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ABSTRACT 

This report summarizes the work performed during the first year of a 

research effort to determine the sound fields associated with jet engine 

inlet configurations. A solution approach for axisymmetric bodies based 

upon the integral formulation of the wave equation has been developed. 

This solution approach circumvents the uniqueness problems which normally 

occur at certain frequencies when "straight forward" solutions of the in-

tegral equation are obtained. A numerical method and a computer program 

for solving for the acoustic field associated with general inlet config-

urations and boundary conditions have also been developed. To evaluate 

the numerical method, computed and exact results are compared for a sphere 

and a finite length cylinder. For continuous boundary conditions, the 

agreement is within ten per cent over a range of nondimensional frequencies 

from one to ten. For discontinuous boundary conditions, the numerical errors 

increase by a factor of two. This report presents results for a given inlet 

configuration and the computed and exact solutions are shown to agree to 

within ten per cent over-the nondimensional frequency range from one to 

ten. 



I. INTRODUCTION 

This report summarizes the results obtained during the first year of 

support under AFOSR Contract Number F49620-77-C-0066. This contract was 

initiated on February 1, 1977. 

The research conducted under this contract is directed towards develop-

ing analytical techniques for predicting the characteristics of the radiated 

sound fields from jet engine inlets. Such capabilities are necessary to evalu-

ate the effectiveness of potential sound source modifications and the effi-

ciency of sound suppression techniques for fan and compressor noise attenua-

tion in inlets. During the first year, the conducted research efforts have 

concentrated on the development of an efficient analytical technique for the 

prediction of the radiated fields associated with lined inlet configurations. 

In the second year, experimental investigations will be conducted to provide 

data for comparison with the theoretical predictions. 

During the first year, a solution approach'based upon an integral formula-

tion of the wave equation has been developed and used to determine the charac-

teristics of the sound fields of several previously investigated geometries. 

Efficient numerical techniques have been devised for solving the integral 

equation, and the necessary computer programs have been written and tested. 

These programs are now capable of computing the surface and radiated sound 

fields for arbitrary geometries with lined or unlined surfaces and sound 

sources of arbitrary spatial dependence. These capabilities are necessary for 

the investigations of sound fields from jet inlet configurations. 

The efforts conducted under this contract has resulted in three publica-

tions
1

'
2,3 

which are included in Appendices A-C of this report. These publi-

cations provide more detailed descriptions of the research efforts conducted 
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under this contract. The research performed during the first year is sum-

marized in the following sections. 

II. ANALYTICAL TECHNIQUE.  

The general analytical method used to determine the radiated sound fields 

from arbitrary geometries is described in Appendix A. This technique is based 

on the integral form of the solutions to the wave equation. This general form-

ulation has been specialized to axisymmetric configurations, which are applic-

able to jet engine configurations which are of interest in this study, in Ap-

pendix B. 

The study of sound radiation involves the determination of the acoustic 

field over an infinite domain. However, with the integral formulation of the 

wave equation, the acoustic potential, which is proportional to the acoustic 

pressure, can be computed at any point in the far field solely from the values 

of the potential distribution at the surface. Thus, the problem is reduced to 

solving for the acoustic field at the surface only instead of over an infinite 

domain. 

Several problems are encountered while solving the integral equation 

governing the surface potential distribution. At certain frequencies the equa-

tion fails to yield a unique solution. These frequencies correspond to internal 

eigenfrequencies (or resonant frequencies) of the geometry under consideration. 

This nonuniqueness manifests itself when numerically solving the integral 

equation by causing the coefficient matrix of the system of linear algebraic 

equations which results from the application of approximate quadrature to the 

integral equation to become ill-conditioned, causing large numerical errors. 

2 



Using a method proposed by Burton and Miller (Ref. 13 of Appendix A), 

this behavior can be eliminated. This method consists of adding the inte-

gral equation for the normal velocity multiplied by a coupling constant. 

It is then proven that the solution for the acoustic potential field from 

the combined equation is unique for imaginary values of the coupling con-

stant. This analytical method was therefore incorporated in this study. 

Although other techniques can be used to avoid the uniqueness problem at 

certain frequencies (Refs. 4, 6, and 14 of Appendix A), the combined in-

tegral equation of. Burton and Miller was found to give the best results, 

and it required minimum computation times. 

In order to use the Burton and Miller method two problems had to be 

resolved. First, a strong singularity exists in the integrand of the com-

bined integral equation developed by Burton and Miller. In the present 

study, this equation was reformulated to obtain an equation containing only 

weakly singular terms which could be handled numerically. The second prob-

lem is connected with the choice of the coupling constant used by Burton 

and Miller in combining the integral equations for the potential and nor-

mal velocity. It has been found in this study that an optimum value for 

this parameter for use in numerical computations can be found. Although 

Burton and Miller showed that the parameter must contain a nonzero imagi- 

nary component, they gave no indication of how the results are affected by 

this parameter. The value which gives the best numerical results is i/k 

where i =V4- and k is the wave number. 
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III. NUMERICAL METHOD 

A. Integration Procedure  

To determine the acoustic field associated with a geometry, the integral 

equation describing the surface potential distribution must first be solved. 

Using this distribution, the potential at any exterior point can then be 

determined to generate the far field sound pattern. For general geometries, 

the integral equations cannot be solved exactly, and approximate methods 

must be used. These methods result in a system of linear, algebraic equations 

with complex coefficients which can be solved by complex Gauss-Jordan reduc-

tion to obtain the acoustic potential distribution at the surface. 

For the axisymmetric formulation used in this investigation, the surface 

shape is defined by a line in the radial r and axial z directions, and this 

line is rotated about the axis. The integral equation can then be separated 

into two line integrals; one in the tangential direction and one along the 

surface contour in the r - z plane. In the tangential direction, the line 

integrals are given by Eqns. (15)-(17) of Appendix B, which, in general, 

must be solved numerically. A 96-point Gaussian quadrature formula was used 

to evaluate these integrals. The computational error is approximately in-

versely proportional to the number of points used to evaluate the integrals 

in the tangential direction. Along the surface contour in the r - z plane, 

the integration of Eq. (18) in Appendix B is required. The integral over 

the perimeter is first separated into integrals over n subintervals of either 

constant or varying lengths. The acoustic potential is assumed constant over 

each subinterval and it is taken outside the integral. Finally, a two-point 

Gaussian quadrature formula is used to evaluate the components of the func-

tions defined by Eqs. (15)-(17) of Appendix B in the r- z plane over each 

subinterval. Increasing the order of the Gaussian quadrature does not sig- 
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nificantly affect the accuracy of the computations. However, the error, was 

found to decrease proportionately as the number subintervals n was increased. 

In another solution approach, the potential was assumed to vary linearly 

over each interval in order to improve the accuracy of the correct potential 

values. However, the results using this linear interpolation scheme were not 

as accurate as in the above-mentioned approach. The cause of the inaccuracies 

in this scheme have not been extensively studied because of time restrictions. 

However, the errors appear to arise from the implementation procedure used. 

When linear interpolation was applied to a finite cylinder, problems arose 

at the corner points. At these points the normal to the surface appearing 

in the integral equation is undefined. If the potential is assumed constant 

over each subinterval, subintervals can be taken on either side of this 

point which in effect avoids the corner points. The method used in applying 

the linear interpolation about these points strongly influences the computed 

results. Although several techniques were tried, none proved entirely satis-

factory. Also, for general surfaces for which the subintervals may be of un-

equal length, the difficulty in implementing the linear interpolation tech-

nique and its questionable value make this method impractical. Therefore, it 

will not be used in future studies unless significant improvements can be 

made. 

In another study involving the numerical evaluation of the integral 

equations, the effect of the coupling constant (a appearing in Eq. (23) of 

Appendix A) was investigated. In the method of Burton and Miller, the inte-

gral equations for the acoustic potential and normal velocity at the surface 

are combined into one equation. The terms from the potential equation are of 

order k whereas the terms from the expression for the normal velocity are of 
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order k
2 

Thus, as the frequency is increased, the terms of order k 2 

dominate. The results become less accurate because the combined equation 

in effect becomes the equation for the normal velocity. This equation, 

like the integral formula for the acoustic potential, yields large errors 

at certain frequencies when numerically evaluated. By choosing the coupling 

constant to be i/k, the terms of order k
2 

are now reduced to order k. Now, 

as the frequency is increased, the terms from the expression for the normal 

velocity do not become dominant, and the uniqueness problem is avoided at 

all frequencies. 

B. Evaluation of Geometric Parameters and Boundary Conditions  

The geometric parameters appearing in the integral Helmholtz equation 

(see Equation (23) of Appendix A) are the distances between points on the 

surface, the normal vector at each point, and the lengths of the subinter-

vals in the axial plane. The method for computing these parameters is pre-

sented in Section III of Appendix C. 

There are two types of boundary conditions which must be specified over 

the surface. The first consists of a forcing function which generates the 

acoustic field. In a jet engine inlet, most of the acoustic field is pro-

duced by disturbances caused by the interaction between the flow field 

produced by the fan blades and the stator waves. A literature search was 

conducted to determine the spatial dependence of the sound generated by the 

stator-blade interaction so that the resulting radiated sound pattern could 

be computed. Because of the complexity of the resulting expressions
4
, there 

was not sufficient time to use these predictions in the present research effort. 

However, both the analytical and numerical methods used in computing the radi-

ated sound field in the present study are capable of handling forcing functions 



of arbitrary spatial dependence in the r-z plane, such as those encountered 

in jet engine inlets. 

The second type of boundary condition is given by specifying the reaction 

of the surface to the wave motion. For rigid surfaces, the normal velocity 

(i.e., the normal derivative of the acoustic potential) is zero and all the 

sound incident on the surface is reflected. For nonrigid or sound absorbing 

surfaces, the normal velocity is nonzero since the surface now vibrates in 

response to the wave motion. The normal velocity at the surface is propor-

tional to the pressure oscillations (i.e., the acoustic potential) , of the 

surrounding fluid and the constant of proportionality is called the surface 

admittance. The integral wave equation involves both the acoustic potential 

and the normal acoustic velocity which means there is one equation for two 

unknowns. By using the admittance relationship, the normal velocity can be 

expressed in terms of the acoustic potential and the admittance. The result-

ing equation can then be solved for the potential. 

The admittance is a measure of the sound absorption characteristics of 

the surface. In jet engine inlets the surfaces are often lined with Helm-

holtz resonator arrays which absorb sound and reduce the noise radiated to 

the surroundings. Expressions for the admittances of these sound absorbing 

devices have been derived 5 and they can be used in the present investigation. 

In fact, the capability exists to predict the sound field produced from .a 

jet engine inlet for arbitrary sound source and admittance characteristics. 

C. Computer Program  

A computer program written in Extended FORTRAN IV has been developed 

for use on a CDC CYBER 70 computer for solving the system of linear alge-

braic equations which result from the numerical approximation to the inte-

gral wave equation. This program has been thoroughly checked out using 
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simple geometries for which exact solutions can be obtained. The program 

employs standard functions common to all FORTRAN compilers so that it can 

be used with minimum modifications on other computers. Generality is main-

tained in order to accommodate arbitrary surface geometries and boundary 

conditions. In the cases run to date, the computation time for determining 

the surface potential is given by the following approximate formula 

t = 0.05 (n)
2 

where t is the computation time in seconds and n is the number of subinter- 

vals used in the numerical evaluation of the integral equation. Approximately 

one second per point is required for the far field potential. For the cases 

run thus far, the run times have been from 20 to 140 seconds for 20 to 53 

subintervals. Efforts toward maximizing the programming and numerical effi-

ciency have resulted in these relatively short run times. 

IV. RESULTS AND SUMMARY 

A. Simple Geometries  

To check the numerical schemes used in this investigation, preliminary 

computations using a sphere and a cylinder of finite length were obtained. 

The results are presented in Section III of Appendix B. In all cases, 20 

subintervals were taken in the r-z plane and a 20-point Gaussian quadrature 

was used to evaluate the integrals in the tangential direction. The results 

for these simple geometries can be summarized as follows: 

(1) The coupling parameter used in the Burton and Miller (a in Eq. (23) 

Appendix A) should be taken as ilk where k is the wave number and 

i is 	 , 
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(2) For the cylinder, the error in the computed results increases with 

increasing frequency. For continuous boundary conditions the error 

is less than 10% at all frequencies. 

(3) Discontinuous boundary conditions, where the admittance is specified 

over part of the surface and a forcing function over the remainder, 

decrease accuracy of the results. The computed and exact values agree 

to within 10% for low nondimensional wave numbers (i.e., ka< 5 where 

a is the radius of the cylinder). Errors of 40% at the point of dis-

continuity occur at a nondimensional wave number of 10. The remainder 

of the points agree to within 12% at this frequency. 

(4) In the tangential plane, the spatial distribution of the acoustic 

potential varies as cos m e where m is an integer. Increasing m 

does not affect the accuracy of the results significantly. 

(5) The computed far field acoustic potentials are at least as accurate 

as the computed surface potentials. 

(6) The far field results are accurate at distances greater than the 

length of one subinterval from the surface. 

B. Inlet Configuration  

The studies of the acoustic fields of the sphere and cylinder served to 

evaluate and refine the numerical procedures and programming techniques. The 

next configuration investigated was an inlet used in a study by NASA 6 . This 

inlet is shown in Fig. 1 and it was chosen because: 

(1) unlike most inlets used in research studies, it does not have a bell-

mouth shape but is shaped like a typical inlet used in existing 

aircraft; 
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Figure 1. Inlet Geometry 



(2) complete details on generating the inlet boundary are given; and 

(3) it is being used in a related study being conducted at Georgia 

Tech concerning the prediction of the sound field inside the 

inlet; so the sound field, at least inside the duct, can be com-

pared with results obtained independently by other numerical 

methods. 

The back side of the inlet is presently assumed to be spherical. 

To obtain exact results for comparison with the numerical computations, 

a spherical source was assumed to be placed at (r,z) = (0,0). The acoustic 

potential and normal velocity for this source can be readily computed at 

every point. In particular, they can be computed on the surface of the 

inlet. The value of the normal velocity at each point along the surface of 

the inlet is then used as the boundary condition in the integral equation. 

From this boundary condition the value of the potential can then be numerical-

ly computed using the techniques described in Chapter III and compared with 

the exact potential known from the spherical source solution. As seen in 

Fig. 2, the normal acoustic velocity distribution, which represents a forcing 

function is highly discontinuous and it provides a severe test of the numeri-

cal techniques employed. 

The numerical and exact solutions for the surface acoustic potential are 

compared in Fig. 2 for 32 and 54 subintervals taken along the perimeter of 

the inlet in the r - z plane. Because of the errors in approximating the lengths 

of each subinterval, the exact solutions differ slightly as the distance along 

the perimeter S increases. The centerbody in Fig. 1 extends from 0 <S<0.8, 

the fan inlet covers 0.8 <S< 1.4, the interior contour extends from1.4<S<3.5, 

the exterior from 3.5 <S< 5.5, and the circular arc lies within the interval 
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Figure 2. Effect of Increasing the Number of Subintervals in Computing 
the Surface Potential for the Inlet Configuration at k a = 1, m = 0. 



5.5< S< 7.45. Increasing the number of points decreases the error pro-- 

portionately as indicated by the data in Fig. 2 at a nondimensional fre- 

quency to a' of unity, where a is the radius of the inlet at the fan entrance 

section. The absolute average error in the results decrease from 10.2 per 

cent for 32 subintervals to 4.16 per cent for 53 subintervals. The computa-

tion time increased from 53 seconds to 143 seconds, respectively. 

As shown in Fig. 3, the errors increase with increasing frequency. Like 

the cylinder, the maximum error of the potential for the inlet configuration 

occurs at the points of discontinuity. The average error increases from 4.16 

per cent at ka= 1 to 15 per cent at ka= 10. 

For the data in Figs. 2 and 3, the acoustic potential is assumed constant 

in the tangential plane. The results for a cos(me) distribution are presented 

in Fig. 4 at k a = 2. These results show the insensitivity of the accuracy 

of the computed results to the tangential distribution for m=1, 2. 

Based on the results obtained thus far, the numerical and programming 

techniques are capable of yielding reliable results for arbitrary geometries 

and boundary conditions. At higher frequencies,(ka<5) it appears that more 

points must be taken to increase the accuracy of the computed results. 

Next year, experiments will be conducted to measure the acoustic field 

radiated from an open-ended pipe for comparison with the computed results. 

A parametric study of the effect of the placement and quality of sound treat-

ment on sound abatement in an inlet configuration will be conducted. Further 

improvements in the programming and numerical methods will also be investi-

gated. 
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Abstract 

This paper is concerned with the development of a procedure for generating 

the sound fields radiated by arbitrarily shaped, three dimensional bodies from 

an integral representation of the solutions of the Helmholtz equation. The 

method of Burton and Miller is employed to eliminate the nonuniqueness in the 

external Helmholtz formulae which occurs at the internal eigenfrequencies of 

the geometry under consideration. Also, a representation of the most singular 

component in the Burton and Miller formulation is developed resulting in an 

integral equation which is amenable to numerical solutions. A simple numerical 

scheme is introduced which reduces the large amounts of computer storage and 

time normally required for the solution of similar problems. This numerical 

scheme is then used to obtain solutions for the radiated sound field generated 

by a vibrating piston set in a sphere. The numerical solutions for the surface 

and far field sound patterns are compared with exact analytical solutions and 

deviations of ten percent at most are noted. Since the symmetry of the sphere 

was not taken advantage of in these computations, the numerical schemes employed 

are applicable to general three dimensional sound radiation problems. 

I. Introduction 

The development of a simple analytical form and an efficient numerical method 

for the prediction of the characteristics of the sound fields radiated by three 

dimensional bodies is the main concern of this paper. Such prediction techniques 

have a variety of applications in science and engineering; for example, the de-

termination of the sound fields radiated by aircraft and underwater vehicles. 

The approach developed in this investigation is by no means limited to acoustic 

radiation problems as other wave phenomena are governed by similar equations. 

Thus, the analytical and numerical methods employed here are also directly ap-

plicable to other fields of engineering such as electromagnetic antenna theory 
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and wave scattering problems. 

This research was undertaken with the objective of determining the applica-

bility of certain integral equation formulations for the exterior Helmholtz 

problem in the prediction of the radiated sound fields produced by three di-

mensional bodies. In principle, integral formulations appear very attractive 

as they (1) eliminate the need to consider the infinite domains normally associ-• 

ated with radiation problems; (2) reduce the dimensionality of the problem by 

one (e.g., from a ,three dimensional partial differential equation to a two di-

mensional surface integral equation); and (3) can readily handle arbitrary 

geometries and boundary conditions. All three properties are very advantageous 

from a computational point of view as the first two significantly reduce the 

computer storage requirement for solution and the third eliminates the need to 

extensively modify the computer code when the geometry or the boundary condi-

tions are altered. 

Difficulties arise, however, in the use of the Helmholtz formulae as their 

solution depends upon the numerical evaluation of singular, oscillatory inte-

grands.
1-5 

Also, most external boundary integral representations suffer from a 

nonuniqueness of the solution at frequencies corresponding to the eigenfrequen-

cies of the associated internal problem of the same geometry.
6-8 

Keeping these 

difficulties in mind, the work presented in this paper is specifically concerned 

with the following problems: (1) the development of an accurate and efficient 

numerical scheme for handling the oscillatory, singular integrands encountered 

in the application of the Helmholtz formulae; (2) the determination of the most 

effective procedure for handling the nonuniqueness of the radiation solution at 

eigenvalues of the associated internal acoustic problem; and (3) the determination 

of the accuracy of the resulting solutions. 



While there are many papers in the literature (e.g., see Refs. 1-8) dealing 

with integral solutions of radiation problems, none of these addresses the im-

portant problem of determing the applicability and relative efficiency of the 

various integral formulations and numerical procedures which can be employed to 

obtain the desired solutions. Instead, most of these investigations are limited 

to discussions of the potential advantages of the use of certain integral form-

ulations, various possible approaches for the numerical solution of the result-

ing integral equations, the nonuniqueness of the solutions of the integral 

equations which govern the radiation problems, and potential means for allevi-

ating this nonuniqueness problem. The few papers (e.g., see Refs. 1-6 and 9) 

that deal with the numerical solutions of specific problems are either limited 

to two dimensional problems or three dimensional problems with simple boundary 

conditions, such as perfectly reflecting surfaces, which greatly simplify the 

analytical form and the numerical solution procedure. In the present investi-, 

gation the analytical and numerical schemes are applied to problems involving 

general boundary conditions. 

II. Theoretical Considerations. 

In this section an outline of the development of the theory upon which the 

calculations are based is presented. The basic integral representation of the 

solution of the Helmholtz equation is rigorouSly developed in Ref. (10) and will 

not be repeated here; however, derivations that are directly related to the pres-

ent investigation are presented in detail. 

A. Formulation of the Integral Equation 

The standard three dimensional Helmholtz formula for an external (radiation) 

problem is
7,10 

J j fq)(4) 6:1(1"1)  - G(P,Q) 

Sq 	 q 

2(Q)  }dS
q 
 = 4 rrcP (P) 

q 
an  

(1) 



(See Fig.1.) where G(P,Q) is a fundamental solution of the Helmholtz equation; 

that is: 

G(P,Q) - 
e ikr(P,Q) 

 

 

r(P,Q) 	 (2) 

and k is the wave number. In Eq. (1) 
an 
 represents an outward normal deriva- 

tive with respect to the body (i.e. inward with respect to the exterior region) 

of the function with respect to the variable Q; i.e. 

— p cP(Q) • 	
(3 ) 

where cp is the acoustic potential. 

Introducing the modified admittance, Y, defined as 

.Y(4) —
a 	

/ cp(Q) 

	

nq 
	 (4) 

Eq. (1) can be rewritten as 

S 

	cp(Q) 	aG(P 'Q)  - G(P,Q) Y(Q) 	dSci  = 4 7,47(p) 

	

anci 	 (5) 

q 

Thus, using Eq. (1) or Eq. (5), the acoustic potential cp(P) at any point out-

side the surface of the body S can be determined if the acoustic potential on 

the surface of the body cp(Q) and either its normal derivative 
an 
	 (the acous- 

tic velocity) or the admittance Y(Q) on the surface of the body are known. 

If the point P is allowed to approach the surface of the body, Eq. (5) be-

comes 

Is  1 	P 	a(Q) 
6G(P,Q) 	 6:D(Q)  

	

n 	 an  
q 	 q 

	

G(P,Q) 	 dS
q 
 = 2up(P) 

(6) 
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if the surface S is sufficiently smooth. Using Eq. (4), Eq. (6) becomes 

cp(Q) 	6:1(IP 'Q)  - G(P,Q) Y(Q) 	dS = 217p(P) 	(7) 

q 

The integral Eqs. (6) or (7) can now be solved for the acoustic potential on 

the surface if either the acoustic velocity or the admittance is known at each 

point on the body. Also. if the acoustic velocity is known over part of the 

body (i.e. the driving surface) and the admittance over the remainder, Eq. (6) 

may be applied on the driving surface and Eq. (7) over the rest of the body. 

Both G and its first normal derivative with respect to the variable Q, 

which appear in the kernels of Eqs. (6) and (7), become singular when the 

point Q approaches the point P on the surface (See Eq. (2)). It can be shown, 

however, that the integrals are regular in spite of this singularity of the 

kernels, and no analytical problems arise because of it. However, the singu-

lar kernels do present numerical difficulties which will be discussed in 

Section III. 

An analytical problem does arise in the solution of Eqs. (6) and (7) when 

the wave number k, which appears in the simple source solution G (See Eq.( 2 ).) 

approaches a resonant frequency (i.e. an eigenvalue) of the related internal 

problem.
7,11 

At these frequencies Eqs. (6) and (7) do not yield a unique solution. 

B. The Uniqueness Problem 

Since the uniqueness problem occurs only at certain wave numbers corres-

ponding to internal eigenvalues it might be suggested that the problem be 

simply avoided by considering only wave numbers which are not close to internal 

* It will be noted here that Eq. (7) yields a homogeneous set of equations if 

only the admittance is known. Thus to obtain a unique solution the acoustic 

potential must be known on part of the body. 



eigenvalues. This is not feasible, however, because: (1) if the body is truly 

arbitrary in shape the internal eigenvalues are not known a priori and the 

corresponding internal problem would also have to be solved in order to de-

termine what wave numbers to avoid; (2) the integral equation is discretized 

for numerical integration, which results in a system of algebraic equations, 

so that there is no longer a specific value but a range of values at which 

the coefficient matrix becomes ill-conditioned which results in large numeri-

cal errors; and (3) the interval between successive eigenvalues decreases 

with increasing wave number and it becomes impossible to stay "sufficiently" 

far away from the internal eigenvalues at high wave numbers (e.g., k on the 

order of 10). 

It has been suggested
6 

that one method to assure the uniqueness of the 

solution is to obtain an overdetermined system of algebraic equations by com-

bining the system of algebraic equations generated from the standard integral 

equation (e.g., Eq. (6)) with additional algebraic equations generated from 

the integral relation 

J; r r 9(Q) aG(P,Q)  

S 

j 	
nq 

q 

G(P,Q) Ot,(Q) 	dS = 0 
bug  (8) 

6 

where the point P lies inside the surface S. There are two problems with this 

approach. The first is determining the number of extra relations required to 

"pick-out" the proper solution from the set of possible solutions of the non-

unique integral equation; and, the second is choosing the placement of the 

* If the admittance is non-zero the internal eigenvalues of the problem are in 

general complex. However, even if only real wave numbers are considered the 

nonuniqueness problem still exists if the imaginary part of the complex eigen-

value is sufficiently close to zero. 
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points which are used to generate the extra relations. As there is no known 

procedure for choosing either the optimum number of extra relations or the 

points from which they are generated, this method can not be relied upon to 

give consistently good results. 

Ursell
12 

has suggested that the uniqueness problem be avoided by the use 

of a different fundamental solution (i.e. a different G function; see Eq. (2)). 

Although the use of a different fundamental solution does not change the re-

sulting integral equations and analytically eliminates the uniqueness problem 

rather elegantly, the function itself is difficult to construct numerically as 

it entails the computation of infinite series. Thus the elegance of the method 

is offset by the large increases in computer time and storage required for its 

implementation, especially when considering three dimensional problems. 

Another method for overcoming the uniqueness problem is based upon the 

fact that a unique solution can be obtained by solving a modified integral 

equation consisting of the original integral equation (6) and its differen-

tiated form
7
, that is 

	

f r 	(0) 2
G(P,Q) 	aG(P19) 	 a; S - _2 Tr 

ao(P)  

	

J 	 an 
P 
 an

q 	
- an an 	q 	an pq

S 
q 

Equation (9) also describes the behavior of the acoustic potential on the sur-

face of the body, and it has a set of related internal eigenvalues which is 

mutually exclusive of the set of related internal eigenvalues of Eq. (6). Thus, 

neither equation ever fails to yield a unique solution at the same k value as 

the other. Using this fact, the following linear combination of Eqs. (6) and (9) 

(9 ) 



0 

co(Q) 	G(1:1 'q)  - G(P,Q) 	 an 	 n  I dSq  
q  

r 

S 

r 	r 	aG(P,Q) aGRA) ::(Q) dS 
q (10) +a jJi P(Q)  am 

P 
 Bn

q 
 anp  anq 	J 

q 

= 2 Tr (cp(P) + a 	( 1")  )  

where a is a coupling constant, should yield a unique solution for all values 

of the wave number k. 

Specifically, Burton and Miller
13

, have shown that the following relation 

ships exist between the coupling constant a and the wave number k 

Im (a) A 0 k real or imaginary 

Im (a) = 0 k complex 	 (11) 

which assures a unique solution. Unfortunately, the differentiated form of the 

integral equation (9) contains the following term 

9(Q) 	 dSci  

S P 
q 

(12) 

which is strongly singular as the point Q approaches the point P. Because of 

its singular form this term cannot be directly integrated numerically. 

Two methods for approaching this problem have been suggested. The first 

solution is to "regularize" the singular component by an integration of the 

14 
entire equation 	(See Eq. (10).). This method requires an excessive amount 

of computing time as an additional integration must be performed over the 

an 

surface of the body. The other approach suggests the use of a transformation 

to interpret the singular integral
15 

(See Eq. (12).). In Ref. (15) two alternate 
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forms of the singular integral are put forth. The first requires further manipu-

lation to be of use as it contains yet another singular integral. The second 

requires an excessive amount of computer storage space as it necessitates addi-

tional information that will allow the computation of the tangential derivative 

of the acoustic potential on the two dimensional surface of the body. It must 

also be noted that the acoustic potential is the unknown in most problems so 

that some differencing procedure is required to generate the solution p(Q). 

C. Treatment of the Singular Integral 

In this section the first relationship developed in Ref. (15) (See pp. 

1283-1284.) is used as a starting point for deriving the desired expressions. 

It is shown in Ref. (15) that 

P(Q)
dS  

S P q 
q 

f = J j cp(Q) 	.n ) V . V G(P,Q) dS pqpq q 
S 
q (13) 

+ j $ p(Q) (n p  x n q  ) • (vP 
 x vq  G(P,Q)) dSq  

S 
q 

P(Q) nq  • vq  x (n 
13 
 x vp  G(P,Q))  dSq  

S 
q 

The first two integrals on the right hand side are regular; however, the third 

is not. It is also shown that after some manipulation an alternate form of the 

third term is 

S 

	Lnq  x vg  4p(4) I •in p  x p  G(P,Q) I dSq 
	

(14) 
q 
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This integral is regular so that the singular integral has been shown to 

be equivalent to the sum of three regular integrals. It should be noted that 

the first term in this integral, Ln x p q  9(Q)1 is the tangential derivative 

of the acoustic potential on the surface of the body alluded to in the previous 

subsection. 

An interesting property of this integral, Eq. (14), is that if the acoustic 

potential cp(Q) is a constant on the surface of the body, the integral is zero 

as in this case nq  x vq  cp(Q) = 0. Since the two formulations are equivalent it 

follows that 

J $ 9(Q) n
q 
 • V

q 
 x (n

P 
 x vp  G(P,Q)) dSq  

Sq  
(15) 

r J , nq  x vq  9(Q)] • Ln x Op  G(P,Q) J dS q 
S 

q 

Writing the third integral on the right hand side of Eq. (13) as 

- $ j(9(Q) - 9(P)) nq  • vq  x (np  x pp  G(P,Q)) dSq  

S 
q 

(16) 

- 9(P) j j nq  . vq  x (np  x Vp  G(P,Q)) dSq  

S 
q 

where 9(P) is a constant with respect to the variable Q, we see that the last 

integral is identically zero by setting 9(Q) E 1 in Eq. (15). 

Hence, the first term in Eq. (16) is not only regular but it can also be 

readily integrated numerically. As point Q approaches point P the entire in-

tegral goes to zero. Thus it has been shown that the singular integral which 

appears in the "unique" formulation of this problem can be expressed in the 



following form 

2 
J j p(Q) 6 	G(P'Q) dSq 

S 	
an an 
P q 

q 

= j J  cp(Q) (n . n V
P 
 . vq  G(P,Q) dSq  

 

q 

 

(17) 
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+ j j P(Q) (np  x nq ) • (VI)  x vq  G(P,Q)) dSci  

S 
q 

- J J LcP(Q) 9(1 )1 nq 
	

q x (n
P 
 x vp  G(P,Q)) dSq  

S 
q 

which will be used in the numerical computations of this paper. 

D. Computational Considerations 

Because of the special form of the fundamental solution of the Helmholtz 

equation, G(P,Q) = G(Q,P), (See Eq. (2).) certain simplifications can be made; 

specifically 

Vp  . vq  G(P,Q) = -

2 

G(P,Q) = k
2 
G

(
P,Q) 

(18) 

v
P 
 xv

q 
 G(P,Q) = v

q 
 xv

q 
 G(P,Q) = 0 

Using the above relationships Eq. (17) can be rewritten as follows: 

1 j 	a 2 G(P,Q)  
1 P(Q) 	 dS 

1-',, n -en 	q 
S 	 p q 
q 

= 	cp(Q) (n
P 
 • n 

q
)(ik) 2 G(P,Q) dSq 	 (19) 

- j 5 riy(Q) - cP(P)] n . v x n X  v G(P,Q)) dS 
q 	q 	P 	P 	 q 

S 
q 



To reduce Eq. (19) to a form more amenable to numerical computation it is 

convenient to let p(Q) = 1 so that 

J j 
d2n 	

G
g 
	dS 

 p q 
q 

= - j 5 (n
P 
 . n 

q
)(ik)

2 
G(P,Q) dSq  

1 
	 Sq 

Using Eq. (20) the left hand side of Eq. (19) can be rewritten as 

J j P(Q) 
a
2
G(

p
,Q)  

an p  anq 	
dS 

2 
= j j LP(4) - P(P)] a 	1.1 6r1P G( 'Q)  dS 

q 

	

S 	 P 4 
q 

- p(P) j j (n p  . nq  )(ik)
2 
G(P,Q) dS 

S 
q 

If Eq. (2) is employed and the indicated differentiations are performed 

the right hand side, Eq. (21) can be rewritten in the following form 

e
ikr(P,Q) ak) 2 3 i k  

	

j(Q) - [9 	P(P)] 	r(P,Q) 	 r(P,Q) 	3  j 	2 [r(P,Q)] 

ar(pm 	1. (p,Q) 	np  . nq   

an 	an 	

- 

r(P,Q) 	

ik 

- 

r(P,Q) I dSq  

9(p) 	r  e ikr(P,Q) 
	 (ik) 2 (n . n ) dS 

- 	 J 	r(P,Q) 	 p 	q 	q 
S 
q 

(22) 

ar(P,Q)  where 	, 	- 	r(P,Q) . n . Using the results developed in this section 
p 

on 

1Z 

S 
q 

(20) 

(21) 

S 
q 

p 	q 



the formulation of Burton and Miller
13 

(See Eq. (10).) reduces to 

e
ikr(P,Q) 	

1 	) ar(P, Q )  
r(P,Q) 	

(ik - r(P,Q) .) 
	

dSq 
 

- a 9(P) f 
e
ikr(P,Q) 2 

(ik) (n . n ) dS 
r(P,Q) 	 P 	q 	q 

13 

ikr(P,Q) 

a J LP(Q) - P(P) 	erum { 

S 
q

-  2 	31k 	3 (ik) 2 
 r(P,Q) 	[r(P,Q)-1 

, 1 2 

r(P,Q) ar(P,Q)  _ n 
	n 
P 	(. 1  

anp  
anq 
	r(P,Q) 	

- 

r(P,Q) 	
dSq  

eikr(P,Q) -S 	aQ(Q)  e  f  an 	r(P,Q) 	dSq 

q 

- cen 
a0(Q)  

q 

an 
e
ikr(P,Q) 	

1 	ar(P,Q)  
(ik - 	 dSq  r(P,Q) 	 r(P,Q) 	an 

= 2 ir(cp(P) + a T P)  ) 
p (23) 

The above equation, although it may appear more complicated, is actually 

considerably simpler from a numerical point of view than solving Eq. (10) with Eqs. 

