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SUMMARY 

Fecal contamination in waters is a primary source of waterborne pathogens and is 

one of the most common impairments of water quality, affecting over a billion people 

worldwide. The impact and burden of fecal-contaminated waters have had significant 

public health and economic reach and is the main cause of death in children under five. 

Because it is not practical to directly monitor the numerous pathogens that cause 

waterborne diseases, water quality and public health risk are assessed using fecal indicator 

bacteria (FIB) as proxies for pathogens. However, there are many known limitations 

associated with current FIB-based methods that lead to inaccurate water quality and risk 

assessments. For example, the commensal enteric bacteria, Enterococcus faecalis is 

considered the “gold standard” FIB for water quality monitoring and previous 

epidemiological studies show that its presence correlates well with gastrointestinal illness 

cases at recreational beaches. However, decades of research show that “naturalized” 

populations of this organism are found in extraenteric environments and can enter a viable 

but non culturable (VBNC) state when under survival stress. The extent that these 

naturalized and/or VBNC populations confound water quality testing is unclear. Motivated 

by these uncertainties, in chapter 2 we investigate how environmental stress affects 

survival and metabolic response in enteric versus environmental isolates of E. faecalis in 

laboratory mesocosms simulating an oligotrophic freshwater habitat. For this, we 

developed a 16S rRNA/rDNA viability assay for E. faecalis in order to elucidate how this 

organism regulates rRNA levels under environmental stress. We also describe how 



 xiv 

currently used methods to enumerate E. faecalis (i.e., quantitative polymerase chain 

reaction [qPCR] and culturing) are confounded by the VBNC state. 

Because E. faecalis is found in the guts of most animals, it is not useful for 

distinguishing between different hosts and thus, identifying the source of fecal pollution 

such as municipal sewage, livestock, wildlife or pets. Accordingly, recent efforts have 

focused on finding new host-specific FIB as targets for more robust qPCR assays. Among 

these microbial source tracking (MST) targets are members of the Bacteroides genus or 

their bacteriophages. Some 16S rRNA gene amplicon-based surveys have shown this genus 

is host-specific and there are many published qPCR assays targeting various hosts (humans, 

ruminants, gulls, dogs, etc.). However, most of these assays are not sufficiently host-

specific or -sensitive (e.g., not all members of a host type carry the marker) and there is 

little epidemiological data linking them to waterborne disease risk. One of the guiding 

hypotheses of this thesis is that whole genomes and/or functional genes related to host-

microbe interactions may provide more robust markers with higher resolution than the 

current MST assays targeting the 16S rRNA gene. To this end, in chapter 3 we use shotgun 

metagenomic sequencing to compare the decay kinetics of fecal microbes from three 

different hosts (cow, pigs, and humans) in freshwater mesocosms simulating a pollution 

event. We identified several host-specific metagenome assembled genomes (MAGs) and 

functional genes as putative targets for more robust water quality monitoring and 

demonstrated the advantages of metagenomic methods over traditional qPCR and culture-

based tests. Notably, the identified MAGs differ from the most commonly used FIB both 

taxonomically and functionally. 
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An important aspect when developing new MST markers and methodologies is to 

test them in situ with data from natural environments. Thus, in chapter 4 we used time 

series metagenomics and newly established bioinformatics pipelines to determine the 

potential effects of cattle ranching in agricultural creek sediments. Our results revealed that 

these sediment communities are extremely diverse and robust against inputs from 

agricultural surface runoff and cattle ranching. In summary, this thesis critically assessed 

the advantages and limitations of meta-omics for MST biomarker discovery and public 

health risk assessment. Further, we provide evidence that FIB cannot be effectively 

distinguished from their naturalized counterparts based on our mesocosm incubations, an 

important limitation that is not applicable to the newly proposed MAGs. We also developed 

novel methods and bioinformatic protocols that should be useful for future studies to apply 

metagenomic techniques for MST. 
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CHAPTER 1. INTRODUCTION 

1.1 The indicator paradigm and microbial source tracking (MST) 

Fecal contamination is a primary source of pathogens that cause waterborne disease 

and is one of the most common impairments of water quality, affecting over a billion people 

worldwide. The impact and burden of fecal-contaminated waters have had significant 

public health and economic reach (Eisenberg, Bartram, and Wade 2016). Because it not 

practical to monitor the full spectrum of infectious agents associated with fecal 

contamination, water quality and public health risk are assessed using fecal indicator 

bacteria (FIB) as proxies for pathogens. Densities of commensal enteric organisms, 

Enterococcus spp. and E. coli, are considered the “gold standard” for water quality 

monitoring and are used worldwide (WHO 2003; USEPA 2012). However, since these 

organisms can be found in most vertebrate gastrointestinal tracts, they provide no 

information on the source of fecal contamination, such as combined sewer overflows, 

faulty septic systems, pets, wildlife, or farms (Field and Samadpour 2007).  Contamination 

from human sewage is considered the most serious threat to human health because 

pathogenic viruses tend to be host specific. Yet, current regulations treat all fecal 

contamination as equally hazardous to human health (USEPA 2012). The pathogen source 

in the majority of drinking water and recreational water outbreaks reported to the CDC are 

unknown; however, roughly 18% of recreational water outbreaks from 1970-2000 and 14% 

of drinking water outbreaks from 1999-2004 were possibly animal-related (WHO 2004; 

USEPA 2009). From a public health perspective, more information is needed on the risk 

of exposure to animal-contaminated water as more recent studies suggest that risk from 
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exposure to water impacted by non-human feces of particular host types may be similar or 

equal to that of human feces (Soller et al. 2010; Probert, Miller, and Ledin 2017). 

Furthermore, FIB do not correlate well with enteric viruses, one of the dominant etiological 

agents of waterborne disease (Sinclair, Jones, and Gerba 2009). This is because enteric 

viruses react to waste water treatment in different ways and are not eliminated as 

successfully as bacteria (Carducci et al. 2009; Schmitz et al. 2016). Therefore, in recent 

years, many studies have been published trying to evaluate existing FIB tests and/or 

develop new host-specific markers for microbial source tracking (MST). 

1.2 Limitations of culture-based monitoring: persistence and naturalized 

populations 

Epidemiological data support a correlation between elevated FIB concentration in 

water and increased incidence of disease (Wade et al. 2003; Arnold et al. 2016). However, 

several studies have also shown FIB levels exceeding regulation standards do not always 

correlate to the presence of pathogens (Harwood et al. 2014). In addition to their lack of 

host specificity, these organisms can persist outside the host and even grow in the 

environment long after risk of disease from fecal pathogens has dissipated (M. N. 

Byappanahalli et al. 2012; J. Jang et al. 2017). Further, endemic populations have been 

found to occur naturally in the environment (heretofore referred to as environmental 

strains), which could possibly confound the use of these bacteria as FIB (Ishii and 

Sadowsky 2008; Luo et al. 2011; Weigand et al. 2014). These environmental strains are 

sometimes phylogenetically and phenotypically indistinguishable (Figure 1-1) from their 

enteric relatives based on current FIB testing methods so their recovery during a routine 

test may not indicate recent fecal contamination (that is, false positive signal) and may be 
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the cause for poor correlations of FIB and pathogens (Mote et al. 2012). Moreover, unique 

E. coli populations have shown differential survival/growth ability in freshwater 

mesocosms (Anderson, Whitlock, and Harwood 2005) and in temperate soils (Ishii et al. 

2010). Comparative transcriptome analysis suggests that environmental E. coli isolates are 

better adapted to low-nutrient conditions than their enteric counterparts (Vital et al. 2015). 

The long-term survival and growth of FIB in the environment may also have important 

public health implications. Previous studies have reported multidrug-resistant (Dhanji et 

al. 2011; Walsh et al. 2011; Jeonghwan Jang et al. 2013) and potentially pathogenic 

(Muruleedhara N. Byappanahalli et al. 2015; Q. Zhang et al. 2016) E. coli strains are found, 

and even grow, in the natural environment. Similarly, recent whole genome comparisons 

of environmental and enteric isolates of Enterococcus faecalis, a commonly used FIB for 

MST, revealed distinct habitat-specific genetic signatures such as genes associated with 

metabolism of sugars that are often abundant in the gut, as well as antibiotic resistance and 

virulence genes, to be specific or highly enriched in the enteric genomes. In contrast, nickel 

and cobalt transport systems are overrepresented in the environmental genomes (Figure 1-

2; Weigand 2014, Cesare 2014, He et al. 2018). These results suggest that the accessory 

gene content may contribute to differential survival and adaptation in different habitats and 

thus, it is possibly to distinguish between enteric and naturalized populations based on 

genomic means. However, this hypothesis has not been rigorously tested yet for this 

important model FIB. Hence, in Chapter 2, we explore this further as described below. 
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Figure 1-1: Core genome phylogeny of 70 E. faecalis genomes. The tree is based on 

nucleotide alignment of 1000 shared orthologous genes. The 11 environmental genomes 

(highlighted in red) are deep-branching and dispersed throughout the tree indicating that 

these isolates are phylogenetically indistinguishable from enteric strains. Adapted from 

Weigand et al. 2012. 
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Figure 1-2: Gene signatures over-represented among enteric or environmental 

genomes. Each column is an E. faecalis isolate genome with red and black labels indicating 

environmental or enteric isolates, respectively. Each row represents a gene that was 

differentially enriched between the two isolate types. Although the core gene phylogeny is 

conserved (Fig. 1-1), there is evidence that the accessory gene content may encode habitat-

specific functions such as sugar utilization in the gut (i.e., xyloside and lactose) and 

resource scavenging in the environment (i.e. nickel uptake), which can contribute to 

differential survival in the different habitats. Adapted from Weigand et al. 2012. 

 

Additionally, E. faecalis is known to enter a viable but non-culturable (VBNC) state as 

a survival response to environmental stress such as those found in oligotrophic aquatic 

habitats (e.g. low temps, light, nutrient limitation), which can also lead to inaccurate 

assessments of water quality (e.g., false negative signal). VBNC cells are viable in that 

they preserve membrane integrity and low levels of gene expression, but they typically do 

not form colonies using traditional culture-based methods and can be resuscitated upon 
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return to favorable conditions (del Mar Lleò, Tafi, and Canepari 1998). The protein 

expression and membrane changes that occur when E. faecalis enters the VBNC state have 

been well characterized in the laboratory (Heim et al. 2002).  However, the importance of 

this state for improved water quality monitoring has been largely unexplored.  

To test the significance of the results by Weigand and colleagues (2014) and others 

(Luo et al. 2011, He et al. 2018) for distinguishing enteric E. faecalis isolates from their 

environmental counterparts, we incubated 9 enteric and 9 environmental isolates whose 

genomes carried the characteristic gene signatures identified in Figure 1-2 (e.g. the nickel 

uptake operon nik(MN)QO) in sterilized lake water mesocosms. We found these 

oligotrophic growth conditions induced the VBNC state invariably for both isolate types 

and there was no clear difference in survival using traditional culture and qPCR-based tests 

(Figure 1-3). However, qPCR did not distinguish between live, dead, or VBNC cells. 

Therefore, in Chapter 2, we used a viability assay based on the ratio of the transcript 

(rRNA) vs. DNA (rDNA) copy number of the 16S rRNA gene to better detect physiological 

differences between the two groups of isolates. The rRNA/rDNA ratio (mostly of the small 

submit ribosomal RNA gene or 16S rRNA) has been used to detect growing and/or 

metabolically active cells in the environment (Kemp et al. 1993; Kerkhof and Ward 1993; 

Muttray and Mohn 2001; Kamke et al. 2010). Since cell death is a spectrum that can occur 

before cell lysis (Figure 1-4), looking at levels of rRNA is a more accurate assessment of 

the state of cellular activity than techniques based on membrane permeability (e.g. PMA-

qPCR, live-dead staining microscopy). The idea behind using rRNA/rDNA ratio is that 

VBNC cells are still expressing genes, and thus synthesizing ribosomes, so they should 

have higher levels of ribosomal RNA relative to DNA copies of the ribosomal genes 
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compared to a population that contains mostly dead cells. Although both enteric and 

environmental isolates entered the VBNC state, the relative activity and regulation of 

rRNA levels may be different between the different isolates and reflect adaptations to the 

different habitats. Our work described in Chapter 2 directly tested this hypothesis. 

 

Figure 1-3: Monitoring decay in sterilized lake water glass bottle mesocosms with (A) 

culturing and (B) qPCR with an E. faecalis 16S assay. Panel A shows the average viable 

cell counts decreases over time while in panel B, the qPCR-based cell counts are 

maintained at the starting concentration throughout the duration of the experiment. Only 

one enteric (B3119) and one environmental (MN16) isolate is shown in part B for 

demonstration purposes, the trend was consistent among all 18 isolates evaluated. Hence, 
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in subsequent experiments (Chapter 2) we used an rRNA/rDNA assay to detect differences 

between isolates with more precision (Suttner et al., in preparation). 

 

Figure 1-4: Metabolic states relevant for relative microbial activity assessment. Viable 

microorganisms exist in one of three general metabolic states that are all subject to 

mortality. Definitions of terms: Growing—cells are actively dividing, Active—cells are 

measurably metabolizing (catabolic and/or anabolic processes) but are not necessarily 

dividing, Dormant—cells are not measurably dividing or metabolizing, Deceased—cells 

are not metabolically active or capable of becoming metabolically active in the future, but 

intact macromolecules may persist. Viable but non culturable (VBNC) E. faecalis are likely 

somewhere between the dormant and fully active states. Adapted from Blazewicz et al. 

2013. 

1.3 Current culture-independent MST methods and limitations of the “on marker 

one assay” design of qPCR tests 
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Culture-based testing is problematic for timely management decisions because results 

typically take more than 24 hours to obtain. Recent efforts have focused on rapid culture-

independent methods such as qPCR and looking for more robust markers of fecal 

contamination (Bernhard and Field 2000, Bernhard et al. 2003; Seurinck et al. 2005; 

Kildare et al. 2007; Field and Samadpour 2007; Bae and Wuertz 2009; Converse et al. 

2009; Mieszkin et al. 2009, Liu et al. 2015, Fisher et al. 2015, (Stachler et al. 2017), García-

Aljaro et al. 2017; Cinek et al. 2018; Liang et al. 2018). In addition to traditional FIB, fecal 

anaerobes have emerged as targets for new alternative markers, which were not as 

amenable to culture-based methods compared to traditional FIB like E. coli and E. faecalis. 

However, recent advances in genomic techniques during the last two decades have allowed 

the development of molecular assays bypassing the need to isolate these organisms in 

culture (Haugland et al. 2010). Several decades of research show that the genus Bacteroides 

tends to co-evolve with the host and are particularly suitable for MST because they are the 

most abundant genera in stool, have a narrow host range exclusive to warm-blooded 

mammals, and presumably have short-term survival rates in water because they are strict 

anaerobes (Ahmed, Hughes, and Harwood 2016). Hence, their presence in the aerobic 

aquatic environment should be indicative of recent fecal inputs. However, there is evidence 

suggesting Bacteroides can persist and even grow under some environmental conditions 

(Green et al. 2011; Weidhaas et al. 2015). More recently, CrAssphage, a DNA 

bacteriophage named after the metagenomic data mining technique used to discover it 

(Dutilh et al. 2014), has emerged as a promising new MST biomarker because it is one of 

the most abundant phages in some human gut populations (Stachler and Bibby 2014). 

Further, CrAssphage is thought to have Bacteroides as its preferred host. There are now 
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several published qPCR assays targeting CrAssphage for MST (Stachler et al. 2017, 

García-Aljaro et al. 2017; Cinek et al. 2018; Liang et al. 2018) though most of these assays 

have not been tested in environmental systems yet. Several recent studies report that these 

markers have high concentrations in sewage and sewage-impacted waters but have some 

cross-reactivity with other non-human hosts (Ahmed et al. March 2018; Stachler et al. 

2018; Ahmed et al. Aug 2018) and may be too abundant in sewage for monitoring highly 

polluted waters (Stachler et al. 2018). Clearly, more research is needed on CrAssphage 

concentration and persistence in the environment, including how well these phages 

correlate to risk of infection with enteric pathogens. Nevertheless, the end goal when 

identifying new MST biomarkers, regardless of how advanced or sophisticated the method 

used to discover them may be, is usually to design a single qPCR assay for routine water 

quality monitoring. This framework has many known limitations as described below. 

Many studies assessed MST qPCR marker performance under various experimental or 

environmental conditions and sampling techniques (Anderson et al. 2005; Bae and Wuertz 

2009; Chern et al. 2009; Haugland et al. 2010; Dick et al. 2010; Green et a. 2011; Bae and 

Wuertz 2015; Liu et al. 2015; Li et al. 2016; Zhang et al. 2016; Cloutier and McLellan 

2017; Mantha et al. 2017; Mattioli et al. 2017; Rothenheber an Jones 2018; Korajkic et al. 

2018; Ballesté et al. 2018). However, methodological issues pose a substantial challenge 

for the field application of qPCR assays for regulatory purposes, as there are no 

standardized methods for sample collection, processing, DNA extraction, etc. Further, 

DNA markers are detectable by qPCR long after the living FIB (and presumably 

pathogens) have been inactivated (Bae and Wuertz 2009). Robust qPCR assays require 

small amplicon sizes (~100-200bp) so even highly degraded DNA from dead cells can be 
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detected by this method. Furthermore, little has been documented on the recovery 

efficiency of these markers from complex environmental matrices and the effect of PCR 

inhibitors carried over from the extraction, which makes it challenging to reliably compare 

the performance of different assays (Ahmed et al. 2016). In an attempt to address these 

uncertainties, a recent study involving 27 labs evaluated the performance of 41 MST 

markers and found none to be perfectly sensitive or specific for their target host. However, 

the human specific Bacteroides qPCR marker, HF183, was the best performing host 

specific marker overall (Boehm et al. 2013). Accordingly, the EPA has recently released 

Method 1696 targeting human specific fecal pollution with the HF183 qPCR assay 

(USEPA 2019). Although the HF183 assay is among the best performing qPCR assays 

available today, several studies have shown that it has poor correlation with pathogens and 

disease risk (Harwood et al. 2014), and has often low host sensitivity (e.g., not all humans 

carry the marker; Chapter 3). For example, a geographically expansive study evaluated 

human and ruminant specific markers in 16 different countries and 6 continents. While 

ruminant specific markers were globally suitable, the human associated markers (including 

HF183) were less prevalent and stable in some regions of the world (Reischer et al. 2013).  

There is also a need for studies that examine persistence of MST markers over time in 

the environment and how they vary between different hosts. Fecal pollution of surface 

waters is often the result of a complex mixture of multiple inputs further complicated by 

environmental dispersion and deposition. Differential decay characteristics of DNA 

markers confound the interpretation of MST results for public health risk assessment and 

accurately attributing relative concentrations of different pollution sources (Cloutier and 

McLellan 2017). Although an absolute gene count can be obtained via qPCR, estimates of 
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the relative abundance of each marker and the relative contribution of various fecal sources 

in the natural environment cannot be quantitative without this decay information. More 

studies are also needed on the geographical and temporal stability of non-human host gut 

microbiomes (i.e. if host-associated bacteria show substantial degree of biogeography and 

do not apply well globally or across large geographic distances). The use of FIB to assess 

water quality has undoubtedly helped to reduce human health risk; however, the currently 

used approaches are not ideal in several aspects, as discussed above. In Chapter 3 we 

tracked the decay of cow, pig, and human fecal communities in a freshwater lake over time 

using dialysis bag mesocosms simulating a pollution event coupled with shotgun 

metagenomics in order to discover new, host-specific biomarkers and evaluate their decay 

rates during the mesocosm incubation time. We also compared the metagenomic results 

against traditional FIB and MST methods (i.e., culturing and qPCR). Consistent with the 

previous findings described above, the human-specific HF183 assay was not detectable in 

two of the three human samples used in the mesocosms and the ruminant-specific assay 

had perfect host sensitivity among the six cows included in our study.  

1.4 Application of Next-Generation Sequencing (NGS) technologies for MST 

1.4.1 A brief overview of NGS and metagenomics 

Next-generation sequencing (NGS) technologies have revolutionized microbial 

ecology research by bypassing the need to isolate microbes in pure culture and allowing us 

to study the “uncultivable majority” directly from an environmental sample. The most 

common NGS technologies are based on high-throughput sequencing of short DNA 

fragments (150- 350bp) that are either PCR amplicons for targeted deep sequencing of a 
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specific gene (e.g., the 16S rRNA), or a random census of all DNA fragments present in a 

microbial community (i.e., shotgun metagenomics). While 16S rRNA amplicon 

sequencing is useful for characterizing the taxonomic composition (Woese and Fox 1977), 

it does not provide any information on the functional potential of microbial populations. 

Metagenomics, however, is able to shed light on both “who” is there (i.e. what taxa) and 

what metabolic functions they are doing (Handelsman et al. 2007) since both functional 

and 16S rRNA gene fragments are recovered as part of a metagenomic dataset. However, 

shotgun metagenomics have a higher materials and infrastructure cost than gene-amplicon 

sequencing and bioinformatics tools for analysis are not as standardized as for amplicons. 

Consequently, gene-amplicon-based datasets and studies have prevailed.  

A critical first step in metagenomic data analysis is piecing the small DNA 

sequences (or “reads”) back together into larger fragments with a process called assembly. 

Assembly algorithms work by aligning short DNA reads at overlapping regions to piece 

together a longer consensus sequence, or contig (Miller et al. 2010, Rodriguez-R and 

Konstantinidis 2014, Sczyrba et al. 2017). If the metagenomic assembly is of sufficient 

quality and sequencing depth, the contigs can be further grouped (or “binned”) into putative 

microbial genome populations (akin to a jigsaw puzzle). The end result of this binning 

process is a collection of typically fragmented (i.e., not a single, closed circular genome) 

metagenome-assembled genomes (MAGs) that represent the distinct microbial genomes 

that were originally present in the environmental sample (Tyson et al. 2004). Recently, 

there has been an effort to produce longer read sequences based on the PacBio and Oxford 

Nanopore technologies (English et al. 2012, Amarasinghe et al. 2020) in order to merge 

contigs of the same organisms or population and thus, close the genome. However, the 
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application of these technologies to environmental samples remains challenging; mostly 

due to the requirement to obtain high quality and molecular weight DNA for sequencing 

(Quince et al. 2017). Hence, the majority of environmental studies is currently based on 

short read shotgun metagenomics or amplicon sequencing.  

1.4.2 16S rRNA gene amplicon-based sequencing for MST 

Most research efforts utilizing NGS technologies for MST thus far have focused on 

16S rRNA gene amplicon sequencing (Unno et al. 2018). However, this gene is too 

conserved to distinguish between closely related, yet distinct species. Accordingly, the 

most common way that the method is applied, i.e., clustering of 16S rRNA gene sequences 

into Operational Taxonomic Units (or OTUs; a proxy for species) based on an identity 

threshold (e.g. 97%) can miss environmentally or ecologically relevant groups. A few 

studies have attempted to address this limitation using oligotyping, a novel computational 

method that classifies closely related sequences based on minimum entropy decomposition 

and can distinguish groups at the resolution of a single nucleotide, which would otherwise 

fall into a single OTU (Eren et al. 2013). A recent study surveying sewage influent from 

71 cities in the U.S. found 27 oligotypes that were common to all samples and were highly 

abundant.  Interestingly, the structure and distribution of the human-fecal community 

predicted whether samples were from lean or obese populations with 81-89% accuracy 

(Newton et al. 2015). This result was somewhat surprising considering individual human 

gut microbiomes are highly variable and do not have a conserved “core” taxa (Huttenhower 

et al. 2012). The potential for oligotyping to capture traits associated with human health 

and demographics has important implications for public health and MST. The presence of 

conserved oligotypes suggests that although sewage represents an amalgam of individual 
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gut microbiomes there might be some highly (but probably not universally) shared taxa 

among human individuals that could serve as a signature of municipal sewage and 

distinguish it from other sources of pollution. Fisher et al. 2015 expanded on these findings 

and used oligotyping to develop host-specific biomarkers using sewage as a proxy for 

humans. They identified 99 oligotypes that were specific to human sewage that were also 

found in sewage from Spain and Brazil (Fisher et al. 2015), which suggests these oligotypes 

have potential as global alternative indicators. However, it remains unclear whether these 

biomarkers will work well in areas that lack centralized sewer and sanitation systems. More 

recently, this technique has shown to lack the resolution power to differentiate between 

fecal sources with similar bacterial communities, such as sewage effluent and lake water 

(Brown et al. 2019). Another study found that oligotypes for the bloom-forming 

cyanobacterium, Microcyctis, did not correlate with toxin genes and could not be used for 

inferring toxic ecotypes (Berry et al. 2017). These results are consistent with our doubts 

that single nucleotide variations in the 16S rRNA gene (i.e., oligotyping) can reflect 

ecologically or phylogenetically significant host-associated microbial populations. Clearly, 

more information is needed about the gene repertoires that facilitate host associations and 

specializations and if they are stable across members of the same host type (e.g., human 

individuals).  

 

1.4.3 Improving MST and public health risk assessments with metagenomics  

Deciphering the functional basis for host-associated microbiome patterns requires 

moving beyond 16S rRNA gene amplicon data to a broader sequencing approach (i.e., 
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shotgun metagenomics) to characterize any selective, adaptive, and evolutionary processes 

underlying host-specific bacterial signatures (i.e., ecotypes and genes) at the whole genome 

level. Microbial source tracking and water quality assessments could be significantly 

improved with metagenomics, yet this technique has seen little application in MST field to 

date (Sharma and Sharma 2020). In Chapter 3, we established metagenomic and 

bioinformatic techniques as tools for water quality monitoring and identify host-specific 

taxa and functional genes. MST marker development is often a compromise between 

sensitivity (detected in all members of the target host type) and specificity (not detected in 

any non-target hosts). Efforts to design new MST biomarkers can overcome imperfect 

specificity by targeting a marker that is significantly more abundant in the target host 

compared to any other cross-reactivity; because a marker that is more abundant (i.e. higher 

sensitivity) may be useful even if it is not 100% specific to the target host. This reasoning 

provides support for metagenomics for biomarker discovery because metagenomes are 

biased towards the most abundant sequences in the population (whereas 16S rRNA gene 

amplicon sequencing also captures more rare community members). Comparing 

metagenomes from different host gut microbiomes focuses on the most abundant (and 

presumably more important) members for the host gut community. Moreover, those that 

are most abundant will be the easiest to detect in environmental matrices. It is also likely 

that metagenomic methods can be combined with conventional MST methods to obtain 

more accurate measures of fecal pollution in watersheds, since qPCR has generally a lower 

limit of detection than metagenome shotgun sequencing (Chapter 4).  

Metagenomics has clear advantages for identifying new host-specific biomarkers, 

but it can also be useful for water quality monitoring and source tracking in environmental 
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samples (e.g., to assess multiple species found in a sample, including pathogens, 

simultaneously). In Chapter 4, the metagenomic techniques developed as part of the 

mesocosm incubations (Chapters 2 and 3) were applied and validated with field samples. 

Specifically, Southwestern California is one of the most productive agricultural regions in 

the U.S. and is associated with many foodborne E. coli O157:H7 outbreaks; nearly half of 

the major produce outbreaks in the U.S. between 1995-2006 have been traced to spinach 

or lettuce grown in these areas (M. Cooley et al. 2007). Produce contamination can be 

caused by exposure to contaminated irrigation or flood water, deposition of feces by 

livestock, or in the field application of manure as fertilizer (Mantha et al. 2017). Not only 

a source of pathogens, animal feces from farms is an emerging public health issue because 

of the current antibiotic practices (WHO 2014). Antibiotics are regularly administered to 

livestock at prophylactic concentrations to prevent infection and food animal production is 

responsible for a significant proportion of total antibiotic use (Landers et al. 2012). This is 

known to contribute to prevalence of antibiotic resistance genes (ARGs) in the environment 

(Jechalke et al. 2013; Zhu et al. 2013; Karkman, Pärnänen, and Larsson 2018), which can 

spread rapidly to other taxa on mobile genetic elements, including human pathogens of 

clinical importance (Walsh et al. 2011). Surprisingly, there is very little regulation of 

antibiotic use in the livestock industry, even though these operations can be major 

contributors of fecal pollution and spreading of ARGs to the environment (Durso and Cook 

2014; Berendonk et al. 2015). In Chapter 4 we investigated whether the impact of cattle 

ranching can be detected in sediment communities using metagenomics and if community 

structure is correlated to pathogenic E. coli detected by traditional culture-based methods. 
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2.1 Abstract 

Enterococcus faecalis is used worldwide as an indicator for fecal contamination in water 

but the efficacy of this organism for risk assessment has been brought into question by 

recent studies showing the existence of “naturalized” populations of E. faecalis in the 

extraenteric environment in a viable but not culturable (VBNC) state. The extent to which 

these naturalized or VBNC E. faecalis can confound water quality monitoring is unclear. 

