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SUMMARY 

Six degree of freedom (6-dof) articulated arm industrial robots are promising 

candidates for aerospace machining operations such as milling due to their low-cost and 

large workspace compared to Computer Numerical Control (CNC) machine tools. 

However, the instantaneous position accuracy of industrial robots during milling is 

dependent on the vibratory behavior of the end effector tool tip. Consequently, it is 

important to model and predict the robot’s tool tip vibration as the arm configuration 

changes over the workspace. This dissertation addresses the modeling, prediction, and 

control of instantaneous tool tip vibrations of a 6-dof industrial robot over its workspace 

using data-driven methods.  

First, a data-driven modeling approach utilizing Gaussian Process Regression 

(GPR) of data acquired from modal impact hammer experiments to predict the modal 

parameters of a 6-dof industrial robot as a function of its arm configuration is presented. 

The GPR model is found to be capable of predicting the robot’s dominant natural frequency 

of vibration, stiffness, and damping coefficient in its workspace with root mean squared 

errors of 3.31 Hz, 150 KN/m, and 810 Ns/m, respectively. The predicted modal parameters 

are used to predict the average peak-to-valley vibrations of the tool tip during robotic 

milling. The results show that the average peak-to-valley vibrations predicted by the model 

follow the experimental trends with a maximum error of 0.028 mm. The prediction errors 

are attributed to the fact that the model only predicts the modal parameters corresponding 

to the dominant mode of vibration instead of the entire Frequency Response Function 

(FRF) of the robot.  



 xii 

The GPR model is also used to create a Linear Quadratic Regulator (LQR) based 

pose-dependent optimal controller to suppress tool tip vibrations of a 6-dof industrial robot 

during milling. Robotic milling experiments show that the LQR controller reduces tool tip 

vibration amplitudes by an average of 47%. However, offset mass experiments show that 

the optimal controller has a bandwidth limitation of 24 Hz due to an intrinsic delay in the 

robot controller response to control commands. 

Finally, a hybrid statistical modelling approach that augments the GPR model of 

the robot’s pose-dependent FRF derived from experimental modal analysis, i.e. impact 

hammer tests, with the robot’s FRF derived from operational modal analysis, which utilizes 

milling forces and tool tip vibrations to compute the FRF, is presented. The hybrid model 

augmentation approach is demonstrated to be an efficient method to improve the prediction 

accuracy of the robot’s FRF with minimal optimization iterations. Specifically, the hybrid 

model is shown to reduce the root mean squared errors in predicting the FRF by 34% and 

the number of optimization iterations by 50%.  
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

Gantry type Computer Numerical Control (CNC) machine tools are currently used 

for machining of large structural parts in the aerospace industry. However, such machine 

tools suffer from several drawbacks including their large footprint, high cost and limited 

versatility to perform multiple tasks in a manufacturing environment. In contrast, industrial 

robots have a smaller footprint, cost less (30% cheaper for the equivalent workspace) [1], 

and possess the versatility to perform a variety of manufacturing tasks including material 

removal and metrology. Thus, there is considerable interest in the aerospace sector to 

utilize industrial robots for machining and other manufacturing tasks [2].  

However, before industrial robots can be used for high accuracy aerospace 

manufacturing tasks such as high force milling operations they must overcome 

fundamental limitations arising from their relatively large compliance (demonstrated to be 

approximately 50 times more compliant) [3], which negatively affects part dimensional 

accuracy and surface finish [4]. In addition, the vibration characteristics of the robot at its 

tool tip vary with robot configuration (or pose) within its work volume [5, 6]. Knowledge 

of robot tool tip vibration characteristics is vital to selecting the optimal machining 

parameters to minimize undesirable process behavior including structural resonance and 

self-excited vibrations (chatter) during milling [7]. Consequently, it is important to develop 

a model to predict the robot’s pose-dependent vibration behavior as a function of its 

compliance, resonant frequency, and damping. Such a model can then be used to predict 

the robot’s tool tip vibrations, which influence its instantaneous position accuracy. 
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However, existing analytical and numerical models cannot accurately simulate the 

dynamic behavior of 6-dof industrial robots due to modeling assumptions and uncertainty 

in calibration of the joint stiffnesses and link moments of inertias. Therefore, a different 

modeling approach is required to predict the robot’s modal properties as a function of its 

pose or its corresponding tool tip position in task or Cartesian space. 

While a model that enables offline process parameter selection is useful for 

minimizing the robot’s tool tip instantaneous positioning inaccuracies during milling, on-

line compensation is necessary to further improve the robot’s tool tip accuracy when offline 

optimization is insufficient. Because the periodic forces in milling result in tool tip 

vibrations that reduce part accuracy, implementing a controller that suppresses these tool 

tip vibrations is also useful for improving part quality. Vibration suppression controllers 

usually require manual tuning of controller gains to produce the desired performance [8, 

9]. However, because the controller performance depends on pose-dependent modal 

parameters of the robot, manually tuned controllers are only valid for a specific robot arm 

configuration. Therefore, a control technique to suppress tool tip vibrations in articulated 

arm robots without manual controller tuning is required. 

Creating a data-driven model that accurately describes how the robot’s modal 

parameters vary over its workspace requires off-line model calibration using vibration data 

from modal impact hammer tests (or Experimental Modal Analysis) performed at many 

discrete robot configurations or points in the workspace. This can be very time consuming 

and can result in long robot downtimes, especially if a large workspace is involved. On the 

other hand, low density sampling of the robot’s workspace can lead to model prediction 

inaccuracies for arm configurations not utilized in the model calibration process.  
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Alternatively, Operational Modal Analysis [10], a method that utilizes force and vibration 

data obtained from the dynamic system during its operation, can provide convenient and 

dense sampling of the modal parameters corresponding to  the continuously changing robot 

configurations along the robot tool path without significant downtime. However, 

application of this method to robotic milling is limited by the lack of an intelligent method 

to determine the tool paths required to adequately sample the robot’s workspace. Therefore, 

a hybrid modeling approach that can combine the advantages of both off-line and 

operational modal analysis to create a cost-effective and sufficiently accurate model for 

predicting the modal parameters of an industrial robot over its workspace as a function of 

arm configuration is desirable. 

1.2 Research Objectives 

 In light of the above motivations, the research objectives of this thesis are: 

1.  Predict the pose-dependent tool tip vibrations of industrial robots during milling 

operations. 

2.  Suppress tool tip vibrations during robotic milling using closed-loop control without 

manual tuning. 

3.  Efficiently calibrate models that predict the modal parameters of an industrial robot over 

its workspace. 

1.3 Approach 

The above research objectives are pursued in this thesis through the tasks 

summarized in Figure 1. First, a data-driven model to predict the robot’s modal parameter 
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variation within its workspace is developed. A data-driven modelling approach is proposed 

as the most accurate method to model the robot’s modal properties (natural frequency, 

stiffness, and damping coefficient) because it does not rely on modelling assumptions 

inherent in analytical modelling. The data-driven model is created from modal parameters 

determined from Experimental Modal Analysis (EMA), which involves conducting impact 

hammer tests at discrete points in the robot’s workspace. The data-driven model is then 

validated through modal impact hammer measurements and compared to the results 

obtained from a well-established analytical model of robot stiffness and natural frequency. 

In addition, the data-driven model is used to predict the robot’s tool tip vibrations in milling 

applications by using the cutting forces as inputs to the second order transfer function 

created from the modal parameters determined from the data-driven model. Next, an 

optimal control methodology is used to suppress robot vibrations in robotic milling. The 

data-driven model of the robot’s modal parameters is used to automatically calculate the 

gains of the optimal controller as a function of changing robot arm configuration. It is 

shown that the optimal control methodology is able to suppress robot vibrations at different 

points in the workspace. The controller performance is then evaluated using robotic milling 

experiments. Finally, a hybrid statistical modelling method that augments the data-driven 

model created from impact hammer tests with Frequency Response Functions (FRFs) 

determined from Operational Modal Analysis (OMA), that is from milling forces and robot 

tool tip displacements generated during the robotic milling operation, is presented. The 

proposed approach is evaluated by quantifying the prediction accuracy and model 

calibration efficiency improvements obtained from the hybrid approach. 
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Figure 1. Summary of approach.   