(t$) and (14). In summary, the above formulation of the sound radiation problem 

provides unique solutions at all wave numbers k and contains no singular integrals. 

III. Numerical Considerations. 

To determine the radiated sound field generated by an arbitrarily shaped 

three dimensional body, Eq. (23) must first be solved for the distribution of 

the acoustic potential on the surface of the body, cp(Q). Then this data needs 
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to be substituted into Eq. (1) to determine the radiated sound field. Inspection 

of Eq. (23) indicates that all of the integrands appearing in this equation are 

both oscillatory and singular due to the factor eikr(PM  which appears in 
r(P,Q) 

each. Therefore care must be exercised in the numerical representation of these 

kernels. 

When considering the numerical evaluation of an integral on an arbitrary 

two dimensional surface, such elegant computational methods as Gaussian quad- 

rature
16,17  

(which has been found by the authors of this paper to yield accurate 

results in two dimensional sound radiation problems
18

) cannot be used in the 

numerical representation of the kernels. The only simple approach available to 

obtain a more accurate representation of the kernels is to evaluate them at 

more points on the surface of the body. Unfortunately, this is usually accom-

panied by an attendant increase in the size of the coefficient matrix which 

must be solved to obtain the acoustic potential. The computer time required 

to solve this matrix goes up roughly as the square of the number of unknowns 

for most methods of solution (e.g., Gauss-Jordan reduction). 

Two considerations enter into the determination of the size of the coeffi-

cient matrix: (1) the heuristic determination of the number of points required 

on the surface of the body to represent the acoustic potential to the desired 

accuracy; and (2) the computer time and storage space available to solve the 

coefficient matrix resulting from the discretization of the integral equation. 

The storage space available is usually much smaller than the number of 

points required for the accurate evaluation of the singular, oscillatory kernels. 

In view of the above considerations the following scheMe is used to obtain 

a numerical solution. First, the surface of the body is divided into a number 

of area elements which corresponds to the number of points where the acoustic 

potential is to be calculated on the surface. It has been determined that 

better results are obtained in general if the area elements are "regular" (i.e, 
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not too elongated in any direction), although the exact shape is unimportant, 

and they should be of roughly equal area. A point is then chosen in the "center" 

of each area element (usually the centroid of the plane figure projected to the 

body surface). These points will be denoted as calculational points (i.e. P 

points) as this is where the acoustic potential will be calculated. Next, each 

of the original area elements is subdivided into a number of smaller area ele-

ments, the sum of which corresponds to the number of points where the singular, 

oscillatory kernels must be evaluated on the surface of the body to assure their 

accurate representation. A point is thus chosen on the surface of the body in 

the "center" of each of the smaller area elements as before. These points will 

be denoted as computational points (i.e. Q points) since the kernel functions 

are computed there. 

The calculational points may or may not be a subset of the computational 

points on the surface of the body. If they are a subset some computer space 

may be saved; however, the computational point must be avoided when it corres- 

ponds to a calculational point (i.e. when the point Q corresponds to the point 

P) since the kernels are then singular. Thus each term in the coefficient matrix 

is now the sum of a number of terms generated by a number of evaluations of each 

kernel function. 

Since the integrals are all regular a better approximation may be obtained 

by placing computational points closer to the calculational point when one is 

close to the singularity of the kernel function. Thus the computational area 

elements may be further subdivided to obtain a more accurate representation of 

the integral about the point P. 

An illustration of how the above procedure is accomplished is presented 

below using Eq. (23) which is rewritten in the following more compact form 
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J 
	cp(Q) A(P,Q) dSq  + p(P) j J  B(P,Q)  dSq  

L9(Q) 
- p(P)1 C(P,Q) dS q  - 2 rrcp(P) 
	

(24) 

= 2 TT a 
a 	

+ 	D(P,Q) dSq  

q 

n 

where the proper form of the integrands can be readily obtained. Next, Eq. (24) 

is discretized as follows: 

n 	 n 

E cp(Q)  A(P,Q) ASQ  + 9(P) E B(P,Q) ASQ  
Q=1 	 Q=1 
QiP 	 QiP 

n r  
+ E L(P(Q) - TR)] C (P,Q) sQ  

Q=1 
4VP (25) 

+ cp(P) E LA(P,q) + B(P,q)]  p sq  - 2 7 p(P) 
q=1 

= E D(P,Q) A S + E D(P,q) A 	+ 2 7 a k;ILE1 
Q=1. 	 x 	(1=1 	 q 	 an 

QOP 

P = 1,2,...,N 

where N is the number of calculational points; n is the number of computational 

points (not including the subdivided element about P), and m is the number of 

computational points in the subdivided element. In the above representation the 

normal component of the acoustic velocity, d(Q)  , on the body is assumed known 
anq  

and is therefore included in the integrand D(P,Q). Additional input data required 

to obtain a solution include: (1) the coordinates of each computational point; 
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(2) the area associated with each computational point and (3) the outward 

normal vector at each computational point. The information required at the 

calculational points is included in the above. 

If the resulting matrix of coefficients is large, there are many iterative 

schemes which can be employed in its solution
19

; however, if the matrix is small 

Gaussian elimination with back substitution may be used. Once the acoustic pa- 
. 

tential is determined on the surface, Eq. (1) may be used to generate the 

acoustic potential at any point in the field surrounding the body. In this com-

putation the point Q never coincides with point P and the integrands are never 

singular; however, they are still oscillatory and care must still be taken to 

get an accurate representation of the integrals. 

Due to the availability of analytical solutions for comparison purposes, 

the developed numerical procedure has been applied to predict the sound radi-

ated by a sphere. However, it should be reiterated that no advantage was taken 

of the sphere's relatively simple geometry (i.e. its symmetry) in the numerical 

computations. Once the needed input data was generated it was treated like any 

other arbitrarily shaped three dimensional body. The sphere was subdivided into 

80 triangles by first taking an icosahedron (a three dimensional figure whose 

surface consists of 20 equilateral triangles) inscribed in a unit sphere and 

dividing each triangle into four others (See Ref. (1), pp. 1630-1631.). This 

was accomplished by finding the midpoint of each side of each triangle and pro- 

jecting it to the surface of the sphere as shown in Fig. 2. The centroid of 

each triangle was then found and also projected to the surface of the sphere. 

These 80 points correspond to the previously described calculational points. 

To obtain the computational points this method was simply repeated three 

more times yielding 5120 points. Around each calculational point the three sur-

rounding triangles were then divided once more, and at the calculational point 
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itself the triangle was divided twice more as shown in Fig. 3. The spherical 

area was then computed for each computational triangle (i.e. the sum of the 

areas of all the computational triangles is 4 n, the surface area of the unit 

sphere). This yielded all the geometrical input data required ;  as; for a unit 

sphere the coordinates of the computational points and the elements of the 

outward normals are the same in rectangular coordinates. 

IV.Results and Discussion. 

In the calculations performed in this study the surface of the radiating 

sphere was divided into two parts. On one part (the driving surface) the normal 

acoustic velocity, 	, was specified while on the other part (the admittance 
an 

surface) the modified admittance function Y, defined by Eq. (4), was specified 

indicating either sound absorption or amplification by this part of the surface 

(See Fig. 4.). The sphere was chosen for this study as exact analytical solutions 

can be obtained for comparison with the numerical solutions obtained by solving 

the integral equations. 

Using the well known separation of variables technique it can be shown that 

the acoustic potential for the sphere can be represented as follows 

{cos n 
Y(r,e,§)= hm(C) {(1_112)11 dn 

	Pm ( m } {son n (26) 

either on or in the field surrounding the surface of the sphere. In the above 

expression 7 = cos e, c = kr, hm is a spherical Henkel function of order m, 

and pm  is a Legendre polynomial of degree m. It should be noted that when 

n = 0 all g dependence drops out so that the problem becomes axi-symmetric. 

It can also be shown
20 

that the acoustic potential for a piston vibrating 

in an otherwise hard (i.e. Y = 0) sphere is given by 

m { hm(C)  

9(r202 § )  = ( t /2k ) E Em -1 (1b ) 	n+1 (116 ) 	i 	(11) 
m=0 

dC h
m
(C

o
) 

(27) 



- 19 

both on the surface of the sphere and in the field surrounding it. In Eq. (27), 

0o  denotes the edge of the piston set in the sphere, a is the radius of the 

sphere, 
Co 

= ka, Ti = cos e0 , 	('flu ) = 1 (when m = 0), and the remaining 

quantities are the same as those appearing in Eq. (26). The solution is al-

ways axi-symmetric as there is no § dependence. Also, both solutions (i.e, 

Eqs. (26) and (27)) represent radiated sound fields as they satisfy the 

necessary radiation conditions when r 

In all the calculations performed in this study the acoustic velocity 

is specified on a quarter of the sphere's surface as shown in Fig. 4. Also, 

the sphere is of unit radius (i.e. :  = 1) and the coupling constant a, re-

quired in applying the method of Burton and Miller, has been taken as the 

pure imaginary number i as k is a real number (See Eq. (11).). 

The radiative fields computed in this study are summarized in Table I 

where the assigned values of m and n describe a specific solution (See Eq. (26).). 

For each investigated case Table I contains the exact solutions on the surface 

and far fields, the input boundary conditions derived from the known exact 

solution, and the average percent error obtained by comparing the exact and 

computed solutions. 

To check the numerical approach and camputer code Case # 1 was investigated 

initially (See Table I.). Under these conditions the analytical solution for the 

surface potential, cp = h
o
(kr), is a constant as is the input data (i.e. 

an  and Y). 

A comparison between the numerical and exact solutions for the amplitude kpi of 

the acoustic potential *  on the surface of the sphere and in the far field is 

presented in Fig. (5) where excellent agreement between the two solutions is 

noted. The computation of the surface solution required three minutes of computing 

* The amplitude was chosen for comparison as .both the real and imaginary parts 

of the acoustic potential show similar trends and errors. 
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time on the Georgia Tech CDC Cyber 70 model 74 computer. This time is indicative 

of all the cases considered in this study. The far field distribution of the 

acoustic potential was calculated using both the exact surface distribution 

and the calculated surface distribution. The far field calculation using the 

exact surface distribution was done as a check on the computer code and the 

results agreed with the exact solution (obtained from Eq. (26)) to seven sig-

nificant figures in both the real and imaginary parts. To calculate both distri-

butions simultaneously, under two minutes of computing time was required which 

is also indicative of all the cases run. 

The second investigated solution (See Case # 2, Table I.) was the same 

solution as Case # 1 but with a wave number k = Ti which coincides with the first 

internal eigenvalue of the sphere. This case was run to check the validity of 

the theory. Again the solution for the surface potential and the input data are 

constants both on and off the surface of the sphere. A comparison between the 

computed and exact solutions on the sphere surface and in the far field are pre-

sented in Fig. (6). Examination of this figure indicates that in this case the 

agreement is not as good as in Case # 1, although the average error was still 

under ten percent. The far field distribution of the acoustic potential was cal-

culated as before. Employing the exact surface distribution the results compared 

with the exact far field solution to four significant figures in both the real 

and imaginary parts. In examining Fig. 6 it is interesting to note that there 

was no increase in the error from the surface distribution to the far field. It 

was found that there was no significant increase in error from the surface to 

the far field distribution in any of the cases run. 

The exact solution for Case # 3 (obtained from Eq. (26) with the data in 

Table I) is y = h 1  (kr) cos e. In contrast to the previous cases this solution 

is 0 dependent. A comparision between the exact and numerical solutions on the 

surface of the sphere is presented in Fig. 7, and a far field comparison is pre- 
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sented in Fig. 8. Examination of the data shows that in this case the error 

was actually reduced in going from the surface to the far field. Furthermore 

in the far field, the calculated surface distribution gives better results 

than does the exact surface distribution. 

The next case investigated (Case # 4) was run at the second internal eigen-

value of the sphere, k = 4.49340946. The results for the acoustic potential on 

the surface of the sphere are presented in Fig. 9. As can be seen the results 

deteriorate somewhat at an internal eigenvalue of the problem. It is interest-

ing to note that the error increases with 8 and it reaches its maximum value 

at e = 180° , the center of the admittance surface. The results for the far 

field are presented in Fig. 10. All of the cases considered so far were axi- 

symmetric, that is, there was no dependence; a property that was also retained 

by the developed numerical solutions. 

This next case (Case # 5) is truly three dimensional as there is a § de-

pendence in the solutions. Referring to Eq. (26) and Table I the exact solu-

tion on the surface of the sphere is found to be cp = hi (kr) sin e sin g. The 

average percent error was not calculated in this case due to the zeros which 

appear in the exact solution, but the errors remained small (i.e. under ten 

percent). The far field distribution of the acoustic potential was calculated 

and no increase in error was detected. 

In the next three cases a hard sphere (i.e. Y = 0 on the admittance sur-

face) with a unit driver (i.e. an = 1 on the driving surface) was considered. 

The exact solutions for these cases can be obtained from Eq. (27). In these 

studies the wave number k was varied to determine the value of k at which the 

accuracy of the solution deteriorates for a fixed number of 80 calculational 

points that was used in these numerical studies. 
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The solution for Case # 6 where k = 2, are presented in Fig. 11 for both 

the surface distribution of Ipi and the far field solution. In this case the 

far field is considered to be at kr = 100. 

In this next case (Case # 7) the wave number is increased to k = 5. As 

can be seen from Fig. 12, the error is still under ten percent on both the 

surface of the sphere and in the far field (i.e. kr = 100). When the wave 

number is increased to k = 10 (Case # 8) the error becomes rather large. The 

average error in the calculation of the surface potential is sixty percent. 

So it can be seen that there are not enough calculated points to accurately 

represent the potential function, 9. The far field is calculated at kr = 100 

and the error drops a bit but it still remains high at twelve percent. 

V. Summary. 

In summary, a solution approach has been developed in this paper which 

may be used to yield a unique solution for the distribution of the acoustic 

potential on the surface of an arbitrary three dimensional body at all values 

of the wave number. Also, a numerical scheme was developed to solve the equa-

tion accurately and efficiently. Computer programs were run to verify the 

applicability of the developed solution method and to find its limit of accu- 

racy for a fixed number of points. The procedure was found to be both accurate 

and versatile as the computer code required no major modifications to handle 

the various boundary conditions imposed on the surface of the body. 
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:Case 
# 

m n k kr 

Far Field 

Exact Solutions 

Surface 	 Far Field 
q) = 	 eP= 

Input Conditions 

Driving Surface 	Admittance 
&') . 	 Surface 
an 	 Y = 

Average 
Error 

% 

1 0 0 1 50 0.841 - 0.540i -0.00524 - 0.0193i -0.301 + 1.38i - 1.0 + i < 1 

2 0 0 Tr 50 i — = 0.318 i 
7 

-0.00524-0.01931 -1.0+ 1     
Tr 

- 1.0 + ir i <9 

3 1 0 2 100 (0.435 - 0.351i) (-0.00867+0.00498) (0.0385+1.12i) - 1.2 + 1.6 i < 3 
cos 0 cos 0 cos 0 

4 1 0 4.49 100 (0.228i) cos 0 (-0.00867+0.00498) (-0.976 - 0.2391) - 1.05+4.28i < 14 
cos 0 cos e 

5 1 1 2 100 (0.435 -0.351i) (-0.00867+0.00498) (0.0385+1.12i) - 1.2 + 1.6 i not cal- 
sin 0 sin t sine sin t sin e sin t culated 

Parameters m and n refer to 
Eq. (26) 

Table I. 
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Figure 1. General Description of the Acoustic Radiation.Problen4 
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Projected to th ,?. Surface of the Sphere 

Figure 2. Method of Dividing the Surface of the Sphere. 
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the Calculational Point 
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The Calculational Point 

L Computational Point 

Figure 3. Division of the Surface of the Sphere Around a 
Calculational Point. 
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Figure 40 Specifications of Boundary Conditions on the Surface 
of the Sphere. 



• 	• II) 	•1 • 

Average 7. Error = 0.637. 

Exact, Surface 

— — Exact, Far Field (kr = 50) 

0 Computed 

----o- 0- -0-- - 0-CD- --CD-0-- - 0-- 0-- -0- - 
Average % Error = 0.69% 

	

I 	 I 	 I 	 I 	 I  

0 
	

30 	60 	90 	120 	150 	180 

0,Degrees 

1 

M
a
g
n
it
ud

e  
o
f 
t
he
  
F
a
r.
Fi
e
ld
 P
o
te
n
ti
a
l 

0.05 1.0 1 
1 
1 

1 

	

0.03 	0.6 r 
i! 
g 

1 G) 

	

0.02 	w 0.4 

1 w 

r o0 

1 79 

	

0.01 	0.2 
1 

1 

1 

0  L 

0.04 ,0.8 

Po
te
n
t i

a
l 

Figure 5. Exact and Calculated Values of 	cp I for cp = h o (r) 
on the Surface and in the Far Field of the Sphere. 



M
ag

n
it

u
d
e  

o
f
 t

h
e  

F
ar

  F
ie

ld
 P

o
te

n
ti

a
l 

0.04r 	0.4 

I 
0.03 F- 

1 
I 	C) 

I 
I 	(4-1 

.1-1 

cd 

cn 
0.02j- 	0.2 

1 
0 

0.01 r  

0,  
0 

1 	1 

Exact, Surface 
Exact, Far Field (kr=50) 

0 Computed 

	0 	 

Average 7. Error = 8.77. 

0 0 
CD 0 o o 

0 0 0 CD CD 0 0 0 0 

Average % Error = 8.7% 

1--1 
ca 

4-1 
1.) 
0 

4J 
0 

0.3 — 0 

I 	 I 	 1 	 1 	 1  
30 	60 	90 	120 	150 

e 9  Degrees 

180 

Figure 6. Exact and Calculated Values of 1 9 1 for cp = ho (rr r) on 
the Surface and in the Far Field of the Sphere. 



0.2 () Computed, 
Average % 
Error = 2.3% 

0 

0.6 

0 
a 

0.4 
0 

4.) 

A 	0.2 

Driving 
Surface 

Admittance 
Surface 

Exact 

0, Degrees 

60 

120 

150 

0.6 

180 

Figure 7. Exact and Calculated Values of 14 for ::,. = h i (2r) cos 9 on the 
Surface of the Sphere. 



0.006 

0.012 

0.010 

0.008 

Ma
g
n
it
u
de
  
o
f 
t
he
  
P
o
te
n
ti
a
l 
a
t  
k
r
  =

  
10
0 

0.006 

0.004 

Exact 
C) 	Far Field Computed from 

Surface Distribution, % 
Far Field Computed from 
Distribution, % Error = 

Calculated 
Error = 0.54% 
Exact Surface 
1.5% 

30 
	

60 
	

90 	120 	150 
	

180 

0, Degrees 

Figure 8. Exact and Calculated Values of 1 p 1 using the 
Exact and Calculated Surface Distribution of p 
for y = h1(2r) cos 0 in the Far Field of the 
Sphere. 



0.3 
El Degrees 

30 

0 

O 
ci4 

0.2 

44 
O 

O 

0.1 0 

1 

60 

Driving Surface 

Admittance 
Surface 

Exact 

C) Camputed, 
Average % 
Error = 13% 

0.1 20 

0.2 

1 0 

0.3 

180 

for = hi (4.49r) cos a FigUre 9. Exact and Calculated Values of 
on the Surface of the Sphere. 



A 

	Exact 

Q 	Far Field Computed 
Surface Potential, 
Far Field Computed 
Surface Potential, 

I 	I 

from Calculated 
% Error = 14% 
from Exact 
% Error = 1.9% 

0.012 

0 
0 
T1 

iJ 

0.008 
0 

1.3 
0 

1-1 
0 

P-I 

. 0.006 
C.) 

r=4 

rx-f 

C.t.)  

0.004 e-4 
o, 

-o 

0 
GO 

0.002 

0 

0. 01 0 

30 60 9 0 120 150 180 

e , Degrees 

Figure 10. Exact and Calculated Values of Im I using the 
Exact and Calculated Surface Distribution of m 
for m = hi(4.49r) cos 9 in the Far Field of the 
Sphere. 



6 

A 
• 

A 
• 

• fit  

A 
o 	db 

ea 
I 	 t 	 I 

30 	60 	90 	120 	150 	180 

L of
 t
hL
  
i
a
r  
Fi
e
ld
 P
o
te
n
ti

a
l 
a
t  
k
r
  =

  
10
0  

0.012 I 0.6 

1 

0.010 	0.5 

I 

0.008 I— 4O' 0.4 
4?O! 
1:174 
o 

I 	4'1 

0.006 

.h) 
,4.4 
o 

	

f- 	0.2 

I 

	

0.002 F 	0.1 

	

o L 	0  

0.3 

0.004 

A Exact Surface Distribution 

0 Computed Surface Distribution, 
Average % Error = 8% 

A Exact Far Field Distribution 
io Computed Far Field Distribution, 

Average % Error = 5.6% 

= De grees 

Figure 11. Exact and Calculated Values of I (pi for a Hard Sphere 
with a Unit Driver (k = 2) on the Surface and in the 
Far Field. 



A Exact Surface Distribution 
0 Calculated Surface Distribution, 

Average % Error = 7.7% 

AL Exact Far Field Distribution 
40 Calculated Far Field Distribution, 

Average % Error = 6.4% 

A 
0 p 

0 

0 • 
0 

1 	
0.4 

0.015t- 

1 
1 -al 
I 111  

0.3 

?' 
0.0101- ccti 

I 'LI  

I 	0.2 

1 :1 

I 48 

0.0051-- • 13  

I 3  0.1 
I g 

oL 

M
ag

n
it

u
d
e  

o
f
 t

h
e  

F
a
r  

F
ie

l
d

 P
o

te
n

ti
a
l 

a
t  

k
r 
 =

  
1

0
0

 

30 60 90 120 150 180 

e, Degrees 

Figure 12. Exact and Calculated Values of I tpl for a Hard Sphere 
with a Unit Driver (k = 5) on the Surface and in the 
Far Field. 



APPENDIX B 



PREDICTION OF THE SOUND FIELD RADIATED FROM 
AXISYMMET(ICSURFACES 

** 	 *** 
W. L. Meyer, W. A. Bell, and B. T. Zinn 

School of Aerospace Engineering 
Georgia Institute of Technology 

Atlanta, Georgia 30332 

Abstract  

A general analytical method for determining the 
radiated sound fields from axisymmetric surfaces of 
arbitrary cross section with general boundary con-
ditions is developed. The method is based on an in-
tegral representation of the external solutions of 
the Helmholtz equation valid at all wave numbers. 
The axisymmetric formulation of the problem reduces 
its solution to the numerical evaluation of line 
integrals by Gaussian quadrature. The applicability 
of the solution approach for both a sphere and 
finite cylinder is demonstrated by comparing the 
numerical results with exact analytical solutions 
for both discontinuous and continuous boundary con-
ditions. 

I. Introduction  

To reduce the noise radiated to the community 
from turbofan inlets, the effects of sound suppres-
sion material in the inlet and the spatial distri-
bution of the sound source on the radiated sound 
levels and patterns must be determined. Analytical 
techniques for predicting these effects must be 
capable of dealing with general axisymmetric geome-
tries and complicated boundary conditions which are 
encountered in multiply-lined inlets. To determine 
the radiated sound field, an additional requirement 
is that the methods be applicable to infinite do-
mains. The objective of this paper is to develop a 
general analytical method for determining the radi-
ated sound fields from axisymmetric surfaces of 
arbitrary cross section and with general boundary 
conditions. 

The method used in this investigation is based 
on an integral form of the solutions of the Helm-
holtz equation. 1-6  With this formulation the acous-
tic potential anywhere external to the surface can 
be found once the potential distribution on the 
surface is known. Thus, to determine the radiated 
sound field the problem reduces to the determina-
tion of the distribution of the acoustic potential 
on the two-dimensional surface of the geometry un-
der consideration instead of solving the Helmholtz 
equation in the surrounding infinite three dimen-
sional domain. 

It has been previously shown 1-5  that when ap-
plied to exterior sound radiation problems the solu-
tion technique fails to produce unique solutions at 
frequencies corresponding to interior eigenvalues 
of the geometries under consideration. Unless spe-
cial precautions are taken, straight-forward numeri-
cal solutions of the developed integral equation at 
frequencies close to the eigenvalues of the internal 
problem produce large errors. A technique proposed 
by Burton and Miller4  for avoiding this uniqueness 
problem and the associated numerical errors is used 
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in this investigation. This technique involves a 
reformulation of the "classical" integral equation 
and the solutions obtained are valid at all frequen-
cies. 

The resulting integral equation for the surface 
acoustic potential is solved numerically and, for 
axisymmetric geometries, the equation reduces to 
the evaluation of a line integral. Thus, the axi-
symmetric case can be reduced to an equivalent one-
dimensional problem. This equation is discretized 
and the resulting system of algebraic equations is 
solved using complex Gauss-Jordan elimination. Since 
the coefficient matrix involves the free space 
Green's function, which becomes singular as two 
points on the surface approach one another, numeri-
cal techniques are presented which can deal with 
these singularities and yield accurate results. 
Gaussian integration is used to increase the accura-
cy of the solution without significant penalties in 
computer storage and time requirements. The applic-
ability of the integral formulation and the accuracy 
of the numerical techniques are demonstrated by 
computing the surface and far field distributions 
of the acoustic potential on both a sphere and a 
finite cylinder. The numerical results are compared 
with known exact solutions generated by the separa-
tion of variables technique. Surfaces with spatially 
varying forcing functions and admittances are con-
sidered, for different tangential modes, to evalu-
ate the capability of the integral approach to 
handle boundary conditions of a general nature. 
With the sphere, agreement between computed and 
exact results is to three significant figures. For 
the cylinder agreement is to two significant fig-
ures. The effect on the accuracy of discontinuous 
boundary conditions involving nonzero admittances 
over the surface and of the corners encountered in 
the cylindrical configuration are also presented. 

II. Theory  

In this section the general three dimensional 
integral representation of the solutions of the 
Helmholtz equation is developed for application to 
radiation problems. This particular formulation 
yields unique solutions at all frequencies and does 
not have strong singularities which are difficult 
to handle numerically. The general integral equa-
tion is then specialized for axisymmetric geome-
tries. A more detailed development is given in Ref. 
5. 

General Theory  

Beginning with the three dimensional Helmholtz 
equation which governs the spatial dependence of 
the acoustic field for sinusoidal oscillations 

V
2 

cp + k2 cp = 0 
	

(1) 

where cp is the acoustic potential and k is the wave 
number. The standard integral representation of the 
exterior solutions is found to be1p6 

1 
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Dmi21 	 - G(P,Q) an 	)dSq  = 47 cp(P) 

(2) 

The term 	represents an outward normal deriva- 
tive with

an
q respect to the body as shown in Fig, 

1; that is 

a n 
	- 	,(Q)  • nq 	

(3) 

Also, G(P,Q) is a fundamental three dimensional 
solution of the Helmholtz equation and is taken to 
be the free space Green's Function for a point 
source 6  defined as 

eikr(P,Q) 

(4) 

Ref. 1. 

The soundest approach from an analytical point 
of view is given by Burton and Miller 4  who have 
suggested the use of the differential forms of Eq. 
(5) which governs the spatial dependence of the 
acoustic velocity. 

- 
a
2
G(P,Q) _bG.SP,Q)av(4)  

anpanq  an 	
j LPM 	 an 	an 
S 
q 

This equation can also be solved for p(Q) once the 
normal velocity or admittance is specified at the 
surface. However, this equation has its own set of 
associated eigenvalues at which unique solutions 
cannot be obtained. Burton and Miller suggest tak-
ing a linear combination of the two equations to 
obtain 

G(P,Q) - 
r(P,Q) 

From Eq. (3), if the acoustic potential and the 
normal acoustic velocity aQ(Q) are known at each 	

I $ (J(Q) TIP2Q)  - G(P,Q) 2-ial ) dS 

	

an 	 an 	q 

	

9 	 S 	 9 	 9 
point on the surface of the body then the acoustic 	9 
potential may be calculated anywhere in the exterior 	 2 
domain.

+ a 
	G(P,Q) 	oG(P,Q) acp (Q) 

\ 	an an 	an 	
an  ) dS 

J j 1 P(Q) 

S 	 P 9 	P 	9 
9 

( = 27 I  cp(P) + a 	4, 1) )  
/ 

p 
(8) 

Y (Q ) 	Q.(alif c,o (Q ) 
anq  "(6) 

Im (a) # 0 	k real or imaginary 
(9)  

Im (a) = 0 	k complex 

To solve for the surface potential, the point P 
is moved to the surface of the body. Equation (2) 
then becomes 

j 	(c2(Q) 	G(13A)  - G(P,Q) ND(Q)  
an 	 an 	

)dS q  = 2n cp(P) 

(5) 

if the surface of the body is sufficiently smooth. 
Introducing a modified admittance function defined 
as 

Since the two sets of associated internal eigen-
values are mutually exclusive the linear combination 
of equations should yield unique solutions if the 
complex coupling constant a is properly chosen. It 
is shown that a must meet the following restrictions 
to guarantee that Eq. (8) yield unique solutions 

Eq. (5) can be written as 

Sq 	 sql 
J 

cp(Q)  aG(P.4)  
an 
	dS - I JP(4)G(P,Q)Y(Q)ds 

q 	 ql 

(7) 

	

= 27cp(P) + 	II1 121-1  G(P,Q) dSq2  

S
q2 	

q 

where j = 	• 

	

q1 	92 

If either the acoustic velocity or the admittance is 
known at each point on the surface of the body then 
the acoustic potential may be calculated at each 
point using Eq. (7). 

Unfortunately this equation does not yield 
unique solutions when - the wave number k is an in- 
ternal eigenvalue of the body under consideration. 
Since these eigenvalues are not known a priori for 
general bodies the formulation cannot be relied 
upon to give consistently good re9ults. There are 
many papers in the literature 2,3 2 4  dealing with 
this problem. The relative merits and shortcomings 
of the methods employed are discussed in detail in 

A problem arises in the numerical solution of Eq. 
(8) as the third term on the right hand side is 
strongly singular in its present form as the point 
Q approaches the point P on the surface of the body. 
Meyer, Bell and Zinn 5  have shown that this diffi-
culty can be overcome by the proper interpretation 
of this singular term. Employing a vector transfor-
mation 7  and taking the Cauchy Principle Value Eq. 
(8) is shown to be equivalent to 

aG(PA)  
AVQ)  an - G(P,Q) n  

11-°1) dS q  
a q  

+ a j 	(T(Q) - cp(P)) an
G(P 

 ari
,Q) 
 dSq  

S P q 

C r 

q 

	
2 
	

(10) 

- a (PM • j n 
P
• n )(ik) 2 G(P,Q) dSq  

- a 55 G(P,Q) acP(Q)  ds  = 27  ( cv (p)+ cy a(P(P))  
an 	an 	 an / 
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All of the terms in Eq. (10) are now regular and 	Kernel Functions 
therefore are directly integrable; however, all the 
integrands are oscillatory and singular so that care 	K

1 
 (S 

p 
 ,S 

 q 
 ) = 2 j'76 .G, (P ' q) cos in r

q 
 dO 

must be taken in their numerical approximation, 	 o unq  

Axisymmetric Formulation  

When dealing with a body of revolution as shown 
in Fig. 2 an axisymmetric formulation of the prob-
lem is advantageous. 8  This being the case an element 
of area becomes 

dSq  = T dSde 

where S is the distance along the perimeter of the 
surface in the T-z plane. 

Assuming an acoustic velocity distribution of 
the form  

(16) 

9 	7a2(P ' Q)  cos 	dO 
q 

K2 (S p ,Sq ) = - 0/ J 0  anpanq  

Forcing Functions 
7 

F
1 

(S
p
,S

q
) = 2g j G(P,Q)(ik)

2
(n 

P 
• n ) de 

9 

(17) 

F
2 

(S
p
,S

q
) = 2a 

J 
1
7 a2C(P,Q)  

de 
o  

Substituting Eqs. (15)-(17) into Eq. (14) gives 

an 
v(S) cos m e (12) 

0 
and defining a potential function 

$(S ) {K(S
1 	

,S ) + K 	S ,S )1 dS 
q 	p q 	p q 	q  

(1)(S) 

	

cos m e 	 (13) 

Eq. (10) becomes 

J r J  , (s
Q 	a 

 ) aG(PA)  cos m 0 dS 
q 

q 

- a  $(S 
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 ) I I G(P,Q)(iK)
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• n ) dSq  
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q  
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 (S 

P
,S ) + F
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(S

p
,S

q
)1 dS
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(18) 

- 	v(S q) 	I
I
(S p ,Sq ) + 1 2  (Sp ,S ci )). dSq  

0 

= 27L ,D(S ) + in v(S )1 

where 	is the length of the generating line of the 

L"S )  cos m 9 -
p

)
I an

2
G 
an
(PsQ)  dS 	surface of revolution. The S-0 coordinate directions 

. 
P 	 have now been effectively uncoupled so that the 

q 	 problem has been reduced to the evaluation of line 

(14) 
integrals in the coordinate directions on the sur- 
face of the body. This formulation does not restrict 

- 	v(S ) G(P,Q) cos m e dS 	 the form or type of boundary conditions on thebody; 
q 	 q 	q 	 it merely assumes that the boundary conditions can 

q 	 be represented by a sum (expanded in a set) of tan- 
gential modes. 

- o j v(s ) 6G (PA )  cos m e dS 
q 	On 	 9 q III. Results  

Numerical results have been obtained for a 
sphere and cylinder using the numerical technique 
described in Ref. 9. Basically, this method con-
sists of first specifying the T-Z coordinates and 
the normal vector at each point on the surface. 
From these quantities the distances r and the nor-
mal derivatives a 	can be obtained. The integral 
in Eq. (18) is anq then separated into n inte-
grals taken over subintervals of length .E/n. The 
acoustic potential is assumed constant over each 
subinterval and the integrations are performed nu-
merically using a four-point Gauss-Legendre quadra-
ture in the T-z plane. A twenty-point Gauss- Legen- 

(15) 	dre quadrature formula is used in the circumferen- 
tial direction. 