Here, we compared the decay patterns of three E. faecalis isolates from both the natural 

environment (environmental strains) and the human gut (enteric strains) in laboratory 

mesocosms that simulated well an oligotrophic, aerobic freshwater environment in order 

to determine if strains isolated from different habitats would display different survival 

strategies and responses. For this, we applied both the traditional culture-based and qPCR 

tests as well as a new rRNA/rDNA viability assay and metatranscriptomics. Our results 
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showed similar decay rates between isolates from the two habitat types based on viable 

plate and qPCR counts, yet a distinct spike in the rRNA/rDNA viability assay was observed 

for enteric vs. environmental isolates between day 1 and day 3. Despite this significant 

result for the viability assay, there was no strong evidence of differential gene expression 

or habitat adaptation in the metatranscriptomes from the mesocosm RNA. Overall, our 

results indicated that enteric strains may exhibit a different physiological response upon 

introduction into a nutrient-limiting environment. However, this difference may not be 

substantial or consistent enough for integration in water quality monitoring. 

2.2 Introduction 

Enterococcus faecalis is used worldwide as fecal indicator bacteria based on the 

assumption that E. faecalis is found only in the intestinal systems of animal hosts and dies 

off quickly upon release to the natural environment. However, “naturalized” populations 

of Enterococcus spp. are known to exist in freshwater environments with no sign of recent 

fecal inputs (heretofore referred to as “environmental” strains) (Byappanahalli et al. 2012, 

Devane et al. 2020) These environmental strains are phenotypically and phylogenetically 

indistinguishable from their enteric relatives based on standard selective media so their 

recovery during a water quality test by conventional methods would be considered a 

positive indicator of fecal contamination (Mote et al. 2012, Weigand et al. 2014). Whole 

genome comparisons of environmental and enteric strains revealed distinct habitat-specific 

genetic signatures such as genes associated with metabolism of sugars, as well as antibiotic 

resistance and virulence genes to be specific or highly enriched in the enteric genomes 

while, nickel and cobalt transport systems are overrepresented in the environmental 

genomes (Weigand et al. 2014, Cesare et al. 2014, He et al. 2018). These results suggest 
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that the accessory gene content contributes to differential survival and adaptation in 

different habitats despite the genetic relatedness, measured by genome-aggregate average 

nucleotide identity (ANI) or another metric, being indistinguishable between enteric and 

environmental E. faecalis strains (Weigand et al. 2014, He et al. 2018). However, the 

practical application and use of these alternative gene markers to distinguish innocuous, 

naturally-occurring from enteric strains that indicate risk to public health have not been 

tested yet.  

Furthermore, E. faecalis is known to enter a viable but non-culturable (VBNC) state 

as a survival response mechanism to environmental stressors, such as introduction into an 

extraenteric environment. VBNC cells are viable in that they preserve membrane integrity 

and low levels of gene expression, but typically do not form colonies using traditional 

culture-based methods and typically have distinct proteomic signatures compared to non-

VBNC cells (del Mar Lleò et al. 2000; Signoretto et al. 2000; Heim et al. 2002). However, 

VBNC cells can be resuscitated and grow upon return to favorable conditions (del Mar 

Lleò et al. 1998, Desmarais et al. 2002) and thus, represent risk to public health. 

Accordingly, culture-based approaches can also lead to inaccurate assessments of health 

risks due to VBNC (false negatives) or natural reservoirs of enterococci (false positives). 

Elucidating the extent to which naturalized populations and/or VBNC state cells may 

confound water quality monitoring is therefore critical for robust public health risk 

assessment.  

Several studies have used cellular ribosomal RNA levels, often expressed as the 

copy number ratio of 16S rRNA transcripts to 16S rRNA genes (i.e. rRNA/rDNA ratio), to 

detect active and/or growing microbes (Kemp et al. 1993; Kerkhof and Ward 1993; 
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Muttray et al. 2001; Kamke et al. 2010). This is based on the assumption that the levels of 

ribosomal RNA are much higher in actively growing and metabolizing cells relative to 

dormant or dying cells. Although this has been shown to be true in several bacterial genera, 

the relationship between rRNA/rDNA ratio and growth rate varies significantly between 

taxa and some studies have even reported an indirect relationship (e.g., higher rRNA levels 

observed during low growth states) between rRNA concentrations and growth rate (Flärdh 

et al. 1992; Worden and Binder 2003; Sukenik et al. 2012). Furthermore, more information 

is needed on the relationship between rRNA levels and non-growth activities (e.g. VBNC 

state). Since these ratios are taxa-specific, baseline data on rRNA/rDNA levels in E. 

faecalis during different stages of activity and decay are needed in order to determine if it 

can be used as a viability assay for water quality monitoring to distinguish environmentally 

adapted from enteric strains. Cell death is a spectrum that can occur before cell lysis; thus, 

looking at levels of rRNA is a more accurate assessment of the state of cellular activity 

than techniques based on membrane permeability (e.g. PMA-qPCR, live-dead staining 

microscopy). VBNC cells are still expressing genes, and thus synthesizing ribosomes, so 

they should have higher levels of ribosomal RNA relative to DNA copies of the ribosomal 

genes compared to a population that contains mostly dead cells. Furthermore, 

environmentally adapted E. faecalis strains (if such strains exist) have higher rRNA/rDNA 

ratios in surface water environment compared to enteric strains because the former strains 

are better able to survive environmental stressors like O2, sunlight, and nutrient limitation. 

In contrast, enteric strains, if they are able to persist in that same environment, are expected 

to be in a lower activity state. 
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The guiding hypothesis of this study is that the strains associated with different 

habitats (i.e., enteric vs. environmental) have distinct genetic and/or physiological 

adaptations that cause differential survival in freshwater ecosystems, and this can be 

detected and quantified for more accurate public health risk assessment based on 

rRNA/rDNA gene copy number ratios and gene expression profiles. To test this hypothesis, 

we performed laboratory incubations that simulated well the natural freshwater 

environment and were spiked in with three environmental and three enteric isolates (in 

separate mesocosm) that were reported previously to be phylogenetically and 

phenotypically indistinguishable from one another (Weigand et al. 2014). The change in 

viable cell counts (i.e. plate counts) and rRNA/rDNA ratios were monitored over two 

weeks. Therefore, this study provided important baseline information on the regulation of 

rRNA levels in E. faecalis under different growth conditions and new insights into the use 

of rRNA for improved water quality monitoring. 

2.3 Methods 

2.3.1 Compare rRNA/rDNA ratios in enteric vs. environmental E. faecalis isolates in 

dialysis bag mesocosms 

2.3.1.1 Dialysis bag mesocosm set-up: 

Lake water was collected from Lake Lanier (Georgia, USA) in acid-washed 10 L carboys 

and transported immediately back to the lab for mesocosm set-up the following day. Lake 

water to be used for inoculating with the E. faecalis strains was first filtered through 0.2 

um sterivex filters as described previously (Tsementzi et al. 2014) while the remaining, 

unfiltered water was used to fill 10-gallon aquarium tanks where the dialysis bags would 
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be suspended during the incubations, as described below. Frozen glycerol stocks of the E. 

faecalis isolates (Table 2-1) were streaked for single colonies onto tryptic soy agar (TSA) 

plates and grown overnight at 37 0C. A single colony from each isolate was then inoculated 

into four mL of tryptic soy broth (TSB) and incubated at 37 0C with shaking at 150 rpm 

for 14 hours. One mL from each overnight culture was washed once with phosphate 

buffered saline (PBS) before inoculating into filtered lake water to a final concentration of 

~106 CFU/mL. The initial concentration for each overnight culture was also determined by 

plate counts on TSA. The dialysis bags (6-8 kDa molecular weight cutoff) were filled to a 

total volume of 110mL (~21 cm length of dialysis tube) and closed on both ends using 

polypropylene Spectra/Por clamps (Spectrum Laboratories). Enough dialysis bags were 

filled to sample each isolate in triplicate at four time points, plus four filtered lake water 

negative control bags. The dialysis bags were then transferred to 10-gallon aquarium tanks 

filled with unfiltered lake water and stored in environmentally controlled rooms at 22 0C 

in the dark. A small water pump was included in each tank for aeration and nutrient 

distribution. A small headspace of air was left in each bag when sealing with the clamps 

so that they could float freely in the tanks. 

2.3.1.2 Mesocosm sampling: 

Destructive sampling of the dialysis bags occurred at days 1, 3, 8 and 11 after the initial set 

up day and each time point included triplicate biological replicates per isolate and a single 

lake water negative control. Fifty mL from each dialysis bag were filtered onto 0.45 um 

polycarbonate membranes then transferred into 2mL screw-cap tubes that had been pre-

filled with 0.8 mL Qiagen buffer RLT (with 1% beta-mercaptoethanol) and 100 mg of acid-

washed 0.1 mm beads. Bead tubes were stored at -80 0C until ready for extraction. 
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Additionally, water from each bag was diluted serially 10-fold with PBS for culture-based 

enumeration on TSA and mEnterococcus agar. All dilutions yielding measurements within 

the acceptable range of quantification were averaged to estimate CFUs/mL of each isolate. 

2.3.1.3 Total nucleic acid extraction: 

The frozen filters were defrosted on ice before the cells were mechanically lysed using a 

BioSpec BeadBeater and four 1-minute intervals with icing in between to prevent the 

samples from excessive heating and to protect the integrity of the RNA. Nucleic acids were 

extracted from cell lysates using the Qiagen AllPrep DNA and RNA extraction kit 

following the manufacturer’s protocol for animal tissue. Contaminating DNA was removed 

from RNA samples by digestion (1-2 times depending on the sample concentration) with 

the Ambion TURBO DNase kit and following the manufacturer’s protocol. RNA integrity 

was assessed with an Agilent 2100 Bioanalyzer instrument and  the Agilent RNA 6000 

Pico kit. 

2.3.1.4 Assessment of quality of the RNA and DNA extractions: 

Elimination of DNA from RNA samples was confirmed by end-point PCR amplification 

with the same primers used for the E. faecalis specific 16S rRNA qPCR assay (Santo-

Domingo et al. 2013). Two uL of undiluted RNA was used as template in 20uL PCR 

reactions with 0.5 uM primers, 200uM dNTPs, 0.025 units/uL TaKara TAQ polymerase 

and 1x TaKara PCR buffer. The thermocycling conditions are as follows: 1 minute at 95 

0C then 30 cycles of 95 0C for 15 seconds and 61 0C for 30 seconds followed by 72 0C for 

1 minute. The PCR products were visualized with gel electrophoresis and the absence of 
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any detectable bands in the gel indicated that there was no significant DNA contamination 

in the RNA samples.  

The absence of PCR inhibitors in the RNA and DNA samples was confirmed by 

“poison control” reactions where undiluted RNA or DNA was used as template in end-

point PCR reactions as above, except a known amount (~107 copies) of standard plasmid 

was spiked into the PCR reaction mix. The same PCR master mix and thermocycling 

conditions were used as above except the primers were targeting the nickel uptake gene in 

the standard plasmid (not published). The PCR products were run on a 1% agarose gel and 

the presence of a single band at the expected size of the PCR amplicon in the standard 

plasmid confirmed the absence of any PCR inhibitors. 

2.3.1.5 Quantification of 16S rRNA and rDNA using reverse transcriptase quantitative 

PCR (RT-qPCR) and quantitative PCR (qPCR): 

DNA and RNA concentrations were quantified using the Qubit High Sensitivity DNA and 

RNA kits (Thermo Fisher Scientific), respectively, and Qubit 2.0 flourometer. Template 

nucleic acids were then diluted to below 0.5ng/uL before amplification using an E. faecalis 

specific 16S rRNA gene assay (Santo-Domingo et al. 2003). The standard plasmid used 

for absolute quantification was an E. faecalis 16S rRNA gene ligated into a pCR™2.1-

TOPO® TA vector and cloned using One Shot® Chemically Competent TOP10 

Escherichia coli and the TOPO®-TA cloning kit (Invitrogen), following manufacturer’s 

instructions. The standard plasmid was isolated using the QIAprep Spin Miniprep Kit 

(Qiagen) following the manufacturer’s instructions and quantified using the Qubit HS 

DNA kit. Eight, 10-fold serial dilutions (108 to 101 copies per reaction) of qPCR standard 
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plasmids were run in triplicate on every 96-well plate. All reactions were performed on the 

Applied Biosystems 7500Fast machine and Bio-Rad Universal Probes reagents following 

the manufacturers protocol. Reactions were performed in triplicate in a total volume of 

20uL that included 2uL of the template or standard plasmid and 250 nM primer and 

TaqMan (5’ hydrolysis) probe (the RT-qPCR reactions also included 0.5uL of iScript 

reverse transcriptase). Thermocycle conditions for qPCR consisted of an initial 50 0C step 

for 2 minutes followed by 95 0C for 10 minutes, then 40 cycles of 95 0C for 15 seconds and 

60 0C for 60 seconds. The RT-qPCR thermocycle conditions were the same except for the 

initial step of 50 0C for 10 minutes followed by 95 0C for 2 minutes. The calibration curve 

from each plate was used to calculate rRNA and rDNA copy numbers in each sample which 

were averaged among technical replicates, multiplied by elution volume (200 or 50 uL for 

DNA and RNA, respectively), and then divided by the filter volume (50mL) total copies 

per milliliter. 

2.3.2 Metatranscriptome sequencing and analysis of total RNA from dialysis bag 

mesocosms 

2.3.2.1 Metatranscriptome library preparation and sequencing: 

The triplicate RNA extractions from each isolate at each of the four time points were pooled 

together in order to obtain enough high-quality RNA for metatranscriptomic sequencing, 

and cDNA libraries were prepared using the ScriptSeq v2 RNA-Seq Library Preparation 

kit (Illumina) following the manufacturer’s instructions except a half ng (~1% of total 

library size) of a luciferase internal RNA standard was included during the RNA 

fragmentation (step 3A) for absolute quantification of transcript copy numbers as described 
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below. The quality and insert size of each cDNA library was inspected using the Agilent 

High Sensitivity DNA kit and Agilent 2100 Bioanalyzer instrument. Library 

concentrations were determined using the Qubit HS DNA kit and diluted to ~5 nM before 

loading into the flow cell and sequencing on the Illumina HiSEQ 2500 instrument as 

described previously (Johnston et al. 2019).  

2.3.2.2 Luciferase internal RNA standard preparation: 

The Promega pGEM®-luc plasmid vector (accession number X65316) containing a 1094 

nucleotide fragment of the firefly luciferase gene was digested with SphI-HF restriction 

enzyme (New England Biosystems) at 37 0C  for 1 hour followed by clean up with the 

Qiagen PCR clean-up kit. The digested DNA was gel-purified using 1.5% low melt agarose 

gel and the MO BIO UltraClean® 15 DNA purification kit followed by end repair with the 

Thermo Scientific Fast DNA End Repair kit and another clean up with the Qiagen PCR 

clean-up kit but with a 30 uL elution volume. The DNA was concentrated by ethanol 

precipitation before transcribing to RNA with the Promega Riboprobe® in vitro 

Transcription T7 System and following the manufacturers protocol 4.F for synthesis of 

large amounts of RNA. The RNA standard quantity and quality were determined using the 

Qubit HS RNA kit and Agilent Bioanalyzer as described above.  

2.3.2.3 Transcriptome sequence analysis: 

All transcriptomic reads were quality filtered and trimmed as described previously (Kim et 

al. 2018). Trimmed reads were filtered to remove rRNA sequences using SortMeRNA v2.1 

(Kopylova et al. 2012) with all rRNA databases in the program and the following options: 

--blast 1 --num_alignments 1 -v -m 8336. The internal luciferase standard sequences were 
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identified by blastn search against the 1094 bp length nucleotide luciferase reference 

sequence carried on the pGEM®-luc plasmid vector (accession number X65316). Matches 

were filtered for best match using a threshold of 97% identity and alignment length that is 

80% of the query read length, and resulting matches were subsequently removed from the 

transcriptomic datasets (for the reference luciferase matches). The number of internal 

standard sequences recovered were used to estimate the absolute number of mRNA 

transcripts in the sample and sample sequencing depth (actual number of mRNA reads in 

sequenced in metatranscriptome divided by the absolute number of mRNA transcripts in 

the sample) as described in Satinsky et al. 2013. 

Reference genome assemblies for the four isolates that were used as inocula in the 

mesocosms (Table 2-1) were downloaded from NCBI. Prodigal v2.6.1 (Hyatt et al. 2010) 

was used to predict genes from the assemblies, which were then annotated against the 

Swiss-Prot (downloaded March 2019; UniProt Consortium 2017) using blastp (options: 

e_value 1E-6 and max_target_seqs 10). Matches to the reference Swiss-Prot sequences 

were filtered for best matching, using 40% identity and 40% query cover alignment length 

as threshold. All genes that had no match to the Swiss-Prot database were annotated against 

the TrEMBL database (downloaded May 2018; Uniprot Consortium 2017) using the same 

match filtering cut-off. Non-rRNA metatranscriptomic reads (i.e. after removing internal 

standard sequences) were mapped against predicted genes for the corresponding isolate 

that was used as inocula in that sample using MegaBLAST (Camacho et al. 2009) and 

matches with <97% identity and <50 bp alignment length were removed from further 

analysis. Read count tables against predicted genes were generated using custom scripts 

and were used as the input for DESeq2 (Anders and Huber 2010) along with the sample 
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sequencing depth as determined from the internal standard for the estimate size factors 

step. Differentially expressed genes (with Padj <0.05) between enteric and environmental 

isolates were determined using the Likelihood Ratio Test as implemented in DESeq2.  

2.3.3 rRNA/rDNA ratio in E. faecalis in pure culture under standard laboratory 

conditions 

2.3.3.1 Batch culture growth conditions and sampling: 

A frozen glycerol stock of E. faecalis strain MTUP9 (Table 2-1) was streaked for single 

colonies onto a TSA plate and grown overnight at 37 0C. A single colony was then 

inoculated into 4 mL of TSB and incubated at 37 0C with shaking at 150 rpm for 14 hours. 

100uL of the overnight liquid culture was inoculated into 60mL fresh TSB in triplicate to 

start the growth curve experiment (O.D.600 < 0.1 at time 0) and incubated at 37 0C with 

shaking at 150rpm. Each triplicate culture was sampled at 14 time points over 73 hours to 

capture the different growth phases. At each sampling point, 1 mL of each triplicate culture 

was collected for O.D.600 reading, 0.1 mL was serially diluted 10-fold in PBS for plate 

counts on TSA, and 0.5-1 mL of the culture was collected for nucleic acid extraction by 

centrifuging at 10,000 rpm for 5 minutes and decanting the supernatant. Cell pellets were 

re-suspended in 600uL buffer RLT (Qiagen) with 1% beta-mercaptoethanol added and 

stored at -80 0C until ready for extraction. The re-suspended cell pellets were defrosted on 

ice and transferred to 2mL screw-cap tubes pre-filled with 100 mg of acid-washed 0.1 mm 

beads. Total nucleic acids were extracted and used for rRNA/rDNA analysis following the 

same protocol for filters as described above. 

2.4 Results 



 30 

2.4.1 rRNA/rDNA ratio of enteric vs. environmental E. faecalis isolates in dialysis bag 

mesocosms simulating an oligotrophic freshwater habitat 

The ratio of the transcript (rRNA) vs. DNA (rDNA) copy number of 16S ribosomal 

RNA gene has been used as a viability assay to distinguish live, VBNC, or dead cell 

populations with more precision compared to traditional qPCR approaches ( Poulsen et al. 

1993, Campbell et al. 2011, Gaidos et al. 2011, Simister et al. 2012). We used the 

rRNA/rDNA ratio to compare the physiological response of human enteric versus 

environmental E. faecalis isolates in laboratory mesocosms simulating an oligotrophic 

freshwater environment. Oligotrophic growth conditions have been shown to induce the 

VBNC state invariably for both isolate types in our previous, unpublished pilot experiment 

using glass bottle mesocosms and traditional qPCR methods only (Figure 1-3). However, 

in our previous pilot experiment, we were not able to detect any difference using traditional 

qPCR only and instead present the results here for dialysis bag mesocosms and the 

rRNA/rDNA assay. Laboratory mesocosms consisted of 100mL dialysis bags filled with 

filtered lake water and inoculated with individual E. faecalis pure cultures (3 enteric and 3 

environmental; Table2-1) to a final concentration of ~106 CFU/mL and suspended in 

aquarium tanks filled with unfiltered lake water. The dialysis bags have a pore size that 

allows passage of small molecules and ions but prevents passage of molecules larger than 

6-8 kDa (e.g. bacteria and viral particles). These six isolates were selected because previous 

comparative genomic analysis showed that they contained the putative habitat-specific 

genes signatures identified by Weigand and colleagues (Weigand et al. 2014). Mesocosm 

sampling occurred in triplicate for each strain on days 1, 3, 8 and 11 (D1, D3, D8, and D11) 

and included: plating for viable cell counts and filtering for total nucleic acid extraction to 
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determine rRNA/rDNA ratios. Although the experiments started out with filter-sterilized 

lake water, some growth was observed in the negative control bags on TSA plates by D8. 

However, no growth was observed on the Enterococcus-specific media (data not shown). 

This result suggested that the integrity of the dialysis bags started to break down over time 

and that some of the microbes from the non-sterilized lake water in the tanks outside of the 

bags were able to pass through the dialysis membranes. Hence, we primarily focused our 

analysis and interrelations on the first three sampling points. 

Table 2-1: E. faecalis isolates used in the dialysis bag mesocosm experiments. Total 

RNA from the mesocosm samples were also analyzed with metatranscriptomics for the 

isolates in bold. Isolation source describes whether the strains were isolated from the 

human gut (enteric) or an extra-enteric environment with no sign of recent fecal inputs 

(environmental) according to Weigand et al. 2014. 

Isolate 

Name 

Isolation source GenBank 

Accession 

MMH594 enteric AJDZ01000001.1 

ERV62 enteric ALZQ01000001.1 

TX0104 enteric ACGL01000001.1 

MTUP9 environmental AYOJ01000001.1 

MTmid8 environmental AYKU01000001.1 

AZ19 environmental AYLU01000001.1 
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All strains exhibited a decrease in viable cell counts over time, as expected, and 

were detectable by culture for the duration of the experiment (i.e., until D11; Figure 2-1A). 

Moreover, decay rates based on plate counts were not significantly different between the 

two isolate types (paired T-test P=0.082), consistent with our previous pilot experiment 

(Figure 1-3). The average rRNA/rDNA ratios in the three environmental and one of the 

enteric isolates were relatively stable from D1 to D3 (0.7 to 1.5-fold change in ratio). 

However, two of the enteric strains (ERV62 and MMH594) had ~6-fold increase in ratio 

from D1 to D3 (Figure 2-1B). By D8 and D11, the average ratios decreased and approached 

zero consistently for all six isolates. When comparing average rRNA/rDNA ratios overall 

(i.e. enteric vs. environmental across all time points), the enteric isolates were not 

significantly different from environmental isolates (Wilcoxon Rank Sum P=0.149). When 

looking at the habitat types separately over time, the average rRNA/rDNA ratios between 

D1 and D3 were not significantly different for environmental strains but were significant 

for the enteric strains (paired Wilcoxian P= 1.0 and 0.014, respectively). This result might 

suggest that the enteric and environmental isolates show  different gene expression 

responses to environmental stress (e.g. nutrient limitation), which we examined more fully 

with metatranscriptomics below. 
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Figure 2-1: Comparing changes in (A) viable cell counts and (B) rRNA/rDNA ratios 

of enteric versus environmental E. faecalis isolates over time in dialysis bag 

mesocosms. Three enteric and three environmental isolates are represented by different 

shades of  orange and blue, respectively. Error bars are standard deviation among three 

technical replicates. 
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2.4.2 Comparative metatranscriptomics of enteric and environmental isolates 

The 16S rRNA/rDNA information alone does not provide information about 

specific gene functions and differences in mRNA expression levels that may serve as better 

biomarkers for the response to oligotrophic freshwater conditions. Thus, we used 

metatranscriptome sequencing profiles of the dialysis bag mesocosms to identify specific 

metabolic pathways that may underlie habitat adaptation and represent more reliable targets 

for improved FIB assays. We selected a subset of the mesocosm samples (two 

environmental and two enteric strains; Table 2-1) for total community RNA sequencing 

with an internal spiked control for absolute transcript quantification. Since the RNA 

extraction protocol used was designed for rRNA analysis and was not optimized for 

metatranscriptomic sequencing, we were not able to get enough mRNA for ribo-subtracted 

libraries. Thus, total RNA sequencing was used instead. The resulting metatranscriptome 

libraries had on average 3.2x107 (± 9.7x106) reads per sample and ~95.7% of those reads 

were rRNA, on average. The internal RNA standard recovery in each metatranscriptome 

ranged from 0.02 to 0.13% of the original amount that was spiked in. The internal standard 

%recovery was used to estimate the absolute number of mRNA reads per ng RNA 

sequenced (5.9x107 ± 3.5x107 on average in each sample) following the methods described 

by Satinsky and colleagues (Satinksy et al. 2013).  

Reference genome sequences of the isolates were previously determined (Table 2-

1) and were used for read mapping and to identify genes with significantly different 

expression between the two isolate types. Overall, there were no differentially expressed 

genes (DEGs) between enteric and environmental isolates across all time points. When 

controlling for the effect of time, there were only 31 strain specific DEGs observed between 
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D1 and D3, with 24 and 8 genes being more expressed in the environmental and enteric 

isolates, respectively (Figure 2-2). However, none of these genes were among the habitat-

specific genes identified by the previous comparative genomic studies, such as the nickel 

uptake operon, nik(MN)QO (Weigand 2014, Cesare 2014, He et al. 2018). The DEGs found 

in the environmental isolates were mostly related to housekeeping genes such as ribosomal 

and transcription-related proteins (e.g. tRNA ligase and elongation factor T; Figure 2-2). 

While genes potentially related to cellular stress response, such as a putative transcription 

repressor (niaR) and DNA replication and repair gene (recF), had higher expression in the 

enteric isolates. 



 36 

 

Figure 2-2: Differentially expressed genes between enteric and environmental E. 

faecalis isolates between days 1 and 3. Orange and blue bars indicate genes that were 

more expressed in enteric or environmental isolates, respectively. Functional gene 

annotation is based on the UniProt database and differentially expressed genes were 

identify by DeSeq2 analysis as described in section 2.3.2.3. 
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2.4.3 rRNA/rDNA ratios over the standard growth curve in pure culture 

Since the relationship between rRNA/rDNA ratios and growth rate are taxa-specific 

(Blazewicz et al. 2013), we also collected baseline data on rRNA/rDNA levels in pure 

cultures of E. faecalis under standard laboratory conditions, which has not been examined 

previously for this species. For this, an E. faecalis strain (MTUP9) was grown in triplicate 

batch cultures and sampled over time to assess changes in the rRNA/rDNA ratio at the 

different growth and death phases (Figure 2-3). A typical bacterium growth curve was 

observed where the exponential growth phase lasted ~10 hours and maximum cell density 

(1.5x109 CFU/mL) was observed at 12.5 hours. Cell density remained relatively stable until 

the next measurement at 25 hours, where cell density was still around 1.1x109 CFU/mL 

(Figure 2-3A). The rRNA/rDNA ratios ranged from 5.5 to 372, with the lowest ratios being 

observed during early exponential growth phase (i.e., during the first 5 hours), after which 

point the ratio started to increase but there was a high level of variation between biological 

replicates (Figure 2-3B). The highest levels of rRNA/rDNA ratios were observed in the 

early stationary phase (~hour 12; average ratio = 372), after which the ratios started to 

decrease during stationary and death phases. 
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Figure 2-3: (A) Cellular abundance and (B) rRNA/rDNA ratios for E. faecalis MTUP9 

in triplicate batch pure culture conditions. Error bars are standard deviation of 

biological and technical replicates. 

2.5 Discussion 

E. faecalis is still one of the most commonly used FIB for routine water quality 

monitoring despite several known limitations such as natural extraenteric populations and 

the ability to persist in the environment in a dormant, VBNC state (Byappanahalli et al. 

2012). Several studies have assessed the use of 16S rRNA levels in the cell (normalized to 
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16S rDNA copy number) as a metric for distinguishing relative levels of cellular activity 

(Blazewicz et al. 2013); however, no study to date has investigated whether rRNA can be 

used in E. faecalis for improved environmental water quality monitoring. In this study, 

there was high variability in rRNA/rDNA ratios among biological replicates under 

oligotrophic mesocosm growth conditions (Figure 2-1B). Notably, the ratios under these 

conditions were, on average, roughly two orders of magnitude lower than those observed 

under standard lab conditions in pure culture (Figure 2-3B). These results are consistent 

with another study, which showed a high standard deviation in ratios and that copiotrophs 

have much lower ratios in oligotrophic systems relative to rich media (Lankiewicz et al. 

2015). Notably, two of the three enteric isolates showed a six-fold increase in their 

rRNA/rDNA ratios from D1 to D3 (Figure 2-1B) and the ratios on D3 for these two isolates 

(~45 rRNA/rDNA) was similar to lower end of average values observed for E. faecalis in 

pure culture (e.g., during early exponential phase). However, there is no evidence to 

suggest that these isolates are actively growing or replicating in the mesocosms during this 

time based on the viable cell counts, and the incubation conditions are remarkably different. 