1.4 Thesis Outline 

 The remainder of this thesis is organized as follows. Chapter 2 presents a literature 

review to justify the research objectives of this thesis. Chapter 3 presents the data-driven 

modelling approach to predict the robot’s modal properties and tool tip vibrations within 

its workspace. Chapter 4 presents a pose-dependent optimal controller that utilizes the data-

driven model to minimize the robot tool tip vibrations during milling. Chapter 5 presents 

the hybrid statistical modelling approach to augment the data-driven model previously 

calibrated by impact hammer test data with operational milling process data. Finally, the 

major conclusions, contributions, and recommendations for future work are given in 

Chapter 6.  
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CHAPTER 2. LITERATURE REVIEW 

This chapter presents an overview of the literature relevant to the research 

objectives of this thesis. The review is divided into three topics: 1) modelling of robot tool 

tip dynamics, 2) minimizing tool tip vibrations in milling, and 3) calibration of robot pose-

dependent modal parameter models. 

2.1 Modelling of Robot Tool Tip Dynamics 

Analytical models have been developed to predict the dynamic properties 

(specifically the Cartesian mass and stiffness properties) of the robot end effector as a 

function of robot arm configuration or tool tip position in the workspace. The end effector 

stiffness of industrial robots have been calculated using models that characterize the robot’s 

joint stiffness values and transform them from the joint space to the Cartesian space [11-

13]. Specifically, the Cartesian stiffness as a function of the pose-dependent Jacobian 𝑱ሺ𝜃ሻ 

and joint stiffness 𝑲𝜽 is expressed as follows 

𝑲 ൌ 𝑱ሺ𝜃ሻି்𝑲𝜽𝑱ሺ𝜃ሻିଵ ሺ1ሻ 

Figure 2 shows an experimental setup used to identify the joint stiffness matrix 𝑲𝜽. To 

identify the stiffness, a known static force decomposed into forces and torques along each 

Cartesian axis is applied to the end effector and the corresponding static displacement is 

measured. The measured forces and displacements are used to determine the Cartesian 

stiffness 𝑲, and Equation (1) is used to calculate 𝑲𝜽. However, these models assume that 

the robot’s joint stiffnesses are constant throughout its workspace and therefore the joint 

stiffness models assume a linear relationship between the torque applied at the joint and 
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the corresponding joint deflection. However, this is not a valid assumption due to the 

presence of gear backlash in the joints and torque limits of the joint motors [14]. Schneider 

et al. [15] accounted for 6-dof deformation at the joints but failed to consider link 

stiffnesses. Hence, joint stiffness models assume infinitely rigid links, which can result in 

over-prediction of the Cartesian stiffness. Mousavi et al. [16] considered all modes of 

deflection (3 translational and 3 rotational) of the joints to derive multiple modes of 

vibration of the robot. However, their model incorrectly assumed that the robot links were 

made of aluminum and the work did not experimentally validate the model. 

 

Figure 2. Experimental setup for joint stiffness identification [13]. 

A common approach to computing the mass matrices of 6-dof industrial robots is 

to identify the rotational moment of inertia about each joint and transform the joint inertias 
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to an effective mass matrix at the end effector position. This approach is expressed as 

follows 

𝑴 ൌ෍𝑱𝒊ሺ𝜃ሻ்𝑰𝒊𝑱𝒊ሺ𝜃ሻ ሺ2ሻ 

where 𝑰𝒊 is the moment of inertia for link 𝑖. However, accurate determination of the moment 

of inertia about each joint requires knowledge of the distribution of mass within each link 

and therefore requires proprietary information of the motor placements and link 

construction. Armstrong et al. [17] and Pan et al. [18] assume that the mass of the robot 

links are uniformly distributed, which is an incorrect assumption since the mass distribution 

around the joint motors are denser than the mass distribution in the links [19]. In addition, 

damping characteristics of robots are difficult to calculate analytically. Adhikari et al. [20] 

consider structural damping by assuming the damping coefficient to be a linear 

combination of the stiffness and mass matrices, referred to as Rayleigh damping. However, 

constant linear coefficients are not a valid assumption in the robot workspace where the 

stiffness and mass change at different rates than the damping coefficient. This is because 

the joints experience backlash, which influences the joint stiffness at a different rate than 

friction-induced damping [21]. In addition, analytical models primarily predict the modal 

parameters corresponding to a finite number of modes as opposed to the entire FRF. 

Therefore, analytical models that predict the robot’s modal parameters are inherently 

limited in their ability to predict the entire FRF of the robot. 

 In the context of generalized dynamical systems, methods to predict the changing 

system dynamic parameters as a function of a scheduling parameter have been explored 

[22]. Specifically, methods have been developed to interpolate between local time invariant 
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state-space matrices using intermediate state-space matrix transformations to represent 

time-varying matrices. For instance, Ferrati et al. [23] demonstrated a method to transform 

local time invariant state space matrices into a common state space form to interpolate 

between significantly differing state space matrices. However, the underlying 

parameterization of state space models is limited to polynomial functions, and the 

sinusoidal terms in the Jacobian shown in Equations (1) and (2) clearly illustrate that the 

robot vibratory cannot be expressed in this fashion. In addition, although methods to predict 

modal vibration parameters of machine tools based on the tool tip position have been 

presented [24, 25], unlike a 6-dof robot, a machine tool generally has fewer degrees of 

freedom and its modal parameters do not vary significantly over its workspace. 

 Therefore, accurate simulation of the time-varying vibration response of 6-dof 

industrial robots is difficult due to the inherent uncertainties in the mass distribution and 

internal link structure and inaccurate assumptions concerning the structural stiffness and 

damping. In addition, flexible end effector tooling (e.g. end mills with large extensions) 

requires further calibration of the analytical models. Hence, a data-driven modelling 

method that accurately describes the robot tool tip modal parameters for robotic milling 

applications within its workspace is necessary.  

2.2 Minimizing Tool Tip Vibrations in Robotic Milling 

Methods to improve robotic machining accuracy by minimizing tool tip vibrations 

can be divided into two classes: off-line and on-line methods. Off-line model-based 

methods utilize milling structural dynamic models to select the machining parameters (e.g. 

feed and speed) and robot poses that minimize robot vibrations. Kaldestad et al. [26] 
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utilized a pose-dependent static robot deflection model to select the appropriate tool feed 

direction and therefore did not consider the influence of robot vibrations. Off-line tool path 

planning using the robot modal parameters involves selecting the correct feed direction to 

minimize chatter instabilities arising from regenerative [6, 27, 28] and mode-coupling [7, 

29] effects, and selecting the appropriate tool path [30] or robot configuration [31] to 

reduce the magnitude of stable tool tip vibrations. In addition, part accuracy improvement 

through deformation compensation, which involves predicting the tool tip deflections 

generated by an initial tool path and reprogramming a compensated tool path has been 

reported [15, 32]. Finally, increasing the feed rate has been shown to alter the orientation 

of the robot’s principal stiffness axes relative to the machining force vector due to small 

changes in the Jacobian matrix arising from elastic deformation of the robot, thereby 

enabling minimization of mode coupling chatter vibrations [33]. However, off-line 

methods for vibration suppression must rely on accurate modelling of the robot modal 

properties, which is difficult to achieve through analytical models, especially for practical 

machining applications.  

Therefore, on-line compensation is necessary to further improve robot tool tip 

accuracy by accounting for calibration inaccuracies and sources of vibration not considered 

in off-line models. On-line feedback controllers require an external sensor to measure the 

instantaneous tool tip position to perform corrective actions based on measured deviations 

from the nominal tool path. Figure 3 shows the improvement of measuring cutting forces 

in robotic milling to control the material removal rate to improve surface accuracy [3]. 

Another example includes wireless force sensor feedback was used to estimate the actual 

depth of cut, and a corrective action was then implemented to improve the average 
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positional error [34]. In addition, force sensor feedback was used with proportional control 

to command the robot feed rate to reduce the average part dimensional error [35]. However, 

these methods did not consider that the milling process is characterized by large periodic 

forces that can excite the robot structure dynamics. To address this deficiency, Sörnmo et 

al. [36] utilized a PID controller to actuate a piezoelectric stage holding the milling head 

to reduce vibrations experienced by the industrial robot, which held the workpiece. Daniali 

et al. [37] simulated vibration control in robotic milling through a neurofuzzy controller. 

In addition, Wang et al. [38] used PD control of an inertial coil actuator to minimize the 

robot vibrations in milling, as shown in Figure 3.  