Exact results were obtained using separation of 
variables. 6  To eliminate the need for evaluating 
the resulting infinite series, the normal velocity 
and admittance distributions were selected so that 
only one term in the series remains. 

= 27 [“S ) + in v(S )1 

In the above equation Op  has been assumed to be 

	

zero so that cos in e 	1. 

Now, three sets of functions are defined: 

Influence Functions 
7 

I 1 (S
p'

S
q
) = 2 j G(P,Q) cos m eq  deq  

	

I
2 

(S
p'

S
q
) = 20 j 	aC(P.Q)  CO S 	e 

an 	 q  de  q  
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To investigate the effect of the coupling con-
stant a in Eq. (18), the surface potential distri-
butions were obtained for a = 0, i, and i/k for 
twenty points on the sphere. The exact solution 
assumed for this case is 

ikr(P) 

p(P) 	
e 

(P) - 	r(P) 

where r is the distance from the origin to a point 
P on the surface. As shown in Fig. 3, with in = 0 
the computed magnitudes of the acoustic potential 
are in error by 12 per cent at wave numbers close 
to the internal eigenfrequencies of 7, 27 and 37. 
These results are those that would be obtained from 
Eq. (5). The relatively large errors are expected 
from the analysis of Burton' and from previous in-
vestigations using Eq. (5). 2,5  Burton proves that 
setting the imaginary part of a nonzero guarantees 
unique solutions when Eq. (18) is used. Although 
the maximum error is reduced for a = i to less than 
4 per cent when the nondimensional frequency k is 
less than seven, significant errors are still evi-
dent at the higher frequencies as shown in Fig. 3. 

In this study consistently good results are ob-
tained only when a = i/k. In Fig. 3, the computed 
and exact results with a = i/k agree to three sig-
nificant figures. The reason for this behavior is 
currently under investigation; however, for all the 
cases presented hereafter this value of a is chosen 
and the exact surface distribution is given by Eq. 
(19) when m = O. 

A problem of more practical importance is the 
finite axisymmetric duct since this surface approxi-
mates an engine configuration. The surface potential 
distributions are presented in Fig. 4 for a zero 
admittance everywhere on the surface. The velocity 
distribution is specified over the entire surface 
and the potential given by Eq. (19) has a magnitude 
independent of frequency and a phase linearly pro-
portional to the frequency. In Fig. 4 the magnitude 
and phase are plotted against the distance along 
the perimeter S. The largest errors in the magni-
tude of the potential of about 10 percent occur on 
the ends of the cylinder and at the corners. The 
results at the ends can be improved without increas-
ing the number of points by area weighting rather 
than by taking equidistant points along the perime-
ter. The errors at the corners are caused by the 
discontinuous normal derivative in going from the 
cylinder to the end. The errors in the phase are 
less than four per cent in all cases. The errors in 
magnitude increase with increasing frequency, but 
even when k = 10 the numerical results are within 
10 per cent of the exact solutions. 

In most practical problems the boundary condi- 
tions are discontinuous with the acoustic velocity 
or potential specified over part of the surface and 
the admittance over the rest. To determine the ef- 
fect of the discontinuities on the numerical results, 
a cylinder with the velocity specified on the ends 
and the admittance specified in the center was in- 
vestigated and the results are presented in Fig. 5. 
Although the errors of the numerical results for 
this case are increased compared with the errors 
shown in Fig. 4, the errors are within 10 per cent 
for values of k less than 5. However, when k = 10 
errors of up to 40 per cent in the magnitude of the 
potential are encountered close to the discontinu- 
ity in the boundary condition. This result suggests 

that more points need to be taken at higher frequen-
cies with discontinuous boundary conditions present. 

At higher tangential modes, the variation in 
the circumferential direction behaves as cos m 0 
where m = 0,1,2 	 To check the numerical integra- 
tion scheme in the circumferential direction, the 
surface acoustic potential was computed for in = 1 
and m = 2. The results are presented in Fig. 6 for 
k = 2 with the velocity specified and the admittance 
zero everywhere on the surface. The computed and 
exact results are in agreement to within two per 
cent for both m = 1 and m = 2. 

It has been shown5  that once the surface poten-
tial has been accurately computed, the far field 
can be determined to at least the accuracy of the 
surface potential. This result is confirmed by the 
data presented in Fig. 7 for a cylinder with the 
velocity specified everywhere on the surface at 
k = 2. The results at 20 radii from the surface are 
in agreement with exact results to within one per 
cent even though the surface errors at some points 
is above two per cent. Data in Fig, 8 show that 
accurate results are obtained at distances greater 
than one integration stepsize from the surface. At 
closer distances errors from the numerical evalua-
tion of the singularity in the Green's function de-
fined by Eq. (4) leads to large errors. 

IV. Summary and Conclusions  

An integral solution of the Helmholtz equation 
is developed for use in acoustic radiation problems. 
Unlike previous formulations which give poor results 
at frequencies corresponding to eigenfrequencies of 
the surface under consideration, the formulation 
used in this study is valid at all frequencies. The 
surface potentials computed numerically for a sphere 
and cylinder using 20 points along the perimeter 
are accurate to within ten per cent for noadimen-
sional frequencies ka of from one to ten where k is 
the wave number and a is the radius of the sphere 
or cylinder. For discontinuous boundary conditions, 
the numerical and exact values are in agreement to 
within 10 per cent for ka <5. At higher frequencies 
the results are as much as 40 per cent in error at 
the point of discontinuity which suggests taking 
more points in evaluating the integral Helmholtz 
equation to increase the accuracy when discontinu-
ous boundary conditions are specified. At distances 
greater than the numerical integration stepsize, 
the far field results are at least as accurate as 
the corresponding surface potential solutions. 
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Predicting the Acoustics of Arbitrarily Shaped Bodies 
Using an integral Approach 

William A. Bell,* William L. Meyer,t and Ben T. Zinn 
Georgia Institute of Technology, Atlanta, Ga. 

An integral solution of the Helmoltz equation is developed for predicting the acoustic properties of arbitrarily 

shaped bodies. With the integral formulation, the acoustic potentials at the surface are solved independently of 
the internal acoustic field which, effectively, reduces the dimensionality of the problem by one. Considerable 
reductions in computation time and storage requirements are thus achieved. Efficient numerical techniques for 
solving the resulting algebraic equations are presented. Numerical results obtained for the two-dimensional 
problems of a circle and a rectangle agree to within one percent with available exact solutions. The modes of a 

star-shaped configuration and a duct with a right-angle bend are also determined to demonstrate the ap-
plicability of this method to complicated geometries and general boundary conditions. The acoustic properties 
of a sphere are investigated using an axisymmetric formulation. With the axisymmetric formulation the 

numerical and exact results agree to three significant figures. 

251 j 

I. Introduction 

T HE prediction of the acoustics of arbitrarily shaped 
 bodies has a variety of applications in aerospace 

engineering. Among them are the determination of the in-
ternal and radiated sound fields from airbreathing propulsion 
systems and the investigation of the stability limits of rocket 
combustors. These studies are concerned with obtaining 
solutions to the Helmholtz equation, which is derived from 
the wave equation when a sinusoidal time dependence is 
assumed and which describes the spatial dependence of the 
oscillations. This equation is included in most standard texts 
on differential equations of mathematical physics (Ref. 1, Ch. 
11) and has been extensively studied in both differential and 
integral form. The differential form is currently the most 
widely used. 

In differential form, solutions of the Helmholtz equation 
can be obtained by separation of variables. 1,2  This method 
involves series expansions of the solutions in terms of 
eigenfunctions of the system. Although this technique has 
been successfully applied to several practical problems in duct 
wave propagation,' it has the following limitations: 1) the 
series expansions often involve special functions which are 
difficult to compute; 2) at high frequencies and at the 
boundaries the series are slowly convergent—therefore, a 
large number of terms in the series must be retained to ensure 
accurate results, which often requires excessive computation 
time; 3) this method can only be used with special coordinate 
systems and boundary conditions for which the separation of 
variables can be applied. At present only eleven suitable 
coordinate systems are known (Ref. 1, p. 513ff). 

For arbitrarily shaped bodies, the differential form of the 
Helmholtz equation can be solved by writing the equation in 
terms of finite differences (Ref. 1, p. 703ff). Unlike 
separation of variables, this technique is not limited to ducts 
with simple geometries. A typical application of finite dif-
ferences is given by Wynne and Plumblee 10  who solved for 
the transverse eigenvalues and eigenfunctions of an annular 
duct with lined walls. This technique involves the 
simultaneous solution of the acoustic potential value at every 
point within the duct. Once the potential values are known, 
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the acoustic pressure and velocity can then be determined. To 
obtain sufficient accuracy, fine grid sizes must be used which 
necessitates large computer storage requirements. This 
drawback was noted by Baumeister, " Baumeister and Rice, 12  
and Alfredson 13  who used this technique in studies of duct 
wave propagation. Because of the storage requirements this 
technique has mainly been applied to two-dimensional 
problems. For three-dimensional problems numerical 
methods capable of handling large matrices must be used 
which require considerable computer time and computational 
effort. 14  This technique is also impractical in radiation 
problems which involve infinite domains. 

To avoid the limitations of the differential formulation, the 
integral approach is employed in this study. The integral 
approach has been successfully applied to a wide range of 
acoustic problems. In determining the sound radiation field 
from vibrating surfaces, integral techniques have been widely 
used."' For example, Chen and Schweikert 15-16  employed 
this method to determine the radiation sound patterns for 
three-dimensional shapes with mixed boundary conditions. 
To check the accuracy of the results, they computed the 
radiated field produced by a piston vibrating on a sphere. For 
this problem an exact solution exists 3  and compares favorably 
with the numerical results. The integral formulation is also 
used to solve the problem of scattering by arbitrary 
shapes. "" Banaugh and Goldsmith, for example, used this 
technique to investigate the effect of surface shape 19  on 
scattered sound fields. By applying this method to a circular 
cylinder, for which exact solutions are available, 3-4  and 
comparing the exact and numerical solutions, Banaugh and 
Goldsmith demonstrated the accuracy of the integral solution 
scheme. Although this method is capable of handling mixed 
boundary conditions, only surfaces with rigid boundaries 
were considered in Ref. 19. The effect of mixed boundary 
conditions was included in studies by Liu and Martenson 22 

 and Quinn23  of the internal acoustic pattern of lined ducts 
with arbitrary shapes. Comparison of the theoretical 
predictions with experimental data showed generally good 
agreement. Unpublished work by Zinn and Gaylord' 
demonstrated the applicability of the integral formulation for 
the determination of the natural frequencies and modes for,  
two-dimensional shapes. In this study the accuracy of the 
technique was determined by comparing the natural 
frequencies and mode shapes with available exact solutions 
for a two-dimensional cylinder with rigid walls. The 
agreement is to within four decimal places which is two-
orders-of-magnitude more accurate than previous results 



S+ 

Integrals over S+ 

and S_. cancel 

, Integration Boundary 

Fig. 1 Integration surface for an interior point. 

814 	 BELL, MEYER, AND ZINN 	 AIAA JOURNAL 

obtained by solving the differential Helmholtz equations 
using finite differences. 10  In another study by Tai and 
Shaw, 25  the integral method was applied to a right triangle. 
The resulting eigenfrequencies compared with exact solutions 
to within 5% and the maximum deviation between the 
numerically computed and exact potential fields was less than 
1 gio . 

To demonstrate the accuracy and the versatility of the 
integral solution technique, results are obtained for several 
acoustic problems involving a variety of geometries. To 
obtain a solution, the integral equation is first discretized to 
form a system of algebraic equations which are then solved 
for the acoustic poteptial at discrete points on the boundary. 
From these values the rest of the sound field is obtained. 
Methods for increasing the numerical accuracy by use of 
Gaussian quadrature and other numerical integration 
methods are presented and discussed. The first problem 
considered is the numerical evaluation of the resonant 
frequencies and natural modes of two-dimensional circular, 
rectangular, and star configurations. Exact and numerical 
values are compared for the circle and rectangle. The next 
problem considered is a two-dimensional duct with a right-
angle bend with a sound source at one end and sound ab-
sorption treatment at various locations along the duct. The 
results are compared with finite difference solutions. These 
studies demonstrate the applicability of the integral for-
mulation to complicated geometries and general boundary 
conditions. The next problem considered is the two-
dimensional radiation problem of a piston set in a right 
circular cylinder. Again, the exact and numerical acoustic 
fields are computed and compared. Finally, a three-
dimensional problem of determining the acoustic properties 
of a sphere is considered. The internal field is obtained using 
an axisymmetric formulation. 

II. Governing Equations 
The integral formulations of the wave equation for internal 

and radiation acoustic problems are developed in this section 
for two and three dimensions. The boundary conditions 
generally encountered in practical problems are then 
discussed. For clarity, only a brief account of the derivation 
of the basic equations will be given in this section. For a more 
detailed and rigorous development, Refs. 26 through 29 can 
be consulted. 

Assume a frictionless, homogeneous gas, and let P o  and po  
be the density and pressure of the fluid at rest. Representing 
he acoustic pressure and particle velocity at a time t by p and 

4, Euler's equation for the conservation of momentum gives 

au 
Po at +Vp=0 
	

(I) 

[he continuity equation yields the relationship 

	

a p 	2 

	

p— 	oCoV •U=0 	 (2) at 
/here co  is the speed of sound. By defining an acoustic 
otential function AP such that 

u= v 	 (3 1  

quation (1) provides the relation 

a NY 
P= —Po at 

(4) 

id Eq. (2) results in the classical wave equation 

2 
v24, 	

a 4, .
=0 

C6 rt2  

The wave equation can also be written in terms of p and u, but 
it is more convenient to work with an acoustic potential 
function, from which both the acoustic pressure and particle 
velocity can readily be obtained. 

Equation (5) is the wave equation for a general time 
dependence and can be written in integral form and solved by 
using retarded potentials. 21,28  However, for most practical 
problems a sinusoidal time dependence can be assumed which 
simplifies the problem considerably. Assume 

	

(r ,t) = 	el'e 	 (6) 

Substituting Eq. (6) into Eq. (5) gives the Helmholtz equation 

v _1420= 0 (k=w/co) (7) 

which can be solved by simpler methods not involving the use 
of retarded potentials. 

Integral Formulation 

To obtain an integral formulation of the Helmholtz 
equation, consider the problem shown in Fig. 1. Applying 
Green's theorem to the Helmholtz equation 1 •28 •29  gives the 
following integral relation 

r 
Id(Q)

aG(P,Q)  

	

G(P,Q)
ack(Q)   RISQ= 0 	(8) 3 r  

an Q 	 anQ  

where 0 is the acoustic potential function and G is the Green's 
function defined by Eqs. (14-16), which also satisfies the 
Helmholtz equation. The Green's function is regular inside 
the surface except when P= Q. At this point G is singular. To 
remove this singularity from the integral given by Eq. (8), 
point P is surrounded by a small sphere or circle a of radius e. 
The integral will now include a term over a which, on taking 
the limit as E — 0, gives 

aG(P,Q)  
cb(P)=C r [G(1),Q)

04)(Q)  ( Q ) 	d S 	(9) 

	

an ,2 	an  

where C is i/4 for two dimensions and 1/41r for axisymmetric 
and three-dimensional shapes. 

From Eq. (9) the value of the acoustic potential function at 
any point P within the surface can be determined from the 
boundary values of the potential and its normal derivative. 
Thus, the entire wave pattern within the surface can be 
constructed. For arbitrarily shaped surfaces for which 
numerical techniques must be used to obtain a solution, Eq. 
(9) requires much less computer storage than the differential 

(5) 
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formulation given by Eq. (7). Using Eq. (9) the value of the 
potential at each interior point can be obtained independently, 
whereas the method of finite differences used to solve Eq. (7) 
requires the simultaneous solution of 4> for every interior 
point. The integral formulation avoids the large matrices 
involved with finite differences. 

If the values of both 0 and a4)/an are known at every point 
on the boundary then the wave pattern can readily be 
determined from Eq. (9). However, for most practical 
acoustic problems either (34,/an or an admittance condition 
relating 4)  and a4)/On are given. Therefore, the values of the 
acoustic potential at the boundary must first be determined. 
The necessary relation is obtained by letting the point 7 

approach the boundary at some point T to obtain the 
following relation' 

	

aca(Q) 	3G(T,Q) 
0(7) = 	r  [G (T,Q) anQ 

	
4)(Q) 

 onQ ]dS
Q  (10) 

Eq. (10) is applicable to a smooth boundary, but has been 
extended to include cusps and corners. 19,24 To obtain the 
interior wave pattern, Eq. (10) is first solved for the boundary 
values of 4). These values are then substituted into Eq. (9) to 
determine the acoustic potential at the interior points. Both 
Eqs. (9) and (10) involve singular integrands as T approaches 
Q although for smooth surfaces the integrals themselves are 
regular. 

For exterior problems, analogous expressions to Eqs. (9) 
and (10) are obtained by taking the point P outside the surface 
r. 4  The integration in Eq. (8) is then carried out over the 
boundary, around a circle or sphere of radius e with point P as 
a center, and then around a circle or sphere of radius R, which 
is arbitrarily large. In this manner the integration includes the 
entire external domain. However, by applying Sommerfeld's 
radiation condition, it can be shown that the integral about 
the infinite sphere or circle approaches zero as R approaches 
infinity. 4  Thus, the corresponding equations for the external 
domain become 

3G(P,Q) 
(11(P) = 	

r  [G(P,Q) an 
an 
	 0(P) 	

an 	
10:1S,2(11) 

	

Q 	 Q 

and 

	

= — 2d.  [G(T,Q)
a(15(Q) 	aG(T,Q)

1dS Q  cb(Q) 

	

anQ 	anQ 	(12) 

It is important to note that Eqs. (11) and (12) involve in-
tegrations about the boundary of the body only. Thus, the 
radiated field at any distance from the body can be obtained 
once the surface acoustic potential is known. With finite 
differences, the values of the potential at every point in a very 
large domain would have to be computed in order to obtain 
the radiated field. Also, an artificial boundary condition at a 
large distance from the surface must be assumed. These 
factors make the application of finite differences to problems 
of this type rather inefficient whereas the integral formulation 
can readily be adopted to such situations. 

Eqs. (9) through (12) are applicable to two-dimensional, 
axisymmetric, and three-dimensional acoustic problems. In 
the two-dimensional and axisymmetric cases, these equations 
involve line integrals; and in the three-dimensional case, the 
integrals are taken over a surface. Note that the dimen-
sionality of the problem is reduced by one—a valuable 
simplification. 

The Green's functions satisfy the following inhomogeneous 
forms of the Helmholtz reduction with homogeneous 
boundary conditions' 

	

V 2 G+k2 G=c5(P—Q) 	 (13)  

where 6 is the Dirac delta function. The Green's functions 
are 1 . 17 ' 18 

G(P,Q) =Ho  (I)  (kr) for two dimensions, 	(14) 

e rkr 
G(P,Q) =2 --cos mOde for axisymmetric bodies (15) 

o r 

and 
G(P,Q) =e 	r for three dimensions 	(16) 

where r is the distance between points P and Q, and 
HP> (kr) is the zeroth order Hankel function of the first kind. 

Boundary Conditions 
The two most common boundary conditions in practical 

acoustic problems are the Neumann and Robin conditions. 
The Neumann condition of interest in the present study is 

ac6/an =A 	 (17) 

where A is the velocity amplitude of a given sound source. In 
the absence of a sound source A= 0; this condition means that 
the particle velocity is zero at the boundary which implies a 
perfectly reflecting, or rigid surface. For surfaces which 
absorb sound, such as lined duct walls; an admittance con-
dition is usually specified, which leads to the Robin condition. 
Defined as the radio of the normal component of the particle 
velocity to the pressure perturbation, the admittance y can be 
written as 

Y =Poco(un/P) 	 (18) 

Substituting for u,, and p from Eqs. (3) and (4) gives 

( adVan) + iky(6 = 0 	 (19) 

Eq. (19) is the Robin condition. 29  For sound-absorbing 
materials or devices, the admittance can be either analytically 
determined 3032 or measured using the impedance tube or a 
related technique. 33-34  The effects of a given material on the 
internal acoustic properties of a particular geometry can be 
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determined by substituting the admittance of the material into 
Eq. (19) and solving Eqs. (9) and (10) or (11) and (12) for the 
acoustic potential. Thus, the analytical techniques used in this 
investigation is applicable to a vast number of duct acoustic 
problems. Since the admittance of a combustion process can 
also be measured, 35  this analysis can also be applied to related 
linear combustion instability problems, provided that the 
equations are applied to regions where the Helmholtz 
equation holds and mean flow effects can be neglected. By 
replacing the combustion process by an admittance condition, 
studies of combustion instability have been conducted in 
liquid and solid propellant combustors. 3637  This research 
allows the extension of these analyses to more general shapes. 

Substituting Eq. (19) into Eq. (10) gives for the internal 
field 

^(^ +2C^ r 	
8n Q 
	+iky(Q)G(T,Q)IdSQ 
8G(T,Q) 

=-2C A(Q)G(T,Q)dSQ 	 (20) r 

A similar expression is obtained from Eq. (12) for the exterior 
problem. For surfaces with spatially varying admittances, the 
admittance is a function of Q. For most cases considered in 
this study, y is assumed constant although nonuniform ad-
mittance distributions can be easily handled. 

III. Solution Technique 
In the last section, the integral equations were developed 

which describe the interior and exterior acoustic fields or a 
surface with arbitrary shape and mixed boundary conditions. 
The numerical solution technique for solving these equations 
to obtain the internal or radiated acoustic patterns is 
presented in this section and can be divided into four parts. 
The first is the discretization of the integral equations into a 
corresponding system of linear, and algebraic equations in ¢ 
suitable for solution on a computer. The second part is the 
specification of the geometry and boundary conditions. The 
third is the computation of the coefficients of the system of 
equations and the final part is the methods used to solve for 
the surface potential from the algebraic equations. 

Discretization of the Integral Equations 
In two dimensions and for axisymmetric problems, Eq. (20) 

involves a one-dimensional improper integral about the 
boundary line. For this type of problem several numerical 
integration techniques 38-39  are available. The simplest is the 
trapezoidal rule which has been shown to yield excellent 
results in two-dimensional studies with this type of in-
tegral.' 9,24,25  Using this numerical integration scheme, Eq. 
20) becomes 

+2C^
N 

^ G(rjm)  
I  ^;[ 

anj 
+ikyjG(rjm)]ASj 

Sm+ ĥ 
1+2C

' 
 

Sm -½ 

N 	p 

+2C 	i J ::: 
jxm 

= -2CE 	
l' 5j

+ 
i=/ 	Sj 

aG(r,̂ ,) 
[ +ikymG(r ½)] dSJ] 

(22) 

8n ½ 

[8G(r;m ) 
+iky;G(rjm )]dSj  

 L 	aqj  

G(rjm )dSj  
-h 

In both Eqs. (21) and (22) the values of 4t are assumed to be 
constant over each of the N subintervals. The difference is the 
method by which the terms involving the Green's function are 
evaluated. In Eq. (21) an average value is computed over each 
of the subintervals based on rim . With Eq. (22) these terms are 
integrated numerically from r ; _ h , m  to rj+v,m  using Gaussian 
quadrature 3940  to obtain more accurate values. This type of 
formulation has been used before with trapezoidal instead of 
Gaussian quadrature formulas.' 8  In the present study for 
two-dimensional and axisymmetric problems, a reduction in 
error of two orders of magnitude in the numerical results for a 
nonzero admittance was achieved using Eq. (22) instead of 
Eq. (21). 40  

Surface Geometry and Boundary Conditions 
The first step in solving Eq. (22) is the determination of the 

coefficients of 4,j  and 4m.  These coefficients depend upon the 
surface geometry through the terms a/and, rjm , and OS1 . By 
specifying the admittance y and/or the sound velocity am-
plitude A over every subinterval j, the effect of the boundary 
conditions are included in the evaluation of the coefficients. 

To solve for the terms involving the surface geometry, the 
first expression inside the integrals of Eq. (22) is written as 

aG(r) 	aG(r)  or 

On 	Or an 

Th expressions for aG/ar are obtained by differentiating Eqs. 
(14) through (16). Substituting this expression into Eq. (22), 

Table 1 Eigenfrequencies and natural modes of a circle 
for various admittance values 

MODE 	 =0 0 
	

y•O.3 	y•O.31 
ADMITTANCE VALUE 	o 

+ 
_ COMPUTED 

EXACT 

1.84122 

1.84118 

1.8324+0.442311.4441- 

12322+0.44321 

0.0071 

1.4384 

COMPUTED 

EXACT 

3.05423 

3.05424 

30791+0539712.5369 - 0.01511 

42 3.0786+0.54 	2.5427 
+- 

+ 

3.83175 Not Computed Not Computed 

©
COMPUTED 

EXACT 3.83171 38186+0.30961 	3.5510 

COMPUTED 420135 42538.0.61991 35816 - 0.0231 

EXACT.. .4.20119 4.2532 0.63[31 	3.5615 

COMPUTED. 5.31763 Not Computed Not Computed 

EXACT 5.31755 5.3953 0.71011. 	45767 

N 

_ -2C, A ; G(rj,,, ) AS;  
l-! 

(21) Table 2 Resonant frequencies and natural modes of a 
rectangle for different admittance values at the ends 

ADMITTANCE VALUE vhere one equation for is obtained for each value of m and 
n is varied from 1 to N. Eq. (21) was initially used in this 
nvestigation to generate the N equations for and accurate 
esults were obtained when the admittance y was zero 
verywhere on the boundary 40  which is the case considered in 
revious studies. 19.24,25  However, when a nonzero admittance 
assumed, this technique gives inaccurate results because of 

^le contribution from the Green's function when the point j 
pproaches m. Because of the singular .nature of the Green's 

^Inction at the point m, care must be taken when numerically 

integrating this function over the subinterval m. To increase 
1e accuracy in evaluating the integrand, Eq. (20) is broken up 
to N integrals given by Eq. (22). 

MODE 
• 0 	y • 0.3 	y • 0.31 

COUTED MP 

 EXACT 

3.1432 

3.1416 

3.150+0.61991 

3.142+0.61901 

2.55840.0021 

2.559 + 	

_ 

- + - COMPUTED 

EXACT 

6.2877 

6.2832 

6.302+0.61561 

6.283+0.61901 

5886+0.0021 

5864 F + I 

COMPUTED 

EXACT 

7.0312 

- 7.0248 

7.146 +05881 

Not Computed 

6.333 - 0.0O8 

6.283 

+ 	- 

- 	+ 

COMPUTED 

EXACT 

8.893 

8.886 

8.934+0.6101 

Not Computed 

8 303 - 0.0114 

8.299 

+ - + 

+ 

EXACT ^^^^
COMPUTED 9.4329 

9.4248 

9.456+0.61064 

9.425+0.66104, 

8.847+0.0071 
8.8421 
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gives a relation which involves arIan,, r,„, and dS. The ex-
pressions for arlanr  ri„, and dS can be written in parametric 
form for bodies with simple shapes, and this type of 
representation has been used in previous studies using simple 

19-20,24,41,42 geometries. 	By taking advantage of symmetry, 
considerable savings in computer storage and computation 
times were achieved. In fact, Greenspan and Werner' 
showed that for a circle, Eq. (22) can be reduced to a single 
equation instead of a system of equations which could readily 
be solved to obtain the acoustic field. In the study by Tai and 
Shaw,' the method of images (Ref. 1, Ch. 11) was used to 
greatly reduce the numer of points necessary to compute 
eigenfrequencies and eigenmodes of a family of triangles. 
Although these studies demonstrate valuable simplifications 
which can be made in applying the integral formulation to a 
particular problem, the techniques used are not applicable to 
more general problems involving complicated geometries and 
nonuniform boundary conditions. 

In the present study for two dimensions, the expressions for 
the geometric variables are written in parametric form only 
for the circle. In the rest of the configurations considered, a 
general formulation is used. The fact that a parametric 
representation cannot be used in general cases is not a serious 
drawback-in fact, it somewhat simplifies the formulation. 
Consider the general two-dimensional problem depicted in 
Fig. 2. By specifying the x and y coordinates at the midpoint 
of each of the subintervals, the distance rffl, is readily com-
puted from the expression 

r - j. - Y  (xj -  x.) 2  ÷ (YJ -  in) 2 	(23) 

The expression for adati, can then be obtained since it 
represents the dot product of the gradient of r and the normal 
at j. Thus, 

	

ar 	 (x, - xm) nx, + 	-  Ym  nY/  _ 	 (24) 

	

anj 	 fin 

where nxi  is the component of the normal vector j in the x 
direction (or the cosine of the angle between the normal vector 
and the x-axis) and fl y]  is the corresponding y component (the 
sine of the angle between the normal vector and the y-axis). 
Analagous expressions for ri„, and arion, can be obtained for 
axisymmetric " - ' s and three-dimensional problems. For two-
dimensional and axisymmetric problems, the line segment 
length AS, is simply 

	

ASJ =V (X I + 1/2 -  X I _ 1/2) 2  + (y,+ 	1/2) 

or, for Nequally spaced subintervals, Si  = L/ N where L is the 
length of the perimeter of the surface. For three-dimensional 
bodies, AS, is the area of each of the subsurfaces taken over 
the boundary. 

	

MODE 
	

MODE 	 MODE 

4 7 

*NODAL POINT 

 

5 

NODAL LINE 

3 9 

Fig. 3 Nodal points and lines for the first nine modes of the star. 

Computation of the Coefficients of the Discretized Integral Equation 

Once the geometry has been specified, the coefficient of 4) 
in Eq. (22) can be determined by evaluating the Green's 
functions G(r„„,) and ac(r„,,,)/ar,„,. There are two problems 
in determining these functions: the first is a rapid, accurate 
method for computing them over a wide range of the 
argument krjm ; and the second is the singularity associated 
with each function as r,„, approaches zero. 

For the two-dimensional problems to compute the Hankel 
functions two routines have been used in this study. The first 
consists of a series expansion using standard formulas for the 
Hankel function with complex arguments."'" A sufficient 
number of terms is taken to satisfy a specified degree of 
accuracy. To minimize time, a different series expansion 
which was developed by Hitchcock" is used for determining 
these functions in the studies of the rectangle, star, and duct 
with a right-angle bend. With his formulation, accuracies of 
10 10  or greater are achieved using nine terms or less in the 
series expansion. Reductions of up to 50% in computer times 
can be achieved with this formulation. 

For the axisymmetric problem, the integral in Eq. (15) is 
carried out using a 20-point Gauss-Legendre quadrature 
formula. For three-dimensional problems, evaluation of the 
Green's function given by Eq. (16) is straightforward. 

The major problem in accurately computing the coef-
ficients in Eq. (22) is the singularity associated with the 
Green's functions as r,„, approaches zero; that is, as the point 
j approaches m in Fig. 2. The two-dimensional and 
axisymmetric Green's functions have logarithmic 
singularities. In this study, the inaccuracies involved are 
minimized by subdividing the intervals as indicated by Eq. 
(22). 

Determination of the Acoustic Potential 

Once the coefficients of the surface potential at each 
discrete point on the surface are determined, the equations are 
solved for 4)  using a complex Gauss-Jordan reduction scheme. 
The interior or exterior points can then be found using the 
discretized form of Eq. (9). 

To determine the eigenfrequencies of a particular geometry, 
the technique described in Ref. 40 is used. Essentially, this 
technique consists of: .1) determining the frequency k for 
which the determinant of the coefficients in the homogeneous 
form of Eq. (22) is zero, 2) normalizing the equation at the 
eigenfrequency to obtain the surface distribution of the mode, 
and 3) using Eq. (9) in discretized form to find the interior 
sound field. 

V. Results 
Using the numerical techniques described in the last section, 

solutions have been obtained for a variety of two-dimensional 
and axisymmetric problems to demonstrate its broad range of 

Table 3 Surface potentials for a circle of unit radius, 
second mode, Y= 0 

Angle Numerical Exact 

12 .9130 .9135 
24 .6681 .6691 
36 .3077 .3090 
48 - .1059 -.1045 
60 - .5012 - .5000 
72 - .8099 - .8090 
84 - .9785 - .9781 
96 - .9779 - .9781 

108 - .8082 - .8090 
120 - .4988 - .5000 
132 - .1013 -.1045 
144 .3104 .3090 
156 .6702 .6691 
168 .9141 .9135 
180 1.0000 1.0000 
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Table 4 Surface potential fora rectangle, height to width 
ratio = 0.5, first mode, rigid walls 

Y Numerical Exact 

1/2 1/14 1.0061 1.0063 
1/2 2/14 1.0060 1.0063 
1/2 3/14 1.0055 1.0063 

13/28 1/4 1.0000 1.0000 
11/28 1/4 .9501 .9499 
9/28 1/4 .8524 .8521 
7/28 1/4 .7119 .7116 
5/28 1/4 .5356 .5354 
3/28 1/4 .3325 .3324 
1/28 1/4 .1127 .1127 

applications. The two-dimensional form of the integral 
equation has been used to compute the resonant frequencies 
and natural modes of a circle, rectangle, and star con-
figuration. In addition, the problem of a duct with a right 
angle bend is considered, and results using Eq. (22) are 
compared with finite difference solutions. The two-
dimensional problem of sound radiation from a right circular 
cylinder is then considered and the numerical and exact 
solutions are compared. Finally the acoustic properties of a 
sphere are computed using the axisymmetric formualtion. 

For a circle and rectangle, comparisons between exact and 
numerical solutions are presented in Tables I and 2. In these 
tables the numerical and exact eigenfrequencies are tabulated 
for three admittance values, y=0, y=0.3, y = 0.31, with thirty 
points taken on the boundary. The best agreement between 
the computed and exact results occurs at the zero admittance 
condition. For the circle, the real part of the eigenfrequencies 
compare to five significant figures and the imaginary parts are 
accurate to 0.001 for the first five modes. When a nonzero 
admittance condition is introduced, the accuracy is reduced to 
three significant figures in the real part and to 0.01 in the 
imaginary part of the eigenfrequencies. 

As with the circle, the agreement between the exact and 
numerical values for the rectangle is good for a rigid bound-
ary but deteriorates when a nonzero admittance is in-
troduced. From Table 2 the agreement is to almost four 
significant figures in the real part of the eigenfrequency and to 
within 0.01 in the imaginary part for a rigid wall. The 
Gaussian integration techniques developed in Sec. III improve 

yel 

g. 4 Locations of the discrete points, nonzero admittance 
lundaries, and the sound source for the duct with a right-anele bend _ 
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Fig. 5 Comparison of numerical results for a duct with a right-angle 
bend using the integral and finite difference approaches, Case 1. 
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Fig. 6 Comparison of numerical results for a duct with a right-angle 
bend using the integral and finite difference approaches, Case 2. 

the accuracy of the computed eigenfrequencies for a nonzero 
admittance condition by an order of magnitude. 

