation 3.4) is based on perturbation theory, and the pros/cons of this approach are discussed

in our previous work,81 with elaboration provided in the Supporting Information. In this work,

we develop new parameterization for the acetic acid/acetate dimer interaction in EInter,NN
Solute with

comprehensive detail given in the Supporting Information. Eelectronic
Solute is the gas phase energy of

the isolated monomers within each diabat as computed previously at PBE-D3(BJ)/aug-cc-pVTZ
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Figure 3.2: Free energy surfaces for the proton transfer reaction between acetic acid and acetate
ion, as computed from a) AIMD and b) PB/NN simulations. The free energy is plotted as a function
of the distances between the acidic proton and closest oxygen atoms of the two acetate ions.

level of theory.81

For the off-diagonal elements of the Hamiltonian (Equation 3.3), we utilize neural networks

consisting of a modified AP-Net architecture.78,81 For this work, the specific off-diagonal element

Hij mediating the acetic acid/acetate proton transfer was trained (i.e. coupling the diabats involv-

ing acetic acid bond topologies), while the other off-diagonal elements were based upon previ-

ous work.81 For training, PBE-D3(BJ)/aug-cc-pVTZ energies and forces for the (gas-phase) acetic

acid/acetate dimer were generated along the (adiabatic) proton transfer reaction coordinate. The

off-diagonalHij element is fit through minimization of the appropriate 2x2 subblock of the Hamil-

tonian (Equation 3.3) to the ab initio data for the adiabatic (gas-phase) reaction surface. Details

of the ab initio data generation, neural network architecture and parameters, and fitting approach

are given in the Supporting Information. Figure S2 shows the final force field fit to the DFT PES,

with an MAE of 0.81 kJ mol−1 for the total test set. As a further test for the fidelity of modeling

the acetic acid/acetate proton transfer reaction, we computed reaction free energy surfaces using

umbrella sampling, with both AIMD and the PB/NN reactive force field. Computational details are

given in the Supporting Information. The resulting free energy surfaces are shown in Figure 3.2,

with the trained PB/NN predictions in excellent agreement with AIMD.
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An important aspect of the method is that, for each neural network involved in modeling the

atoms in a dissociating bond (this includes EIntra,NN
Solute neural networks for EMIM+ and acetic

acid, the EInter,NN
Solute and Hij neural networks), the output is multiplied by a Fermi-Dirac damping

function (Equations S1 and S5) that takes as input the value of the respective dissociating bond

distance. For the off-diagonal terms, Hij , the neural network(s) are multiplied by two Fermi-

Dirac functions, as there are two possible dissociating bonds for the reactant and product. As

neural networks are incapable of extrapolation outside of the training set, the damping functions

restrict each neural network output to a well-defined region of phase space, preventing uncontrolled

predictions. The specific details of the damping functions have been slightly modified from our

previous work,81 as discussed in the Supporting Information.

We finally note the pros/cons of our choices for functional form of the Hamiltonian matrix el-

ements in Equation 3.3. Our PB/NN model incorporates both a finer degree of energy partitioning

and more complex terms (e.g. neural networks) compared to more standard EVB models,47 which

makes parameterization more complex/tedious and requires a large number of ab initio calculations

(vide infra). The benefit of the added complexity/neural networks is the versatile, high-accuracy

rendering of both diabatic and adiabatic PES, in general dimensionality, relative to the underlying

ab initio PES. This enables direct application of the Hamiltonian (Equation 3.3) for molecular dy-

namics simulation in the condensed phase. For example in both this, and previous work,81 we show

that our PB/NN approach produces an adiabatic PES with chemical accuracy relative to the under-

lying density functional theory (DFT), ab initio description, and enables prediction of reaction free

energies in different chemical environments in quantitative agreement with AIMD simulations.81

We include timings for the various terms in the PB/NN Hamiltonian in the Supporting Information.

3.3.3 Reactive Molecular Dynamics Simulations

Utilizing our multistate PB/NN Hamiltonian (Equation 3.3), reactive molecular dynamics simu-

lations are conducted to compute reaction free energies in bulk [EMIM+][OAc−] and at its liq-

uid/vapor interface. We utilize a hybrid software implementation, with both OpenMM163 and Py-
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Torch57 libraries used to calculate energies/gradients of the different Hamiltonian matrix elements

(Equation 3.3) as defined by their energy partitioning (Equation 3.4). The adiabatic atomistic forces

are obtained from the ground state eigenvector of Equation 3.3 and derivatives of each Hamiltonian

matrix element, based on the Hellmann-Feynman theorem.81 The ASE calculator is utilized to run

the MD simulations,81,161 with Plumed246 utilized for umbrella sampling simulations. Note that

all workflow is wrapped in Python, employing the Python APIs of these software libraries. Our

implementation can be found on our github site and in the Supporting Information.162

Simulations were run for three different systems/environments. The first system is the isolated

reaction complex, consisting of one EMIM+ cation and two acetate anions in the gas-phase without

periodic boundary conditions. The second system contains 40 EMIM+/acetate ion pairs and is

designed to represent the bulk liquid. Periodic boundary conditions were used, with cubic box

dimensions of 22.08 Å for each side. One EMIM+ cation is randomly selected to be “reactive”,

with the two closest acetate anions defining the reacting complex (Figure 3.1). The third system

that we simulate is the [EMIM+][OAc−], vapor/liquid interface. A vacuum gap is added to the

previous bulk system, creating a new simulation box with dimensions of 22.08 Å x 22.08 Å x 66.24

Å. For the latter vapor/liquid interface system, we utilize a standard 3D Ewald/PME treatment of

electrostatics, without slab correction.247 This is because the slab system is symmetric, with no net

average dipole moment (and vacuum gap of ∼ 44 Å) for which any such slab correction is expected

to be insignificant.247,248

The reacting complex is made up of one EMIM+ and two acetate anions. We use umbrella

sampling with MD simulations in order to calculate free energy profiles encompassing the two dif-

ferent proton transfer processes shown in Equation 3.1 and Equation 3.2. The collective variables

utilized for umbrella sampling are

CV1 = rCH − rOHmin
(3.5a)

CV2 = rOHmin
− rOHmin,2

(3.5b)
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The CVs are differences of distances: The first CV (Equation 3.5a) is the difference between

the EMIM+carbon-reactive proton distance (rCH) and the shortest acetate oxygen-reactive proton

distance (rOHmin
). The second CV (Equation 3.5b) is the difference between the shortest acetate

oxygen-reactive proton distance (rOHmin
) and the second shortest acetate oxygen-reactive proton

distance (rOHmin,2
). All acetate oxygens are considered in the rOH values computed in Equation 3.5,

with the condition that the O atom in rOHmin,2
must be on a different molecule than the O atom in

rOHmin
. The reaction (different protonation states of all three molecules) is then sampled by apply-

ing umbrella potentials in the 2D space spanned by these CVs. Each umbrella potential (1
2
kx2) uses

a 200 kJ/mol/Å2 force constant. For all systems/environments, umbrellas were applied spanning

values for CV1 ranging from -1.0 to 3.5 Å, increasing in increments of 0.5 Å. The value of CV2

ranged from -2.5 to 2.5 Å, increasing in increments of 0.25 - 0.3 Å. This results in approximately

∼ 200 windows per umbrella sampling simulation, and the WHAM procedure is subsequently

used to construct 2D PMFs from each set of umbrella sampling simulations.160 Each window is

simulated for 40 ps in the NVT ensemble at 300K, controlled by a Langevin thermostat with fric-

tion coefficient of 1 ps−1. The simulation time step is set to 0.5 fs for all simulations. For the

liquid and liquid/vapor interface simulations, particle mesh Ewald (PME) is used for long-range

electrostatics,36 and van der Waals interactions are truncated/cutoff at 1.1 nm, as necessitated by

the system box sizes. Drude oscillators are utilized to model polarization within the ENonbonded,FF
Solute,Solvent

terms, with Drude oscillator positions (adiabatically) optimized using the “DrudeSCFIntegrator” in

OpenMM.163 An anharmonic restraining potential is utilized to prevent Drude oscillator divergence

at short contact distance, as described by Huang et al.154 For the liquid/vapor interface simulations,

we apply a restraint of approximately 20 kJ mol−1 to the center of mass of the reacting complex,

centered at the Gibbs dividing surface (Figure S9).

We finally discuss practical issues that inherently arise from the creation of a “reacting com-

plex” or “active zone” in the liquid simulations. In our case, the “reacting complex” is defined

as the specified EMIM+ ion and its two closest acetate anions. During the simulation, it is of

course possible for this complex to change identity if a solvent acetate ion displaces one of the two
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closer acetate ions in the EMIM+ coordination, so that the reacting complex must be redefined as a

function of simulation time. This is analogous to similar issues dealt with in QM/MM simulations

of solution-phase chemical reactions, for which “adaptive” QM/MM schemes have been devel-

oped.39–41,249 In adaptive QM/MM schemes, the goal is to switch between quantum mechanical

and molecular mechanics descriptions for molecules moving in/out of the active zone, while min-

imizing introduction of spurious forces. Because definition of an active zone is usually distance

based, discontinuities will arise at the boundary due to application of different Hamiltonian terms

in the inner and outer regions. If a smoothing or switching function is introduced as an attempted

remedy, then a spurious force term will arise from the switching function.

We describe how we deal with the issue of redefining the reacting complex as a function of sim-

ulation time for our PB/NN model. If the identity of acetate ions changes in the reacting complex

(e.g. from a solvent acetate ion displacing a closer coordination acetate ion), the PB/NN Hamil-

tonian is “reinitialized” to the new reacting complex identity. As discussed below, each “reini-

tialized” term will have different effects on the energy conservation for the PB/NN Hamiltonian.

It is important to note that during such “reinitialization”, the PB/NN Hamiltonian (Equation 3.3)

has essentially collapsed to a 2x2 matrix, in terms of its description of the adiabatic ground state.

This is because the acetate ions that switch in/out of the reacting complex are sufficiently far away

from the acidic proton that the corresponding protonated diabatic state is very high in energy (due

to the Morse potential) relative to the other diabatic states. This minimizes adiabatic force dis-

continuities, as discontinuities in a (high energy) diabat may not propagate to the adiabatic forces.

For example, switching the Morse potential (with a harmonic bond) and off-diagonal coupling

Hij applied to different acetate ions during “reinitialization” should have little-to-no effect on the

adiabatic forces due to the mentioned rationale.

Force discontinuities will, however, arise from the intramolecular energetic terms of the acetate

ions. This is because the acetate ions in the reacting complex are modeled with a neural network

(EIntra,NN
Solute ), while solvent acetate ions are modeled with a standard force field (EBonded,FF

Solvent ) for

these energetics. There will thus be a jump/discontinuity in energy/forces when acetate ions are
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switched between these models, an issue that cannot be straightforwardly corrected with a smooth-

ing/switching function (which would introduce spurious forces). We thus apply the neural network

description for intramolecular energetics (EIntra,NN
Solute ) to a broader set of acetate ions (specifically

the 6 closest acetate ions to the acidic proton) than just the two acetate ions in the reacting com-

plex. When one of the acetate ions previously considered a solvent molecule moves into the react-

ing complex, this term thus does not need to be reinitialized. We find that applying the EIntra,NN
Solute

term to the 6 acetate molecules closest to the reacting EMIM+ is sufficient for ensuring no acetate

molecule with the EBonded,FF
Solvent intramolecular energy description diffuses into the reacting complex

during the timescale of our simulations.

More details for the “reinitialization” of the reacting complex, and subsequent effects on en-

ergy conservation, are discussed in the Supporting Information (note there is an effect from the

EInter,NN
Solute terms, as discussed in the SI). Energy conservation is the rigorous test for a conserva-

tive forcefield implementation (i.e. no cutoffs, jumps/discontinuities, drift), and we thus we run

PB/NN simulations in the NVE ensemble to benchmark the above treatment/approximations. En-

ergy conservation benchmarks are shown in Figures S3-S5 in the Supporting Information. We do

observe energy jumps of order ∼ 10 kJ mol−1, which we note are most likely due to switching

the EInter,NN
Solute terms. In this regard, there are two important points to note: First, the magnitude of

these jumps are much smaller than typical energy fluctuations caused by an NVT thermostat. Sec-

ond, the total energy drift is comparable to that of a baseline (non-reactive) OpenMM simulation,

as limited by energy drift from the Drude oscillators (imperfect convergence). For these reasons,

it is expected that our simulation predictions for reaction free energies and other thermodynamic

properties are largely unaffected by this issue.

3.4 Results and Discussion

In Section 3.4.1, we first compare the free energies for the proton transfer of EMIM+/OAc− dimer

and EMIM+/(OAc−)2 trimer in the gas phase, and then analyze the proton transfer reaction in

the bulk [EMIM+][OAc−] ionic liquid. In Section 3.4.2, we analyze the proton transfer reaction
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occurring at the [EMIM+][OAc−] ionic liquid/vapor interface, and compare/contrast interfacial

solvation effects relative to solvation in the bulk [EMIM+][OAc−] ionic liquid.

3.4.1 Proton Transfer Free Energies for EMIM+/OAc−, EMIM+/(OAc−)2, and Bulk

[EMIM+][OAc−] Ionic Liquid

Because proton transfer between EMIM+ and OAc− is substantially influenced by the solvation

energies of the ions, it is insightful to analyze how the proton transfer free energy changes from

gas-phase ion clusters (dimers, trimers) to the bulk ionic liquid. We have previously computed

the proton transfer free energy for the EMIM+/OAc− dimer in the gas phase.81 Here we compute

the corresponding reaction free energy for the EMIM+/(OAc−)2 trimer (using the extended 3x3

Hamiltonian, Equation 3.3), and compare the dimer/trimer reaction free energies in Figure 3.3.

The umbrella sampling procedure utilized for free energy calculations of the dimer is the same as

in our prior work and is detailed in the Supporting Information.

Figure 3.3a shows the proton transfer free energy for EMIM+/OAc− dimer, as a function of

CVs “rCH” and “rOHmin
”. Figure 3.3b shows the proton transfer free energy for the EMIM+/(OAc−)2

trimer, as a function of the CVs defined in Equation 3.5. The “R1” and “P1” labels in both Figures

Figure 3.3a and Figure 3.3b correspond to the points of the profile in which the reactant and prod-

uct in Equation 3.1 are formed, while the “P2” label in Figure 3.3b corresponds to the AcOH/OAc−

dimer with shared proton configuration (Equation 3.2). It is important to note that the free energy

scales of Figure 3.3a and Figure 3.3b are very different; the proton transfer for the EMIM+/OAc−

dimer is relatively isoenergetic, so that Figure 3.3a is plotted with a narrow free energy range (∼

25 kJ mol−1). In contrast, the additional ion in the EMIM+/(OAc−)2 trimer complex modulates

the proton transfer such that the equilibrium is substantially shifted towards ionic reactants, and

correspondingly the free energy profile in Figure 3.3b encompasses a much larger range (∼ 160 kJ

mol−1).

For the gas-phase EMIM+/OAc− dimer, proton transfer to form the carbene species occurs

rapidly, on a thermal energy scale (≤ 10 kJ mol−1). Figure 3.3a shows a broad low energy basin
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for R1 (EMIM+/OAc− ) at short rCH distances (∼ 1.1 Å) and longer rOH,min distances (≥ 1.25

Å). The formation of P1 (NHC/AcOH) at rCH = 1.75 Å and rOH,min = 1.0 Å is essentially a

barrierless reaction for the EMIM+/OAc− dimer, with a small free energy increase of ∼ 10 kJ

mol−1. At this point, there is a stabilizing O–H· · ·C hydrogen bond between the formed NHC and

acetic acid, and there is an accompanied increase in free energy as the rCH distance increases and

this hydrogen bond is broken. Rapid proton transfer converts the EMIM+/OAc− dimer between

the two different protonation state topologies on ∼ ps timescales, as observed previously in AIMD

simulations.81

In contrast, proton transfer to form the carbene species incurs a significantly higher free energy

cost for the EMIM+/(OAc−)2 gas-phase trimer, as shown in Figure 3.3b. As will be discussed,

this is due to the “solvation” energy of the ionic reactants due to the additional acetate anion in

the EMIM+/(OAc−)2 complex. The reaction in Equation 3.1 can proceed with either acetate in

the reacting complex, so we show two labels that correspond to P1. A value of 0 on the y-axis of

Figure 3.3b indicates the proton is equidistant to the acceptor oxygen on both acetate molecules,

while positive or negative values indicate that one acetate molecule is closer to the proton than the

other. Similar to the dimer system, the trimer global free energy minimum corresponds to the ionic

reactants (i.e. Figure 1 panel 1). As the minimum free energy state is located at x-axis values of

∼ −1 Å and a broad range of values along the y-axis, there appears to be little preference for the

specific orientation of the acetates with respect to the EMIM+ ring; rather, the preference is for

each species in the reacting complex to remain ionic, with substantial electrostatic stabilization.

The minimum free energy pathway from R1 to P1 proceeds along y-axis values ≥ 2 and ≤ −2 in

Figure 3.3b, indicating Reaction Equation 3.1 is further inhibited if the nonreacting acetate is too

close to the EMIM+ and OAc− engaged in the deprotonation reaction. The favorable electrostatic

interactions with the “spectator” acetate anion leads to a free energy cost of ∼ 90 kJ mol−1 to form

the neutral products (P1) from the ions, which is substantially larger than for the gas phase dimer.

Figure 3.3b shows that the proton transfer within the EMIM+/(OAc−)2 trimer proceeds through

a transition state, before reaching the local free energy minimum at P2 corresponding to the NHC
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species and AcOH/OAc− dimer with shared proton. The free energy of this NHC “product” state

(P2) is ∼ 70 − 80 kJ mol−1 higher than the EMIM+/(OAc−)2 ionic reactant state. The transition

state occurs in a region between P1 and P2 with a configuration depicted by simulation snapshots

in Figure S12. At the transition state, the nonreacting “spectator” acetate is oriented above the

plane of the imidazolium ring and hydrogen bonded to one of the ring nonreactive protons, as the

formed NHC/AcOH engage in hydrogen bonding (Figure S12c and Figure S12d). The transition

state between P1 and P2 has a relative free energy of 130 kJ mol−1, which is caused by unfavorable

geometries initiating the formation of the AcOH/OAc− dimer close to the NHC ring. The local

free energy minimum at P2 corresponding to the NHC species and AcOH/OAc− dimer product

only occurs when the distance between the AcOH/OAc− dimer is sufficiently far away from the

NHC ring.

There are two major takeaways from comparing the gas-phase, proton transfer reactions for the

EMIM+/OAc− dimer and EMIM+/(OAc−)2 trimer. First, there is a clear influence of “solvation”

energy in stabilizing the ionic reactants ( EMIM+ and OAc− species) relative to carbene product

(NHC and AcOH species). With the additional “spectator” OAc− anion in the EMIM+/(OAc−)2

trimer, the NHC products “P1” are shifted roughly ∼ 80 kJ mol−1 higher in free energy, relative

to the similar reaction coordinate for the EMIM+/OAc− dimer. This is because the spectator

OAc− anion “solvates” the ionic EMIM+/OAc− reactants, substantially lowering the free energy

of the ionic state (R1). There is no such solvation for the gas-phase EMIM+/OAc− dimer, which

is the reason why the ionic/neutral (reactant/product) states are nearly isoenergetic for (only) the

dimer complex. As we will show, the proton transfer reaction profile in the [EMIM+][OAc−] bulk

ionic liquid is qualitatively similar to that of the EMIM+/(OAc−)2 trimer; this is interesting, as it

indicates that the single “spectator” OAc− anion captures a “large chunk” of the actual solvation

energy in the liquid. The second major takeaway from Figure 3.3b is the importance of the shared

proton, AcOH/OAc− dimer configuration. When the NHC species is formed, the stable proton

state is the AcOH/OAc− dimer complex, and not a bare AcOH molecule; the importance of this

bonded topology was the motivation for the 3x3 Hamiltonian developed for the simulations. Thus

67



(a) (b)

Figure 3.3: a) Proton transfer free energy for EMIM+/OAc− dimer in the gas phase. b) Proton
transfer free energy for EMIM+/(OAc−)2 trimer in the gas phase. The labelsR1 and P1 correspond
to the reactants and products of Equation 3.1. The P2 label corresponds to the shared proton
between two OAc− molecules in Equation 3.2.

the solvation energy of the AcOH/OAc− dimer is an important contributor to the overall reaction

free energy for NHC formation, as will be analyzed in more detail for the bulk [EMIM+][OAc−]

ionic liquid.

We next discuss our simulations of the proton transfer reaction in the bulk [EMIM+][OAc−]

ionic liquid. As discussed above, the EMIM+/(OAc−)2 trimer is the better reference system to pro-

vide context for proton transfer in the [EMIM+][OAc−] ionic liquid, and thus we directly compare

reaction free energies for these systems. In Figure 3.4 we show the reaction free energy profile

computed for the [EMIM+][OAc−] ionic liquid and compared to the previous profile computed

for the gas-phase, EMIM+/(OAc−)2 trimer. The immediate observation is the qualitative simi-

larity between the proton transfer reaction profiles computed in the [EMIM+][OAc−] ionic liquid

(Figure 3.4a) and gas-phase, EMIM+/(OAc−)2 trimer (Figure 3.4b). The reaction profile in the

[EMIM+][OAc−] ionic liquid shows similar free energetic trends going from the ionic reactants

at R1 to the transition state region between P1 and P2, to the product state at P2 encompassing

the NHC species and AcOH/OAc− dimer complex. There are, however, quantitative differences

between these free energy profiles resulting from the extended solvation environment of the liquid
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state. Both the “transition state” between P1 and P2, as well as P2 product are significantly lower

in free energy in the ionic liquid phase. This indicates greater stabilization of these intermediates

relative to the ionic reactants (R1) in the extended ionic liquid compared to the EMIM+/(OAc−)2

trimer cluster.

In Figure 3.5, we show snapshots of the various intermediates along the reaction profile from

both the [EMIM+][OAc−] ionic liquid and gas-phase, EMIM+/(OAc−)2 trimer simulations, with

more snapshots shown in Figures S11 and S12. As previously mentioned, the ionic reactants ex-

hibit a broad free energy (global) minimum basin spanning R1, with free energy largely insensitive

to complex orientation. This is demonstrated in Figures S11a-b and S12a-b, which depict visually

different reacting complex configurations that are approximately isoenergetic. The free energy

along the reaction path proceeding from R1 to P2 is, however, significantly different for the ionic

liquid compared to the EMIM+/(OAc−)2 trimer cluster. This is largely due to differences in sol-

vation and/or geometrical configuration of the key intermediates along the reaction coordinate.