 

Figure 3. Workpiece surface before and after deformation compensation using material 

removal rate control [3]. 
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Wang et al. discussed the fundamental limitations of the aforementioned on-line 

compensation methods. The previously described work on active vibration suppression in 

robotic machining make use of empirically tuned controllers, which are only valid for a 

specific robot arm configuration and its corresponding modal vibration response. 

Alternatively, optimal controllers do not require manual empirical tuning of the controller 

gains because their control laws are determined by minimization of a cost function, which 

is derived from a model of the dynamic system [39]. Optimal controllers designed to reduce 

vibrations due to chatter and forced vibrations have been demonstrated in CNC milling. 

For instance, a model-based adaptive controller was used to control the feed rate to reduce 

regenerative chatter vibrations in CNC milling [40]. In addition, a Linear Quadratic 

Regulator (LQR) was demonstrated to control the force to minimize nonlinear regenerative 

chatter in CNC milling [41]. A fuzzy controller was used to adjust the spindle speed for 

vibration suppression in CNC milling operations [9]. In addition, an optimal controller was 

used to select gain criteria to satisfy a stability condition for disturbance rejection in CNC 

milling [42]. An adaptive controller was demonstrated for piezoelectric active vibration 

control in both stable and unstable milling processes [43]. 

However, to implement optimal control in robotic milling, a controller that accounts 

for pose-dependent tool tip dynamics of the robot is required, which is not considered in 

the foregoing studies. Therefore, it is clear from the review of the relevant literature that 

there is a need for an on-line feedback control methodology that accounts for the pose-

dependence of the modal vibration parameters of the milling system (both CNC and 

industrial robot), which has not been previously investigated. Because the vibration 

characteristics of the robot tool tip vary with robot pose, the feedback controller gains used 
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for disturbance rejection must account for changes in the robot’s vibration characteristics 

with arm configuration as it moves along a tool path. However, empirically tuned feedback 

controllers require manual tuning of the controller gains throughout the robot workspace. 

Therefore, to efficiently implement vibration suppression in robotic milling, a pose-

dependent optimal controller that uses a system model of the robot’s tool tip dynamics to 

automatically determine the controller gains as the arm configuration changes along the 

tool path is required.  

2.3 Calibration of Robot FRF Models 

 Calibration of pose-dependent structural dynamic models directly from FRFs is 

usually done through offline Experimental Modal Analysis (EMA). Specifically, EMA 

utilizes impact hammer tests to determine the FRF since the method is capable of directly 

obtaining the mode shape and scaling [44]. Generally, EMA is conducted at various points 

in the workspace to calculate the robot joint stiffness, damping and mass parameters, which 

are then used in the joint-to-Cartesian space transformation to obtain the Cartesian FRF at 

the other points in the workspace. For instance, Chen et al. [45] used impact hammer tests 

with 2-level (0̊ and 90 ̊) combinations of the six joints to calibrate their FRF model as shown 

in Figure 4. 
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Figure 4. Impact hammer experiments conducted in a 6-dof robot at 3 different locations 

along the tool tip to calibrate a pose-dependent FRF model [45]. 

In addition, EMA was conducted to identify the joint and link parameters (modal 

mass, stiffness, and damping) in a flexible joint multi-body dynamic model of the robot’s 

modal parameters [46]. EMA has also been used to establish pose-dependent modal 

parameter models of machine tools [24, 25]. However, FRF measurements for off-line 

model calibration can only be conducted at discrete robot configurations and therefore 

require significant off-line testing effort to obtain adequate spatial resolution and coverage. 

Hence, a method to calibrate models using operational (e.g., machining) data can be useful 

for maximizing both testing efficiency and spatial resolution. 

In the context of milling applications, Operational Modal Analysis (OMA) involves 

calculation of the milling structure’s modal FRF (and modal parameters) using milling 

force and structural vibration data gathered from the milling operation. OMA has been 

previously shown to be capable of identifying the structural FRF of CNC machine tools. 

For instance, Suzuki et al. [47] used OMA on data derived from regenerative chatter cutting 
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tests to calculate the modal parameters of a CNC machine tool structure. In addition, 

Poddar et al. [48] and Li et al. [49] implemented random cutting force excitation of CNC 

milling machines through a novel workpiece design and by programming the feed drives 

to induce random excitation, respectively. In addition, OMA has been demonstrated for 

CNC milling [50] and robotic milling applications [51, 52] by utilizing the transmissibility 

function–based method, though only the mode shape was identified. Another established 

method to calculate the modal parameters involves the use of Enhanced Frequency Domain 

Decomposition, where the natural frequency is determined from the time domain zero 

crossing and the mode shape is determined through empirical fitting [53]. In addition, 

alternative OMA techniques applicable under stable milling conditions without random 

excitation have been demonstrated to be capable of only identifying the natural frequency 

of the structure [54, 55]. This is insufficient for optimal control and for predicting stable 

vibrations because identification of the natural frequency does not specify the vibration 

amplitude. However, table milling forces consist of both periodic content and background 

random noise [56, 57]. In addition, application of OMA in fields outside of manufacturing, 

such as in vibrating civil structures [58], in-flight helicopters [59], and wind turbines [60], 

have shown that a force signal that has both periodic and random noise content can generate 

broadband excitation of the structure and thereby enable estimation of the FRFs.  

However, use of only OMA to derive the robot FRFs over its entire workspace is 

limited by the lack of knowledge of the number, length, and spacing of tool paths required 

to adequately sample the robot’s vibration modes corresponding to different arm 

configurations over its workspace. Even if a suitable method for identification of the 

optimal tool paths were available, execution of OMA would be constrained by cumbersome 
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part fixturing requirements, especially if the workspace is large. Specifically, part fixturing 

would need to be modified to collect milling force and robot tool tip vibration data for the 

various tool paths required thereby making the data acquisition process time-consuming 

and expensive. Hence, a hybrid modeling approach that incorporates FRF measurements 

from both EMA and OMA can be beneficial for achieving the required modal parameter 

prediction accuracy over the robot’s workspace at an acceptable cost. 

2.4 Summary 

It can be seen from the literature review that prior work on modelling of pose-

dependent robot dynamics and active vibration suppression in robotic milling suffer from 

at least one of the following drawbacks: 1) use of inaccurate assumptions, 2) failure to 

consider pose-dependent modal parameters in feedback controllers, and 3) limitations 

associated with only using either EMA or OMA methods for efficient model calibration. 

Hence, the existing robot vibration modelling techniques are insufficient for use in off-line 

and on-line compensation, which in turn limits the practical use of industrial robots in 

machining applications, especially in the aerospace industry. 

The remainder of this thesis describes the data-driven model used to predict the 

robot’s pose-dependent tool tip vibrations in milling, the development of a pose-dependent 

optimal controller, and the combination of EMA and OMA to obtain pose-dependent FRF 

models valid over a large workspace. 
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CHAPTER 3. DATA-DRIVEN MODELING OF THE MODAL 

PROPERTIES OF A 6-DOF INDUSTRIAL ROBOT  

3.1 Introduction 

Prediction of the pose-dependent modal parameters of industrial robots are 

important for manufacturers to select the appropriate process parameters in robotic milling. 

However, existing analytical models are insufficient for accurately predicting the pose-

dependent modal parameters of industrial robots. Thus, the objective of this chapter is to 

study a statistical modeling approach known as Gaussian Process Regression (GPR) to 

model and predict the structural dynamic properties (frequency, stiffness, and damping 

coefficient). First, the modal analysis experiments for determining the robot’s dominant 

modal parameters via EMA at a finite number of pre-defined points in its workspace are 

described. The modal responses of the robot at the pre-defined points are then used to build 

the GPR model. The resulting GPR model is then evaluated using cross validation and 

external validation methods. An established analytical model of the robot tool tip dynamics 

using Jacobian based methods is compared with the GPR model and experimental data. In 

addition, the GPR model is used to predict the natural frequency, stiffness, and damping 

coefficient at two specific robot Cartesian positions and to utilize them in predicting the 

tool tip vibrations produced during robotic milling at the two positions. 

3.2 Modal Analysis Experiments 

 This section describes the determination of the modal parameters (modal 

frequency, modal stiffness, and modal damping coefficient) from EMA tests performed on 
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a 6-dof industrial robot. This is followed by a discussion of how the modal parameters 

change within the robot workspace. 