For the circle the accuracy of the computed natural mode 
shapes is shown in Table 3. The agreement between the exact 
and computed eigenmodes for a rigid boundary is to within 
0.01% for interior points sufficiently far removed from the 
boundary. For a nonzero admittance at the surface, the ac-
curacy is to within 2%. These results are obtained using the 
interior analog of Eq. (21) which explains the deterioration in 
accuracy of the interior points as the boundary is approached. 
Equation (22) is used in the studies of the rectangle, star, and 
duct problems and more accurate results are obtained close to 
the boundary. For the rectangle, the boundary values of the 
acoustic potential are presented in Table 4. The agreement 
between the exact and numerical results is within one-half of a 
percent. Computation times range from ten sec per eigen-
frequency for the circle to 45 sec for the rectangle on 
UNIVAC 1108 computer. Using the discretized form of Eq. 
(9), interior points require approximately two sec per point to 
compute. 

In studying the star-shaped boundary, which is of interest 
in solid-rocket combustion instability problems, the ap-
plicability of the integral solution technique to a complicated 
geometry for which separation of variables does not apply can 
be assessed. The first nine eigenfrequencies and natural modes 
for the star are presented in Fig. 3 fora rigid wall with 48 
points taken on the surface. The most unique feature of the 
acoustic field for the star is the appearance of nodal points at 
some of the resonant modes. In the circle and rectangle nodal 
lines only are present, and they follow one of the separable 
coordinates of the boundary. With the star both nodal lines 
and points can occur which is in qualitative agreement with 
experimental observations for unstable solid propellant 
combustors. Computation times are from 60 to 75 sec per 
mode. The modes of a typical solid propellant configuration 
during a burn have also been computed and are given in Ref. 
45. 

The last internal two-dimensional problem investigated is 
that of a duct with a right-angle bend shown in Fig. 4. The 
react-Inc ftlr ctrirltrir,r. th:o 	 . 	 • 	 • 

It 
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Fig. 7 Sound pattern produced by a 20° vibrating piston set in a 
circular cylinder. 

nonuniform surface admittance, 2) to include a sound source 
in the integral formulation, and 3) compare the results ob-
tained by the integral technique with the finite difference 
solutions of Ref. 13. 

The results obtained using this configuration are presented 
in Figs. 5 and 6 and are compared with the solutions obtained 
uisng the finite difference method. Although the results using 
the integral approach are in qualitative agreement with the 
finite difference solution, quantitative agreement is lacking. 
The same number of boundary points are taken in both cases. 
Doubling the number of subintervals using Eq. (22) does not 
improve the agreement between the two sets of data. 
However, it does show that the results of the integral for-
mulation are self-consistent. An experimental setup is 

Table 5 Resonant frequencies and surface potentials for a sphere 
of unit radius, first and second modes, axisymmetric formulation 

Resonant frequencies Computed 	 Exact 

2.084-0.0041 	 2.082 
3.346-0.0071 	 3.342 

Normalized surface potential 
Angle 	 Computed 	 Exact 

(First mode) 
5 1.00000 1.00000 

15 .96960 .96962 
25 .90975 .90977 
35 .82232 .82228 
45 .70992 .70981 
55 .57593 .57577 
65 .42439 .42423 
75 .25992 .25981 
85 .08753 .08749 

(Second mode) 
5 1.0000 1.0000 

15 .9098 .9099 
25 .7403 .7405 
35 .5121 .5124 
45 .2275 .2529 
55 - .0072 - .0066 
65 - .2346 - .2348 
75 - .4051 - .4041 
85 - .4953 - .4942 

'Numerical results obtained usina Ea. (21) instead of Ea. (22).  

currently being developed to check these results and should 
clarify the discrepancy between these two methods. 

For two-dimensional radiation problems, excellent results 
are obtained as shown in Fig. 7. Here the radiated field from a 
piston set in a right circular cylinder is computed and com-
pared with exact results from Ref. 3. The mean square error is 
less than rio while the computation time required is 15 sec to 
obtain both the surface and far field patterns. 

To check the accuracy of the axisymmetric formulation, the 
first two resonant frequencies and natural mode shapes of a 
sphere were computed and are presented in Table 5. As with 
the two-dimensional problems, agreement between the exact 
and numerical calculations is excellent. Computation times 
are approximately two minutes per mode; however, no at-
tempt was made to take advantage of the symmetry of the 
problem which can reduce the computation time by at least a 
factor of two. 

Conclusions and Recommendations 
The results for the circle and rectangle show that the in-

tegral technique is very accurate in determining resonant 
frequencies and natural mode shapes. Its application to the 
star configuration demonstrates its usefulness in studying the 
acoustics of complicated shapes. For the duct with a right-
angle bend, the integral approach is shown to be applicable to 
nonuniform boundary conditions involving sound sources. 
The formulation also gives accurate results for two- 
dimensional radiation problems shown in the study of the 
right circular cylinder. 

With the axisymmetric formulation accurate results are 
obtained for the internal eigenmodes of a sphere. Extensions 
to more complicated boundaries can readily be made. 
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Abstract 

This report summarizes the work performed during the second year 

of an AFOSR sponsored research program that was primarily concerned with 

the development of an analytical technique for determining the radiated 

sound field from axisymmetric jet engine inlet configurations. The 

analytical technique employed is based upon an integral representation of 

the external (radiation) solutions of the Helmholtz equation which describe 

the sound fields external to a given body under either no flow or constant 

velocity flow situations. The integral representation developed during the 

course of this research program is different from earlier works in the sense 

that it not only yields the correct (unique) solution for all radiation problems 

at all frequencies, but that the resulting integral equations contain no strong 

(i.e., non-integrable) singularities and therefore can be solved by straight 

forward numerical techniques. As part of this research effort two 

extremely flexible computer programs were developed for the solution of 

these axisymmetric integral equations. These programs can be used for any 

closed axisymmetric body with any combination of boundary conditions on 

its surface, without any modification of the computer codes, to provide 

accurate solutions for the acoustic properties (i.e., the acoustic pressure, 

normal velocity, and admittance) both on the body itself and anywhere in the 

field surrounding the body. Also, as part of this research effort, experiments 

are now being conducted with various axisymmetric configurations to 

provide the data that will be used to check the validity of the theoretical 

predictions. Some preliminary experimental data are presented in this 

report. 



I. Introduction 

This report summarizes the results obtained during the second year 

of support under AFOSR contract number F49620-77-C-0066. This contract 

was initiated on February 1, 1977 and the results obtained during the first 

year of support are contained in AFOSR Interim Scientific Report AFOSR-

TR-78-0696. 

The main objective of the research program conducted under this 

contract was to develop an analytical technique for predicting the sound 

field radiated from axisymmetric jet engine inlet configurations and to 

check the validity of these predictions with relevant experimental data. The 

development of this analytical solution technique was motivated by the need 

- for a theoretical approach that could be used to predict the effects of sound 

source modifications and of sound suppression devices (such as acoustically 

lined surfaces and splitters) upon the sound field radiated from the inlet 

without having to resort to costly, full scale experimental testing. The 

experimental investigations are necessary not only for comparison with the 

results of the analytical technique (which has shown extremely good 

2 3* agreement with known exact solutions) 1  ' ' 	but also to assist in the 

determination of the correct analytical form for describing the boundary 

conditions necessary to accurately model sound suppression materials in the 

computer programs. 

These references were included as appendices of the aforementioned 
Interim Scientific Report, AFOSR-TR-78-0696. 



During the first year of this contract the integral equations and 

computer programs required for investigating the sound fields radiated from 

certain simple geometries were developed. Specifically, two different 

formulations of the problem were developed; that is, the full three 

dimensional formulation and the axisymmetric formulation. Employing both 

these formulations the sound radiation from both a sphere and a finite length 

cylinder were investigated. In these studies the effects of different 

boundary conditions on the accuracy of the integral solution technique was 

investigated by comparing the predictions of this approach for the sound 

fields radiated by simple sources with available exact solutions obtained 

using the Seperation of Variables Technique (which is only applicable to 

simple geometries such as those investigated). This work is described in 

detail in three publications 1 '2 '3  (See footnote on the previous page.) and it 

was presented at three conferences A ' B 'C*. In summary the first year of 

study has shown that the integral solution technique developed under this 

contract is both accurate and efficient from a numerical point of view. 

During the second year of this contract two general computer 

programs were developed for the determination of the acoustic fields both 

on and around general axisymmetric bodies with general boundary 

conditions. It will be noted here that although the geometry of the bodies 

under consideration are constrained to be axisymmetric the allowable 

acoustic modes are not; that is, any cylindrically symmetric acoustic mode 

which may be present can be solved for using these computer programs. 

These programs were written in Extended Fortran IV and they are presented 

Letters refer to the various conference presentations conducted in 
connection with this program. These presentations are listed in 
Appendix F. 
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in Appendix A. They have been fully checked out on the Georgia Tech CDC 

Cyber 70/74 computer and have been used to theoretically predict the 

radiated sound fields that are associated with both lined and unlined straight 

ducts and an actual jet engine inlet configuration 4 shown in. Fig. 1. 

The details and results of these investigations are described in 

References 5 and 6 which are reproduced in Appendices B and C 

respectively. The latter of the two papers has also been accepted for 

presentation at the AIAA 5th Aeroacoustics Conference in March 1979 in 

Seattle, Washington. Probably the most significant results of this 

investigation is the result that the optimum theoretical admittance values 

found for reducing the sound radiated from a straight duct do not necessarily 

have the same effect in a dimensionally similar (i.e., the same length to 

diameter ratio) inlet. That is, the geometrical details of an axisymmetric 

body need to be taken into consideration when calculating optimum 

admittance values for acoustic liners. Another result of this investigation is 

that the admittance at the entrance plane of a straight duct or an inlet is 

not constant in the radial direction. The assumption of a constant 

admittance value at the entrance plane of a duct is common to many current 

theoretical analyses of the duct radiation problem and thus can be a large 

source of error in these analyses. 

Since the use of a constant admittance value at the entrance plane 

of a duct is so common a series of computer runs were performed to 

determine just how accurate this assumption is. The runs were done for a 

straight duct configuration and various admittance values were calculated 

and compared with certain "classical values". The details of this analysis and 

the results are presented in Appendix E. In Appendix E a draft copy of a 



Figure 1. Axisymmetric Inlet Geometry. 



technical note, to be submitted for publication in the AIAA Journal, is 

reproduced. 

Part of the efforts expended under this contract during the second 

year of study were devoted to the development of experimental data that 

could be used to check the validity of the accompanying analytical studies. 

These efforts consisted of the design and development of appropriate 

experimental setups and the conduct of the required experiments, which are 

currently in progress. The experimental data acquired under this program is 

being compared with corresponding theoretical predictions. Some 

preliminary results of these comparisons are now available and they are 

presented in Section IV of this report. The work conducted during the 

second year of this contract which is not presented in the papers contained 

in Appendices B and C is summarized in the following sections. 



II. Analytical Effort 

The analytical efforts during the second year of this AFOSR 

contract consisted of the development of the general computer programs for 

handling axisyrnmetric geometires and their use to perform certain 

parametric studies of interest. The details and results of these studies are 

presented in Appendices B, C, and E, and the computer programs themselves 

are presented in Appendix A. The programs were developed so that they 

could not only be used for parametric analytical studies but also so that 

they could easily accept experimental data for any configuation without 

any major changes in the computer code. Another part of the analytical 

effort was concerned with the determination of the admittance of the liner 

which was used in the experimental phase of this program and with the 

redesign of the liner for future testing (See Appendix D.). 

The initial testing under this program was conducted with an 

available acoustic liner which was developed in a related combustion 

instability program. This liner was tuned for maximum damping at a 

frequency, — 740 Hertz, which is above the first tangential (i.e., IT) mode, 

—.695 Hz ,of the duct under investigation. Since we are mainly interested in 

runing experiments below the IT cut-off frequency to facilitate both the 

data reduction and the comparison of experimental and analytical values all 

of the preliminary testing was done in the frequency range 300-650 Hz 

which is below the IT cut-off frequency. Thus, the liner was not expected 

to exert much attenuation. Since most of the planned future testing will also 

be conducted over a frequency range below the IT mode of the duct, the 

available liner will be retuned to be more effective below the IT cut-off 

frequency. The retuning of the liner is discussed in detail in Appendix D. 

6 



III. Experimental Investigations 

The main objective of the experimental phase of this program was to 

obtain experimental data that could be readily compared with the 

predictions of the analytical models developed under this program. 

Specifically, the sound fields radiated from lined and unlined axisymmetric 

duct configurations were to be measured and compared with corresponding 

theoretical predictions. Since these studies were concerned with the 

measurements of the radiated sound fields, all of the required experiments 

were conducted in an anechoic chamber whose properties are described in 

Fig. 2. A typical experimental setup utilized in the course of this study is 

shown in Fig. 3; it consists of a lined axisymmetric duct with a sound source 

at one end and an open termination at the other end. The test body (i.e., the 

inlet) is placed on one side of the anechoic chamber and an array of 

microphones is used to measure the radiated sound field. The latter 

consisted of 5 Brdel and Kjaer condenser-type microphones. The sound 

source was a University driver and it was placed at the throat of a nozzle 

that was connected to the axisymmetric body tested as shown in Fig. 4. The 

available liner used for the preliminary testing was not specifically designed 

for maximum effectiveness in the frequency range where most of the testing 

was done. It was tuned for maximum damping at a frequency higher than the 

IT mode of the duct under study. It consisted of 180 Helmholtz resonators 

(20 radial rows by 9 axial rows) which were closed off during the hard walled 

testing (See Appendix D for the admittance calculation). A diagram of the 

driver-nozzle-liner set-up and of one of the Helmholtz resonators appears in 

Fig. 4. 
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This experimental set-up was found to work very well in that the 

acoustic waves generated by the driver remained essentially plane up to the 

nozzle-liner interface. This was determined by traversing a 1/4" B&K 

microphone radially across the nozzle-liner interface. This being the case 

only a single measurement of the acoustic pressure, which is needed for 

input to the analytical computations, was taken at this plane for each test 

condition. 



IV. Preliminary Experimental Results and Comparisons 

Some preliminary experiments have been conducted with the 

straight duct configuration shown in Figs. 3 ad 4. Both lined and unlined 

configurations were tested; however, not much difference was noted as all 

the tests were conducted at frequencies below the first tangential (i.e. IT) 

mode of the duct and therefore in a region where the liner is only marginally 

effective as discussed in the previous sections (Also see Appendix D.). Tests 

were conducted in the frequency range 300 to 650 Hertz with 50 Hz 

increments. The microphones in the field were placed on a circular arc with 

a radius of seven feet centered at the entrance plane of the duct (See Figure 

3.). The microphones were placed at increments of 119£ °  from the 

centerline of the duct to 90 °  . 

Comparisons between the experimental results and the theoretical 

results were made. Since an experimentally measured value of the sound 

pressure level at the nozzle-duct interface was used as input for the 

computer programs, the accuracy of the calculated far field can only be 

expected to be as good as this measurement. Other sources of error are the 

"imperfections" of the anechoic chamber at various frequencies as shown in 

Fig. 2, instrumentation errors, and the lack of perfect correspondence 

between the experimental and analytical configurations. In this connection it 

should be pointed out that the theoretical model employs a spherical 

termination at the rear end of the straight duct as shown in Fig. 5. This was 

done to improve the efficiency of the computer programs as it has been 

shown through theoretical studies that the shape of the termination of the 

12 



Figure 5. Straight Duct Geometry. 



duct exerts little influence upon the acoustic field in the forward half plane 

of the duct. 

Comparisons between the measured and calculated results shows 

good qualitative agreement for both the hard walled (i.e., See Fig. 6.) and 

the lined (i.e., See Fig. 7.) duct configurations. Good agreement is observed 

between the hard walled and lined wall cases in that the errors follow the 

same patterns (i.e., Compare Figs. 6 and 7.) which suggest that most of the 

observed errors are due to the "non-anechoicness" of the anechoic chamber. 

The measured data will be further analyzed in the future and they will be 

published together with additional data collected during the next year of 

study under this contract. 

14 
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Appendix A 

Computer Programs Developed for this Project 

The computer programs described in this appendix were developed 

during the second year of this AFOSR research project. They are very 

general in that they can be used to find the acoustic properties (i.e., the 

acoustic potential, normal acoustic velocity, and the admittance) both on 

the surface and surrounding any finite (closed) axisymmetric body. Also, the 

boundary conditions can be specified at each point on the surface of the 

body; the only restriction is that the admittance may not be specified 

everywhere on the body as then the solution of the governing integal 

equation is non-unique. 

The first computer program developed for this project calculates the 

surface distributions of the acoustic quantities for a general axisymmetric 

configuration. Required inputs for this program are the geometric 

description of the body, the boundary conditions, and the problem 

specification data (i.e., the mode number of the acoustic wave being solved 

for and the wave number). The geometric input data required includes the 

p z coordinates of the points in the center of each integration interval, P, 

the two integration points on either side of the center point, Q, the normal 

to the body at the center point, NORMAL, and the length of each 

integration interval in the p -z plane, LENGTH. Since the body is assumed to 

be axisymrnetric the program takes care of choosing the integration points 

in the e direction through the use of a 96 point Gaussian integration 

formula. 

18 



The boundary conditions are specified in two vectors. The first 

vector, ICHECK, specifies what type of boundary condition is known at each 

point in the p-z plane. 

ICHECK 
cp 	known 

6 c,0/6n known 
y 	known 

(A- 1) 

The second vector, CINDATA, contains the actual complex value of the 

boundary condition at each point. Finally the problem specification data 

consists of specifying the wave number k and the mode number m (i.e. m = 0 

is the axisymmetric mode.) 

This program prints out all the input data and all the acoustic 

quantities on the surface of the body. It also creates an output file which is 

read by the next program to calculate the acoustic qualtities in the field 

surrounding the body. 
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PROGRAM EXPCYL (INPUT, OUTPUT, TAPE10, TAPE11, 
TAPE5 = INPUT, TAPE6 = OUTPUT) 

C 
C 
C*****************************************************************WM 
C* 

THIS PROGRAM CALCULATES EITHER THE ACOUSTIC POTENTIAL OR THE 
ACOUSTIC VELOCITY OR THE EFFECTIVE ADMITTANCE ON'TBE SURFACE 	* 
OF ANY AXISYMMETRIC BODY USEING THE METHOD OF BURTON 8 MILLER * 
WITH MY INTERPRETATION OF THE MOST SINGULAR COMPONENT.- 

* 
C*********************************************************************** 
C* 
C* 	WILLIAM A. BELL'S OPTIMAL VALUE OF ALPHA (= I/10 IS EMPLOYED. * 
C* 
C*********************************************************************** 
C* 
C* 	A CYLINDRICAL FORMULATION OF THE PROBLEM IS EMPLOYED. 
C* 
C* 
C*********************************************************************** 
C 
C 

REAL K, LENGTH, NORMAL 
COMPLEX ALPHA, CEON, CEXACT, CPHI, CVEL, CY, IK, IKSQ, TWOPIA, 

• 	CINDATA 

COMMON /I/ M, NP, NPP1 
COMMON /R/ K, PI, TWOPI 
COMMON /C/ ALPHA, IK, IKSQ, TWOPIA' 
COMMON /ID/ 'CHECK (102) 
COMMON /RD/ LENGTH (102), NORMAL (102, 2), P (102 2), 

Q (102, 2, 2) 
COMMON /CD/ CEOM (102, 103), CEXACT (102), CPHI (102), CVEL (102), 

CY (102), CINDATA(102) 
COMMON /NGAUSS/ NGAUST 
COMMON /GAUSS/ GAUSNT (48, 2) 

CALL INPUT 

INTEGER CONSTANTS 

NPP1 = NP + 1 

REAL CONSTANTS 

TWOPI = 2.0 * PI 

COMPLEX CONSTANTS 

IK = (0.0, 1.0) * K 
IKSO = IK * IK 
ALPHA = (0.0, 1.0) / K 
TWOPIA = ALPHA * TWOPI 

CALL EON 

CALL GAUSS 

CALL OUTPUT 

STOP "NORMAL" 

END 

C* 
C* 
C* 
C* 
C* 
C* 
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C 
	BLOCK DATA 

REAL K 
C 

COMMON /I/ M, NP, NPP1 
COMMON /R/ K, PI, TWOPI 
COMMON /NGAUSS/ NGAUST 
COMMON /GAUSS/ GAUSNT (48, 2) ,  

DATA NP / 102 / 

DATA PI / 3.1415926535898 / 

DATA NGAUST / 48 / 

DATA ((GAUSNT(I, J), J = 1, 2), I = 1, 12) 
/ 0.01627674484960, 0.03255061449236, 

0.04881298513605, 0.03251611871387, 
0.08129749546443, 0.03244716371406, 
0.11369585011067, 0.03234382256858, 
0.14597371465490, 0.03220620479403, 
0.17809688236762, 0.03203445623199, 
0.21003131046057, 0.03182875889441, 
0.24174315616384, 0.03158933077073, 
0.27319881259105, 0.03131642559686, 
0.30436494435450, 0.03101033258631, 
0.33520852289263, 0.03067137612367, 
0.36569686147231, 0.03029991542083 / 

DATA ((GA(JSNT(I, J), J = 1, 2), I = 13, 24) 
/ 0.39579764982891, 0.02989634413633, 

0.42547898840730, 0.02946108995817, 
0.45470942216774, 0.02899461415056, 
0.48345797392060, 0.02849741106509, 
0.51169417715467, 0.02797000761685, 
0.53938810832436, 0.02741296272603, 
0.56651041856140, 0.02682686672559, 
0.59303236477757, 0.02621234073567, 
0.61892584012547, 0.02557003600535, 
0.64416340378497, 0.02490063322248, 
0.66871831004392, 0.02420484179236, 
0.69256453664217, 0.02348339908593 / 

DATA ((GAUSNT(I, J), J = 1, 2), I = 25, 36) 
/ 0.71567681234897, 0.02273706965833, 

0.73803064374440, 0.02196664443874, 
0.75960234117665, 0.02117293989219, 
0.78036904386743, 0.02035679715433, 
0.80030874413914, 0.01951908114015, 
0.81940031073793, 0.01866067962741, 
0.83762351122819, 0.01778250231605, 
0.85495903343460, 0.01688547986425, 
0.87138850590930, 0.01597056290256, 
0.88689451740242, 0.01503872102699, 
0.90146063531585, 0.01409094177231, 
0.91507142312090, 0.01312822956696 / 

DATA ((GAUSNT(I, J), J = 1, 2), I = 37, 48) 
/ 0.92771245672231, 0.01215160467109, 

0.93937033975276, 0.01116210209984, 
0.95003271778444, 0.01016077053501, 
0.45968829144874, 0.00914867123078, 
0.96832682846326, 0.00812687692570, 
0.97593917458514, 0.00709647079115, 
0.98251726356301, 0.00605854550424, 
0.98805412632962, 0.00501420274293, 
0.99254390032376, 0.00396455433844, 
0.99598184293721, 0.00291073181793, 
0.99836437586318, 0.00185396078895, 
0.99968950388323, 0.00079679206555 / 

END 
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C 

C 

C 

C 

C 

C 
100 

C 

C 
101 

C 

C 

SUBROUTINE INPUT 

REAL K, LENGTH, NORMAL 
COMPLEX CEQN, CEXACT4  CPHI, CVEL, CY, CINDATA 

COMMON /I/.141, NP, NPP1 
COMMON /R/ K, PI, TWOPI 
COMMON /ID/ 'CHECK (102) 
COMMON /RD/ LENGTH (102), NORMAL (102, 2), P (102 2),. 

Q (102, 2, 2) 
COMMON /CD/ CEQN (102, 103), CEXACT (102), CPHI (102)4 CVEL (402), 

CY (102), CINDATA: (102) 

READ (5, 100) ((P(I, J), J = 1, 2), I =A, NP) 

READ (5, 100) (((Q(I, J, KO, KK = 1, 2), J = I, 2), I. = ,1 NP) 

READ (5, 100) ((NORMAL( I, J), J = 1, 2), I = 1, NP) 

READ (5, 100) (LENGTH( I) , I = 1, NP) 

FORMAT (8G10.0) 

PRINT 101 

FORMAT ("IGEOMETRIC INPUT DATA:" / / / 
" ", 25X, "-Q(RHO, Z)" / 

", 4X, "N", 21X, "P(RHO, Z)", 38X, "NORMAL( RHO, Z)", 
27X, "LENGTH" / 

", 25X, "+Q(R110, Z)" // " ") 

WRITE (6, 102) (Q(I, 1, 1), O(I, 1, 2),I, P(I, 1), PCI, 2), 
NORMAL(I, 1), NORMAL(I, 2), LENGTH(I), O(I,.2, 1), 
Q(I, 2, 2), I = 1, NP) 

11 

102 FORMAT (" 

11 

C 

15X, "(", F13.10, ",", F13.10, 
'I 2X, 13, 10X, "(", F13.10, ",", 

"(", F13.10, ",", 
F13.10 / 

", 15X, "(", F13.10, ",", F13.10, 

11)11 / 
F13.10, ft) II ,  21X, 

	

F13.10, 	) II.. 17X, 

	

) 11 / 11 	II) 

READ (5, 104) (ICHECK(I), 
C 
104 FORMAT (1615) 

C 
READ (11, 1100) hi, K 

C 
1100 FORMAT (120, G20.0) 

C 

I = 1, NP) 

READ (11, 100) (CINDATA(I), I = 1, NP) 
C 

RETURN 
END 
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SUBROUTINE EON 
C 

REAL K. LENGTH, NORMAL, NP1, NP2, NRHOF,. NRHOO, NZP, NZQ 
COMPLEX ALPHA, CEON, CEXACT, CPHI, CVEL, CY, IK, 

TWOPIA, CINDATA 
C 

COMMON /I/ M, NP, NPP1 
COMMON /R/ K, PI, TWOPI 
COMMON /C/ ALPHA, IK, IKSQ, TWOPIA 
COMMON /ID/ ICHECK (102) 
COMMON /RD/ LENGTH (102), NORMAL (102, 2), P 	2), 

Q (102, 2, 2) 
COMMON /CD/ CEQN (102, 103), CEXACT (102), CPHI (102), CVEL(102), 

CY (102), CINDATA(102) 
C 

INITALIZE MATRIX 
C 

DO 1 I = 1, NP 
DO 2 J = 1, NPP1 
CEQN(I, J) = (0.0, 0.0) 

3 

CONTINUE 
P1 	= 	P(I, 	1) 
P2 = 	P(I, 	2) 
NP1 = NORMAL(I, 	1) 
NP2 = NORMAL(I, 2) 

IF ( 1CHECK( I)) 3, 	4, 5 
CONTINUE 
CEXACT(I) = CINDATA(I) 
CVEL(I) 	= 	(0.0, 	0.0) 
CY( I) 	= 	(0.0, 	0.0) 
CEON(I, NPP1) = TWOPI * CEXACT(I) 
CEQN(I, 	I) = -TWOPIA 
GO TO 6 

4 CONTINUE 
CEXACT(I) 	= 	(0.0, 0.0) 
CVEL(I) 	= CINDATA(I) 
CY( I) 	= 	(0.0, 	0.0) 
CEO.N(I, NPP1) = TWOPIA * CVEL(I) 
CEON(I, 	I) 	= -TWOPI 
CO TO 6 

5 CONTINUE 
CEXACT(I) 	= 	(0.0, 0.0) 
CVEL(I) 	= 	(0.0, 	0.0) 
CY(I) 	= CINDATA(I) 
CEON(I, 	I) = -TWOP I * (1.0 + ALPHA * CY(I)) 

6 CONTINUE 
1 CONTINUE 

C 
C XI INTEGRATION 
C 

DO 7 J = 	1, NP 
NRIIOQ = NORMAL(J, 	I) 
NZ4 	= NORMAL(J, 2) 
GAUSZ = LENGTH(J) *'PI 
DO B I = 1, NP 
RHOP = P(I, 	1) 
ZP = P(I, 	2) 
NRHOP = NORMAL(I, 	1) 
NZP = NORMAL(I, 2) 
DO 9 L = 	1, 2 
RHOQ = Q(J, L, 	1) 
ZQ = Q(J, L, 2) 

C 
CALL CALC (RHOP, ZP, NRHOP, NZP, RHOQ, ZQ, 

I, 	J) 
ERHOQiNZ(/ GAUSZ, 

C 
9 CONTINUE 
B CONTINUE 
7 CONTINUE 

C 
RETURN 
END 
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SUBROUTINE CALC(RHOP, ZP, NRHOP, NZP, EMU, Z(1,,ICHHOQ, NZ64 
GAUSZ, I, J) 

REAL K, NDOTN, NRHOP, NRHOQ, NRHOQP, NZP, BZ(1, NZQP 
COMPLEX ALPHA, CEQN, CEXACT, CPHI, CVEL, CY, FI, F2, G, GP, 

GPP,' IK, IKSQ, II, 12, K1, K2, TWOPIA, CINDATA 

COMMON /I/ M, NP, NPP1 
COMMON /R/ K, PI, TWOPI 
COMMON /C/ ALPHA, IK, IKSQ, TWOPIA 
COMMON /ID/ ICHECK (102) 
COMMON /CD/ CEQN (102, 103), CEXACT (102), CPHI (102), , CVEL:(IO2), 

CY (102), CINDATA,(102) 
COMMON /NGAUSS/ NGAUST 
COMMON /GAUSS/ GAUSNT (48, 2) 

ZD = ZQ - ZP 
ZSQ = ZD * ZD 
RHOSQ = (RHOQ - RHOP)**2 
RHOQP2 = 2.0 * Rum * RHOP 
NRHOQP = NRHOQ * NRHOP 
NZQP = NZQ * NZP 

C 
C 	THETA INTEGRATION 
C 

DO 1 IT = 1, NGAUST 
THETA = PI * GAUSNT(IT, 1) 
IF (I 	J) THETA = PI * (1.0 - GAUSNT(II% 1)) 
GAUSZT = GAUSZ * GAUSNT( IT, 2) 

C 
COST = COS (THETA) 
COSMT = COS (M * THETA) 

R = SQRT (RHOSQ + ZSQ + RROOP2 * (1.0 - COST) ) 
DRDNQ = (NRHOQ * (RHO@ - RHOP * COST) + NZQ * ZD) / R 
DRDNP = (NRHOP * (RHOP - RHOQ.* COST) - NZP * ZD) / R 
NDOTN = NRHOQP * COST + NZQP • 

C 
G= RHOQ * CUP (IK * B) / R 
GP = G * (IK - (1.0 / B)) 
GPP = G * (IKSQ - (3.0 * rK / R) + (3.0 / (R * E))) 

11 = G * COSMT 
12 = ALPHA * GP * DRDNP * COSMT 
Fl = ALPHA * G * IKSQ * NDOTN 
F2 = ALPHA * (GPP * DRDNP * DRDNQ - (GF* NDOTN / 
K1 = GP * DRDNQ * COSMT 
K2 = F2 * COSMT 

C 
IF (TCHECK(I) .NE. -1) GO TO 3 

C 
CEQN(I, NPP1) = CEQN(I, NPPI) + GAUSZT * CEXACT(I) * (F1 + F2) 

C 
GO TO 4 

3 	CONTINUE 
C 

CEQN(I, I) = CEQN(I, I) - GAUSZT * (F1 + F2) 
C 
4 	CONTINUE 

IF (ICHECK(J)) 11, 12, 13 
11 CONTINUE 

C 
CEQN(I, J) = CEON(I, J) - GAUSZT * (II + 12) 
CEQN(I, NPP1) = CEQN(I, NPP1) - GAUSZT * (K1 + K2) 

* CEXACT(J) 
C 

GO TO 14 
12 CONTINUE 

C 
CEQN(I, J) = CEQN(I, J) + GAUSZT *•(141 ± K2). 
CEQN(I, NPP1) = CEQN(I, NPP1) + GAUSZT * 	+ 12) 

* CVEL(J) 
C 

GO TO 14 
13 CONTINUE 

C 
CEQN(I, J) = CEQN(L, J) + GAUSZT'* ((ET+ K2) 

CY(J) * (II 4-I2)) 
C 
14 CONTINUE 
1 CONTINUE 

C 
RETURN 
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SUBROUTINE GAUSS 

IMPLICIT COMPLEX (C) 

COMMON /I/ MM, NP, NPP1 
COMMON /CD/ CEON (102, 103), CEXACT (102), CPHI (102), CVELA102), 

CY (102), CINDATA (102) 
C 
C 	UPPER TRIARGULARIZE MATRIX 
C 

DO 1 J = 1, NP 
JP1 = J + 1 
CSAVE = CEON (J, J) 
CEQN(J, J) = (1.0, 0.0) 
DO 2 L = JP1, NPP1 
CEON(J, L) = CEON(J, L) / CSAVE 

2 	CONTINUE 
IF (J .EQ. NP) GO TO 3 
DO 4 M = JP1, NP 
CSAVE = CEON(M, J) 
DO 5 I = JP1, NPP1 
CEON(M, I) = CEON(M; I) - CEON(J, I) * CSAVE 

5 	CONTINUE 
4 	CONTINUE 
1 	CONTINUE 

C 
C 	BACK SUBSTITUTION 
C 
3 	CONTINUE 

CSUM = (0.0, 0.0) 
DO 6 I = 1, NP 
NPMI = NP - I 
NPP1NI = NPMI + 1 
CPHI(NPP1NI) = CEON(NPP1MI, NPP1) - CSUN 
IF (I .EQ. NP) GO TO 7 
CSUM = (0.0, 0.0) 
DOBJ = 1, I 
NPPIMJ = NPP1 - J 
CSUM = CPHI(NPP1MJ) * CEON(NPMI, NPP1MJ) + CSUN 

8 	CONTINUE 
6 	CONTINUE 
7 	CONTINUE 

C 
RETURN 
END 
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C 
SUBROUTINE OUTPUT 

REAL IEXACT, IPHI, K. LENGTH, MADMIT, MEXACT, MPH!, MVELP, MYF, 
NORMAL 

COMPLEX ADMIT, ALPHA, CEQN, CEXACT, CPHI, CVEL, CY, IX, IKSQ, 
TWOPIA, VELP, CINDATA 

COMMON /I/ 11, NP, NPP1 
COMMON /R/ K, PI, TWOPI 
COMMON /C/ ALPHA, IK, IKSQ, TWOPIA 
COMMON /ID/ ICHECK (102) 
COMMON /RD/ LENGTH (102), NORMAL (102, 2), 