Figure 3.5 and Figures S11-S12 show simulation snapshots depicting configurations of the reac-

tion intermediates, within both the [EMIM+][OAc−] ionic liquid and gas-phase, EMIM+/(OAc−)2

trimer. For the EMIM+/(OAc−)2 trimer, as mentioned previously, the “spectator” acetate anion

hydrogen bonds to one of the protons on the EMIM+ ring and then orients itself above the ring

plane during the course of the proton transfer reaction. In the liquid phase, additional solvent ac-

etate anions instead participate in this hydrogen bonding with EMIM+, allowing the corresponding

“spectator” acetate anion to position closer to the EMIM+ ethyl group in the reacting complex con-

figuration (Figure 3.5 “P1” panel and Figure S11c). This is a key difference, requiring breaking of

a hydrogen bond to reach P1 for the gas-phase EMIM+/(OAc−)2 trimer, but not when the reaction

proceeds in the [EMIM+][OAc−] ionic liquid. The result is that the intermediate P1 preceding the

transition state is ∼ 35 kJ mol−1 lower in free energy in the liquid phase compared to the trimer

cluster. This free energy difference propagates along the reaction profile towards the transition

state, so that the transition state is ∼ 20 − 40 kJ mol−1 lower in relative free energy in the ionic

liquid compared to the gas-phase, EMIM+/(OAc−)2 trimer. Simulation snapshots depicting the
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transition state configuration in both the liquid and trimer cluster are shown in Figures S11d and

S12d.

To more quantitatively demonstrate the differing reacting complex configurations, in Figure

S14 we plot a histogram of the distance between the NHC ring center of mass and the AcOH/OAc−

dimer center of mass for several points along the reaction coordinate spanning P1 to P2; also shown

are histograms of the angle between the NHC carbon engaged in the deprotonation reaction, the

NHC ring center of mass and the AcOH/OAc− dimer center of mass, which provides information

about the orientation of the dimer with respect to the imidazole plane. The distance histograms

show that the dimer is farther away from the NHC center of mass in the liquid phase than the gas

phase trimer for all points along the reaction coordinate. The distribution of the angle histograms

shows that the AcOH/OAc− dimer is in plane with the imidazolium ring in the liquid phase (angles

close to 0◦) and above this plane in the gas phase trimer (angles close to 90◦). These results

further indicate that the extended solvation environment distinctly modulates the reacting complex

configurations. The reactive trimer is packed closer together in the gas phase, leading to higher

free energies while coordinating the individual proton transfers.

Our prediction for the free energy of the initial proton transfer (Reaction 3.1) in the [EMIM+][OAc−]

ionic liquid is in semi-quantitative agreement with prior AIMD studies. Gehrke et al. [124] calcu-

lated a free energy of ∼ 100 kJ mol−1 for the deprotonation reaction (Equation 3.1) in the liquid

phase; this free energy corresponds to the transition state region of our profile slightly past P1. We

compute a free energy of 90 ± 10 kJ mol−1 for this region of the reaction profile in the liquid phase,

which is close to the prior AIMD result. We note that any asymmetry in our computed free energy

profile spanning CV2 = 0 (along the vertical axis) is due to statistical uncertainty, and is the origin of

the stated uncertainty in our prediction. Such statistical uncertainty arises from the viscous nature

of the ionic liquid (and correspondingly slow dynamics), making converged statistical sampling

difficult.250 Indeed we have observed that the finite simulation time leads to different distributions

of solvent molecules around the imidazolium ring for symmetric values of CV2, indicating some-

what incomplete sampling. We show the varying solvent orientations through spatial distribution
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(a) (b)

Figure 3.4: a) Proton transfer free energy within the bulk [EMIM+][OAc−] ionic liquid; b) Proton
transfer free energy for EMIM+/(OAc−)2 trimer in the gas phase.

functions (SDFs), computed with TRAVIS and plotted with ChimeraX in Figure S16.251,252

We next characterize the solvation structure around the reacting complex in the liquid phase

though analysis of radial distribution functions (RDFs). In Figure 3.6, we plot ρg(r) and running

coordination numbers for the EMIM+ ring/acetate oxygen at location “R1” in Figure 3.4a and the

NHC ring/acetate oxygen at location “P2” . These points of the profile correspond to the initial

reactant and final product from our simulations. To improve statistics, these RDFs are computed

from a total of 360 ps of simulation for the specific configuration along the reaction coordinate.

From inspection of the RDFs, it is clear that the anion coordination surrounding the reacting com-

plex is reduced upon formation of the neutral NHC species. In the “R1” RDF, the first peak at 4 Å

corresponds to oxygen atoms present in three different acetate anions, with Ncoord = 4. The first

acetate is part of the reacting complex and has two oxygen atoms that are close to equidistant to the

EMIM+ center of mass (see panel R1 Figure 3.5 for an example of the configuration). The second

acetate also belongs to the reacting complex, but has one oxygen oriented toward the reacting pro-

ton and the other oxygen oriented toward the surrounding solvent, so that only one oxygen from

this anion contributes to the peak. The third acetate is hydrogen bonded to one of the nonreactive

protons, and also contributes one oxygen atom to the coordination number. There is also a peak

at ∼ 9 Å which is indicative of coordination from acetate anions in a secondary solvation shell.
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Figure 3.5: Simulation snapshots depicting reacting complex intermediates. The top panel displays
snapshots from the [EMIM+][OAc−]ionic liquid simulations, and the bottom panel displays snap-
shots for corresponding intermediates from the gas-phase, EMIM+/(OAc−)2 trimer simulation.
The labels match the corresponding locations on the reaction free energy profiles of Figure 3.4.
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Figure 3.6: RDFs between the center of mass of the EMIM+ ring and acetate oxygen atoms (“R1”)
and between the center of mass of the NHC ring and acetate oxygen atoms (“P2”). The corre-
sponding coordination number at a given distance is shown by the dashed lines.

For the NHC “P2” RDF, in contrast to EMIM+, the acetates are positioned farther away from the

ring. There is a peak at ∼ 5.5 Å comprised of the reacting complex oxygen atoms and various

other oxygens surrounding the NHC, but it is smaller in magnitude than the peak seen in the R1

RDF. There is also no secondary peak at 9 Å as seen for the Reactant, which suggests the absence

of longer range structure in the acetate coordination.

The solvent acetates hydrogen bond to both nonreactive imidazolium protons, but the two hy-

drogen bonds are unequal in strength. We plot the oxygen-proton RDFs for both nonreactive

EMIM+ ring protons in Figure 3.7a, which we label as H3 and H4 (H3 is closer to the methyl

group and H4 is closer to the ethyl group, see Figure S20). Figure 3.7a shows the computed ρg(r)

with all EMIM+ molecules (solvent + reacting complex) in the simulation while Figure S17 plots

similar RDFs with only the reacting complex EMIM+. The first peak in both RDFs in Figure 3.7a

is due to the oxygen hydrogen bonded directly to the respective proton. There is a stronger hy-

drogen bond/higher RDF peak at the H3 proton. This is likely due to sterics, with less steric

constraint for acetate to hydrogen bond to the proton close to the smaller methyl group than the

ethyl group. Interestingly, Figure S17 indicates that the reacting complex EMIM+ H4 proton may

form a stronger hydrogen bond compared to the H3 proton; however, a definitive conclusion is
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difficult given the statistical uncertainty.

Upon formation of the NHC, the hydrogen bond strength to these nonreacting imidazolium

protons is significantly reduced. Figure 3.7b shows the NHC nonreactive ring protons-oxygen

ρg(r); we show the same plot in Figure S19 with the corresponding ρg(r) for the reacting complex

EMIM+. The RDF was computed from a simulation in the “P2” region of the reaction profile.

There is little coordination at the H3 proton, and the H4 proton shows almost no coordination at 2-

2.5 Å. This conclusion is consistent with Figure 3.6, which indicated fewer coordinating acetates

around the NHC due to the reduced electrostatics of the neutral molecule. The lower acetate

coordination for the NHC leads to less hydrogen bonding with the nonreactive, ring hydrogen

atoms.

These RDFs help explain the varying free energies observed in Figure 3.4a. The solvent

stabilizes the ionic R1 state, as the P2 state has significantly less coordination around the ring

(Figure 3.6); this inhibits formation of this species through Reaction 3.1 and 3.2. The RDFs in

Figure 3.7 show that the solvent acetate molecules hydrogen bond to the H3 and H4 EMIM+

ring protons, which we discussed earlier in connection with the [EMIM+][OAc−] bulk liquid and

EMIM+/(OAc−)2 trimer free energy profiles in Figure 3.4. While the OAc− not involved with

the initial EMIM+ deprotonation is allowed to hydrogen bond to these protons in the gas phase

EMIM+/(OAc−)2 trimer, the solvent prevents this in the liquid phase, leading to the varying free

energies and geometries observed in Figure 3.4 and Figure 3.5.

3.4.2 Proton Transfer Free Energy at [EMIM+][OAc−]Ionic Liquid/Vapor Interface

We next analyze the proton transfer reaction at the [EMIM+][OAc−] ionic liquid/vapor interface.

Because of the important solvation energy contribution to the reaction free energy (as previously

discussed), it is interesting to investigate differences between the reaction at the liquid/vapor in-

terface compared to the bulk liquid. Before discussing the interfacial reaction, we first discuss

the structure of the ionic liquid/vapor interface. In Figure 3.8, we plot cation and anion density

profiles (decomposed by select functional groups) that span the liquid/vapor interface. As dis-
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Figure 3.7: a) EMIM+ H3–O ρg(r) and H4–O ρg(r). These RDFs were computed using all
EMIM+ molecules in the simulation. b) Reacting complex NHC H3–O ρg(r) and H4–O ρg(r).
The corresponding coordination number at a given distance is shown by the dashed lines.
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Figure 3.8: Number density profiles at the [EMIM+][OAc−] ionic liquid/vapor interface for a) the
center of mass of the EMIM+ methyl, ring and ethyl group and b) the center of mass of the OAc−

carboxylate and methyl group. The dashed lines approximately denote the Gibbs dividing surface.
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cussed in Section 3.3.3, we are limited to small system sizes (40 ion pairs) , and thus there are

significant fluctuations in the interfacial structure; the liquid/vapor density profiles are generated

from a 100 ns (non-reactive) simulation for better statistical convergence. We divide the cell into

half along the z dimension of the simulation box and shift the system center of mass along the z

dimension to the origin for each frame, and average the density profile over both interfaces; this

analysis procedure is similar to previous work.253 Figure 3.8a shows the number density profiles

for the EMIM+ methyl group (-CH3), ethyl group (-C2H5), and the imidazolium ring. Figure 3.8b

shows the number density profiles for the OAc− carboxylate (-COO) and methyl (-CH3) groups. A

dashed line is used to denote the Gibbs dividing surface, which is computed from the total number

density profile (Figure S9). Inspection of Figure 3.8 indicates that nonpolar groups of both the

cation and anion have a preference to reside near the vacuum side of the interface. The EMIM+

ethyl group is positioned closest to the interface, with the methyl group of EMIM+ farther into

the liquid side of the liquid/vapor interface. Similarly, the methyl group of acetate is positioned

closer to the vacuum while the carboxylate group remains buried in the liquid. Both of these results

match with prior simulations of imidazolium ionic liquids, which found the terminal ethyl carbon

of various EMIM+ cation ILs was oriented towards the vacuum at the liquid/vapor interface;253,254

additionally, an AIMD study of [EMIM+][OAc−] droplets by Brehm and Sebastiani [255] found

that the methyl group of acetate orients itself toward the vacuum.

We now discuss the free energy of the proton transfer reactions at the [EMIM+][OAc−] ionic

liquid/vapor interface. As discussed in Section 3.3.3, this calculation was performed by constrain-

ing the reaction complex near the Gibbs dividing surface of the liquid/vapor interface during the

free energy calculation, as similar to previously employed procedures.226 In Figure 3.9a, we show

the reaction free energy computed at the liquid/vapor interface, as compared to the corresponding

reaction free energy previously computed for the bulk ionic liquid (Figure 3.9b). A priori, one

might anticipate that the energetics of the reaction at the liquid/vapor interface would be interme-

diate between that computed for the bulk liquid and the gas-phase ion clusters, based on solvation

considerations. However, we (somewhat surprisingly) find that the reaction free energy profile
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Figure 3.9: Free energy profiles for the proton transfer reaction a) at the [EMIM+][OAc−]ionic
liquid/vapor interface; and b) in bulk [EMIM+][OAc−]ionic liquid.

is qualitatively similar as computed for the liquid/vapor interface and the bulk ionic liquid, with

only some quantitative differences. The global minimum, which corresponds to the ionic reac-

tants in Figure 3.1a, is almost identical in the two free energy profiles, and so is the free energy

of intermediate “P1” ( Figure 3.9a). There are, however, quantitative differences between the free

energy profiles in the reaction coordinate region spanning “P1” to “P2”, which encompasses the

transition state and product basins. In general, the proton transfer is better facilitated at the liq-

uid/vapor interface, with a reduced transition state barrier and a lower free energy cost for forming

NHC and AcOH/OAc− dimer products; the relative product free energies are ∼ 60 kJ mol−1 at

the liquid/vapor interface compared to ∼ 70 kJ mol−1 for the bulk ionic liquid. One reason for

the similarity in the reaction free energy profiles, is that the reacting complex configurations are

much more similar to one another in the liquid and at the liquid/vapor interface, compared to the

gas-phase EMIM+/(OAc−)2 trimer complex. This is observed in simulation snapshots shown in

Figures S11 and S13. In Figure S15, we show histograms of the center of mass NHC / center

of mass AcOH/OAc− dimer distance, and it is observed that the histograms largely overlap as

computed in the two different environments. As was discussed in Section 3.4.1, differences in the

geometry of the reacting complex lead to higher reaction free energies for the EMIM+/(OAc−)2

trimer complex; these configurational differences are not observed when comparing the reaction at
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Figure 3.10: a) RDFs between reacting complex EMIM+center of mass/acetate oxygen atoms
computed for both the liquid and the liquid/vapor interface. b) RDFs for EMIM+ ring nonreactive
protons/acetate oxygen atoms computed for both the liquid and the liquid/vapor interface.

the liquid/vapor and bulk liquid environments. Interestingly, Figure 3.9 indicates better statistics

for the free energy calculation at the liquid/vapor interface, as the reaction profile better matches

the required symmetry about CV2=0 (vertical axis). Evidently, there are different timescales in-

volved with the solvation coordinate(s) within the bulk liquid and liquid/vapor interface, leading to

differences in statistical sampling; a more detailed analysis of such solvation timescales is beyond

the focus of this work.

We analyze the coordination of the reacting complex at the liquid/vapor interface. At short

distances, the reacting complex EMIM+ at the liquid/vapor interface only has marginally reduced

acetate coordination in comparison to the bulk liquid. In Figure 3.10, we compare the reacting

complex EMIM+ ring/acetate oxygen RDF at the liquid/vapor interface to that in the bulk liquid.

The coordination number is slightly reduced through the first peak in the RDF for the liquid/vapor

interface as compared to the bulk ionic liquid. At longer distance, the RDFs and coordination

numbers become dissimilar, reflecting the different liquid/vapor and bulk liquid environments. In

Figure 3.10b, we show RDFs between nonreactive EMIM+ protons and acetate oxygen atoms, for

both the liquid/vapor and bulk liquid environments. In the liquid phase, there are noticeable peaks

in the RDF for both of these protons. At the interface, there is a significant peak for the H3 proton
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(a) (b)

Figure 3.11: Spatial distribution functions of acetate oxygen atoms surrounding the EMIM+ ring
for a) a liquid phase umbrella sampling simulation and b) a liquid/vapor interface umbrella sam-
pling simulation. Depicted in purple are density regions with isovalue set to 0.532 nm−3. These
configurations correspond to R1 regions of the profile.

(positioned on the side of the imidazolium ring with the methyl group), while there is only a small

peak for the H4 proton (positioned on the side of the ring with the ethyl group). As was shown

in Figure 3.8a, the ethyl group of EMIM+ is positioned closer to the vacuum than the methyl

group, which leads to fewer hydrogen bonds with acetate molecules at the H4 proton. To further

demonstrate this distribution of solvent acetates, we show spatial distribution functions (SDFs) in

Figure 3.11 of oxygen atoms surrounding the reactant EMIM+for both environments. These SDFs

indicate similar distribution of acetate oxygen atoms around the ring, except at the H4 position

which is largely uncoordinated at the liquid/vapor interface.

As discussed, both the transition state and product free energies for the proton transfer reac-

tion are more favorable/lower by ∼ 10 kJ mol−1 at the liquid/vapor interface compared to the bulk

ionic liquid. This is caused by two factors, the first being the reduced solvation around the EMIM+

cation at the liquid/vapor interface, which leads to less stabilization and higher free energy of the

ionic reactants (R1 state). The second factor is a direct stabilization of the products at the liq-

uid/vapor interface. Because the product NHC molecule is a neutral species, there is a solvophobic

force within the bulk ionic liquid that expels this NHC species to the liquid/vapor interface. This

results in an enhanced propensity for NHC at the liquid/vapor interface, corresponding to a more

favorable/lower product (“P2”) free energy in the reaction profile of Figure 3.9a. To quantify the

79



solvophobic driving force for NHC to reside at the liquid/vapor interface, we compute a potential

of mean force (PMF) for the NHC molecule as a function of distance from the liquid/vapor inter-

face. This PMF is shown in Figure S21, and demonstrates that the NHC is stabilized by 15-20 kJ

mol−1 at the Gibbs dividing surface of the interface relative to its solvation in the bulk ionic liquid.

Thus this solvophobic force is substantial, and is an important underlying cause for the quantitative

free energy difference of the “P2” product state in Figures Figure 3.9a and Figure 3.9b. To sum-

marize, the proton transfer reaction is facilitated at the ionic liquid/vapor interface relative to the

bulk liquid due to both poorer solvation of the ionic reactants as well as stabilization of the NHC

product molecule at the interfacial environment.

3.5 Conclusion

We have developed a PB/NN reactive force field to simulate proton transfer reactions of N-heterocyclic

carbene formation in the [EMIM+][OAc−] ionic liquid. Reaction free energy profiles were com-

puted for the bulk ionic liquid, its liquid/vapor interface, and additionally EMIM+/(OAc−)2 ion

clusters. Our results indicate that the reaction free energy depends on both the geometry/structure

of the local reacting complex, as well as the surrounding solvation environment. The EMIM+/(OAc−)2

ion trimer is the smallest cluster for which the proton transfer reaction proceeds qualitatively (al-

beit not quantitatively) similar to as in the bulk [EMIM+][OAc−] ionic liquid. This is because the

product of the proton transfer reaction is an NHC species and AcOH/OAc− dimer with a shared

proton, and furthermore the third ion electrostatically stabilizes the ionic reactants, reminiscent of

the bulk liquid solvation energy; this is distinct from the EMIM+/OAc− ion dimer, for which the

proton transfer reaction profile is qualitatively different. There are, however, significant quantita-

tive differences in the reaction free energy profile computed for the EMIM+/(OAc−)2 ion trimer

compared to the bulk [EMIM+][OAc−] ionic liquid. This is due to the constrained reacting com-

plex geometry as well as nonexistent long-range ion solvation for the EMIM+/(OAc−)2 trimer,

both of which lead to more favorable NHC formation within the bulk ionic liquid.

In previous literature, there has been debate as the extent of NHC formation/concentration
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within [EMIM+][OAc−] and similar ionic liquids. Our computed reaction free energy profiles

provide an estimate of the concentration of NHC within the bulk [EMIM+][OAc−] and at its liq-

uid/vapor interface. Given a reaction free energy of ∼ 70 kJ mol−1 (Figure 3.4) we estimate that

NHC species exist in the bulk [EMIM+][OAc−]at parts-per-million (ppm) levels; note that such

concentrations are catalytically relevant in certain contexts.118,170 As mentioned in the Introduc-

tion, our PB/NN reactive force field neglects possible proton-sharing/dimerization of the NHC with

EMIM+ cations. If such interactions are significant, an even higher concentration of NHC would

be expected than the ppm levels predicted here. Our results thus support previous conjectures of

NHC content in these ionic liquids, which speculated that NHCs are formed in low concentrations

but lead to rapid reactions.123 We have additionally predicted that NHC concentration is signifi-

cantly enhanced at the ionic liquid/vapor interface. This is due to both poorer solvation of the ionic

reactants as well as solvophobic stabilization of the neutral NHC molecule at the interface. The

concentration enhancement at the interface is predicted to be an order of magnitude based on the

reaction free energy (Figure 3.9), with an even larger enhancement predicted based solely on the

NHC potential of mean force (Figure S21). The estimated NHC content has important implications

for [EMIM+][OAc−]as a solvent and/or electrolyte, due to the catalytic activity of carbene species.

Additionally, the NHC content may affect the chemical/thermal stability of the IL, as the carbene

could potentially catalyze decomposition reactions.

We finally comment on the utilization of our PB/NN reactive force field for this study, com-

pared to alternative computational approaches. Ionic liquids are highly viscous with liquid struc-

ture consisting of long range charge oscillations,256 such that long simulation times with fairly large

simulation boxes are required to minimize statistical uncertainty and finite size effects. While our

predictions do exhibit statistical uncertainty (Figure 3.4) and likely finite size artifacts as well (Sec-

tion 3.3.3), our PB/NN reactive force field allows longer simulations for larger systems compared

to either AIMD or QM/MM approaches. The key drawback is the significant effort required to pa-

rameterize the PB/NN Hamiltonian (Section 3.3.1). However, similar to related EVB methods, the

advantage of PB/NN is that, once parameterized, the reactive potential is transferable to arbitrary
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solvation environments. For example, interesting future directions could include investigation of

NHC formation in [EMIM+][OAc−] mixtures and/or at solid/liquid interfaces. Continued work on

improving the accuracy and ease of construction of the PB/NN potentials will be a key route of

further research.
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CHAPTER 4

PROTON TRANSPORT IN [BMIM+][BF−
4 ] /WATER MIXTURES NEAR THE

PERCOLATION THRESHOLD

This chapter reproduces the work in Ref. [257].

4.1 Abstract

The incorporation of ionic liquids into existing proton exchange membrane (PEM) materials has

been shown to enhance thermal stability and improve conductivity at reduced water content. Be-

cause proton transport is dictated by both vehicular diffusion and the Grotthuss mechanism, it

is expected that the nanoscale structure of the resulting ionic liquid/water networks will sensi-

tively influence transport properties. In this work, we study proton transport in [BMIM+][BF−
4 ]

/water mixtures of systematically varying water volume fraction, focusing on concentrations near

the percolation threshold in which water networks are connected over macroscopic lengthscales.