Hence the trends observed in the two experiments (i.e. lake water mesocosm vs. pure batch 

culture) are presumably the result of different biological factors.  

A potential explanation for increasing rRNA/rDNA ratio coupled with decreasing cells 

observed in the oligotrophic mesocosm conditions is that the enteric isolates are increasing 

gene expression for pathways related to non-growth activities, such as environmental stress 

or cell homeostasis, that results in more ribosomes (and thus, more rRNA). Accumulating 

or maintaining high rRNA levels during periods of low activity may confer a competitive 

advantage upon return to favorable conditions, especially in copiotrophic environments 
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that favor fast growers that can respond quickly to nutrient stimuli (Roller et al. 2016). 

Enteric isolates maintaining high cellular rRNA levels through D3 could indicate an 

adaptive strategy for high nutrient environments like the gut, whereas the environmental 

isolates are not “evolutionarily primed” to expect high nutrient influxes and don’t devote 

as much energy to maintain high rRNA levels. 

Previous studies in other copiotrophs under balanced growth conditions in pure culture 

have shown that cellular rRNA concentration correlates well with growth rate (Neidhart 

and Magasanik 1960, Kerkhof and Ward 1993, Wagner 1994). As such, we expected to 

see the highest rRNA/rDNA ratios for E. faecalis during the exponential phase in pure 

culture. However, the highest ratios were observed around hour 12 when growth was 

beginning to reach stationary phase (Figure 2-3). The relationship between RNA levels and 

growth is not linear or consistent between different taxa, especially environmental 

oligotrophic bacteria (Binder and Liu 1998, Worden and Binder 2003). Therefore, this 

result is not necessarily surprising, but it does suggest that the regulation of cellular RNA 

levels in E. faecalis may be more complicated and not linearly correlated to growth. One 

possible explanation for the trends observed is that during early exponential phase, the cells 

are rapidly replicating their genomes and may have multiple genome copies per cell as a 

result of rolling replication, resulting in the observed lower rRNA/rDNA ratios. As 

nutrients in the batch culture start to become depleted and cell growth slows, there is a lag 

in the ribosome transcription feedback loop around hour 12 where ribosome concentration 

briefly exceeds cell demand for rapid growth and results in the observed higher ratio. The 

high amount of variation between biological replicates observed in both experiments also 

suggests that this rRNA/rDNA assay should be tested in more isolates in order to confirm 
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these trends and the amount of natural variability in rRNA/rDNA ratios between isolates, 

as well as provide more support for the putative explanations given above. 

 Although there was some difference between rRNA/rDNA ratios observed in the 

enteric and environmental isolates, our results are not conclusive with respect to whether 

or not this assay is suitable for distinguishing isolate types in water quality monitoring 

applications because the differences where not large enough and were strain-specific (as 

opposed to habitat-type-specific). However, it may be useful to provide information on the 

age of the pollution event. All six isolates had significantly higher rRNA/rDNA ratios on 

D1 and D4 compared to D8 and D11, with overall average ratios of 11.7, 24.8, 4.7, and 

1.8, respectively. That is, the rRNA/rDNA ratio were substantially higher in the early 

stages, and this could serve as a sign of recent fecal pollution. Specifically, higher ratios (> 

6 or 7) could indicate a more recent pollution event, whereas lower ratios (< 5) could 

indicate that the public health risk from exposure to pathogens is not as high. Nevertheless, 

RNA is generally more difficult and expensive to work with compared to DNA and 

requires more technical expertise and higher sterility (e.g., often requires a -80 0C freezer, 

RNase-free consumables, etc.), making this approach not practical for local municipalities 

with limited laboratory resources.  

Yet, the viable cell counts indicated that the abundance of E. faecalis was still 

exceeding the EPA recreational water quality criteria of 36 CFU/100mL for all isolates on 

D8 (~105 CFU/mL; Figure 3-1A), thus these lake water samples would still be considered 

a public health risk according to current EPA standards. However, our findings that the 

rRNA/rDNA ratio is decreased after D4 suggests that these cells have largely become 

inactive (e.g. enter VBNC) and/or likely have started dying by D4 and hence, represent a 
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lower risk compared to D1. Consistent with these interpretations, a recent quantitative 

microbial risk assessment (QMRA) analysis of sewage pollution suggested that the risk of 

exposure to pathogens is not significant after three days (Boehm et al. 2018). In water 

bodies that consistently exceed EPA regulations for Enterococcus, it could be useful to 

investigate whether this is the result of a natural reservoir (i.e. no pathogen risk) or chronic 

pollution (pathogen risk) and techniques like the rRNA/rDNA assay presented here could 

be useful to help inform appropriate monitoring, management, and/or mitigation strategies.  

Metatranscriptomics revealed that housekeeping genes such as ribosomal and 

transcription-related proteins were significantly more expressed in the environmental 

isolates (Figure 2-2), which may indicate better survival because they are able to maintain 

general gene expression without a strong signal of environmental stress. In contrast, the 

enteric isolates had fewer DEGs but these included several that potentially reflect a stronger 

stress response compared to environmental isolates. However, the number of DEGs overall 

was small (only 31 genes) and these results may be spurious as about half of these DEGs 

detected could be due to chance based on the false discovery rate predicted by the DESeq2 

analysis (i.e. expected ~17 DEGs by chance). Moreover, the RNA extraction protocol used 

in this experiment was originally optimized for the rRNA/rDNA assay (i.e., simultaneous 

and consistent extraction of both DNA and RNA from a single filter and to ensure that the 

same amount of starting material is used each time) and resulted RNA samples with 

concentrations too low for ribo-subtracted libraries. Accordingly, this protocol resulted in 

poor mRNA recoveries in the metatranscriptomes (< 5% mRNA; typical for non-ribo-

subtracted libraries) and some of the DEG signal could have been lost as a result of this. 
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Future studies should include separate RNA extractions for the rRNA/rDNA ratio assay 

and metatranscriptomic sequencing. 

Furthermore, we acknowledge that the methods employed in this study may also 

limit our ability to distinguish isolates from the two habitat types. Previous starvation 

experiments show that in some taxa, growing cells at maximum or medium growth rates 

before starvation can affect whether high rRNA levels are sustained even when cell activity 

decreases (Sobek et al. 1966, Oda et al. 2000) and suggests an organism’s response to an 

event (e.g., introduction to extra-enteric environment through fecal shedding) can be 

determined by the conditions it was exposed to before that event. In our dialysis bag 

mesocosm experiment, we spiked pure cultures from rich media into lake water, which 

may not accurately reflect the life histories of environmental or enteric E. faecalis isolates 

and thus, different ratios may be observed in situ relative to our mesocosm condition. For 

example, an enteric cell can be first introduced into a sewage or septic system, which may 

not be nutrient limiting but have other stressors like oxidation or predation, before reaching 

a surface water body. It is also possible that the habitat-specific genes previously identified 

such as the nickel and cobalt transport systems in the environmental genomes (Weigand et 

al. 2014, Cesare et al. 2014, He et al. 2018) are tuned for different conditions or stimuli 

than the mesocosm conditions used here and this accounted for the lack of their differential 

expression in our datasets. Although mesocosm studies are helpful for comparing E. 

faecalis survival in a more controlled environment, they cannot simulate all of the complex 

biotic and abiotic factors that occur in aquatic habitats. Inspecting the ratios in extractions 

directly from known, natural extraenteric reservoirs of Enterococcus such as in algal mats 

(Whitman et al. 2003) could help to get a better understanding of how rRNA levels are 
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regulated in isolates that have been (presumably) under nutrient limitation for a longer 

period of time. 

This work provides preliminary information on rRNA/rDNA ratios in E. faecalis isolates 

under both standard lab and in situ-like conditions, which to our knowledge, has not been 

investigated for this genus. Our results suggest there may be evidence for different habitat 

adaptations between environmental and enteric strains but the difference may be too subtle 

or not consistent enough to be used in water quality monitoring. Clearly, our preliminary 

results require testing with more strains and growth conditions to allow for more robust 

conclusions to emerge. Furthermore, this study provides new insights on the relationship 

between rRNA levels and non-growth activities, such as in VBNC cells, for an important 

FIB taxon. 
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3.1 Abstract  

Fecal material in natural environments and water distribution systems is a primary 

source of pathogens that cause waterborne diseases and affect over a billion people 

worldwide. Most microbial source tracking (MST) efforts to attribute fecal contamination 

are based on 16S rRNA gene amplicon sequencing but these single gene-based assays do 

not always provide the resolution needed. In this work, we used dialysis bag mesocosms 

simulating a natural freshwater environment that were spiked separately with cow, pig, or 

human feces to monitor the decay of host-specific fecal signals over time with 

metagenomics and traditional qPCR and culture-based methods. Our sequencing of the raw 

fecal communities used as inocula recovered 79 non-redundant metagenome-assembled 

genomes (MAGs) whose abundance patterns over time suggested little health risk after 

about four days of incubation. Several MAGs showed high host specificity and thus, 

represent good candidates for biomarkers for their respective host type. Although all of 
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these MAGs were fermentative anaerobes, functions related to biofilm formation, biotin 

metabolism, and transport of various metabolites distinguished MAGs from different host 

types. Traditional qPCR methods varied in their correlation with MAG decay kinetics. 

Notably, the human-specific Bacteroidales assay, HF183, consistently under-estimated 

fecal pollution due to not being present in all inocula and/or primer mismatches. This work 

provides new insights on the persistence and decay kinetics of host-specific gut microbes 

in the environment and identifies several MAGs as putative biomarkers for improved MST. 

3.2 Introduction 

Fecal-contaminated waters have caused significant public health and economic burdens 

around the world (Eisenberg, Bartram, and Wade 2016). Because it is not practical to 

monitor the full spectrum of pathogens associated with fecal contamination, water quality 

and public health risk are assessed using fecal indicator bacteria (FIB) as proxies. 

Accordingly, the historical emphasis on monitoring indicators has resulted in water quality 

regulations focused primarily on reducing FIB instead of controlling pathogens and 

protecting public health. Because culture-based efforts to count FIB are laborious and 

ineffective for timely water management decisions, recent efforts have focused on rapid 

culture-independent methods such as qPCR targeting new biomarkers that are not easily 

amendable to culture-based approaches such as anaerobes within the order Bacteroidales 

(Kildare et al. 2007, Haugland et al. 2010) and other organisms known only by culture-

independent genomic approaches (McLellan and Eren 2014). Several decades of research 

show that the genus Bacteroides tends to co-evolve with the host and are particularly 

suitable for MST because they are among the most abundant genera in stool, have a narrow 

host range exclusive to warm-blooded mammals, and generally have poor survival rates 
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outside their host (Ahmed, Hughes, and Harwood 2016). However, recent evidence 

suggests the potential for Bacteroides to persist, and even grow under some environmental 

conditions (Green et al. 2011; Weidhaas et al. 2015), which brings the assumptions about 

their persistence outside of the host into question. More recently, CrAssphage, a DNA 

bacteriophage named after the metagenomic data mining technique used to discover it 

(Dutilh et al. 2014) has emerged as promising new MST biomarker because it is one of the 

most abundant phages in some human gut populations (Stachler and Bibby 2014). There 

are now several published qPCR assays targeting CrAssphage for MST (García-Aljaro et 

al. 2017; Cinek et al. 2018; Liang et al. 2018), however most of these assays have not been 

tested in environmental systems. Several studies report these markers have high 

concentrations in sewage and sewage-impacted waters but have some cross-reactivity with 

other (non-human) hosts (Ahmed et al. Wat. Res. 2018; Stachler et al. 2018; Ahmed et al. 

Appl. Micro. & Biotech. 2018) and may be too abundant in sewage for monitoring highly 

polluted waters (Stachler et al. 2018). Clearly, more research is needed on CrAssphage 

concentration and persistence in the environment including how well these phages correlate 

to risk of infection with enteric pathogens. Nevertheless, the end goal when identifying 

new MST biomarkers, regardless of how advanced or sophisticated the method used to 

discover them, is usually to design a single qPCR assay for routine water quality 

monitoring. However, this framework has many known limitations as described below 

(Savichtcheva and Okabe 2006).  

Rapid culture-independent methods such as qPCR allow for same day results and there 

is a plethora of studies focused on designing more robust qPCR markers for MST 

(Bernhard et al. 2003; Seurinck et al. 2005; Kildare et al. 2007; Field and Samadpour 2007; 
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Bae and Wuertz 2009; Converse et al. 2009; Mieszkin et al. 2009, Liu et al. 2015) and 

assessing marker performance under various experimental or environmental conditions and 

sampling techniques (Anderson et al. 2005; Bae and Wuertz 2009; Chern et al. 2009; 

Haugland et al. 2010; Dick et al. 2010; Green et a. 2011; Bae and Wuertz 2015; Liu et al. 

2015; Li et al. 2016; Zhang et al. 2016; Cloutier and McLellan 2017; Mantha et al. 2017; 

Mattioli et al. 2017; Rothenheber and Jones 2018; Korajkic et al. 2018; Ballesté et al. 

2018). However, methodological issues pose a substantial challenge for the field 

application of qPCR markers for regulatory purposes, as there are no standardized methods 

for sample collection, processing, DNA extraction, internal controls, etc. Further, limited 

documentation exists on the recovery of these markers from complex environmental 

matrices and the effect of PCR inhibitors carried over from the extraction, which makes it 

challenging to reliably compare the performance of different assays across different studies 

(Ahmed et al. 2016). In an attempt to address these uncertainties, Boehm et al. 2013 

evaluated the performance of 41 MST markers and found none to be perfectly sensitive or 

specific for their target host. Notably, the human specific Bacteroides marker, HF183, was 

the best performing host specific marker according to this study (Boehm et al. 2013). 

However, this and other human associated markers, are not prevalent in human populations 

worldwide (Reischer et al. 2013), which suggests no single qPCR marker is likely to be 

universally suitable for detecting human fecal contamination. More information is also 

needed on the geographical and temporal stability of gut microbiomes in human and other 

host groups in order to design biomarkers with improved within and between-host 

resolution. Moreover, fecal pollution of surface waters is often the result of a complex 

mixture of multiple inputs further complicated by environmental dispersion and deposition. 
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The decay characteristics of different DNA markers could also confound the interpretation 

of MST results (Cloutier and McLellan 2017). Although an absolute gene count can be 

obtained via qPCR, estimates of the relative abundance of each marker and the relative 

contribution of various fecal sources in the natural environment cannot be quantitative 

without this decay information. The use of FIB and MST to manage water quality has 

undoubtedly helped to reduce public health risks; however, the currently used approaches 

are not ideal in several areas. Hence, new, more comprehensive methods, such as 

metagenomics (Handelsman et al. 2007), are still needed to help improve biomarker 

discovery and overcome some of the limitations described above. 

Most research efforts utilizing metagenomics and next-generation sequencing (NGS) 

technologies thus far have focused on 16S rRNA gene amplicon sequencing to develop 

new biomarkers (Unno et al. 2018). However, the 16S rRNA gene is highly conserved 

across Bacteria and Archaea and this method of clustering gene amplicon sequences in 

operational taxonomic units (or OTUs) based on an identity threshold (e.g. 97%) can lead 

to groups that are too broad to be environmentally or ecologically meaningful. As such, 

cross-reactivity with non-target hosts is common for all assays targeting even the most 

variable regions of the 16S rRNA gene (Harwood et al. 2012; Ahmed et al. 2016). 

Functional, protein-coding genes that are specific to a host’s unique gut physiology (e.g. 

host-microbe interactions) are likely more suitable targets for host-specific markers. 

However, deciphering the functional basis for host-associated microbiome patterns 

requires moving beyond 16S rRNA amplicon data to a broader sequencing approach (i.e., 

shotgun metagenomics) to characterize any selective, adaptive, and evolutionary processes 

underlying host-specific bacterial signatures (i.e., ecotypes and genes) at the whole genome 
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level. It is also likely that metagenomic methods can be combined with conventional MST 

methods to obtain more accurate measures of fecal pollution in watersheds since qPCR has 

generally a lower limited of detection that metagenome shotgun sequencing (Suttner et al. 

2020, Hong et al. 2020). Microbial source tracking and water quality assessments could be 

significantly improved with metagenomics, yet this technique has seen little application in 

MST field to date (Sharma and Sharma 2020). More research is needed to establish the 

best meta-omics and bioinformatic techniques as tools for water quality monitoring and 

public health risk assessment and identify host-specific taxa and their genes. 

In this study, we used dialysis bag mesocosms simulating a fecal pollution event in a 

freshwater habitat and time-series metagenomics to track the decay of metagenome 

assembled genomes (MAGs) from human, cow, and pig fecal inputs over time. 

Additionally, we used traditional culture and qPCR-based MST markers and included a 

universal 16S rRNA gene qPCR assay for absolute quantification in order to compare 

marker concentrations determined by the traditional and metagenomics methods. Using the 

time-series abundance and cross-reactivity information, we were able to identify ~12 

MAGs as putative MST biomarkers and compared their functional gene content in order to 

establish host-specific genomes and genes for improved water quality monitoring assays.  

3.3 Materials and Methods 

3.3.1 Mesocosm sample collection, set-up, and sampling  

3.3.1.1 Lake water and fecal sample collection:  
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Lake water samples were collected from Lake Lanier (Georgia, USA) in acid washed 10L 

carboys and transported immediately back to the lab and stored in the dark at 4 °C until 

mesocosm set up the following day (within 24 hours). Human fecal samples were collected 

from human volunteers who had not taken any antibiotics within the past one month before 

sample collection. All human subjects in the study provided informed consent and the study 

was approved by the Georgia Institute of Technology institutional review board (IRB) and 

carried out in accordance with the relevant guidelines and regulations. Remel fecal 

collection kits (ThermoFisher) were provided to human volunteers, who were instructed to 

store their sample at 4 °C and return within two days after fecal collection. Cow and pig 

fecal samples were collected within six hours of defecation from animals at the University 

of Georgia Athens Department of Animal and Dairy Sciences farms. A portion of each 

freshly-excreted fecal sample was preserved for DNA extraction by adding 1:1 by volume 

feces into two mL sterile distilled water and stored at 4 °C until processing in the lab. Five 

mL of lysis buffer (Qiagen PowerBead solution) was added to the water:feces mixture, 

vortexed for 30 seconds, then spun for three minutes at 1500rpm to create a homogenized 

fecal slurry. One to two mL of the slurry was pipetted into two mL cryo-vials and stored at 

-80 °C until ready for DNA extraction. Another portion of each fecal sample was 

persevered in 1:1 by volume of 15 mL sterile Cary-Blair media and stored at 4 °C until 

ready for inoculation into mesocosms (within two days).  

3.3.1.2 Mesocosm set-up : 

Sterile glass bottles were filled with 1.6 L of lake water and inoculated with feces to a final 

concentration of 2.5 g/L and shaken well to thoroughly mix the feces:lake water mixture 

before dispensing into dialysis bags. The dialysis bags (6-8 kDa molecular weight cutoff) 
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were filled to a total volume of 110 mL (~21 cm length of dialysis tube) with the feces:lake 

water mixture, un-inoculated lake water, or sterile milliQ water negative controls and 

closed on both ends using polypropylene Spectra/Por clamps (Spectrum Laboratories). 

Enough dialysis bags were filled to sample each biological replicate in triplicate at each 

time point, i.e., 36 dialysis bags per host type (three technical replicates per three biological 

replicates at 4 sampling time points). Additionally, four uninoculated lake water and two 

sterile milliQ water negative control bags were included for both of the two mesocosm 

experiment batches. The dialysis bags were then transferred to ten-gallon aquarium tanks 

filled with lake water and stored in environmentally controlled rooms at 22 °C in the dark. 

A small water pump was included in each tank for aeration and nutrient distribution. A 

small headspace of air was left in each bag when sealing with the clamps so that they could 

float freely in the tanks. 

3.3.1.3 Mesocosm sampling:  

On the day of mesocosm set up, initial day zero (D0) reference community lake water 

samples were collected by filtering five separate 250mL aliquots of uninoculated lake 

water onto 0.45 um poly-carbonate (PC) membranes, three of which were stored at -80 °C 

in PowerFecal (Qiagen) two mL screw-cap bead tubes until ready for DNA extraction and 

analysis with MST qPCR assays, while the other two were stored at -80 °C in sterile two 

mL screw-cap tubes filled with acid-washed 0.1 mm glass beads until ready for analysis 

following the EPA Method 1611 (USEPA 2012). Finally, 100 ml of the lake water was 

filtered and cultured on mEI media (in triplicate) following EPA Method 1600 for culture-

based enumeration of Enterococcus (USEPA 2002). Additionally, the feces:lake water 

slurry mixtures remaining after filling the dialysis bags were sampled following the same 
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protocol for the un-inoculated lake water except using a 25 mL filter volume and 10-fold 

serial dilutions in phosphate-buffered saline (PBS) for culture-based enumeration EPA 

Method 1600 (USEPA 2002). All dilutions yielding measurements within the acceptable 

range of quantification were averaged to estimate CFUs/100mL of each biological 

replicate. 

Destructive sampling of the dialysis bags occurred at days 1, 4, 7 and 14 (D0, D1, 

D4, D7, and D14) after the initial set up day and included each biological replicate (i.e., 

triplicate biological replicates per sampling point) and a single lake water negative control. 

The milliQ sterile lake water negative control bags were sampled on D7 and D14 to test 

dialysis bag integrity over time. Three aliquots of 25 mL from each dialysis bag were 

filtered onto 0.45um polycarbonate (PC) membranes and two were stored as described 

above for DNA extraction and the EPA Method 1611 (USEPA 2012). The third filter was 

saved at -80 °C as an archive filter. Additionally, water from each bag was 10-fold diluted 

and assayed according the EPA Method 1600 as described above. 

3.3.1.4 DNA extraction from feces and filters: 

DNA was extracted from homogenized fecal slurries for the quantification of MST qPCR 

markers and metagenome sequencing. The Qiagen PowerSoil kit was used for the cow, 

pig, and human fecal slurries following a modified Human Microbiome Project protocol 

for stool samples described previously (Wesolowska-Andersen et al. 2014). Briefly, ~0.25 

g of the fecal slurry was added to 500uL Bead Solution (Qiagen) then heated at 65 0C with 

spinning for ten minutes followed by heating at 95 0C for ten minutes. This solution was 
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transferred to the Qiagen PowerSoil bead tube and DNA was extracted following the 

manufacturer’s protocol.  

Two separate DNA extraction protocols were used for the PC filters (i.e., two filters 

per dialysis bag sample were used for DNA extraction with two different methods). One 

PC filter was used for quantification of MST qPCR markers and metagenome sequencing 

and DNA was extracted using the Qiagen PowerFecal kit following the manufacturer’s 

instructions except mechanical cell lysis was performed by bead beating in two 1-minute 

intervals using the Biospec BeadBeater. The other PC filter was used for DNA extraction 

and enumeration of total Enterococcus following the EPA Method 1611 (USEPA 2012). 

This method was designed for rapid and simple water quality monitoring and does not 

include any chemical precipitation or clean-up steps. Therefore, the method results in a 

more “crude” DNA extraction that is not suitable for most qPCR and metagenomic 

methods. That is also the reason that two different DNA extraction methods were used. 

3.3.2 qPCR for common MST markers 

The qPCR markers used in this study are described in Table 3-1 and included the human-

specific Bacteroidales HF183/BFDRev (hereafter HF183; Haugland et al. 2010), a 

ruminant-specific Bacteroidetes BacR (hereafter RumBac; Reischer et al. 2006), human 

mitochondrial DNA (hereafter HUMmt; Caldwell et al. 2007), Enterococcus faecalis 16S 

rRNA gene (hereafter EF16S; Santo-Domingo et al. 2003), and the standard EPA Method 

1611 assay targeting total Enterococcus (hereafter EPA1611). We also included a universal 

16S rRNA gene qPCR assay for total cell counts (hereafter GenBac16S; Ritalahti et al. 

2006). All qPCR reactions were run using an Applied Biosystems 7500Fast thermocycler 
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machine and the thermal cycling parameters were as follows: 2 minutes at 50 C, 10 

minutes at 95 C, then 40 cycles of 15 seconds at 95 C and 60 seconds at 60 C . The EPA 

Method 1611 assay was run using the standard calibrator cells and the ΔΔCt quantification 

method following the protocol described in (USEPA 2012). All other qPCR assay reactions 

used two ul of extracted DNA as template in 20 uL qPCR reactions with the TaqMan 

Universal PCR Master Mix (Applied Biosystems). Template DNAs were ran undiluted or 

diluted 5-fold depending on the expected marker concentration and quality of each sample. 

The Taqman (i.e., 5’ hydrolysis) probe and primer concentrations for each assay are listed 

in Appendix A, Table A 3 and only the RumBac assay reactions included 10 ug bovine 

serum albumin (BSA).  All samples were run in triplicate on 96-well plates and each run 

included triplicate no template controls (NTC). The amplification thresholds for the 

GenBac16S, EF16S, and HUMmt and the HF183 and RumBac assays were set to 0.02 and 

0.03 ∆Rn units, respectively. 

Standard plasmids were used for absolute quantification. Target sequences were ligated 

into a pCR™2.1-TOPO® TA vector and cloned using One Shot® Chemically Competent 

TOP10 Escherichia coli and the TOPO®-TA cloning kit (Invitrogen), following 

manufacturer’s instructions. The qPCR amplicon sequences were used as the target 

sequence in the standard plasmids for the HF183, RumBac, and HUMmt assays, while an 

Enterococcus faecalis 16S rRNA gene was used in the standard plasmid for the EF16S and 

GenBac16S assays. Genomic DNA from Bacteroides sp., Strain 1_1_6, HM-23D (obtained 

through BEI Resources, NIAID, NIH as part of the Human Microbiome Project) was used 

at the template DNA for generating the HF183 qPCR amplicon for ligation with standard 

plasmid. Standard plasmids were isolated using the QIAprep Spin Miniprep Kit (Qiagen) 
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following the manufacturer’s instructions and quantified using the Qubit HS DNA kit. 

Seven, 10-fold serial dilutions (106 to 100 copies per reaction) of qPCR standard plasmids 

were run in triplicate on every 96-well plate. Marker concentrations were determined using 

the corresponding calibration curve from each plate because no more than four plates were 

ran per assay. Details on the standard curves and average assay efficiencies for each assay 

are provided in Appendix A, Table A 3. 

3.3.2.1 qPCR marker copy number calculations and detection limits  

Marker copy number per qPCR reaction was calculated for all samples using the linear fit 

of log-transformed standard copy number versus threshold cycle (Ct). A marker was 

considered not detected (ND) for any sample that did not return a Ct value in two of the 

three triplicates and was considered detectable but not quantifiable (DNQ) if it returned an 

average Ct value that was above the average Ct value of the lowest concentration in the 

standard curve, which was ~2.1 counts/uL DNA for the HF183, RumBac, EF16S, and 

HUMmt assays and 168 counts/uL DNA for the GenBac16S assay. The number of genes 

copies in each detectable sample was averaged, normalized by the volume of DNA per 

reaction, multiplied by the DNA elution volume (100 uL) and then divided by the total 

water filter volume (mL) or the mass of feces used in the initial DNA extraction (mg). Gene 

counts were converted to cell counts where applicable as described below. 

3.3.3 Bioinformatic analysis of metagenomic data sets. 

3.3.3.1 Metagenome library sequencing, quality assessment and analyses: 
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Metagenome sequencing libraries were prepared using the Illumina Nextera XT kit and 

sequenced on the HiSEQ 2500 instrument as described previously (Johnston et al. 2019). 

Three additional negative control libraries that were not included in the initial HiSEQ 2500 

run were sequenced later on the NovaSEQ 6000 S4 platform (i.e. animal_LL_D1, D4, and 

D7) The two D0 negative control libraries (i.e. human_LL_D0 and animal_LL_D0) were 

also re-sequenced on the NovaSEQ for quality control comparisons to HiSEQ data. Short 

reads were pass through quality filtering, trimming and assembly using MiGA (Rodriguez-

R et al. Nucl. Acids Res. 2018) with the default settings (PHRED score cutoff of 20, only 

retain read pairs with both sisters ≥ 50bp after trimming, and assembly with IDBA-UD 

[Peng et al. 2012] using kmer values ranging from 20 to 80). MASH v1.0.2 (options: -s 

100000; Ondov et al. 2016) was used to determine whole-community similarity between 

metagenomes in a reference-independent approach. The MASH distances were used for 

ANOSIM, ADONIS (compared by host type and sampling day), and non-metric 

multidimensional scaling (NMDS; number of dimensions =4) with the metaMDS function 

in the R package vegan v2.5-6. Average community coverage and diversity were estimated 

using Nonpareil v3.0 (Rodriguez-R et al. mSystems 2018) with kmer kernel and default 

parameters. Average genome size and genome sequencing depth (i.e. average sequencing 

depth of single copy genes) were estimated in each metagenomic sample using 

MicrobeCensus v1.0.6 with default parameters (Nayfach and Pollard 2015). 