3.2.1 Experimental Setup 

EMA tests were performed on a 6-dof industrial robot (KUKA KR500-3) to 

determine the modal parameters corresponding to the most dominant vibration mode of the 

robot tool tip in the excitation direction at different points in the robot’s workspace. Note 

that while the most dominant vibration mode is considered in this work, the robot structure 

has multiple vibration modes that will influence the frequency response function (FRF) of 

the robot and thereby introduce additional sources of compliance. In this chapter, the 

contribution of such additional modes is assumed to be negligible. The Cartesian positions 

of the robot tool tip where the EMA tests were conducted were confined to a 1.22 x 1.54 

m2 area of the robot cell occupied by an optical breadboard, mounted to the floor of the 

robot cell, on which the workpiece was attached at a fixed height. Figure 5 shows the 

experimental setup for the experiments. The vibration response of the robot was measured 

with a single-axis accelerometer (PCB 352A21) mounted at the tool tip on the tool flank 6 

mm from the bottom face. To excite the robot structure, an impact hammer (PCB 086D05) 

was used to apply an impulse excitation collinear with the accelerometer measurement axis 

opposite of the impact point.  Impact hammer tests were performed in the Cartesian X, Y, 

and Z directions of the robot’s base frame for each test point in the workspace. 
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Figure 5. Close-up view of robot modal test setup. 

To calculate the FRF from the impact hammer and accelerometer time series 

measurements, consider the power spectral density of the robot tool tip vibration 𝑇ሺ𝑓ሻ for 

an impulse force input to be 

𝑇ሺ𝑓ሻ ൌ 𝑋ሺ𝑓ሻ𝐻ሺ𝑓ሻ ൅ 𝑁ሺ𝑓ሻ ሺ3ሻ 

where 𝑋ሺ𝑓ሻ, 𝐻ሺ𝑓ሻ, and 𝑁ሺ𝑓ሻ are the power spectral densities of the input impulse force, 

robot structure, and noise of the vibration sensor, respectively. Multiplying Equation (3) 

by the complex conjugate of Xሺ𝑓ሻ and transforming each term into the auto and cross 

spectral densities using Welch’s Method [44] results in  

𝐺௫௧ሺ𝑓ሻ ൌ 𝐺௫௫ሺ𝑓ሻ𝐻ሺ𝑓ሻ ൅ 𝐺௫௪ሺ𝑓ሻ ሺ4ሻ 

where 𝐺௫௧ሺ𝑓ሻ, 𝐺௫௫ሺ𝑓ሻ, and 𝐺௫௡ሺ𝑓ሻ are the force-vibration cross spectral density, the force 

auto spectral density, and the force-sensor noise cross spectral density, respectively. Note 

that the cross spectral density 𝐺௫௡ሺ𝑓ሻ approaches zero after averaging because the vibration 
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measurement sensor noise and input signal are not correlated. Hence, the following 

equation can be used to calculate the robot FRF  

𝐻ሺ𝑓ሻ ൌ
𝐺௫௧ሺ𝑓ሻ
𝐺௫௫ሺ𝑓ሻ

ሺ5ሻ 

Thus, the FRF of the robot structure can be determined from Equation (5) after 

calculating the auto spectral density of the input force signal and the cross-spectral density 

of the force and vibration signals. Figure 6 shows a representative FRF in the Cartesian Y 

direction of the robot tool tip obtained from impact hammer tests for a particular robot 

configuration in the workspace. A second order transfer function was fit to the most 

dominant mode of the FRF to extract the corresponding modal parameters. Note that while 

the robot consists of several vibration modes for each pose, the most dominant mode in the 

excitation direction was extracted due to its largest contribution to the tool tip vibration 

during robotic milling [5]. It is also assumed that the contribution of vibration modes 

generated in directions orthogonal to the excitation direction (due to cross-coupling) have 

negligible contribution to the tool tip vibration. Specifically, it was found that the largest 

compliances in directions orthogonal to the excitation direction were at most 6% of the 

dominant mode in the excitation direction, and can therefore be assumed to have a 

negligible effect on the vibration in the excitation direction [6]. Thus, the parameters of the 

second order transfer function that best fit the FRF’s most dominant mode were used to 

calculate the modal stiffness, damping coefficient, and modal natural frequency for that 

robot position in the workspace.  
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Figure 6. Measured robot end effector FRF (solid line) and its corresponding second 

order transfer function fit (dashed). The excitation and response were measured in the 

Cartesian X direction at the Cartesian XYZ (mm), Rx, Ry, and Rz (degrees) position of 

[2100 mm, -300 mm, 325 mm, 0°, 0°, 0°]. 

The procedure to extract the stiffness, damping coefficient, and natural frequency 

was repeated at multiple positions in the robot’s workspace where the robot could 

physically reach the available workpiece mounting area. The tool axis was constrained to 

be perpendicular to the X-Y plane of the robot’s base frame in all experiments. Modal 

impact hammer tests were replicated three times for a total of 60 unique configurations (12 

XYZ points and 5 rotational orientations about the tool tip axis 𝑅௭ at each point). The 

corresponding ranges of the robot joint angles are given in Table 1 and the modal 

parameters for each test replication are given in the Appendix (see Table A1). 

 

 



 22

Table 1. Ranges of tested locations. Cartesian units are in the robot base frame. 

 Cartesian Joint 

 𝑿 
[mm] 

𝒀 
[mm] 

𝑹𝒛 
[deg] 

𝜽𝟏 
[deg] 

𝜽𝟐 
[deg] 

𝜽𝟑 
[deg] 

𝜽𝟒 
[deg] 

𝜽𝟓 
[deg] 

𝜽𝟔 
[deg] 

Min 2100.0 -300.0 0.0 -27.7 -25.5 8.6 68.6 54.6 -74.5 
Max 2700.0 600.0 180.0 19.9 6.6 114.5 287.1 110.0 74.8 

3.2.2 Results 

The results of the EMA tests in the X, Y, and Z directions are shown in Figure 7. 

Note that the average standard deviation of the natural frequency, stiffness, and damping 

coefficient measurements were 0.05 Hz, 0.04 MN/m, and 0.15 KNs/m. It is seen that the 

dominant natural frequency of the robot in the X direction increases as the arm moves 

further away from the robot base, with a drastic increase occurring when the arm is fully 

extended. The natural frequencies in the Y and Z directions are found to decrease as the 

arm is extended, although the change in natural frequency is not as dramatic as in the X 

direction. As the robot tool tip moves further away from the base, its stiffness in the X 

direction increases while the stiffness in the Y and Z directions decrease due to the 

cantilever beam effect produced when the arm is extended. The damping coefficient trends 

are more difficult to generalize, but the results show that damping tends to decrease in all 

directions as the robot moves further away from its base. 

 



 23

 

Figure 7. Results of the impact hammer tests. The X, Y, and Z notation refers to the 

modal parameter in those directions. The base of the arrow denotes the XYZ position 

where the tool tip was located. The arrows point in the direction normal to the robot 

flange and denote the rotation about the tool axis at the position. The coordinates are 

defined in the robot base frame. 
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3.3 Gaussian Process Regression Model 

The measurements shown in Figure 7 were used to create the GPR model of the 

robot’s dominant natural frequency, damping coefficient, and stiffness as a function of the 

end effector position. A brief overview of the model is provided, followed by validation 

results. 

3.3.1 Model Description 

The natural frequency, stiffness, and damping coefficient of the dominant mode of 

robot vibration in each Cartesian direction for a given pose 𝑞 can be expressed as a 

Gaussian Process with the following prior [61] 

𝑐ሺ𝑞ሻ ~ 𝐺𝑃ሺ𝜇ሺ𝑞ሻ,𝑪ሺ𝑞, 𝑞ᇱሻሻ ሺ6ሻ 

where 𝜇ሺ𝑞ሻ is a basis function and 𝑪ሺ𝑞, 𝑞ᇱሻ is the covariance matrix [61]. Note that in this 

work, 𝜇ሺ𝑞ሻ is a constant basis function and 𝑪ሺ𝑞, 𝑞ᇱሻ consists of the squared exponential 

kernel function of the form 

𝑘൫𝑞௜ , 𝑞௝൯ ൌ  𝜎௙
ଶexp ቆെ

ሺ𝑞௜ െ 𝑞௝ሻ்ሺ𝑞௜ െ 𝑞௝ሻ
2𝜎௟

ቇ ሺ7ሻ 

where 𝜎௟ and 𝜎௙ are the characteristic length scale and signal standard deviation, 

respectively. In addition, treating an observation point 𝑦 as a Gaussian Process results in 

the following prior for a prediction point 𝑞∗ 

ቂ
𝑦
𝑐∗
ቃ~𝑁 ൬൤

𝜇ሺ𝑞ሻ
𝜇ሺ𝑞∗ሻ

൨ , ൤
𝑪ሺ𝑞, 𝑞ሻ ൅ 𝜎ଶ𝐼 𝑪ሺ𝑞, 𝑞∗ሻ
𝑪ሺ𝑞∗, 𝑞ሻ 𝑪ሺ𝑞∗, 𝑞∗ሻ

൨൰ ሺ8ሻ 
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where 𝜎ଶ is the model variance. Thus, because a Gaussian Process prior is chosen, the 

predictive posterior distribution is traceable through Bayesian inference and its mean 𝑐∗̅ 

and covariance 𝜂∗ are expressed as 

 