We utilize reactive molecular dynamics within the multistate empirical valence bond (MS-EVB)

framework to explicitly model Grotthuss hopping processes. Excellent agreement with experimen-

tal conductivity data is obtained within the Nernst-Einstein approximation, indicating that proton

transport proceeds in a largely uncorrelated manner even at pH values < 0. We additionally study

the changing topology of the hydrogen-bonded water network in these mixtures using percolation

and graph theory analysis. We find that the proton diffusion coefficient and forward hop rate in-

crease linearly with water content at concentrations ranging from dilute through the percolation

threshold; surprisingly, we find no deviation in this trend at the percolation transition. The high

concentration of BF−
4 anions inherently alters the fraction of Eigen and Zundel proton states, pro-

ducing a net detrimental effect on proton transport rates relative to bulk water. This mechanistic

insight is useful for selecting ideal ionic liquid candidates and determining the optimal ionic liquid

concentration to incorporate into PEM materials.
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4.2 Introduction

Proton exchange membrane fuel cells (PEMFCs) are promising devices for clean and efficient en-

ergy production.258–261 In PEMFCs, hydrogen gas is oxidized at the anode, and protons are trans-

ported across the proton exchange membrane to the cathode where oxygen gas is reduced to water.

Due to the intrinsic water content and thermal stability of commonly used membrane materials,

e.g. Nafion,260,262–264 operating temperatures of PEMFCs are limited to ≤ 80 ◦ C, which intro-

duces several challenges to fuel cell operation.263,265 For example, trace CO in the hydrogen input

gas can poison the commonly used Pt catalysts at these temperatures; additionally, as 40-50%

of the energy from PEMFCs is produced as heat, expensive cooling systems are required.266,267

Higher operating temperatures (≥ 120 ◦ C) can reduce or eliminate these limitations.263,265 With

this temperature range in mind, one proposed modification to the PEMFC framework is to incorpo-

rate room-temperature ionic liquids (ILs)197,199,268–270 into existing membrane materials; this would

significantly lower the membrane water content, with additional benefits from the intrinsic thermal

stability and conductivity of the IL.264,271–273

A variety of ILs incorporated in Nafion have been tested for use in PEMFCs, and it has been

shown that their total conductivities rise with increasing temperatures above 80 ◦ C, while dry

Nafion’s total conductivity decreases.264,271–273 Thermal stability is improved due to the very low

vapor pressures of the neat ILs, and also because ILs favorably absorb water and are thus difficult

to dry out.274,275 Due to their large cohesive energies, ionic liquids exhibit high viscosities, and thus

increased temperatures serve to enhance IL conductivity. Viscosity is further decreased when ionic

liquids are mixed with water, and the conductivity maximum of IL/water mixtures generally occurs

for dilute solutions of ∼ 10-20 % ion content.276–278 However, optimizing IL/water concentration

in PEM materials requires special consideration: while low water content mixtures are better for

thermal stability considerations, sufficient water content is required for facile proton transport.

This is because water serves as the vehicle for Grotthuss transport, which gives the excess proton

remarkable diffusion rates in comparison to similarly sized ions.55 Thus a membrane material that

84



retains a low amount of water for Grotthuss transport at elevated temperatures may result in a

highly useful PEMFC.

The Grotthuss transport mechanism is highly sensitive to underlying water nanostructure, and

it is thus important to investigate how this mechanism is altered in IL/water mixtures at varying

water concentration. Unique water networks may promote faster (or slower) proton transport rates

than in bulk water; an example is water wires within carbon nanotubes which exhibit an order

of magnitude faster proton transport compared to bulk water.279–284 In the Grotthuss mechanism,

protons experience structural diffusion by hopping along hydrogen-bonded water networks, ac-

companied by transitions between the Eigen (H9O
+
4 ) and Zundel (H5O

+
2 ) states of hydronium;285

in addition to this structural diffusion, the total proton transport mechanism is dictated by standard

vehicular diffusion through the principle hydronium species as well.286,287 The total proton conduc-

tion mechanism may be altered within IL/water mixtures due to differences in water structure as

well as the strong Coulomb interactions imposed by the ionic liquid. Hydrogen-bonded water net-

works in these mixtures exhibit unique and dynamically changing structures, and system-specific

differences arise from intrinsic hydrophobicity differences among ionic liquids.288–294 Different

ILs possess a range of hydrophilic and hydrophobic interactions, e.g. alkyl chains on imidazolium

cations and -CF3 groups on certain anions, leading to classes of ILs that range from completely

miscible to immiscible/phase-separated when mixed with water.288,294 This is ultimately caused

by electrostatic screening from the ILs, and offers the potential for the varying hydrophilic and

hydrophobic interactions to be leveraged for the creation of ideal water networks for proton trans-

port.288 Formation of water wires, as observed to form in carbon nanotubes at small pore widths,

are of particular interest for fast proton diffusion.279–284 In carbon nanotubes, proton transport is

enhanced by an order of magnitude because hydronium ions primarily exist as distorted, reactive

Zundel complexes,281,295 while the Eigen form is destabilized/nonexistent in these highly confined

environments. As ILs will also provide a confining effect on water structure, we explore how

similar mechanisms affect proton transport in IL/water mixtures.

Theoretical and computational studies can significantly aid interpretation of environment ef-
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fects on proton transport. Ab initio and reactive molecular dynamics (MD) simulations have pro-

vided a multitude of insights into the transport mechanisms of excess protons in diverse systems

ranging from bulk water to interfaces to biological and synthetic channels.53,284,295–310 The multi-

state empirical valence bond (MS-EVB) model developed by Voth and coworkers has been partic-

ularly successful at enhancing theoretical understanding of proton transport.53,54,101,102,304,311 The

MS-EVB methodology allows for explicit and efficient simulation of the bond breaking and form-

ing process that accompanies proton structural diffusion that accompanies the Grotthuss mecha-

nism, allowing for an assessment of solvent and environmental effects on proton transport mech-

anisms.295,312 MS-EVB simulations have been applied to evaluate proton solvation and transport

motifs in ionic and/or confined systems that may possess similar characteristics to IL/water mix-

tures, such as Nafion,313,314 carbon nanotubes,281,284 biological/synthetic channels300,302,315–317 and

salt solutions.312,318 For example, while an order of magnitude faster diffusion is observed for

proton transport in model hydrophobic pores and carbon nanotubes of sufficiently low channel ra-

dius,281,284 MS-EVB simulations have shown that more complex cavities have varied effects on the

Grotthuss mechanism; while narrower channels still favor the Zundel cation, substituents located

inside pores such as those found in cell membranes can serve to aid or hinder proton transport

depending on the local solvated environment of the excess proton.300,302,315–317 Additionally, MS-

EVB simulations of protons in chloride salt solutions312,318 indicate decreased proton transport

rates with increasing ion concentration, partly due to a disruption in the hydrogen-bonded water

structure needed for Grotthuss transport and also due to increased electrostatic interactions.

Computational work using MS-EVB and other simulation methodologies has investigated pro-

ton transport mechanisms in Nafion319, the prototypical membrane used for PEMFCs. Nafion ex-

hibits both hydrophilic and hydrophobic regions due to the sulfonic acid groups and perfluorinated

carbon backbone. It has been found that the sulfonate groups of Nafion, once deprotonated, can

stabilize the Zundel configuration through a solvent-separated ion pair.313,314,320–323 Additionally,

theoretical calculations have determined that the electrostatic potential of the SO−
3 groups creates

a high activation barrier that hinders proton diffusion from near the SO−
3 anions to neighboring
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water molecules;324 proton transport thus occurs in these systems by “passing” excess protons be-

tween the electrostatic potential wells of multiple sulfonate groups through the hydrophilic regions

of the membrane.325–327 These are all examples of complex environmental mediation of proton

transport. We expect that incorporation of ILs into Nafion membranes may alter these mechanisms

by modulating existing confinement effects on the hydrogen-bonded water network, introducing

asymmetric charge distributions and adding additional hydrophilic/hydrophobic driving forces. In

lieu of explicit Nafion/IL simulations, in this work we focus on characterizing proton transport

mechanisms in the IL/water mixtures themselves.

The percolation threshold of IL/water mixtures is particularly important for PEM applica-

tions.322,328 The percolation threshold is the minimum water concentration required for connected

hydrogen bond networks to fully span the system volume. Above the percolation threshold, water

networks are interconnected over macroscopic lengthscales, with obvious implications for mass

and ion transport. Percolation thresholds can be estimated from computer simulations employ-

ing periodic boundary conditions, and are rigorously quantified from large system-size limits.329

Due to the mentioned anomalous proton transport for water wire topologies,279–284 it is important

to investigate whether proton diffusion rates are altered near the percolation threshold of mixtures

when macroscopic water networks are formed. Graph theory analysis330–332 can provide significant

insight into the nature of hydrogen-bonded water networks within ion/water mixtures below and

above the percolation threshold.333–335 To our knowledge, the influence of mixture percolation on

proton transport rates has not yet been rigorously characterized, and this is one of the purposes of

our study.

In this work, we use MS-EVB simulations to study proton transport in aqueous mixtures of the

1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM+][BF−
4 ] ) IL at various concentrations.

[BMIM+][BF−
4 ] is hydrophilic and fully miscible with water at all concentrations, and we focus

on IL/water mixtures near the percolation threshold as these are most relevant for PEM applica-

tions. To characterize proton transport, we study IL/water mixtures in which one BMIM+cation

is replaced with a hydronium cation; extrapolation to lower pH conditions is done using Nernst-
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Einstein relations and validated a posteriori by comparison to experimental conductivity studies.

We find that statistically converged diffusion coefficients for the excess proton are obtainable with

∼ 20 ns of simulation. Graph theory and percolation analysis are employed to characterize how

the hydrogen-bonded water network changes as a function of the water concentration, and we elu-

cidate correlation between structure and transport properties. We find that water tends to form

isolated clusters in [BMIM+][BF−
4 ] at concentrations below the percolation threshold, while one

large, spanning cluster accompanied by smaller water clusters is observed above this value. Proton

transport rates are slower in these IL/water mixtures as compared to bulk water, which is due to

less connected water networks and anion stabilization of the Eigen hydronium state relative to the

Zundel state. The validity of the Nernst-Einstein approximation indicates that proton transport oc-

curs in a largely uncorrelated manner, and surprisingly we find no significant alteration of proton

diffusion near the percolation threshold of the IL/water mixture. These findings on anion effects

on proton solvation and transport should aid the rational design of solvents for use with proton

exchange membranes.

4.3 Methods

We perform molecular dynamics (MD) simulations of [BMIM+][BF−
4 ] /water mixtures, with and

without hydronium ions, at water volume fraction of ϕH2O
V = 0.08, 0.13, 0.19, 0.22, 0.25 and 0.30;

these concentrations span just above and below the percolation threshold for [BMIM+][BF−
4 ] /wa-

ter (vide infra). Simulation systems consist of 220 ion pairs and 200, 350, 550, 643, 750 and

1000 water molecules (larger systems were also studied for percolation analysis, see Supporting

Information). MS-EVB simulations were employed to explicitly capture the reactive proton hop-

ping process;53,54,102,311 due to computational expense, the IL/water mixtures were first equilibrated

using standard MD in the NPT ensemble in absence of hydronium ions. Equilibration was con-

ducted for 5 ns at 300K and 1 bar utilizing the OpenMM 7.3.1 software package,336 employing a

Langevin thermostat with a 0.1 ps−1 friction coefficient and Monte Carlo barostat. Subsequently,

20 ns simulations were run in the NVT ensemble for all analysis not involving the hydronium ions.
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For starting configurations for the MS-EVB simulations, one BMIM+cation was removed from

each system and replaced with a hydronium ion. MS-EVB simulations were conducted with an

in-house code,302 following the algorithm described by Voth and coworkers.53,54,102,311 The particle-

mesh Ewald (PME) method was used for electrostatics,36 van der Waals interactions were truncated

at 1.4 nm cutoff distance, and a Langevin thermostat was used with a 0.1 ps−1 friction coefficient.

Comparison to benchmark NVE ensemble simulations verified that this thermostat choice does not

significantly alter predictions of proton transport dynamics. For each system, three separate NVT

simulations were run at 300K, each for 20 ns. Four additional 5 ns simulations at ϕH2O
V = 0.04 were

also run to compare static properties for the low water content system.

A hybrid force field was utilized to enable the reactive, MS-EVB simulations. All proton/water

interactions were modeled with the MS-EVB 3.254 and SPC/Fw337 force field combination, de-

veloped by Voth and coworkers. The SAPT-FF-UA model developed by Son et al.338 was used

to model [BMIM+][BF−
4 ] ; this is a non-polarizable, united atom model with explicit hydrogen

atoms only on the imidazolium ring (denoted ringH nopol in ref338). A non-polarizable model was

required for practical reasons within the MS-EVB software, but we note that explicitly polarizable

simulations are expected to be more accurate for ILs.152,339 Because the IL and H3O+/water force

fields were developed independently and employ different functional forms, new cross-term inter-

actions were explicitly parameterized to ab initio calculations in this work; these parameters are

given in Table S1. For parameterization, density functional theory-based symmetry-adapted per-

turbation theory (DFT-SAPT)340 calculations were conducted using the Psi4 software package,341

and force fields were fit following previously described techniques.150 To generate parameters for

IL/water cross-terms, DFT-SAPT calculations were performed for 2000 water dimers in randomly

generated configurations, and individual terms were fit to the SAPT energy decomposition (the

total fit is shown in Figure S2a).339 Combination rules were then used to generate IL/water in-

teractions using these new water parameters in combination with the existing IL potential (Sup-

porting Information). For IL/H3O+cross terms, we focus parameterization on the H3O+/BF−
4

(cation/anion) interactions; 1000 close-contact H3O+/ BF−
4 dimers were sampled from a 10 ns
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NVT simulation with an approximate hydronium force field, and DFT-SAPT interaction energies

were computed for these dimers. The force field fit to the SAPT energy decomposition is shown in

Figure S1; previously described protocol was followed to generate non-polarizable potentials.338

The newly generated non-polarizable force field was benchmarked against all-atom, polarizable

simulations for water and the IL as discussed in the Supporting Information.

The ionic conductivity for the H3O+/BMIM+/BF−
4 /water mixtures is computed as

σtot = cBMIM+ · ΛBMIM+ + cH3O+ · ΛH3O+ + cBF−
4
· ΛBF−

4
(4.1)

where cX is the concentration and ΛX is the molar conductivity of ion type ‘X’ in the mixture.

Because diffusion of hydronium ions in aqueous mixtures proceeds by a very different mechanism

(Grotthuss) than other ions, the molar conductivities were computed using different approxima-

tions. Explicit Green-Kubo relations were used to compute the concentration dependent ΛBMIM+

and ΛBF−
4

contributions, and Nernst-Einstein expressions were used in combination with MS-EVB

calculated diffusion coefficients to compute the concentration dependent ΛH3O+ term. The molar

conductivity of BMIM+/BF−
4 /water mixtures is computed without hydronium ions as

ΛBMIM+/BF−
4
= lim

t→∞
1

6tNkBT

∑
i,j

⟨(qi[Ri(t)− Ri(0)]) · (qj[Rj(t)− Rj(0)])⟩ (4.2)

where “N” is the number of ion pairs in the mixture, qi and Ri(t) are the charge and position

of ion “i”, the sums run over all ions, and ⟨...⟩ denotes an ensemble average. Due to changes in

viscosity and ion correlation, the molar conductivity for the IL depends sensitively on ion con-

centration,278 and thus ΛBMIM+/BF−
4

is computed for different ion concentration mixtures from

independent simulations. We make the approximation that ΛBMIM+/BF−
4

does not depend on the

exact type of ions in the mixture (e.g. fraction of H3O+to BMIM+cations ), and compute this

conductivity from pure BMIM+/BF−
4 /water mixtures. Because of significant ion correlation at low

water content,278 there exists no rigorous decomposition into separate cation and anion contribu-

tions, and so we make the simplest approximation, ΛBMIM+ = ΛBF−
4

= ΛBMIM+/BF−
4
/2.
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The molar conductivity of hydronium ions is computed using the Nernst-Einstein expression

ΛH3O+ =
1

kBT
DH3O+ (4.3)

Due to the Grotthuss mechanism, the diffusion coefficient of hydronium ions (DH3O+) depends

sensitively on water content and thus is computed from separate MS-EVB simulations for each par-

ticular ion concentration, with one hydronium ion in each simulation. The diffusion coefficient is

calculated from the mean square displacement of the principal H3O+diabat in the MS-EVB for-

malism.54 Our implicit approximation that diffusion and conductivity of H3O+ions only depends

on total ion/water content and not hydronium concentration/pH is validated a posteriori by com-

parison against experimental conductivity measurements (Figure 4.1).

Graph theory analysis is utilized to characterize hydrogen-bonding/water structure of [BMIM+][BF−
4 ]

/water mixtures, employing the NetworkX software package.342 Graphs of water networks were

constructed based on standard hydrogen-bond criteria, namely two water molecules are connected

by a hydrogen bond if the O-O distance is less than 0.36 nm, the O-H distance is less than 0.245

nm and the H-O-O angle is less than 30◦.343,344 Each water molecule is then defined as a node of

the graph, and hydrogen bonds represent edges between nodes. The number of hydrogen bonds per

water molecule is calculated from the degree distribution,345 which provides the number of edges

for each node. The spatial extent of hydrogen bond networks is characterized by the diameter (d)

of each subgraph (i.e. hydrogen-bonded water cluster) given by346

d = max
i,j∈G

Lmin(i, j) (4.4)

whereLmin is the minimum distance (number of nodes) between nodes i, j of the graph (G), and

the maximum is taken over all pairs of nodes in the graph. The IL/water mixtures are generally

composed of numerous, unconnected subgraphs, with each subgraph exhibiting a characteristic

diameter d. The system is then described by the histogram/probability distribution, P (d), charac-

terizing the probability of a subgraph to have a particular diameter. We note that if a connected
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water network percolates the entire system, then P (d) will inherently be system size dependent,

and this subtlety will be discussed within the context of the analysis. In addition to the diameter

distribution, the size of the water clusters is also characterized by the average weighted cluster size

of the water subgraphs, nw, given as347

nw =
∑
n

n2mn

N2
(4.5)

Here, n is the number of water molecules in a cluster, mn is the number of clusters containing n

water molecules and N is the total number of water molecules (note our normalization is slightly

different by a factor of N compared to Ref347).

Percolation analysis is conducted to determine the probability for formation of a system-

spanning hydrogen-bonded network as a function of IL/water concentration. The probability that

a system contains a percolating water network is denoted R(ϕH2O
V , L), and depends on the water

volume fraction ϕH2O
V of the system, and the simulation box length L.329,348,349 We compute the per-

colation probability using a recursive search algorithm as described by Edvinsson et al. [350] In

the limit of infinite system size, R(ϕH2O
V , L) approaches a step function with the zero/one transition

occurring at the percolation threshold.329,348,349 As described in the Supporting Information, we

conduct percolation analysis on different sized systems to better determine the percolation thresh-

old; all percolation analysis was performed on IL/water MD simulations with no hydronium ions

for better statistics.

Unless otherwise noted, all analysis involving the hydronium ion is conducted assuming that

the location of the hydronium ion is defined by the principle diabatic state within the MS-EVB

state vector. This is done for simplicity, rather than employing previous definitions based on the

center-of-excess charge.53,54
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4.4 Results and Discussion

Incorporation of ILs into PEMs is expected to alter both the thermal stability and ion transport

properties of the membrane material. Thermal stability is straightforward to characterize exper-

imentally,275 and is not the focus of this work; we focus on how incorporation of ILs alters the

ionic conductivity and proton transport of the membrane solution. Unlike other electrolyte ap-

plications,351–353 the net proton transport rather than the total ionic conductivity is the important

performance metric. Depending on the membrane solution composition, the proton transport may

represent only a portion of the total ionic conductivity; indeed this fractional contribution will

change as ILs are incorporated into the membrane. For example, a Nafion membrane may be

interpreted as an idealized system in which protons are the only free ions in aqueous solution,

while sulfonate anion groups are tethered to rigid polymer backbones.258,354 In this case, the ionic

conductivity results entirely from proton transport. However, if ionic liquids are then incorporated

into the membrane, the ionic conductivity will contain contributions from non-hydronium ions, and

thus may not directly reflect proton transport ability. Additional characterization is then necessary

to determine the fractional contribution of proton transport to the total ionic conductivity.

Experimentally, the fractional contribution of proton transport to the total conductivity of a

mixed ionic/aqueous solution may be inferred from separate conductivity measurements at dif-

ferent pH.273 From a computer simulation, the proton conductivity contribution may be directly

computed assuming uncorrelated behavior (e.g. Equation 4.3), but it is not a priori clear whether

this is a good approximation for IL/water mixtures. To test such ansatz, we compute the total ionic

conductivity for H3O+/BMIM+/BF−
4 aqueous mixtures at varying ion concentration and pH, em-

ploying Equations Equation 4.1-Equation 4.3. We compare our predicted conductivities to exper-

imental conductivity measurements of aqueous [BMIM+][BF−
4 ] and HBF4/[BMIM+][BF−

4 ] aque-

ous mixtures by273 Figure 4.1 presents a comparison of computed conductivities to experimental

measurements. For all H3O+/BMIM+/BF−
4 aqueous mixtures, the proton concentration was set at

1:5.28 H3O+/H2O mole ratio to enable direct comparison with experimental measurements of Yu
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Figure 4.1: Ionic conductivity σ of H3O+/BMIM+/BF−
4 and BMIM+/BF−

4 aqueous solutions at
varying water content; for H3O+/BMIM+/BF−

4 solutions, the proton concentration is set at 1:5.28
H3O+/H2O mole ratio.273 Experimental conductivities taken from ref273 are plotted as triangles,
simulation predictions are plotted as circles, and dashed trend lines are to guide the eye.

et al. [273] It is evident that the conductivity of the aqueous [BMIM+][BF−
4 ] solutions increases

with water content, as the viscosity of the mixture decreases upon addition of water to the pure

ionic liquid.355 Within experimental uncertainty,273,276,356 our predicted conductivities agree well

with experiment, and also agree well with previous simulation predictions for the conductivity

of aqueous [BMIM+][BF−
4 ] mixtures.278 As a benchmark of the non-polarizable IL/water model

used in our simulations, we compare predicted conductivities to those from simulations using a

polarizable force field, as shown in Figure S5; we find that the agreement is quite good.

Figure 4.1 shows that the trend in ionic conductivity changes significantly upon addition of

protons to the [BMIM+][BF−
4 ] /water mixtures. The conductivity of the aqueous H3O+/ BMIM+/

BF−
4 mixtures nearly exactly follows a quadratic increase with proton/water content; note that be-

cause all solutions exhibit a 1:5.28 H3O+/H2O mole ratio, the proton content increases proportion-

ally with water concentration. The stark difference between the conductivity trends with/without
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excess protons in the aqueous [BMIM+][BF−
4 ] mixtures results from the unique and facile pro-

ton transport enabled by the proton hopping mechanism in aqueous environments. In Table S1,

we provide the decomposition of the total ionic conductivity into different ion contributions cor-

responding to Equation 4.1. Above proton concentrations of 2 M, the total conductivity of the

H3O+/[BMIM+][BF−
4 ] /water solution is at least double that of the [BMIM+][BF−

4 ] /water so-

lution, indicating the primary contribution from the protons; note the molar conductivity of the

protons is larger than that of the other ions for all concentrations, Table S1. The larger contribution

of protons to the conductivity is due to both increasing proton and water concentrations; while the

dependence on proton concentration is simply captured in Equation 4.1, the dependence on water

content is less obvious and will be discussed in detail.