3.3.3.2 Gene functional annotation and determination of differentially abundant gene 

functions in host fecal and D7 metagenome assemblies: 

Open reading frame (ORF) prediction from assembled contigs was performed using 

Prodigal (Hyatt et al. 2010) as implemented in MiGA (Rodriguez-R et al. Nucl. Acids Res. 
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2018). Resulting amino acid sequences were searched against the KEGG ortholog profile 

database using KoFamScan v1.2.0 (Aramaki et al. 2019) with the ‘prokaryote’ database 

and using the parameter ‘-f mapper’ to provide only the most confident annotations (i.e., 

ORFs assigned an individual KO). Orthologies were matched to their corresponding 

functional annotations using a parsed version of the KEGG orthology table 

(‘ko00001.keg’; https://github.com/edgraham/GhostKoalaParser). Sequence coverage of 

each gene was determined by mapping metagenomic short reads against the corresponding 

ORFs for each sample using Magic-BLAST v1.4.0 (Boratyn et al. 2019). The Magic-

BLAST outputs were filtered for best match, 90% query cover alignment length, and a 

minimum read length of 50 bp. These read counts were used to determine DA functional 

annotations in samples grouped by host type (i.e. pairwise comparisons of human, cow, 

and pig fecal samples) and all host fecal metagenomic samples vs. D7 mesocosm 

metagenomes using the negative binomial test and false discovery rate (Padj <0.05) as 

implemented in DESeq2 v1.4.5 (Anders and Huber 2010). DA functional annotations with 

Log2 fold change (L2FC)>|3| for the host only and L2FC>|6| for the host vs. D7 

comparisons were summarized into several hierarchical ranks including metabolic 

pathways and individual protein families based on the KEGG classification system 

(Chapter 3 Supplementary Data files S2 and S3). A larger L2FC cutoff was used for host 

fecal vs. D7 comparison so that the number of DA functions retained were feasible for 

manual inspection (i.e. <600 functions). Read counts for each summarized functional 

category were converted to genome equivalents (GE) by dividing by the average genome 

sequencing depth as determined using MicrobeCensus v1.0.6 (Nayfach and Pollard 2015). 
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Each category was divided by the average GE across all samples to provide unbiased 

counts for visualization purposes. 

3.3.3.3 Binning of fecal and D7 metagenomes and dereplications of MAGs: 

The host fecal and D7 dialysis bag metagenome assemblies were used for population 

genome binning with MaxBin 2.2.4 (Wu et al. 2014) and MetaBat 2.12.1 (Kang et al. 2019) 

with default settings. Only contigs longer than one kbp were used for binning. Fecal MAGs 

from the two algorithms within each host type were combined and de-replicated with DAS 

Tool 1.1.0 (Sieber et al. 2018), and only resulting MAGs with contamination <5% or MiGA 

quality score >50 were retained for further analysis. This collection of high-quality host 

fecal MAGs was also dereplicated against each other (i.e., across each host type), along 

with a collection of 477 Lake Lanier (LL) MAGs (Rodriguez-R et al. 2019), and the non-

aggregated set of D7 MAGs (i.e. the total set of MAGs resulting from both MetaBat and 

MaxBin) using the MiGA derep workflow (Rodriguez-R et al. Nucl. Acids Res. 2018). That 

is, in cases where two MAGs shared >95%ANI, only the higher quality MAG was retained 

for further analysis. The average amino acid identities (AAI) calculated by MiGA were 

used to generate heatmaps with the seaborn library in python3. 

3.3.3.4 Taxonomic and functional annotation of MAGs: 

Taxonomy was assigned to the MAGs using the MiGA assign_taxonomy workflow and 

the RefSeq type material database. MAG phenotypes (aerobe, anaerobe, fermentation type) 

were assigned using Traitar v1.0.4 and the prediction results from the phypat classifier 

model only (Weimann et al. 2016). Functional annotations were assigned to genes of 

MAGs identified as potential biomarkers (see following section) using KoFamScan v1.2.0 
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(Aramaki et al. 2019) and the Swiss-Prot (Uniprot Consortium 2017) database as 

implemented in MicrobeAnnotator (Ruiz-P et al. in review; 

https://github.com/cruizperez/MicrobeAnnotator) with the -m sword and --light options. 

3.3.3.5 Tracking abundance of MAGs, FIB and MST reference genomes in dialysis bag 

mesocosm metagenomes: 

Magic-BLAST v1.4.0 (Boratyn et al. 2019; options: -no_unaligned -splice F -outfmt 

tabular -parse_deflines T) was used to map metagenomic short reads to MAG contigs to 

determine MAG abundance over time in the mesocosms expressed as average sequencing 

depth (base pairs recruited/genome length). Read matches were filtered for single best 

alignments, using a minimum 90% query cover alignment length and 95% nucleotide 

identity. In order to remove biases from highly conserved regions and contig edges, the 

80% central truncated average of sequencing depth of all bases (TAD80; Rodriguez-R et 

al. 2020) was determined using custom scripts available at: 

https://github.com/rotheconrad/00_in-situ_GeneCoverage. MAG abundance in each 

metagenomic dataset (as % of total community) was calculated as the quotient of the 

MAG’s TAD80 value and the average genome sequencing depth from MicrobeCensus 

(Nayfach and Pollard 2015). In addition to the MAGs recovered from this study, several 

common MST reference genomes were also queried against the time-series short reads and 

included the reference genomes associated with the MST qPCR assays described in Table 

3-1, as well as the common commensal organism, Escherichia coli HS (accession: 

NC_009800.1) and CrAssphage (accession: JQ995537). The reference genomes were 

download from NCBI and their relative abundance in the time-series metagenomic datasets 

was determined as described above. 

https://github.com/rotheconrad/00_in-situ_GeneCoverage
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3.3.3.6 Absolute abundance and limit of detection (LOD) estimation of qPCR markers, 

reference genomes, and MAGs: 

The absolute abundance (cells/mL) of a Bacteroides dorei reference genome (Table 

3-1) was estimated in the human mesocosm metagenomes using TAD80 at 95% average 

nucleotide identity of reads mapping against the reference genomes  (ANIr) divided by 

MicrobeCensus average genome sequencing depth as described above. This value was then 

multiplied by total cell density per mL as determined by the GenBac16S qPCR assay 

described above in order to estimate the total number of Bacteroides cells per mL. Absolute 

abundances for fecal MAGs in the mesocosm metagenomes was also calculated following 

the same method (i.e. TAD80 at 95% ANIr divided by genome sequencing depth then 

multiplied by total cell density) The RumBac qPCR assay is not associated with a known 

reference genome; therefore, we searched the cow fecal metagenomic contigs against the 

assay oligos to find contigs for a perfect match. Contigs were searched against the NR 

database using the NCBI blastn server to check for chimeras and that the best match was 

to a Bacteroides 16S rRNA gene. One contig was selected as the proxy reference genome 

and its abundance was determined as described above for genomes except no truncation 

was used when estimating sequencing depth (i.e. TAD100) at 99% identity instead of 95% 

due to the high sequence conservation of the 16S rRNA gene relative to the rest of the 

genome (99% identity at the 16S level represents within genus diversity and only species 

or closely-related species are captured [Yarza et al. 2014; Konstantinidis et al. 2017]). The 

resulting sequencing depth value was also normalized by 16S rRNA gene copy number for 

Bacteroides (n = 7) in addition to average genome sequencing depth from MicrobeCensus 

(Nayfach and Pollard 2015) and then multiplied by total cell density per mL as described 
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above in order to estimate total number of Bacteroides cells per mL. The same protocol 

used for B. dorei was followed for the reference human mitochondrial genome (Table 3-1) 

except sequencing depth was normalized only by metagenome dataset size (in Gbp). 

3.4 Results 

3.4.1 Performance and decay of traditional culture-based and qPCR markers 

Dialysis bag mesocosms simulating a natural freshwater environment were spiked (in 

separate mesocosms) with cow, pig, or human feces to represent a pollution event and 

monitored over time with general FIB (i.e., Enterococcus spp.) and host-specific MST 

qPCR assays (Table 3-1) and the culture-based EPA Method 1600 for total enterococci 

(USEPA 2002). Since human gut microbiomes are known to vary geographically, only 

samples from within the state of Georgia (US) were used. Laboratory mesocosms consisted 

of 100mL dialysis bags filled with unfiltered lake water spiked with freshly collected fecal 

material. The dialysis bags have a pore size that allows passage of small molecules and 

ions but prevents passage of molecules larger than six to eight kDa (e.g., bacterial and viral 

cells). Three biological replicate fecal samples were used per host and are referred to 

hereafter as hum1, hum2, hum3, cow7, cow8, cow9, pig7, pig8, pig9 to indicate the specific 

individual host fecal sample that was used for DNA extraction and inoculation into the lake 

water mesocosms, whereas H1, H2, H3, C7, C8, C9, P7, P8, and P9 hereafter refer to the 

feces:lake water mesocosm sample for each individual host (e.g. H1 refers to lake water 

mesocosms spiked with feces from hum1). The host fecal mesocosm experiments were 

performed on two separate dates because of limited space and resources (e.g., available 

clamps for dialysis bags) in the lab. The cow and pig fecal mesocosms were performed 
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concurrently in fall of 2017 and the human experiments were ran later in the summer of 

2018 (Appendix A, Table A 2). In both experiments, mesocosm sampling occurred in 

triplicate on days 0, 1, 4, 7 and 14 (hereafter, D0, D1, D4, D7, and D14) which included: 

culturing, DNA extraction and qPCR analysis using the markers described in Table 3-1.  

The qPCR markers were first tested in the host fecal DNA samples used as inocula 

to compare their sensitivity and specificity. All of the MST markers had good host-

specificity as they were not detected (ND) in any non-target hosts and none were 

quantifiable in the uninoculated lake water negative controls (Table 3-2). However, the 

human-specific HF183 marker was not detected in one of the three human fecal samples 

(hum2). Since the EPA1611 assay is designed for filtered water samples, it was not tested 

in the raw fecal extractions. The E. faecalis 16S rRNA gene marker (EF16S) was ND in 

the human feces and had very low abundance in the cow and pig feces (~150 copies/mg). 

Accordingly, EF16S was also ND upon feces dilution in the lake water (Table 3-2). 

However, the EPA Method 1600 culture-based test for Enterococcus showed that the 

dialysis bag mesocosms were exceeding the EPA’s recreational water quality criteria 

(RWQC) of 36 CFU/100mL throughout the entire duration of the cow and pig experiment 

and in all of the human timepoints except on D14 (Figure 3-1A). The EPA Method 1611 

qPCR-based test for Enterococcus showed that all the time-series samples that could be 

quantified exceeded the EPA RWQC of 103 calibrator cell equivalents (CCE) per 100mL 

(Figure 3-1B). However, this assay was not detectable in the cow and pig samples by D14 

and was only quantifiable in two of the three human samples on D1 and was not detected 

in the rest. Overall the concentration of Enterococcus spp. was similar based on the 

EPA1600 and EPA1611 assays for cows and pigs but was not consistent for the human 
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mesocosms because the culture-based counts were greater than the qPCR-based (Figure 3-

1A-B). 

When tested in the time-series dialysis bag mesocosm samples, the qPCR counts 

for all of the host-specific MST assays decreased with time and returned to very near or 

below assay detection limits by D14 (Figure 3-1C). Therefore, only samples from D0 

through D7 were used for metagenomic sequencing. Consistent with the hum2 fecal DNA 

results, the HF183 marker was ND in any of the H2 mesocosm samples. Abundance of the 

HF183 marker in H3 mesocosms was four to two orders of magnitude larger than the 

abundances observed in H1 mesocosms on D0, D1 and D4, after which the HF183 marker 

became ND in the H1 samples (Figure 3-1C). Accordingly, only the H3 samples on D0 and 

D1 exceeded the quantitative microbial risk assessment (QMRA)-based water quality 

threshold of 41 copies/mL for HF183 (Boehm et al. 2018). The average counts/mL were 

consistent across the three biological replicates and were detectable until D14 for both the 

HUMmt and RumBac assays in human and cow mesocosms, respectively (Figure 3-1C). 
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Table 3-1: qPCR markers used in this study and associated reference genomes.  

Host-specific MST markers include HF183, RumBac, and HUMmt; general FIB markers 

are EF16S and EPA1611. The GenBac16S assay was used for absolute quantification and 

LOD estimation for reference genomes in the metagenomes. 

Marker Target Reference Reference 

genome 

HF183 Human Bacteroides 16S Haugland et al.  2010 Bacteroides 

dorei 

CL03T12C01 

RumBac Ruminant Bacteroides 16S Reischer et al. 2006 n/a 

HUMmt Human mtDNA NADH 

dehydrogenase subunit 5 

Caldwell et al. 2007 Human 

mitochondrion 

genome 

EF16S E. faecalis 16S Santo-Domingo et al. 

2003 

E. faecalis 

ATCC29212 

EPA1611 Enterococcus 23S EPA Method 1611 E. faecalis 

ATCC29212 

GenBac16S Universal 16S rRNA Ritalahti et al. 2006 n/a 
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Table 3-2: Detection of MST qPCR markers in feces (inocula material) or un-

inoculated lake water (negative control). Values are reported as average number of 

copies per mg or mL for fecal and lake water samples, respectively. ND = Not Detected, 

which indicates that sample did not return a Ct value for all biological replicates. DNQ = 

Detectable but not Quantifiable, which indicates that sample returned a Ct value that was 

higher than the lowest concentration in the standard curve. 

  Pig feces Cow feces Human feces Lake water 

RumBac ND 4.1x106 6.1x105 ND ND 

HF183 ND ND 8.9x104  1740 DNQ 

HUMmt ND ND 1645 316 DNQ 

EF16S 141  51 153  59 ND ND 
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Figure 3-1: Traditional FIB, MST marker, and total bacterial cell abundances during 

the mesocosm incubations. (A) EPA Method 1600 culture-based enumeration of 

Enterococcus. (B) EPA Method 1611 qPCR-based enumeration of Enterococcus. Black 

dotted lines show the EPA’s recreational water quality criteria (RWQC) limit for impaired 

waters for each assay (CFU= colony forming units; CCE= calibrator cell equivalents). (C) 

Host-specific MST qPCR assays that could be detected in the dialysis bag mesocosms. The 

HUMmt is reported as #copies/mL and the rest are reported as #cells/mL. (D) Prokaryotic 

cell density in the mesocosms over time based on a universal 16S qPCR assay 

(GenBac16S). In all figures, error bars are the standard deviation for averages that had 

more than three data points. 
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3.4.2 General description of metagenome samples and community coverage  

A total of 56 metagenomic samples, ranging in size from 3.2 to 35.4 million reads (0.4 to 

37 Gbp) were recovered from 36 dialysis bag mesocosm (fecal:lake water mixture), 5 lake 

water negative control, and 15 host fecal (inocula) samples (Appendix A, Table A 2). Fecal 

metagenomes from three other cow and pig individuals were also included in this study (in 

addition to the three cow and pig fecal samples used as inocula in the mesocosms) because 

considerably less fecal metagenomes have been sequenced for these hosts compared to 

humans and less is known about their gut microbiome diversity. The average total 

community covered by our sequencing efforts as determined by Nonpareil analysis 

(Rodriguez-R et al. mSystems 2018) was consistent across the biological replicates for the 

animal fecal metagenomes (54.8 8.7%, 70.9  2.1%, and 84.5  3.1% for the cow, pig, 

and human fecal samples, respectively). Therefore, it appeared that the cow samples were 

the most diverse on average (nonpareil diversity = 20.62; Appendix A, Table A 1), 

followed by pigs and then humans (19.4 and 17.6, respectively). Nonetheless, the 

sequencing coverage of these samples was within suitable range for whole community 

comparison at the individual gene/function or genome level (Rodriguez-R and 

Konstantinidis 2014).  

The total cell density in the mesocosms based on the universal 16S qPCR assay 

(GenBac16S; Table 3-1) was ~108 cells/mL at the start of all mesocosm incubations and 

tended to decrease with time, reaching ~1.5x107 cells/mL by D7. The opposite trend was 

observed in the negative control bags, which started at ~106 cells/mL and increased by 

nearly an order of magnitude on D7 (Figure 3-1D). NMDS analysis based on MASH 

distances (Ondov et al. 2016) showed that samples tended to cluster by host type and time, 
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and that the later time points (e.g., D7) did not return to the natural community composition 

present in the lake water at D0 (Figure 3-2). Furthermore, ANOSIM analysis of the MASH 

distances showed that the samples were significantly different (P=0.001) by host type and 

sampling day (R=0.54 and 0.44, respectively) and ADONIS analysis predicted that these 

two variables explained (R2) 44.0% and 41.3% of the variation in the MASH distances, 

respectively (P=0.001). These results indicated potential bottle effects during our 

incubations, which were assessed more fully by population genome binning of the D7 

samples as described below. 

 

Figure 3-2: Similarity among the sequenced communities during the mesocosm 

incubations. Graph represents the non-metric multidimensional scaling (NMDS) of the 

whole-community MASH distances (i.e., overall kmer similarity of microbial 

communities). Each point represents a metagenome sample and samples from the same 

host type (or negative control) are denoted by the same color. Samples that are more similar 

are grouped closer together. 
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3.4.3 Taxonomic and phenotypic description of host fecal MAGs 

The host fecal reads were assembled into contigs with total length and N50 values ranging 

from 2.5x107 to 1.3x108 and 1,913 to 19,034 base pairs, respectively (Appendix A, Table 

A 4). Contig binning resulted in an initial set of 30 cow, 13 human, and 82 pig high quality 

MAGs. The MAGs were first dereplicated at 95% nucleotide identity within each host and 

resulted in a new set of 18 cow, 13 human, and 50 pig MAGs, which were subsequently 

de-replicated against the high quality MAGs from all other host as well as the collection of 

477 Lake Lanier (LL) MAGs (Rodriguez-Rojas et al. 2019) at 95% nucleotide identity to 

order to identify any MAGs that are non-host specific and/or found in the natural 

environment. This resulted in a final set of 17 cow, 13 human, and 49 pig HQ MAGs whose 

IDs are provided in Chapter 3 Supplementary data file S1. MAGs were named according 

to the individual fecal sample from which they were originally assembled followed by the 

closest relative of the MAG and the lowest taxonomic rank the two share according to the 

MiGA TypeMAT/NCBI database (p<0.1 threshold), i.e., P:phylum, C:class, O:order, 

F:family. G:Genus, S:Species. For instance, we use “cow4_20_Treponema_F” means 

MAG #20 assembled from cow4 fecal metagenome had a Treponema sp. as the closest 

relative and was classified (at the lowest level with statistical confidence) to the family 

Spirochaetaceae. Overall the MAGs were highly host specific at the species level (ANI 

>95%) and there were only two instances (cow4_20_Prevotella_F and 

pig7_9_Tolumonas_C) where a cow and pig MAG had ANI >95% with each other and 

were dereplicated into a single genomospecies. These MAGs were used for calculating 

decay in the mesocosms over time but were not considered as potential biomarkers due to 

the lack of host specificity. There was more overlap when evaluating the average amino 
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acid identity values (%AAI; Figure 3-3) among MAGs, revealing that these MAGs likely 

represent distinct but closely related species found in different hosts.  

The taxonomy of the MAGs was determined using MiGA against the 

TypeMAT/NCBI database (Chapter 3 Supplementary data file S1; Rodriguez-R et al. Nucl. 

Acids Res. 2018). In all three host types, the majority of MAGs were classified at the  class-

level as Bacteroidia (41%, 46%, and 33% for cows, humans, and pigs, respectively) 

followed by Clostridia (24%, 23%, and 31% for cow, humans and pigs, respectively). 

Although MAGs from different hosts shared similar taxonomies at the class-level, there 

were several differences between the hosts at lower classification levels. In humans, the 

Bacteroidia MAGs were primarily assigned to the family Bacteroidaceae, whereas the cow 

MAGs were primarily Prevotella. The majority of the pig MAGs could not be classified 

well below class-level, i.e. they represented novel families (Chapter 3 Supplementary data 

file S1). Notably, although most of the cow and pig MAGs are Bacteroidia and Clostridia, 

two of the best putative cow biomarkers (see below; cow4_001_Treponema_F and 

cow8_3_Treponema_F) were actually classified in the family Spirochaetaceae while an 

Actinobacteria (pig4_16_Cellulomonas_C) and the archaeal phylum Euryarchaeota 

(pig4_38_Methanoplasma_F) were among the pig biomarker MAGs. 



 72 

 

Figure 3-3: Genetic relatedness among the fecal MAG recovered by our study. (Upper) 

Heatmap comparing average amino acid (%AAI) of the MAGs assembled from pig, cow, 

and human fecal metagenomes. (Lower) Histogram of %AAI values. 
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 None of the host fecal MAGs were phenotyped as aerobes using Traitar (Weimann 

et al. 2016) and the majority of MAGs were predicted to be anaerobes (100% human , 96% 

pigs, 82% cow; Appendix A, Figure A 4, A 5, A 6). The oxidative stress enzyme catalase 

was not found in any of the cow or pig MAGs but was detected in two of the human MAGs 

(hum1_013 _Akkermansia_G and hum2_003 _Rubritalea_C). Glucose fermentation was 

the most common energy yielding pathway in MAGs from all three host types (59% of 

cow, 71% of pig, 100% of human MAGs). In addition to glucose fermentation, 44, 15, and 

15 unique sugar substrates for growth were identified in the pig, cow, and human MAGs, 

respectively, with lactose being the most common in the pig and human MAGs (76% and 

85% of total MAGs, respectively) and maltose being most common in the cow MAGs 

(82%). These results were also consistent with the DESeq2 analysis at the individual gene 

level (see below).  

3.4.4 Decay kinetics of host fecal MAGs in the mesocosms 

The mesocosm metagenomic shorts reads were searched against the dereplicated 

set of 79 high quality host fecal MAGs from this study and the collection of 477 Lake 

Lanier (LL) MAGs (i.e., the native microbes present in the source lake water representing 

six years of surface water samples from the lake; Rodriguez-R et al. 2020) using Magic-

BLAST (Boratyn et al. 2019) to assess MAG abundance dynamics over the incubation 

time. All 13 dereplicated human MAGs were detected in at least one human mesocosm, 

while only 13 out of the 17 total cow and 41 out of 49 total pig MAGs were detected in the 

cow and pig mesocosms, respectively. In general, most of the fecal MAGs decreased over 

time and were not detectable by D7 based on the TAD80 metric (Figures 3-4 and 3-5). 

There were a few MAGs that increased in abundance from D0 to D1, but this trend was 
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never consistent across all three biological replicates of a host type (e.g. hum1_001_ 

Bacteroides_S, cow4_001_ Treponema_F, cow7_4 _Kineothrix_F, and pig7_1 

_Methylobacterium_C). The MAGs were highly host specific and none of the host MAGs 

were detected in any of the uninoculated lake water negative control metagenomes or 

mesocosm metagenomes from other hosts. Only a single cow MAG (cow4_10 

_Prevotella_S) was detected in all three pig mesocosm metagenomes (Figure 3-5), the other 

cow MAG that was detected in the pig mesocosms (cow4_20 _Prevotella_F) shared >95% 

ANI with a pig MAG of lower quality. Similarly, the single pig MAG detected in all three 

cow mesocosm metagenomes (pig7_9_Tolumonas_C; Figure 3-4B) also had a close 

relative (>95%ANI) with a cow MAG that was removed during dereplication in the 

previous step described above. Thus, these two MAGs were expected to be detected in the 

both cow and pig mesocosms since they are highly related to each other. None of the non-

human fecal MAGs were detected in any human mesocosm. The human MAGs showed 

high individual host specificity, i.e., MAGs assembled from an individual human fecal 

metagenome were always the most abundant in the mesocosms spiked with the feces from 

that individual and showed much lower abundances in the other two biological replicates 

(Figure 3-4A). In particular, among the hum2 MAGs, none were present in the H3 

mesocosms and only two were detected in the H1 mesocosms; thus, none of the hum2 

MAGs were selected as putative biomarkers (see below). Of the 477 LL MAGs, 59 

(average 22 MAGs per mesocosm) and 139 were detected in the host fecal (Figure 3-6) 

and negative control (Appendix A, Figure A 8) mesocosms, respectively. The different 

host fecal inocula (and their associated communities) did not have a consistent effect on 

the abundance of the native LL MAGs over the time-series (Figure 3-6). Overall, the LL 
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MAGs showed much lower abundance than the host fecal MAGs in the mesocosms 

(<0.7%) and varied, more or less randomly, in their relative abundances with time, 

consistent with the assumption that they represent autochthonous taxa present in the source 

water used in the incubations.  

 Based on the decay and host specificity results, we identified putative targets for 

MST biomarkers as MAGs that were present in all three biological replicates of the same 

host type, were highly abundant on D0 (>0.1%) and were not detected after D4. Notably, 

the time of disappearance of these MAGs (i.e., D4) coincided with a previous quantitative 

microbial risk assessment (QMRA) analysis suggesting that health risk from sewage 

contamination is significantly reduced after three days (Boehm et al. 2018). Based on those 

criteria, we identified five cow, three human, and six pig MAGs that we investigated further 

as potential biomarkers for MST. These were: pig4_10_Paraprevotella_C, 

pig4_16_Cellulomonas_C , pig4_22_Emergencia_F, pig4_38_Methanoplasma_F , 

pig7_006_Acetobacteroides_C , pig8_10_Acetobacteroides_C , cow4_001_ 

Treponema_F, cow4_3_Acetobacteroides_C, cow5_2_Pseudonocardia_C , 

cow8_11_Phascolarctobacterium_F, cow8_3_Treponema_F, hum1_001_Bactreoides_S, 

human3_002_Bacteroides_S, and human3_3_Eubacterium_F (Figures 3-4 and 3-5; 

Chapter 3 Supplementary data file S1).  
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Figure 3-4: Decay kinetics of all host fecal MAGs (rows) that could be detected in the 

(A) human and (B) cow mesocosms (columns). Note that no non-target host MAG was 

detected in any of the human mesocosms; the single pig MAG shown was clustered into a 

single genomospecies at >95% ANI with another cow MAG that is not shown here because 

the pig MAG was of higher quality and was used in all downstream analyses. H1, H2, H3 

and C7, C8, C9 are the different biological replicate mesocosm metagenomes for each host 

type. Abundances are reported as % of total microbial community (i.e. TAD80 divided by 

average genome sequencing depth). The MAGs identified as potential MST biomarkers 

have red labels. The MiGA TypeMAT/NCBI taxonomic identifications appending the 

MAG names as described in the main text are not included here due to space limitations. 
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Figure 3-5: Decay kinetics of all host fecal MAGs (rows) that could be detected in the 

pig mesocosms (columns). The MiGA TypeMAT/NCBI taxonomic identifications of the 

MAG names (Chapter 3 Supplementary data file S1) are not included due to space 

limitations. Cow4_20 clustered into a single genomospecies at >95% ANI with a pig MAG 

that is not shown here because MAG cow4_20 was of higher quality and was used in all 

downstream analyses instead of the MAG obtained from the pig metagenome. P7, P8, and 

P9 are the different biological replicate mesocosm metagenomes. Abundances are reported 

as % of total microbial community (i.e. TAD80 divided by average genome sequencing 

depth). The MAGs identified as potential MST biomarkers have red labels. 
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Figure 3-6: Abundance kinetics of Lake Lanier (LL) MAGs in the fecal mesocosm 

samples over time. The collection of 477 LL reference MAGs from Rodrigues-R 2019 

was searched against the time-series mesocosm metagenomes and the abundance for 59 

MAGs that could be detected are shown as individual rows in the heatmap.  Each column 

is a mesocosm MG sample and the 0, 1, 4, or 7 refers to the sample time in days while the 

H, C, or P refers the human, cow or pig biological replicate mesocosm (e.g. the “0” column 

above H1 is hum1 mesocosm at day 0). Abundance is expressed as % of total bacterial 

community (i.e. TAD80 divided by average genome sequencing depth). 
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3.4.5 Functional annotation for MAGs identified as potential biomarkers and 

differentially abundant (DA) functions between host fecal metagenomes 

The 14 MAGs identified as potential markers based on their host sensitivity, 

abundance, and decay kinetics in the mesocosms were functionally annotated and 

summarized into KEGG modules using MicrobeAnnotator (Ruiz-P et al. in review). There 

was an average of 2,175 genes in each MAG, of which roughly 48% could be annotated to 

the KEGG ontology database (2019-04-09 release; Aramaki et al 2019). Most of the KEGG 

modules identified in the MAGs were related to carbon and amino acid catabolism and the 

reductive pentose phosphate pathway for carbon fixation (Appendix A, Figure A 6), 

suggesting the potential for primary production in addition to fermenting carbon sources 

derived from host’s diet. Common fermentation-related genes were present such as: 

fumarate reductase and succinate dehydrogenase, as well as modules for methanogenesis 

from methanol and methylamine, but there was no clear clustering of the MAGs by host 

type when examining the KEGG modules overall and no modules were clearly unique to a 

single host type (Appendix A, Figure A 6). Thus, DESeq2 differential abundance analysis 

(Anders and Huber 2010) was used at the gene level to identify specific functions that are 

DA in the host fecal metagenomic assemblies, which allowed for more comprehensive and 

sensitive functional comparisons of the host fecal communities (i.e. not restrict the analysis 

to only the functions that were binned into a MAG). Furthermore, the number of host fecal 

metagenomic reads that mapped to the collection of high quality fecal MAGs was greater 

than 2X different between samples (data not shown), which indicated high likelihood of 

false-positive results at the MAG level (i.e., finding DA functions by chance due to 
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differences in coverage; Rodriguez-R and Konstantinidis 2014). The gene level analysis 

circumvents this limitation.  