𝑐∗̅ ൌ 𝜇ሺ𝑞∗ሻ ൅ 𝑪ሺ𝑞∗, 𝑞ሻሾ𝑪ሺ𝑞, 𝑞ሻ ൅ 𝜎ଶ𝑰ሿିଵ൫𝑦 െ 𝜇ሺ𝑞ሻ൯ ሺ9ሻ 

𝜂∗  ൌ 𝑪ሺ𝑞∗, 𝑞∗ሻ െ 𝑪ሺ𝑞∗, 𝑞ሻሾ𝑪ሺ𝑞, 𝑞ሻ ൅ 𝜎ଶ𝑰ሿିଵ𝑪ሺ𝑞, 𝑞∗ሻ ሺ10ሻ 

3.3.2 Validation 

After fitting the GPR model using the modal impact hammer test data, two types of 

model validations, namely cross validation and external validation, were conducted. Cross 

validation consists of comparing the model against all but one of the data points while 

external validation consists of comparing the model predictions with a test dataset not 

utilized in building the model. 

A 5-fold cross validation, where the entire dataset was partitioned into 5 equal sub-

sets and a single sample sub-set is used as the test dataset while the remaining are used for 

model fitting, was performed for each of the modal parameters. Figure 8 shows the residual 

plots obtained from the cross validation process. It can be seen that the residuals are 

uncorrelated, indicating that the model captures the main trends in the data well. The 

correlation coefficients and the root mean squared errors (RMSE) of the cross validation 

exercise are listed in Table 2. Note that damping coefficient was found to have the lowest 

correlation coefficient due to its low correlation with position compared to natural 

frequency and stiffness. In addition, the residual plots show that the error appropriately 

scales with the range of values. Hence, since the X Direction exhibits the largest ranges for 

natural frequency, stiffness, and damping coefficient, the RMSE values are shown to be 

the largest out of the three Cartesian directions. However, the cross validation is shown to 
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be sufficient for predicting the modal parameters as a function of the robot position. In 

addition, a 2nd order Multivariate Linear Regression (MLR) model was calibrated with the 

robot arm configuration to predict the modal parameters for comparison with the GPR 

model. The correlation coefficient and RMSE values of the MLR model are shown in Table 

2. The MLR model was found to have consistently lower correlation coefficients and 

higher RMSE values than the GPR model. Hence, the GPR model is shown to be a more 

suitable model to predict the modal parameters without the need to specify model order. 

 

Figure 8. Cross validation residual plots. 
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Table 2. Correlation coefficient and Root Mean Square Error (RMSE) values from cross 

validation. 

  X Y Z 
 

 
Natural 

Freq. [Hz] 
Stiffness 
[MN/m] 

Damping 
[KNs/m] 

Natural 
Freq. [Hz] 

Stiffness 
[MN/m] 

Damping 
[KNs/m] 

Natural 
Freq. [Hz] 

Stiffness 
[MN/m] 

Damping 
[KNs/m] 

G
PR

 

R
2
 0.96 0.97 0.90 0.92 0.92 0.90 0.98 0.92 0.88 

RMSE 3.31 0.15 0.81 0.16 0.06 0.42 0.09 0.06 0.29 

M
L

R
 

R
2
 0.47 0.79 0.25 0.59 0.80 0.87 0.92 0.80 0.66 

RMSE 11.91 0.44 2.34 0.38 0.10 0.48 0.19 0.11 0.49 

For external validation, the GPR model was used to predict the modal parameters 

extracted from 30 points (6 XYZ points with 5 rotational orientations about the cutting tool 

axis at each point) in the workspace not considered during model building. The external 

validation evaluates the GPR model’s capability of predicting the response at different 

XYZ points. The results of the validation experiments are shown in Figure 9 and the raw 

measurements are shown in Table A. 2. It is seen that larger differences between the model 

predictions and measured values are obtained when the robot tool tip is further from its 

base while the smallest differences are observed when the robot tool tip is closest to its 

base. This is because the measurements at the points used to build the GPR model (Figure 

7) follow smooth, linear trends. Therefore, the linear basis functions utilized in the GPR 

model are less accurate at these positions. Because the GPR model is a probabilistic model, 

variance estimates associated with potential predictions can be determined. Hence, using 

the GPR model, points of high uncertainty can be identified, and additional measurement 

points can be performed at such points. The additional measurements can then be used to 

augment the GPR model, which then would reduce the uncertainty prediction at points of 

high variance. 
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Figure 9. Relative errors between the measured and predicted values of the modal 

parameters in external validation tests. 

3.4 Comparison of Analytical Model with Experiments  

The measured modal parameter values were compared with those derived from a 

Jacobian-based analytical model to determine possible locations in the workspace where 

the analytical model is not sufficiently accurate. Specifically, the Cartesian stiffness and 

mass matrices were calculated analytically from a joint stiffness and inertia model, 
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respectively, and the undamped natural frequency was calculated by solving the eigenvalue 

problem resulting from the system of second order differential equations of motion 

obtained using the Cartesian stiffness and mass matrices of the robot arm. 

3.4.1 Analytical Cartesian Stiffness and Inertia Models  

The Cartesian stiffness was obtained from a joint stiffness model, which assumes 

negligible compliance of the robot links compared to the joints. The methodology used to 

obtain the joint stiffness can be found in [62]. As specified in [62], Cartesian stiffness 

matrix 𝑲ሺ𝑞ሻ of the robot can be calculated as 

𝑲ሺ𝑞ሻ ൌ 𝑱ሺ𝜃ሻି்ሺ𝑲𝜽 െ 𝑲𝒄ሻ𝑱ሺ𝜃ሻିଵ ሺ11ሻ 

where 𝑱ሺ𝜃ሻ is the robot Jacobian matrix, 𝑲𝜽 is the diagonal matrix of joint stiffnesses, and 

𝑲𝒄 is the complementary stiffness matrix. Note that [62] showed that 𝑲𝒄 is significant in 

regions near a singularity. Since the robot poses utilized in this work were not close to 

singularities, the effect of 𝑲𝒄 is assumed to be minimal. Hence, 𝑲ሺ𝑞ሻ is position dependent 

while 𝑲𝜽 is assumed to be independent of position. The joint stiffness values 𝑲𝜽 were 

established through static compliance experiments. Specifically, for an applied wrench 𝒗 

at a given robot configuration, the Cartesian deflections can be expressed as 

∆ൌ 𝑱ሺ𝜃ሻ𝑲𝜽
ିଵ𝑱ሺ𝜃ሻ்𝒗 ሺ12ሻ 

By measuring ∆ for known 𝑱ሺ𝜃ሻ and 𝒗, 𝑲𝜽 can be calculated for a robot 

configuration [62]. To apply a load, a six degree of freedom wrench using gravitational 

loading was applied to the robot end effector to induce a screw displacement as shown 

schematically in Figure 10. 
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Figure 10. Schematic of the static compliance experiments. 