The excellent agreement between our predicted conductivities and the experimental conductiv-

ities for the aqueous H3O+/BMIM+/BF−
4 mixtures (Figure 4.1) suggests a clear physical picture for

the mechanism of proton transport in these solutions. In evaluating Equation 4.1, the molar conduc-

tivity of hydronium ions was computed using the Nernst-Einstein approximation (Equation 4.3),

and thus neglects ion correlation between hydronium ions and the BMIM+/BF−
4 ions. Furthermore,

the hydronium diffusion coefficient employed in Equation 4.3 was computed from MS-EVB simu-

lations with a single hydronium ion, for aqueous [BMIM+][BF−
4 ] mixtures at the total ion content

of the solutions in Figure 4.1. Both of these approximations are validated a posteriori by the good

agreement with experiment shown in Figure 4.1. Thus even at pH values < 0, proton transport

in aqueous H3O+/BMIM+/BF−
4 solutions proceeds largely by independent proton hopping events,

with the microscopic proton transport mechanism seemingly unaffected by the precise solution pH

within the range studied here. Proton transport in aqueous environments is primarily affected by

water volume fraction of the solution (ϕH2O
V ), and the dependence on water content is the reason

for the quadratic conductivity trend shown in Figure 4.1, as will be discussed below. Note that

the aqueous [BMIM+][BF−
4 ] solutions of water volume fraction ϕH2O

V ≤ 0.30 studied in this work

exhibit significant ion correlation,278 and thus the apparently minor influence of ion correlation on

hydronium ion transport is unique to the proton structural diffusion mechanism.
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Figure 4.1 indicates that the ionic conductivity of aqueous H3O+/BMIM+/BF−
4 solutions is pri-

marily due to proton transport above proton concentrations of 2 M. Thus the quadratic trend in

ionic conductivity observed in Equation 4.1 reflects changing proton transport rates with water

content. In Figure 4.2a we plot the computed diffusion coefficient of hydronium ion (DH3O+) in

aqueous [BMIM+][BF−
4 ] solutions at varying water volume fraction (the mean square displace-

ments used to compute these diffusion coefficients are shown in Figure S7). We find that DH3O+

increases nearly linearly with water content, similarly to the trend observed in hydrochloric acid

solutions.312 The quadratic trend of the ionic conductivity in Equation 4.1 is explained by the linear

increase in DH3O+ with water content (Figure 4.2a), when substituted into the Nernst-Einstein ex-

pression. The quadratic dependence results from the factor of concentration in Equation 4.1 along

with the linear dependence of the diffusion coefficient on concentration in Equation 4.3.

The increase in the hydronium diffusion coefficient with water concentration is partly because

sufficient water content is required for formation of water networks that mediate the structural

diffusion mechanism of excess protons. Indeed, our computed value of DH3O+ = 0.5 ·10−5 cm2/s

for the ϕH2O
V = 0.30 water content system is ∼ 8 times smaller than the diffusion coefficient of

hydronium ions in bulk water (as computed with a similar force field54), indicating the general

detrimental effect of lower water concentration on proton transport. For comparison, Figure 4.2a

also shows the water (DH2O) and BF−
4 (DBF−

4
) diffusion coefficients at each concentration; Figure

S8 shows that the calculated values of DH2O are in reasonable agreement with experimental values

measured in [BMIM+][BF−
4 ] /water mixtures.357 At ϕH2O

V = 0.30, DH2O = 0.6 ·10−5 cm2/s; this is ∼

4 times smaller than the diffusion coefficient for bulk water, indicating that DH2O is less inhibited

in comparison to DH3O+ . Interestingly, in contrast to bulk water, in which DH3O+ in the MS-EVB

model is ∼ 1.6 times greater than DH2O, DH3O+ is smaller than the corresponding DH2O at each

concentration.54 DH2O increases linearly with water concentration as does DH3O+; however, DH2O

experiences a slower rate of increase with water concentration in comparison to DH3O+ . This

suggests that, as expected, strong Coulombic interactions associated with the [BMIM+][BF−
4 ] ions

have a greater effect on the diffusion of hydronium than they do on water. As seen in Figure 4.2a,
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DBF−
4

is significantly smaller thanDH3O+ at all concentrations. The differences between H3O+and

BF−
4 diffusion, which are relatively similarly sized, indicate the existence of the unique proton

hopping mechanism in these environments.

The transport of hydronium ions in water proceeds by two mechanisms: standard “vehicular”

diffusion, common to all molecules in solution, and structural diffusion/proton hopping, which

makes hydronium diffusion much faster in bulk water compared to similarly sized ions.55 The

relative importance of the different mechanisms is inferred by analysis of the so-called “forward

hop function”, h(t), which is a measure of how frequently a proton shuttles between distinct wa-

ter molecules.53 Essentially, h(t) counts the number of times a proton migrates to a new water

molecule, correcting for back-and-forth, “oscillatory” shuttling that does not contribute to diffu-

sive transport.53 In Figures S9-S10, we show the forward hop function h(t) for a hydronium ion

in the varying concentration, aqueous [BMIM+][BF−
4 ] mixtures. For sufficiently long timescales,

h(t) grows linearly with time, and the slope of the function gives an average forward hop rate. The

forward hop rate as a function of water content is shown in Figure 4.2b along with the hydronium

diffusion coefficient. Within statistical uncertainty, Figure 4.2b indicates that the forward hop rate

of hydronium ions in the concentrated [BMIM+][BF−
4 ] /water solutions increases linearly with

water content. This linear trend is similar to the dependence of the hydronium diffusion coeffi-

cient, DH3O+ , on water content. While DH3O+ is eight times smaller at ϕH2O
V = 0.30 in comparison

to its value in bulk water, the forward hop rate for the ϕH2O
V = 0.30 mixture is ∼30 ns−1, which

is five times smaller than the corresponding rate in bulk water. This implies that a substantial

portion of the concentration dependence of DH3O+ is due to modulation of the proton shuttling

mechanism/rate. However, the fact that these ratios are different also indicates that long-range

water structure and/or vehicular diffusion rates may contribute to the concentration dependence

as well. The diffusion coefficients follow a similar trend as is observed in Nafion, with DH3O+

falling below DH2O at low water concentrations.303 In Nafion, this occurs because the vehicular

mechanism is the dominant mode of proton transport at low water concentrations, with structural

diffusion notably suppressed; we speculate that a similar effect occurs in these systems. Figure
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Figure 4.2: a) Hydronium, water and BF−
4 diffusion coefficient and b) hydronium diffusion coef-

ficient and forward hop rate within aqueous [BMIM+][BF−
4 ] mixtures at varying water volume

fraction, ϕH2O
V . The dashed lines reflect the linear trend and are to guide the eye. Error bars repre-

sent the range between the maximum and minimum calculated diffusion coefficients and forward
hop rates from three independent simulations.

S11 contains trajectories of the principal hydronium and the initial oxygen that the excess proton

is bound to. As can be seen, the initial oxygen diffuses to a much greater area than the principal hy-

dronium at ϕH2O
V = 0.08-0.13, suggesting that structural diffusion is less important to overall proton

diffusion at these lower water concentrations. The principal hydronium clearly diffuses to a much

larger area relative to the initial oxygen above these concentrations, which implicates a change in

the relative importance of vehicular vs. structural diffusion. Further evidence of a change in the

dominant mode of proton transport in these systems comes from computing the hop distance of

the excess proton using the jump-diffusion model.358 Using DH3O+ as the diffusion coefficient and

1/forward hop rate as the hop time at each concentration, we obtain a proton hopping distance of

2.4 Å at ϕH2O
V = 0.08 and a proton hopping distance of 3.1 Å at ϕH2O

V = 0.30. The clear concentration

suggests a change in the dominant mechanism of proton transport with water concentration. We

interpret this to be an increased importance of structural diffusion at greater water concentrations

as seen in Nafion, but further investigations beyond the scope of this work need to be performed in

order to definitively identify the exact mechanistic character of proton transport for these systems.

The concentration dependence of the forward hop rate is due to changes in the water networks
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that shuttle the proton(s). The hydrogen-bonded water network significantly influences the fre-

quency of Grotthuss hopping, and we analyze the structure of the underlying water network to

better explain the concentration dependence observed in Figure 4.2. We first analyze the distribu-

tion of hydrogen bonds per water molecule as a function of water content (see Methods for analysis

details). This hydrogen bond distribution is shown in Figure 4.3 for select concentrations of the

aqueous [BMIM+][BF−
4 ] mixtures, and the full concentration range is shown in Figure S12. At

ϕH2O
V = 0.04 water volume fraction, the majority of water molecules exhibit one hydrogen bond,

and a significant fraction are solvated entirely by ions and exhibit zero hydrogen bonds; this obser-

vation is consistent with experimental NMR studies.359 As water concentration is increased from

ϕH2O
V = 0.04 to ϕH2O

V = 0.13 volume fraction, the majority of water molecules form two hydrogen

bonds, and there are relatively few individually solvated water molecules (zero hydrogen bonds).

This indicates that water molecules are beginning to cluster together and form connected networks

at concentrations near ϕH2O
V ∼0.13 water volume fraction. The percolation threshold of the aqueous

[BMIM+][BF−
4 ] mixtures occurs near ϕH2O

V ∼ 0.18 (vide infra); for water concentrations above this

threshold, system-spanning connected water networks are formed. At concentrations higher than

the percolation threshold, the average hydrogen bond number continues to increase, as indicated

by the increased probability for three and four hydrogen bonds from 0.13 ≤ ϕH2O
V ≤ 0.22. The

formation and growth of more “bulk-like” water networks with increasing ϕH2O
V is the reason for

the concentration dependence of the proton forward hopping rate observed in Figure 4.2b. We note

that water wires which may facilitate efficient proton transport281,284 are not prominently formed

in these solutions, as this would entail a sharp peak at 2 hydrogen bonds per water molecule.

At sufficient water content, percolating water networks fully span the system volume over

macroscopic lengthscales. The percolation threshold is an important metric for proton diffusion,

as more connected water networks will enable longer-ranged Grotthuss transport. Above and be-

low the percolation threshold the water structure will be fundamentally different, with localized

water clusters appearing below the percolation threshold and a system spanning cluster/network

appearing above. The probability that the system exhibits a percolating water network is denoted
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Figure 4.3: Hydrogen bond distribution of water molecules in aqueous [BMIM+][BF−
4 ] mixtures

as a function of water volume fraction, ϕH2O
V . For comparison, the distribution for bulk water is

shown as computed from similar simulations. A simulation snapshot of water clusters at ϕH2O
V =

0.13 is also shown.

R(ϕH2O
V , L), and depends on water volume fraction ϕH2O

V and simulation box size “L”; in the limit

of an infinite system, R(ϕH2O
V , L) will be a step function, with the abrupt transition occurring at the

percolation threshold.329,348 To better locate the percolation threshold in the macroscopic system

limit, we compute R(ϕH2O
V , L) for different system sizes with L ∼ 4.5 and 9 nm (see Supporting

Information).

Figure 4.4a shows the probability R(ϕH2O
V , L) for a percolating network to form, as a function of

the water volume fraction in aqueous [BMIM+][BF−
4 ] mixtures for the different system sizes. The

curves are sigmoidal and approach a step function as L→ ∞, and the percolation threshold occurs

at ϕH2O
V ∼ 0.18 where the curves intersect (indicated by the dashed vertical line in Figure 4.4a).

Note that a previous study estimated the percolation threshold in [BMIM+][BF−
4 ] /water to be

ϕH2O
V = 0.25 by qualitative inspection.360 The percolation threshold of ϕH2O

V ∼ 0.18 corresponds to

∼ 10 M water concentration, which interestingly coincides with the onset of significantly greater

conductivity of aqueous H3O+/BMIM+/BF−
4 solutions compared to aqueous [BMIM+][BF−

4 ] as

shown in Figure 4.1. Thus above ϕH2O
V ∼ 0.18, connected water networks extend over macroscopic

lengthscales and proton transport contributes a significant fraction of the total ionic conductivity
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Figure 4.4: (a) Percolation probability R(ϕH2O
V , L) and (b) weighted water cluster size nw (Equa-

tion 4.5) as a function of water volume fraction ϕH2O
V in aqueous [BMIM+][BF−

4 ] mixtures. Metrics
are computed for different system sizes, and the percolation threshold is indicated by the vertical
dashed line.

(for 1:5.28 H3O+/H2O mole ratio mixtures). Taken together, these properties suggest that aqueous

H3O+/BMIM+/BF−
4 solutions near ϕH2O

V ∼ 0.18 water volume fraction could be ideally suited for

utilization in PEM applications.

Near the percolation threshold, large water clusters are formed with significant fluctuations in

cluster size.347 To better analyze these clusters, we compute the weighted cluster size, nw (Equa-

tion 4.5), which is shown in Figure 4.4b. The weighted cluster size is system size dependent below

the percolation threshold; near the percolation threshold, predictions from different system sizes

are similar. The plot of nw vs ϕH2O
V (Figure 4.4b) shows a very similar concentration dependence

as the percolation probability, R(ϕH2O
V , L) (Figure 4.4a), implying strong correlation between the

weighted cluster size metric and percolation, as noted by Geiger et al. [347] Below the percolation

threshold, there is a tendency for many small, similarly sized water clusters to form. As the water

concentration approaches the percolation threshold, there is a steep increase in the weighted clus-

ter size signifying growth of larger clusters which contain a significant fraction of the total water

present in the system; however, numerous small water clusters still exist in the mixture near the

percolation threshold.
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It might be expected that a marked change in the hydronium diffusion rate would occur near

the percolation threshold due to the intrinsic changes the underlying water networks; however, this

is apparently not the case. As shown in Figure 4.2b, there is a linear relationship between the

hydronium diffusion coefficient and proton forward hopping rate with increasing water content,

with no discernible change in trend near the percolation threshold of ϕH2O
V = 0.18. This suggests

that the percolation transition does not affect proton forward hopping rates, beyond the general

linear concentration-dependent trend. The reason for this is most likely because of separation in

time scale between proton transport and water network rearrangement. For example, hydronium

diffusion coefficients (Figure 4.2) and mean-square displacements (Figures S6-S7) indicate that

hundreds of picoseconds are required for protons to migrate nanometer distances within the aque-

ous [BMIM+][BF−
4 ] mixtures. On hundreds of picosecond to nanosecond timescales, nanometer

water networks will break, form, and rearrange. This “loss of memory” of nanometer network

structure over the timescale for proton diffusion is the reason for the insignificant influence of the

percolation threshold on hydronium diffusion rates. We note that in membrane systems that exhibit

a high degree of nanoconfinement, and/or when employing a more viscous ionic liquid, the water

dynamics/rearrangement would be slower and there could potentially be a more significant effect

of percolation on proton dynamics. However, in the aqueous [BMIM+][BF−
4 ] mixtures, proton

diffusion is most affected by the local water structure around the hydronium ion.

Hydronium ions serve as nucleation sites for larger water clusters and networks within aqueous

[BMIM+][BF−
4 ] , and thus partially facilitate their own proton shuttling. This is indicated through

analysis of the size/diameter of water clusters (Equation 4.4), by separately computing distribu-

tions for clusters that do or do not contain an excess proton. This analysis is shown in Figure 4.5

for concentrations both below (ϕH2O
V = 0.13) and above (ϕH2O

V = 0.25) the percolation threshold

(similar graphs for all concentrations are shown in Figure S13). Below the percolation threshold

at ϕH2O
V = 0.13, the majority of clusters are small and many isolated water molecules are present

in the mixture; this interpretation is consistent with the previously discussed hydrogen bond dis-

tribution (Figure 4.3). Note that the weighted cluster size analysis in Figure 4.4b is comparatively
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skewed towards larger clusters as the weighting depends on the number of molecules per cluster,

whereas Figure 4.5 represents a per-cluster histogram. Interestingly, as shown in Figure 4.5, water

clusters that contain a hydronium ion are generally much larger, consisting of a greater number

of water molecules. This indicates that hydronium ions reside in larger-than-average water clus-

ters, and serve as nucleation sites for water clusters and networks. This is important, because

it indicates that hydronium ions may effectively nucleate their own water networks to facilitate

Grotthuss transport, and that the percolation threshold of aqueous ionic liquid solutions will most

likely be pH dependent. The motif that hydronium ions nucleate their own water clusters/transport

networks is similar to that observed in studies of other systems: for example, Peng et al. [361]

have shown that an excess proton can create its own water wires in confined environments such as

carbon nanotubes and other hydrophobic cavities.281,284,362 We note that previous work on proton

transport in surfactant-based lyotropic liquid crystals emphasized the importance of interactions of

the hydronium oxygen atom with hydrophobic moities on the surfactants.301,302 We have computed

correlation functions between the oxygen atom of the hydronium ion and aliphatic chains of the

BMIM+cation, which are shown in Figure S14; while there is tendency for coordination with the

hydrophobic BMIM+ tail, concentration effects are subtle and appear relatively minor.

The cluster diameter distributions fundamentally change for concentrations above the percola-

tion threshold. Above the percolation threshold, there is a bimodal distribution observed in Fig-

ure 4.5, with a clear secondary peak formed at significantly larger diameter (for our system sizes,

this occurs at d ≈ 50). Figure S13 indicate that a bimodal distribution exists for all concentrations

above the percolation threshold (ϕH2O
V = 0.19, 0.22, 0.25, and 0.30), while only single modal dis-

tributions are observed for concentrations below the percolation threshold (ϕH2O
V = 0.08 and 0.13).

Therefore the secondary peak in the distribution represents the formation of the percolating wa-

ter cluster. Note that because only one minimum image of each water molecule is used in the

graph theory analysis (Equation 4.4), the size of the percolating water cluster is calculated as fi-

nite rather than infinite. A more marked change is apparent in the clusters that contain hydronium

ions (H3O+Cluster, Figure 4.5). The hydronium ion(s) primarily reside in the large water clus-
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(a) (b)

Figure 4.5: Water cluster diameter “d” (Equation 4.4) distributions for a) ϕH2O
V = 0.13 and b) ϕH2O

V =
0.25 H3O+/[BMIM+][BF−

4 ] /water mixtures. For each system, distributions are shown for all water
clusters and those that contain a hydronium ion (H3O+ cluster). The insets depict a magnified view
of the tail ends of the distribution, where a secondary peak is observed for concentrations above
the percolation threshold.

ter that percolates/spans the system, as indicated by the large probability of the second peak in

the distribution. This indicates that proton transport primarily occurs within the large percolating

water network. The conclusion that the hydronium ion nucleates/resides in larger water clusters

is general to all concentrations as shown in Figure S13. Because the percolating water network

consists of a large fraction of the total water molecules for the ϕH2O
V = 0.25 system (Figure 4.4b), it

is highly improbable for the hydronium ion to not reside within the percolating water network at

this concentration.

There is a strong energetic driving force for a hydronium ion to hydrogen bond to three wa-

ter molecules within aqueous [BMIM+][BF−
4 ] mixtures, even at low water content, which is the

reason that hydronium ions tend to nucleate larger water clusters. Note that the hydronium ion

is effectively amphiphilic,225,297,318,361,363,364 as its protons are strong hydrogen-bond donors, but

its oxygen atom has only a small probability of accepting a hydrogen-bond due to the positive

charge of the ion; this is why hydronium generally makes three and not four hydrogen bonds.54

The energetic driving force for formation of three hydrogen bonds between hydronium and water

molecules is indicated by the hydronium/water pairwise correlation function. This pairwise cor-
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relation function is shown in Figure 4.6 as a function of water content, and correlation functions

for all concentrations are given in Figure S15 (note that we plot ρg(r) rather than g(r) itself for

consistent normalization across concentrations). In Figure 4.6, the first two sharp peaks at ∼ 1.4

and ∼ 3.0 Å correspond to water molecules in the first solvation shell, and the smaller magnitude

and broader shoulder peaks at ∼ 3.5 and ∼ 5.0 Å correspond to water molecules in the second

solvation shell around the hydronium. Two correlation peaks per water molecule are observed; the

closer peak reflects the proton involved in the O-H hydrogen bond, and the farther peak reflects

the two farther protons of the hydronium ion. Interestingly, the magnitudes of the first solvation

shell peaks do not change significantly with water volume fraction ; for all concentrations, a co-

ordination number of three is obtained when integrating the first peak of the pair distributions in

Figure 4.6, corresponding to the three water molecules receiving hydrogen bonds from the hy-

dronium ion. Thus the hydronium ion is solvated by (at least) three water molecules even at the

lowest water content [BMIM+][BF−
4 ] solution, evidently due to the strongly favorable energetics

of these interactions. With increasing water content, water molecules fill in the second solvation

shell around the hydronium ion, as indicated by the increasing magnitudes of the peaks at ∼ 3.5

and ∼ 5.0 Å in Figure 4.6. This is consistent with the increasing diameter of hydronium/water

clusters with water content, as seen by comparing Figure 4.5 and Figure S13. By comparing these

metrics with the water-water hydrogen bond distribution in Figure 4.3, it is clear that at low wa-

ter content the hydronium ion forms more hydrogen bonds than does the average water molecule.

This is the reason why the hydronium ion acts as a nucleation site for water networks/clusters,

manifesting in the shifted diameter distribution of hydronium/water clusters relative to pure water

clusters (Figure 4.5, Figure S13).

In addition to the size and topology of the water networks, strong Coulombic interactions

from the ionic liquid modulate the local structure and transport of hydronium ions in the aqueous

[BMIM+][BF−
4 ] mixture. As mentioned in the Introduction, hydronium ions exist in two primary

motifs: the Eigen form, a H9O
+
4 configuration with a localized hydronium ion solvated by three

water molecules, and the Zundel form, a H5O
+
2 configuration in which the excess proton is shared
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Figure 4.6: Pairwise correlation between hydrogen atoms of hydronium ion and oxygen atoms of
water molecules as a function of water volume fraction ϕH2O

V in aqueous [BMIM+][BF−
4 ] . Note

that rather than plotting the radial distribution function, g(r), we plot ρg(r) normalized by the
density of water to better compare between the different water concentration mixtures.

equally between two water molecules.53. The distribution and interconversion between the Eigen

and Zundel motifs play an important role in the mechanism of Grotthuss transport.53,295 The ions in

the concentrated [BMIM+][BF−
4 ] solutions alter the relative Eigen/Zundel distribution relative to

the distribution in bulk water; this is shown in Figure 4.7. In Figure 4.7 we plot the probability of

the MS-EVB state vectors53 for different water concentration mixtures, focusing on the principle

and second largest state component (Figure S16 provides similar analysis for all concentrations).