Predicted ORFs from the assembled contigs of the host fecal metagenomes were 

annotated against the KEGG database similarly to the MAGs. There was an average of 

107,588 ORFs per assembly, of which ~30% could be annotated with functions other than 

hypothetical or unknown. The metagenome short reads were mapped against the predicted 

ORFs to determine their abundances in each metagenome. Of the 2,080 total KEGG 

functions identified, 177 were significantly DA with Padj < 0.05 and log2 fold change 

(L2FC) > 3 using pairwise comparisons between human, cow, and pig fecal samples. These 

177 functions were manually grouped into 39 broader functional categories (Chapter 3 

Supplementary data file S2) for visualization (Figure 3-7). Overall, it was not common for 

a single function to be highly abundant in one host gut and completely absent in the other 

two; rather there were functions that appeared to be significantly more abundant in a single 

or two host types. More specifically, the cow fecal assemblies were more abundant in genes 

related to biofilm formation, starch and sucrose metabolism, and maltose, urea, and 

putrescine transport. The pig fecal assemblies were more abundant in genes for amino acid 

(particularly lysine) degradation, ribosomal proteins and a ribonucleoside-diphosphate 

reductase gene (NrdB). Human fecal assemblies were enriched in ribose transport, biotin 

metabolism, and quorum sensing genes. The cow and pig assemblies were more abundant 

in biosynthesis pathways for amino acids and secondary metabolites, metabolism of 

cofactors and vitamins, and particularly eight genes for a type IV secretion system (T4SS) 

related to conjugation (TrbBCDEFGIL), which were absent in the all human fecal 

assemblies, except for TrbL, which was only identified in hum3 at low relative abundance 
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(94 reads matching; Chapter 3 Supplementary data file S2). Notably, the cow and pig 

assemblies were also enriched in methanogenesis genes associated with the CO2 pathway 

(Tas et al. 2018) (FmdE; formylmethanofuran dehydrogenase subunit E) and the acetate 

pathway (AcsD; acetyl-CoA decarbonylase/synthase complex subunit delta) that were 

absent in the human assemblies. Human and cow assemblies had more genes related to 

zinc transport, lipid metabolism, and the T6SS secreted protein VgrG compared to pigs, 

whereas human and pig assemblies were more enriched for nitrogen, ascorbate and aldarate 

metabolism compared to cows (Figure 3-7). Despite being strictly an anaerobic 

environment, the cow and human samples were more abundant for catalase, which may 

indicate that these guts are more prone to aerobiosis e.g., from rapid biomass growth or 

infected epithelial tissues in the GI tract (Brioukhanov and Netrusov 2007) compared to 

the pig gut.  
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Figure 3-7: Gene functions enriched in the cow, pig, or human fecal metagenomes. 

The heatmap shows the KEGG functions (rows) that were differentially abundant between 

the different host types (columns) with Padj < 0.05 as determined by DESeq2 analysis. Color 

scale indicates the abundance relative to the average across all metagenome samples. 
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Of the 177 significantly DA KEGG genes identified by DESeq2, 137 were also present in 

at least one of the putative biomarker MAGs described above. An average of 27 ±9, 23 

±18, and 10 ±9 DA genes were found in the human, cow, and pig putative biomarker 

MAGs, respectively. However only seven of these were found in all three human MAGs 

and none were found in all five cow or six pig MAGs, indicating that the host-specific 

functions are not shared consistently among the corresponding, host-specific MAGs. 

Alternatively, incomplete MAGs could account for these findings, e.g., these MAGs 

ranged between 70-95% in their completeness estimate (Chapter 3 Supplementary data file 

S1). Furthermore, two of the pig MAGs (pig7_006_Acetobacteroides_C and 

pig8_10_Acetobacteroides_C) only had only two DA KEGG genes, one of which was a 

glycine dehydrogenase subunit I gene (present in 4/6 MAGs). The 7 DA KEGGs that were 

found in all 3 human MAGs included a lactaldehyde reductase, hydroxylamine reductase, 

transaldolase, and several genes related to vitamin B12 synthesis. The most common 

KEGG gene present in the cow MAGs was pullulananse, which was present in 4 of 5 cow 

MAGs. Together, these results reinforce that most of the putative host-specific MAGs are 

robust targets because they contain genes that were also DA at the assembly level. 

3.4.6 Comparisons to the reference MST marker genomes 

3.4.6.1 Decay of potential biomarker MAGs and reference FIB and MST genomes in 

the mesocosms over time: 

The absolute abundances (cells or viral particles/mL) of common FIB and MST biomarkers 

over time were also checked against the MAGs identified as potential host-specific 

biomarkers. The latter biomarkers included reference genomes associated with the qPCR 
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assays used in this study (Table 3-1) as well as genomes of Escherichia coli 

(NC_009800.1) and CrAssphage (JQ995537). None of the reference genomes used here 

were detectable in any of the LL negative controls and consistent with the EF16S qPCR 

results, the E. faecalis reference genome had TAD80 of zero (ND) in all of the mesocosm 

metagenomes sequenced in this study (data not shown). The E. coli genome had poor host 

specificity as it was detected in all host mesocosm metagenomes (Appendix A, Figure A 

12A) and maintained higher abundances over time compared to the fecal MAGs (Figure 3-

8). The B. dorei and CrAssphage genomes showed good host specificity as they were not 

detected in any cow or pig mesocosm metagenomes and they also had similar decay 

profiles to the human fecal MAGs (Figure 3-8 A&B), except the CrAssphage genome 

abundance increased from D0 to D1, whereas the B. dorei genome (and fecal MAGs) 

abundance consistently decreased with time, which could possibly indicate the predatory 

relationship between these two microbes (i.e. the CrAssphage is predating on the 

Bacteroides) (Figure 3-8 A&B). Further, consistent with the qPCR results, these genomes 

had imperfect host sensitivity as neither were detected in any of the H2 mesocosm 

metagenomes. Bacteroides abundance based on the HF183 qPCR assay tended to be lower 

than the MAGs and B. dorei reference genome (see below). The human mitochondrial 

genome (mtGenome) was detected in all three human mesocosm metagenomes until D7 

and showed a steady decay in abundance with time (Fig 3-8 A-B and Appendix A, Figure 

A 12B), consistent with the HUMmt assay, which was detectable by qPCR until D14 

(Figure 3-1 C). The cow fecal MAGs were all ND by D7 and decayed faster compared to 

the E. coli reference genome and Bacteroides abundance based on the RumBac qPCR assay 

(Figure 3-8 C). Overall the cow biomarker MAGs showed decay kinetics that were similar 
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to those observed for other known strict anaerobes (i.e. Bacteroides) and is consistent with 

the functional annotation results. 

 

Figure 3-8: Compare absolute abundances of putative biomarker MAGs, traditional 

FIB and MST qPCR markers in (A) H1 mesocosms, (B) H3 mesocosms, and (C) the 

average of all 3 biological replicates of the cow fecal mesocosms. Absolute abundances 

(cells or viral particles per mL) were determined for all targets except for the human 

mitochondrial assay (HUMmt), which is expressed as relative abundance (SeqDepth/Gbp 
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MG is mtGenome sequencing depth per Gbp metagenome) and is shown on the secondary 

axis for (A) and (B). MAGs are represented by solid lines with circle markers. Reference 

genomes are represented by dashed lines with triangle markers and include Bacteroides 

dorei, CrAssphage, Escherichia coli, and a human mtGenome. The qPCR assays are 

represented by dotted lines with X markers and included the human-specific and ruminant 

specific Bacteroides assays (HF183 and RumBac, respectively) and the human mtDNA 

assay. The human mesocosms are plotted separately because they were more variable 

among each other compared to the cows and also because neither B. dorei, CrAssphage, or 

HF183 were detected in any of the H2 mesocosms. Thus, H2 is not shown here. 

 

3.4.6.2 Correlation of MST qPCR markers to their metagenome counterpart: 

In order to evaluate the performance of the qPCR assays against the metagenome-based 

results, we compared the abundances of MST targets against metagenomic abundances of 

the same target. Absolute abundance (expressed as cells/mL) of the RumBac and HF183 

Bacteroidetes assays were compared to the abundance of the corresponding reference 

genome in the mesocosm metagenomes. Specifically, for HF183, the absolute abundance 

(cells/mL) of the B. dorei reference genome (Table 3-1) was estimated in the human 

mesocosm metagenomes by multiplying B. dorei sequencing depth and total cell density 

per metagenome (from the GenBac16S assay) as described in the Materials and Methods 

section. Since there is no known reference genome for the RumBac assay, a 317bp contig 

from a cow fecal metagenome with a perfect match to the assay oligos 

(cow5_scaffold246842) was used as a proxy to estimate the absolute abundance of 
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Bacteroides over time in the cow mesocosm metagenomes. The correlation between 

Bacteroides abundances based on qPCR counts and metagenomes was not consistent 

between the two assays (Figure 3-9 A&B; R2=0.18 and 0.76 for HF183 and RumBac, 

respectively). The RumBac qPCR assay tended to give higher abundance estimates (linear 

regression slope = 0.16) than its metagenome counterpart, especially at the earlier time 

points (D0 and D1), but estimates became more similar to each other by D7, when both 

counts were lower (Figure 3-9 B). The HF183 qPCR assay consistently under-estimated 

the abundance of Bacteroides in the human mesocosms (linear regression slope= 10.26), 

especially in H1, in which the HF183 qPCR assay estimated only about 6 Bacteroides 

cells/mL in the mesocosms on D0, D1, and D4, well below the theoretical LOD for B. dorei 

in the metagenomes (~3x104 cells/mL; see Materials and Methods for LOD estimation). 

However, the B. dorei reference genome was well above this concentration based on 

metagenome abundance (Figure 3-9 A). Further investigation showed that this was 

presumably caused by mismatches of the forward HF183 primer to the dominant 

Bacteroides strains present in the host fecal inocula (Appendix A, Figure A 11). 

Specifically, the short reads from the fecal inoculum were searched against the 16S rRNA 

gene of the reference B. dorei strain (which contains a perfect match to the HF183 assay 

primers and probe) to calculate its 99% identity truncated average sequencing depth 

(TAD80). For both hum1 and hum3 fecal metagenomes (there was no detection in hum2), 

the sequencing depths of the probe and reverse primer were similar to the overall average 

sequencing depth for the entire 16S rRNA gene (at about 42.0 and 247.0 for hum1 and 

hum3, respectively). However, the sequencing depth of the forward primer region was 0 in 

hum1 and ~40 (6x less than the average) in hum3. Furthermore, we manually checked the 
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metagenomic reads for perfect matches to the HF183 forward primer and found none in 

hum1 and only 17 in hum3, suggesting that this region is not present in the dominant 

Bacteroides strain that was assemble-able from each host.  

Since it was not possible to estimate the human mtGenome copy number per cell, 

the HUMmt qPCR assay counts per mL were compared to the relative abundance of a 

reference human mtGenome (Table 3-1) expressed as sequencing depth per metagenome 

size (in Gbp) and a weak, but significant correlation (R2=0.29) was observed (Figure 3-9 

C). Together the results for the human-specific assays were consistent with known 

limitations for interpreting qPCR results, namely, host-sensitivity issues for HF183 and 

lack of absolute abundance estimates for HUMmt. 
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Figure 3-9: Correlation between qPCR and metagenome-based abundance estimates 

of MST markers and their reference genome counterparts. (A) Human-specific 

Bacteroides 16S (HF183) versus the absolute abundance of the reference genome B. dorei 

in the human mesocosm metagenomes. (B) Ruminant-specific Bacteroides 16S (RumBac) 

versus the absolute abundance of a contig recovered from the cow fecal inocula 

metagenomes carrying a perfect match to the RumBac assay in the cow mesocosm 

metagenomes. Absolute abundances for (A) and (B) are expressed as the number of 

Bacteroides cells/mL. (C) Human mtDNA (HUMmt) expressed as the number of gene 

copies per mL versus the relative abundance of a reference human mtGenome in the 

metagenome (expressed as TAD80 divided by library size in Gbp). 
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3.4.7 Bottle effect in mesocosms on D7 

There was evidence of a bottle effect in the dialysis bag mesocosms that became 

apparent at the D7 time point. Nonpareil results (Rodriguez-R et al. mSystems 2018) 

showed an increase in overall community coverage (and thus a decrease in community 

diversity) over time for the dialysis bag samples that reached ~76% on D7 for all samples, 

including the negative controls (Appendix A, Table A 1). Furthermore, the average genome 

size as determined by MicrobeCensus (Nayfach and Pollard 2015) also showed an increase 

with time (Appendix A, Figure A 1). The high coverage in the D7 mesocosm samples 

indicated that it was possible to recover some MAGs from these samples (as opposed to 

the earlier time points, which were characterized by too high diversity based on Nonpareil 

to expect good assemblies or MAGs). Contig binning from the D7 samples resulted in 39 

high quality MAGs that dereplicated into 17 genomospecies at 95% ANI. These MAGs 

appeared to be highly different from those assembled from the host fecal communities 

based on pairwise AAI comparison (Appendix A, Figure A 9) that showed none of the D7 

MAGs formed a genomospecies (ANI >95%) with any of the host fecal or Lake Lanier 

(LL) MAGs. Taxonomic classification of these MAGs using MiGA and the 

TypeMAT/NCBI database showed that the closest relative to three of these MAGs (AAI 

~47%) was Methylobacterium platani and the closest relative to four other MAGs (AAI 

~66%) was Cellvibrio japonicus; two additional MAGs were classified in the family 

Cytophagaceae (Chapter 3 Supplementary data file S1). Therefore, these D7 MAGs were, 

in general, more related to each other than the host MAGs. Furthermore, none of the D7 

MAGs were classified as class Bacteroidia or Clostridia; the most common taxa among 

the fecal MAGs. When looking at the abundance of the D7 MAGs overtime in the 
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mesocosms, they were not detectable in any of the mesocosm samples at D0 or D1 and 

only began to be detected in a few samples by D4 (Appendix A, Figure A 7). However, on 

D7, they increase to 30-50% of the total community in some cases and, accordingly, the 

majority of the metagenome short reads from D7 samples also mapped to these MAGs 

(Appendix A, Figure A 2).  The LL MAGs in the negative control dialysis bags tended to 

decay over time (Appendix A, Figure A 8A) and were mostly undetectable by D7, when 

the D7 MAGs started to increase (Appendix A, Figure A 8B). These results suggest that 

the bottle effect in the D7 samples was likely consistent across all mesocosms and was 

likely not very substantial before D4. 

The results of the D7 MAGs were further confirmed when comparing the relative 

abundances of the genes recovered in the D7 assemblies against the genes of the host fecal 

assemblies using DESeq2. Out of 2,906 total KEGG functions detected, 582 were 

significantly DA with Padj < 0.05 and L2FC > 6 that were manually grouped into broader 

functional categories as described in (Chapter 3 Supplementary data file S3). There were 

many more significantly DA genes when comparing the D7 samples to all of the animal 

host fecal metagenomes and the differences were much greater and more distinct than in 

the animal host only comparisons described above. The D7 samples were particularly 

enriched for genes related to aerobic processes (Appendix A, Figure A 10 and Chapter 3 

Supplementary data file S3) such as cytochromes and sulfide oxidation genes. Furthermore, 

the D7 samples were enriched for genes related to photosynthesis and porphyrin and 

chlorophyll metabolism and biofilm formation. In contrast, the host fecal metagenomes 

were more enriched in genes for anaerobic processes like methanogenesis, 

acetylaldehyde/alcohol dehydrogenase, sulfur and fumarate reductases, nitrogenase 
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(NifH), glycerol dehydrogenase, butyrate kinase, and phosphate butyryltransferase as well 

as ABC transporters for sugars and amino acid and cobalamin biosynthesis genes. These 

results suggested that the populations arising by D7 are likely “weed” species from the rare 

biosphere of the lake water used in the mesocosms that were able to form biofilms on the 

material of the dialysis bags and perform aerobic metabolism. 

3.5 Discussion 

In this study we used metagenomics to track the decay of cow, pig, and human fecal 

MAGs in laboratory mesocosms simulating a fecal pollution event in a freshwater habitat. 

For the conditions tested here, the majority of fecal MAGs from all three hosts were not 

detectable in the mesocosm metagenomes after D4 (Figures 3-4 & 3-5), which implies that 

the associated risk from fecal pollution was also presumably significantly diminished by 

D4. This result was consistent with a previous quantitative microbial risk assessment 

(QMRA) analysis that predicted that the gastrointestinal infection risk from sewage 

contamination in surface waters is not significant (<3% chance of infection) after 3.3 days 

(Boehm et al. 2018) in accordance with the EPA risk threshold for bathing water (USEPA 

RWQC 2012). Therefore, it appears recent fecal pollution events can be reliably detected 

up to 3-4 days post-event, and the risk for public health may not be high after four days, at 

least for natural freshwater environments like the conditions tested here.  

Although the persistence of the fecal MAGs was similar across all three hosts, the 

MAGs were predominantly host-specific at the species level (i.e., >95% ANI) and we were 

able to identify several MAGs from each host as potential biomarkers for MST based on 

the host-specificity and abundance profiles during mesocosm incubation (Figures 3-4 & 3-
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5). Notably, most of these MAGs represent novel species of existing genera (Chapter 3 

Supplementary data file S1) and will be important to study in more detail in the future. The 

genome sequences recovered here should facilitate such studies. Notably, there was some 

overlap among the different host fecal MAGs at the genus level (>65% AAI; Figure 3-3), 

which could account for the cross-reactivity commonly observed for the various 16S qPCR 

assays targeting Bacteroidales at above the species level (Boehm et al. 2013; Harwood et 

al. 2012; Ahmed et al. 2016).  

Consistently, the majority of MAGs in all hosts, including those identified as putative 

biomarkers, were within the classes Bacteroidia and Clostridia, however a few of the 

biomarker MAGs were classified to other taxa that were unique to cows or pigs. For 

example, two of the four cow putative biomarker MAGs (cow4_001_Treponema_F and 

cow8_3_Treponema_F) were from the Spirochaetia, while an Actinobacteria 

(pig4_16_Cellulomonas_C) and Euryarchaeota (pig4_38_Methanoplasma_F) were 

among the six pig biomarker MAGs (Chapter 3 Supplementary data file S1). Together, 

these results suggest that better and perhaps more host-specific biomarkers may be found 

in novel taxa that have not yet been considered for MST. Moreover, phenotype 

classification using Traitar (Weimann et al. 2016) showed that none of the potential 

biomarker MAGs were aerobes and all had mostly anaerobic phenotypes related to 

carbohydrate fermentation (Appendix A, Figure A 3, A 4, A 5). Accordingly, the best gene 

targets for MST assay development will likely be related to anaerobic functions specific to 

the different host types rather than the 16S rRNA gene, which has primarily been the target 

of most MST research to date. 
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E. faecalis and E. coli, despite being the “gold standard” FIB, performed worse than 

the MST markers assessed here. E. faecalis was not detected in any human feces or 

mesocosm samples by qPCR or metagenome-based methods and had too low abundance 

in the cow and pig feces to be detected upon dilution in lake water for the mesocosms. 

Hence, this organism would not be able to detect fecal contamination for any of the hosts 

in this study. E. coli was detected in all of the host mesocosms and persisted for ~1 week 

(Figure 3-8 A), longer than the presumed fecal contamination risk of 4 days described 

above. The longer persistence under the oxic conditions of our mesocosms is presumably 

consistent with the different physiologies of E. coli (facultative anaerobe) relative to the 

MAGs (mostly fermenters and methanogens) as revealed by the MAG sequences. 

Although it is well known that these organisms are not host specific and thus, not suitable 

for MST, these results confirmed our expectations and provided further evidence against 

the use of these organisms as FIB and the need for improved standard indicators. 

Furthermore, we compared traditional qPCR-based abundances of common MST 

markers to metagenome-based methods leveraging total cell densities from GenBac16S 

qPCR counts to estimate absolute abundances (i.e., cells/mL) of the corresponding MST 

reference genome in the metagenomes. The ruminant-specific Bacteroidetes 16S assay, 

RumBac, consistently over-estimated the abundance compared to the metagenome-based 

methods. This could be due, at least partly, to the small amplicon size (118 bp), which is 

typical for most qPCR assays and could be detectable even in highly degraded DNA from 

dead cells (Bae and Wuertz 2009). In contrast to RumBac results, the human-specific 

HF183 assay was poor correlated and consistently under-estimated the abundance of 

Bacteroides compared to MG-based methods. This was most obvious in the H1 mesocosms 



 95 

where qPCR-based estimates reported < 7 Bacteroides cells/mL whereas metagenome-

based estimates showed  0.5-3x106 Bacteroides cells/mL in D0, D1 and D4 samples. Our 

further investigation revealed a single contig in each of the hum1 and hum3 fecal 

assemblies that carried a perfect match to the HF183 assay reverse primer and probe. 

However, both of these contigs had mismatches in the forward primer region (Appendix 

A, Figure A 11). Neither of these contigs were binned into any of the fecal MAGs, which 

is not surprising because 16S-carrying contigs are often problematic for the abundance-

based binning methods used here. When examining the short reads, there were no perfect 

matches in the hum1 fecal metagenome and only 17 reads carried a perfect match to the 

forward HF183 primer in the hum3 fecal metagenome. Together, these results suggest that 

the dominant Bacteroides populations in hum1 and hum3 do not contain a perfect HF183 

forward primer match and presumably there is a population in hum3 with a perfect match 

whose abundance was too low to show up in any of the assembled contigs. These findings 

most likely accounted, at least in part, for the low HF183 qPCR-based Bacteroides 

abundance estimates compared to the metagenome-based estimates (i.e. less or no 

exponential doubling because PCR amplification is only happening at the reverse primer).  

Both cases mentioned above exemplified the known limitations of using qPCR assays, 

which require small amplicon sizes (~100-200 bp), and how whole genome-based 

metagenome estimates for MST markers can be advantageous with this respect. However, 

targeting a single marker (whether it be a whole genome or qPCR assay) for MST can still 

be inadequate for water quality monitoring because of the high inter-person variability 

observed in the human gut. Neither the HF183 assay nor the B. dorei reference genome 

were detected in any of the H2 mesocosms (or the hum2 feces), thus these water samples, 
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although highly polluted with human feces in our experimental set up, would have been 

considered safe for public health if using only this Bacteroides marker. Evidence for inter-

person variability/specificity was also evident when looking at the human fecal MAG 

abundances in the mesocosms (Figure 3-4 A). The most abundant MAGs in each human 

mesocosm corresponded to the human fecal samples that was used as inocula (e.g., hum1 

MAGs were the most abundant in H1 mesocosms). Typically, the most abundant MAG in 

each mesocosm was ~10x more abundant than MAGs from the other two human fecal 

samples on average. Although both metagenomics and qPCR have unique benefits and 

limitations, the results presented here suggest that using a single marker only to assess 

human fecal pollution was inadequate for either method. This result is not so surprising 

considering previous studies of human gut communities have revealed extensive diversity 

among individuals (Costello et al. 2009; Garud et al. 2019) and intra-person temporal 

variability within the human gut microbiome, which suggests that no core human gut 

microbiome exists for the abundant taxa in each microbiome (Caporaso et al. 2011). 

Although the relative abundance and taxa can vary overtime, significant functional 

redundancy has been observed previously (Moya and Ferrer 2016, Li et al. 2014) as well 

as among our human MAGs (Figure 3). Therefore, the use of functional genes as opposed 

to the 16S rRNA gene or individual taxa (e.g., MAGs) for biomarkers may be more robust 

due to the high prevalence of some gene functions among individuals of the same host type, 

presumably driven by the host-specific gut physiology. Metagenomics, as shown in this 

study, can be useful in identifying these genes to be used as novel targets for more robust 

qPCR assays as well as elucidating the fecal signal in environmental (or mesocosm) 

samples relative to uncontaminated samples. 
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Although it was not common for any gene function to be highly abundant in one host 

and completely absent from the rest, there were several functions that were significantly 

enriched in one host compared to the others and could be targets for biomarker 

development. These patterns, and the accompanying high host-specificity of the MAGs 

recovered, are presumably driven, at least to some extent, by the different selection 

pressures prevailing in the gut of each animal, as also indicated by the type of fermenters 

present in the different hosts. Most notably, seven genes for a type IV secretion system 

(T4SS) protein (TrbBCDEFGI) were absent in the all human samples and present in both 

the cow and pig samples, with the highest abundance found in the cows (Figure 3-7). 

Evidence has shown that T4SS proteins are important for shaping community composition 

in the gut (Verster et al. 2017), which suggests these proteins could be viable targets for 

host-specific markers (especially in cows). Furthermore, some of the DA KEGG functions 

offered new insight on the fermentation pathways that distinguish cows and pigs. Fumarate 

reductase subunit D (FrdD), which is associated with the primitive electron transport chain 

(ETC) of some fermenters (Besten 2013), was more abundant in cows. The pig samples 

were instead enriched for two genes associated with butyrate-producing (AtoA; 

acetoacetate CoA-transferase beta subunit, Bcd; butyryl-CoA dehydrogenase) as well as 

H2-producing (porD; pyruvate ferredoxin oxidoreductase delta subunit) fermentations 

(Chapter 3 Supplementary data file S2). These results indicated that fermenting microbes 

inhabiting the cow and pig gut carry out different strategies to sink excess reducing 

equivalents (the primitive ETC or H2, respectively). However, these trends were not 

discernable for the human samples as fewer genes overall tended to be significantly more 

abundant in human inocula, which could be the result of sampling limitation (only 3 human 
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fecal samples were compared against 6 cow and 6 pig samples) and the higher inter-person 

diversity described above. 

There was a bottle effect in our mesocosm incubations that resulted in an increase of 

some “weed” species by D7. The bottle effect is not apparent until D7; that is, after the 

point when most of the fecal organisms apparently had died off (i.e., D4). Therefore, this 

bottle effect is not expected to have a major impact on patterns reported here (e.g., host 

MAG dynamics) or our conclusions because the latter were primarily based on MAG 

abundance dynamics during the first four days. This is consistent with other similar studies 

such as in Ahmed et al. 2018, where sewage OTUs were not detected after four days, and 

found that the mesocosms did not return to the initial community composition even after 

50 days (Ahmed et al. Appl. Micro. & Biotech. 2018). Consistently, we did not see a return 

to starting community within the duration of our experiments (7 days).  Mattioli et al. 2018 

also reported bottle effects from dialysis bag mesocosms (e.g., lower nutrient 

concentrations and higher chlorophyll a) that did not arise until after five days post-

perturbation (Mattioli et al. 2018). These results confirm that delayed bag effects are a 

common limitation of the dialysis bag mesocosm method and that experiments need not be 

carried out for longer than 5 days or transferred to new bags. Further, it would be important 

to test these findings with field samples from recent pollution events to further corroborate 

the abovementioned conclusions.  

Considering the high individual host variability, especially among human hosts, more 

work is needed to characterize the geographic stability of the putative biomarkers of human 

or animal hosts reported here and the degree of their biogeography. Most importantly, 

whether the biomarkers reported here may be universally applicable as opposed to only 
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locally useful (geographically). Many recent studies have made considerable effort to 

sequence metagenomes and/or assemble MAGs from cow rumen (Wilkinson et al. 2020, 

Almeida et al. 2020, Wang et. Al 2019, Stewart et al. 2019) as well a pig (Xiao et al. 2016, 

Wang et al. 2019) and chicken guts (Gilroy et al. 2020). However, this information has not 

yet been synthesized together for MST marker development. Future work should leverage 

these datasets to improve comparative functional gene analysis along with decay 

information to data mine for better DNA markers. Furthermore, as high-throughput 

sequencing becomes more affordable and routine, it may be possible to directly assess MST 

markers (and even pathogens) in environmental metagenomes. In order to make regulatory 

standards based on metagenome data, calculating absolute abundances of indicators (or 

pathogens) will be necessary. The methodologies proposed here should be helpful in these 

directions. 
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4.1 Abstract 

Little is known about the public health risks associated with natural creek sediments that 

are affected by runoff and fecal pollution from agricultural and livestock practices. For 

instance, the persistence of foodborne pathogens originating from these practices such as 

Shiga Toxin-producing Escherichia coli (STEC) remains poorly quantified. Towards 

closing these knowledge gaps, the water-sediment interface of two creeks in the Salinas 

River Valley of California was sampled over a nine-month period using metagenomics and 

traditional culture-based tests for STEC. Our results revealed that these sediment 

communities are extremely diverse and comparable to the functional and taxonomic 

diversity observed in soils. With our sequencing effort (~4Gbp per library), we were unable 

to detect any pathogenic E. coli in the metagenomes of 11 samples that had tested positive 
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using culture-based methods, apparently due to relatively low abundance. Further, there 

were no significant differences in the abundance of human- or cow-specific gut 

microbiome sequences in the downstream, impacted sites compared to upstream, more 

pristine (control) sites, indicating natural dilution of anthropogenic inputs. Notably, a high 

number of metagenomic reads carrying antibiotic resistance genes (ARGs) was found in 

all samples that was significantly higher compared to ARG reads in other available 

freshwater and soil metagenomes, suggesting that these communities may be natural 

reservoirs of ARGs. The work presented here should serve as guide for sampling volumes, 

amount of sequencing to apply, and what bioinformatics analyses to perform when using 

metagenomics for public health risk studies of environmental samples such as sediments. 