(102, 2, 2) 
COMMON /CD/ CEQN (102, 103), CEXACT (102), 

CY (102), CINDATA:(102) 
' COMMON /NGAUSS/ NGAUST 

P (102:. 2), 

CPHI (102),CVELI(IO2), 

• 
DIMENSION ADMIT (102), 

HADN'T (102), 
MYP (102), P 
PPVELP (102), 
REXACT (102), 

VELP (102), IEXACT ( 
MEXACT (102), MPHI 

ADMIT (102), PEXACT ( 
PVELM (102), PVELP 
RPHI (102) 

102), IPHI (102); 
(102) 9 . MVELP (102), 
102), PPHI (102), 
(102), PYP (102), 

EQUIVALENCE (CEQN, ADMIT), 	 (CEQN(1, 2), VELP(1)), 
(CEQN(1, 3),.IEXACT(1)), (CEQN(1, 4)':, IPHI(1)), 
(CEQN(1, 5), MADMIT(1)), (CEQN(1, 	MEXACT(1)), 
(CEQN(1, 7), maim), 	(CEQN(1, 	MVELP(1)). 
(CEON( 1, 9), MYP( 1)), 	(CEQN(1, 10), PADMIT(1)1, 
(CEQN(1, 11), PEXACT(1)), (CEQN( 1, 12), PPHI(1)), 
(CEQN(1, 13), PPVELP(1)), (CEQN(1, 14), PVELM(1)), 
(CEQN(1, 15), PVELP(1)),. (CEQN(1, 16), PYP(1)), 
(CEQN(1, 17), REXACT(1)), (CEON(1, 18), RPHI(1)) 

C 
PRINT 100 

C 

	

100 FORMAT ("4", 61X, "*********n / 	", 61X, "* 

	

" is , 61X, "* INPUT *" / 	", 61X, H* 
" ", 61X, "*********" //// " N", Mc, 
"EFFECTIVE ADMITTANCE.", 20X, "ACOUSTIC VELOCITY", 22X, 
"ACOUSTIC POTENTIAL" // " ") 

C 
DO 1 I = 1, NP 
REXACT(I) = REAL (CEXACT(I)) 
IEXACT( I) = AIMAG (CEXACT(I)) 
MEXACT( I) = CABS (CEXACT(I)) 
PEXACT( I) = 0.0 
IF (MEXACT(I) .NE. 0.0) PEXACT(I) = ATAN2 CIEXACT(I), REXACT(I)) 
MVELP(I) = CABS (CVEL(I)) 
PVELP(I) = 0.0 
IF (MVELP(I) .NE. 0.0) PVELP(I) = ATAN2 (AIMAG (CVEL(I)), 

REAL (CVEL(I))) 
MYP(I) = CABS (CY(I)) 
PYP(I) = 0.0 
IF (WPM .NE. 0.0) PYP(I) = ATAN2 (AIMAG (CY(I)), REAL (CY(I))) 
IF (ICHECK(I)) 3, 4, 5 

3 	CONTINUE 
C 

WRITE (6, 10I) I, CEXACT(I) 
C 
101 FORMAT (" ", 13, 88X, "(n, F13.10, "," F13.10, ")°) 

C 
GO TO 22 

4 	CONTINUE 
C 

WRITE (6, 102) I, CVEL(I) 
C 
102 FORMAT (" ", 13, 49X, "(n, F13. 10, ",", F13. 10, ")") 

C 
GO TO 22 

5 	CONTINUE 
C 

WRITE (6, 103) I, CY( I) 
C 
103 FORMAT (" ", 13, 9X, "(", F13.10, ",", F13.10, ")") 

C 
22 CONTINUE 
1 	CONTINUE 

NGAUSZ = 2 
NGAUST = 2 * NGAUST 	
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C 
	WRITE (6, 104) K, M, ALPHA, NGAUSZ, NGAUST 

104 FORMAT ("1INPUT FOR THIS CASE IS:" /// 
" " 25X, "K = " F10 . 6 , 5X, "N =", I5, 6X, "ALPHA = ( " , 

F5. 1, " H  F10.6, ") // 
" ", 14X, "NUMBER OF INTEGRATION POINTS IN THE XI DIRECT", 
"ION =", 15, //  

• 

", 14X, "NUMBER OF GAUSSIAN POINTS IN THE THETA DIRECT", 
"ION =", 15, " (GAUSS - LEGENDRE)") 

C 
PRINT 105 

C 
105 FORMAT ("1THE CALCULATED SURFACE DISTRIBUTIONS OF THE ACOUSTIC P", 

"OTENTIAL, THE ACOUSTIC VELOCITY, AND THE:EFFECTIVE ADM", 
"TTANCE ARE:". //// 
▪ N", 11X, "P(RHO, Z)", 14X, "PHI/COS(M*THETA)", 20X, 
"VEL/COS(M*THETA)", 18X, "EFFECTIVE ADMITTNACE" // " ") 

C 
DO 6 I = 1, NP 
IF (ICHECK(I)) 7, 8, 9 
CONTINUE 
VELP(I) = CPHI(I) 
PVELM(I) = CABS (VELP(I)) 
PPVELP(I) = 0.0 
IF (PVELMM .NE. 0.0) PPVELP(I) = ATAN2 (AIMAG (VELP(1)), 

REAL (VELP(I))) 
CPHI(I) = CEXACT(I) 
RPHIM = REAL (CPHIM) 
IPIII(I) = AIMAG (CPHI(I)) 
MPHIM = CABS (CPHI(I)) 
PPHI(I) = 0.0 
IF (MPHIM .NE. 0.0) PPHI(I) = ATAN2 (IPHI(I), RPHI(I)) 
ADMIT(I) = VELP(I) / CPHI(I) 
IF (MPHIM .EQ. 0.0) ADMIT( 	= (0.0, 0.0) 
MADMITM = CABS (ADMITM) 
PADMIT(I) = 0.0 
IF (MADMITM .NE. 0.0) PADMIT(I) = ATAN2 (AIMAG (ADMIT(I)), 

REAL ( ADMIT( I ) ) ) 
C 

WRITE (6, 106) I, P(I, 1), P(I, 2), VELP(I), ADMIT(I) 
C 
106 FORMAT (" ", 13, 7X, "(", F5.3, ",", F6.3, ")", 44X, 2G13.5, 10X, 

2G13.5) 
C 

CO TO 10 
CONTINUE 
RPHI(I) = REAL (CPHIM) 
IPIII(I) = AIMAG (CPHIM) 
/WHIM = CABS (CPHI(I)) 
PPHI(I) = 0.0 
IF (NPUI(I) .NE. 0.0) PPHI(I) = ATAN2 (IPHI(I), RPHI(I)) 
YELP{ = CVELM 
PVELMM = CABS (VELP(I)) 
PPVELP(I) = 0.0 
IF (PVELNI(I) .NE. 0.0) PPVELP( I) = ATAN2 (AIMAG (VELPM), 

REAL (VELP(I))) 
ADMIT(I) = VELP(I) / CPHI(I) 
MADMIT(I) = CABS (ADMIT(I)) 
PADMIT(I) = 0.0 
IF (MADMITM .NE. 0.0) PADMIT(I) = ATAN2 (AIMAG (ADMIT(I)); 

REAL (ADMIT(I))) 
C 

WRITE (6, 107) I, P(I, 1), P(I, 2), CPHI(I), ADNIT( I) 
C 
107 FORMAT (" ", 13, 7X, "(", F5.3, H , H , F6.3, ")", 8N4 2G13.5, 46X, 

2G13.5) 
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GO TO 10 
9 	CONTINUE 

RPHI( I) = REAL ( CPHI( I) ) 
IPII1( I) = AIPIAG (CPIII( I)) 
MIMI( I) = CABS (CPHI(I)) 
PPIII( I) = 0.0 
IF (Milt( I) .NE. 0.0) PPHI( I) = ATAN2 ( IPHI( I), RPHI( I)) 
VELP( I) = CPHI( I) 	CY( I) 
PVELM( I) = CABS ( VELP( I) ) 
PPVELP( I) = 0.0 
IF ( PVELN( I) . NE. 0.0) PPVELP( I ) = ATAN2 ( A INAG ( YELP( I) ) 

REAL ( VELP( I) ) ) 
ADMIT( I) = CY( I) 
PIADM1T( I) = CABS (AIDNIT( I)) 
PADNIT( I) = 0.0 
IF (11ADDIIT( I) . NE. 0.0) PADMIT( I) = ATAN2 (AIPIAG (ADMIT( I) ) 

REAL (ADMIT( I)) ) 
C 

WRITE (6, 108) I, P( I, 1), P( I, 2), CPRI( I), VELP( I) 
C 

108 FORMAT ( " ", 13, 7X, "( ", F5.3, ", ", F6.3, ") ", 8X, 2G13.5, 10X, 
2013.5) 

C 
10 CONTINUE 
6 	CONTINUE 

C 
PRINT 113 

C 
113 FORMAT ( "1TPLE MODULUS OF THE ACOUSTIC POTEri 1 IAL , THE ACOUSTIC VE" , 

• "LOC I TY, AND THE EFFECTIVE ADMITTANCE ARE:" //// 
• N" , 11X, "P( RHO, Z) " , 14X, "PIII/COS( 	 " , 20X, 
"VEL/COS( M*THETA) ", I8X, "EFFECTIVE ADMITTANCE" / 
• " , 36X, "EXACT 	CALC", 20X, "EXACT 	CALC" , 

	

20X, "EXACT 	CALC" // " ") 
C 

DO 16 I = 1, NP 
IF ( ICHECK( I)) 17, 18, 19 

17 CONTINUE 
C 

WRITE (6, 114) I, P( I, 1) P( I , 2) , MEXACT( I) , NVELP( I) , PVELPH , I) , 
NYP( I) , P1ADMIT( I) 

C 
114 FORMAT ( " " , 13, 7X, 

2G13.5, 10X, 
" ( " , F5 . 3 , 
2013.5) 

II 	II 

	

, 	 , F6 . 3, .1 ) 11 9  8x9  G13.5, 23X, 

C 
CO TO 20 

18 CONTINUE 
C 

WRITE (6, 115) I, P( I, 1) , P( I, 2) , PIEXACT( I) , PIPHI( I) , MVELP( I) , 
NYP( I) , NADMIT( I) 

1 1 	II 
11 	 , 

C 
115 FORMAT ( " " , I3, 7X, " ( " , F5 . 3 , 

G13.5, 23X, 2G13.5) 
C 

CO TO 20 
19 CONTINUE 

C 

F6.3, ") ", 8X, 2G13.5, 10X, 

C 

WRITE (6, 116) I, P( I, 1)P( , 2) , MEXACT( I) , NEU( I) , PIVELP( I) , 
PVELPI( I) , IlYP( I) 

13, 7X, "( ", F5.3, 	F6.3, ") ", 8X, 2G13.5, 10X, 
5, 10X, G13.5) 

C 
20 CONTINUE 
16 CONTINUE 

116 FORMAT ( " " , 
2G13. 
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PRINT 120 
C 
120 FORMAT ("1THE PHASE OF THE ACOUSTIC POTENTIAL, THE ACOUSTIC VELO", 

"CITY, AND THE EFFECTIVE ADMITTANCE ARE:" //// 
" N " , 11X, "P(RHO, Z)", 2IX, "PHI", 33X, "VEL", 24X, 
"EFFECTIVE ADMITTANCE" / 

	

" ", 36X, "EXACT 	CALC", 20X, "EXACT 	CALC", 

	

20X, "EXACT 	CALC" // " ") 
C 

DO 11 I = 1, NP 
IF ( ICHECK( I)) 12, 13, 14 

12 CONTINUE 
C 

WRITE (6, 114) I, P(I, 1), P(I, 2), PEXACT(I), PVELP(I), 
PPVELP(I), PYP(I), PADMIT(I) 

GO TO 15 
13 CONTINUE 

C 
WRITE (6, 115) I, P(I, 1), P(I, 2), PEXACT(1), 	 PVELPCIY, 

PYP(I), PADMIT(I) 
C 

CO TO 15 
14 CONTINUE 

C 
WRITE (6, 116) I, P(I; 1), P(I, 2), PEXACT(I), PPHI(I), PVELP(I), 

PPVELP(I), PYP(I) 
C 
15 CONTINUE 
11 CONTINUE 

C 
C 	'WRITE THE SURFACE DISTRIBUTIONS TO THE OUTPUT FILE. 
C 

WRITE (10, 121) (CPUI(I), VELP(I), I = I, NP) 
C 
121 FORMAT (4020.10) 

C 
RETURN 
END 
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The following computer program reads the previous programs 

output file containing the values of the acoustic quantities on the surface of 

the body and calculates the values of the acoustic quantities at any given 

point in the field surrounding the body. The required inputs are the points 

where the acoustic quantities are known on the surface of the body Q, the 

normals to the body at these points NQ, the length of each integration 

interval LENGTH, the points in the field where the acoustic quantities are 

required P, and some arbitrary normal at these points NP as the normal 

acoustic velocity is calculated. The problem specification data is also 

required again; that is, k the wave number and m the mode number. 

The program prints out all the geometric input data and the 

acoustic potential and normal acoustic velocity at the field points. It also 

calculates and prints out the SPL(dB) at each field point. 
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- 	- 
PROGRAMEX:PEE (INPUT, OUTPUT,.TAFE10, TAPE11, 

TAPE5 = INPUT, TAPE6 = OUTPUT) 
C 
C 
C*********************************************************************** . 

 C* 
C* 
C* 	THIS PROGRAM CALCULATES THE ACOUSTIC POTENTIAL AND THE 
C* 	ACOUSTIC VELOCITY IN THE FIELD SURROUNDING ANY AXISYMMETRIC 
C* 	BODY EMPLOYING THE SURFACE DISTRIBUTIONS OF THE ACOUSTIC 
C* 	POTENTIAL AND THE NORMAL ACOUSTIC VELOCITY. 
C* 
C*********************************************************************** 
C* 
C* 	A CYLINDRICAL FORMULATION OF THE PROBLEM IS EMPLOYED: 
C* 
C* 
C*********************************************************************** 
C 
C 

REAL K, LENGTH 
COMPLEX CPHIP, CPHIQ, CVELP, CVELQ, IK,.IRSQ 

C 	
COMMON /I/ M, NP, NQ 
COMMON /R/ FOURPI, K, PI, TWOPI 
COMMON /C/'IK, IKSQ 
COMMON /RD/ LENGTH (102), P (9, 2), PNORMAL (9, 2), 

Q (102, 2), ()NORMAL (102, 2) 
COMMON /CD/ CPHIP (9), CPHIQ (102), CVELP (9), CVELO (102) 
COMMON /NGAUSS/ NGAUSS 
COMMON /GAUSS/ GAUSST (48, 2) . 

C 
CALL INPUT 

C 
C 
	

REAL CONSTANTS 
C 

TWOPI = 2.0 * PI 
FOURPI = 4.0 * PI 

C 
C 
	

COMPLEX CONSTANTS 
C 

IK = (0.0, 1.0) * K 
IKSQ = IK * IK 

C 
CALL CALC 

C 
CALL OUTPUT 

C 
STOP "NORMAL" 

C 
END 
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BLOCK DATA 
C 

REAL K 

COMMON /I/ M, NP, NQ. 
COMMON /R/ FOURPI, K, PI, TWOPI 
COMMON /NGAUSS/ NGAUSS 
COMMON /GAUSS/ GAUSST (48, 2) 

C 
C 	THE NUMBER OF POINTS IN THE FIELD WHERE THE ACOUSTIC POTENI1AL 
C 	AND THE ACOUSTIC VELOCITY ARE TO BE CALCULATED. 

DATA NP / 9 / 
C 
C 	THE NUMBER OF POINTS ON THE SURFACE OF THE BODY WHERE THE . 
C 	ACOUSTIC POTENTIAL AND THE NORMAL ACOUSTIC VELOCITY ARE KNOWN. 
C 

DATA 101 / 102 / 
C 

DATA. PI / 3.1415926535898 / 
C 

DATA NGAUSS / 48 / 
C 

DATA ((GAUSST(I, J), J = 1, 2), I = 1, 12) 
• / 0.01627674484960, 0.03255061449236, 

0.04881298513605, 0.03251611871387, 
0.08129749546443, 0.03244716371406, 
0.11369585011067, 0.03234382256858, 
0.14597371465490, 0.03220620479403, 
0.17809688236762, 0.03203445623199, 
0.21003131046057, 0.03182875889441, 
0.24174315616384, 0.03158933077073, 
0.27319881259105, 0.03131642559686, 
0.30436494435450, 0.03101033258631, 
0.33520852289263, 0.03067137612367, 
0.36569686147231, 0.03029991542083 / 

DATA ((GAUSST(I, J), J = 1, 2), I = 13, 24) 
/ 0.39579764982891, 0.02989634413633, 

0.42547898840730, 0.02946108995817, 
0.45470942216774, 0.02899461415056, 
0.48345797392060, 0.02849741106509, 
0.51169417715467, 0.02797000761685, 
0.53938810832436, 0.02741296272603, 
0.56651041856140, 0.02682686672559, 
0.59303236477757, 0.02621234073567, 
0.61892584012547, 0.02557003600535, 
0.64416340378497, 0.02490063322248, 
0.66871831004392, 0.02420484179236, 

. 	0.69256453664217, 0.02348339908593 / 
DATA ((GAUSST(I, J), J = 1, 2), I = 25, 36) 

/ 0.71567681234897, 0.02273706965833, 
0.73803064374440, 0.02196664443874, 
0.75960234117665, 0.02117293989219, 
0.78036904386743, 0.02035679715433, 
0.80030874413914, 0.01951908114015, 
0.81940031073793, 0.01866067962741, 
0.83762351122819, 0.01778250231605, 
0.85495903343460, 0.016:; 8547986425, 
0.87138850590930, 0.01597056290256, 
0.88689451740242, 0.01503872102699, 
0.90146063531585, 0.01409094177231, 
0.91507142312090, 0.01312822956696 / 

DATA ((GAUSST(I, J), J = 1, 2), I = 37, 48) 
/ 0.92771245672231, 0.01215160467109, 

0.93937033975276, 0.01116210209984, 
0.95003271778444, 0.01016077053501, 
0.95968829144874, 0.00914867123078, 
0.96832682846326, 0.00812687692570, 
0.97593917458514, 0.00709647079115, 
0.98251726356301, 0.00605854550424, 
0.98805412632962, 0.00301420274293, 
0.99254390032376, 0.00396455433844, 
0.99598184298721, 0.00291073181793, 
0.99836437586318, 0.00185396078895, 
0.99968950388323, 0.00079679206555 / 

END 
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SUBROUTINE INPUT 

REAL K, LENGTH 
COMPLEX CPHIP, CPHIQ, CVELP, CVELQ 

C 
COMMON /I/ M, NP, NO 
COMMON /R/ FOURPI, K, PI, TWOPI 
COMMON /RD/ LENGTH (102), P (9, 2), PNORMAL (9, 2Y, 

Q .(102, 2), aNORMAL (102, 2) 
COMMON /CD/ CPHIP (9), CPHIQ (102), CVELP (9), CVELQ (102) 

C 

C 

C 
100 FORMAT (8G10.0) 

C 
PRINT 101 

C 

C 

C 

READ (5, 100) ((P(I, J), J = 1, 2), I = 1, NP) 

READ (5, 100) ((PNORMAL (I, J), J = 1, 2), I = 1, NP) 

READ (5, 100) ((0(I, J), J = 1, 2), I = 1, NO) 

READ (5, 100) ((ONORMAL (I, J), J = 1, 2), I = 1, NO) 

READ (5, 100) (LENGTH(I), I =' 1, NQ) 

C 
101 FORMAT ("1GEOMETRIC INPUT DATA:" /// 

", 4X, "N", 21X, "O(IIHO, Z)", 38X, "NORMAL(RHO, Z)", 
29X, "LENGTH" // " ") 

C 
WRITE (6, 102) (1, Q(I, 1), WI, 2), ONORMAL(I, 1), ONORMAL(I, 2), 

LENGTH(I), I = 1, NO) 
C 
102 FORMAT(" , 2X, 13, 10X, "(", F13.10, ",", F13.10, ")", 21X, 

"(", F13.10, ",", F13.10, ")", 17X, 
F13.10) 

PRINT 103 
C 
103 FORMAT ("1FIELD POINT INPUT DATA:" /// 

" ", 4X, "N", 21X, "P(RHO, Z)", 38X, "NORNAL(RHO, Z1" // 
II 	II) 

C 
WRITE (6, 104) (I, P( I, 1), P(I, 2), PNORMAL(1, 1), PNORMAL( I, 2), 

I = 1, NP) 
C 
104 FORMAT (" ", 2X, 13, 9X, "(", F14.10, ",", F14.10, ")", 20X, 

"(", F13.10, ",", F13.10, ")") 
C 

READ (10, 105) (CPHIQ(I), CVELQ(I), I = 1, NOD 
C 
105 FORMAT (4G20.10) 

C 
PRINT 106 

C 
106 FORMAT ("1", 61X, "********" / " ", 61X, "* 	*" / 

" ", 61X, "* BODY *." / " ", 61X, "* 	•" / 
" ", 61X, "********" //// " N"., 21X, "Q(RHO, Z)", 25X,. 
"ACOUSTIC POTENTIAL", 21X, "ACOUSTIC VELOCITY" // " ") 

C 
WRITE (6, 107) (I, Q(I, 1) , Q(I, 2), CPHIO(I), CVELQ(4), 

I = 1, NO) 
C 
107 FORMAT (" ", 13, 9X, "(", F13.10, 

9X, "(", F14.10, 
8X, "(", F14.10, 

READ (11, 1100) 114 K 
C 
1100 FORMAT (120, G20.0) 

C 
RETURN 
END 

II 	 II 
, 

II 	 II 

II 	 II 

	

1 	 1 

F13.10, 
F14.10, 
F14.10, 

II ) II , 

II) I I . 

II ) II 
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SUBROUTINECALC 

REAL K, LENGTH, NDOTN, NIP, NZPZD, NZQZD, NZQP' 
COMPLEX CPHIP, CPHIQ, CVELP, CVELQ, G, GP, GPP, IK, IKSQ, II, 12,' 

I3, 14 

COMMON /I/ M, NP, NQ 
COMMON /11/ FOURPI, K, PI, TWOPI 
COMMON /C/ IK, IKSQ 
COMMON /RD/ LENGTH (102), P (9, 2), PNORMAL (9, 2), 

Q (102, 2), 4NORMAL (102, 2) 
COMMON /CD/ CPHIP (9), CPHIQ (102), CVELP (9), CVELQ (102) 
COMMON /NGAUSS/ NGAUSS 
COMMON /GAUSS/ GAUSST (48, 2) 

C 
DO 1 I = 1, NP 
CPHIP(I) = (0.0, 0.0) 
CVELP(I) = (0.0, 0.0) 

C 
C 	XI INTEGRATION 
C 

DO 2 J = 1, NO. 
GAUSZ = TWOPI * LENGTH(J) 
ZD = Q(J, 2) - P(I, 2) 
NZQZD = ONORMAL(J, 2) * ZD 
NZPZD = PNORMAL(I, 2) * ZD 
ZSQ = ZD * ZD 
RHOSQ = (Q(J, 1) - P(I, 1))**2 
RHOOP2 = 2.0 * Q(J, 1) * P(I, 1) 
NRHOOP = ONORMAL(J, 1) * PNORMAL(1, 1) 
NZQP = QNORMAL(J, 2) * PNORMAL(I, 2) 
RHOZSQ = RHOSQ + ZSQ 

C 
C 	THETA INTEGRATION 
C 

DO 3 IT = 1, NGAUSS 
THETA = PI * GAUSST(IT, 1) 
GAUSZT = GAUSZ * GAUSST(IT. 2) 

COST = COS (iwETA) 
COSNT = COS (M * THETA) 

C 
R = SORT (RHOZSQ + RHOOP2 * (1.0 - COST)) 
DRDNP = (PNORMAL(I, 1) * (P(I, 1) - Q(J, 1) * COST) - NZPZD)"/ R 
DRDNQ = (OWORMAL(J, 1) * (Q(J, 1) - P(I, 1) * COST) + NZQZD) / R 
NDOTN = NRHOQP * COST + NZQP 

G = Q(J, 1) * GAUSZT * COSMT * CEXP (IK * 	/ R 
GP = G * (IK - (1.0 / R)) 
GPP = G * (IKSQ - (3.0 * IK / R) + (3.0 / (R * R))) 

= GP * DRDNQ 
12 = -G 
13 = GPP * DRDNQ * DRDNP - (GP * NDOTN / R) 
14 = -GP * DRDNP 

CPHIP(I) = CPHIP(I) + I1 * CPHIQ(J) + 12 * CVELQ(J) 
CVELP( I) = CVELP(I) + 13 * CPHIQ(J) + 14 * CVELQ(J) 

C 
3 	CONTINUE 
2 	CONTINUE 

C 
CPHIP(I) = CPHIP(I) / FOURPI 
CVELP(I) = CVELP(I) 	FOURPI 

C 
1 	CONTINUE 

C 
RETURN 
END 



C 

102 FORMAT (" ", 13, 8X, "(", F14.10, ",", F14.10, 11) 11 ,  

. 	8X, " C " . F14.10, H , H , F14.10, 11) 11 ,  

8X, "(", F14.10, li , n , F14.10, 11) 11) 

C 

C 

• 
WRITE (6, 102) (I, P(I, 1), P(I, 2), CPHIP(1), CVELP( I), 

I = 1, NP) 

C 

C 

SUBROUTINE OUTPUT 

REAL IPHI, IPHIP, IVEL, IVELP, K, LENGTH, MPH14 MPH!?, MVE1.4 
MVELP 

COMPLEX CPHIP, CPHIQ, CVELP, CVELQ, Y 

COMMON /I/ M, NP, NQ 
COMMON /R/ FOURPI, K, PI, TWOPI 
COMMON /RD/ LENGTH (102), P (9, 2), PNORMAL (9', 2), 

Q (102, 2), aBORMAL (102, 2) 
COMMON /CD/ CPHIP (9), CPHIQ (102), CVELP (9), CVELQ (102) 
COMMON /NGAUSS/ NGAUSS 

MPHIP 
RPHIP 
MVELP 
RVELP 

C 
C 
C 

DIMENSION IPHI (9), IPHIP (9), MPHI (9), 
PPHI (9), PPHIP (9), RPHI (9), 
IVEL (9), IVELP (9), MVEL (9), 
PVEL (9), PVELP (9), RVEL (9), 

INITIALIZE EXACT SOLUTION. 

DO 2 I = 1, NP 
RPHI(I) = 0.0 
IPHI( I) = 0.0 
MPHI(I) = 0.0 
PPHI(I) = 0.0 
RVEL(I) = 0.0 
IVEL(I) = 0.0 
MVEL(I) = 0.0 
PVEL(I) = 0.0 

2 	CONTINUE 
NGAUSS = 2 * NGAUSS 

C 
WRITE (6, 100) K, NGAUSS 

C 
100 FORMAT ("1INPUT FOR THIS CASE IS:" /// 

" ", 60X, "K =", F10.6 // " ", 60X, "M =", 15 // 
" ", 13X, "NUMBER OF GAUSSIAN POINTS IN THE THLTA DIBECI", 
"ION =", 15, " (GAUSS - LEGENDRE)") 

DO 5 I = 1, NP . 

RPHIP(I) = REAL (CPHIP(I)) 
RVELP(I) = REAL (CVELP(I)) 
IPHIP(I) = AIMAG (CPHIP(I)) 
IVELP(I) = AIMAG (CVELP(I)) 
MPHIP(I) = CABS (CPHIP(I)) 
MVELP(1) = CABS (CVELP(I)) 
PFHIP(I) = 0.0 
PVELP(I) = 0.0 
IF (MPHIP(I) .NE. 0.0) PPHIP(I) = ATAN2 1 (IPRIP(I), MUM) 
IF (MVELP(I) .NE. 0.0) PVELP(I) = ATAN2'(IVELP(I), RVELP(I)) 

5 
	

CONTINUE 
C 

PRINT 103 
C 
103 FORMAT ("1", 58X, "**************"' / " 	58X, 

. 	 11 U. 58X, "* CALCULATED *" / " 	58X, 
It 11 ,  58X, "**************" //// " N", 

25X, "ACOUSTIC POTENTIAL",. 
21X, "ACOUSTIC VELOCITY" // " ") 

0*, 	 * 1  / 
21X, "P( RHO, 	" , 
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C 
109 FORMAT ("1THE MODULUS OF THE ACOUSTIC POTENTIAL AND THE ACOUSTIC", 

" VELOCITY ARE:" //// " N", 11X, "P(RHO, Z)", 14X, 
"PHI/COS(M*THETA)", 20X, "VEL/COS(M*THETA)", 8X, 
"SPL (DB)", 16X, "Y "  / 
" ", 36X, "EXACT 	CALC", 20X, "EXACT 	CALC" // 
u 	j 

DO 7 I = 1, 1W 
SPL = 20.0 * AL0010 (IC * MPHIP(I)) + 146.6 
Y = CVELP(I) / CPHIP(I) 

C 
WRITE (6, 110) I, P( I, 1), PCI, 2), MPHI(I), MPHIP(I), MU T), 

NVELP(I), SPL, Y 
C 
110 FORMAT (" ", 13, 6X, "(", F6.3, ",", F7.3, 	, 7X, 2013.5, MX,' 

2013.5, 2X, F7.2, 5X, 2013.5) 
C 
7 	CONTINUE 

C 
PRINT 112 

C 
112 FORMAT ("1THE PHASE OF THE ACOUSTIC POTENTIAL AND. THE ACOUSTIC V"; 

"ELOCITY ARE:" //// " N", 11X, "P(RHO, Z)", 21X, 
"PHI", 33X, "VEL" / 
" ", 36X, "EXACT 	CALC", 20X, "EXACT 	CALC" // 
11 	Ilj 

WRITE (6, 113) (I, P(I, 1), P(I, 2), PPHI(I), PPHIP(I), PVEL(I), 
PVELP(I), I = 1, NP) 

C 
113 FORMAT (" ", 13, 6X, "(", F6.3, ",", F7.3, n ) n , 7X, 2013.5,.10x, 

2013.5) 
C 

RETURN 
END 
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Society of America 

"Prediction of the Sound Field Radiated From A)dsymmetric 
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PREDICTION OF THE SOUND FIELD RADIATED FROM 
AXISYMMETRIC SURFACES 

W. L. Meyer, W. A. Bell*, M. P. Stallybrass **and B. T. Zinn*  

*School of Aerospace Engineering 
**School of Mathematics 

Georgia Institute of Technology 
Atlanta, Georgia 30332 

Abstract  

A general analytical method for determining the radiated sound fields 

from axisymmetric surfaces of arbitrary cross section with general boundary 

conditions is developed. The method is based on an integral representation 

for the external solutions of the Helmholtz equation. An integral equation 

is developed governing the surface potential distribution which gives unique 

solutions at all wave numbers. The axisymmetric formulation of the problem 

reduces its solution to the numerical evaluation of line integrals by 

Gaussian quadrature. The applicability of the solution approach for both a 

sphere and finite cylinder is demonstrated by comparing the numerical results 

with exact analytical solutions for both discontinuous and continuous boundary 

conditions. The method is then applied to a jet engine inlet configuration 

and the computed. results are in good agreement with exact values. 

I. Introduction 

To reduce the noise radiated to the community from turbofan inlets, the 

effects of sound suppression material in the inlet and the spatial distri-

bution of the sound source on the radiated sound levels and patterns must be 

determined. Analytical techniques for predicting these effects must be cap-

able of dealing with general axisymmetric geometries and complicated boundary 

conditions which are encountered in multiply-lined inlets. For instance, in 

a typical inlet the compressor-fan combination represents a noise source 



2 

with a nonuniform spatial excitation pattern. Thus, the analytical method 

should be capable of taking into account sound sources of general spatial 

distribution. Also, inlets may contain multiple acoustic liners to reduce 

the radiated sound power and admittance boundary conditions are commonly 

used to account for the absorption characteristics of the liner. Therefore, 

the analytical method must be capable of dealing with spatially varying sur-

face admittances. Finally, the method should be capable of predicting the 

characteristics of the radiated sound field in an infinite domain. Keeping 

these requirements in mind, the work presented in this paper describes the 

results of an investigation which has been concerned with the analytical 

determination of radiated sound fields from axisymmetric surfaces of arbi- 

trary cross section and with general boundary conditions. 

The method used in this investigation is based on an integral form, of 
1-6 

the solutions of the Helmholtz equation. 	With this formulation the acous- 

tic potential anywhere external to the surface can be found once the distri 

bution on the surface is known. Thus, to determine the radiated sound field 

the problem reduces'to the determination of the distribution of the acoustic 

potential on the two-dimensional surface of the geometry under consideration 

instead of solving the Helmholtz equation in the surrounding infinite three 

dimensional domain. 

It has been previously shown 1-5  that when applied to exterior sound 

radiation problems the classical techniques fail to produce unique solutions 

at frequencies corresponding to certain interior eigenvalues of the geometries 

under consideration. Unless special precautions are taken, straight-forward 

numerical solution of the integral equation produces large errors at frequen-

cies close to these eigenvalues. For the general geometries of interest in 

this study, these 	eigenfrequencies are not knawn a priori. Therefore, 



the frequencies about which large numerical errors can occur cannot be easily 

avoided. A critical review of available analytical techniques for avoiding 

these errors is provided by Burton in Ref. 1. In a search for an appropriate 

technique for use in the present study of inlets, the authors programmed each 

of these methods for a sphere and obtained numerical results for the surface 

and radiated sound field. This study showed that the method of Burton and 

Miller
4 
 was the most straightforward to implement. However, an inter-

pretation of a strongly singular integral, given in the analysis in Ref. 5 

by Meyer, et.al. was necessary for the equations to be amenable to numerical 

solution. Basically the method proposed by Burton and Miller involves a 

reformulation of the integral equation for the acoustic potential and the 

solutions obtained are valid at all frequencies. It also yields the most 

consistently accurate results for a given number of points at which the 

acoustic potential is numerically evaluated on the surface. Therefore, the 

method based on the analysis in Ref. 5 has been chosen for this investigation. 