The Eigen motif corresponds to peaks in the distribution at c21 ≈ 0.64 and c22 ≈ 0.13, while the

Zundel motif is identified by near equality of the first two expansion coefficients, i.e. c21 ≈ c22 ≈

0.45.53,295 While the distributions in aqueous [BMIM+][BF−
4 ] exhibit the same general shape as

for hydronium in bulk water, the relative probability of the Eigen and Zundel motifs is different

due to the ionic content. At the low water concentration of ϕH2O
V = 0.04, the Eigen structure is

noticeably more probable relative to the distribution in bulk water, while the probability for the

Zundel structure is lower. The relative Eigen/Zundel probability begins to converge to the bulk

water distribution with increasing water concentration, but generally there is higher probability

for Eigen motifs within all the aqueous [BMIM+][BF−
4 ] solutions. The greater probability for the

Eigen structure helps explains the slower self-diffusion of hydronium in aqueous [BMIM+][BF−
4 ]
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Figure 4.7: Probability distribution of the MS-EVB coefficients for the principle (c21) and second
largest (c22) states. The c21 distribution is on the right towards larger coefficient values, and the
c22 distribution is the on the left towards smaller coefficient values. For comparison, we plot the
corresponding distribution for hydronium in bulk water (ϕH2O

V = 1.0) computed from an analogous
simulation.

relative to bulk water, as the Grotthuss mechanism invokes the Zundel configuration as a “transition

state” for proton transfer.295

The Eigen form of the hydronium ion is stabilized by strong Coulombic attraction with BF−
4 anions

in the aqueous [BMIM+][BF−
4 ] mixtures. Note that the Eigen form of hydronium has localized

charge density as the proton primarily resides on one water molecule, whereas the Zundel form

delocalizes the excess charge over two water molecules;53 therefore it is expected that the Eigen

motif exhibits stronger interaction with anions. To confirm this, we compute a “decomposed”

radial distribution function, g(r), between the hydronium cation and the BF−
4 anions. This distri-

bution is decomposed into contributions from the Eigen and Zundel states to illuminate how the

correlation with the anion changes as a function of proton localization. Explicitly, we compute the

coordinate δ = |rO∗H∗ − rO1xH∗|, where O∗ is the principal hydronium oxygen, H∗ is the principal

hydronium hydrogen and O1x is the closest water molecule present in the first solvation shell of

the hydronium.295,308 Eigen structures are defined as δ > 0.4 and Zundel structures are defined as

δ < 0.1.295,308 The correlation function is then decomposed by separately collecting statistics when

the hydronium ion exists in either of these motifs. The decomposed pairwise correlation between
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the hydronium ion and BF−
4 anion is shown in Figure 4.8 for the aqueous [BMIM+][BF−

4 ] mixture

at ϕH2O
V = 0.25 water content (Figure S16 shows the distributions for other concentrations). Note

that these distributions are inherently noisy as there is only one hydronium ion in the system and

also many structures are not used for statistical averaging (those with 0.1 < δ < 0.4); however,

comparison across different concentrations in Figure S17 indicates that qualitative conclusions are

robust in lieu of statistical noise.

The hydronium/BF−
4 pairwise distribution shown in Figure 4.8 exhibits a small peak near ∼

5.0 Å and a closer shoulder at 3.0 Å. Notably, both the primary peak and shoulder have higher

intensity when the hydronium ion is in the Eigen form than when hydronium is in the Zundel

form. This signifies that the BF−
4 anions coordinate more strongly to the Eigen motif, which is

due to its more localized charge distribution.318 It is important to note that the BF−
4 coordination

does not disrupt first-solvation shell water interactions, but rather substitutes for water molecules

in the second solvation shell. This is indicated by the constant coordination number of three

hydrogen-bonded water molecules in the hydronium/water pairwise distribution (Figure 4.6), as

well as the fact that the peaks in hydronium/BF−
4 g(r) exist at roughly the same positions as the two

peaks/shoulders corresponding to the second solvation shell water molecules (Figure 4.6). The

enhanced BF−
4 coordination, which provides electrostatic stabilization of the hydronium ion in the

Eigen motif, is the reason for the enhanced Eigen populations in the aqueous [BMIM+][BF−
4 ] mix-

tures (Figure 4.7). This hydronium/BF−
4 interaction likely contributes to the decreased hydronium

diffusion in comparison to water as observed in Figure 4.2.

4.5 Conclusion

Utilizing reactive molecular dynamics simulations, we have thoroughly characterized proton trans-

port in aqueous [BMIM+][BF−
4 ] mixtures at concentrations near the percolation threshold. We

have provided an ansatz for predicting/interpreting the pH-dependent, ionic conductivity of H3O+/

BMIM+/ BF−
4 / water mixtures that demonstrates excellent agreement with previous experimen-

tal conductivity studies. Despite the inaccuracy of Nernst-Einstein conductivity relations for neat
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Figure 4.8: Pairwise correlation g(r) for hydronium/BF−
4 ions in aqueous [BMIM+][BF−

4 ] at ϕH2O
V =

0.25 water content. The distribution is decomposed into Eigen/Zundel contributions as discussed
in the text, and is computed between hydrogen atoms of the hydronium ion and fluorine atoms of
BF−

4 anions.

ionic liquids due to neglect of ion correlation,278 such expressions work well in combination with

MS-EVB computed diffusion coefficients to predict proton conductivity of the mixtures. This

is presumably due to the unique structural diffusion mechanism of the protons, and implies that

proton transport occurs primarily in an uncorrelated fashion, depending mainly on local water net-

works. For ϕH2O
V = 0.30 water volume fraction [BMIM+][BF−

4 ] mixtures, we find that diffusion of

hydronium ions is ∼ 8 times slower than rates in bulk water. This is partly due to the stabilization

of the Eigen form of the hydronium ion from electrostatic interactions with BF−
4 anions, which re-

duces proton transport rates. From the concentrated ionic liquid, we find that the proton diffusion

coefficient increases linearly with water content due to a corresponding linear increase in proton

forward hopping rates.

Consistent with previous studies,361 we have shown that the hydronium ion nucleates larger

water clusters and networks within concentrated ionic solutions, facilitating its own structural dif-

fusion. A full first-solvation shell of water molecules is formed around hydronium ions for water

content as low as ϕH2O
V = 0.04 volume fraction, due to the strong energetic driving force for hy-

dronium to hydrogen bond to three water molecules; for reference, water molecules form only

one hydrogen bond on average at this concentration. This means that water networks and clusters
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within concentrated [BMIM+][BF−
4 ] /water mixtures will be significantly pH dependent. Indeed,

we have shown that water clusters and networks incorporating a hydronium ion tend to be much

larger and contain more water molecules than pure water clusters within the mixture. Thus hy-

dronium ions are tightly coupled with water solvation structures under low water conditions, and

therefore the perturbation of water network structures by hydronium ions is an important consider-

ation in addition to the intrinsic water networks of aqueous [BMIM+][BF−
4 ] solutions themselves.

We have analyzed the percolation behavior of aqueous [BMIM+][BF−
4 ] mixtures, which is par-

ticularly relevant for membrane applications in which water networks should extend over macro-

scopic lengthscales. The percolation threshold of aqueous [BMIM+][BF−
4 ] mixtures is predicted

to occur at water volume fraction of ϕH2O
V ∼ 0.18, but as mentioned, this value will most-likely be

pH dependent. Combined with the fact that proton transport makes up a significant contribution

of the total ionic conductivity for ϕH2O
V ∼ 0.18, aqueous H3O+/BMIM+/BF−

4 mixtures at 1:5.28

H3O+/H2O mole ratio, we suggest that this approximate IL/water concentration may be optimal

for utilization in PEM materials. Somewhat surprisingly, we found that the percolation transition

of the mixture had no significant effect on proton transport rates, which we attribute to differences

in time scale between proton diffusion and water network rearrangement. However, it is yet to

be explored whether this is true in nanoconfined systems (membranes) for which water dynam-

ics would be slower, and percolation may play a bigger role in influencing macroscopic transport

rates. It is possible that other ionic liquids may be more optimal for tuning the percolation threshold

and or water networks, for example [BMIM+][BF−
4 ] may be potentially too miscible with water,

forming smaller isolated clusters, and a more hydrophobic (but also miscible) ionic liquid may be

preferred.289 Additionally, different choice of anion may favor the Zundel configuration instead of

the Eigen configuration, with benefits for proton transport rates. The many previous examples of

enhanced proton transport in low-water content systems281,302,365,366 suggest much room for further

optimization of ionic liquid-based proton conducting solutions.
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CHAPTER 5

EXCITATIONS FOLLOW (OR LEAD?) DENSITY SCALING IN PROPYLENE

CARBONATE

This chapter reproduces the work in Ref. [367].

5.1 Abstract

Structural excitations that enable interbasin (IB) barrier crossings on a potential energy landscape

(PEL) are thought to play a facilitating role in the relaxation of liquids. Here we show that the pop-

ulation of these excitations exhibits the same density scaling observed for α relaxation in propylene

carbonate (PC), even though they are heavily influenced by intramolecular modes. We also find

that IB crossing modes exhibit a Grüneisen parameter (γG) that is approximately equivalent to the

density scaling parameter γTS . This observations suggests that the well-documented relationship

between γG and γTS may be a direct result of the pressure dependence of the frequency of unstable

(relaxation) modes associated with IB motion.

5.2 Introduction

For many decades there has been evidence that discrete molecular rearrangements, so-called “hops”,

contribute significantly to relaxation in viscous liquids.368,369 At reduced temperatures it is thought

that molecules become trapped in a cage formed by their neighbors so that relaxation requires col-

lective rearrangements of neighborhood particles370 that are thought to be facilitated by structural

excitations.371,372

The case for the importance of excitations in influencing liquid dynamics is supported through

their ability to account for super-Arrhenius relaxation,373 the breakdown of the Stokes-Einstein

relation,374 the appearance of dynamic heterogeneity,375,376 and the behavior of specific heat at the
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calorimetric glass transition.377 If excitations are a causal factor in liquid dynamics, one would

expect also a connection to the ubiquitous scale-invariance observed in liquid dynamics,378–392 but

this connection has not been explored.

As pointed out by Roland et al.,388 expectation of scale invariance arises when the poten-

tial that controls system behavior is well-approximated by a pairwise additive inverse power law

(IPL).389,392 Dyre and coworkers379,390,392,393 have expanded these ideas, demonstrating pressure

and temperature invariance of dynamic, structural, and thermodynamic properties of model and

real liquids when length and energy are properly scaled.379 These properties are invariant along

“isomorphs” of constant ργ/T , where γ = n/3 and n is the exponent of the IPL pair potential. In

systems where only the IPL potential is important, the isomorph scaling exponent γ is related to

instantaneous fluctuations in energy and the first pressure virial.379,390–392

When the dominating interactions in a liquid do not conform to IPL potentials the entire gamut

of isomorph behavior can be lost. This is observed in systems with multiple interaction length-

scales, dominant electrostatic forces, or those with distinct directionality such as hydrogen bond-

ing.392 For example, MD simulations of the SPC water model have shown that there is essentially

no virial-energy correlation, and that isomorphic state points do not exist.379,393 Similar results

are found in experimental studies of heterogeneous hydrogen bonding (e.g. polyalcohol) sys-

tems.394,395

When only minor motional modes of a system (such as intramolecular or long-range inter-

molecular degrees of freedom) do not conform to IPL potentials, some aspects of isomorph be-

havior are lost, but many other aspects may be retained. These systems exhibit what is sometimes

referred to as “pseudoisomorphs,”396 and properties associated with long timescales such as α re-

laxation may exhibit density scaling in that they are invariant at constant values of ργTS/T where

γTS is an empirical density scaling exponent. Density scaling has been experimentally verified for

a wide variety of systems, including van der Waals, and other non-associating liquids, polymers,

ionic liquids, and some associating and hydrogen bonding liquids.380–388 Several theoretical and

experimental works392,397,398 have demonstrated a connection between γTS and the volume depen-
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dence of vibrational frequency for spatially extended collective modes of the liquid through the

Grüneisen parameter.

In these pseudoisomorph systems, pressure-energy correlations are broken since energy can

partition to the non-IPL modes without strong coupling to changes in volume or pressure. The

pressure of these fluids does not depend strongly on forces arising from angle vibrations and tor-

sional rotations of at least some intramolecular modes.399 Olsen et al.400 found in model diatomic

and oligomeric systems with harmonic intramolecular bonds that vibrational eigenmodes repre-

senting center-of-mass motion scale properly and could be used to find the scaling exponent, but

that the highest frequency eigenmodes did not scale. The number of non-scaling eigenmodes was

equal to the number of intramolecular bonds, so all of the intramolecular modes for the diatomic

model, and at least 1/3 of the highest frequency intramolecular modes for the oligomeric system

did not scale.

Thus, while low-frequency vibrational modes and slow dynamic processes follow density scal-

ing, there appears to be some cutoff in timescale or lengthscale below which dynamic processes

in the liquid no longer scale. Tölle et al. found that relaxation processes in ortho-terphenyl on

timescales of 1 ns and longer follow density scaling.378 Hansen et al.382 and Riberio et al.401 demon-

strated invariance down to 100 ps and 10 ps respectively. Puosi et al.383 found density scaling at

timescales of the “fast β” (βfast) relaxation, roughly 1 ps. In that work, Puosi et al. quantified

the mean-squared displacement < u2 > of particles in course-grained polymer systems, finding

excellent correspondence between γTS obtained for < u2 > and α relaxation, but only when a

small term quadratic in (Tρ−γTS ) was added to fit the latter.

We have recently shown that the Angstrom-lengthscale and picosecond timescale motion that

has traditionally been classified as βfast relaxation and measured through < u2 > contains sig-

natures of two separate processes.402,403 The faster of the two corresponds to elastic deformations

of equilibrium local atomic structure, corresponding to so-called “inherent state” (IS) dynamics

on a potential energy landscape (PEL).404 The slower of the two processes represents403,405 rear-

rangements of local atomic structure corresponding to interbasin (IB) barrier crossings on a PEL
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that lead to a new IS, and the instantaneous population of IB crossing events is equivalent to the

excitation population.406 We have further found evidence that intramolecular modes may figure

prominently in excitations,405 leading us to question whether excitations and all the components

of βfast should be expected to have the same γTS as the α process, or whether involvement of

intramolecular modes in these short-timescale, local motions break this scaling.

To investigate to what extent excitations obey density scaling, we have conducted molecular

dynamics simulations of propylene carbonate (PC) over a range of pressures and temperatures. PC

was previously shown to follow density scaling,398,407 and provides an interesting case study for

this investigation due to its strong electrostatic interactions (ϵ ∼ 65), molecular anisotropy, and the

considerable flexibility of its ring, all of which affect its liquid state properties.408–410

Our simulations utilize an ab initio, polarizable force field which predicts properties that are in

excellent agreement with experimental measurements near STP. By searching its phase diagram,

we identify two P-T curves in PC that exhibit largely invariant structural and dynamical properties.

We then quantify excitation populations at these phase points, utilizing a previously benchmarked

approach.402,403 We conclude that excitations fundamentally involve the atomic-scale intramolecu-

lar structure of PC, and are not well characterized by center of mass motion alone. Furthermore,

we demonstrate that excitation populations in this liquid obey density scaling, as they are constant

across the P-T curves exhibiting invariant structure and dynamics. We show also that motion asso-

ciated with excitations are the fastest dynamic processes that can be considered to follow density

scaling.

5.3 Methods

5.3.1 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations were conducted for propylene carbonate (PC) utilizing the

OpenMM simulation package.163 We utilize the atomistic, polarizable SAPT-FF force field, which

is an ab initio force field developed on the basis of symmetry adapted perturbation theory (SAPT)

calculations.150 We supplement these existing force field parameters with atomic charges and dihe-
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dral potentials that are specifically parameterized for PC utilizing additional DFT calculations, as

described in the Supporting Information. Polarization is incorporated via a Drude oscillator model

utilizing a dual-Langevin thermostat as implemented in OpenMM, with a 1 ps−1 friction coefficient

used for both thermostats.411 The particle-mesh Ewald method (PME)36 is used for electrostatics

and van der Waals (VDWs) interactions are computed up to a 1.4 nm cutoff. Each simulation con-

sisted of 400 propylene carbonate molecules initially constructed using Packmol.412 Equilibration

consisted of 1 ns NPT simulations conducted with a Monte Carlo Barostat, followed by subse-

quent 5 ns NVT simulations at the equilibrated density. All simulations utilized a 1 fs timestep.

Because OpenMM utilizes a Monte Carlo Barostat, the virial is not directly accessible. We have

thus utilized Gromacs to conduct an additional MD simulation in the NVT ensemble at 300 K to

compute energy-virial correlation, shown in Supplementary Fig. S1.413 The simulation details for

the Gromacs simulation are largely identical to the OpenMM simulations, except that in the former

Drude oscillator positions are treated strictly adiabatically (minimized at every timestep). See the

Supporting Information for more details about the simulation settings.

5.3.2 Isomorph Search

Finding isomorph families for Lennard Jones (LJ) fluids and other simple systems for which pair-

wise IPL potentials dominate is accomplished by analyzing the virial-energy correlation func-

tion.379 For IPL potentials, the virial and potential energy are perfectly correlated, so that the

normalized correlation function is unity.393 This is not possible for systems with significant in-

tramolecular degrees of freedom. For organic liquids with molecular constituents of increasing

size and complexity, it is expected that isomorphic behavior will not be found based on analysis

of virial-energy correlation.382,383,396 This is because intramolecular rather than intermolecular in-

teractions dominate the potential energy of the system, with the former growing as 3N-6 as the

size “N” of the molecules gets larger. The intramolecular interactions do not follow inverse power

laws, and additionally fluctuations in the intramolecular energy are not expected to correlate with

virial fluctuations. The latter is inferred from the fact that the pressure of fluids does not depend
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on forces arising from angle vibrations and torsional rotations.399 For molecules of large size and

complexity, near zero correlation of the virial-energy is expected due to the dominance of the in-

tramolecular interactions. Experimentally, Hansen et al. have shown that density scaling breaks

down for dynamic signatures indicative of intramolecular motion.382

We have computed the virial-energy correlation from an MD simulation of PC at 300 K, 1

atm; the results are shown in Suplemental Fig. S1. We plot the data as normalized fluctuations

of each quantity, in analogy to previous work.383,393,396 As expected from the dominance of the

intramolecular energetics of PC and similar to results for other flexible molecules,383,396 we find

essentially no correlation between the virial and energy fluctuations.

We note that if it were possible to explicitly separate the intramolecular and intermolecular

energy contributions, then one could analyze virial correlations with just the latter. However, such

a separation is generally not tractable within a molecular dynamics code. The reason being that

electrostatic interactions, which contribute to intramolecular energy for 1-4 and longer atom sepa-

rations, are computed with an Ewald/PME sum and not easily separated on a pairwise interaction

basis. Furthermore, the electrostatic energy is formally many-body for explicitly polarizable force

fields, as utilized in this work.

Because of these considerations, in this work we utilize a brute-force approach to search for

isomorph curves. We searched for two isomorph curves in the P-T phase diagram, shown in Fig-

ure 5.1. We initially ran a 1 ns NPT simulation of 400 PC molecules at temperature/pressure values

of 300 K/1 atm; simulation settings are the same as noted above. We then performed a 20 ns NVT

simulation. We calculated the diffusion coefficient (DT ) and the inverse rotational correlation time

(1/τrot) for this state point. DT was calculated using the Einstein relation:

DT = lim
t→∞

1

6

∂⟨|r(t)− r0|2⟩
∂t

(5.1)

and τrot was calculated by integrating the rotational correlation function:

τrot =

∫ tmax

0

dt⟨zCO(0) · zCO(t)⟩ (5.2)

116



with tmax equal to 1 ns and zCO equal to the carbonyl bond vector. As isomorph properties are

only apparent in reduced units, the calculated values of DT and τrot were converted to reduced unit

values D̃T and τ̃rot.379 We performed a series of 1 ns NPT/20 ns NVT simulations at temperatures

of 325, 350, 375 and 400 K and a range of pressures. D̃T and 1/τ̃rot were computed at each state

point. A point was classified as an isomorph point if the calculated values agreed with D̃T and

1/τ̃rot at 300 K/1 atm (within statistical uncertainty).

We followed a very similar procedure for the second isomorph. Here, we initially ran a sim-

ulation at a temperature/pressure value of 250 K/1 atm. As the dynamics are noticeably slower

at this state point compared to 300 K/1 atm, we ran 50 ns NVT simulations after the initial 1 ns

NPT simulation; both D̃T and 1/τ̃rot were then computed at this P-T point from the NVT simula-

tion. We then followed a similar procedure as above, running simulations at varying pressures at

the temperature points 275, 300, 325 and 350 K. The temperature/pressure points making up both

isomorphs along with their calculated values of D̃T and 1/τ̃rot are listed in Table 5.1.

Isomorph and density scaling behavior present in reduced units of time, length and energy

as described by Gnan et al.379 The reduced units of length and time used here are ρ−1/3 and√
m/kBT/ρ

1/3 respectively. Here we take the mass ‘m’ as the molecular mass of PC, but note that

most scaling arguments are derived for atomic fluids. We compute scaled diffusion coefficients as

D̃ =
(
ρ1/3

√
m/kBT

)
D. We compute scaled time constants τ using the reduced time unit. Dy-

namic scattering functions are given in real length/time units when comparing to experiment, and

reduced length/time units otherwise, and this convention will be explicitly stated in context of

discussion.

We note that experimental characterization of density scaling has primarily utilized real rather

than reduced units. Formally, the latter should always be used, but in practice use of real units

is largely inconsequential when relaxation times are plotted over many orders of magnitude. For

example, Pawlus et al.407 demonstrated density scaling for propylene carbonate by characterizing

relaxation times over ten orders of magnitude, at different phase points. While relaxation times

were plotted in real units, the conversion to reduced units differs by order unity for the investigated
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phase space, and is thus not observable over plots that span many decades in time. We show a plot

comparing reduced vs. real units for DT vs. τ in Fig. S2 for the PC pseudoisomorph points.

5.3.3 Identifying Excitations

In computer simulations, excitation populations are generally quantified by searching for particles

that undergo sufficiently large spatial displacements that persist in time, usually on the order of a

picosecond.372,414 In such an analysis, one must average out fast vibrations that correspond to mo-

tion within the same inherent structure, and one must justify the spatial and temporal cutoff values

applied to discriminate hops.372,414 Instead, we quantify excitation populations through analysis of

the self intermediate scattering function F (q, t)402,403 by modeling it as a double-Gaussian in q:

F (q, t) = [1− Φ(t)]e−(qπσIS)
2

+ Φ(t)e−(qπσIB)2 (5.3)

This approach has the advantage of being applicable to both experimental and computational

characterization, and requires no a priori assumptions about lengthscales or timescales of the ex-

citations, since the lengthscale and timescale signatures of excitations and their associated hops

come directly from fitting to the model. Here, Φ(t) signifies the fraction of particles (H atoms

or molecular centers of mass) that have undergone an excursion of lengthscale σIB up to time t.