4.2 Importance 

Current agricultural and livestock practices contribute to fecal contamination in the 

environment and the spread of food and water-borne disease and antibiotic resistance genes 

(ARGs). Traditionally, the level of pollution and risk to public health is assessed by culture-

based tests for the intestinal bacterium, E. coli. However, the accuracy of these traditional 

methods (e.g., low accuracy in quantification, and false positive signal when PCR-based) 

and their suitability for sediments remains unclear. We collected sediments for a time series 

metagenomics study from one of the most highly productive agricultural regions in the 

U.S. in order to assess how agricultural runoff affects the native microbial communities 

and if the presence of STEC in sediment samples can be detected directly by sequencing. 

Our study provided important information on the potential for using metagenomics as a 

tool for assessment of public health risk in natural environments. 
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4.3 Introduction 

Nearly half of the major produce-associated Escherichia coli O157:H7 outbreaks 

in the U.S. between 1995-2006 have been traced to spinach or lettuce grown in the Salinas 

Valley of California (M. Cooley et al. 2007). Fecal contamination of produce can be caused 

by exposure to contaminated irrigation or flood water, deposition of feces by wildlife or 

livestock, or during field application of manure as fertilizer (Mantha et al. 2017; Jay et al. 

2007). From a public health perspective, more information is needed on the risk of 

exposure to animal fecal contamination as recent studies suggest that exposure to water 

impacted by cow feces may present public health risks that are similar or equal to human 

fecal contamination. For example, cattle are a reservoir of the major foodborne pathogen, 

Shiga Toxin-producing E. coli (STEC) (Soller et al. 2010; Probert, Miller, and Ledin 2017). 

Environmental contamination by animal feces from farms is an emerging public health 

issue not only as a source of pathogens but also as a source of antibiotic resistance genes 

(ARGs) (WHO 2014). Antibiotics are regularly administered to livestock at prophylactic 

concentrations to prevent infection, and food animal production is responsible for a 

significant proportion of total antibiotic use (Landers et al. 2012). Such practices are known 

to contribute to the prevalence of ARGs in the environment (Jechalke et al. 2013; Zhu et 

al. 2013; Karkman, Pärnänen, and Larsson 2018), which can spread rapidly to other 

microbes via horizontal gene transfer, including to human pathogens of clinical importance 

(Walsh et al. 2011; Maal-Bared et al. 2013). Surprisingly, there is very little regulation of 

antibiotic use in the U.S. livestock industry, even though these operations can be major 

contributors to fecal pollution and the spread of ARGs in the environment (Durso and Cook 

2014; Berendonk et al. 2015). 
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Our previous culture- and PCR-based surveys of the Salinas watershed, and 

particularly Gabilan and Towne Creeks (heretofore called GABOSR and TOWOSR, 

respectively), indicated persistent presence of STEC in water and sediments (M. B. Cooley 

et al. 2013; 2014) and a potentially significant public health risk. Continued prevalence of 

STEC in both GABOSR and TOWOSR sites is hypothesized to be linked to the presence 

of cattle upstream. For instance, in several cases, STEC strains isolated from cattle fecal 

samples were identical to those found in water and sediment based on Multi-Locus 

Variable number tandem repeat Analysis (MLVA) typing. Indeed, the prevalence of STEC 

was strongly correlated with runoff due to rainfall (M. Cooley et al. 2007; M. B. Cooley et 

al. 2014). However, hydrologic modeling and surveys indicated that pathogen levels in 

streams were not only due to overland flow, but also to contributions from sediment 

(Dorner et al. 2006; Petit et al. 2017). These observations were further supported by several 

examples of identical MLVA types isolated from both water and sediment at the same 

location or downstream during periods of drought (M. Cooley et al. 2007; M. B. Cooley et 

al. 2013). Further, the levels of pathogen in the water column and sediment are difficult to 

measure and are generally underestimated when using culture-based tests due to the 

predominance of biofilms and viable but not culturable (VBNC) bacteria (M. B. Cooley, 

Carychao, and Gorski 2018). Determining accurate pathogen levels is also problematic 

when using culture-independent qPCR tests because these tests may detect small fragments 

of highly degraded DNA long after the living microbe and pathogens have been inactivated 

(Bae and Wuertz 2009). Furthermore, PCR methods do not give the complete picture of 

total functional and/or taxonomic shifts occurring in the sampled microbial communities. 

Therefore, metagenomic characterization of the creek sediments should provide 
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independent quantitative insights into the effect of agricultural practices on the surrounding 

environment.   

River and creek sediments are among the most diverse communities sequenced to 

date and are largely under-sampled (Gibbons et al. 2014; Abia et al. 2018). Moreover, the 

sediments studied to date are exclusively from highly and/or historically polluted 

environments with varying industrial or sewage inputs and thus, each sediment is 

characterized by its unique properties in terms of flow dynamics, chemical environment, 

climatic conditions and anthropogenic inputs (Abia et al. 2018; Bowen 2011; Xu et al. 

2014; Costa et al. 2015; Graves et al. 2016; Negi and Lal 2017; Huber et al. 2018). 

Accordingly, previous studies on the effect of anthropogenic inputs on sediments in lotic 

(free-flowing) aquatic systems have yielded mixed results on how surrounding land use 

practices impact sediment communities or were not directly relevant. Furthermore, in order 

to properly quantify the effect of anthropogenic antibiotic inputs, appropriate controls (e.g., 

pristine sampling sites) are needed to determine baseline levels of ARGs and other genes 

(Durso and Cook 2014; D’Costa et al. 2011).  

In this study, we examined the effect of agricultural runoff on microbial 

communities from creek sediments in the Salinas watershed and whether community 

structure correlated with precipitation or culture-based detection of STEC. We sampled 

upstream sites with reduced human and cattle presence as a baseline to compare the 

abundance of anthropogenic signals (i.e. human and cow gut microbiome and ARGs) 

observed in the downstream sites that receive inputs from cattle ranches and produce farms. 

By combining culture-based STEC data with metagenome-based ARGs and animal host 

microbiome signal, we assessed the effect of cattle ranching run-off on the creek sediments 
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at multiple, independent levels, providing for more robust conclusions and interpretations. 

Furthermore, we compared these sites to other publicly-available sediment, soil, and river 

water metagenomes from both highly pristine and polluted environments in order to 

validate our results and assess anthropogenic pollution levels relative to other similar 

habitats. 

4.4 Results 

4.4.1 Description of sampling sites 

Six sites from three creeks in the Salinas River valley in California were included in this 

study. Two of the sites (collectively referred to as the “downstream” samples/sites) are 

impacted by cattle ranching but vary in the level of agricultural activities in the directly 

surrounding area. Cattle have direct access to creeks at both locations and no effort is made 

to exclude them. At GABOSR, the cattle have access 2.38 km upstream from the sampling 

location and cattle access for TOWOSR is 0.68 km upstream.  The creeks are isolated at 

the sampling locations but converge further downstream before emptying into the Salinas 

River. Gabilan (GABOSR) is directly downstream of organic strawberry produce fields 

that use both green and poultry manure fertilizer and has cattle ranching upstream of the 

strawberry farm. The second site, Towne Creek (TOWOSR), is roughly 2 Km north of 

GABOSR but does not have any abutting agricultural fields directly upstream and only 

receives input from cattle ranches. Ten samples from each of the two downstream sites, 

GABOSR and TOWOSR, collected over a 9-month period from September 2013 through 

June 2014 were selected for metagenome sequencing based on precipitation levels and 

detection of pathogenic E. coli via enrichment culture (Table 4-2). An additional seven 
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samples from four upstream sites (collectively referred to as the “upstream” samples/sites), 

were included to serve as upstream controls for metagenomic comparison (Table 4-2 and 

Figure 4-1). The samples from these locations included: three samples collected ~10 km 

upstream from Gabilan (“GABOSR Control”) on March 2016 (GC1-3); two samples 

collected ~3 km upstream from Towne Creek (“TOWOSR Control”) on April 2017 (TC1 

and TC2); and finally, one sample from each of two sites on the west side of the Salinas 

River (“West Salinas”), ~60 km and 110 km southeast from the downstream sites collected 

in May 2017 (WS1 and WS2, respectively). The latter two samples are not upstream of 

GABOSR or TOWOSR but were included because they are more pristine sites with no 

known history of cattle impact, as opposed to the GC and TC samples, which may have 

had minimal inputs from previous cattle grazing. 



 107 

 

Figure 4-1: Location of sampling sites in the Salinas Valley, CA, and sampling scheme 

for time series metagenomics. Sampling site for Gabilan (GABOSR in red) and Towne 

Creek (TOWOSR in yellow). The upstream controls for Gabilan (GC) and Towne Creek 

(TC) are also indicated by the same colors. The red line shows the flow of the creek from 

GC to GABOSR, the yellow line shows the flow from TC to TOWOSR and the confluence 

of the two creeks before flowing into the Salinas river (blue line).  Orange pins mark the 

West Salinas sites (WS1 and WS2) included as less agriculturally-impacted controls. 

Orange lines show the flow of these creeks from the sampling point to the Salinas River, 
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except for WS2, whose confluence point with the Salinas River is 70 kilometers upstream 

from where WS1 creek intersects and is not shown in the map. The North Salinas weather 

station (NS; green star) is approximately 11km SE of GABOSR and was the closest 

weather monitoring station to all samples shown in the subset map. GPS coordinates for 

all sampling locations are provided in Table 4-1. Inset: location of the Salinas Valley in the 

state of California. 

Table 4-1: GPS coordinates for sampling sites and the weather station used in this 

study. 

 

  

Location
GIS-Latitude 

(°N)

GIS-Longitude 

(°W)

North Salinas weather station 36.7168 -121.6806

GABOSR 36.7803 -121.5849

TOWOSR 36.7962 -121.5753

GC 36.7426 -121.5035

TC 36.8101 -121.5452

WS1 36.2575 -121.4269

WS2 35.8964 -121.0889
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Table 4-2: Culture-based detection of STEC and precipitation (Precip) data reported 

in inches. a Samples in which STEC was detected by PCR of enrichment cultures are listed 

as either positive (+) or negative (-). bCopy number of the shiga toxin gene (stx2) was 

determined via ddPCR. c, dPrecipitation levels (in inches) for the day of sample collection 

and the sum of precipitation levels for five days prior to the sampling day were obtained 

from the California Irrigation Management Information System database 

(http://ipm.ucanr.edu/calludt.cgi) for North Salinas weather station (the closest monitoring 

station to the downstream sites). 
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4.4.2 Description of metagenomes and sequence coverage of microbial community 

A total of 27 metagenomic samples, ranging in size from 8.7 to 20.1 million reads (2.5 to 

5 Gbp) after trimming, were recovered from the six locations (Appendix B, Table B 1). For 

all samples, less than 28% of the total community (average 18.6%) was covered by our 

sequencing efforts as determined by Nonpareil analysis (Appendix B, Figure B 1). 

Consequently, the assembly of the metagenomes was limiting (e.g., the N50 values were 

poor; see Appendix B, Table B 1), consistent with our previous analysis of soil and 

sediment communities (Rodriguez-R and Konstantinidis 2014) and those of a few other 

metagenomic studies of river sediments. Thus, an un-assembled short read-based strategy 

was used for all subsequent analyses (paired-end, non-overlapping reads with an average 

length of 132-145 bp per dataset), unless noted otherwise. A total of 7.2x108 protein 

sequences were predicted from the short reads, with an average of 2.7x107 sequences per 

sample. The number of protein sequences that could be annotated to the Swiss-Prot 

database in each sample ranged between 10 and 16% (average 14.5%) of the total 

sequences. 

4.4.3 OTU characterization and alpha diversity assessment 

A total of 466,421 reads encoding fragments of the 16S- or 18S-rRNA gene were detected 

in all 27 metagenomes with an average of 601 (+/- 55) reads per million reads. All datasets 

were dominated by bacteria, with only 0.6% and 3.0% of the total rRNA reads, on average, 

having archaeal or eukaryotic origin, respectively. Closed-reference OTU picking at 97% 

nucleotide identity threshold resulted in a total of 25,764 OTUs from 349,886 reads for all 

27 samples and an average of 4,465 OTUs per sample. Since the coverage was similar for 
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all datasets, the number of OTUs shared between all samples were compared without any 

further normalization. Only 138 OTUs (0.5%) were shared among all 27 samples, while 

9,500 (36.9%)  of the OTUs were present in only one sample. The OTU rarefaction plot 

showed that diversity was not saturated (Figure 4-2A), which agreed with the low number 

of shared OTUs and the Nonpareil estimates on the shotgun data reported above (Appendix 

B, Figure B 1).  

Alpha diversity observed in the California samples was compared to three publicly-

available river sediment metagenomes from Montana that had similar land use inputs (i.e. 

agricultural or small towns) and were the most appropriate data for comparison among lotic 

sediment metagenomes currently available (Gibbons et al. 2014). Species richness and 

diversity in Montana samples were significantly less than California samples (P= 2.3x10-4 

and 0.006, respectively; Figure 4-2). Within California sites, diversity and evenness were 

similar; however, average species richness in GABOSR was significantly lower than 

TOWOSR and the upstream samples (P= 0.034 and 4.1x10-4, respectively). 
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Figure 4-2: Taxonomic diversity of microbial communities in California (CA) creek 

sediments. Alpha diversity (based on 16S rRNA gene OTUs) of the 27 samples included 

in this study were compared to 3 sediment metagenomes from a river in Montana. (A) OTU 

Rarefaction plot: Multiple rarefactions were performed on OTU tables as implemented in 

MacQiime v.1.9.1. The rarefaction plots show that the diversity was not saturated by 

sequencing, which agrees with Nonpareil estimates (Fig. S1) and with the diversity 

observed in communities from similar habitats (i.e., the MT river sediments). (B-D) Alpha 

diversity indices: Comparisons between groups were conducted using two-sided t-tests and 

only the comparisons that yielded significant P-values are reported, as follows. (B) Species 
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richness was analyzed with the Chao 1 index. (C) Diversity was evaluated using the true 

diversity of order one and the Chao-Shen correction for unobserved species. (D) Evenness 

was calculated from the estimated values of diversity divided by richness. 

4.4.4 Taxonomic composition and functional diversity of water-sediment microbial 

communities 

OTUs were analyzed further to characterize the taxonomic profile of the communities 

sampled. Proteobacteria and Bacteroidetes were the most abundant phyla across most 

samples. However, some of the upstream samples had a higher abundance of 

Actinobacteria (Appendix B, Figure B 2A). Class level taxonomic distributions were 

consistent over time for GABOSR samples and revealed the high abundance of 

Betaproteobacteria (>19-24% of total sequences). TOWOSR samples varied more over 

time; five samples (T130918,T131230, T140128, T140210, T140611) had a higher 

abundance of Deltaproteobacteria and Bacteroidia, and one sample (T140116) had a 

higher abundance of Cyanobacteria. The upstream samples also showed a similar 

community composition and had higher relative abundance of Alphaproteobacteria (11-

17%) compared to the downstream samples (Appendix B, Figure B 2B). These results were 

consistent with the TrEMBL taxonomic classification of protein-coding metagenomic 

reads, which were dominated by Bacteria (~95.2% per sample; Appendix B, Figure B 3).  

4.4.5 Microbial community structure and dynamics in Salinas River valley creeks 

Location was the strongest factor affecting clustering patterns observed in PCA ordinations 

of all distance matrices analyzed (Appendix B, Figure B 4). ADONIS analysis in the R 

package vegan (using location as a categorical variable) yielded P<0.001 and R2= 0.44, 
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0.67, 0.41, and 0.56 for MASH, functional gene, OTUs Bray-Curtis (16S-BC) and OTUs 

weighted UniFrac (16S-WUF), respectively. This result was confirmed by correlation 

analysis of the NMDS ordinations to all metadata variables using the envfit function in 

vegan. After Bonferroni correction for multiple comparisons, location had the strongest 

correlation to all ordinations (MASH: P=0.001, R2=0.879; Functional gene: P=0.001, 

R2=0.845; 16S-BC: P=0.001, R2=0.0.787; 16S-WUF: P=0.001, R2=0.726), and was the 

only significant variable for MASH (Figure 4-3) and 16S rRNA gene-based measures of 

beta-diversity (Appendix B, Figure B 5, panels B and C) among those parameters 

evaluated. The functional gene ordination was also correlated, albeit weakly, to total 5-day 

precipitation (P=0.028, R2=0.359; Appendix B, Figure B 5A).  In order to control for spatial 

variance, a more rigorous db-RDA (Legendre and Anderson 1999) was used on constrained 

NMDS ordinations, which allows the influence of a matrix of conditioning variables (i.e., 

location) to be “removed” prior to analysis. No significant associations (P>0.05) were 

found in the functional gene and OTU Bray-Curtis ordinations, however, the MASH and 

OTU weighted UniFrac distances were significantly associated with sampling time 

(ANOVA: F=1.274, P=0.031; F=2.174, P=0.04, respectively).  
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Figure 4-3: The effect of environmental parameters on microbial community 

structure. The graph shows non-metric multidimensional scaling (NMDS) of the 

sequenced communities based on whole-community MASH distances. Each dot represents 

a metagenome sample and metagenomes from the same location are connected by lines. 

Location (i.e., the polygons or lines) was the only variable that significantly correlated to 

the ordination. Arrowed vectors indicate correlation to other variables, none of which 

reached statistical significance, however. SoilTemp, AirTemp, SolRad, Precip, 5-day 

Precip, and ddPCR represent soil temperature, air temperature, solar radiation, day-of 

precipitation, 5-day precipitation, and digital droplet PCR counts for STEC, respectively. 

4.4.6 Detection of E. coli by culture but not metagenomes 
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The abundance of reads annotated as E. coli in the metagenomes based on Blastn 

(nucleotide level) search against an STEC reference genome was low for all samples 

(~0.002% of total reads). Samples with the highest relative abundance of metagenomic 

reads matching to E. coli were negative for all culture-based tests (Table 4-3), which 

indicated spurious in-silico results (e.g., reads from non-E. coli genomes matching to 

conserved genes such as the rRNA operon). In addition, when using imGLAD (Castro et 

al. 2018) to predict the probability that E. coli was present in the metagenomes, a tool 

developed by our team to deal with spurious matches, all samples yielded a P-value of 1 

(i.e., 0 probability of presence), which suggested that any E. coli populations (including 

STEC) were below the imGLAD estimated limit of detection for the metagenomic datasets 

in hand (i.e., 3% coverage of the E. coli genome at a minimum of 0.12X sequencing depth). 

The absolute abundance of the STEC based on ddPCR was also low (in the order of ~1 in 

108 cells, assuming average molecular weight of a bp of DNA is 660g/mol, 5 Mb genome 

size, and 1 copy stx/genome) or absent in all samples, which supports our bioinformatic-

derived conclusions that E. coli was probably too low in abundance to be detected by our 

metagenomic sequencing effort (Table 4-3). 

 

Table 4-3: Culture-Based versus in-silico E. coli detection. a Culture-based methods to 

detect E. coli in resuspended sediment/water samples included an enrichment culturing step 

followed by shiga toxin (stx) PCR procedures to detect specific virulence genes and 

genotypes as described in the Materials and Methods section. Detection of E. coli O157 

(EcO157) was determined using ELIZA serotyping and a sample was positive for STECs 

if PCR and/or ELIZA data yielded a positive result. b In Silico methods included a blastn 
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search of metagenomic reads against an STEC reference genome with a 95% identity and 

97% read coverage cutoff for a read match, which was then normalized by dividing by the 

total number of reads per metagenome. The two samples with highest relative abundance 

of reads matching the STEC reference genome are shown in bold. 

 

4.4.7 Differentially abundant (DA) functions and taxa between locations 

Of the 1,105 SEED subsystems (pathways) and 1806 taxonomic groups identified, 911 and 

408 were significantly DA with Padj < 0.05 for subsystems and taxa, respectively.  Using 
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pairwise comparisons between GABOSR, TOWOSR, and the 7 upstream samples, 184 

SEED subsystems had Log2 fold change (L2FC) > 1, while 273 taxa had L2FC > 2, which 

were grouped into 36 and 35 broader functional and taxonomic categories, respectively (as 

described in the supplementary data files). The magnitude of the L2FC differences were 

somewhat low overall, with an average L2FC of 1.82 and 3.71 for DA functional genes 

and taxa, respectively.  Still, this analysis revealed several notable trends that were 

consistent between the functional SEED and taxonomy results (Figures 4-4 and Appendix 

B, Figure B 6). More specifically, iron acquisition genes appeared to more abundant in the 

upstream samples, particularly in the samples collected upstream of TOWOSR (TC1 and 

TC2. Plant-associated and photosynthesis genes were more abundant in the more pristine 

samples (WS1 and WS2). Consistently, members of the phyla, Alphaproteobacteria (e.g. 

Rhizobiales; see Chapter 4 Supplementary data file S2), were more abundant upstream. 

Additional taxa that were more abundant in the upstream sites included those that are 

typically associated with soil and aquatic habitats (e.g., Gemmatimonadetes and 

Armatimonadetes), which indicated that these sites may indeed receive less anthropogenic 

inputs.  

Sample T140116 was enriched for both cyanobacteria based on OTU analysis (Appendix 

B, Figure B 6) and photosynthesis genes (Figure 4-4). TOWOSR appeared to be 

significantly more abundant in genes for anaerobic processes like anoxygenic 

photosynthesis and methanogenesis, along with genes related to archaeal DNA, RNA, and 

protein metabolism (all organisms known to carry out methanogenesis are Archaea). 

Consistently, the two TOWOSR samples (T140128 and T140210), which were most 

abundant in archaeal and methanogenesis genes, were also the most abundant in Archaea 
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and methanotrophs from the order Methylococcales, relative to the other sites. Other genes 

associated with anaerobic metabolisms, such as anoxygenic photosynthesis and sulfur 

metabolism genes (Figure 4-4), were congruent with taxonomic results that showed 

anoxygenic photosynthetic phyla Chlorobi (Green sulfur bacteria), Chloroflexi (Green 

non-sulfur), and the family Chromatiaceae, as well as known sulfur-metabolizing and 

anaerobic groups (e.g. Thiobacillus and Clostridia) to be more prevalent in the TOWOSR 

samples (Appendix B, Figure B 6). Additionally, the TOWOSR samples, in general, were 

more abundant in the Firmicutes and Bacteroidetes, which include gut-associated in 

addition to environmental members. Sample T140210 from TOWOSR was particularly 

enriched in specific enteric taxa: Endomicrobia and Fibrobacteres, which are rumen 

bacteria associated with cellulous degradation. 

Collectively, these results indicated that our annotation and grouping methods were robust, 

e.g., archaeal taxa identified as more abundant in TOWOSR samples were consistent with 

an increased frequency of archaeal functional genes such as methanogenesis in these 

samples.  These results also suggested that TOWOSR samples might be more anaerobic, 

which could potentially indicate an effect of runoff and eutrophication as a result of human 

activity at this location. It could also be that this is the result of natural factors that we did 

not test here and so we tried to look at specific DNA signals for anthropogenic pollution 

such as human and cow gut microbiome signal (see below). Also, Actinobacteria (i.e., 

common soil microbes and antibiotic producers) were all significantly more abundant in 

the upstream sites, which provides further evidence in support of this system being a natural 

source of ARGs (see below). 
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Figure 4-4: Functional profiles of creek sediment microbial communities. The heatmap 

shows SEED subsystems that were differentially abundant between locations (TOWOSR, 

GABOSR, and the upstream controls) with Padj < 0.05. Color scale indicates the abundance 

relative to the average of all samples (increasing from blue to red). Letters T or G and date 

in the column names represent the sample site (TOWOSR or GABOSR) and collection 

date, respectively. TC, GC and WS represent the upstream TOWOSR Control, GABOSR 

Control, and West Salinas, respectively. 

4.4.8 Quantifying anthropogenic and agricultural inputs 

4.4.8.1 ARGs are more abundant in California samples compared to other similar 

environments: 
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The abundance of ARGs in each dataset was determined by blastp search against the 

Comprehensive Antibiotic Resistance gene Database (CARD; (McArthur et al. 2013)). The 

most abundant ARGs detected are shown in Appendix B, Figure B 7. A comparison of 

selected metagenomic datasets that included metagenomes from agricultural sediments 

from Montana (MT) and soils from Illinois (Urb, Hav), more pristine/remote samples from 

the Kalamas River (Kal) and Alaskan permafrost (AK), as well as a highly polluted sample 

from the Ganges River (Agra), was performed in order to benchmark the level of 

anthropogenic signal observed in the Salinas Valley against other environments. The 

abundance of ARGs in the California samples were significantly greater compared to the 

other environmental metagenomes included here (Kruskal-Wallis 2 =19.44, P = 0.0002; 

Figure 4-5A). 

4.4.8.2 Abundance of genes associated with antibiotics used in cattle: 

In order to better assess the impact (if any) of ARGs related to cattle ranching, we built 

ROCker models, a more accurate approach for finding metagenomic reads encoding a 

target gene of interest compared to simple homology searches (Orellana, Rodriguez-R, and 

Konstantinidis 2017), targeting tetracycline resistance (tetM) and production gene (oxyT) 

since tetracyclines are among the most common antibiotics used in livestock (US-FDA 

2015). We also built a model targeting ketosynthase alpha subunit genes (KSα), which are 

involved in the synthesis of many antibiotics, including tetracyclines (Morlon et al. 2015). 

The antibiotic production genes were quantified in order to the test the hypothesis that if 

(the high abundance of) ARGs is naturally occurring (as opposed to being human-induced) 

then their abundance should correlate with that of the antibiotic production genes. To 

exclude the effect of potentially confounding variables, only the California samples were 
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used for linear regression analysis of the abundances of antibiotic production and resistance 

genes, and gene abundance was expressed as genome equivalents (GE), or the fraction of 

total genomes encoding the target gene of interest assuming the gene is single-copy -as it 

is usually the case for bacterial genes. In cases where the genes are in multiple copies, the 

GE will likely be >1 and would indicate genes per cell and not the fraction of genomes per 

total genomes. However, we did not observe cases of GEs >1, which indicated that our 

assumption was generally robust. ROCker analysis showed an abnormally high abundance 

of tetM in sample TC1 (Figure 4-6, left panel), which was thus considered an outlier and 

excluded from the linear regression analysis. The high abundance in TC1 was presumably 

attributed to the fact that tetM has the widest host range of all tetracycline resistance (tet) 

genes due to its association with highly mobile conjugative transposons that behave 

similarly to plasmids and have several antirestriction systems (Salyers et al. 1995; Roberts 

2005). OxyT did not significantly correlate to tetM abundance (r2 =0.031); however, KSα 

showed a moderate correlation to tetM (r2=0.280) (Figure 4-6, right panel).  

4.4.8.3 Abundance of cow and human gut (HG) microbiomes: 

The abundance of cow- or human gut reads in the California creek and reference 

metagenomes from other environments was determined by Blastn search against a custom 

cow gut database and the Integrated Gene Catalog (IGC) of human gut microbiome genes 

(MetaHIT Consortium et al. 2014), respectively. The IGC is referred to as the Human Gut 

Database (HG) hereafter for clarity. The signal from the Ganges River (Agra) sample 

greatly exceeded all other samples in both the absolute number (Table 4-4) and relative 

abundance expressed as genome equivalents (GE), i.e., the fraction of total genomes 

encoding human gut genes assuming a single-copy of each gene per genome (33.5 GE; 8-
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100x more abundant than all other samples; Figure 4-5B). There was a significant 

difference between the HG abundance averages observed in California metagenomes and 

the 8 metagenomes from 5 other habitats evaluated here (Kruskal-Wallis P=0.015). 

However, after correcting for multiple comparisons, none of the groups were significantly 

different (Wilcoxon Rank Sum P >0.1). Within California samples, there was no significant 

difference, overall, between abundances observed in the downstream samples and the 

average abundances of the upstream control samples (Kruskal-Wallis P=0.169).   