The resulting integral equation for the surface acoustic potential is 

solved numerically and, for axisymmetric geometries, the equation reduces to 

the evaluation of line integrals. Thus, the axisymmetric case can be reduced 

to an equivalent , one-dimensional problem. Having discretized the integral 

equation, the resulting system of algebraic equations is solved using complex 

Gauss-Jordan elimination. Since the coefficient matrix involves the free 

space Green's function, which becomes singular as two points on the surface 

approach one another, numerical techniques are presented which can deal 

with these singularities and yield accurate results. Gaussian integration is 

used to increase the accuracy of the solution without significant penalties 

in computer storage and time requirements. The applicability of the integral 

formulation and the accuracy of the numerical techniques are demonstrated by 



computing the surface and far field distributions of the acoustic potential 

on both a sphere and a finite cylinder. The numerical results are compared 

with known exact solutions generated by the separation of variables technique. 

Surfaces with spatially varying forcing functions and admittances are 

considered, for different tangential modes, to evaluate the capability of the 

integral approach to handle boundary conditiong of a general nature. With 

the sphere, agreement between computed and exact results is to three signifi-

cant figures. For the cylinder agreement is to two significant figures. The 

effect on the accuracy of discontinuous boundary conditions involving nonzero 

admittances over the surface and of the corners encountered in the cylindrical 

configuration are also presented. Finally, the numerical results for an 

inlet configuration are compared with exact solutions and agreement is to 

within ten per cent. 

II. Theoretical Considerations  

In this section the general three dimensional integral representation of 

the solutions of the Helmholtz equation is developed for application to radi-

ation problems. This particular formulation yields unique solutions at all 

frequencies and does not have strong singularities which are difficult to 

handle numerically. The general integral equation is then specialized for 

axisymmetric geometries. A more detailed development is presented in Ref. 5. 

General Formulation 

Beginning with the three dimensional Helmholtz equation which governs 

the spatial dependence of the acoustic field for harmonic oscillations 

2 	2 
V (P 	k (13=  



where p is the acoustic potential and k is the wave number; the standard 

integral representation of the exterior potential is found to be
1

'
6 

S 

	(cP(Q) 	an 
aG(P,q) 	G(p,Q) 6`“Q)  )dSq  = 4rrtp(P) 	

(2) 

where the term ana represents an outward normal derivative with respect 

to the body S as shown in Fig. 1; that is, 

.2.12.1 	Vq  p (Q) 	4q 	
(3 ) 

Also, G(P ,Q) is a fund4mental three dimensional solution of the Helmholtz 

equation and is taken to be the free space Green's Function for a point 

source6 defined as 

G(P,Q) - r(1,, ,Q)  e
ikr(P,Q) 

(4) 

From Eq. (2), if the acoustic potential and the normal acoustic velocity 

aP(Q) 	are known at each point on the surface of the body then the acoustic 
an 

potential may be calculated anywhere in the exterior domain. 

To solve for the surface potential, the point P is moved to the surface 

of. the body, and Eq. (2) then becomes 

J 
	Op(Q) aT'q) 	G(1) , (2) %Toll)  )dSq  = 2  TTY (P) 

S. 
	 °act 	

(5) 

For the inhomogeneous Robin boundary condition employed in this study, 

a relation between ap(Q)/ang  and p(Q) exists which is given by 

aC9 M1 	Y(Q)Q(Q) = A(Q), 	 (6) 

so that Eq. (5) can be written in terms of the potential only; that is, 

J 
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ci  (7) 



n cp(P) + f A(Q) G(P,Q) dS q  

If the acoustic velocity A(Q) and the admittance Y(Q) are specified at each 

point on the surface of the body, then the acoustic potential may be calcu-

lated at each point using Eq.(7). 

As mentioned earlier this equation does not yield unique solutions when 

the wave number k is an internal eigenvalue associated with the problem under 

consideration. Since these eigenvalues are not known a priori for general 

bodies, the formulation cannot be relied upon to give consistently good results. 

43, There are a number of papers in the literature 2,3,4  dealing with this problem, 

and the relative merits and shortcomings of the methods employed are discussed 

in detail in Ref. 1. 

An attractive approach from an analytical point of view is provided by 

Burton and Miller
4 
who have suggested the use of the following identity to 

derive an alternative integral equation for the acoustic potential at the 

surface. 

	

&w)  _Irr ( Q)  "
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This equation can now be solved for p(P) by using Eq. (6) to relate the normal 

acoustic velocity and the potential at the surface. However this integral 

equation has its own set of associated eigenvalues at which unique solutions 

cannot be obtained. To circumvent the problem associated with the solution of 

the integral equations derived from Eqs.(5) and (8), Burton and Miller suggested 

the solution of the following linear combination of these equations: 

(q)(9) 	 - G(P,Q) :117(Q)  ) dSq  

(8) 
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where 3CP/ an and ep are related by Eq. (6). Equation (9) will yield unique 

solutions if the complex coupling constant is properly chosen. It is shown 

theta must meet the following restrictions to guarantee that Eq. (9) yields 

unique solutions: 

Im (a) 0 0 	k real or imaginary 

Im (a) = 0 	k complex 	 (10) 

A problem arises in the numerical solution of Eq. (9) as the third term 

on the left hand side is strongly singular in its present form as the point 

Q approaches ,  the point P on the surface of the body_ The authors of this 

paper have shown that this difficulty can be overcome by a proper interpre-

tation of this singular term. 5 Employing a vector transformation 8  and taking 

the Cauchy Principle Value, Eq. (9) is shown to be equivalent to 

, 	c(p  Q) 6n(Q) 	dS [cP(Q) 

aG(p9) 

 an 	C(P, Q) 	
nq 	q 

a .1 f [cp(Q) 
cow l a

2
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/ -J an 
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q 	
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- a cp(P) 

 

. n )(ik)
2 
 G(P,Q) dSq  

   

It has been pointed out to us by a reviewer that an equation of the same 
general form as Eq. (9) has been given by Chertock 7 . However, for an arbi-
trary, smooth surface, Chertock did not interpret this integral equation 
correctly. Specifically, the limit indicated in the final term of (A17), 
Ref. (7), does not exist as may be verified for the simple case of a sphere. 
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All of the terms in Eq. (11) are now well defined; however, all the inte-

grands are oscillatory and singular so that care must be taken in their 

numerical approximation. 

Axisymmetric Formulation  

When dealing with a body of revolution as shown in Fig. 2 an axisym- 

metric formulation of the problem is advantageous. 9  This being the case an 

element of area dSq  becomes pdsde where s is the distance along the perimeter 

of the surface in the p-z plane. Assuming an acoustic velocity distribution 

of the form 

an = v(s) cos m 0 	 (12) 

and describing the s dependence of the potential function by 

(s) 
cos m 0 (13) 

and letting 0p= 	(so that cos 0p= 1) Eq. (11) becomes: 

- 
	 J G(P 1Q)(ik)

2
(np ong) dSci  

S 

01,HL .(s ) cos m e 
2
G(P,Q)  

an an 
P q 

dSq  

S 
(14) 

- $ v(sq) G(P,Q) cos mdS 
q q 
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Now, three sets of functions are defined: 

Influence Functions 

(r ) =2 f G(P,Q) cos m 0 de 

	

pq 	0 	 q q 

I (r ) 	2a  r 	G(PQ)  

	

oi 	J 	3n 	
cos M e de 2 	P  q q 

Kernel Functions 

	

K (r ) = 2 1. 	cos m 0 de 1 	Pq 	J 	bn 	 q q 

	

o 	q 

K2 (r ) = 
2g f Pg 	0 

Forcing Functions 

62G(1).19 

 bn bn 
P q 

00smeq  • deq  . 0q  oe r 	p 

7 

F1 
 (rpq ) = 2a f G(P,Q)(ik) 2 (np  .nq  ) de q 

0 

2
G(P,Q)  F2 (rm. ) = 2ci 	 de , 	o an an 	 8q  p q 

where 
r1014 

 is the distance between points p and Q and n and flq  are the 

outward normals to the surface at points P and Q, respectively. In evaluat- 

ing K2  and F2 , the point at which Op  = eq  is excluded from the integration. 

Substituting Eqs. (15)-(17) into Eq. (14) gives 

§(sq) {Ki (rpq) + K2 (rpq)} dsq  



(18) 

f v(s ) 

[§ 

fIl (rp  ) + I2 (r )1 ds Pq 	q 

1: ) + uv(sp)] = 2 

1 0 

§(s 
P)  fF1 (rp 	F2 (r

pq
)1 ds

q 

where is the length of the generating line of the surface of revolution. 

The s-0 coordinate directions have now been essentially uncoupled so that 

the problem has been reduced to the evaluation of the line integrals in 

the coordinate directions on the surface of the body. This formulation 

does not restrict the form or type of boundary conditions on the body; 

it merely assumes that the boundary conditions can be represented by a 

sum (expanded in a set) of tangential modes. 

III. Results . 

The acoustic fields for a sphere, cylinder, and inlet configuration 

have been computed by numerical solution of Eq. (18) using the techniques 

described in Ref. 10. Basically, this method consists of first specifying 

the p-z coordinates and the normal vector at each point on the surface. 

From these quantities the distances and the normal derivatives can be ob-

tained. The integral in Eq. (18) is then separated into n integrals taken 

over subintervals of length t,/n. The acoustic potential is assumed constant 

over each subinterval and the integrations are performed numerically using 

Causs-Legendre quadrature in the p-Z plane. Over the subinterval containing 

the point P, the integrand in Eq. (18) becomes infinite 

zero. Thus,  

since r approaches pq 

only an even number of points is used in the quadrature algorithim, 

since an odd number would necessitate inclusion of the point where rpq  = O. 
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A Gauss-Legendre quadrature formula is used in the circumferential direction 

to evaluate Eqs. (15) - (17). All calculations were performed on the Georgia 

Tech CDC Cyber 70/74 with sixteen significant figures. 

In all geometries investigated, exact solutions were obtained for m = 0 

by assuming a monopole source located at point ( p ,z) = (0,0) inside the sur-

face. The normal velocities and/or admittance values are then computed at 

each point on the surface using Eq. (6) and taken as the boundary conditions 

in Eq. (18). The surface potential 1) (s o ) is then computed from Eq. (18) and 

the far field potential is obtained by numerically solving Eq. (2) with Eq. (6). 

The computed surface and far field potentials are then Compared with the known 

potential distribution of the monopole source 

ika 
-ea 

 0(P) = 	 (19) 

where a is the distance from the source to the observation point. For M = 1 

a dipole source was used to generate exact solutions, and for m = 2 a quadra-

pole source was used. 

To investigate the effect of the coupling constant a  in Eqs. (15) - (17), 

the surface potential distributions for a sphere of unit radius with a uni-

formly vibrating surface (i.e. m = 0) were computed for .a =0,i, and i/k. Twenty 

subintervals were taken in the p -z plane, a four-point Gauss-Legendre quadra-

ture formula was used over each subinterval and a twenty-point Gauss-Legendre 

formula was used in the e direction. The Magnitude of the potential should be 

unity at all points on the surface. The results presented in Fig. 3 show the 

computed magnitudes of the surface acoustic potential to be in error by 12 

per cent for a= 0 at nondimensional wave numbers ka close to 7 , 2 r , and 3 1-T . 

These results are,those that would be obtained from Eq. (7). The relatively 

large errors are expected from the analysis of Burton and Miller
4 

and from previous 

2,5 
investigations using Eq. (7). 	Burton proves that setting the imaginary 
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part of 	nonzero guarantees unique solutions to Eq. (18), Fora = i the 

maximum error is reduced to less than four per cent except when k is close 

to 8.0. However, when a= i , and for sufficiently high values of ka, Eq. (9) 

is dominated by terms arising from Eq. (8). As a result, the solution equa-

tions become ill-conditioned when ka is sufficiently high and close to one 

of the eigenfrequencies associated with the integral equation based on Eq. (8). 

In Table I computed values close to these eigenfrequencies and the eigenfre-

quencies of Eq. (7) are compared with exact results for a = 0, i, and i/k. 

In all cases, the value of i/k gives the most accurate results. In Table II, 

the effect of introducing an admittance condition is presented for ix= i/k. 

The admittance Y(Q) and forcing function A(Q) in Eq. (6) are chosen so that 

the relations 

an Y(Q)cp = A(Q) 	T .= 

-e ikr 	 (20) 

are satisfied on the surface and the exact solutions can be readily computed. 

The loss in accuracy when an admittance condition is used is minimal and re-

stricted to the third significant figure. However, for discontinuous boundary 

conditions, where the forcing function is specified over one part of the sur-

face (i.e., the admittance is zero there) and the admittance is specified 

over the remaining surface, errors of over ten per cent in the real and imagi-

nary parts of the computed surface potential result. For comparison, the case 

of a constant forcing function and admittance over the sphere for a' = 0 is also 

presented and in all cases yields results of less accuracy than those obtained 

with cy = i/k. 

In this study consistently good results were obtained with u = i/k. In 

Fig. 3 the computed and exact values for a = i/k agree to three significant 

figures over the range of nondimensional wave numbers from one to ten. In 
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fact, for this value of a , the accuracy is significantly better at all wave 

numbers investigated. While Burton and Miller 4 provide. no recommendations for 

choosing one value of a over any other value with an imaginary component, 

the choice a = i/k used in the present study can be explained as follows. 

The terms in Eqs. (15) - (17) which involve a are of order k
2 
 whereas the 

remaining terms are of order k. Therefore, at higher wave numbers the terms 

of order k
2 
dominate. By choosing a to vary inversely with the wave number, 

all terms in Eqs. (15) - (17) remain of the same order with respect to wave 

number. 

A problem of more practical importance is the finite axisymmetric duct 

since this surface approximates an engine configuration. The surface poten-

tial distributions are presented in Fig. 4 at different nondimensional wave 

numbers for m = 0. The normal acoustic velocity distribution A(Q) is chosen 

so that the solution for the acoustic potential satisfies Eq. (19). The 

parameter, a is taken to be' i/k. Twenty subintervals are taken in the p -z 

plane and a twenty-point Gauss-Legendre quadrature is used in the 0 direction. 

In Fig. 4 the variations of the magnitude and phase with distance along the 

perimeter s are presented. The largest errors in the computed magnitude of 

the potential of about ten per cent occur - on the ends of the cylinder and at 

the corners. The results at the ends can be improved without increasing the 

number of points by area weighting rather than taking equidistant points 

along the perimeter. The errors in the phase are less than four.  per cent 

in all cases. The errors in the magnitude of the computed surface potential 

increase with increasing nondimensional wave number; 

. 7 It is interesting to note that in the report by Chertock he suggests the 
use of 1/k on the grounds that it has the correct physical dimensions 
(i.e. length) that will maintain the dimensional homogeneity of Eq. (18). 
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but, even when ka =10, .the numerical results are within ten per cent of 

the exact solutions. For ci=0 or i the errors are significantly larger 

above ka = 2 . 

In most inlet problems the boundary conditions are discontinuous with 

the acoustic velocity or potential (which is directly proportional to the 

acoustic pressure) specified over part of the surface and the admittance 

(representing liners) over the rest. To determine the effect of the discon-

tinuities and the use of an admittance function on the numerical results 

for m=0 a cylinder was investigated. The velocity was specified on the 

ends and the admittance was specified in the center so that the solution 

for § was given by Eq. (19) and Eq. (6) is satisfied. Again, twenty points 

are used in the p-z and 0 directions. The results are shown in Fig. 5. 

Although the errors in the numerical results for this case are higher than 

those observed in Fig. 4, the errors still remain within 10 per cent for 

values of ka less than 5. However, when ka =10 errors of up to 40 per cent 

in the magnitude of the potential are encountered close to the discontinuity 

in the boundary condition. This error can be reduced by increasing the num-

ber of subintervals in the p-z plane. Doubling the number of subintervals 

halves the error. When both the normal acoustic velocity and the admittance 

are continuous on the surface, the errors are of the same order of. magni-

tude as those of Fig. 4. For tangential, modes, the variation in the circum- 

ferential direction behaves as cos m e where m = 0,1,2..... To check the 

numerical integration Scheme in the circumferential direction the surface acous- 

tic potential was computed for m=1 and m = 2 for the cylinder shown in Fig. 4. 

The results are presented in Fig. 6 for ka = 2 with the normal acoustic velocity 

specified everywhere on the surface. The computed and exact results (i.e. from a 

dipole and qudrapole) are in agreement to within two per cent for both m=1 
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and m=2. 

It has been shown
5 

that once the surface potential has been accurately 

computed, the far field can be determined to at least the same accuracy as 

the surface potential. This result is confirmed by the data presented in 

Fig. 7 for the cylinder of Fig. 4 with the velocity specified everywhere on 

the surface with ka =2 and m=0. The results at 20 radii from the surface 

are in agreement with exact results obtained from Eq. (19) to within one 

per cent even though the surface errors at some points are above two per 

cent. Data in Fig. 8 show that accurate results are obtained at distances 

greater than one integration stepsize from the surface. At closer distances 

errors from the numerical evaluation of the singularity in the Green's 

function defined by Eq. (4) leads to large errors. 

The studies of the acoustic fields of the sphere and cylinder served 

to check out and refine the numerical procedures and programming techniques. 

The next' configuration investigated was an inlet used in a study by NASA. 11 

This inlet is shown in Fig. 9 and was chosen because: 

(1) unlike most inlets used in research studies, it does not have a 

bell-mouth shape but is shaped like a typical inlet used in exist-

ing aircraft; and 

(2) complete details on generating the inlet boundary are given in Ref.11. 

Forthis inlet, all cases were investigated with a = 

As seen in Fig. 10, the normal velocity distribution, which represents 

a forcing function, is highly discontinuous and provides a severe test of 

the numerical techniques employed. The numerical and exact solutions for the 

surface acoustic potential are compared in Fig. 10 for 32 and 54 subintervals 

taken along the perimeter of the inlet in the p-Z plane. Because of the errors 

in approximating. the lengths of each subinterval, the exact solutions differ 
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slightly as the distance along the perimeter s increases. The centerbody 

in Fig. 9 extends from 0 < s < 0.8, the fan inlet covers 0.8 < s < 1.4, 

the interior contour extends from 1.4 < s < 3.5, the exterior from 3.5 

< s < 5.5, and the circular arc lies within the interval 5.5 < s < 7.45. 

Increasing the number of points decreases the error proportionately as 

indicated by the data in Fig. 10 at a nondimensional wave number ka of 

unity where a is the radius of the inlet at the fan entrance section. 

The absolute average error in the results decreases from 10.2 per cent 

for 32 subintervals to 4.16 per cent for 53 subintervals. The computation 

time increased from 53 seconds to 143 seconds, respectively. 

As shown in Fig. 11, the errors increase with increasing frequency. 

Like the cylinder, the maximum error in the acousitc potential for the 

inlet configuration occurs at the points of discontinuity. The average 

error increases from 4.16 per cent at ka = 1 to 15 per cent at ka = 10. 

For the data in Figs. 10 and 11, the acoustic potential is assumed 

constant in the tangential plane. The results for a cos(m B ) distribution 

are presented in Fig. 12 at ka = 2. These results show the insensitivity 

of the accuracy of the computed results to the tangential distribution 

for m = 1,2. The exact soltuions were again generated by assuming dipole 

and quadrapole sources located at ( p ,z) = (0,0). 

Based on the above results our numerical and programming techniques are 

capable of yielding reliable results for arbitrary geometries and boundary 

conditions. At higher frequencies, (ka > 5) it appears that more points 

must be taken to increase the accuracy of the computed results. 
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IV. Summary and Conclusions  

An integral solution of the Helmholtz equation is developed for use in 

acoustic radiation problems. Unlike the classical formulation which can lead 

to integral equations that do not have unique solutions at frequencies cor-

responding to certain internal eigenfrequencies of the region enclosed by 

the surface under consideration, the formulation used in this study is valid 

at all frequencies. Also, unlike most current methods and formulations it 

is straight forward to implement regardless of how complicated the surface 

or the boundary conditions may be. The surface potentials computed numeri 

cally for a sphere and cylinder using 20 subintervals alOng the perimeter 

and for an inlet configuration with 53 subintervals are accurate to within 

ten per cent for nondimensional wave numbers ka of from one to ten where k 

is the wave number and . a is the characteristic length. For discontinuous 

boundary conditions, the numerical and exact values are in agreement to with-

in 10 per cent for ka < 5. At higher frequencies the results are as much as 

40 per cent in error at points of discontinuity which suggests taking more 

points in evaluating the integral equation to increase the accuracy when dis-

continuous boundary conditions are specified. Increasing the number of sub-

intervals decreases the error proportionately. At distances greater than the 

numerical integration stepsize, the far field results are at least as accu-

rate as the corresponding surface potential solutions. 
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Table  

Effect of the coupling parameter a on the computed values of the surface 

potent for a sphere. On the surface A(Q) = (1-ik)eik  , Y(Q) = 0,  ex(Qac) t= 

 constant m = O. All values of ka correspond to internal eigenfrequencies. 

Twenty subintervals were taken in the p-z plane, 

ka 
0 i/k i EXACT 

7 

9-  2.0 1.000 0.998 1 

-6.3 0.001 -0,012 

4.493409 

9
. 0.190 0.217 0.308 0.217 

. 	0.979 0.976 0.955 0.976 

2n -2.0 -1.000 -0.996 -1 
9

. 12.6 0.000 0.031 0 

7.725252 9
-  -0.081 -0.128 -0.400 -0.128 

-0.994 -0.992 -0.872 -0.992 

3n 9- 	
9-  

2.0 1.000 0.995 

-19.0 0.000 -0.050 
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Table II  

Effect of specifying an admittance on the computed surface potential 

for a sphere. In all cases m=0, twenty subintervals are taken in the p - z 

plane, and T 	=-elk everywhere on the surface. For Case I, A(Q) = eik exact 

and Y(Q) =.4 everywhere on the surface. For case III, A(Q) = e ik (1-ik) and 

Y(Q) = 0 over 1/5 of the surface and A(Q) = 0, Y =-(1-ik) over the remainder. 

Case II is considered in Table I. 

ca 

CASE I 

a = i/k 

CASE I 

a = 0 

GAS: II 

a = i/k 

CASE III 

a= i/k 

EXACT 

VALUES 

L 9- -0.539 -0.537 -0.538 -0.52 -0.540 

-0.845 0.849 -0.843 -0.87 -0.842 

2 0.418 0.422 0.417 0.43 0.416 

-0.911 -0.937 -0.909 -0.92 -0.909 

3 9
-  0.993 0.916 0.990 1.00 0.990 

-0.142 -0.496 -0.140 -0.16 -0.141 

5 ;-+ 
9
-  -0.285 -0.288 -0.284 -0.25 -0.284 

0.961 1.145 0.959 1.00 0.959 

10 

I 
$.4 

9
-
 9

-
  

0.841 -0.3 0.839 0.90 0.839 

0.546 0.9 0.544 0.49 0.544 
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Figure 1. Geometrical Properties of the General 
Acoustic Radiation Problem. 
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Figure 2. Cylindrical Surface Geometry 



101 

A 

a 
1/k 	0 

0.8 	0 	0 
A 

EXACT 

l0 

Figure 3. Effect of the Coupling Constant On the Computed 
Surface Potential for a Sphere of Unit Radius with 
20 Subintervals. 
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Abstract  

Results are obtained by numerical integration 
of a cylindrically symmetric integral representa-
tion of the exterior solutions of the Helmholtz 
equation which is valid (yields unique solutions) 
at all wavenumbers. The admittance values across 
the entrance plane of hard walled ducts of various 
lengths and geometries are computed and compared 
with certain "classical" (e.g., Weiner-Hopf) values. 
The internal wave structure is also investigated 
for straight hard walled ducts and compared with 
results obtained from other theories. The radiated 
sound fields from ducts of different geometries are 
then compared for both unlined and lined configura-
tions. It is found that changes in the duct geometry 
result in significant changes in the radiated sound 
field. Thus, it is concluded that the sound suppres-
sion by liners predicted from the study of straight 
ducts may not be applicable to more complicated 
geometries such as inlet configurations. 

Introduction 

The development of an analytical method for pre-
dicting the sound field radiated from axisymmetric, 
finite length ducts is of much practical interest 
in the area of aeroacoustics, especially for the 
determination of the sound radiated from a turbofan 
inlet, as having such a capability can eliminate 
most of the costly full scale testing presently re-
quired. In a majority of past investigations of the 
sound radiated from ducts, either the radiation 
problem has been completely ignored 1 , 2 2 3  or the duct 
acoustics and pp gadiation problem have been treat-
ed separately. + ''' In these studies, the behavior 
of the waves inside the duct was determined by spec-
ifying some heuristic boundary condition (e.g., a 
reflection coefficient) at the duct entrance. In the 
latter references this solution was then used to 
determine the sound distribution at the entrance" 
plane of the duct and this was used to predict the 
properties of the radiated sound field. In reality 
the sound fields inside and outside the duct are 
not separate entities (i.e.,'they are coupled) and, 
therefore, they cannot be properly treated separate-
ly. These "separate" treatments of the interior and 
exterior sound fields in the duct radiation problem 
undoubtedly introduce errors whose determination 
requires comparison with available exact solutions. 

In this paper the duct sound radiation problem 
is investigated by utilizing an integral solution7, 8 

 that considers the combination of the interior and 
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exterior sound fields to be a single entity, thus 
eliminating the errors associated with many of the 
previously used approaches. Comparison of the solu-
tions obtained using this method with exact solu-
tions 9  and with those of related investigations 
should shed some light upon the applicability of 
the analytical approaches utilized in these other 
investigations. 

The solution approach utilized in this study 
consists of the numerical solution of a special in-
tegral represtntation of the solutions of the Helm-
holtz equation for an exterior (i.e., to-a given 
body) domain. The applicability and accuracy of this 
solution approach have been demonstrated for two 
dimensional 10,11,  three dimensional 8  2 12 , and axisym-
metric9 , 13  geometries in earlier investigations con-
ducted under this program where it has been shown 
that the developed approach yields unique solutions 
at all wavenumbers. 

Solution Procedure  

The basis of this method is set forth in great 
detail in Ref. 14 and therefore will not be repeated 
here. In related studies conducted under this AFOSR 
program the applicability of this approach to the 
solution of acoustics problems involving two dimen-
sional, three dimensional, and axisymmetric geome.. 
tries has been demonstrated. Since the analytical 
developments and results of these studies have been 
published elsewhere 7 2 8 . 9 , they also will not be re-
peated here. Instead, some of the advantages of 
this solution approach will be presented. First, as 
stated earlier, this method treats the duct radia-
tion problem consisting of the sound generation, 
sound propagation and reflection, and the sound 
radiation to the outside as a whole without sepa-
rating it into its component parts as has been done 
in related investigations. Second, the method can 
readily handle the infinite domains encountered in 
radiation problems. This is accomplished by employ-
ing a fundamental solution G(P,Q) which satisfies 
the Sommerfield radiation conditions in the inte-
gral equation. In the present study the free space 
Green's function has been used: 

ikr(P,Q) 
G(P,Q) - 	r(P,Q) 

where, as shown in Fig. 1, Q is a point on the sur-
face of the body S, P is a point in the exterior 
domain, r(P,Q) is the distance between these poitite:, 
and k is the wavenumber. The third advantage is 
that the computer program developed in a related 
investigation9 , 13  is quite general and is applic-
able to a variety of acoustic radiation problems 
involving arbitrary geometries and variable bound-
ary conditions, This computer program can be ap-
plied to different problems by merely changing the 
input data, 

(1) 



Fig. 1. General Geometry of the 
Radiation Problem. 

It has been shown in Ref. 8 that unique solu-
tions of the external acoustic radiation problem 
can be obtained at all wavenumbers by solving the 
following integral equation: 

S j(cp(Q) 	G(
q
P'(4)  - G(P,Q) '112.1) dS 

	

an 	 an 	q 
 q 

S 	

2G(P,  
.f(cP(Q) - n (P) ) 

a  
an an

q

Q) 
 dS 4 

P  
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_ f f 	BG(Ps)ds  2 Tr (cp(P)+ a at' ( P) ) en 

	

s 	q 	anP  

It is shown in Ref. . 9 that maximum accuracy is ob-
tained when a = i/k. In its present form, Eq. (2) 
contains no non-integrable singularities, a fact 
which considerably simplifies its numerical solu-
tion. Thus the solution of the entire duct radia-
tion problem has been reduced, with the present 
formulation, to that of the solution of a surface 
integral over the body S. 

The problem is further simplified in the present 
study by limiting attention to axisymmetric config-
urations. In this case Eq. (2) is further reduced 
to(9 ) 

j “Q) {Kl(P,Q) + K2(P.Q)}  ds/  

- “P) 	{P1 (P,Q) + F2 (P,Q)ldsq  

( 3 ) 
- 	 V(Q) {Ii (P,Q) + I 2 (P,Q)1 ds q  

• f§(P) + a V(P)1 
where s is the distance along the 2-D projection of 
the body in the p-Z plane (i.e., See Fig. 2), and 
the influence functions I1 and 12 are given by 

I1(P,Q) = 2 jo  G(P,Q)(cos m e ) de q 	q 
(4) 

J o  a p 

• 

aG(P.Q)  (cos m 0 ) de I2 (P,Q) = Za 

	

A 	A  

the kernel functions K1 and K2  are 

Ki (P,Q) = Jo an 
	 q 

r 	BG(P.Q)  (cos m e  ) d e  
where, as shown in Fig. 2, the point P has been 
moved to the surface of the body S,n represents an 
external normal from the body, ,;(' 	represents a 
normal derivative (q.;), and a is a complex coupling 
constant. 

7 

K2 (P ,Q) = 2a j 
o+ 

(5) 
a
2
G(,Q)  (cos m 0 )de 	ie 

an a
F
n 	 q qqP 

P q 

the forcing functions F1 and F2  are 

 
F
1
(P,Q) = 2a 

• 

G(P,Q)(ik)
2 
 (n .n )de 

O p q q 
(6)  

F2 (P,Q) = 2a jr: ::;g:IQ)  deg  eq  Op  

and 

= V cos m 0 
an 

(7)  
- cos m 0 

following the notation, of . Ref. 15. In the above 
notation m is the tangential mode and Op  has been 
taken as zero (i.e., cos m 0 = 1). 

Introducing axisymmetry further simplifies the 
solution of Eq. (2) to the evaluation of line in-
tegrals on the 2-D projections of the body S in the 
p -Z plane as shown in Fig. 2. Also, the formula-
tion is valid for all tangential modes; however, 
each mode must be solved for separately. Fig. 2. General Axisymmetric Geometry 

and 2-D Projection. 
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The required solution is obtained by solving 
Eq. (3) for the surface distribution of the acoustic 
potential or the normal acoustic velocity V, 
whichever is unknown. Also, solutions can be ob-
tained for I) by using a effective admittance, de-
fined as Y = VA = Wan cp, as a boundary condition 
over any part of the surface of the body (e.g., 
replace V by VI in Eq. (3) at the points where Y is 
known on the body,. 

Once the surface distributions of the acoustic 
potential and the normal acoustic velocity are 
known on the surface of the body, the radiated 
sound field can be determined using the following 
integral representations 14  for cp and al in the 
field: 	 an 

aG(PA)  (cp(4) 	- G(p,(1) -41/-19U)dSci= 4rrcp(P) 
o  

(8) 
and 

J j(cp(Q) 
a
2
G(P.Q) 	aG(F,Q) am(Q))ds  - 4n  am(P)  

S 
an 

p 
 an

q 	
an

P 	
an

q 	
an 

(9)  

where the point P is now located in the space sur-
rounding the body (i.e., See Fig. 1) so that the 
kernel functions are no longer singular. For axisy-
mmetric bodies, Eqs. (8) and (9) reduce to: 

J 
	Ki(P,Q) - I (P,Q) V (Q))ds = 47 “P) 

(10) 
and 

rt 
j (§(Q) K ( ,Q) - I (P,Q) V (Q))ds q  = 47 V(P) 

(11) 

Results  

In the present investigation, the integral 
solution technique has been utilized to study the 
dependence of the radiated sound field and the 
acoustic characteristics of the duct upon the duct 
geometry and the acoustic properties of the duct 
wall. This investigation has been carried out with 
the objective of evaluating the dependence of the 
sound field radiated from a jet engine inlet on 
the inlet characteristics, and to evaluate the 
validity of the analytical approaches and assump-
tions utilized in related investigations. First, 
the effect of the length of the duct on the ad-
mittance values at the entrance plane of the duct 
was investigated. The purpose of this study was 
not only to show the effect of changing the L/a 
(i.e., length/radius) of the duct but also to show 
that the admittance is not a constant across the 
entrance plane. This is significant as many in 
vestigations of similar and related problems assume 
the existence of a constant "reflection coefficient" 
at this plane. Therefore, the effect of the radi-
ated sound field on the duct acoustics cannot be 
properly accounted for. Second, the effect of the 
internal geometry of the duct on the radiated 
sound field was investigated. This was done to 
show that changes in the internal geometry of the 
duct result in large changes in the admittance 
values at the duct entrance and, therefore, in 

large changes in the radiated sound field; a fact 
which is often ignored in related studies. Third, 
the internal wave structure in the duct was investi-
gated to show that this integral solution technique 
can predict both the internal and external sound 
fields. In this connection it should be pointed out 
again that this solution technique automatically 
accounts for the coupling effects between the in-
ternal and external sound fields. Fourth, the radi-
ated sound fields for two, dimensionally similar, 
acoustically lined duct configurations (i.e., a 
straight duct and an engine inlet) are compared to 
show that optimum admittance values for liners, de-
termined from the study of their effectiveness in a 
straight duct, do not necessarilly carry over to the 
more complicated inlet configurations. 

In this study, the surface distributions of the 
unknowns of the problem (i.e., the acoustic poten-
tial and/or the normal acoustic velocity) are ob-
tained from the numerical solution of Eq. (3). Since 
the unknown functions §(Q) or V(Q) appear in the in-
tegrands, it is necessary to solve a square matrix; 
thus, the required computing time increases roughly 
as the square of the number of points taken on the 
surface of the body S. In a typical run on the 
Georgia Tech CDC Cyber 70/74 computer,140 seconds of 
computing time were required to solve for the sur-
face values of either § or V at 53 points on the 
body. 

To obtain values for § and V in the far field, 
Eqs. (10) and (11) are solved by simple numerical 
integration. The time required for this computation 
is roughly proportional to the number of points in 
the field and the number of points on the body. In 
a typical run, 70 seconds of computing time was re-
quired to calculate both § and V at 57 points in 
the field with 53 points on the body. 

To determine the dependence of the admittance 
at the duct entrance plane on the duct length, these 
admittance values were computed for hard walled 
straight ducts having different L/a values, as shown 
in Fig. 3. 