Φ(t ≈ 1 ps) is the instantaneous population of particles at an IB barrier, and thus the instantaneous

excitation population. Also at t ≈ 1ps, σIS and σIB are the characteristic lengthscales for inherent

state elastic deformation and for hopping respectively. In (Equation 5.3) we have neglected a dif-

fusive term, so, at later times, σIS and σIB begin to grow slowly as they acquire diffusive character.

This form provides excellent fits for experimental and simulation data, as is shown in Figure 5.3,

Figure 5.4, and Figure 5.5. The time dependence of fit parameters σIS , σIB and Φ is shown.
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5.4 Results

We first briefly discuss the accuracy of the PC force field utilized for the MD simulations, as this

dictates the accuracy of all simulation results presented in the manuscript. Compared to exper-

iment, errors in the predicted density and enthalpy of vaporization are 3% and 9% respectively,

at 300 K, 1 atm; such accuracy is comparable to previous property predictions of organic liquids

with SAPT-FF force field.415 Additionally, computed diffusion coefficients and rotational correla-

tion times are within 10% of the experimental values over the temperature range of 250-350 K at

1.0 atm (Fig. S8). Because there are no empirical parameters in the model, similar accuracy is

expected throughout the studied temperature-pressure phase diagram.

5.4.1 Center of Mass Motion

Utilizing a brute-force screening approach (Section 5.3.2), we were able to locate two curves on

the temperature-pressure phase diagram that display largely invariant structural and dynamical

properties (computed in reduced units). The curves that we located are shown in Figure 5.1, in

which we have mapped the pressure to the equilibrium density. Also shown in Figure 5.1, for

perspective, is the glass transition curve.416 One pseudo-isomorphic curve starts at 300 K, 1 atm

and extends to higher temperature/pressure, and the other starts at 250 K, 1 atm; by intention, both

curves were chosen to be far away from the glass transition.

Our isomorphic curves display identical density scaling to that previously determined experi-

mentally for propylene carbonate. Pawlus et al.407 found that relaxation times and dc conductivity

in propylene carbonate solutions measured across the phase diagram, collapsed to a common curve

when plotted against V −3.7/T .407 This scaling exponent of γTS = 3.7 agrees with our computed

isomorph curves, as shown in Figure 5.1. All points on a given isomorph curve were fit to the form

ργTS/T = constant. A best fit of our data gave a value of γTS = 3.75 ± 0.09, consistent with the

findings of Pawlus.

In Table 5.1, we give calculated diffusion coefficients (D̃T ) and inverse rotational relaxation
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Figure 5.1: Demonstration of ργTS/T = constant for the two isomorph curves, with γTS = 3.7
as determined from Pawlus et al.407 plotted as dashed lines. The solid line denotes the liquid/glass
boundary computed from state points taken from Bonetti and Dubois [416].
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Table 5.1: D̃T and 1/τ̃rot for isomorph 1. Uncertainties in both D̃T and 1/τ̃rot are approximately
8% due to uncertainties in predicted density at a given T/P state point.

Isomorph Point D̃T (10−3)) 1/τ̃rot(10
−1)

300 K/1 atm 4.1 0.95
325 K/1000 atm 4.1 0.98
350 K/3200 atm 3.9 1.02
400 K/4600 atm 3.9 1.03

250 K/1 atm 1.2 0.31
275 K/1300 atm 1.2 0.32
300 K/2400 atm 1.1 0.32
325 K/4000 atm 1.1 0.32
350 K/5600 atm 1.1 0.33

times (1/τ̃rot), both in reduced units, for the two pseudo-isomorphic curves. These computed

dynamical properties are invariant along each pseudoisomorph to within statistical uncertainty. In

addition to invariance to these dynamic measures, we expect structural properties of the fluid to be

invariant along pesudoisomorphs. To analyze the liquid structure, we compute radial distribution

functions (RDFs) between propylene carbonate molecules in the liquid as a function of center-of-

mass positions. The RDFs are shown in Figure 5.2a) (top panel) and in Supplementary Fig. S3

as computed for all phase points on each pseudoisomorph curve. The RDFs for all points on each

pseudoisomorph collapse to a single curve, when the lengthscale is plotted in reduced units. In the

inset, we highlight the similarity across the phase points with a high resolution scale of the first

RDF peak. As a comparison, we show RDFs computed from 1 atm isobar phase points spanning

temperature 300K-350K in Figure 5.2b). It is clear from the insets in Figure 5.2a)-b) that there is

structural deviation (albeit small) between the isobar points, in contrast with the identical structure

among pseudoisomorph phase points.

In the bottom panel of Figure 5.2 we show the self part of the intermediate scattering function

F (q, t), defined as

Fs (q, t) =
1

N
⟨

N∑
i=1

exp (iq · (ri(t)− ri(0)))⟩ (5.4)

where q is the momentum transfer wavevector, and ⟨...⟩ denotes an ensemble average. In Fig-
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Figure 5.2: Center-of-mass structural and dynamic metrics at pseudo-isomorphic phase points
compared to isobar phase points. Top: RDFs computed between propylene carbonate center of
mass positions, and plotted as a function of reduced distance for a) all points along the 300 K
pseudoisomorph; and b) 1 atm isobar points at several temperatures. Bottom: Comparison of
F(q,t) at selected wavevectors, computed based on center of mass positions for c) 300 K, 1 atm
pseudoisomorph phase points; and d) 1 atm isobar points at several temperatures.
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ure 5.2c) we show Fs(q, t) computed for molecular center-of-mass (COM) positions, and in Fig. S3

we show Fs(q, t) calculated for hydrogen atom (H-atom) positions (i.e. the sum in Eq Equation 5.4

runs over COM or H-atom indices respectively). Here and for the remainder of the manuscript, all

reference to the scattering function concerns the self part (and not the distinct contribution), and

the quantity in Equation 5.4 will be referred to simply as F (q, t) (“s” subscript dropped). The q

values shown describe dynamics on lengthscales ranging from 70% to 2.5 times the average in-

termolecular spacing (qmax,COM = 5.76). At each of these lengthscales, COM dynamics among

all the phase points investigated are identical to within uncertainty. These combined dynamic and

structural analyses indicate that our identified phase point curves (Figure 5.1) indeed behave as

pseudoisomorphs. For comparison, in Figure 5.2d) we show Fs(q, t) computed from 1 atm isobar

phase points spanning temperature 300K-350K (computed for COM positions) As expected, there

is significant temperature dependence of dynamic relaxation for the isobar points; in contrast, the

pseudoisomorph phase points exhibit essentially identical COM dynamics as indicated by Fs(q, t)

in Figure 5.2c).

Based on our simulation analysis, we find that propylene carbonate exhibits density scaling

such that structural and dynamic properties are functions of ρ3.7/T , in agreement with previous

experimental findings.407

5.4.2 Excitations, Inherent State Motion, and Interbasin Crossing

Interbasin barrier crossing events in atomic model systems are local cooperative particle reorga-

nizations370,417 and represent fundamental relaxation events. We have recently shown that motion

associated with IB crossing and IS basin exploration can be quantified from the scattering func-

tion.403 Specifically, we showed that experimental S(q, ω) (the time Fourier transform of F (q, t))

from quasi-elastic neutron scattering (QENS) on propylene carbonate is optimally fitted with three

Lorenzians, having q-dependent amplitudes consistent with a diffusive process and two localized

processes. The latter two processes had time-dependent lengthscale characteristics corresponding

to localized processes, consistent with inherent state (IS) vibrational motion (σv) and interbasin
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Figure 5.3: Top) Scattering function Fs(q, t) computed from MD simulation at 300K, 1atm based on H-atom
positions. Bottom) Scattering function Fs(q, t) measured by incoherent QENS from PC.403

(IB) hopping motion (σh) on a PEL. In order to characterize IB and IS motions in this study we

focus on F (q, t) calculated from Equation 5.4 For comparison with QENS data from PC that were

previously acquired by one of us,403 we sum over H atoms because incoherent scattering from

hydrogen atoms dominates the QENS signal in simple organics.

In Figure 5.3, we compare the scattering function computed from our simulations to that pre-

viously measured by QENS.403 There is generally good agreement between the simulated and

experimental scattering functions, attesting to the accuracy of the employed force field. Since we

do not include coherent scattering in Equation 5.4, we expect deviations of a few percent at low

q values which are not visible in Figure 5.3. However, there are prominent discrepancies between
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simulated and experimental F (q, t) at q > qmax = 1.1 Å−2 and at short times and high q values.

These discrepancies are not surprising, considering the approximations of the intramolecular

interaction potential (harmonic bonds, angles, etc.) used in the simulations (Supporting Informa-

tion). For example, the largest plotted wavevector q2 = 5 Å−2 corresponds to less than 3Å real

space distance, which is smaller than the molecular diameter of PC. Thus F (q, t) at this wavevec-

tor is expected to be quite sensitive to the torsional potentials and even methyl group rotation,

the latter of which is not expected to be accurately modeled by the force field. In contrast, the

scattering at q < qmax (distances longer than intermolecular separation) is dictated largely by in-

termolecular forces, and the intermolecular potential utilized in the MD simulations is expected to

be quite accurate, as confirmed by the good agreement with experiment for F (q, t) in this regime.

We obtain parameters for excitations, IB and IS motion by fitting F (q, t) with (Equation 5.3).

A straight line in a ln(F (q, t)) vs q2 plot signifies a single relaxation process that is Gaussian

in q. The bi-linear form of ln(F (q, t) vs q2 illustrates the two-step relaxation process. From a

data-fitting perspective, Φ(t) serves as a time-dependent non-Gaussian parameter. From a parti-

cle dynamics perspective, Φ(t) represents the fraction of particles that have “hopped” (undergone a

non-reversing IB crossing) up to time t. Bearing in mind that hops constitute significantly larger ex-

cursions than IS cage distortions, it is clear that until a molecule executes a hop, the q-dependence

of its scattering signature will be characteristic of only small lengthscale σIS . Once a hop occurs,

that signature will change to larger lengthscale for all subsequent times.

Figure 5.4 shows F (q, t) calculated from hydrogen atoms, fits to (Equation 5.3) and fit pa-

rameters. As shown in the top panel, the model fits quite well, fully parameterizing F (q, t) for

this q and t range. The middle and bottom panels in Figure 5.4 show excellent agreement in the

time-dependence of model fits for each of the 300 K, 1 atm pseudoisomorphs. In the middle panel,

Φ(t) increases monotonically as expected,403 with (1-Φ) exhibiting an initial rapid drop during the

period of quasi-ballistic motion when atoms are exploring the cage formed by their neighbors. As

we have explained elsewhere,406 just after this initial drop in (1-Φ), Φ(t ≈ 1 ps) represents the

instantaneous fraction of H atoms involved in large-lengthscale motion characteristic of structural
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(Equation 5.3). (Middle and Bottom) Time-dependence of model fits shown for each pseudoisomorph of 300 K, 1
atm.

126



excitations. After this initial period of cage exploration, (1-Φ) decays almost exponentially as ex-

citations visit new regions of the sample and facilitate hops of an increasingly large fraction of

particles. In the bottom panel, the characteristic lengthscales σIS and σIB initially show signa-

tures of localized motion during the period of cage exploration, reaching quasi-asymptotic values

of ≈ 0.1 and ≈ 0.2 respectively, consistent with IS vibration and IB crossing.417 The values of

these fit parameters continue to grow, taking on a diffusive character at longer times in this model

because, for simplicity’s sake, we do not explicitly include diffusion through a separate parameter.

The high degree of overlap among the fit parameters at each of the pseudo-isomorphic phase

points signifies excellent correspondence between F (q, t) for H atoms at each phase point, and

demonstrates that excitation populations as well as dynamic timescales and lengthscales associated

with IS vibrations and IB crossing obey density scaling. We have previously shown that the IS and

IB modes are related in a simple way to α relaxation and translational diffusion,402,403,405 so the fact

that they exhibit scaling is consistent with Hansen’s conclusion (based on longer timescale data)

that motion coupled to α relaxation should exhibit density scaling.382

5.5 Discussion

5.5.1 IS and IB motion Involve Intramolecular Modes

While the dynamics encoded by the diffusion coefficient, rotational relaxation time (Table 5.1)

and F (q, t) for COM integrate over intramolecular motion, the atomic scattering function formally

encompasses dynamical processes over all temporal and spatial scales relevant to IB and IS mo-

tion. The fast timescales and short lengthscales of IS and IB motion make them candidates for

being associated with intramolecular modes. Comparing the top panels of Figure 5.4 and Fig-

ure 5.5 provides evidence that IS and IB modes in PC involve significant intramolecular motion.

The top panel of Figure 5.5 shows FCOM(q, t) calculated from molecular centers of mass for the

300 K, 1 atm phase point. Comparing with FH(q, t) from H atoms at the same phase point in

Figure 5.4, it is quite clear that the COM motion is of lower amplitude overall since, for all q and

t, FH(q, t) ≤ FCOM(q, t). A similar relationship was found between COM and H-atom F (q, t)
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for glycerol.405 Molecular rotation will cause some differential decay of FH(q, t) compared to its

COM counterpart, but a detailed comparison of the two scattering functions suggests another sig-

nificant contribution. The two characteristic lengthscales for motion are similar for H-atom and

COM fits, suggesting that the molecule moves in a quasi-rigid fashion, but ΦH ≥ ΦCOM at all

times. This pronounced muting of the non-Gaussian nature of the COM F (q, t) with respect to the

H-atom F (q, t) directly demonstrates that IS and IB motion executed by PC are largely intramolec-

ular in nature (although they could in principle involve parts of more than one molecule). Hopping

of individual H-atoms - parts of the molecule - precedes similar lengthscale motion of the entire

molecule reflected in the COM.

5.5.2 Scaling-Relevant Intramolecular and Collective Modes

We turn now to the question of which intramolecular modes are likely to contribute to IB and IS

motions, and why, if they contribute significantly, do they not spoil the density scaling demon-

strated in Figure 5.4. The origin of the effective IPL appears to be collective in nature since strong

energy-virial correlations are observed only when averaging over the ensemble in rigid particle

models.392 Thus, we expect that if any intramolecular modes do contribute to density scaling, the

contributing modes would most likely low-frequency ones that involve significant portions of the

molecule.

In the top left panel of Figure 5.6 we overlay Raman spectra of PC from two sources. The

red solid trace shows the lowest frequency intramolecular vibrational modes, obtained through

spontaneous Raman scattering. These Raman modes at 191, 318, and 451 cm−1 are all molecularly

extended ring deformation modes. The black trace is the Fourier transform of the βfast component

from time-domain optical polarizability measured by Optical Kerr effect spectroscopy.418 The βfast

OKE signal contains a collective and librational part, which we demonstrated to have the same

temperature dependent frequencies and relative amplitudes as IB barrier crossing and IS motion

measured by neutron scattering.418 The blue dashed line represents the spectrum of IB motion

and the red dashed line represents the IS spectrum. The black line is the sum of the IS and IB
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Figure 5.5: (Top) F (q, t) computed from MD simulation at 300 K, 1 atm based on molecular
centers-of-mass. Black points are calculated from simulation, and dashed red lines are fits to
(Equation 5.3). (Middle and Bottom) Time-dependence of model fits shown for each pseudoiso-
morph of 300 K, 1 atm.
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spectrum. In the PEL picture, both the IS and IB modes are coupled to relaxation in the sense that

the IS modes assist in basin exploration but the molecular reorganizations that make up relaxation

events proceed directly along IB mode coordinates. The intramolecular vibrational modes with

frequencies below 500 cm−1 overlap spectrally with, and thus may couple to the IS and IB modes.

In the right top and bottom panels of Figure 5.6 we overlay power spectra of velocity autocor-

relation functions for ring atoms and molecular centers of mass respectively at the three simulated

pressures indicated. The right top panel shows that the pressure dependence of the intermolecular

mode characteristic frequencies drops with increasing frequency, indicating that higher frequency

peaks contribute less to density scaling. Consistent with this, we found that eliminating the much

higher frequency bond stretching modes by constraining all bond lengths led to no change in den-

sity scaling (Supplementary Fig. S4). Also consistent with these findings, Raman modes found

below 800 cm−1 in organic molecules with more than one backbone atom typically involve molec-

ular deformations typically have larger Grüneisen parameters than do higher-frequency modes

involving bond stretches and H-X bending.419–421

The broad βfast features below ≈ 150 cm−1 in the right top panel are due to rotational and

translational motion, but arise only from translational motion in the right bottom panel. In this

spectral region, the IS and IB responses are not well-separated, but their characteristic frequencies

appear to have relatively strong pressure dependencies. We quantify the characteristic frequencies

of the IB and IS motion by fitting the COM power spectra to functions commonly used to charac-

terize OKE data418 as described in the Supplementary Information. We find acceptable fits using

functions corresponding to IB and IS motion and an additional Gaussian process at slightly higher

frequency than the IS mode. In the left bottom panel of Figure 5.6 we show the model fit to the

300 K, 1 atm COM power spectrum. Analogous fits for 1900 atm and 4600 atm are shown in

Supplementary Figure S5 and are of similar quality.

In the inset to the right bottom panel of Figure 5.6 we show Grüneisen parameters for each of

the modes found in the power spectra, calculated as:
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Figure 5.6: Top Left) Polarizability and Raman response in PC. Black line: βfast polarizability
spectra from OKE measurements.418 Red dash line: OKE spectrum due to IS motion (known as
librations in OKE literature). Blue dashed line: OKE spectrum due to IB crossing (known as col-
lective motion in OKE literature). Red solid line: Low frequency component of a PC spontaneous
Raman spectrum. (Right Top and Bottom) Power spectra of velocity autocorrelation functions for
all atoms (Right Top) and centers of mass (Right Bottom) at 300 K and the pressures indicated in
the middle panel. (Inset to Right Bottom panel) Grüneisen parameters calculated for each mode
found in the power spectra. Left Bottom) Model fit to the 300 K 1 atm centers-of-mass power
spectrum.
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γG,i = −∂ln(ωi)/∂ln(V ) (5.5)

where i represents the i th vibrational mode. Among the modes characterized, we see a con-

tinuous progression of increasing γG with decreasing frequency. We emphasize that, although

the IB and IS modes are distinct from intramolecular eigenmodes, the differences in FH(q, t) and

FCOM(q, t) suggest they involve intramolecular motion and thus likely couple to these modes.

Finally, we note that γIB ≈ γTS . This suggests that it may be generally possible to find γTS

in a simulated liquid by simply finding γIB. It also suggests that the relationship between γTS and

the Grüneisen parameter may be more direct than previously thought. Associations between γTS

and γG have been made theoretically through the latter’s connection to configurational entropy,397

or through the kinetic energy derivative of the pressure in the harmonic limit,392 but the striking

result in the inset to Figure 5.6 suggests that the Grüneisen parameter may influence γTS directly

through γIB.

The Grüneisen parameter formally characterizes the volume dependence of normal mode fre-

quencies in a crystal, but, of course, there is no relaxation in an ideal crystal. Similarly, Debye-

Waller (DW) factors strictly describe only harmonic vibrations but are used to describe liquid

relaxation through the mean square displacement < u2 >. An extensive literature, going back

three decades402,422–425 has explored the relationship between α relaxation and < u2 > measured at

≈1 ps, the time of the βfast process. In these approaches, it is assumed either that the amplitude of

harmonic motion describes a localization volume for particles trapped in a cage of their neighbors

or is proportional to the probability of a local relaxation event. Recently, we have made a more

direct connection between motions that constitute < u2 > in amorphous systems and relaxation

processes by demonstrating that < u2 > contains signatures of both IS basin exploration and ele-

mental relaxation events - the IB barrier crossing. Thus, when properly parsed, dynamic signatures

of the elemental relaxation process are obtained directly from the βfast relaxation of < u2 > or

F (q, t).402,403
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In analogy with the idea that < u2 > is directly related to relaxation through its reporting on

IB barrier crossings, we propose that a causal connection exists between γG and γTS through γIB

as follows: The normal modes of the liquid that couple to the IB process are by definition found at

the Frenkel frequency,426 νF = 1/τ . At this frequency, the liquid supports longitudinal modes, but

transverse modes are overdamped since the liquid can reorganize on the timescale of these local

shear deformations, and this motion directly couples to relaxation. In an amorphous system, lon-

gitudinal and transverse modes will also be coupled since there is no well-defined extended lattice.

Since motion along these mode coordinates is coupled to elemental relaxation (IB crossing) events,

the resonant frequency of the mode can be thought of as a relaxation attempt frequency. Thus, for

a fixed barrier height, small changes in the frequency of these modes would lead to directly propor-

tional changes in the rate of elemental relaxation events. We have previously demonstrated that,

for T > TB (TB being where the α and Johari-Goldstein β relaxations bifurcate), the timescales for

IB crossing events and α relaxation have the same temperature dependence.403 Thus, for this tem-

perature range, the Grüneisen parameter of the Frenkel modes (γIB), which describes the pressure

dependence of their frequency, also describes the pressure dependence of the α relaxation time

(γTS) through the pressure dependence of the elemental relaxation time. As we see in Figure 5.6,

γIB ≈ γG.

Above we showed that high-frequency modes associated strictly with bond stretching have

no impact on density scaling. Beyond arguing that the pressure dependence of lower frequency

intramolecular modes and their spectral overlap with IB modes suggest that the former may con-

tribute to IB barrier crossings and to density scaling, we can only speculate as to how important

they may be. As we have shown above, hops associated with IB transitions appear to occur at the

atomic rather than molecular level. Thus, intramolecular modes that conserve molecular center of

mass may well contribute to hops of constituent atoms. However, to quantify this would require

a series of simulations in which we systematically constrain these various intramolecular modes.

While standard MD simulations are done using Cartesian equations of motion, an alternative ap-

proach for exploring the role of intramolecular modes on liquid dynamics would be to perform

133



molecular dynamics in general/internal coordinates (or hybrid) to enable explicit interrogation of

specific internal modes.427–429 This direction will be explored in future work.

5.6 Conclusions

While evidence of density scaling in βfast at ∼1 ps timescales has been demonstrated previously,

the relationship involved a quadratic correction term.383 Given that βfast relaxation has contri-

butions from distinct modes of motion, some of them potentially intramolecular, and given that

intramolecular vibrational modes can destroy the virial-energy correlation that is often the formal

basis for density scaling arguments, it was unclear whether all aspects of βfast motion would cou-

ple, or whether the necessity of a quadratic correction term signaled a partial decoupling. In this

work we have shown that the IB barrier crossing aspect of the βfast, a fundamental structural ex-

citation mode, seems to obey the same density scaling, whereas the higher frequency IS mode is

associated with a nearly two-fold smaller scaling factor. Because structural excitations correspond

to fundamental hopping (intrabasin barrier crossing) processes on the liquid potential energy land-

scale (PEL), our results suggest a novel microscopic perspective for density scaling. Interpretation

of density scaling based on excitations may prove a promising general perspective applicable to

molecular liquids for which virial-energy correlation or single inverse power law arguments may

not hold due to the intra-molecular modes or due to multiple effective potentials.