The abundance of different cow gut genes had a similar trend to the human gut data (Table 

4-4). However, two samples from TOWOSR (T140210 and T140611) showed an elevated 

signal for cow sequences (Figure 4-5C). Despite these two samples from TOWOSR with 

a higher level of cow gut signal, the average gene abundances were similar for California 

samples overall, and no significant difference was detected between the means compared 

to the other environmental metagenomes and the seven upstream control samples (Kruskal-

Wallis P=0.090; Figure 4-5C). 
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Figure 4-5: Abundance of antibiotic resistance genes, human gut, and cow gut 

sequences in the Salinas Valley metagenomes compared to other environmental 

metagenomes. The box and whisker plots show the interquartile range for the abundances 

with open dots indicating samples that exceeded 1.5x the interquartile range. The 

“Upstream” metagenomes represent the seven more pristine control samples, and included: 

three samples collected upstream from GABOSR, two collected upstream from TOWOSR, 

and two sites on the west side of the Salinas River that were farthest upstream from the rest 

of the sites (for more details, see main text and Figure 4-1). The other environmental 

metagenomes (Other Env) included: 3 river sediments, 2 agricultural soils, 1 permafrost 

soil, and 2 river water samples from the Kalamas and Ganges Rivers. 

 

 

Figure 4-6: Abundances of selected antibiotic resistance and production genes in the 

Salinas Valley metagenomes. (LEFT) Abundance (expressed as genome equivalents) of 

tetM, oxyT, and KSα genes for the 27 sites included in this study. (RIGHT) Linear 
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regression of tetM versus oxyT or KSα gene abundances. TC1 was an outlier for tetM 

abundance and was removed from this analysis. 

Table 4-4: Number of unique reference genes detected from the Comprehensive 

Antibiotic Resistance gene Database (CARD), Human and Cow Gut databases. 

 

4.5 Discussion 

Analyses of planktonic microbial communities in rivers over time and land use have shown 

that these communities vary by average genome size, location, amount of sunlight, and 

nutrient concentrations (Van Rossum et al. 2015) as well as by sampling time more so than 

space (Meziti et al. 2016). However, the results presented here suggested that community 

composition of Salinas Valley creek sediments are structured primarily by spatial 

separation, and the local weather parameters tested here did not have a significant effect 

(Figure 4-3). More detailed in-situ metadata than those obtained here such as nutrient 

concentrations (e.g., organic carbon and biological oxygen demand) are needed in order to 

Unique genes 

detected in: 
#samples ARG Human Cow

all samples 35 1,776     167,481     15,497   

TOWOSR 10 693        1,192        1,704     

GABOSR 10 983        1,356        124        

Upstream Controls 7 760        1,135        136        

MT sediments 3 441        1,522        116        

Agricultural Soils 2 722        9,877        270        

AK permafrost 1 642        245           50          

Kalamas River 1 475        3,952        554        

Ganges River (Agra) 1 827        137,409     5,900     

2,820 9,879,896  459,176Total reference genes in database 
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discern the processes that are driving community diversity and structure within each 

Salinas Valley site. For example, anaerobic taxa and processes related to methane and 

sulfur metabolism and anoxygenic photosynthesis were significantly more abundant in 

TOWOSR (Figure 4-4 and supplemental material), which could indicate higher influence 

from agricultural run-off, lower permeability of the corresponding sediments by oxygen, 

or some other environmental factor that was not reflected by the local weather parameters 

measured here. It should be mentioned however, that we did not observe any significant 

differences in the type of sediment sampled (e.g., percent of fine sand) between the 

different sampling sites. Hence, the lower oxygen permeability appears to be a less 

plausible explanation for the functional differences observed compared to higher 

eutrophication (or another reason). 

We compared abundances of metagenomic reads annotated as ARG, human or cow gut 

microbiome in order to assess levels of anthropogenic impacts on Salinas Valley creek 

sediment communities. No significant difference was detected between the downstream 

samples and the upstream controls for any of the three anthropogenic indicators (Figure 4-

5), which suggested that the land use practices surrounding the creeks does not have a 

major or lasting impact on the natural community and the inputs are likely diluted or 

attenuated faster than the intervals sampled here. To gain further quantitative insights, we 

then benchmarked abundances observed in the creek sediments from this study against 

metagenomes from other environments. These included agricultural sediments and soils, 

permafrost, and river water from both pristine and polluted habitats. GABOSR, TOWOSR, 

and the upstream samples all had significantly higher ARG abundances compared to the 

average of the other environments tested here (Figure 4-5A). This high background level 
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of reads annotated as ARGs suggested that the Salinas Valley creek sediments are a natural 

reservoir for these genes. Furthermore, resistance genes to synthetic antibiotics such as 

florfenicol (fexA and floR) and ciprofloxacin (qnrS), one of the most widely used antibiotics 

in humans worldwide, were absent or detected in very low abundance (less than 10 reads 

matching) in our datasets. Spurious matches to conserved gene regions can occur when 

analyzing short reads like the ones here, but the signal was not large enough to warrant 

further investigation using precise and targeted methods (e.g. ROCker). Overall, the 

absence of resistance genes to more recently introduced, synthetic antibiotics provides 

further evidence that the ARG signal observed in the Salinas Valley is likely autochthonous 

in origin. Future studies could involve deeper sequencing (higher community coverage) in 

order to recover long contigs and thus, determine the genomic background of the ARGs 

and if they are associated with mobile elements or plasmids for improved public health risk 

assessment. Still, our results highlight the importance of having a baseline or “pristine” 

sample to discern anthropogenic from naturally-occurring ARGs and have important 

implications for monitoring the spread of ARGs in the environment. For instance, without 

the upstream control samples, this study could have (speciously) concluded that GABOSR 

and TOWOSR are elevated in ARGs as a result of cattle ranching. However, the similar 

abundances found in the upstream samples indicated that the signal detected downstream 

could be inherent to this environment and that a more targeted analysis of specific ARGs 

was required to determine if the effect of cattle could be detected. 

Tetracycline resistance genes have been shown to increase with and correlate to 

anthropogenic inputs along a river estuary system (Chen et al. 2013), suggesting that they 

can be useful indicators of anthropogenic pollution. However, tetracycline resistance genes 
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are also found in other pristine or natural environments (D’Costa et al. 2011; Allen et al. 

2009; Cytryn 2013; Yang et al. 2013), and therefore can also be considered part of the 

autochthonous gene pool in some habitats. Here, we tested the hypothesis that if 

tetracycline resistance genes are naturally occurring, the production enzymes for 

tetracycline should also follow similar abundance patterns, as antibiotic resistance and 

biosynthesis genes are often encoded on the same operon to ensure antibiotic-producing 

species are resistant to the product they synthesize (Martín and Liras 1989). Thus, we 

expected to see a correlation between abundances of the tetracycline resistance gene, tetM, 

and its associated production genes (oxyT, KSα) if this system is not under heavy selection 

pressure of human-introduced antibiotics. The abundance of tetM in the Salinas Valley 

creek sediments was not correlated to oxyT and only moderately correlated to KSα (Figure 

4-6). OxyT had very low abundance (less than 8 reads matching per sample), which 

suggested that the lack of correlation to tetM could be due to database limitations. That is, 

only a few reference oxyT genes are publicly available (13 sequences) and these likely do 

not capture the total diversity of this gene found in the environment. KSα, on the other 

hand, represents a broad class of synthesis genes for many different antibiotics with many 

more sequences in the reference databases and thus, a better estimate of antibiotic 

production potential was obtained based on these genes. Overall, these findings further 

supported that this ecosystem is a natural reservoir for ARGs, and the presence of 

tetracycline resistance is not likely to be solely caused by inputs from the cattle ranches. 

However, future investigations could involve additional antibiotic production gene 

references for more robust conclusions. 
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When compared to the other pristine or rural environmental metagenomes such as 

agricultural sediments and soils, permafrost, and river water, the abundances of  reads 

annotated as human gut in the California sediments were not significantly different overall. 

However, the Ganges River (Agra) sample, collected from one of the most densely 

populated and highly polluted areas surrounding the river (Agra, Uttar Pradesh, India), was 

1-2 orders of magnitude more abundant for human gut (open circle in Figure 4-5B), 

compared to the rest of the samples used in our study. Thus, a high human gut signal was 

expected for the Ganges River, consistent with previous results (S.-Y. Zhang et al. 2019) 

and served as a reference to assess relative levels of human fecal contamination. The rest 

of the samples included in our comparisons were from rural/agricultural or more remote 

areas, with lower population density, and consistently had lower signals of human fecal 

contamination than the Agra sample. Therefore, the low abundances of human gut 

sequences observed in Salinas Valley were consistent with the lower levels of human 

activity/density input relative to more human and animal populated sites, such as the 

Ganges River used for comparison here and indicated that our annotation and filtering 

methods were robust. Collectively, these results showed that metagenomics of river/creek 

sediments provide a reliable means for assessing the magnitude of the human 

presence/activity, consistent with recent studies of other riverine ecosystems (S.-Y. Zhang 

et al. 2019; Meziti et al. 2016).  

Contrary to the results for human gut, the abundances of cow gut signal in the California 

samples were not consistent with our expectations. The TOWOSR and GABOSR sites are 

directly downstream of  large cattle ranch operations and identical pathogen recovery from 

water and upstream cattle indicated the cattle ranches were the source of fecal 
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contamination (M. Cooley et al. 2007). As such, we expected to see a higher level of cow 

signal in the downstream metagenome samples, yet the abundance was not significantly 

different from the other environments or the upstream controls (Figure 4-5B&C). Notably, 

two of the samples from TOWOSR (T140210 and T140611) showed elevated signal for 

cow that was similar to the abundance observed in the highly polluted Ganges River 

reference metagenome (Figure 4-5C). These samples (especially T140210) had a higher 

abundance of the rumen enteric and cellulose degrading taxa (Endomicrobia and 

Fibrobacteres; Appendix B, Figure B 6), which supports the conclusion that these samples 

contained run-off from cattle, however the signal might be patchy or muted in the sediment 

and require more frequent sampling and/or larger sampling volumes than those used here 

to detect these signals. 

Additionally, we were unable to detect any E. coli populations in any of the metagenomes, 

including samples that were positive for STEC via enrichment culture, indicating that it is 

not an abundant member of the sediment community (Table 4-3). This was consistent with 

imGLAD estimates that the sequencing effort applied to our metagenomes imposed a limit 

of detection for E. coli, and ddPCR results that showed abundance of STEC was low or 

absent in all samples. Overall, these results suggested that using shotgun metagenomics 

may not be sensitive (or economical) enough as a monitoring tool to detect a relatively low 

abundance microorganism in lotic sediments at the level of sequencing effort applied here, 

which was insufficient partly because of the extremely high community diversity 

(Appendix B, Figure B 1).  More than the 2.5 to 5 Gbp/sample sequencing effort applied 

in this study would have been required to detect ~10 E. coli cells in a sample according to 

our estimates, which is not economical based on current standards and costs. More 



 131 

specifically, obtaining the imGLAD minimum threshold of 0.12x coverage for an STEC 

genome (5 Mbp) in our metagenome libraries (average 4 Gbp), would require 0.6 Mbp of 

STEC reads, or 0.015% of the total metagenome, which translates to a relatively large 

number of cells in situ. For example, assuming 108 total cells/g of sediment, it would 

require ~104 STEC cells/g of sediment to robustly detect in the metagenomes (or 100 times 

more sequencing for detecting ~10 cells/g).  Thus, the limit of detection of metagenomics, 

as applied here, was not low enough and should be combined with methods that offer lower 

detection limits and more precise counts (such as ddPCR).  

Rivers are highly dynamic ecosystems and therefore subject to higher random variation 

and sampling artifacts that likely affect the dilution of the exogenous (human) input. 

Further, our samples represent relatively small volumes of sediment (~10 g) and the 

resulting metagenomic datasets did not saturate the sequence diversity in the DNA 

extracted from these samples (Appendix B, Figure B 1), which might introduce further 

experimental noise and stochasticity. Despite these technical limitations, our data 

consistently showed little evidence that agricultural or cattle ranching activities have a 

significant effect on the creek sediment microbial communities. The underlying reason for 

these results remains speculative but could include sediment absorption or dilution by the 

creek waters and should be the subject of future research in order to better understand the 

impact of these activities on the environment. Additionally, the functional and taxonomic 

diversity observed between our samples could not be attributed to the environmental and 

weather variables measured, especially for the TOWOSR samples that showed extensive 

sample  heterogeneity (diversity). These results suggested that shorter intervals between 

sampling as well as more detailed in-situ geochemical data will be needed to elucidate the fine 



 132 

scale processes driving the community composition within each location. Although the 

continued presence of STEC in Salinas watershed sediments is a public health risk, we did 

not find evidence that runoff from human activities has a substantial effect on the sediment 

microbial community when compared to more pristine sites. An imperative objective for 

public health is to assess how and where current agricultural practices impact the 

environment in order to determine best practices. Our study also provided important 

information on using metagenomics as a tool for public health risk studies of river water 

and sediment habitats, including what sampling volumes and frequencies to use, amount 

of sequencing to apply, and what bioinformatics analyses to perform on the resulting data 

for future public health risk studies of river water and sediment habitats. Finally, the 

ROCker models developed here for tetracycline resistance and production genes should be 

useful for robustly examining the prevalence of these genes in other samples and habitats. 
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4.7 Materials and Methods 

4.7.1 Sample collection and enrichment method for STEC  
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Sediment samples were collected from watersheds at public-access locations (Table 4-1). 

Weather information was downloaded from the California Irrigation Management 

Information System database (http://ipm.ucanr.edu/calludt.cgi) for the day of and five days 

prior to the sampling day from the closest monitoring station to the downstream sites (Table 

4-2). Approximately 250mL of sediment was collected by dragging an open, sterile bottle 

attached to a 7.62m telescoping  pole along the bottom of the stream in the upstream 

direction and in such a way that the majority of the sample was undisturbed sediment. 

Nevertheless, some mixing with the water column occurred. Sediment at GABOSR 

contained more sand than TOWOSR or any of the control locations. Nevertheless, even at 

GABOSR collection was selectively silt (with fine sand occupying less than 10% by 

volume). As such, an effort was made to collect comparable samples at different locations. 

Additionally, only the top 1-2 cm of sediment was collected. All samples were transported 

on ice and processed within 24 hours. Sediment was re-suspended in the lab just prior to 

sampling to ensure a uniform sub-sample. DNA from 10 g of the resuspended 

sediment/water mix was purified for sediment DNA using MoBio PowerSoil DNA 

extraction kit, following the manufacturer’s protocol. A separate 100 mL of the sample was 

used for enrichment and isolation of STEC as previously described (M. B. Cooley et al. 

2013). 

4.7.2 PCR-based quantification method for STEC  

Droplet digital PCR (ddPCR, BioRad) was performed on sediment DNA following the 

method of Cooley et al. (19). Each 20 μL reaction used 10 μL BioRad’s Supermix for 

Probes, 2 μL primer (0.3μM final concentration) and probe (0.2μM), up to 1 μg DNA, 1.2 

μL MgCl2 (1.5mM), and 0.2 μL HindIII (0.2 U/μL). Primer and probe sequences were as 

http://ipm.ucanr.edu/calludt.cgi
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previously published for STEC (M. B. Cooley, Carychao, and Gorski 2018). Droplets were 

created with Droplet Generation Oil for Probes in the QX-200 droplet generator (BioRad), 

and amplified for 5 min at 95C, 45 cycles at 95C for 30 s and 60C for 90 s, then 5 min 

at 72C and 5 min at 98C. Droplets were processed with the QX-200 Droplet reader and 

template levels were predicted by QuantaSoft software version 1.7.4 (BioRad). 

4.7.3 DNA sequencing and Bioinformatics sequence analysis 

4.7.3.1 Metagenomic sequencing and community coverage estimates: 

Shotgun metagenomic sequencing libraries were prepared using the Illumina Nextera XT 

library prep kit and HiSEQ 2500 instrument as described previously (Johnston et al. 2019). 

Short reads were passed through quality filtering and trimming as described previously 

(Rodriguez-R et al. 2015). In short, sequences were trimmed with a PHRED score cutoff 

of 20 and minimum length of 50bp. Only paired reads with both sisters longer than 50bp 

after trimming were used for further analysis. Average community coverage and diversity 

were estimated using Nonpareil 3.0 (Rodriguez-R and Konstantinidis 2014) with kmer 

kernel and default parameters. Sequences were assembled with IDBA (Peng et al. 2012) 

using kmer values ranging from 20 to 80. 

4.7.3.2 Taxonomic analysis of rRNA gene-encoding sequences: 

Metagenomic reads encoding short subunit (SSU) rRNA genes were extracted with 

Parallel-Meta v.2.4.1 using default parameters (Su et al. 2014). Closed reference OTU 

picking at 97% nucleotide identity with taxonomic assignment against the GreenGenes 

database (19) was performed using MacQiime v.1.9.1 (Caporaso et al. 2010) with the 
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reverse strand matching parameter enabled and the uclust clustering algorithm (Edgar 

2010). Alpha diversity was calculated as the true diversity of order one (equivalent to the 

exponential of the Shannon index) and corrected for unobserved species using the Chao-

Shen correction (Chao and Shen 2003) as implemented in the R package entropy (Hausser 

and Strimmer, n.d.). Richness was estimated using the Chao1 index (Chao 1984), and 

evenness was calculated from the estimated values of diversity divided by richness. 

Significant differences in taxonomic diversity, evenness, and richness were assessed using 

two-sided t-tests. Multiple rarefactions were performed on OTU tables as implemented in 

MacQiime v.1.9.1 (rarifying up to the minimum number of counts per sample: option -e 

5,596). 

4.7.3.3 Determination of the total community bacterial fraction: 

In order to determine whether bacterial gene abundances need be corrected for relative 

bacterial fraction in the total metagenome libraries, the relative abundance of Bacteria, 

Archaea, and Eukarya was estimated in each dataset by searching a subset (~1x105 reads 

per sample) of randomly selected protein coding reads against the TrEMBL database 

((UniProt Consortium et al. 2017); downloaded May 2018) using DIAMOND blastx 

v.0.9.22.123 (Buchfink, Xie, and Huson 2015) with the “--more sensitive” option and e-

value cutoff of 1x10-5. The TrEMBL IDs for best hit matches were summarized at the 

domain level using custom scripts and the metadata files available at 

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/taxonomic_div

isions/ No significant difference in the relative abundance of Bacteria was found between 

the different samples, thus no correction for bacterial fraction was applied to gene 

abundance calculations. 

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/taxonomic_divisions/
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/taxonomic_divisions/
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4.7.3.4 Functional and ARG annotation of metagenomic sequences: 

Protein prediction was performed using FragGeneScan adopting the Illumina 0.5% error 

model (Rho, Tang, and Ye 2010). Resulting amino acid sequences were searched against 

the Swiss-Prot (downloaded June 2017) (UniProt Consortium et al. 2017) and 

Comprehensive Antibiotic Resistance gene (CARD, downloaded May 2017; 26) databases 

using blastp (Camacho et al. 2009) for functional annotation. Best matches to the Swiss-

Prot database with >80% query coverage, >40% identity and >35 amino acid alignment 

length were kept for further analyses. A more stringent cut off was used for best matches 

to the CARD (>40% identity over >90% of the read length) to minimize false positive 

matches. 

4.7.3.5 Detection of cow and human gut microbiome associated sequences: 

Searches for cow gut associated sequences were performed using our own collection of 

cow fecal metagenomes from six cow individuals collected in Georgia, USA. DNA 

extracted from cow fecal material underwent the same library prep, DNA sequencing and 

quality trimming and processing as described above. Short reads for both the cow gut and 

CA sediment metagenomes have been deposited to the SRA database (submission IDs: 

PRJNA545149 and PRJNA545542, respectively). Predicted genes (as nucleotides) from 

all six individual cows were pooled together and de-replicated at 95% identity using the 

CD-HIT algorithm (Options: -n 10, -d 0; (Fu et al. 2012)) resulting in 459,176 non-

redundant cow gut metagenome “database” sequences. Human gut-associated sequences 

were assessed based on comparisons of short-reads against the Integrated Gene Catalog 

(IGC) of human gut microbiome genes (MetaHIT Consortium et al. 2014), heretofore 
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referred to as Human Gut Database (HG) for clarity. The abundance of cow and human gut 

signal in the short-read metagenomes was determined based on the number of reads from 

each dataset matching these reference sequences using blastn v2.2.29 with a filtering cut 

off of >95% identity and >90% query length coverage. Due to under-sampling of the total 

community diversity at our sequencing depth, these more comprehensive, whole gut 

microbiome databases were preferred over a specific suite of biomarkers for anthropogenic 

pollution, which are less likely to be detected in the metagenomes by chance, compared to 

the whole cow or human gut microbiome. 

4.7.3.6 Abundance of specific antibiotic resistance (ARG) and production genes using 

ROCker: 

Dynamic filtering cut-off models targeting a tetracycline resistance gene (tetM) and two 

antibiotic production genes (oxyT and KSα) were designed with ROCker v1.3.1, as 

previously described (Orellana, Rodriguez-R, and Konstantinidis 2017). Reference 

sequences for model building were manually selected from public databases and models 

were built for 150bp reads and default parameters. The reference sequences and ROCker 

models are available at http://enve-omics.ce.gatech.edu/rocker/models. Short reads were 

searched against the reference sequences used to build the model with blastx. The ROCker 

models were used to filter matches, which were subsequently divided by the median 

reference gene length in order to calculate sequencing coverage and were then normalized 

for genome equivalents as described below. Correlation between abundances of antibiotic 

production and resistance genes was determined using linear regression. 

4.7.3.7 Quantification of genome equivalents (GE): 
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Average genome size and genome sequencing depth (i.e., the average sequencing depth of 

single copy genes) were determined for each sample using MicrobeCensus v1.0.6 with 

default parameters (Nayfach and Pollard 2015). The sequencing depth of reference genes 

with a given annotation was estimated for each dataset (in reads/bp), then divided by the 

corresponding average genome sequencing depth and summed to give the total GEs per 

sample. 

4.7.3.8 Mash and multivariate analysis: 

MASH v1.0.2 (Ondov et al. 2016) was used to assess overall whole-community similarity 

among metagenomes in a reference database-independent approach (Options: -s 100000). 

Functional gene and 16S rRNA gene-based OTU count matrices were median-normalized 

using the R package DESeq2 (v.1.16.1; (Anders and Huber 2010)). Pairwise Bray-Curtis 

and weighted UniFrac (16S only) dissimilarity indexes of the normalized counts were used 

for principal component analysis (PCA) and non-metric multidimensional scaling (NMDS) 

analysis in order to assess whole-community gene functional and taxonomic (16S rRNA 

gene OTUs) similarity. The significance of metadata parameters on the NMDS ordinations 

was performed using the ecodist and envfit functions of the R package vegan v2.4.4 

(indices included: location, sampling time, ddPCR counts for STEC, same day 

precipitation, 5-day precipitation, solar radiation, air temp, soil temp, and humidity). The 

two west Salinas samples (WS1 and WS2) were excluded from this analysis in order to 

minimize confounding variation of temporal and spatial differences. In order to control for 

spatial variance, a more rigorous distance-based redundancy analysis (db-RDA; (Legendre 

and Anderson 1999)) was used to investigate the correlation to metadata using the capscale 
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function in the R package vegan (included same indices as above, but with 

Condition(location) constraint on ordinations).   

4.7.3.9 In-silico detection of E. coli in sample metagenomes: 

The presence of any E. coli in the metagenomes was determined using a blastn search of 

short reads against an STEC reference genome (accession NC_002695) that had been 

filtered to remove non-diagnostic (i.e. highly conserved among phyla) regions with 

MyTaxa (Luo, Rodriguez-R, and Konstantinidis 2014). Only matches with nucleotide 

identity  >95% and alignment length >97% were used to calculate relative abundance of E. 

coli in the metagenomes. This level of sequence diversity (nucleotide identity >95%) 

encompasses well the diversity within the E. coli-Shigella spp. group; thus, any E. coli 

populations present in the metagenomes at high enough abundance would be detected at 

this filtering cutoff. The best hit output from blastn was also analyzed with imGLAD 

(Castro et al. 2018), a tool that can estimate the probability of presence and limit of 

detection of a reference/target genome in a metagenome. 

4.7.3.10 Determination of DA taxa and gene functions: 

Functional annotations of the recovered protein sequences were summarized into several 

hierarchical ranks including metabolic pathways and individual protein families based on 

the SEED classification system (Overbeek et al. 2005). The 16S rRNA gene OTUs were 

placed into taxonomic groups based on the lowest rank of taxonomic classification (genus, 

family etc.) shared by 90% or more of the sequences within the OTU using MacQiime 

v.1.9.1 (Caporaso et al. 2010). DA functional annotation terms (subsystems) or OTUs were 

identified in samples grouped by location (e.g., pairwise comparison of all 10 TOWOSR 
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vs. all 10 GABOSR and vs. all 7 upstream “pristine control” sites) using the negative 

binomial test and false discovery rate (Padj <0.05) as implemented in DESeq2 v1.16.1 

(Anders and Huber 2010). Subsystems with Log2 fold change (L2FC) >1 or taxa with L2FC 

>2 were manually grouped into broader categories based on known functional or 

taxonomic similarities, respectively (Figures 3 & Appendix B, Figure B 6), which were 

then normalized by library size (per million read library). A larger L2FC cutoff was used 

for taxa to account for the larger dataset size and allow for inspection of the taxa 

contributing most to differential abundance between the locations. The taxonomic 

assignment of these DA taxa were confirmed against the SILVA database (downloaded 

October 2018; (Yilmaz et al. 2014)).  Each subsystem or taxonomic category was then 

divided by its average sequencing depth across all samples to provide unbiased counts for 

presentation purposes. 

4.7.3.11 Comparison of putative anthropogenic signals observed in California sediments 

to metagenomes from other environments: 

Publicly available metagenomes from other studies were used to compare abundances of 

reads annotated as ARG, HG, and cow gut with the results obtained for the California 

sediment datasets reported here. These metagenomes included: three Montana River 

sediments (MT; (Gibbons et al. 2014)), two temperate agricultural soils from Illinois (Hav 

and Urb; (Orellana et al. 2018)), an Alaskan tundra soil (AK; (Johnston et al. 2016)), one 

sample from the Ganges River near Agra, Uttar Pradesh (Agra; (S.-Y. Zhang et al. 2019)), 

and one from the Kalamas River in Greece (Kal; (Meziti et al. 2016)). Short read 

metagenomes for MT samples were downloaded from MG-RAST ((Keegan, Glass, and 

Meyer 2016); MG-RAST IDs: 4481974.3, 4481983.3, 4481956.3). The remaining datasets 
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were obtained from the NCBI short read archive (SRA) database (Hav: ERR1939174, Urb: 

ERR1939274, AK: ERR1035437, Agra: SRR6337690, Kal: SRR3098772 ). Reads from 

these metagenomes were comparable to the ones from this study (100 – 150bp paired-end 

Illumina sequencing) and underwent the same trimming, annotation (against the CARD, 

HG, and cow gut databases only) and gene count normalization protocol as described 

above. The Kruskal-Wallis test in R was performed to determine significantly different 

mean abundances between groups . Alpha diversity and taxonomic comparisons were 

performed (for MT datasets only) based on metagenomic reads encoding fragments of the 

16S rRNA gene, which were identified as described above. 
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CONCLUSIONS AND FUTURE PERSPECTIVES 

Waterborne diseases resulting from fecal contamination in the environment are a 

significant public health issue worldwide. For example, diarrheal disease caused by 

waterborne infections are a main cause of death in children under five. Water scarcity is 

expected to rise along with global population and urbanization; as such, reclaimed 

wastewater will be necessary to meet growing water demands. Reclaimed wastewater or 

“brown” water is increasingly being used for agricultural irrigation to produce food and to 

replenish depleting groundwater. Therefore, reliable and consistent water quality 

monitoring will become even more important as these trends continue. 

Current FIB and MST markers are becoming obsolete for many reasons (e.g., lack host 

specificity and sensitivity, poor correlation to pathogens, etc.) and are unlikely to serve as 

indicators for emerging fecal-related contaminants, such as antibiotic resistance genes 

(ARGs). Furthermore, qPCR only detects marker genes that match the specific primers and 

probe, so it cannot capture novel targets and may miss some of portions of the target host 

population that show nucleotide polymorphisms relative to the primer sequences. 

Metagenomic sequencing effectively captures both phylogenetic and functional diversity 

in a water sample simultaneously and is suitable for overcoming several of the limitations 

associated with culture-based and qPCR methods (described earlier in this thesis).  