Fig. 3. Geometry Used for Straight Duct 
Computations. 

In this case, driving consisted of a unit acoustic 
velocity (7=1) across the driver face. The com - 
puted admittance values at the duct entrance plane 
are plotted for two non-dimensional wavenumbers 
(i.e., ka = 1 and 3) in Figure 4. Also noted for 
comparison are the "classical" values for flanged16  
and unflanged17  pipes. These results indicate that 
even for plane wave sound excitation the admittance 
at the duct entrance plane varies with the trans- 
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the Inlet (L/a = 2) 

verse dimension but it does not depend upon the 
ducts length-to-radius ratio, at least for the in-
vestigated range of L/a and ka values. 

Fig. 4. Admittance at the Exit Plane of a 
Straight Duct with the Classical 
Values for Flanged and Unflanged Pipes. 

To determine geometrical effects, the admittance 
at the entrance plane of a hard walled inlet config-
uratioTP (i.e., See Fig. 5.), with L/a = 2 was also 
calculated assuming the same type of source excita- 
tion for comparison. These results are plotted in 
Figure 6. When compared with the corresponding re-
sults for a straight duct of the same basic dimen-
sions (See Fig. 4.) it is seen that the admittance 
values change significantly. This is but one indica-
tion of the Importance of the need to, properly 
account for the internal geometry of the duct when 
investigating duct radiation problems. 

The internal wave structure was also investi-
gated for two hard walled, straight ducts to de-
termine its dependence upon the characteristics of 
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the sound source. The results are presented in 
Fig; for two different drivers, one having a 
constant unit normal acoustic velocity (i.e., V=1) 
and the other a cosine distribution (i.e., V=cos 
(rrp) where 0 s p 5 1), at the sound source plane, 
for the case where ka = land m (the tangential mode 
number) equals zero. These results show that the 
difference between the sound sources quickly dis-
appear with increasing distance from the source 
plane, as expected for low values of the non-dimen-
sional wavenumber ka. The results for two addition-
al cases are also presented; 
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Fig. 7. Radial Distributions of the Acoustic 
Potential in a Hard Walled Straight 
Duct (L/a = 3, ka = 1, m = 0) 

in Fig. 8 the same two sound sound sources are used 
for the higher wavenumber of ka = 2 while in Fig. 9 
a sound source with a normal acoustic velocity dis-
tribution of V = sin (po) and a tangential mode 
number m = 1 is used. All of these results indicate, 
in agreement with basic acoustics, that the finer 
details of the sound source are "washed out" within 
a length on the order of ka from the sound source 
plane. 
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Finally, the radiated sound fields from both a 
straight duct and an inlet configuration were com-
puted and compared for both lined and unlined walls. 
The values used for the wall admittances and the 
wavenumbers were chosen to be the same as those 
used by Zorumski in Ref. 19 so that comparisons 
could be made. Two different liners were run; a 
constant admittance liner and a segmented liner. 
In the case of the straight duct the results do not 
show the same difference in the radiated sound pres-
sure level between the segmented and constant ad-
mittance liners (See Fig. 10.) as did Zorumski (See 
Fig. 11.). 
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To investigate the effect of geometry, the inlet 
configuration shown in Fig. 5 was run with the same 
two liners at the same non-dimensional wavenumbers. 
The opposite trends to those predicted by Zorumski 
were noted (See Fig. 12.); that is, that the seg-
mented liner is superior to the constant admittance 
liner in reducing the radiated sound pressurelevels. 
Thus, it is concluded that geometrical details can 
significantly affect the characteristics of the 
sound power radiated from dimensionally similarducts• 
(i.e., ducts having the same L/a ratios.). 
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Fig. 10. Far Field (50a) Radiation From A 
Straight Duct (L/a = 2). 
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Nomenclature 

orifice area 

speed of sound 

d 	orifice diameter 

f 	frequency 

f
o 	

resonant frequency of the resonator 

k 	wave number 

L 	backing depth 

4,EFF 	effective orifice length 

n 	normal 

p 	acoustic pressure 

orifice length 

cavity volume 

v 	acoustic velocity 

Y 	specific admittance of liner 

y 	effective admittance of liner 

Z 	specific impedance of liner 

absorption coefficient 

open area ratio of the liner 

open area ratio of a resonator 

density 

coefficient of viscosity 

3.1415926 

acoustic potential 

specific resistance ratio 

specific reactance ratio 
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The liner, which was employed in the preliminary testing for this 

AFOSR contract, was originally developed for another program. Since it 

consists of a matix of Helmholtz resonators it is highly tuned; that is, it has 

a rather sharp absorption peak. As discussed in Section II, the liner was 

designed for use above the IT cut-off frequency and thus shows little 

absorption below this frequency where most of the runs for this program will 

be made. Thus the liner must be retuned so that it becomes effective in the 

frequency range where most of the testing will be done. In this appendix 

basic liner theory is reviewed and a relatively simple redesign of the liner is 

proposed to make it more effective in the frequency range of interest in this 

research program. 

For input into the computer program certain values must be known. 

First, the sound pressure level at the "driver plane" must be known. 

Experimentally this corresponds to the nozzle-liner plane and can be directly 

measured. The other value which must be known is the effective admittance 

of the liner defined as 

bn/cp 	
(D- 

where cp is the acoustic potential and 	is the normal acoustic velocity 

defined with an outward facing normal. 

In Reference 1 equations are given to calculate the specific acoustic 

impedance of an array of helmholtz resonators, that is 

Z =e-i x 	 (D-2) 
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where the specific resistance ratio 0 and the specific reactance ratio x 

are defined as 

pc 
4 
_ (Tr pf)

1/2 (1 + t/d) 
a 

(D-3) 
2 Trfot_EFF  f 	fo 

X -  
fo 

For the definitions of the variables used here see Figure 13-1. It will be noted 

here that these definitions assume an inward facing normal. The resonant 

frequency of the resonator is defined as 

= 

a 

fo 
 c 	A 	C. 	FY 

2 ITVFF2 r V  JEFF 

and the effective orifice length is found to be 

"tt FF = t + 0.85 d ( 1 - 0.711-cf ) 

The specific acoustic admittance is defined as 

1 v Y = = /p 

(D-4) 

(D-5) 

(D-6)  

and since the acoustic potential and the acoustic pressue are related by 

p = ip C. kcp 

(D-7) 
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Figure no-1. Helmholtz Resonator 
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the effective admittance is found to be 

y = -ipc k Y = if7)C k e+ix  

(0
2

+X
2

) 
(D-8) 

where the minus sign is due to the switch from inward to outward facing 

normal for the acoustic velocity. 

The liner is most effective in damping acoustic waves at its resonant 

frequency which for our case is 740 Hz. This is above the IT mode of the 

duct which is r•-• 695 Hz and thus the full effectiveness of this liner is never 

achieved. A plot of the absorption coefficient of the liner, a , vs. frequency 

is presented for the present liner configuration in Figure D-2. Here the 

absorption coefficient is defined as 

4e  
- 

(e+1) 2
+ x

2 D-9 ) 

There are two paths that may be taken to obtain test results at 

maximum liner efficiency. The first method is to purposely drive a IT wave 

by using two drivers driving 180 e  out of phase. This will create a transverse 

acoustic wave structure in the tube and the results can then be compared by 

using a mode number of 1 (instead of zero) in the computer programs. The 

other alternative is to redesign the liner such that its resonant frequency is 

reduced below the IT mode cut-off frequency. This can be accomplished by 

increasing the backing distance, L. By increasing L from 0.5" to 0.775" the 

resonant frequency of the liner drops to --685 Hz, below the IT mode. If the 

diameter of the backing cavity is also increased from 1.0" to 1.25" the 
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Figure D-2. Absorption Coefficient vs. Frequency 
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resonant frequency of the liner can be further reduced to ^ ,550 Hz. Thus, by 

simply drilling out the backing cavity the tuning frequency of the liner can 

be altered enough so that its absorption peak is well below the IT cut-off 

frequency; that is, in the range of frequencies that will normally be used for 

testing in this research program (i.e., 300-650 Hz). 
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Appendix E 

Technical Note to be submitted for publication to the AIAA Journal 

(Draft copy) 

"Sound Radiation from Ducts: A Comparison of Admittance Values" 

48 



Technical Note 

Sound Radiation From Ducts: A Comparison of Admittance Values 

W. L. Meyer 

W. A. Bell 

B. T. Zinn .  

Assistant Research Engineer 

Research Engineer 

Regents' Professor 

School of Aerospace Engineering 

Georgia Institute of Technology 

Atlanta, Ga. 30032 

This research was supported by AFOSR contract number F49620-77- 

C-0066; Lt. Col. Lowell Ormand, Grant Monitor. 

** 	Assistant Research Engineer, Member AIAA. 

t 	Scientist Associate; Present Address: Lockheed Georgia Company, 

Marietta, Georgia 30060; Member AIAA. 

Regents' Professor, Associate Fellow AIAA. 

49 



When considering the radiation from an open duct it is found that 

some of the energy is radiated and some reflected (with a phase shift) back 

down the duct. It is common to associate an effective admittance 

(impedance or reflection coefficient) at the exit plane with this 

phenomonon. In this note three methods for obtaining an effective 

admittance are compared. 

The first method follows the analyses of Helmholtz and Rayleigh in 

which the end of the duct is approximated by a piston radiating into a half 

space from an infinite baffle. In this analysis the classical integral 

representation of the solutions of the Helmholtz equation is solved with 

certain approximations. Results for this configuration (commonly known as a 

flanged pipe) using this method are presented in Reference 1. 

The second method consists of the solution of a Weiner-Hopf type 

integral equation. In this analysis the duct is assumed to be semi-infinite in 

length and infinitely thin. Results for this type of analysis are presented in 

Reference 2. This configuration is commonly known as the unflanged pipe. 

It is interesting to note that these two configurations represent the 

logical limits of this type of problem in that the first can be viewed as an 

infinitely thick duct while the second is infinitely thin. Neither of these 

configurations can account for the case of a duct of finite length, however. 

The third method employs a special cylindrically symmetric integral 

representation of the exterior solutions of the Helmholtz equation. 3,4 5 

Using this method it is possible to calculate the acoustic pressure and 

velocity anywhere in the external field - including the inside of the duct 

itself. From these values inside the duct an effective admittance can be 

calculated using a simple standing wave analysis like that used in an 
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impedance tube. All that is required for this method is knowledge of two 

complex acoustic quantities (i.e., amplitude and phase) at two points in the 

duct. 

The geometric restrictions on the integral technique are that the duct 

(or any radiating body) must be a finite (i.e. no infinitely thin walls) closed 

body. A sketch of the duct used in this analysis is presented in Figure 1. 

To determine if the length of the duct makes a significant difference 

in the admittance values at the duct entrance computer analyses of ducts of 

varying lengths were run (i.e. L/a = 1,2,3) at two different non-dimensional 

wave numbers (i.e. ka = 1 and 3). Since the method is capable of calculating 

the actual radially varying admittance across the exit plane of the duct, 

these are presented in Figure 2. The driver consisted of specifying a unit 

normal acoustic velocity while on the rest of the body the admittance was 

specified as zero. As can be seen the length of the duct L has little effect on 

the admittance, defined as the ratio of the component of the acoustic 

velocity normal to the surface to the acoustic pressure. Also noted for the 

sake of comparison are the values for the flanged and unflanged pipe at the 

appropriate values of ka. 

Computer analyses of a duct with L/a = 3 were then done with the 

same boundary conditions specified as above for various values of ka. For 

each case the acoustic potential and velocity were calculated at 11 equally 

spaced points along the centerline of the duct from Z = 1 to Z = 2. A 

standing wave analysis was then done employing a Least-Square method to 

solve the overdetermined system of equations. The results of these analyses 

are presented in Figure 3 along with the values for a flanged and an 
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unflanged pipe. Similar analyses were done off the centerline of the duct; 

however, no significant differences in the computed values for the 

admittance at the entrance plane of the duct were found. Also noted for 

comparison in Figure 3 are the values of the admittance calculated on the 

centerline of the duct at the exit plane. 
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Abstract 

This report summarizes the work performed in the third and last year 

of an AFOSR sponsored research program (AFOSR Contract No. F49620-77-

C-0066). This research program was concerned with the development of an 

analytical technique, based on an integral representation of the external 

solutions of the Helmholtz equation, for the prediction of the sound radiated 

from complicated, acoustically lined, axisymmetric bodies having complex 

sound sources. The purpose of this research program was to generate 

efficient computer codes for the prediction of the sound radiated from 

acoustically lined jet engine inlets. During the first two years of work under 

this contract the above goals were accomplished and are documented in the 

previous two AFOSR ANNUAL TECHNICAL REPORTS numbered AFOSR-

TR-78-0696 and AFOSR-TR-79-0614. 

This report is concerned with the progress made during the third year 

of this contract when experimental tests were run on various configurations 

for comparison with and verification of the results obtained from the 

axisymmetric computer codes which model the integral technique. In the 

experimental tests two geometrical configurations were studied, a straight 

duct and a jet engine inlet. Both of these configurations were tested with 

hard walls and the straight duct was tested with an acoustic liner consisting 

of a matrix of Helmholtz resonators. It was found that very good agreement 

was obtained for the hard walled configurations while there were some 

discrepancies with the lined wall case. It is conjectured that this discrepancy 

in some of the lined wall results is mainly due to the particular liner theory 

used to calculate the effective admittance of the liner. 



Introduction 

This report summarizes the results obtained during the third year of 

support under AFOSR contract number F49620-77-C-0066. This contract was 

initiated February 1, 1977 and the results obtained during the first two years 

of support are contained in AFOSR technical reports AFOSR-TR-78-0696 

and AFOSR-TR-79-0614. 

The main objective of the research program conducted under this 

contract was to develop an analytical technique, both the theory and 

associated computer codes, for predicting the sound field radiated from 

axisymmetric jet engine inlet configurations with lined walls and to compare 

some analytical predictions with the results of experimental tests. The 

development of the theory, which is based on a special integral 

representation of the external solutions of the Helmholtz equation, was 

motivated by the need for an analytical approach that could be used to 

predict the effects of sound source modifications and acoustic liners on the 

sound field radiated from an inlet without having to resort to costly, full 

scale experimental testing. During the first two years of this contract the 

axisymmetric formulation of the integral solution technique (1,3) was 

developed along with two efficient, general computer programs; one to solve 

for the surface distributions of the acoustic quantities of interest and the 

other to solve for the distributions of the acoustic quantities in the field 

surrounding the body. 

During the third contract year sound radiation experiments were 

performed with two geometrically different configurations, a straight duct 

and the QCSEE jet engine inlet of Ref. (4), for comparison with analytical 



results for the same bodies. The straight duct configuration was tested with 

both a hard and a soft wall while the inlet configuration was only tested with 

a hard wall. Tasks performed during the third contract year included: 

A.) Calibration of the anechoic chamber 

This was necessary to find out how well the anechoic chamber 

approximated the results that would be gotten if true free field 

measurements could be made. These calibrations were done with all of the 

support apparatus for the test bodies and the microphones in place so as to 

get an idea of the magnitude of the errors involved. 

B.) Set-up of the electronic equipment 

This task was not as straight forward as it might seem as it was found 

that in order to get relatively stable amplitude and phase measurements it 

was necessary to pre-condition the signals coming from the microphones 

through the use of both high and low pass filters. Since all of the signals 

were passed through the same filters, including the reference signal from 

the reference microphone, any phase or amplitude shift caused by the filters 

could be subtracted out. 

C.) Conduct of the experiments 

Each of the experimental tests were run at least twice on two 

different days and the results of these separate tests were compared. This 

was necessary to get an estimate of the repeatability of the experimental 

data. It was also used 'as a check on the validity of the data as the data was 

read directly from meters and transcribed by hand as no on line data 

acquisition system was available for use on this project. 



D.) Prediction of the tested liner admittance 

A liner was designed and fabricated for the lined straight duct tests. 

To do this design the theory of Garrison (5)  was employed. The liner thus 

designed was a matrix of Helmholtz resonators which had its absorption peak 

below the IT mode of the duct as this was where all of the testing was done. 

E.) Data Reduction and comparison with theoretical predictions 

The experimental data was both taken and reduced by hand. The data 

reduction was not a very time consuming process as all that had to be done 

was subtract the reference microphones values of the amplitude and phase 

from the values measured at the driver plane and the radiation 

measurements in the field. This was done so as to negate any shift in the 

measured amplitude or phase by the signal filters. 

The computer programs were then run for the same conditions (i.e., 

driver power and frequency) as the experimental tests. These results were 

then compared with the experimental results and a brief error analysis was 

done. 

F.) Determination of the "effective" liner admittance 

The results of the experimental tests and the theory were found to be 

in very good agreement except near the calculated absorption peak of the 

liner. It was determined that the Garrison theory (5) used to calculate the 

theoretical liner admittances was probably at fault. Systematic computer 

runs were then performed parametrically varying the admittance until good 

agreement was obtained between the theoretical and experimental results. 



Included in this report is a list of all the publications generated by 

this research effort. This is included as Appendix A. Also, Appendix B 

contains a list of all the conference presentations pertaining to the work 

performed under this contract and, finally a copy of the most recent 

publication that was a direct result of the research performed in the past 

year on this contract is included as Appendix C. 



A. Calibration of the Anechoic Chamber 

The anechoic chamber is 10' by 13' by 6 1/2' in height. It has 

approximately 2' of sound absorbing fiberglass insulation in the floor, walls, 

and ceiling. A plan view of the anechoic chamber is presented in Fig. 8 of 

Appendix C. 

It was necessary to calibrate the anechoic chamber with all of the 

microphone stands and the mounting stand for the test apparatus in place so 

that an estimate of the experimental errors in the free field measurements 

caused by this apparatus could be made. A University acoustic driver was 

mounted vertically on the support pedistal for the test apparatus, 37.5" off 

the floor, so that it would radiate sound equally in all directions, thus 

approximating a simple source. A Vs"  diameter Briiel and Kjaer microphone 

was placed 42.5" from the driver in the field and was used as a reference 

microphone for the amplitude readings. 

A X" diameter B & K microphone was then moved in the direction 

that the test ducts would face, to be henceforth known as direction 1, (See 

Fig. 8, Appendix C and Fig. 1.) and measurements were taken every 5" out to 

45". This procedure was repeated in the direction of the door of the chamber 

(90°  to the original direction of travel) and again measurements were taken 

every 5" up to 45" from the driver. This will be referred to as direction 2. At 

each microphone position measurements were made of the amplitude and 

phase, relative to the driver input signal, at frequencies from 300 to 750 Hz 

at 50 Hz increments as the tests were all to be run in this range. It should be 

noted here that the lower limit was imposed by the University driver and 

that the upper limit was imposed by the requirement that all of the tests be 
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Fig. 1. Plan View of Anechoic Chamber with Driver and 
Microphone Positions for the Calibration Runs. 



run below the IT mode of the inlet and the straight duct. The latter 

requirement was to facilitate the data reduction and comparison with the 

theoretical model and the fact that we had no simple method of driving 

higher modes in the test ducts. 

Results of the amplitude calibration in direction 1 are presented in 

Fig. 2. The solid lines are the theoretical curves for the Sound Pressure 

Level in decibels for a simple source in a free field. The equation for these 

curves is 

SPL(dB) - 20 Log r 

(1) 

where r is the distance from the source. In this plot the amplitude is 

referenced to the 5" position. The worst point in this direction is at 30" and 

350 Hz where the measured reading is 3.5 dB below the theoretical exact 

curve. All of the test runs were made with the microphones at 40" where 

the error was always less than 3 dB at all frequencies. 

The results of the amplitude calibration in direction 2 are presented 

in Fig. 3. The worst point in this direction occurs at 30" and 400 Hz where 

the measured sound pressure level is 9.5 dB below the free field prediction. 

Again, all of the test runs were made with the microphones at 40" where the 

error was always less than 3 dB. 

In Figs. 4 and 5 the phase comparisons are presented. The X's in these 

plots denote points where no stable phase reading could be obtained. This 

was later found to be caused by widely different signal strengths (i.e., 

voltages) being' fed into the phase meter. This was corrected in subsequent 

tests by using another microphone signal as the reference input rather than 
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the output from the oscillator that drove the acoustic driver. As can be seen 

most of the results are within 10 °  of the values that were calculated using 

the simple source in a free field assumption. Some values are in error by as 

much as 20° (See Fig. 4, direction 1 at 30" and 35" from the driver for 300 

Hz.); however, these "bad" results are suspect as the phase meter could not 

be stabilized at adjacent points. The test results in these plots are 

referenced to the 5" position as it was closest to the driver and therefore 

subject to the least interference. This is a source of error that could 

potentially bias the results at a given frequency since if the phase reading at 

the 5" position was high the rest of the values at all other distances would be 

low by that amount and vice versa. It is conjectured that this is what 

happened at a couple of frequencies such as 600 and 700 Hz in Fig. 5. 

From the calibration runs that were performed in the anechoic 

chamber with all of the support equipment for the model and the 

microphones in place it was concluded that the results obtained from tests in 

the chamber would be accurate to at least 3 dB in amplitude and 10 °  in 

phase. As a matter of fact, the results obtained from tests in the chamber 

were in general found to be in better agreement with the theoretically 

calculated "exact" results than the calibration runs would lead one to 

expect. 

	17 



B. Set-up of the Electronic Equipment 

The equipment set-up can be basically broken down into two separate 

entities; the sound generating equipment and the sound measuring 

equipment. During the calibration of the anechoic chamber (See previous 

section.) these two systems were linked in that the oscillator that produced 

the driver signal was also used as a phase reference for the sound readings. 

This arrangement was changed in all subsequent tests as it was found that 

due to the large voltage difference in the signal strengths between a 

microphone and the oscillator the phase meter would not stabilize if the 

signals were close to 180 °  out of phase. This being the case, another 

microphone was used as the reference in subsequent tests. 

In all of the tests, a 75 watt University Sound heavy-duty driver was 

employed. The University driver was powered by a Krohn-Hite, Model DCA-

50R, wide-band 50 watt amplifier which is capable of amplifying signals 

from D.C. to 500 KHz. A Model MT-56 Krohn-Hite matching transformer 

was used to match the impedances of the amplifier and the driver to get 

maximum power out of the driver. The amplifier was triggered by a 

Hewlett-Packard Model 202C low frequency oscillator which can produce 

signals from 1 Hz to 100,000 Hz. The frequency output of the oscillator was 

constantly monitored by two time base counters; one with fast response for 

ease of setting the desired frequency and one with slow response for 

checking the accuracy of the set frequency. The first was a Hewlett-

Packard Model 5302 A 50 MHz universal counter and the second was a 

Monsanto Model 104 A preset/variable time-base counter. In all of the 



conducted tests the frequency was always set to within + 0.2 Hz of the 

desired frequency before any measurements were made. 

For the actual sound measurements two sizes of Briiel & Kjaer 

microphones were used; yi inch microphones were used outside the test duct 

for the field measurements and S inch microphones were used inside the 

duct for reference and driver power measurements (See Figs. 4 and 7 of 

Appendix C.). Also, two different types of pre-amplifiers were used on these 

microphones; tube type which require a heating element voltage input and 

transistor type which do not. 

The y4 inch microphones were used with the tube type pre-amplifiers 

and the signals from these microphones were fed into a B & K two channel 

microphone selector, Type 4408, and from there into a B & K microphone 

amplifier, Type 2604. The S4 inch microphones were used with the transistor 

type pre-amplifiers. In each of the tests two S4 inch microphones were used 

and five V2 inch microphones were used. To multiplex the five h inch 

microphone signals an in house fabricated five channel microphone selector 

was used and these were fed into a B & K Type 2606 measuring amplifier. 

Both of the B & K amplifiers gave direct decibel readings for the 

microphones to 0.1 dB, although the readings were certainly not reliable to 

this accuracy due to amplifier and pre-amplifier drift (this will be discussed 

in detail in the following section). The two microphone multiplexers were 

necessary as each of the measuring amplifiers could only handle one 

microphone at a time. 

Although the signals were good enough to give reliable decibel 

readings they had to be pre-conditioned before good, steady phase 
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measurements could be made. To achieve this, two Krohn-Hite Model 3202 R 

filters were used. Both of the microphone signals, one being used as the 

reference signal, were passed through both a high and a low pass filter. 

These filtet's were set for all of the tests at 250 Hz for the high pass and 800 

Hz for the low pass as all of the tests were run between 300 and 750 Hz. The 

phase was measured by a Wavetek Model 740 phase meter and was displayed 

in degrees (-180°  to 180°) on a Fluke 8000 A digital multimetek 

Finally, all of the signals were run through an H-P 180 A dual beam 

oscilloscope. This was used to keep a check on the equipment by constantly 

checking the signal quality. Also, this was used to check if any of the 

equipment was being over driven or saturated at any given set of test 

conditions. 



C. Conduct of the Experiments 

As stated before, each of the tests was performed twice on separate 

days for verification of the data as it was read directly from meters and 

transcribed by hand. The results that are shown for the experimental tests 

are in fact an average of the two tests run for each experimental 

configuration. Also, the ambient temperature was monitored during each 

test so that corrections could be made for the varying speed of sound and 

the ambient pressure was measured before and after each run so that the 

characteristic impedance of the medium (i.e., the air in the anechoic 

chamber) could be calculated. The latter measurement was only important 

when a lined configuration was being tested. 

Since nine measurements were made in the field for each test 

frequency and since only five I/2 inch microphones and stands were available, 

four of the microphones had to be moved during each test. The fifth 

microphone, on the centerline of the test duct, was never moved and was 

used as a reference to check that the test conditions (i.e., the driver power 

output) were the same with the other microphones in both positions. A 

second reference microphone, a V4 inch one, was placed in the nozzle section 

of the test set-up (See Figs. 4 and 7 of Appendix C.) just in front of the 

University driver so that a second independent check of the driver power 

output could be made for each test condition. 

The sequence of events for each test was the same so, for the sake of 

simplicity, the straight duct will be used as the example here. The only 

difference lies in the fact that the straight duct was run with both hard and 

soft walls while the inlet configuration was only run with a hard wall. 



First, the test duct was set-up in its soft walled configuration (i.e., 

with its liner exposed). The microphones were then set-up at 40 inches from 

the center of the entrance plane of the duct at 22.5 0  increments from the 

centerline of the duct (See Fig. 8 Appendix C.). This was accomplished by 

triangulation and the Y2 inch microphones were placed within at least one 

half inch of their ideal location. The microphones were then calibrated using 

a B & K pistonphone acoustic calibrator and the barometric pressure was 

noted. Then, the temperature in the chamber was read and the chamber was 

closed. Next, the oscillator was set to the desired frequency and the driver 

power was set by making the microphone at the imaginary driver plane read 

some pre-selected dB level. All of the other microphones phases and 

amplitudes were then read and recorded. The chamber was then opened and 

the temperature was rechecked. The chamber was closed and the test was 

repeated at a new frequency. The inlet was run at frequencies from 300 to 

750 Hz at 50 Hz increments while the straight duct was tested over a 

frequency range up to 700 Hz. This was due to the different characteristic 

lengths of the two test bodies. 

Once the desired frequency range had been tested, the liner in the 

duct was taped over so that it was no longer exposed, the microphones were 

recalibrated, and the whole test procedure was repeated. Having done this 

the four microphones in the field were moved to their intermediate 

positions, recalibrated, and another run was made of all the frequencies. 

Finally, the tape was removed from the liner, the microphones recalibrated 

again and the final set of measurements were made. Having done all this, 

the microphones were calibrated one last time and the barometric pressure 
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was re-read. 

Each one of these tests took an entire day and required only one 

person most of the time. Two people were required when the microphones 

were calibrated, one in the chamber With the pistonphOne and the other 

outside recording the dB levels. 



D. Prediction of the Tested Liner Admittance 

For the lined walled tests, a liner was designed using the theory of 

Garrison. (5) The liner consisted of a matrix of 180 Helmholtz resonators (See 

Fig. 5 Appendix C.), 9 axial rows by 20 radial rows. It was designed so that 

its maximum effectiveness (i.e., resonance peak) occurred within the range 

of frequencies used in testing; that is, between 300 and 700 Hz, below the IT 

mode of the duct and above the driving floor of the University driver. The 

tests were also all run in the liners linear regime as calculated by the 

theory. (5)  

In the Garrison theory the linear regieme is defined as where the 

maximum acoustic velocity at the orifice of the Helmholtz resonator is 

below 60 ft./sec.. Using this criterion it is found that the linear regime is 

below the decibel levels in Table I for a sea level standard atmosphere and 

the respective driving frequencies. Since in all of the runs the decibel level 

was always less than 135 dB the linear liner theory was used. 

Using the linear theory, the specific acoustic impedance of the liner 

is given by 

Z 	- i X 
(2) 

where the specific acoustic resistance is given by 

a pe 
4 (Tr7j5f) 1 + t/d) 

(3) 

See Nomenclature at the end of this section. 
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Table I 

Maximum SPL(dB) where a Helmholtz resonator exhibits linear behavior 

Frequency 	 SPL 
(Hz) 	 (dB) 

300 	 163 

350 	 160 

400 	 157 

450 	 153 

500 	 148 

550 
	

143 

600 
	

148 

650 
	

152 

700 
	

155 
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and the specific acoustic reactance by 

X - 
2.111o 1eff 	f 
 - 

c a 	fo 	f 

In these equations the effective orifice length is given by 

Leff 	+ 0.85 d ( - 0.71 	) 

(4) 

and the resonant frequency of a Helmholtz resonator by 

- fo 11 Ll 
eff o 

 
(5)  

For the test conditions these are found to be given as 

e = 0.01398 \IT 

X = 10.186 (-E—f  - -f-F°  ) 	
(7) 

where the resonance peak of the liner f o  is found to be at 558 Hz. These 

values are related to the acoustic admittance of Appendix C defined as y = 

VN by 

(8) 

where Z is defined with an inward facing normal and y is defined with an 

outward facing normal; thus the minus sign. 
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Using the definition of the absorption coefficient s; that is, 

40 

(1+e) 2 + x2 	
(9) 

it is found that the liner absorption curve is very "peaky" (See Fig. 6.). This 

being the case normal machining errors of 0.0005" were introduced into the 

admittance calculation and the resonance frequency was found to change by 

1.5 Hz. It was found that this change in the resonance frequency could 

change the results at 550 Hz (i.e. the test frequency closest to the resonant 

frequency) by 3 dB and 5 degrees. 

This will be discussed further in the ensuing sections as good 

agreement was obtained between the theory and experiment except at 550 

Hz for the soft walled duct. It is felt that this disagreement is more the 

fault of the liner design approach at frequencies close to resonance rather 

than inaccuracies in the integral equation formulation. 

a - 
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Nomenclature 

a 	characteristic length of the body 

c 	speed of sound 

d 	Helmholtz resonator orifice diameter 

f 	frequency 

f
o 	resonant frequency of a Helmholtz resonator 

N./-1 

k 	wave number 

L 	backing depth of a Helmholtz resonator 

l
eff 	

effective orifice length of a Helmholtz resonator 

t 	orifice length of a Helmholtz resonator 

V 	cylindrically symmetric normal acoustic velocity 

y 	acoustic admittance 

Z 	specific acoustic impedance of the liner 

a 	absorption coefficient of the liner 

open area ratio of the liner 

a 	open area ratio of a Helmholtz resonator 

density of the medium 

N, 	coefficient of viscosity of the medium 

cylindrically symmetric acoustic potential 

e 	specific acoustic resistance 

X 	specific acoustic reactance 



E.) Data Reduction and Comparison with Theoretical Predictions 

In the data reduction the speed of sound, the density, and the 

coefficient of viscosity were corrected for atmospheric conditions. The 

speed of sound determines the wave number from the frequency and is 

therefore extremely important in the data reduction for all cases while the 

density and coefficient of viscosity are only important in the theoretical 

admittance calculation (See Eq. (3).). 

It should be pointed out that the theoretical and experimental models 

used in this study were not identical (See Figs. 3 and 4 for the straight duct 

configurations employed and Figs. 6 and 7 for the inlet configurations used 

in Appendix C.). The theoretical bodies were given hemispherical rear 

terminations in the interest of conserving computing time and space. It has 

been found however, through theoretical studies using the integral equation 

formulation of the problem, that the exact form of the rear termination of a 

body has little effect on the sound field radiated to the forward half plane. 

Since the forward half plane is where all of the experimental measurements 

were made this is not considered to be a source of major errors. 

In both experimental models the University driver was placed at the 

throat of a nozzle section (See Figs. 4 and 7 Appendix C.) so that the sound 

waves are plane at the driver plane. This was checked experimentally and 

the sound waves at the driver plane were found to be plane within 1 dB in 

amplitude and 5°  in phase. The amplitude was measured at this plane and 

was used as the input for the computer programs. The phase was not 

measured directly here as all of the other phase measurements were 

referenced to this microphone. 
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The straight duct was tested in both a hard walled configuration and 

in a lined configuration. For the hard walled tests the orifices of the 

Helmholtz resonators of the liner were simply covered with tape. The inlet 

tested had an L/a (length/radius) ratio of 2.0. The exact Mathematical forms 

of the curves that make up the inlet contours can be found in Ref. (4). It 

should be noted here that in the experimental inlet model the centerbody 

was held in place by four small wing sectional struts set at 90 °  from each 

other. Measurements of the driver amplitude were taken between two of 

these struts. 

A comparison between the predicted and measured amplitudes for the 

hard walled inlet are presented in tabular form in Table II. It should be 

recalled that the presented experimental data is actually the average of 

results obtained in two completely separate tests. The average absolute 

errors between the experimental and theoretical results are included at each 

frequency. The results are presented on a quarter circle with a radius of 40" 

centered at the duct entrance plane (See Fig. 8 Appendix C.). The 

experimentally measured amplitude at the driver plane is also included. The 

phase results are presented in Table III. The driver phase is taken to be zero 

as it is the reference phase. The results for the inlet are plotted for 600 Hz 

in Fig. 11 of Appendix C. 

As can be seen from Tables II and III the average absolute error 

between the theoretical and experimental results for the inlet configuration 

is always less than 3 dB in amplitude and 10°  in phase. At this juncture it 

seems appropriate to discuss some of the sources of error and their 

estimated magnitude so as to put the difference between the experimental 
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Table II. 