For propylene carbonate, we have demonstrated that the characteristic lengthscales σIS and σIB

have the same values in F (q, t) computed for COM and to H-atom motion, but that Φ(t) calculated

for COM always trails that of H atoms. We interpret this as demonstrating that excitations must

thus be interpreted as essentially atomic rather than molecular displacement events. This important

conclusion has implications for generalizing excitation theories of atomic and model fluids372,414

to real molecular liquids. The fact that the Grüneisen parameter for collective IB modes is ap-

proximately equal to γTS , suggests that finding these modes in molecular liquids will be the key to

connecting excitation approaches in these liquids to those of atomic model systems.
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CHAPTER 6

EQUATION OF STATE PREDICTIONS FOR SCF3 AND CAZRF6 WITH NEURAL

NETWORK-DRIVEN MOLECULAR DYNAMICS

This work is reproduced from [430].

6.1 Abstract

The crystalline materials ScF3 and CaZrF6 are known to exhibit negative thermal expansion (NTE)

over a broad temperature range. A variety of theoretical methods including ab initio calculations

have been utilized to better understand the NTE behavior of these materials. However, explicit

application of ab initio molecular dynamics (AIMD) approaches is challenging due to the high

computational cost. In this work, we develop neural network (NN) potentials for both ScF3 and

CaZrF6 trained to extensive density functional theory (DFT) data, that enable direct molecular dy-

namics (MD) prediction of equation of state behavior over a broad temperature/pressure range. The

NN-driven MD simulations enable predictions with full incorporation of phonon anharmonicity,

which is a key contribution to NTE. From these simulations, we compute coefficients of thermal

expansion, atomic displacement parameters, bulk moduli, and other equation of state behavior.

The computational efficiency of the neural network potential (relative to AIMD) enables path in-

tegral MD simulations that incorporate nuclear quantum effects (NQE) which may be important

for high-frequency phonon modes, and we characterize the contribution of NQE to equation of

state behavior. Overall, our equation of state predictions are in semiquantitative agreement with

experiment, with the quality of predictions depending on system and property of interest. We

show that NQE have a significant effect on NTE at low temperature, but are of diminishing impor-

tance at increasing temperature. The experimentally observed pressure-induced softening effect in

ScF3 is elusive and not captured in our simulations of the cubic phase, in contrast to a previous

computational study.
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6.2 Introduction

Negative thermal expansion (NTE) materials are of significant interest due to both their unusual

physics and their potential applications. Numerous applications require matching coefficients of

thermal expansion between two or more materials, and the discovery of new NTE materials and

elucidation of their behavior provides greater tunability in this design space. Examples of possi-

ble uses for NTE materials include fuel cells, mirrors in space telescopes, optics, thermoelectric

materials and more.431–433 The discovery of new NTE materials as well as better fundamental

understanding of documented NTE behavior are both important goals. Regarding the latter, pre-

dicting/rationalizing NTE behavior from first-principles is often challenging and may serve as a

stringent test of solid-state theories, particularly those focused on incorporating phonon anhar-

monicity.

A variety of mechanisms can cause NTE, and thus it is observed in several classes of com-

pounds, such as ferroelectric materials,434 MOFs,435 Prussian Blue analogues436 and other open-

framework materials.431,437 The work of Mary et al. [438] on ZrW2O8 documenting NTE over a

wide temperature range, launched interest into framework-type materials.439 Due to their simpler

structure in comparison to ZrW2O8, ReO3-type materials are of interest for fundamental under-

standing of NTE behavior in open framework structures.440–443 While ReO3 itself only shows small

NTE at low temperatures, Greve et al. [443] found that ScF3, which possesses a ReO3-type struc-

ture, displays strong NTE from 10 K up to ∼ 1100 K with a coefficient of thermal expansion

(CTE) of αL ∼ −14 ppm/K at 100 K. In most metal trifluorides, the rhombohedral (R3̄c) phase

is more stable than the cubic (Pm3̄m) phase at low temperatures and elevated pressures, which

leads to positive thermal expansion; in contrast, for ScF3, the cubic phase is more stable than the

rhombohedral at low temperature and ambient pressure, which leads to NTE.443–445 The discovery

of strong NTE in ScF3 has led to further research into its other properties, such as pressure-induced

softening,446 which causes a material to become more compressible with increasing pressure, and

methods for controlling its thermal expansion. Yang et al. [447] observed a reduction of NTE upon
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formation of ScF3 crystals with grain sizes of 80 nm. Similarly, Hu et al. [448] synthesized ∼ 6 nm

ScF3 crystals for which only positive thermal expansion was observed. Further strategies for tun-

ing thermal expansion with ScF3 include the formation of solid solutions through isovalent cation

substitution,449–453 redox intercalation of cations into the ScF3 A-sites454 and the introduction of

excess fluoride through aliovalent cation substitution.455,456 CaZrF6 is another open-framework ma-

terial with ReO3-type structure that displays NTE, and exhibits a more negative CTE (αL ∼ −18

ppm/K at 100 K) than ScF3.457 The NTE behavior of CaZrF6 can be modulated in various ways;

for example, incorporation of helium under high-pressure gas has been shown to create a defect

perovskite (He2−x□x)(CaZrF6)458 and a stoichiometric hybrid perovskite [He2][CaZrF6],459 with

different equations of state.

Theoretical methods and computational modeling have aided physical understanding of NTE

behavior, suggesting mechanisms dictating the CTE of various materials.442,460–464 The rigid unit

vibrational mode (RUM) model is commonly used for rationalizing NTE in framework-type ma-

terials. The RUM model assumes that the framework MXn polyhedra remain rigid with increasing

temperature, with NTE caused by thermally-modulated tilting motion of these rigid polyhedra

which contracts the crystal volume.442,461,465 However, the validity of the assumptions behind mod-

els such as these have been called into question.463,466 Ab initio approaches usually based on density

functional theory (DFT) have also been used to model NTE materials. Several works have investi-

gated NTE in ScF3 with DFT-based approaches, utilizing either vibrational free energy predictions

or ab initio molecular dynamics (AIMD) simulations. Oba et al. [467] evaluated quasiharmonic ap-

proximation (QHA)468 free energy expressions for ScF3, and found that QHA predicts qualitatively

incorrect behavior. This is likely due to the fundamental importance of anharmonicity in NTE sys-

tems, requiring extensions beyond harmonic treatments.469 Methods that go beyond the QHA have

been used to study ScF3, such as the self-consistent phonon theory (SCP), which includes quar-

tic anharmonicity,470,471 and the improved self-consistent phonon theory (ISC), which additionally

treats cubic anharmonicity.472 These procedures require parameterization of high-order force con-

stants from first-principles calculations.473,474 In contrast, AIMD is straightforward and naturally
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takes into account anharmonicity. The limitations of AIMD are its computational expense, as well

as classical description of phonons/vibrations; path integral approaches can be used to incorporate

nuclear quantum effects (NQE), but this imposes further computational expense. AIMD simula-

tions have been conducted for ScF3, providing insight into its NTE behavior.469,475–477 Utilizing

AIMD, Lazar et al. [475] were able to reproduce the NTE effect over a temperature range of 200K

- 800K using a 2x2x2 supercell of the cubic phase. Bocharov et al. [476] found that at least a 4x4x4

supercell for ScF3 is needed to converge AIMD predictions with system size, due to the long wave-

length phonons with negative Grüneisen parameters accounting primarily for NTE behavior.448,476

As CaZrF6 is a more complicated material, there are fewer ab initio studies in the literature.478,479

Gupta et al. [478] used the QHA to study CaZrF6 and related systems, and again demonstrated the

importance of anharmonicity for modeling thermal expansion effects.

While AIMD is a powerful technique, its high computational cost limits its utilization, particu-

larly for large crystal supercells. As discussed, larger supercells are often necessary to avoid finite

size effects associated with long-wavelength/low frequency phonons that make important con-

tributions to NTE.457 Additionally, nuclear quantum effects (NQE) may be important, requiring

computationally expensive path integral simulations. As an example, consider the phonon spectra

of CaZrF6 discussed by Hancock et al. [457]. The high frequency phonons typically have positive

Grüneisen parameters (γ), whereas low frequency modes exhibit negative γ, the latter contributing

to NTE. While a classical treatment is expected to work well for low frequency (e.g. ≤ 200− 300

cm−1) modes, quantization will be important for high frequency modes; a classical treatment will

incorrectly assign energy equipartition to these high frequency modes and thus tend to underesti-

mate NTE effects at lower temperatures.467 Combining path integral approaches with AIMD may

often be computationally intractable for systems of interest. Alternatives include fitting molecu-

lar mechanics force fields to quantum mechanical data.446 For materials of increasing complexity,

developing sufficiently accurate force fields is both a challenging and time consuming task.

Machine learning (ML) methods have been increasingly adopted in the chemistry and materi-

als science community to simulate materials with ab initio accuracy at orders of magnitude lower
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computational cost as compared to AIMD.63,480,481 As long as a training set of high-quality refer-

ence data is available, usually consisting of ab initio energies/forces for the system of interest, ML

techniques such as neural networks, kernel methods or other tools can be used to construct ML

potentials.482 These ML potentials can then be used to run molecular dynamics (MD) or Monte

Carlo simulations to predict physical properties of interest. In particular, ML models have been

used to study a large variety of materials, such as silicon,59,483 various metal systems,484–486 zeo-

lites,487 MOFs488 and more.480,489 ML techniques have also been used to screen materials such as

MOFs, zeolites and perovskites for selected applications.490–492 In this work, we develop similar

ML potentials for the NTE materials ScF3 and CaZrF6 to predict equations of state from direct MD

simulations. These ML potentials allow for efficient MD simulations of large supercells, and ad-

ditionally enable path integral molecular dynamics (PIMD) simulations that explicitly incorporate

NQE.

In this work, we train NN potentials to a training set of DFT energy, force, and stress ten-

sor calculations for ScF3 and CaZrF6 to enable direct MD prediction of the equations of state.

We compare predictions for CTE, atomic displacement parameters, the bulk modulus, and addi-

tional equation of state data against both experiment and prior theoretical predictions. Utilizing

PIMD simulations, we additionally quantify the contribution of NQE to the equations of state of

these materials over a wide temperature range. Overall, the predictions from our NN-driven, MD

simulations are generally in semiquantitative agreement with experimental equation of state data.

Our predictions underestimate the extent of negative thermal expansion, even when NQE are fully

incorporated, and we speculate that this is likely due to deficiencies in the underlying density func-

tional (training data). We find that NQE modulate the CTE by 30-60% at low temperature (100

K) for both materials, which is qualitatively consistent with findings from previous studies.467 A

particularly apparent discrepancy of our simulations is the missing pressure-induced softening ef-

fect for cubic ScF3 which is observed experimentally.446 Overall our study demonstrates the utility

and expected accuracy of ML-driven MD simulations for equation of state predictions for NTE

materials.
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6.3 Methods

6.3.1 Training Set Generation and Model Training

We first describe our procedure for constructing a training dataset of DFT energies, forces and

stress tensors for ScF3 and CaZrF6. The training sets for both crystals were generated from ab

initio geometry optimizations and AIMD simulations using the Quantum ESPRESSO package.18

We used the Atomic Simulation Environment (ASE) package161 to generate a 4x4x4 supercell

for ScF3 and a 2x2x2 supercell for CaZrF6 from the cubic (primitive) unit cells obtained from

the Materials Project.493 The PBE density functional and PAW pseudopotentials were used for all

calculations,139,494 with Γ-point sampling of the band structure in all cases. Suitable values for the

plane wave cutoffs (kinetic energy/density) were determined from convergence tests of the stress

tensor (which is typically harder to converge than energy/forces). These convergence tests are

shown in Figures S1 and S2, and the final cutoff values employed were 180 Ry/ 1152 Ry for the

kinetic energy/density for ScF3 and 200 Ry/1200 Ry for the kinetic energy/density for CaZrF6.

AIMD simulations were conducted for both materials over a range of temperatures and pres-

sures to generate training data. For ScF3, we ran numerous ∼1 ps NPT simulations of the 4x4x4

supercell over a temperature range of 300 to 1600K and a pressure range of 0 to 800 MPa.495 This

resulted in a training set of energies, forces, and stress tensors for approximately 8500 ScF3 cubic-

phase structures of different coordinates and lattice parameters. We additionally generated training

data for the rhombohedral phase of ScF3 to explore how the inclusion of this training data altered

the NN predictions (vide infra). We thus ran additional AIMD simulations for a 2x2x2 supercell

of the rhombohedral conventional unit cell structure at 300 K and pressures ranging between 0-

1000 MPa (the unit cell was obtained from the Materials Project493). This added training data for

approximately 1200 ScF3 rhombohedral structures of different coordinates and lattice parameters.

For CaZrF6, training data was generated for the cubic phase only. AIMD simulations of 2x2x2

CaZrF6 supercells were run over a temperature range of 300 - 1400 K and a pressure range of 0 -

500 MPa. This resulted in a training set of energies, forces, and stress tensors for approximately
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6000 CaZrF6 cubic structures of different coordinates and lattice parameters.

The DeepMD architecture was utilized for the NN potentials,68,107 and was trained to the ener-

gies, forces, and stress tensors comprising the training data for each material. Within the DeepMD

architecture, an initial descriptor network converts the local environment of each atom into a set of

embeddings that obey translational, rotational and permutational invariance, and a second network

utilizes this embedding to predict the energy, forces, and virial of the system.68 DeepMD’s ‘se -

2 a’ descriptor was used for the embedding network, which incorporates both radial and angular

information.496 Separate neural networks were trained for both ScF3 and CaZrF6. The descriptor

deep neural network was made up of three hidden layers using 25, 50 and 100 neurons. Neighbors

within 8 Å were included in the local environment for each atom. For ScF3, the fitting net consisted

of three hidden layers with 240 neurons each; for CaZrF6, the fitting net was reduced to 40 neurons

each in order to balance accuracy and computational cost. A multi-target loss function was used in

order to fit all three properties (see Wang et al. [68] and the Supplementary Material). The initial

learning rate for both neural networks was set to 1 × 10−3 and ended at 3.5 × 10−8, with 5000 decay

steps. A 80:20 split was used to construct a training and validation set from the total dataset; the

test set was assembled from MD simulations using the final neural networks (the settings used for

the simulations are described in the next section). Each model was trained for 106 steps for train-

ing and validation. The input files with all hyperparameters used to build the DeepMD models are

included in the Supplementary Material.

Neural network potentials may become unstable during simulations, since spurious forces will

be predicted if the system drifts far outside of the configuration space included in the training

set.497 We observed that the initially trained neural networks for both materials were unstable for

high temperature (>1000 K) simulations after ∼ 10 ps. To fix this initial instability, we added

additional training data consisting of Quantum ESPRESSO computed energies, forces, and stress

tensors for structures taken from the NN simulation snapshots. The DeepMD NN potential was

then re-trained to the expanded training set. This procedure was done iteratively until there were

no observed instabilities while running MD with the NN potentials. In total, additional training
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data for approximately 1000 structures was added to the original training set for both materials

within this iterative procedure.

The final NN potentials were then tested as follows. MD simulations using these NN potentials

were performed over a temperature range of 300 - 1000K and a pressure range of 0 to 300 MPa.

A 4x4x4 supercell was used for the ScF3 simulations and a 2x2x2 supercell was used for the

CaZrF6 simulations. Quantum ESPRESSO was used to compute the DFT energy, forces, and stress

tensor for approximately 300 snapshots from these simulations. A comparison of the predicted

neural network energy vs. DFT energy on the test set for both materials is shown in Figures S3

of the Supplementary Material. For ScF3, the energy mean absolute error (MAE) is 0.042 eV

(0.1 meV/atom) and the forces MAE is 0.02 eV/Å; to test the accuracy of the stress tensor, we

computed the internal pressure from the stress tensor from both DFT and the neural network. The

MAE is 6.6 × 10−5 eV/Å3 (approximately 10 MPa). For CaZrF6, the energy MAE is slightly worse

at 0.18 eV (0.7 meV/atom); however, as can be seen in Figure S3, there is little scatter in the

predicted energies. The forces MAE is 0.033 eV/Å and the pressure MAE is 7.2 × 10−5 eV/Å3

(approximately 11 MPa).

6.3.2 Neural Network-Driven, Molecular Dynamics Simulations

We perform MD simulations with the final NN potentials to predict equations of state for the ScF3

and CaZrF6 materials. Both classical MD and path integral PIMD simulations were run in order to

examine the impact of NQE; we explicitly denote which predictions correspond to each simulation

type when discussing the results. All simulations were conducted using ASE with the DeepMD

calculator.68,161 The DeepMD architecture allows for simulations of supercells of arbitrary size,

since the total energy of the system is represented as a sum of atomic energies. The majority

of our calculations were performed on 5x5x5 supercells of ScF3 and 3x3x3 supercells of CaZrF6

(both in the cubic phase), while larger supercells were simulated in order to estimate finite size

effects. For computing the coefficient of thermal expansion (αL), a series of simulations were

run in the NPT ensemble using the isotropic Berendsen barostat.498 A Berendsen thermostat was
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used for the temperature coupling. The simulations were run for ∼ 4 - 5 ns at a pressure of 0

MPa and temperatures ranging from 100 - 1200 K. A time step of 1.0 femtosecond was used with

a barostat coupling constant of 1.0 ps−1 and a thermostat coupling constant of 1.0 ps −1. NPT

simulations were conducted to compute pressure vs. volume curves for ScF3, starting from the

5x5x5 cubic supercell geometry. These simulations were run in the i-Pi package interfaced with

ASE. Each simulation was run for 1 - 2 ns and performed over a pressure range of 0 to 500 MPa

and temperature range of 55 to 240 K. A Langevin thermostat was used along with the MTK

barostat.499 A time constant of 1 ps−1 was used for both the thermostat and barostat, and the time

step was set to 1.0 fs.

Similar NPT simulations were run for CaZrF6. Three main sets of properties were calculated

for CaZrF6. Thermal expansion was investigated between 100 and 1000 K at 0 MPa, similar to the

ScF3 simulations. Then, volume vs. pressure curves were obtained from a set of simulations run

at a temperature of 290 K and pressures from 0 to 300 MPa. Finally, the bulk modulus of CaZrF6

was computed over a temperature range of 300 to 500 K. A set of three simulations from 0 to 200

MPa was performed for each temperature. A linear fit to the average volume vs. pressure data

from these simulations was used to compute the bulk modulus at each temperature. All CaZrF6

simulations were run for ∼ 1-2 ns. The Berendsen barostat with a 1.0 ps−1 coupling constant was

used for all simulations, along with a Langevin thermostat, also with a 1.0 ps−1 coupling constant.

The i-Pi software package interfaced with ASE was utilized to run the path integral MD simu-

lations.500,501 Isotropic path integral NPT simulations were run for both systems. Simulations were

run over a temperature range of 100 - 1200 K for cubic ScF3 and a temperature range of 100 -

1000 K for cubic CaZrF6, and the pressure was fixed to 0 MPa. A smaller time step of 0.5 fs was

used here. The barostat implementation details can be found in Bussi et al. [502] and Ceriotti et

al. [500] A time constant of 5 ps−1 was used for the barostat. A standard Langevin thermostat was

used for temperature coupling, with a time constant of 5 ps−1. Depending on temperature, between

5 to 15 beads were utilized for the path integral simulations of both ScF3 and CaZrF6(with greater

number of beads used for lower temperatures). Convergence tests of the lattice parameter with
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respect to number of beads are shown in Figure S5 and S11. Each PIMD simulation was run for

300-500 ps.

6.4 Results and Discussion

Our initial target is to investigate the extent to which the NN-driven MD simulations correctly

predict qualitative trends in the CTE for both ScF3 and CaZrF6. Because the NN potentials exhibit

essentially DFT-level accuracy (Section 6.3.1), our results should be interpreted as the accuracy

to which the underlying density functional (PBE) describes the material properties.. In Figure 1,

we plot the predicted thermal expansion behavior for ScF3 and CaZrF6 as computed from both

classical MD (labeled as “NN”) and PIMD simulations (labeled as “PI NN”) utilizing the NN

potentials. We plot both the temperature-dependent reduced lattice constant (a/a0) and linear

coefficient of thermal expansion: CTE = 1
a
da
dT

; these are plotted in Figure 6.1a and Figure 6.1b for

ScF3 and Figure 6.1c and Figure 6.1d for CaZrF6. In all cases, we plot corresponding experimental

data and prior theoretical/computational predictions for comparison, where available. The curves

are third order polynomials fit to the data points, with a0 taken as the extrapolated 0K value for a

from the fitted polynomial for each set of data.

Inspection of Figure 6.1 indicates that the NN simulations indeed predict NTE for both sys-

tems, in qualitative agreement with experiment. Furthermore, the simulations correctly predict the

experimental trend that the CTE is more negative for CaZrF6 than ScF3. Experimentally, the CTE

values are α100K,L = −18 ppm/K for CaZrF6 and α100K,L = −14 ppm/K for ScF3 at 100 K. For

comparison, the classical MD (“NN”) simulations predict a CTE of α100K,L = −9.8 ppm/K for

CaZrF6 and α100K,L = −4.3 ppm/K for ScF3 at 100 K. Incorporation of NQE within the PIMD

simulations (“PI NN”) brings the CTE values into closer agreement with experiment, with these

simulations predicting α100K,L = −14.3 ppm/K for CaZrF6 and α100K,L = −8.7 ppm/K for ScF3

at 100 K. Thus NQE lower the CTE by ∼ 30-60% at 100 K, while the influence of NQE diminishes

at higher temperatures and largely disappears by temperatures of 700 K to 800 K. Overall, these

results indicate that the MD simulations driven by DFT-trained NNs predict NTE behavior of ScF3
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Figure 6.1: Thermal expansion of ScF3 denoted by a) reduced lattice constant a/a0 and b) CTE.
Thermal expansion of CaZrF6 denoted by c) reduced lattice constant a/a0 and d) CTE. The exper-
imental results for ScF3 are from Greve et al. [443] and the experimental results for CaZrF6 are
from Hancock et al. [457] SCP and ISC predictions for ScF3 are taken from Oba et al. [467]. The
statistical uncertainty in our predictions is on par with the size of the symbols themselves, and thus
error bars not shown.
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and CaZrF6 in semi-quantitative to qualitative agreement with experiment.