Note that, aside from the mass of the end effector, no preload was applied in these 

experiments. The wrenches were measured using a flange mounted six-axis force/torque 

sensor (ATI Omega 160). The screw displacements were measured using a FARO Ion laser 

tracker, which measured three individual targets before and after the external wrench was 

applied. Note that the joint brakes were disengaged, and the robot controller was active 

throughout the compliance experiments. To account for measurement variations, ten 

experiments were performed at the locations specified in Table 3. The robot configurations 

were chosen such that significant torques could be applied to all of the robot joints. 
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Table 3. Test robot joint angles for compliance experiments (degrees) 

Test No. 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 𝜽𝟓 𝜽𝟔 

1 19.67 െ52.14 117.9 11.86 െ66.08 െ4.84 

2 26.35 െ32.54 123.49 െ8.99 െ90.81 െ0.15 

3 58.28 െ10.5 105.98 42.39 െ115.04 െ2.57 

4 44.71 െ70.81 58.16 138.51 െ41.63 െ125.84 

5 െ23.13 െ85.41 80.84 70.31 83.63 െ71.78 

6 2.39 െ34.82 69.97 115.13 72.1 176.98 

7 25.21 െ55.7 130.03 169.88 72.17 െ179.78 

8 42.99 െ40.39 97.42 െ177.38 72.1 െ179.8 

9 42.99 െ57.91 110.04 െ155.79 51.1 െ179.83 

10 28.12 െ55.4 84.06 െ167.6 27.07 െ179.85 

Note that when calculating 𝑲𝜽 for multiple robot configurations, Equation (12) is 

overdetermined. Thus, a nonlinear least squares approach was used to minimize the 

Euclidean norm of the difference between the measured and predicted joint stiffness values. 

Singular regions, where some joints may experience close to zero torque, were avoided. 

The resulting joint stiffness values are given in Table 4. Note that the analytical stiffness 

model in this thesis assumes that nonlinearities in the joints such as hysteresis and backlash 

are negligible. For instance, prior work has shown that the nonlinearity owing to hysteresis 

results in a max torsional angle deflection error of 0.005° for 𝜃ଵ [63]. 

Table 4. Measured joint stiffness values (x 106 Nm/rad) 

𝑲𝜽𝟏 𝑲𝜽𝟐 𝑲𝜽𝟑 𝑲𝜽𝟒 𝑲𝜽𝟓 𝑲𝜽𝟔 

3.93 3.46 2.77 1.57 0.24 0.17 

Note that the values in Table 4 are consistent with the joint stiffness trends reported in [62]. 

Specifically, 𝐾ఏభ is the joint with the lowest compliance while 𝐾ఏర, 𝐾ఏఱ, and 𝐾ఏల are the 

most compliant joints. To determine the system natural frequency, the Cartesian mass 
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matrix of the robot must be determined. The effective Cartesian mass matrix 𝑴ሺ𝑞ሻ is 

related to the robot’s rotational inertia matrix 𝑰𝒊 as follows 

𝑴ሺ𝑞ሻ  ൌ෍𝑱𝒊ሺ𝜃ሻ்𝑰𝒊𝑱𝒊ሺ𝜃ሻ ሺ13ሻ 

where  

𝑰𝒊  ൌ න቎
ሺ𝑦 െ 𝑦௖ሻଶ ൅ ሺ𝑧 െ 𝑧௖ሻଶ െሺ𝑥 െ 𝑥௖ሻሺ𝑦 െ 𝑦௖ሻ െሺ𝑧 െ 𝑧௖ሻሺ𝑥 െ 𝑥௖ሻ
െሺ𝑥 െ 𝑥௖ሻሺ𝑦 െ 𝑦௖ሻ ሺ𝑧 െ 𝑧௖ሻଶ ൅ ሺ𝑥 െ 𝑥௖ሻଶ െሺ𝑦 െ 𝑦௖ሻሺ𝑧 െ 𝑧௖ሻ
െሺ𝑧 െ 𝑧௖ሻሺ𝑥 െ 𝑥௖ሻ െሺ𝑦 െ 𝑦௖ሻሺ𝑧 െ 𝑧௖ሻ ሺ𝑥 െ 𝑥௖ሻଶ ൅ ሺ𝑦 െ 𝑦௖ሻଶ

቏ 𝜌𝑑𝑉 ሺ14ሻ 

𝑱𝒊ሺ𝜃ሻ is the Jacobian of link 𝑖, 𝜌 is the mass density, 𝑥௖, 𝑦௖, and 𝑧௖ are the coordinates of 

the centroid of link 𝑖, and 𝑑𝑉 is the infinitesimal volume element. Note that the internal 

density of the arm cannot be determined without proprietary knowledge of the robot 

construction. Because of the lack of knowledge of the internal construction of the links (i.e. 

the possibility of the links being hollow or housing a pulley system), the links were 

assumed to be solid and their mass uniformly distributed. The free vibration response of 

the robot system after neglecting damping can be determined from the solution of the 

following system of equations 

𝑴ሺ𝑞ሻ∆ሷ ൅ 𝑲ሺ𝑞ሻ∆ൌ 0 ሺ15ሻ 

 whose general solution is of the form  

∆ሺ𝑡ሻ ൌ 𝑼𝑒௜ఒ௧ ሺ16ሻ 

The undamped natural frequencies of the system are obtained from the square root 

of 𝜆 [64]. While the analytical derivation considers rotational modes about the end effector, 
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in this work the rotational modes are assumed to have minimal effect on the robot tool tip 

vibration and therefore only the translational modes are considered. 

3.4.2 Comparison with Measured Modal Parameter Values 

Figure 11 shows the comparison of the analytically derived modal parameter values 

(natural frequency, stiffness) with the measured values derived from the experiments 

reported earlier. Note that since the GPR model interpolates between the experimental 

points, comparison of the analytical model with the GPR model at the measured points is 

redundant. As the arm extends further away from the base, the differences in the 

analytically predicted and measured stiffness values grow. The analytical approach tends 

to overestimate the stiffness primarily due to the assumption of infinitely stiff links. While 

the assumption may hold under static loading conditions, the flexibility of each link must 

be considered for dynamic loading situations. However, even when flexibility of the links 

is considered, the analytical model is still expected to overestimate the stiffness because 

the links are usually stiffer than the joints. Generally, the analytical model is found to 

underestimate the dominant natural frequency of the robot. This is because the analytical 

model overestimates the mass in addition to overestimating the stiffness due to modelling 

errors associated with determination of the link inertias. However, note that even though 

the analytical model exhibits modelling errors, it can still be used to identify regions of the 

robot’s workspace, especially its joint configuration space, that need to be sampled to 

develop the data-driven model. For instance, the analytical model can be used to identify 

symmetric behavior in the modal parameters and locations of high variance. 
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Figure 11. Relative errors in the natural frequency and stiffness between the analytical 

model and impact hammer measurements. 

3.5 Prediction of Tool Tip Vibrations 

This section describes the use of the GPR model to predict the natural frequency, 

stiffness, and damping coefficient at two specific robot Cartesian positions and to utilize 

them in predicting the tool tip vibrations produced during robotic milling at the two 
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positions. This section describes the robotic milling experimental setup and methodology 

for calculating the average peak-to-valley tool tip vibrations followed by results and 

discussion. 

3.5.1 Experimental Setup 

The two robot positions shown in Figure 12 were selected for evaluating the 

performance of the GPR model when used to predict the robot tool tip vibrations produced 

during milling. The two positions were chosen to highlight the differences in the vibration 

responses of the robot with changing robot tool tip position. Note that the modal stiffness 

in the X direction of Position 2 is higher than the modal stiffness in the Y direction of 

Position 1. Thus, Position 2 would normally be preferred to minimize the surface errors in 

the wall direction (X) of the machined slot due to robot deflection. However, because the 

dominant resonant frequency of the robot tool tip suddenly transitions to approximately 62 

Hz in the X direction around Position 2, an excitation force close to the resonant frequency 

can in fact generate larger vibrations and therefore larger surface error in the slot wall 

direction. Thus, the cutting conditions were chosen to highlight the capability of the GPR 

model, which can accurately capture the sudden transition in the robot’s natural frequency. 
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Figure 12. Robot poses and corresponding (top) joint angles (degrees) and (bottom) 

Cartesian XYZ (mm), Rx, Ry, and Rz (degrees) used in the milling experiments. 

Slot end milling cuts were made to generate the slot wall surface and floor surface 

features. Note that the wall features for Position 1 and Position 2 are in the Y and X 

directions, respectively. A two flute, 25.4 mm diameter, 30° helix angle, cobalt tool was 

used to machine Aluminum 7075-T7351 without coolant. The machining process 

parameters were selected to induce significant deflections at the robot tool tip. Specifically, 

the axial depth of cut was 3 mm while the feed per tooth was 0.058 mm and the spindle 

speed was 1750 RPM, which corresponds to a spindle rotation frequency of 29.16 Hz and 
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a tooth passing frequency of 58.3 Hz. The machining forces were measured using a three-

component piezoelectric force transducer (Kistler 9257B) fixed to the optical breadboard 

while the robot instantaneous positions during milling were measured by the FARO Ion 

laser tracker from which the instantaneous robot tool tip deflections were determined. The 

cutting tests were replicated three times under the same cutting condition. 