Averaged Experimental/Theoretical Amplitudes for the Inlet 40" from Entrance Plane (SPL in dB) 

Freq. 
(Hz) 

Degree 
Off 	,, 

300 350 400 450 500 550 600 650 700 750 

96.6 96.6 98.9 104.2 108.1 113.6 110.3 107.9 109.0 109.5 
0 93.8 96.2 99.1 103.1 108.4 113.1 110.8 108.1 106.6 106.0 

95.9 96.1 99.5 103.5 108.6 113.0 110.0 108.4 107.9 108.5 
11.25 93.8 96.1 99.1 103.0 108.3 112.9 110.7 107.9 106.4 105.8 

95.3 96.3 99.1 102.4 109.1 111.0 110.6 107.5 107.3 107.2 
22.5 93.6 95.9 98.8 102.7 108.0 112.5 110.2 107.5 105.9 105.3 

94.7 97.0 98.1 103.5 107.8 110.7 110.2 107.4 106.3 105.6 
33.75 93.3 95.6 98.5 102.3 107.4 111.9 109.5 106.7 105.1 104.4 

93.9 96.9 97.9 103.4 105.8 111.4 108.5 105.9 104.6 105.2 
45 93.0 95.2 98.0 101.7 106.7 111.1 108.6 105.7 104.1 103.3 

92.7 95.8 97.8 101.0 104.7 110.1 107.0 103.8 104.3 102.6 
56.25 92.5 94.7 97.5 101.1 106.0 110.1 107.5 104.5 102.8 101.9 

91.1 95.0 98.7 100.1 105.0 109.0 105.1 103.0 101.4 101.2 
67.5 92.0 94.2 96.9 100.4 105.2 109.1 106.3 103.1 101.3 100.4 

91.6 93.7 97.2 101.1 104.4 107.0 105.4 102.0 100.3 101.9 
78.75 91.3 93.5 96.2 99.7 104.5 108.3 105.2 101.9 99.8 98.8 

91.0 92.3 95.9 101.5 104.1 107.2 103.5 100.7 99.4 99.9 
90 90.7 92.8 95.5 99.0 103.8 107.6 104.5 100.9 98.7 97.4 

river 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 

verage 
bsolute 

[ 
1.18 0.72 0.54 1.01 0.54 0.60 0.59 0.30 1.09 2.03 

rror 
 



Table III 

Averaged Experimental/Theoretical Phases f the Inlet 40" from 
the Entrance Plane (Degrees Relative to the Driver) 

Freq. 
(Hz) 

Degree 
Off c 

300 350 400 450 500 550 600 650 700 750 

-61 -12 35 98 170 -10 72 130 -158 
0 -66 -13 41 98 167 -9 

0
0
  79 141 -160 

-61 -20 41 80 165 -102 72 134 -163 
11.25 -66 -13 41 99 167 -92 

0
0

  79 141 -160 

-62 -15 46 80 170 -87 75 137 -162 
22.5 -66 -13 41 99 168 -92 

0
0
 79 140 -160 

-68 -14 41 76 174 -91 77 139 -166 
33.75 -65 -12 42 100 168 -91 

0
0
 78 140 -161 

-68 -12 39. 93 177 -93 

0
0
  0

0
  

74 138 -167 
45 -65 -12 43 101 170 -90 78 140 -161 

-65 -16 44 107 169 -91 16 73 139 -153' 
56.25 -63 -10 45 103 172 -88 10 79 140 -161 

-63 -23 48 109 179 -93 14 83 146 -162 
67.5 -61 -8 47 106 175 -85 13 82 142 -160 

-61 -20 48 103 -173 -78 11 93 143 -154 
78.75 -59 -6 49 109 179 -80 18 87 147 -156 

-56 -10 43 107 -169 -64 27 94 147 -148 
90 -54 -2 53 113 -177 -75 25 94 154 -149 

Driver 0 0 0 0 0 0 0 0 0 0 

Average 
Absolute 3.1 6.1 3.2 9.9 4.3 6.0 3.8 4.0 4.4 3.4 
Error 
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and theoretical results in prospective. First, there are the obvious 

experimental errors caused by microphone amplifier drift, temperature 

changes in the anechoic chamber of and the microphone placement in the 

chamber. Comparing test results and calibrations these errors are estimated 

to account for up to 0.5 dB in amplitude and 5 degrees in phase. Another 

source of error is the anechoic chamber which, as stated before, can account 

for errors up to 3 dB and 10 degrees. A more subtle source of experimental 

error is due to scale switching on the microphone amplifiers which can 

account for as much as 0.5 dB (i.e. 100 dB on the 90 to 110 dB scale reads as 

100.5 dB on the 100 to 120 dB scale). 

The theoretical errors are estimated by comparison with exact 

solutions for similar geometries. It is found that the computer programs 

introduce about 1% error, insignificant in dB but accounting for as much as 5 

degrees in phase. Another source of error is the assumption of a plane wave 

at the driver plane; unfortunately the effect of this assumption can not be 

easily ,estimated. As none of the above mentioned errors are specifically 

geometry dependent, these error estimates apply to the straight duct 

configurations too. 

The results of the experimental tests and of the computer runs for 

the hard walled straight duct configurations are presented in Tables IV and 

V. The amplitude results are tabulated in decibels in Table IV while the 

phase results in degrees appear in Table V. Again, the experimental results 

presented are actually the average of two separate runs. 

It can be seen that all of the amplitude results are very good as the 

experimental and theoretical values at each test frequency have average 
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Table IV 

Averaged Experimental/Theoretical Amplitudes for the Hard Walled Straight Duct 40" 
from the Entrance Plane (SPL in dB) 

Freq. 
(Hz) 

Degee 
Off q; 300 350 400 450 500 550 600 650 700 

102.3 104.6 110.8 114.1 110.1 108.4 105.8 108.2 108.6 
0 99.8 104.2 110.5 113.9 110.4 108.2 107.3 107.3 108.1 

101.6 104.9 111.4 112.9 110.9 107.0 106.4 108.3 107.7 
11.25 99.7 104.1 110.4 113.8 110.3 108.0 107.1 107.1 107.8 

100.5 104.8 110.3 113.1 110.4 105.9 107.0 106.8 106.1 
22.5 99.5 103.8 110.0 113.4 109.8 107.5 106.5 106.5 107.1 

100.2 105.3 110.0 113.1 108.1 106.8 106.2 105.1 105.3 
33.75 99.2 103.4 109.5 112.7 109.1 106.7 105.7 105.5 106.0 

99.1 104.4 109.7 112.7 106.2 107.2 104.0 104.0 105.3 
45 98.8 102.9 108.8 111.8 108.1 105.6 104.5 104.2 104.5 

97.9 103.5 108.7 109.5 106.3 104.3 101.9 103.6 102.1 
56.25 98.3 102.3 108.0 110.8 106.9 104.3 103.1 102.7 102.9 

96.9 102.3 108.3 109.1 105.1 102.0 102.6 101.4 99.3 
67.5 97.7 101.6 107.2 109.8 105.6 102.8 101.5 101.0 101.1 

96.7 101.5 107.0 110.2 103.9 100.3 101.5 99.9 100.5 
78.75 97.0 100.9 106.4 108.9 104.4 101.4 99.8 99.3 99.3 

96.7 99.7 105.2 108.4 103.9 100.7 98.9 98.8 95.5 
90 96.3 100.2 105.8 108.1 103.5 100.2 98.4 97.6 97.6 

Driver 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 

Average 
Absolute 0.96 0.96 0.67 0.70 0.71 0.77 0.91 0.68 1.00 
Error 

] 



Table V 

Averaged Experimental/Theoretical Phases for the Hard Walled Straight Duct 40" 
from the Entrance Plane (Degrees Relative to the Driver) 

Freq. 
(Hz) 

Degree 3 350 400 450 500 550 600 650 700 
Off 1; 

-62 69 -177 -82 -17 37 96 164 
0 -65 

0
0
 65 180 -90 -24 37 96 156 

-63 -12 74 179 -82 -5 34 99 169 
11.25 -65 -8 65 180 -90 -24 37 96 156 

-67 -9 72 172 -78 -7 33 107 163 
22.5 -65 -7 66 180 -90 -24 36 95 155 

-73 68 -175 -81 -10 39 106 156 
33.75 -64 

%
.0 66 -180 -90 -24 36 95 154 

-72 -10 68 -174 -89 -16 46 93 161 
45 -63 -5 68 -179 -90 -25 35 94 154 

-64 -13 78 -167 -87 -4 39 102 170 
56.25 -61 -3 70 -176 -88 -24 36 94 153 

-61 -15 80 179 -77 -11 32 116 158 
67.5 -59 0 74 -173 -85 -21 37 95 154 

-58 75 -169 -68 -4 33 107 167 
78.75 -56 

M
 78 -167 -79 -16 42 99 157 

-53 

0
 0
0
 

67 -161 -78 10 52 114 164 
90 -52 83 -161 -72 -8 50 106 164 

Driver 0 0 0 0 0 0 0 0 

Average 
Absolute 3.7 5.3 6.0 4.6 7.1 14.0 4.3 8.0 7.7 
Error 

31 



absolute errors of one decibel or less. The phase results also compare very 

well except at 550 Hz where the average absolute error is about twice that 

at the other frequencies. The probable reason for this is that this frequency 

is very close to the tuning frequency of the liner, which is about 558 Hz (See 

Fig. 6.), and that the liner orifices were closed off with tape for the hard 

walled tests which may not have been 100 percent effective in keeping the 

liner from influencing the phase results. It should be noted, however, that 

this method of closing off the liner was effective as far as the amplitude 

results are concerned (See Table IV.). The amplitude and phase results at 550 

Hz are plotted in Fig. 9 of Appendix C for this case. 

The experimental and test results for the case of the soft, lined 

walled straight duct configuration are tabulated in Tables VI and VII for the 

amplitude and phase, respectively. The results for the amplitude and phase 

at 500 Hz are plotted in Fig. 10 of, Appendix C. The errors in the amplitude 

are in general less than 3 dB and the errors in the phase less than 10 degrees 

except at 550 Hz where the errors for both the amplitude and the phase are 

very large. These differences between the theoretical and experimental 

results are probably due to the liner theory used for calculating the 

admittance of the liner and machining errors in the manufacture of the 

liner. 
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Table VI 

Averaged Experimental/Theoretical Amplitudes for the Soft Walled Straight Duct 40" 
from the Entrance Plane (SPL in dB) 

Freq. 
(1z) 

Degree 
Off 4;  300 350 400 450 500 550 600 650 700 

103.8 110.1 112.9 108.0 104.7 88.2 101.2 109.1 108.1 
0 101.7 108.3 113.9 107.6 104.9 70.9 104.2 108.9 108.0 

103.0 110.3 113.6 106.9 105.6 87.0 102.0 109.3 107.1 
11.25 101.6 108.2 113.7 107.5 104.7 70.4 104.0 108.7 107.7 

102.9 110.4 112.5 106.5 104.9 85.8 102.4 107.8 105.3 
22.5 101.4 107.9 113.4 107.0 104.2 69.1 103.5 108.1 107.0 

102.3 110.6 112.1 107.2 102.5 86.3 101.8 106.4 104.7 
33.75 101.1 107.5 112.8 106.4 103.5 67.1 102.6 107.1 105.9 

F 
101.4 109.9 111.7 105.8 101.6 86.5 99.6 105.1 104.7 

45 100.6 107.0 112.1 105.5 102.5 65.4 101.5 105.9 104.5 

99.4 108.8 110.9 103.5 101.1 83.9 97.7 104.7 101.5 
56.25 100.1 106.3 111.3 104.5 101.2 65.8 100.2 104.4 102.9 

98.8 107.6 109.5 102.6 100.1 80.1 98.2 102.5 99.3 
, 	67.5 99.6 105.7 110.5 103.4 100.0 67.2 98.7 102.7 101.1 

99.0 106.0 109.0 103.3 99.8 76.6 96.6 101.0 99.8 
78.75 98.9 105.0 109.8 102.5 99.8 68.1 97.1 101.0 99.3 

99.1 104.1 107.4 101.3 99.6 79.2 93.6 99.9 94.5 
1 	90 98.2 104.3 109.1 101.8 97.9 68.0 95.6 99.3 97.5 

Driver 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 

Average 
Absolute 1.06 2.00 0.78 0.63 0.62 15.73 1.59 0.41 1.17 
Error 
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Table VII 

Averaged Ex 	:al/Theoretical Phases for the Soft Walled Straight Duct 40" 
from the Entrance Plane (Degrees Relative to the Driver) 

Degree 
Off 

Freq. 
(Hz) 

300 350 400 450 500 550 600 650 700 

-61 143 -125 -49 11 -57 65 151 
0 -63 134 -129 -59 79 -65 69 144 

-63 147 -130 -48 15 -65 68 155 
11.25 -63 134 -129 -59 80 -65 69 143 

-67 146 -131 -45 16 -66 76 148 
- 22.5 -62 

7
 

•
•
  134 -129 -59 82 -65 68 143 

-71 12 142 -125 -47 9 -57 75 143 
33.75 -61 5 135 -128 -59 89 -66 68 142 

-69 143 -118 -55 7 -45 62 147 
45 -60 137 -127 -59 106 -66 67 141 

-64 
reN 152 -116 -52 10 -57 72 156 

56.25 -59 139 -125 -58 123 -65 67 141 

-61 2 155 -123 -43 6 -68 85 143 
67.5 -56 11 142 -122 -54 129 -64 69 142 

-57 12 148 -120 -36 19 -48 69 156 
78.75 -53 15 147 -116 -49 126 -60 72 145 

-50 25 142 -109 -47 43 -42 86 152 
90 -50 19 152 -110 -41 120 -52 80 152 

Driver 0 0 0 0 0 0 0 0 0. 

Average 
Absolute 4.4 4.8 9.3 3.8 9.7 88.7 8.1 6.1 6.4 
Error 
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F. Determination of the "Effective" Liner Admittance 

As stated in the previous sections normal machining errors can 

change the resonant frequency of the liner by as much as 1.5 Hz which can 

change the sound field by as much as 3 dB and 5 degrees due to the liners 

"peaky" absorption curve (See Fig. 6.). Even this can't, however, account for 

the large differences between the experimental and theoretical results at 

550 Hz for the lined straight duct. Noteing that the calculated results were 

consistently lower than those measured it was assumed that the liner 

theory(5) predicted the admittance (i.e. the effectiveness) of the liner to be 

higher than it actually was. To check this hypothesis a parametric set of 

computer runs was conducted in which the admittance was systematically 

varied to see if the true "effective" admittance of the liner at 550 Hz could 

be determined by comparison with the experimental results. From this set of 

computer runs it was found that the true "effective" admittance of the liner 

was approximately 

y - 0.13 - i0.28 	@ 550 Hz 

(10) 

which is the real part of the admittance calculated from Eqs. (2-4) and (8) 

multiplied by 0.35 and the imaginary part multiplied by 0.65. The 

experimental and theoretical results, calculated using the admittance in Eq. 

(10), are tabulated in Table VIII. As can be seen these results are more in 

line with what was found at the other frequencies (See Tables VI and VII.), so 

it is concluded that the Garrison theory of Ref. (5) does not give the proper 

admittance for this type of liner near resonance (i.e. it predicts the 



Table VIII 

Averaged Experimental/Theoretical Acoustic Radiation 40" from the 
Entrance Plane of the Soft Walled Straight Duct at 550 Hz with 

y =- 0.13 - i 0.28 

Degrees 
Off t 

Amplitude 
SPL (dB) 

Phase 
(degrees) 

88.2 11 
0 89.7 15 

87.0 15 
11.25 89.5 14 

85.8 16 
22.5 88.9 13 

86.3 9 
33.75 88.0 12 

86.5 7 
45 86.8 12 

83.9 10 
56.25 85.3 13 

80.1 6 
67.5 83.7 17 

76.6 19 
78.75 82.4 24 

79.2 43 
90 81.7 34 

Average 
Absolute 2.49 4.9 
Error 
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admittance to be too high). This exercise also points out that the integral 

equation technique can be used to determine a liners true "effective" 

admittance from experimental measurements in the field. 
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Abstract  

A special integral representation of the exterior 
solutions of the Helmholtz equation is used to calculate the 
free field acoustic radiation patterns around two finite 
axisymmetric bodies; a straight pipe and a jet engine inlet. 
The radiation patterns around these bodies are then 
measured experimentally, with the free field being 
approximated through the use of an anechoic chamber. The 
inlet tested has a hard wall while the straight pipe is tested 
with both a hard and a lined wall. The computed theoretical 
and the measured experimental acoustic radiation patterns 
are found to be in good agreement. A discussion of possible 
sources of error, both theoretical and experimental, is 
included. 

Introduction 

One of the major problems facing the aircraft 
industry today is to reduce the noise radiated to the ground 
from aircraft engines without sacrificing any of the overall 
efficiency of the aircraft. A major source of engine noise is 
the compreisor or the fan noise which is radiated out of the 
jet engine through its inlet section. Research efforts 
directed toward reducing these noise sources have included, 
among other things, the reduction of the sound level in the 
jet engine inlet section, by adding sound absorbing 
materials (i.e., acoustic liners) to the inside of the engine 
inlet. Weight and volume of these acoustic liners are of 
prime concern to the aircraft industry as these are directly 
related to the overall efficiency of the aircraft; thus, 
efficient acoustic liner designs are sought. In the past, 
optimum liner designs have been found by extensive full 
scale testing of engines with various liner configurations 
which is a very costly and time consuming process. Most of 
this testing could be eliminated by the development and use 
of efficient, accurate analytical procedures for, the 
prediction of the sound field radiated from lined jet engine 
inlets. The development of such a method, based upon a 
special integral representation of the radiation solutions of 
the Helmholtz equation, has been discussed at lAngth by the 
authors of this paper in earlier publications'''. In the 
present study the applicability of this integral solution 

technique is investigated by comparing its predictions with 
the results obtained from an experimental study. 

Background  

In this paper a special axisymmetric integral 
represent4ii29 of the exterior solutions of the. Helmholtz 
equation is employed to theoretically calculate the 
free field acoustic radiation patterns surrounding two finite 
axisymmetric bodies; namely, a straight duct and a jet 
engine inlet configuration. The inlet used in these studies is 
the so called QCSEE inlet (i.e., the quiet, clean, short-haul 
experimental engine inlet of Reference 5). In previous 
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OI F49620-77-C-0066; Lt. Col. Lowell Ormand, Grant 
Monitor. 
Research Engineer, Member AIAA. 
Senior Research Engineer. 

** 	Regents' Professor, Associate Fellow AIAA. 

Copyright 0 American Institute of Aeronautics and 
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studies by this group the sound fields radiated from 
complicated geometries with complex (mixed) boundary 
conditions were calculated using a solution procedure based 
on the aforementioned integral representation. The 
solutions generated were found to be in excellent 
agreement with "exact" solutions calculated by employing 
the method of Separation of Variables. A detailed 
development of the integral equations and solution 
procedures used along with many comparisons with exact 
solutions for various bodies, both 3-D and axisymmetric, 
can be found in Refs. (1-4 and 6). In this connection it 
should be pointed out that this theoretical technique and 
solution procedure have been found to be both accurate and 
computationally efficient when compared to other 
methods. 

Theoretical Method  

In this study a so called "integral technique" is 
employed to calculate the sound radiated from various 
axisymmetric configurations. The particular method is 
unique in that it is applicable at all nondimensional wave 
numbers ka (where k is the wave number and a is an 
appropriate body dimension), it contains no tangential 
derivatives on the surface of the body S (See Fig. 1.) and it 
contains no singular kernels which cannot be handled 
numerically by straight forward means. 

Figure 1. 	Definition of Elements on the Body. 

The details of the derivation of the particular integral 
equations used are presented in Refs. (1, 2 and 6) and 
therefore will not be repeated here. The basic integral 
equation employed on the surface of the body is written in 
terms of the acoustic potential cp and it contains surface 
integrals over the surface of the body S. If we now define 
dt-as the outward normal derivative from the surface, P 
and Q as points on the surface with their unit outward 
normals defined as 77; and irs  respectively, and ;-F, as the 
normal acoustic velocity this integral equation takes the 
following general form 
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In this equation G(P,Q) can be any fundamental solution of 
the Helmholtz equation. In this study it has been chosen to 
be the free space Green's Function of the Helmholtz 
equation; that is 
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Figure 2. 	General Axisymmetric Geometry and 
2-D Projection. 

where r(P,Q) is the distance between the points P and Q on 
the surface of the body. 

Once the acoustic potential is calculated on the 
surface of the body using Eqn. (1), the following integral 
representation for cp may •be used to calculate the 
acoustic potential anywhere in the field surrounding the 
body. In this case the point P is no longer on the body S but 
in the field surrounding it. 

If the body of interest is axisymmetric, as mc45 
engine inlets are, certain simplifications may be made ''. 
Let us now define a new cylindrically symmetric acoustic 
potential and normal acoustic velocity as 

and s is the distance along the body in the p-z plane (e.g. 
0 < s <4"). In doing this we have effectively separated out 
all the tangential modes; thus, the formulation that will be 
presented for axisyrnmetric bodies will be cylindrically 
symmetric in that all the tangential modes (i.e., m 
0,1,2...) may be solved for separately. Having these 
definitions, Eqn. (1) can be rewritten as 
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where s is the distance along the 2-D projection of the 
body in the p-z plane (See Fig. 2.). The kernel functions 
K1  and K2  are defined as 
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in Figure 2 
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in the field surrounding the body. These were then 
compared with the acoustic potential that the simple 
source would generate at each point in the field. Very good 
agreement was found; for 53 integration points on the body 
along 's (See Fig. 2.) the error was always below 10% in 
the real and imaginary parts of t for nondimensional wave 
numbers up to ka = 10. It was also found that increasing 
the number of integration points generally decreased the 
error proportionally (e.g. using 102 points the maximum 
error in the acoustic potential at a field point was about 
5% for the inlet at a nondimensional wave number of ka 
10.). The results and details of many such tests are 
presented in Ref.(3). 

3 

and the influence functions are defined as 

One should note that e p  has been chosen to be zero (i.e. 
cos m e p  = 1) in the above equation which can be done 
without any loss of generality. 

The Test Bodies  

The integral formulation has been used in the 
present study to calculate the sound fields radiated from 
two axisymmetric bodies, a straight duct and a jet engine 
inlet. The theoretical and experimental configurations do 
not compare exactly as an accurate description of the 
"back side" of the experimental bodies would entail the use 
of too many theoretical points on the bodies. Therefore, 
different external terminations were given to the 
theoretical models in the interest of conserving computing 
time and computer storage space. In this connection it has 
been found through theoretical studies, that the exact form 
of the rear termination of the body has little effect on the 
sound field radiated in the forward half plane. Since we are 
only really interested in the sound field in the forward half 
plane, this approximation is not considered to be a major 

source of error in this study. 

The first axisymrnetric body tested was a straight 
duct. Below is a sketch of the theoretical model employed. 

As-can be seen, this formulation of the problem reduces the 
solutions of Ans. (1) and (3) to the evaluation of line 
integrals on the•2-D projections of the body (See Fig. 2.). 
Also, this formulation can account for tangential modes; 
which must, however, be solved for separately. 

The theoretical method described above ' was 
_checked for accuracy by employing several wdsymmetric 
geometries including a straight duct and a jet engine inlet. 
The calculated radiation patterns generated by this method 
were compared with various "exact" solutions. These exact 
solutions were found by assuming that some simple sources 
,(e.g. monopoles, dipoles, and quadrupoles) were located 
within the body and then calculating the normal acoustic 
elocity V and/or the admittance, defined as y v/ , at 

'Joints on the surface of the body. These values were then 
Used as the boundary conditions on the surface of the body 
and the acoustic potential was calculated at various points 

Figure 3. 	Theoretical Straight Duct Model. 

Its L/a equals 2.110, the same as the experimental model. 
It will be noted that the theoretical model has a 
hemispherical termination which differs from the rear 
termination of the experimental model shown below. 
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In the experimental model the driver is placed at the throat 
of a nozzle section, which assures that the sound waves are 
plane at the driver plane where a 1/4" condensor 
microphone is located to provide a reference pressure level 
in decibels. All of the tests were conducted at 
nondimensional wave numbers ka below the a mode of the 
duct (i.e. k t 1.84) and thus we were assured of a plane 
wave at the driver plane. This has been checked out 
experimentally by sweeping the reference microphone 
radially across the duct and it has been found to be true 
within 1 dB in amplitude and 5°  in phase (i.e. there is less 
than 1 dB and 5 °  variation between the wall and the center 
of the duct). In the theoretical model the existence of 
plane wave excitation at,the driver plane is assumed. 

The straight duct was tested in two configurations; 
that is, hard wall and lined wall configurations. The lined 
wall configuration consisted of 180 Helmholtz resonators (9 
axial rows by 20 radial rows). A sketch of one of the 
resonators is shown below. 

H 4 
Dia. 

Figure 5. 	Helmholtz Resonator.  

For the hard walled tests the small holes inside the duct 
were simply covered with tape. 

The second axisymrpigric body tested was a model 
of an actual engine inlet'''. It has an L/a of 2.0. The 
theoretical model has a hemispherical termination similar 
to the one used for the straight duct. A sketch of the 
theoretical inlet model is presented below. 

Figure 6. 	Theoretical Inlet Model. 

In the experimental model the centerbody was heltin place 
by 4 small wing cross-sectional struts set at 90 angles. 
The microphone measurement for the amplitude and phase 
at the driver plane was made half way between 2 of these 
struts. Again, the small condensor microphone was swept 
across the driver plane radially to check for the presence 
of plane wave excitation which was found to exist within 
the same limits as for the straight duct (i.e., less than a 1 
dB change in amplitude and 5 °  in phase across the driver 
plane). A sketch of the experimental inlet model is 
presented below. 
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Again, the exact mathematical form of the curves that 
make up the inlet contours can be found in Reference 5. 

Results 

In the anachoic chamber tests conducted under this 
program, the field measurements were taken 40" from the 
center of the duct exit plane on a circular arc at 11 1/4 ° 

 increments from the centerline of the duct. One-half inch 
B do K microphones were used in these tests for the field 
measurements. The anechoic chamber used in the 

.experiments has interior dimensions of 10' x 13' x 6 1/2' 
high. The acoustic insulation used in the chamber is 

-fiberglass which is approximately 2' thick. The ducts tested 
(i.e., the straight duct and the inlet) and the microphones 
used for the field measurements were 3' off the floor. A 
plan view of the anechoic chamber with a typical test 
set-up is presented below. 

Figure 8. 	Anechoic Chamber (Plan View ) with 
Test Set-Up. 

Free field measurements were made in the chamber 
to check its "anechoicness". For the distances of interest in 
the chamber (i.e. up to 40" from a source) free field 
conditions were generally approximated to within 3 dB in 
amplitude and 10 in phase. 

The procedure for the tests was to take the 
measured SPL in dB from the 1/4" B do K microphone at the 
driver plane and input the data into the theoretical model 
assuming plane wave excitation at the driver plane. Again, 
this was checked experimentally for each configuration and 
found to be generally true within 1 dB in amplitude and 5 
degrees in phase. Since a plane wave was assumed, the 
phase was not measured at the driver plane and zero phase 
was assumed for this location in the theoretical model. This 
can be done without any loss of generality as the phase 
differences between the field microphones and the driver 
plane microphone are the quantities of interest which were 
measured in this program. Once the driver plane acoustic 
pressure was input into the theoretical model, the far field 
sound distribution was calculated and compared with the 
measured experimental data. 

The computer used • for these analyses was the 
Georgia Tech Cyber 70/74. Typical run times to calculate 
the distribution of the acoustic potential eI) (i.e., See Eqn. 
(5).) with 100 points on the theoretical body are about 6 
minutes and to calculate the acoustic potential in the far 
field at 20 points (i.e., See Eqn. (9).) are about 1 minute. In 
the theoretical calculations of the surface potential on the 
straight duct 102 points were used while in the calculations 
for the inlet (See Fig. 5.) 97 points were used. 

In the numerical integration o.:* Eqn4. (5) and (9) a 2 
point integration formula was used in the s direction (See 
Fig. 2.). It should be noted, however, that an even 
integration formula must be used here as an odd formula 
would place a point in the center of the integration region 
which would cause the various kernel functions (i.e., See 
Eqns. (6)-(8).) to go to infinity when r(P,Q) goes to zero as 
the points P and Q coincide. In all the investigated cases a 
96 point Gaussian integration formula was used in the 
e direction. 

Tests with the straight duct configuration with both hard 
and soft walls were conducted in the frequenCy range of 
300 to 700 Hz at 50 Hz increments. Over this frequency 
range a reasonably plane wave could be excited at the 
driver plane . Comparisons of calculated and measured 
data for the hard walled straight duct configuration are 

In this study the lower frequency limit was imposed 
by the limitations of the University driver. 
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presented in Fig. 9 for 550 Hz. The SPL results at this 
frequency are representative of those at all other 
frequencies while the phase results are the worst at this 
frequency. The probable reason for this is that 550 Hz is 
very close to the tuning frequency of the liner, which was 
calculated to be around 558 Hz under these test conditions 
and the tape used to close off the liner holes for the hard 
walled tests was not 100 percent effective. The average 
absolute errors for the amplitude in dB and for the phase in 
degrees are presented in Table I for all of the tests run. 

Comparisons of experimental and calculated far 
field pressures for the lined, straight wall duct are 
presented in. Fig. 10 at a frequency of 500 Hz. These results 
are typical of those obtained at all but one of the other 
frequencies tested. At 550 Hz, which is very close to the 
calculated resonant frequency of the liner, the results show 
significantly more error (See Table I.). Since the 
calculated results were lower than those measured it was 
assumed that the liner theory results predicted the 
effectiveness of the liner to be higher than it actually was 
in practice. To see if this was actually the case a set of 
systematic computer runs were made in which the 
effectiveness of the liner (i.e., its admittance) was 

reduced. 

Figure 10. 	Acoustic Radiation 40" from the 
Soft Walled Straight Duct. 

To predict the sound field radiated by the lined, 
straight wall duct the admittancA lat the wall is required. 
In this case available liner theory ' was used to predict the 
admittance of the Helmholtz resonator array. For the 
particular resonators used (See Fig. 5.) in this study the 
resonant frequency of the array, f c, , was calculated to be 
around 558 Hz and the specific impedance of the liner 
Z. e- A z was found to be given by: 

= 	0 /3 98 -VS 
00) 

io. IB6 ( 

It was found that if the predicted real part of the 
admittance was taken to be 35 percent effective and the 
imaginary part of the admittance was taken to be 65 
percent effective (i.e. y = - 0.13 - i 0.28 at 550 Hz) than 
the results from the theoretical calculations were 
significantly closer to the experimentally measured data. 
The average absolute errors for the amplitude in dB and for 
the phase in degrees are now 2.51 dB and 5.00 degrees 
respectively as compared to the much larger errors' 
incurred using the admittance values predicted by the liner 
theory (See Table I.). 

Tests for the inlet configuration were also 
conducted over the frequency range 300 - 700 Hz at 50 Hz 
increments. Since the reference lengths, a, are slightly 
different (See Figs. 3,4,6 and 7.) the nondimensional wave 
numbers ka are different. Comparisons of theoretical and 
experimental data are presented in Fig. 11 for the inlet 
configuration at 600 Hz. These results are representative 
of those at other frequencies. 
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Figure 11. 	Acoustic Radiation 40" from the Inlet. 

Discussion of Results 

The causes for the errors appearing in the 
comparisons of the last section will be briefly discussed 
herein. First, there are the obvious experimental errors 
caused by microphone amplifier drift, temperature changes 
in the anechoic chamber and microphone placement in the 
chamber. These errors can be estimated as identical tests 
were Jun on different days, the microphones were 
calibrated three times during the course of each test, and 
the microphones were moved and reset during each test as 
there are 9 positions in the field and only 5 microphones 
were used in each test. Comparing test results and 
calibrations, these ertors are estimated as being of the 
order of 0.5 dB in amplitude and 5 degrees in phase. 
Another source of experimental error is the anechoic 
chamber itself which, as stated befo&e, can account for up 
to 3 dB errors in amplitude and 10 errors in phase. A 
more subtle source of error in the lined duct tests is the 
liner itself. It was found that by changing the dimensions of 
the Helmholtz resonators by as little as 0.0005 inches (i.e. 
common machining errors) the resonant frequency 
calculated for the liner changed by as much as 1.5 Hz 
which is significant for this type of liner near resonance 
due to its highly peaked absorption curve. A sample 
calculation was run at 550 Hz with this change and the 
calculated results changed by about 3 dB in amplitude and 5 
degrees in phase. Another source of possible error for this 
particular case is obviously the imperfection of the liner 
theory itself; the determination of the errors caused by its 
shortcomings are, however, beyond our current capabilities. 

The computer programs also introduce some errors 
which are estimated to be about 1 percent by comparing 
these computer results with exact solutions for similar 
geometries and wave numbers. AlthOugh these errors are 
insignificant when evaluated in dB, they can be as high as 5 
degrees in phase. Another source of error is the assumption 
of a plane wave at the driver plane; the effect of this error 
or the results in the far field cannot, however, be easily 
estimated. Other sources of error include the differences 
between the experimental and theoretical geometries 
which include not only the different terminations on the 
back side of the bodies but also the stand required to hold 
up the experimental set-up in the anechoic chamber. The 
errors caused by these differences are hopefully small. 

Freq. 	Hz 300 350 400 450 500 550 600 650 700 

Hard 
Walled 
Straight 
Duct 

dB 0.96 0.95 0.66 0.70 0.71 0.78 0.92 0.67 1.02 

Deg. 3.83 5.56 5.89 4.61 7.44 13.78 4.33 7.72 7.83 

Soft 
Walled 
Straight 
Duct 

dB 1.06 1.96 0.82 0.63 0.74 15.71 1.61 0.42 1.19 

Deg. 4.67 4.78 9.28 3.67 9.33 88.89 8.11 5.89 6.61 

Inlet 
dB 1.18 0.72 0.61 1.08 0.69 0.63 0.61 0.38 1.07 

Deg. 3.17 6.39 3.83 10.22 5.00 6.22 4.00 4.50 5.00 

Table I. Average Absolute Errors. 



Conclusions 

Acoustic measurements were made of the sound 
field radiated from a straight duct with both acoustically 
hard and soft walls and a jet engine inlet. These 
measurements were then compared with the results of an 
integral representation of the solutions of the Helmholtz 
equation and good agreement between the theoretical and 
experimental results was observed. This indicates that the 
integral equations used and the techniques employed for 
solving them are good approximations to the actual 
acoustic behavior of arbitrarily , shaped axisymmetric ducts 
radiating into a free space. This is significant in that Most 
theories can not adequately model the coupling between 
the acoustic fields inside and outside a duct. Thus, this 
technique can be used with confidence to efficiently 
predict the sound field radiated from complex 
axisymmetric geometries. 
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