This thesis primarily focused on using meta-omics techniques to evaluate the “gold 

standard” FIB, E. faecalis, and discover novel targets from host specific gut sequences. We 

identified several metagenome-assembled genomes (MAGs) and functional genes as 

promising new targets for improved MST and for distinguishing fecal contamination from 
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human or livestock (cows and pigs) sources. Notably, the identified MAGs differ from the 

most commonly used FIB both taxonomically and functionally, which suggests that better 

biomarkers may be found among novel taxa that have not been previously considered for 

MST. Further, we were unable to effectively distinguish enteric E. faecalis from their 

naturalized counterparts based on our mesocosm incubations, an important limitation that 

is not applicable to the newly proposed MAGs because they are strict anaerobes and died 

off quickly under our simulated aerobic aquatic habitat. We have also not detected these 

MAGs in other (presumably) un-polluted aquatic samples. Overall, our results confirmed 

our overarching hypothesis that functional genes related to host-microbe interactions 

carried in strict anaerobes are likely the better targets for MST compared to facultative 

anaerobes like E. faecalis and E. coli.   

This thesis also offered critical insights on the persistence of markers and their decay 

rates under oligotrophic, freshwater conditions. This decay information will be useful for 

determining the age of pollution events and integrating into more accurate quantitative 

microbial risk assessment (QMRA) models. Notably, although the MAGs we assembled 

were highly host-specific, they all showed similar decay characteristics and the majority of 

MAGs from all three hosts did not persist longer than four days (Chapter 3). Furthermore, 

our rRNA/rDNA analysis in Chapter 2 showed that E. faecalis significantly reduced 

metabolic activity four days after being introduced into an aerobic, oligotrophic 

environment. These results were consistent with a recent QMRA study that predicted that 

the gastrointestinal infection risk from sewage contamination in surface waters is not 

significant (<3% chance of infection) after 3.3 days (Boehm et al. 2018) in accordance with 

the EPA risk threshold for bathing water (USEPA RWQC 2012). The prediction from 
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Boehm and colleagues was based on published decay constants for pathogens and FIB from 

more than 70 publications. The fact that different microbes (including the FIB E. faecalis) 

and pathogens from sewage, human, cow, and pig guts have apparently similar persistence 

of about 3-4 days in aerobic surface water environments suggests that this is likely a robust 

timeline on which to base public health risk assessments. In other words, fecal pollution 

that is more than 4 days old is unlikely to represent a significant risk to public health, 

however it is still unclear whether this is affected by the relative volume or concentration 

of pollution levels (e.g., if infection risk persists longer than four days in waters with very 

high concentrations of fecal pollution). Nevertheless, being able to accurately distinguish 

the sources of fecal pollution is still valuable for remediating chronically polluted waters. 

Thus, developing robust host-specific MST biomarkers is still critical. 

We also demonstrated the advantages of metagenomic methods over traditional qPCR 

and culture-based tests such as qPCR assays targeting (allegedly) host-specific regions of 

the 16S rRNA gene in the Bacteroides. The most commonly used MST qPCR marker, 

HF183, performed quite poorly compared to the putative biomarker MAGs because it was 

not reliably detected in two of the three human stool samples used here, and thus, 

underestimated fecal contamination risk. In contrast, the other qPCR markers (ruminant 

specific Bacteroides 16S and human mtDNA) were detectable and persisted for 14 days, 

indicating they likely over-estimate the infection risk based on the QMRA predictions 

mentioned above. Although targeting an entire MAG or metagenome is currently not 

economically feasible for water quality monitoring assays, these results suggest that a 

single qPCR target is likely not sufficient to accurately determine public health risk. A suite 
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of markers that can account for imperfect host sensitivity and incorporate accurate decay 

information will likely give better risk estimates. 

As cost of sequencing continues to decrease, it may be possible to monitor water quality 

directly with metagenomic techniques. Currently, metagenomics is not suitable for rapid 

water quality decision making because the total time needed from DNA extraction to 

sequencing takes ~39-55 hours with the Illumina platform (Hong et al. 2020), which is 

longer than even traditional culture-based tests (which take 24 hours). The turn-around 

time can potentially be reduced with new technologies such as the Oxford Nanopore 

sequencing platform, whose small, hand-held sequencers allow for metagenome 

sequencing in remote areas as well as standardization of the associated bioinformatics 

pipelines to process the sequence data (Quick et al. 2016). This feature of Oxford Nanopore 

may also make metagenomic techniques more accessible for developing nations that have 

limited infrastructure and resources (Roy et al. 2018), and often experience more serious 

outbreaks and prevalent issues with waterborne diseases as a result of poor water and 

sanitation systems. 

In addition to wet lab and sequencing, there are also bioinformatics and data analysis 

challenges to address. A major bottleneck lies in establishing well-curated databases to 

facilitate the ability to make meaningful inferences from metagenomic data. Several recent 

studies have made considerable effort to sequence metagenomes and/or recover MAGs 

from cow rumen (Wilkinson et al. 2020, Almeida et al. 2020, Wang et. Al 2019, Stewart 

et al. 2019) as well as pig (Xiao et a. 2016, Wang et al. 2019) and chicken guts (Gilroy et 

al. 2020). However, this information has not yet been synthesized toward novel MST 

marker development. Future work should expand on the collection of host fecal samples 
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and integrate publicly available data to better assess the host specificity and sensitivity of 

markers across more broad geographical regions. A similar undertaking to catalogue the 

diversity of oil-associated microbes has already been successfully completed by other 

members of the Konstantinidis lab (Karthikeyan et al. 2020). The putative host-specific 

MAGs and functional genes identified in this thesis can be benchmarked against these more 

comprehensive databases in order to determine if they are applicable to more than just the 

local region of Georgia explored here. In addition to host specific databases for MST, 

curated collections of biological pathogens associated with fecal contamination (especially 

viruses and protozoa because less is known about them) would also be helpful for 

monitoring public health and predicting waterborne outbreaks since metagenomics can 

recover the pathogens, in addition to the FIB (or other biomarker) organisms. Ideally, MST 

and water quality monitoring markers should be quantitative and target abundance 

normalization methods be standardized in order for robust comparisons against regulatory 

standards. In this thesis we improved on the semi-quantitative capabilities of metagenomic 

methods using total cell counts from qPCR (Chapter 3) in order to estimate absolute 

abundances (cells/mL) and the limit of detection for target MST genomes in lake water 

mesocosm metagenomes. Therefore, the protocols presented in this thesis should be useful 

for applying metagenomics to water quality monitoring. 

 The work presented here applied cutting-edge, next-generation sequencing 

techniques for water quality monitoring. However, most municipalities are still primarily 

using traditional culture-based tests and official EPA guidelines have only recently begun 

to adopt molecular techniques like qPCR. For most local water quality monitoring 

agencies, even qPCR is not feasible because it requires specialized equipment and more 
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technical expertise compared to simple culturing tests. Therefore, in order for 

metagenomics to be viable for routine water monitoring, efforts should be made to 

automate not only the wet-lab components but also the bioinformatic analyses of the 

resulting data. This can be done by developing machine learning models to automatically 

classify different sources of fecal pollution with key genetic signatures from different hosts 

that are recovered in the metagenomic dataset. Ideally, the resulting models and databases 

would be wrapped into a single, centralized software that includes all quality filtering and 

trimming steps. Water managers could simply submit a water metagenome to the server, 

which reports results of the analysis as the probability of specific source pollution and 

public health risk. 

This thesis also highlighted some of the limitations of using metagenomics for MST 

and public health surveillance such as issues related to the limits for detecting a target 

genome in an environmental metagenome. In high diversity environments such as 

sediments, detecting rare community members (e.g., pathogens) with metagenomics is 

likely not economically viable with brute force, high coverage sequencing. However, in 

more highly concentrated and less diverse microbial communities, such as sewage, public 

health surveillance with metagenomics has already shown promise based on the work 

conducted as part of this thesis as well as other parallel studies. For example, a large survey 

of sewage metagenomes from 60 countries found that antibiotic resistance gene (ARG) 

abundance was correlated to socioeconomic, health, and environmental factors and 

suggested that improving sanitation could limit global burden of antimicrobial resistance 

(Hendriksen et al. 2019). Viruses are also becoming increasingly important for MST and 

public health surveillance, especially in the wake of COVID19. The Konstantinidis and 
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Brown labs are already working on a project to monitor COVID19 cases and potential 

outbreaks on the Georgia Tech campus using raw sewage from the student dormitories. 

Viruses are the most abundant entities on the planet (orders of magnitude more abundant 

than bacteria). Bacteriophages, such as CrAssphage, are also promising areas to investigate 

for improved MST in environments where pollution is more dilute but still a significant 

risk to public health. As a result of cutting-edge metagenomic and viromic technologies, 

scientists have been able to characterize the immense microbial diversity in the human 

microbiome and use this information to help prevent and cure diseases. This thesis 

demonstrated that the application of these technologies for MST can similarly help to 

improve public health monitoring and risk assessment and ultimately help to reduce the 

incidence and burden of waterborne diseases. 
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APPENDIX A. SUPPLEMENTAL MATERIAL FOR CHAPTER 3 

A.1 Supplemental figures and tables 

Table A 1: Total community covered by our sequencing depth as determined by Nonpareil 

v3.0. Averages from three biological replicates and standard deviation are shown. 

Day Cow Pig Human Neg Control 

0 26.9  2.4 49.5  13.0 79.6  3.4 46.4 

1 27.4  6.8 55.0  3.0 80.9  1.9 53.6 

4 54.9  4.0 59.2  2.3 74.2  10.9 70.8 

7 79.6  5.5 72.5  9.5  77.7  2.4 76.0 

 

 

Figure A 2: Total community covered by our sequencing depth as determined by 

Nonpareil v3.0. Averages from three biological replicates and standard deviation are 

shown. 
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Figure A 2: Fraction of the microbial community represented by MAGs. The graph 

shows the total number of mesocosm metagenome reads that matched to any of the ~500 

MAGs (fecal, D7 and Lake Lanier) that were used in this study. 
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Table A 2: Metagenome sample, trimming and nonpareil diversity information for 

dialysis bag mesocosm, lake water negative control and host fecal samples sequenced 

in this study. Results are reported for reads after quality trimming and removal of host 

DNA with bmtagger (for fecal samples only). 

 

 

 

Nonpareil

Sample ID Sample Type Host Type Day Samplng Date
#paired reads 

(trimmed)

Avg. trimmed 

length (bp)

Sample 

size (Gbp)
Diversity

H1_D0 feces:lake water mix human 1.21E+07 131.27 1.59E+09 17.79

H2_D0 feces:lake water mix human 8.64E+06 128.79 1.11E+09 18.17

H3_D0 feces:lake water mix human 1.32E+07 125.77 1.67E+09 18.05

H1_D1 feces:lake water mix human 9.72E+06 130.66 1.27E+09 17.73

H2_D1 feces:lake water mix human 1.25E+07 124.11 1.55E+09 18.11

H3_D1 feces:lake water mix human 1.58E+07 124.72 1.97E+09 18.25

H1_D4 feces:lake water mix human 1.01E+07 131.89 1.33E+09 17.94

H2_D4 feces:lake water mix human 1.73E+07 120.10 2.07E+09 18.11

H3_D4 feces:lake water mix human 1.23E+07 122.47 1.50E+09 19.33

H1_D7 feces:lake water mix human 1.23E+07 126.89 1.56E+09 17.90

H2_D7 feces:lake water mix human 8.35E+06 130.38 1.09E+09 17.74

H3_D7 feces:lake water mix human 1.22E+07 123.73 1.52E+09 17.18

C7_D0 feces:lake water mix cow 8.19E+06 130.46 1.07E+09 21.24

C8_D0 feces:lake water mix cow 8.64E+06 130.80 1.13E+09 21.01

C9_D0 feces:lake water mix cow 8.78E+06 130.49 1.15E+09 21.14

C7_D1 feces:lake water mix cow 1.00E+07 121.65 1.22E+09 20.93

C8_D1 feces:lake water mix cow 8.39E+06 131.85 1.11E+09 20.82

C9_D1 feces:lake water mix cow 3.20E+06 121.48 3.89E+08 20.57

C7_D4 feces:lake water mix cow 7.82E+06 131.49 1.03E+09 19.52

C8_D4 feces:lake water mix cow 9.76E+06 127.57 1.24E+09 18.74

C9_D4 feces:lake water mix cow 7.19E+06 130.98 9.41E+08 19.28

C7_D7 feces:lake water mix cow 1.48E+07 125.75 1.86E+09 18.55

C8_D7 feces:lake water mix cow 1.41E+07 124.22 1.75E+09 16.99

C9_D7 feces:lake water mix cow 1.22E+07 123.14 1.50E+09 17.77

P7_D0 feces:lake water mix pig 1.07E+07 125.44 1.34E+09 19.94

P8_D0 feces:lake water mix pig 8.99E+06 122.63 1.10E+09 20.53

P9_D0 feces:lake water mix pig 1.14E+07 126.52 1.44E+09 19.11

P7_D1 feces:lake water mix pig 1.39E+07 128.11 1.79E+09 19.92

P8_D1 feces:lake water mix pig 1.35E+07 126.77 1.72E+09 19.98

P9_D1 feces:lake water mix pig 9.13E+06 131.38 1.20E+09 19.23

P7_D4 feces:lake water mix pig 1.07E+07 127.09 1.35E+09 19.22

P8_D4 feces:lake water mix pig 1.05E+07 125.83 1.32E+09 19.29

P9_D4 feces:lake water mix pig 6.19E+06 129.88 8.04E+08 19.05

P7_D7 feces:lake water mix pig 1.68E+07 123.94 2.08E+09 17.60

P8_D7 feces:lake water mix pig 1.07E+07 124.64 1.33E+09 19.17

P9_D7 feces:lake water mix pig 1.32E+07 125.95 1.66E+09 18.84

Human LLD0 Lake water neg control 0 180625 1.11E+07 124.40 1.38E+09 20.33

Animal LLD0 Lake water neg control 0 170928 1.01E+07 128.74 1.31E+09 20.73

Animal LLD1 Lake water neg control 1 170929 3.54E+07 107.62 3.81E+09 20.94

Animal LLD4 Lake water neg control 4 171002 3.39E+07 104.97 3.56E+09 19.52

Animal LLD7 Lake water neg control 7 171005 3.64E+07 102.72 3.74E+09 19.00

7 171005

0 180625

1 180626

4 180629

7

0 170928

1 170929

4 171002

171002

7 171005

Metagenomes

0 170928

180702

1 170929

4
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Table A 2 continued 

 

 

cow4 feces cow n/a n/a 2.39E+07 123.46 2.96E+09 19.75

cow5 feces cow n/a n/a 2.87E+07 118.37 3.39E+09 19.53

cow6 feces cow n/a n/a 2.44E+07 121.66 2.97E+09 20.79

cow7 feces cow n/a n/a 2.82E+07 125.81 3.55E+09 21.31

cow8 feces cow n/a n/a 2.92E+07 125.42 3.67E+09 21.07

cow9 feces cow n/a n/a 2.80E+07 121.80 3.42E+09 21.28

pig4 feces pig n/a n/a 2.65E+07 124.30 3.29E+09 19.47

pig5 feces pig n/a n/a 2.27E+07 124.20 2.82E+09 19.01

pig6 feces pig n/a n/a 2.50E+07 128.33 3.21E+09 19.62

pig7 feces pig n/a n/a 2.04E+07 123.17 2.51E+09 19.53

pig8 feces pig n/a n/a 2.22E+07 124.54 2.76E+09 19.56

pig9 feces pig n/a n/a 2.07E+07 123.44 2.55E+09 19.15

hum1 feces human n/a n/a 7.46E+06 129.50 9.66E+08 17.83

hum2 feces human n/a n/a 8.23E+06 130.07 1.07E+09 17.96

hum3 feces human n/a n/a 9.39E+06 127.58 1.20E+09 17.14
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Table A 3: qPCR assay reaction details and performance. (a) Primers and probes are listed in the following order: forward, reverse, 

hydrolysis probe. (b) All of the hydrolysis probes were labeled at the 5' end with the reporter dye FAM (6-carboxyfluorescein) and at 

the 3' end with a non-flourescent iowa black quencher (BHQ) with a minor groove binding moiety. Except the EPA1611 assay which 

used a TAMRA quencher dye as described in the EPA Method 1611. (c) Reported as the average for all plates ran EXCEPT for 

EPA1611, in which results for the composite curve used to calculate the average number of target sequences in calibrator cells are 

reported. 

  

Assay ID
Target 

organism
Target gene Primer/Probe name (a) Primer/Probe sequence (5' to 3' direction) (b) Primer/Probe Ref

Final 

Primer 

conc. (uM)

Standard curve 

intercept, slope, R2 (c)
%Efficiency

HF183 ATCATGAGTTCACATGTCCG

Bernhard and Field 

2000 0.25

BFDRev CGTAGGAGTTTGGACCGTGT Converse 2009 0.25

BFDFAM CTGAGAGGAAGGTCCCCCACATTGGA Converse 2009 0.25

BacR_f GCGTATCCAACCTTCCCG 0.1

BacR_r CATCCCCATCCGTTACCG 0.1

BacR_p CTTCCGAAAGGGAGATT 0.5

human forward CAGCAGCCATTCAAGCAATGC 0.25

human reverse GGTGGAGACCTAATTGGGCTGATTAG 0.25

human probe TATCGGCGATATCGGTTTCATCCTCG 0.25

E. faecalis forward CGCTTCTTTCCTCCCGAGT 0.25

E. faecalis reverse GCCATGCGGCATAAACTG 0.25

E. faecalis probe CAATTGGAAAGAGGAGTGGCGGACG 0.25

Bac1055YF AATAAATCATAAACTCCTACGGGAGGCAGCAGT 0.3

Bac1392R AATAAATCATAACCTAGCTATTACCGCGGCTGCT 0.3

Bac1115Probe CGGCTAACTMCGTGCCAG 0.3

ECST748F GAGAAATTCCAAACGAACTTG 1

ENC854R CAGTGCTCTACCTCCATCATT 1

GPL813TQ TGGTTCTCTCCGAAATAGCTTTAGGGCTA 0.08

EPA1611

HF183

RumBac

HUMmt

EF16S

GenBac16S

Human-

specific 

Bacteroides

16S rRNA (V2 

region)
39.52, -3.67, 1.00 87.90

Ruminant-

specific 

Bacteroidetes

16S rRNA Reischer et al. 2006 43.31, -3.64, 1.00 88.21

Enterococcus 

faecalis
16S rRNA

Santo-Domingo et al. 

2003
39.59, -3.68, 1.00 87.08

Human 

mitochondrial 

genome

NADH 

dehydrogenase 

subunit 5

Caldwell et al. 2007 39.11, -3.58, 1.00 90.27

Enterococcus 

spp.
23S rRNA EPA Method 1611 40.74, -3.42, 0.97 96.25

Phylum 

Bacteria

Universal 16S 

rRNA
Ritalahti et al. 2006 43.96, -3.87, 1.00 81.21
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Table A 4: Assembly information for host fecal and Day 7 (D7) samples. 

 

 

 

 

 

  

Sample ID
#contigs 

(>500bp)

Total 

length (bp)
N50

#Predicted 

Genes

cow4 34,981       9.35E+07 3169 115,590      

cow5 37,498       8.18E+07 2283 102,542      

cow6 40,433       8.50E+07 2170 108,942      

cow7 43,338       9.01E+07 2113 109,649      

cow8 51,152       1.01E+08 2007 125,567      

cow9 45,384       8.65E+07 1913 105,379      

pig4 41,805       1.22E+08 3964 143,550      

pig5 32,798       8.84E+07 3277 107,477      

pig6 48,532       1.33E+08 3354 158,585      

pig7 36,439       9.41E+07 3009 113,188      

pig8 40,874       1.05E+08 3008 125,345      

pig9 40,308       1.06E+08 3062 127,158      

hum1 15,219       5.70E+07 6111 55,972        

hum2 16,772       6.35E+07 6464 65,157        

hum3 13,127       4.71E+07 5913 49,717        

H1_D7 16,680       4.90E+07 4149 52,059        

H2_D7 10,259       4.17E+07 7402 42,521        

H3_D7 7,784         2.46E+07 5105 26,536        

C7_D7 20,697       7.74E+07 7095 79,699        

C8_D7 7,523         3.05E+07 19034 31,461        

C9_D7 19,243       7.03E+07 5130 69,004        

P7_D7 28,659       8.33E+07 3763 90,883        

P8_D7 30,318       7.65E+07 2744 83,548        

P9_D7 26,478       8.84E+07 5184 93,057        
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Figure A 3: Heatmap of presence/absence for different phenotypes of all 13 human 

fecal MAGs as determined by Traitar. 
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Figure A 4: Heatmap of presence/absence for different phenotypes of all 17 cow fecal 

MAGs as determined by Traitar. 
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Figure A 5: Heatmap of presence/absence for different phenotypes of all 49 pig fecal 

MAGs as determined by Traitar. 
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Figure A 6: KEGG modules present in host MAGs identified as potential biomarkers. 

Only the MAGs identified as potential biomarkers are shown here for visualizaiton 

purposes.  
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Figure A 7: Abundance kinetics of Day 7 (D7) MAGs in the fecal mesocosm samples 

over time. The collection of 17 D7 MAGs assembled from the D7 mesocosm 

metagenomes was searched against the time-series mesocosm metagenomes and their 

abundances (rows) are shown for all 17 MAGs that be detected in at least one metagenome.  

Each column is a mesocosm metagenome and only the  D4 and D7 samples are shown 

because no D7 MAGs were detectable  in any of the earlier time points. Naming style: 

number refers to the sample time in days while the H, C, or P refers the human, cow or pig 

biological replicate mesocosm. Abundance is expressed as % of total bacterial community 

(i.e. TAD80 divided by MicrobeCensus average genome sequencing depth). 
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Figure A 8: Decay kinetics of MAGs in the uninoculated lake water negative control 

dialysis bags. Only a single set of negative control bags was used for the cow and pig 

experiments because they were carried out at the same time. Abundance is reported as the 

percent of the total bacterial community (i.e. TAD80 (>95%ID) divided by genome 

equivalents) (Top) Decay of the 139 LL MAGs that could be detected in any of the negative 

control mesocosms from the 477 LL MAG collection (Rodriguez-Rojas et al. 2019) 

(Bottom) Only 8 of the 17 high quality D7 MAGs could be detected in the D7 negative 

control sample. No D7 MAGs were detected in any of the earlier time points. 
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Figure A 9: Genetic relatedness among the host fecal and D7 MAG recovered by our 

study. Heatmap comparing average amino acid (%AAI) of the MAGs assembled from pig, 

cow, and human fecal and D7 mesocosm metagenomes. 
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Figure A 10:   Gene functions enriched between the host fecal and D7 mesocosm 

metagenomes. The heatmap shows the KEGG functions (rows) that were differentially 

abundant between the different host types (columns) with Padj < 0.05 as determined by 

DESeq2 analysis. Color scale indicates the abundance relative to the average across all 

metagenome samples. 
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Figure A 11: Alignment of human fecal contigs to B. dorei 16S reference gene. Contigs 

from hum1 (top) and hum3 (bottom) fecal assemblies with best match (base on blastn 

search) to the 16S gene from the B. dorei reference genome (Table 3-1) with mismatches 

to the forward primer (highlighted in orange). 
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Figure A 12: Decay of refence genomes for common MST markers. The human 

mtGenome, B. dorei and CrAssphage were not detected in any of the cow or pig 

mesocosms or negative controls. (A) Abundance of the common enteric commensal strain, 

Escherichia coli HS (accession: NC_009800.1), in the fecal mesocosms over time. 

Abundance is reported as % of total bacterial community (i.e., TAD80 divided by genome 

equivalents; details in the main text).  (C) Abundance of the human mitochondrial genome 

(accession: J01415.2) in the human fecal mesocosms expressed as sequencing depth (i.e., 

TAD80 at >95%ID) divided by MG library size in Gbp. 
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APPENDIX B. SUPPLEMENTAL MATERIAL FOR CHAPTER 4 

B.1 Supplementary Figures and Tables 

Table B 3: Trimming, assembly, and Nonpareil diversity information for all 27 

metagenomes sequenced as part of this study. 
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Table B 2: Gene names for the top 30 most abundant ARGs listed in Appendix B, Figure 

B 7 as described in the ontology metadata files for the Comprehensive Antibiotic 

Resistance gene Database. 

 

Gene ID Gene Name or Description

bcrA Bacitracin transport ATP-binding protein BcrA

macB Macrolide export ATP-binding/permease protein MacB

APH(3'')-Ib aminoglycoside phosphotransferase

sav1866 Putative multidrug export ATP-binding/permease protein SAV1866

PmrA Response regulator for polymyxin resistance PmrA

arlR Response regulator ArlR

mtrA transcriptional activator of the MtrCDE multidrug efflux pump

dfrE chromosome-encoded dihydrofolate reductase

novA type III ABC transporter

otrC tetracycline resistance efflux pump

vanRM transcriptional activator

vanRF Two-component response regulator

cpxR Transcriptional regulatory protein CpxR

arlS protein histidine kinase ArlS

lmrD chromosomally-encoded efflux pump that confers resistance to lincosamides

baeR Transcriptional regulatory protein BaeR

mdtC Multidrug resistance protein MdtC

bacA Undecaprenyl-diphosphatase

tlrC Tylosin resistance ATP-binding protein TlrC

lmrC chromosomally-encoded efflux pump that confers resistance to lincosamides

mexI efflux pump membrane transporter MexI

carA ABC transporter involved in macrolide resistance

dfrA3 integron-encoded dihydrofolate reductase

mexF efflux pump membrane transporter MexF

oleB ABC transporter in Streptomyces antibioticus and is involved in oleandomycin secretion

rosB potassium antiporter rosB

msrC chromosomal-encoded ABC-efflux pump

PmrF Undecaprenyl-phosphate 4-deoxy-4-formamido-L-arabinose transferase

cpxA Sensor histidine kinase CpxA

golS Transcriptional regulatory protein GolS
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Figure B 1: Sequencing coverage of the microbial community datasets included in this 

study. Average community coverage was estimated (solid lines) using the Nonpareil 

algorithm. Empty circles represent the actual community coverage estimate at the 

sequencing effort applied and arrows are the Nonpareil diversity estimates. The lower 

horizontal red line indicates 95% average community coverage. The nonpareil diversity 

index and estimated average coverage for each sample can be found in Appendix B, Table 

B 2. Sample T140116 from TOWOSR was marked red due to its outlier diversity estimates. 
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Figure B 2: Taxonomic composition of 16S rRNA gene OTUs. OTUs were formed 

by closed-reference OTU picking at 97% nucleotide identity level as implemented in 

MacQiime v1.9.1. (A) OTU abundances summarized at phylum level. (B) Class level 

OTUs with >3% relative abundance. Samples from TOWOSR and GABOSR are 

presented by location through time (indicated by letter T or G and the sample collection 

date).  



 169 

 

Figure B 3: Taxonomic assignment of functional gene-encoding reads at domain level 

based on TrEMBL annotations. Protein-coding short reads were annotated against the 

TrEMBL database and converted to the phylum level classification as described in the main 

text. 
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Figure B 4: Spatial separation is the strongest driver of functional and taxonomic 

diversity among Salinas Valley microbial communities. PCA ordination of (A) MASH 

(B) functional gene, (C) 16S rRNA gene OTU Bray-Curtis and (D) weighted UniFrac 

distances. Note that location (as shown by the different colors) was the only significant 

correlating parameter in all four dataset/ordinations (ADONIS: P=0.001, R2= 0.44, 0.67, 

0.41, and 0.56, respectively).  

A B

C D

      - GABOSR      -TOWOSR      -GC       -TC       -WS1      -WS2
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Figure B 5: Correlation of diversity patterns to measured environmental parameters. Non-metric multidimensional scaling 

using Bray-Curtis dissimilarities of (A) functional gene, (B) 16S rRNA gene OTU, and (C) Weighted Unifrac distances of OTU 

count data. West Salinas samples (WS1 and WS2) were omitted in order to minimize confounding variation of time and space 

differences (see main text for further details). Samples are grouped into locations as specified in Table 4-2, which was 

significantly correlated to all three datasets/ordinations (A: P=0.001, R2=0.845; B: P=0.001, R2=0.0.787; C: P=0.001, R2=0.726). 

Arrow vectors show correlation with local weather data. 
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Figure B 6: Taxonomic profile of differentially abundant OTUs between the Salinas Valley creek sediment communities. 

Heatmap showing count data for 795 differentially abundant OTUs between locations (TOWOSR, GABOSR, and Upstream) 

with log2 fold change > 2 and Padj < 0.05 that were summarized into 35 taxonomic groups as described in Chapter 4 
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Supplementary Data S2. Color scale indicates the abundance relative to the average of all samples (increasing from blue to red). 

Letters T or G and date in the column names represent the sample site (TOWOSR or GABOSR) and collection date, respectively. 

TC, GC and WS represent the upstream TOWOSR Control, GABOSR Control, and West Salinas, respectively. 
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Figure B 7: Abundance of reads annotated as ARGs. Short reads were searched 

against the Comprehensive Antibiotic Resistance Database. The sequencing depth for 

each gene was divided by the normalization factor for each sample (average genome 

sequencing depth) and summed to get total genome equivalents per sample, (i.e., 

fraction of total genomes encoding the gene of interest, assuming a single-copy for each 

per genome). Full names or descriptions for the 30 genes listed here are provided in 

Appendix B, Table B 2.
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