3.5.2 Prediction of Robot Tool Tip Vibrations during Milling  

To predict the robot tool tip vibrations during milling, the generalized system model 

shown in Figure 13 was utilized. In general, the robotic milling system consists of the 

dynamic models of the cutting tool, the robot, and their corresponding fixturing systems. 

In this work, the flexibility of the robot arm-tool assembly was considered to dominate the 

system vibrations.  

 

Figure 13. Simplified structural dynamics model of the robotic milling system. 

Therefore, the system equations of motion are given by 

𝑴ሺ𝑞ሻ𝜹ሷ ൅ 𝑪ሺ𝑞ሻ𝜹ሶ ൅ 𝑲ሺ𝑞ሻ𝜹 ൌ 𝑭 ሺ17ሻ 
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where 𝑴ሺ𝑞ሻ, 𝑪ሺ𝑞ሻ, 𝑲ሺ𝑞ሻ, 𝑭, and 𝛿 are the system mass matrix, damping coefficient matrix, 

stiffness matrix, milling force vector, and tool tip displacement vector, respectively. 𝑪ሺ𝑞ሻ 

and 𝑲ሺ𝑞ሻ were obtained from the GPR model while 𝑴ሺ𝑞ሻ was computed from the natural 

frequencies and stiffnesses derived from the GPR model [64]. Note that the theoretical 

milling forces are periodic and are characterized by a dominant tooth passing frequency 

[65]. However, Figure 14 shows the frequency decomposition of the measured milling 

forces from the experiments, which shows the milling force has other frequencies in 

addition to the tooth passing frequency and its harmonics. The milling forces will induce 

robot tool tip vibrations that modify the instantaneous chip thickness, and therefore the 

cutting forces [5]. For instance, Figure 14a) and c) show 8 Hz and 10.5 Hz peaks, 

respectively, in their force frequency decompositions even though the spindle and tooth 

passing frequencies are 29.16 Hz and 58.3 Hz.  Thus, the frequency decomposition shown 

in Figure 14 has both tooth passing harmonics and the robot’s vibratory modes. Therefore, 

to predict the robot tool tip vibrations, the measured forces were used in Equation (17), 

which was solved using the convolution theorem [66].  
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Figure 14. Frequency decomposition of the measured milling forces. 

Figure 15 shows the measured FRFs and the GPR predictions for the two robot 

positions. Note that the measured FRFs shown in the figure are representative since three 

measurements were made at each robot position. The robot’s dominant mode in Position 1 

is more compliant in the Y direction (Figure 15a) compared to the X direction at Position 

2 (Figure 15b). In addition, Figure 15b shows that while the 9 Hz mode does indeed become 

less compliant when transitioning to Position 2, the 62 Hz mode becomes larger and 

therefore is the most dominant mode, which is captured by the GPR model. In addition, the 

Z direction in Position 1 (Figure 15c) is less compliant than the Z direction in Position 2 

(Figure 15d) because the robot behaves more like a cantilever beam in the Z direction at 
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Position 2. Note that the compliances and dominant modes in the Y and Z directions at 

Position 1 are similar, which can contribute to the mode-coupling effect [33]. Therefore, 

another potential application of the GPR model is prediction of chatter conditions in robotic 

milling. 

 

Figure 15. Measured and predicted FRFs for the two robot positions. 

3.5.3 Results 

Representative instantaneous robot tool tip deflections determined from the laser 

tracker data are shown in Figure 16 while Figure 17 shows the comparison of the measured 

and predicted average peak-to-valley vibration amplitudes derived from the measured force 

amplitudes taken every spindle revolution (34 ms). The milling forces produce a mean 
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deflection and associated vibrations of the robot tool tip, which is evident in Figure 16.  

Note that the mean deflections in the slot wall direction (Y) at Position 1 (Figure 16a) and 

the slot wall direction (X) at Position 2 (Figure 16b) are 0.14 mm and 0.083 mm, 

respectively. Therefore, the mean deflection in the slot wall direction at Position 1 is greater 

than at Position 2. However, the corresponding average peak-to-valley vibrations (Figure 

17) at Position 1 and Position 2 are 0.083 mm and 0.506 mm, respectively. Therefore, 

Position 2 exhibits greater vibration amplitudes and will therefore contribute to a larger 

surface error in the slot wall direction. Figure 17 shows that the GPR model’s average peak-

to-valley vibrations at Position 1 and Position 2 are well correlated with the laser tracker 

measurements. The mean deflections in the slot floor surface (Z) direction at Position 1 

and Position 2 are 0.075 mm and 0.182 mm, respectively, while the average peak-to-valley 

vibrations in the Z direction are 0.064 mm and 0.125 mm, respectively. As shown in Figure 

15c and Figure 15d, the robot arm extension does not significantly change the dominant 

natural frequency although the compliance increases. Therefore, both the mean deflections 

and the peak-to-valley vibrations generated by milling increase from Position 1 to Position 

2.  
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Figure 16. Representative tool tip deflections during robotic milling experiments. The 

blue dashed line indicates the mean values. 

The GPR model is shown to follow similar trends as the measured average peak-

to-valley vibrations (Figure 17). The largest error between the predicted and measured 

values is 0.028 mm in the X direction at Position 2 (Figure 17b), which experienced the 

largest vibrations. However, the smallest error is 0.006 mm in the Z direction at Position 1 

(Figure 17a), which corresponds to the test with the smallest vibrations. Note that the laser 

tracker measurement resolution is 0.01 mm, and therefore the observed differences 



 43

between the predicted and measured peak-to-valley vibrations in the Z direction could be 

the result of tracker measurement error. In addition, the GPR appears to slightly 

underpredict the average peak-to-valley vibrations. The underprediction is most likely due 

to the inclusion of only a single vibration mode in the GPR model while the robot FRF has 

multiple modes that can contribute to the tool tip vibration. To account for this discrepancy, 

a more accurate model must consider the complete FRF at each point within the robot’s 

workspace. However, predicting the entire FRF digitally (as opposed to coefficients of a 

second order system as reported in this work) requires a significantly larger number of 

predictor variables, which adds to the complexity of the model and the corresponding 

calculation time. Future work will investigate more efficient interpolation methods that 

permit the inclusion of the entire FRF as a function of robot position in the workspace.  

 

Figure 17. Comparison of predicted and measured average peak-to-valley tool tip 

vibration amplitudes. 
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3.6 Summary 

A Gaussian Process Regression (GPR) based statistical modeling approach was 

used to determine the dynamic parameters of a 6-dof industrial robot over a finite 

workspace defined by the available workpiece mounting area. The GPR model allows the 

modal frequency, stiffness, and damping coefficient to be determined at different points in 

the robot’s workspace. The EMA experiments showed that as the robot arm is extended 

from its base, the modal stiffness and natural frequency increased in the direction of arm 

extension whereas they decreased in the plane perpendicular to the direction of arm 

extension. The GPR model was found to accurately model the robot’s dominant natural 

frequency, stiffness, and damping coefficient in its measurement space with maximum root 

mean square errors of 3.31 Hz, 150 KN/m, and 810 Ns/m, respectively, and was shown to 

be more accurate than a Multivariate Linear Regression model. However, it was found that 

the GPR model requires more sampling points in locations where the robot dynamics varies 

significantly, such as when the end effector is furthest from the robot base. The 

experimental modal analysis results were also compared with the modal parameters 

determined from the solution of a Jacobian based analytical model of the robot tool tip 

dynamics. This comparison has shown that the undamped natural frequency and stiffness 

of the robot obtained from the analytical model deviate significantly from the experimental 

values as the robot arm is extended further from its base. Hence, the data-driven modelling 

approach in this work shows the regions where the existing analytical model fails and 

would have to be improved. The modal parameters obtained from the GPR model were 

used to calculate the average peak-to-valley vibrations of the robot tool tip during robotic 

milling, which were compared with laser tracker measurements. The results have shown 
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that the average peak-to-valley vibrations predicted by the model followed the 

experimental trends. Hence, the data-driven modelling approach based on Gaussian 

Process Regression enables accurate prediction of tool tip vibrations in milling applications 

with a max error of 0.028 mm. Thus, the improvement in prediction accuracy demonstrated 

in this work further improves the feasibility of utilizing industrial robots in milling 

applications.  
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CHAPTER 4. POSE-DEPENDENT OPTIMAL CONTROL OF 