Our CTE predictions for CaZrF6 are comparatively better than for ScF3 in that there is closer

quantitative agreement with experiment. For CaZrF6 the predicted CTE at 100 K is within a fac-

tor of 1.3 of the experimental value when incorporating NQE with the PIMD simulations (and a

factor of 1.8 without NQE). There is no obvious reason for why the predictions for CaZrF6 agree

somewhat better with experiment compared to the predictions for ScF3 (although as discussed

later, the pressure-induced softening effect for ScF3 is also not reproduced by our simulations).

The influence of NQE on the CTE is consistent with the trend expected from analysis of the

phonon spectrum. For both CaZrF6 and ScF3 materials, low frequency phonon modes exhibit

negative Grüneisen parameters associated with NTE, while higher frequency phonons exhibit pos-

itive Grüneisen parameters.457,503 A classical treatment will incorrectly assign energy equipartition

to these high frequency modes and overpredict their contribution to (positive) thermal expansion

at low temperatures.467 Further inconsistencies of our simulation predictions with the experimen-

tal NTE behavior are predicted transitions from negative to positive thermal expansion at lower

temperatures than those experimentally measured. As seen in Figure 6.1, our simulations for ScF3

predict positive thermal expansion above temperatures of 600 K/700 K for MD/PIMD respectively,

while the experimental crossover temperature is near 1100 K. For CaZrF6, a similar effect is ob-

served, with the transition occurring at 900 K in both the classical MD and PIMD predictions,

while solely NTE is experimentally observed over the full characterized temperature range.

We discuss possible reasons for the quantitative discrepancies between our thermal expansion

predictions and the experimental data. Important considerations for ab initio equation of state pre-

diction for these materials include: 1) phonon anharmonicity; 2) NQE; 3) finite-size effects; and

4) accuracy of the underlying density functional. Regarding 1), predictions from MD simulations

explicitly incorporate full anharmonicity of phonon modes, in contrast to theoretical free energy

models (vide infra). For 2), we have explicitly evaluated the influence of NQE, and NQE do not

account for the remaining discrepancy with experiment; Figures S5 and S11 show that NQE are

largely converged with respect to the number of beads used in the PIMD simulations. Regarding 3)
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finite-size effects, we have tested convergence of our predictions with respect to simulated super-

cell size. Figures S4 and S10 show that CTE predictions for ScF3 and CaZrF6 with our simulation

systems are converged with respect to supercell size. The remaining consideration is the accuracy

of the underlying density functional, which is PBE in this study. In this regard, our predictions for

ScF3 thermal expansion are similar to the AIMD results from Bocharov et al. [476] that utilize the

PBEsol functional (Figure S6), although predictions with PBEsol show a higher temperature for

transition from negative to positive thermal expansion, in better agreement with experiment. Dis-

persion corrected functionals would potentially be expected to yield better physical predictions. In

fact, these were the initial functionals chosen for this study, but our initial NN models trained to

dispersion corrected functionals all proved to exhibit dramatic instabilities when utilized in MD

simulations (see Supplementary Material); similar issues have been noted before.504 An interest-

ing direction for future work would be to examine an improved treatment of electron correlation

through methods such as the random-phase approximation (RPA),504–506 which may be achieved by

either completely rebuilding the neural network/training set or possibly through a transfer learning

procedure.507

Despite the quantitative errors, our NN-driven MD simulations represent the “state-of-the-art”

in ab initio, equation of state predictions for ScF3 and CaZrF6. Figure 6.1b compares alterna-

tive theoretical predictions for the CTE of ScF3. Specifically, we compare to predictions from the

SCP and ISC phonon theories from Oba et al. [467]. The SCP theory goes beyond the quasi-

harmonic approximation (QHA) by incorporating quartic anharmonicity, and the ISC incorporates

cubic anharmonicity. The predictions of SCP and ISC theories are based on quantum mechanical

free energy functions, and thus explicitly take into account NQEs.467 Furthermore classical lim-

its can be derived within the SCP framework, and we label such results from Oba et al. [467] as

“Classical SCP” in Figure 6.1b. As indicated in Figure 6.1b, the shape of the classical SCP CTE

curve looks similar to our classical MD and PIMD results; however the predictions exhibit signif-

icant quantitative deviation from experiment as they display essentially no NTE over the reported

temperature range. Comparing the classical and quantum SCP results indicates a very similar con-
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tribution of NQEs as predicted by our classical MD/PIMD simulations. Of the theoretical models,

the ISC predictions exhibit the best quantitative agreement with experiment, and show a similar

temperature-dependent trend for CTE as compared to experiment. Overall, the ISC predictions and

our “PI NN” predictions for CTE exhibit similar quantitative accuracy as compared to experiment.

This indicates that including cubic and quartic anharmonicity within the ISC theory provides sim-

ilar predictive accuracy as PIMD simulations for ScF3 and similar materials. The methods should

be viewed as complementary; PIMD provides a straightforward approach for property predictions

utilizing standard DFT machinery (energy, forces and stress tensor), while the ISC phonon theory

provides enhanced physical understanding of anharmonicity contributions to the equation of state

behavior.467

We next compare atomic displacement parameters (ADPs), which measure the mean-square

displacement of an atom from its crystal lattice position.508 There are six unique components to

the anisotropic atomic displacement tensor (three diagonal and three off-diagonal).508 The mean-

square displacement of each atom is straightforward to compute from simulations, e.g. Uxx =

⟨u2x ⟩, where u is an instantaneous atomic displacement from its mean position and x is a Carte-

sian coordinate. These can be compared to corresponding experimental values as measured by

neutron or X-ray diffraction.508 Within the ScF3 crystal lattice, the Sc atoms undergo isotropic dis-

placement, Uiso = U11 = U22 = U33;446 for F atoms, the displacement parameters corresponding

to transverse motion (U11 = U22) are different from the displacement parameter corresponding

to longitudinal motion (U33). In Figure 6.2, we compare the atomic displacement parameters for

ScF3 as predicted by our simulations to experimental values.443 We first focus on the scandium

atoms (Figure 6.2a). At low temperatures, the agreement between simulation and experiment is

quite good. At higher temperatures, the simulations predict somewhat larger atomic displacement

parameters for Sc than what is observed in experiment. For the fluorine atoms (Figure 6.2b) there

is very good agreement between the predicted and experimental ADPs over the full temperature

range. The transverse U11 parameter for fluorine is much larger, with a stronger temperature depen-

dence compared to the longitudal U33 parameter. As discussed previously,446 this is the expected
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Figure 6.2: ScF3 atomic displacement parameters for a) Sc atoms (Uiso) and b) F atoms (U11 and
U33) The experimental data is from Greve et al. [443]. The statistical uncertainty in our predictions
is on par with the size of the symbols themselves, and thus error bars not shown.

behavior for the cubic crystal structure. We note that there is no significant difference between the

“NN” and “PI NN” results for all predicted ADP values, indicating a negligible influence of NQE.

The ADPs for CaZrF6, shown in Figure 6.3, display similarly good agreement with experi-

ment.457 In this case, Uiso = U11 = U22 = U33 for both Ca and Zr. The fluorine ADPs are

similar to those in ScF3, with two ADPs corresponding to transverse motion and one ADP corre-

sponding to longitudinal motion. The fluorine ADPs within CaZrF6 (Figure 6.3c) are somewhat

larger than the corresponding ADPs in ScF3(note the different temperature scales of Figure 6.2 and

Figure 6.3); this correlates with the more substantial NTE in CaZrF6 as compared to ScF3. The

agreement between the Ca and Zr ADPs in Figure 6.3a and b between simulation and experiment

is good, although there is some slight disagreement at 100 K for Ca (Figure 6.3a). Analagous to

ScF3 there is no significant difference between the classical and path integral ADP predictions for

CaZrF6, indicating negligible influence of NQE.

We next discuss pressure-volume equation of state predictions, as compared with experiment.

ScF3 is reported to undergo pressure-induced softening, which is an anomalous phenomenon

that has been hypothesized to be driven by similar phonon mechanisms as NTE.446 The Birch-

Murnaghan equation of state provides information about the extent of pressure-induced softening
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Figure 6.3: CaZrF6 atomic displacement parameter for a) Ca, b) Zr and c) F. The experimental data
is from Hancock et al. [457]. The statistical uncertainty in our predictions is on par with the size
of the symbols themselves, and thus error bars not shown.

observed over a given region of the phase diagram. The third-order Birch-Murnagahn equation of

state is given by:

P (V ) =
3B0

2
[(
V0
V
)7/3 − (

V0
V
)5/3]× {1 + 3

4
(B′ − 4)[(

V0
V
)2/3 − 1]} (6.1)

There are three fitted quantities in Equation 6.1: B0 is the value of the bulk modulus at zero

pressure, V0 is the value of the volume at zero pressure and B′ is the first derivative of the bulk

modulus with respect to pressure. A negative value of B′ indicates pressure-induced softening.

Figure 6.4a shows the pressure-volume curves from experiment,446 and Figure 6.4b shows our

simulation predictions for the cubic phase of ScF3. Each data set was subsequently fit to Equa-

tion 6.1, with the fits corresponding to solid lines in Figure 6.4 and the fitted parameters B0 and B′

plotted in Figure 6.5. Note that here we only show predictions from classical MD, as we observed

little change in the results with PIMD.

We first discuss the predictions from our simulations of the ScF3 cubic phase. As seen in Fig-

ure 6.4b, the Birch-Murnaghan equation of state fits our simulation data well. The fitted B0 values

from the equation of state, shown in Figure 6.5, fall within the range of those fit to the experimen-

tal data. The simulation predicted volumes are approximately 3% smaller than the corresponding

experimental volumes, which is largely due to errors in DFT predicted bond lengths. However,

there are other non-trivial differences between our simulation curves and the experimental curves.
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Figure 6.4: a) Experimental pressure vs. volume data of ScF3 from Wei et al. [446] b) Pressure vs.
volume from the cubic ScF3 simulations.
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Figure 6.5: a) B0 parameter and b) B′ parameter from the Birch-Murnaghan equation of state from
both simulation and experiment for ScF3. The experimental data is from Wei et al. [446]
.
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The experimental P-V curves (Figure 6.4a) display a significant curvature at higher pressure, cor-

responding to the reported pressure-induced softening effect.446 The pressure-induced softening

observed experimentally is most apparent for the low temperature data. In contrast, there are no

signatures of pressure-induced softening in our simulations of cubic phase ScF3. As shown in Fig-

ure 6.4b, the simulated P-V curves all exhibit a close to linear relationship between pressure and

volume, even at lower temperatures. This is reflected in the value of B′ plotted in Figure 6.5b, in

which simulation values are all close to 0, reflecting no pressure-induced softening; in contrast,

the experimental values are all significantly negative. The high pressure bound of the experimental

P-V data in Figure 6.4a corresponds to a phase transition of ScF3 from the cubic to rhombohedral

phase.443. It has thus been hypothesized that the pressure-induced softening effect is related to the

proximity to this phase transition, and/or local fluctuations involving ScF6 octahedral rotations that

resemble motifs of the rhombohedral phase.446 We thus speculated that the reason simulated P-V

curves do not display pressure-induced softening was because the NN was trained solely to ScF3

cubic phase data, and does not “extrapolate” to such structural motifs. We hypothesized that by

adding rhombohedral phase structures to the NN training set, the NN would “learn” about such

rhombohedral-like, local ScF6 octahedral rotations, and possibly improving agreement with exper-

iment. However, this hypothesis turned out to be false (at least in terms of improving agreement

with experiment). Upon adding significant training data encompassing rhombohedral structures,

and retraining the neural network, the simulation predictions were essentially unchanged (Figure

S8).

At this point, we can only speculate on the discrepancy with experiment. The simulations of the

ScF3 cubic phase may not be capturing local fluctuations involving ScF6 octahedral rotations that

resemble motifs of the rhombohedral phase, and are an important mechanism for pressure induced

softening. Of course, the (unknown) phase diagram of the DFT Hamiltonian is likely quantitatively

different than the physical/experimental phase diagram of ScF3. If indeed the pressure-induced

softening is related to close proximity to the phase-transition, then any discrepancy between DFT

and experimental phase behavior would affect predictions of this phenomena. For example, if the
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Figure 6.6: CaZrF6 Volume vs. Pressure data at 290K. The experimental data is from Hester et al.
[458]

cubic to rhombohedral transition occurred at much higher pressures on the DFT phase diagram,

then the simulated pressures in Figure 6.4b may be relatively far from the phase-transition, possibly

explaining the lack of pressure-induced softening. This is entirely speculative, and would require

characterization of the DFT-predicted phase behavior; however, such free energy calculations are

beyond the scope of the present work. We note that previous MD simulations utilizing simple

bond/angle potentials have predicted pressure-induced softening, in good qualitative agreement

with experiment.446 However, the CTE predicted by these simulations were in large quantitative

error, in contrast to our present ab initio predictions.

We next discuss equation of state and bulk modulus predictions for CaZrF6. In Figure 6.6, we

show experimental volume vs. pressure data for CaZrF6 at 290 K from Hester et al. [458], as well

as our corresponding predictions from the NN-driven MD simulations (only classical MD results

are shown, as NQE are minor here). There is very good agreement in the P-V trend as predicted by

simulation compared to experiment. The absolute unitcell volumes from the NN simulations differ

from the experimental values by about 3%, again due to corresponding error in DFT predicted

bond lengths. Additionally, it is seen that there is essentially no pressure-induced softening for

CaZrF6 over this temperature/pressure range. In Figure 6.7, we compare simulation predictions of

CaZrF6 bulk modulus to experimental data over a wide temperature range.457 At STP, the predicted
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Figure 6.7: CaZrF6 Bulk modulus at various temperatures from both simulation and experiment.
The experimental data is from Hancock et al. [457]

bulk modulus is 39 GPa, which is in excellent agreement with the experimental value of ∼ 37 GPa.

The experimental bulk modulus indicates some thermal softening at higher temperatures, and our

NN predictions follow a similar trend. Overall, the simulation predictions are in good agreement

with experiment over the full temperature range.

6.5 Conclusion

We have demonstrated the accuracy attainable with DFT-trained NNs for predicting equation of

state properties of the materials ScF3 and CaZrF6. Our benchmarks have covered a representative

set of properties for these systems, including the coefficient of thermal expansion, atomic displace-

ment parameters, equations of state and the bulk modulus. Our NN-driven, MD simulation predic-

tions largely follow the experimentally-observed trends. The advantage of the NN potentials is that

their development/parameterization is straightforward utilizing modern software libraries,68,107 and

sufficient training data is generated from relatively short AIMD simulations. The enhanced com-

putational efficiency of the NNs enable longer simulations of larger supercells compared to AIMD,

and additionally allow application of path integral approaches for incorporating NQE.

Examining the accuracy of our predictions for the CTE and pressure-volume properties such as

the bulk modulus, it appears that the DFT/NN prediction is somewhat more accurate for the latter
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than the former. We have quantified the significant contribution of NQE to NTE at low tempera-

tures; in general, classical simulations underpredict NQE in ScF3 and CaZrF6 at low temperature

due to unphysical equipartition in high-frequency phonon modes with positive Grüneisen parame-

ters. The NN potentials correctly predict that CaZrF6 undergoes NTE to a greater extent than ScF3,

and overall the predictions exhibit semi-quantitative to qualitative agreement with experiment. The

most apparent discrepancy with experiment is the lack of pressure-induced softening in our sim-

ulaton predictions for cubic ScF3. In future work, it would be interesting to investigate whether a

higher-level of ab initio theory, such as RPA, could improve our predictions. This may be most

easily achieved through “transfer learning” of the present NN potentials to higher accuracy training

data.507

Concerning future outlook, our workflow based on NN potentials provides the opportunity to

screen promising new materials for pronounced NTE. The present workflow can be automated and

extended to a variety of similar compounds, and can help identify promising candidates for further

experimental investigation. A database of the results and structures from these NN simulations

would help identify and analyze the important features necessary for strong NTE, which could

also guide experiment. Additionally, it is possible to extend our simulations in order to incorporate

defects or impurities into the framework, which has been done experimentally in order to tune NTE

behavior.449–451,459,462 Through these efforts, we anticipate that NN-driven, MD simulations will

continue to play an increasingly important role in “first-principles” materials property predictions.
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CHAPTER 7

CONCLUSIONS AND OUTLOOK

This thesis has recorded our efforts to develop and implement force fields for investigation of re-

actions within ionic media. Our method combines conventional force field approaches with neural

network methodologies, providing an extensible approach for studying reactions within the con-

densed phase. We demonstrated how to build the force field on the example reaction between

EMIM+ and acetate to form a N-heterocyclic carbene and acetic acid, and then showed how to

incorporate additional reactions within the Hamiltonian. Computed free energy profiles with our

model exhibit ab initio accuracy with respect to gas phase AIMD profiles at greatly reduced com-

putational cost. We also included examples of the utility of the individual components of our

reactive force field for modeling condensed phase systems. We incorporated ab initio-based force

fields to handle hydronium and water interactions with the ionic liquid within the existing MS-

EVB reactive force field. The accurate asymptotic interactions between solvent molecules and the

reacting proton were key for producing conductivity values close to those from experiment. The

accuracy of these force fields for modeling solvent dynamics was also demonstrated in Chapter 5

of this thesis, which showed propylene carbonate properties were modeled accurately over a wide

temperature and pressure range. We concluded with an example of fitting a neural network to sim-

ulate the crystalline materials ScF3 and CaZrF6, which require precise modeling of their various

phonon modes in order to produce predictions in accord with experiment. Many of our predictions

were state of the art for these systems, demonstrating the utility of the ML models.

Future work within computational chemistry will undoubtedly feature further applications of

both neural networks and ab initio calculations. We share future directions for the projects included

in this work and share some outlook on the field.
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7.1 Future Directions

The future work involved with our reactive force field involves simplifying the parameterization

procedure. Currently, the most difficult aspect to work with is constructing the diagonal elements

of the Hamiltonian, which contains two sets of neural networks: one describing the intramolecular

interactions for each reacting complex molecule and one describing intermolecular interactions be-

tween pairs of reacting complex molecules. This has certain advantages in that we have constructed

the training set for these molecules so it is very clear which terms model which interactions. How-

ever, this setup requires additional training data, additional training time and significantly adds to

the complexity of the model.

Future plans involve minimizing the number of steps required to build the Hamiltonian. The in-

termolecular neural networks are the most difficult to fit as they require a diabatization scheme; ab

initio diabats are not rigorously defined except for simple cases, and our method for parameterizing

these terms (symmetry adapted perturbation theory) includes 2 QM calculations per diabat, which

adds to the size of the training data set required. One possibility that we are currently exploring is

employing a “machine learned” diabatization scheme. We plan to do this by fitting the intermolec-

ular neural networks and off-diagonal elements of 2x2 blocks of the Hamiltonian simultaneously.

Fitting these terms to a dataset composed of reacting dimer configurations within the gas phase and

within a solvent may allow for the intermolecular NN terms to adjust to the different environments,

forming an approximate diabat within the training process. This would remove the need to take

two separate fitting steps for each diagonal term, greatly reducing the training time. The gas phase

training data can still be obtained with AIMD, and the solvent data can be obtained from QM/MM.

The additional benefit of fitting the Hamiltonian to QM/MM is that, if the PB/NN and QM/MM en-

ergy differences are small, it will be possible to switch the PB/NN Hamiltonian with the QM/MM

Hamiltonian if the PB/NN Hamiltonian uncertainty grows too large. The QM/MM Hamiltonian

can then be used to gather more training data for fitting the PB/NN model. This switching process

would not be possible for PB/NN condensed phase simulations if it was only trained to AIMD.
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7.2 Outlook

The advent of machine learning has brought about a kind of revolution within quantum chemistry

and molecular modeling over the last few years. Broader society is experiencing its own type of

AI revolution currently thanks to the introduction of models like ChatGPT. It is forecast that bil-

lions of dollars will be spent on AI and machine learning within the next few years, with the goal

of advancing current hardware and software. Theoretical chemistry will almost certainly benefit

from further progress brought about by the broader ML and computing fields. Innovations made in

the design of GPUs and CPUs will reduce several key limitations involved with ML today, aiding

faster dataset generation and model training/evaluation. Algorithm development will also be key

within the next several years, with the goal of reducing the computational cost of the neural net-

work Advances in data efficiency and model speed may eventually allow for a stable ML potential

to be parameterized by short ab initio simulations, which will significantly ease the training pro-

cess. Along with adoption of neural networks into current simulation packages, machine learning

methods may become as commonly used for molecular simulation as force fields are currently. In

companion with faster ML models, novel ML-enhanced biased sampling approaches will allow for

the discovery and potentially the generation of new reaction pathways and mechanisms, which will

provide another robust complement to the molecular simulation community. All of these advances

together, along with further application to systems within ionic media, will enhance our current

knowledge of how to develop targeted reactions for key new technologies.
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[213] S. Gehrke and O. Hollóczki, “Are There Carbenes in N-Heterocyclic Carbene Organocatal-
ysis?” Angew. Chem. Int. Ed., vol. 56, no. 51, pp. 16 395–16 398, 2017.

[214] H. Du and X. Qian, “The effects of acetate anion on cellulose dissolution and reaction in
imidazolium ionic liquids,” Carbohydr. Res., vol. 346, no. 13, pp. 1985–1990, 2011.

[215] F. Yan, N. R. Dhumal, and H. J. Kim, “CO2 capture in ionic liquid 1-alkyl-3-
methylimidazolium acetate: a concerted mechanism without carbene,” Phys. Chem. Chem.
Phys., vol. 19, no. 2, pp. 1361–1368, 2017.

[216] M. Brehm, H. Weber, A. S. Pensado, A. Stark, and B. Kirchner, “Proton transfer and po-
larity changes in ionic liquid – water mixtures: a perspective on hydrogen bonds from ab
initio molecular dynamics at the example of 1-ethyl-3-methylimidazolium acetate – water
mixtures—Part 1,” Phys. Chem. Chem. Phys., vol. 14, no. 15, pp. 5030–5044, 2012.

[217] O. Holloczki et al., “Carbene formation in ionic liquids: Spontaneous, induced, or prohib-
ited?” J. Phys. Chem. B, vol. 117, no. 19, pp. 5898–5907, 2013.

176



[218] H. Wang, G. Gurau, and R. D. Rogers, “Ionic liquid processing of cellulose,” Chem. Soc.
Rev., vol. 41, no. 4, pp. 1519–1537, 2012.

[219] A. M. da Costa Lopes, K. G. João, A. R. C. Morais, E. Bogel-Łukasik, and R. Bogel-
Łukasik, “Ionic liquids as a tool for lignocellulosic biomass fractionation,” Sustain. Chem.
Process., vol. 1, no. 1, p. 3, 2013.

[220] A. Parviainen et al., “Predicting cellulose solvating capabilities of acid–base conjugate
ionic liquids,” ChemSusChem, vol. 6, no. 11, pp. 2161–2169, 2013.
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[229] M. López-Pastor, A. Domı́nguez-Vidal, M. J. Ayora-Cañada, T. Laurell, M. Valcárcel,
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