VIBRATIONS IN ROBOTIC MILLING 

4.1 Introduction 

The review of prior literature shows that an on-line feedback methodology that 

accounts for the pose-dependence of the modal properties of CNC machines nor industrial 

robots has not been investigated. Because the vibration characteristics of the robot tool tip 

vary with robot pose, the feedback controller gains used for disturbance rejection must 

change within the robot’s work volume to account for changes in the robot’s vibration 

characteristics with arm configuration. However, using empirically tuned feedback 

controllers would require manual tuning of the controller gains throughout the robot 

workspace. Therefore, to efficiently implement vibration suppression in robotic milling, a 

pose-dependent optimal controller that uses a system model of the robot’s tool tip dynamics 

is required. The chapter presents a pose-dependent optimal controller based on the previous 

GPR statistical model of 6-dof industrial robot’s pose-dependent modal properties for 

vibration suppression in milling applications. First, modal analysis of the robot’s dominant 

modal vibration parameters for the pose-dependent optimal controller is described. The 

measured modal responses are utilized for building a GPR model that predicts the modal 

parameters (natural frequency, stiffness, and damping ratio) as a function of arm 

configuration. The optimal control strategy, which utilizes the GPR model, is then 

described. The controller performance is then evaluated through offset mass and robotic 

milling experiments.  
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4.2 Data-Driven Model Calibration Experiments 

4.2.1 Experimental Setup 

The modal parameter characterization procedure described in Chapter 3 was utilized 

at discrete points along a linear tool path in the -Y direction of the robot base frame, as 

shown in Figure 18. The modal parameters in the X, Y, and Z directions at each discrete 

point were then calculated using the procedure discussed in Chapter 3. The length of the 

linear tool path was 1.235 m and the points were spaced 0.056 m apart yielding 20 sampled 

robot configurations, which resulted in 60 FRFs. The corresponding robot joint angles are 

listed in Table 1. While the example robot path considered in this chapter is a straight line 

aligned with a coordinate axis, the methodology is general and can be applied to more 

complex tool paths in the robot’s workspace, as shown in Chapter 3. 

 

Figure 18. Start and end points for impact hammer experiments. The coordinate system in 

this illustration is fixed to the robot base frame. 
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Table 5. Joint angles for the start and end points of the linear robot path utilized in the 

impact hammer experiments. Units are in degrees. 

Position 𝜃ଵ  𝜃ଶ  𝜃ଷ  𝜃ସ  𝜃ହ  𝜃଺  

Start 87.97 -15.92 128.27 178.95 113.06 -1.15 

End 88.88 -5.85 45.63 179.95 40.647 -0.69 

4.2.2 Modal Analysis Results 

The results of the EMA tests in the X, Y, and Z directions are shown in Figure 19. 

The robot’s modal stiffness values in the X and Z directions decrease as the arm is 

extended. This is because the arm behaves as a cantilever beam when the arm is extended, 

which increases the compliance. This is accompanied by a gradual decrease in the 

corresponding natural frequencies. Note that the modal stiffness in the Y direction 

gradually increases with arm extension because the axial stiffness of the arm is higher in 

the stretched configuration. Interestingly, the damping ratio exhibits significant non-

linearity in the X and Z directions with respect to extension length as the robot arm is 

extended. Note that the mass and stiffness are known to have a nonlinear relationship with 

arm configuration and the damping ratio has been shown to be proportional to mass and 

stiffness [38]. Therefore, the damping ratio’s behavior with arm extension is expected to 

be nonlinear. In addition, because the modal parameters exhibit functional behaviors that 

cannot be encompassed by a known a-priori parametric function, a non-parametric data-

driven model must be used to predict the modal parameters within the robot’s workspace. 
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Figure 19. Modal parameter trends estimated from impact hammer tests. 

4.2.3 GPR Model Cross Validation Results 

The modelling approach based on Gaussian Process Regression (GPR) presented 

in Chapter 3 was used to model the variation in the robot’s modal stiffness, undamped 

natural frequency, and damping ratio along the tool path in the X, Y, and Z directions with 

the corresponding robot pose as model input. To validate the GPR models obtained for 

each Cartesian direction, a 5-fold cross validation was performed after training the models 

with the data shown in Figure 19. In this validation method, the entire dataset was randomly 

partitioned into five equal sub-sets with four sub-sets used to fit the model, which was then 

used to predict the remaining sample sub-set. The training and prediction methods were 

applied to all sub-sets. This validation procedure was applied to the modal parameters in 

each of the Cartesian directions. The correlation coefficients 𝑅ଶ and the root mean squared 

errors (RMSE) of the cross validations were calculated and are reported in Table 6. The 
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results show that all correlation coefficients are above 0.90, implying that the model 

prediction errors are normally distributed and the model is able to capture the main trends 

in the data. In addition, the models’ RMSE are small compared to the range of values shown 

in Figure 19, with the largest RMSE percentage of 8% for the X direction modal stiffness. 

Table 6. Correlation coefficients and 𝑅𝑀𝑆𝐸 values from cross validation. 

 X Y Z 

 
Natural 

Freq. [Hz] 
Stiffness 
[MN/m] 

Damping 
Ratio 

Natural 
Freq. [Hz] 

Stiffness 
[MN/m] 

Damping 
Ratio 

Natural 
Freq. [Hz] 

Stiffness 
[MN/m] 

Damping 
Ratio 

R
2
 0.97 0.90 0.95 0.97 0.25 0.0028 0.90 0.94 0.94 

RMSE 0.23 0.11 0.0050 0.11 0.99 0.9 0.50 0.1 0.0024 

4.3 Optimal Control Methodology 

This section describes the optimal control strategy used for vibration suppression. 

The methodology is tested with offset mass experiments prior to conducting robotic milling 

experiments. The experimental setup is first described followed by the results. 

4.3.1 Linear Quadratic Regulator 

This work uses an optimal controller derived from the solution of the Linear 

Quadratic Regulator (LQR) problem to minimize the robot’s end effector vibrations. The 

effectiveness of LQR controllers have been demonstrated in other disturbance rejection 

applications [40, 41]. Prior work on disturbance rejection in a dual inverted pendulum 

system has also demonstrated that an LQR controller exhibits better disturbance rejection 

than an H∞ controller even though the H∞ controller does not require tuning of the cost 

function weights [67]. Without loss of generality, consider the following state space 

representation in discrete time: 
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𝛿௣ାଵ ൌ 𝑨𝒅𝛿௣ ൅ 𝑩𝒅𝑢௣ ሺ18ሻ 

where 𝛿௣ is the state vector (𝛿௣ ൌ ൣ𝛿௣ 𝛿ሶ௣൧
்
), 𝑢௣ is the system input at time index 𝑝, and 

𝑨𝒅 ൌ෍
𝑨௜𝑇௜

𝑖!

ஶ

௜ୀ଴

ሺ19ሻ 

𝑩𝒅 ൌ ሺ𝑨𝒅 െ 𝑰ሻ𝑨ିଵ𝑩 ሺ20ሻ 

where 𝑇 is the system sampling time. For a mass-spring-damper system expressed in terms 

of the modal mass 𝑚 ൌ 𝑘
𝑤௡ଶ
ൗ  and damping coefficient 𝑐 ൌ 2𝑚𝑤௡

𝜁ൗ  attached to a 

controlled point subjected to a disturbance induced by an external force [42], 𝑨 and 𝑩 are 

given by 

𝑨 ൌ ቂ 0 1
െ𝑘 െ𝑐

ቃ ሺ21ሻ 

𝑩 ൌ ൣ0 1 𝑚ൗ ൧
்

ሺ22ሻ 

Because 𝑨 depends on the natural frequency, damping ratio, and modal stiffness of the 

robot, Equation (18) is the discrete state space representation of the GPR model. Thus, state 

feedback control 𝑢௣ ൌ െ𝑾𝛿௣ leads to 

𝛿௣ାଵ ൌ ሺ𝑨 െ 𝑩𝑾ሻ𝛿௣ ሺ23ሻ 

Thus, the LQR problem is used to determine the optimal state feedback gains W such that 

the system is asymptotically stable and a prescribed cost function is minimized. To 

determine 𝑾, the following cost function is defined 
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𝐽 ൌ ෍൫𝛿௣்𝑸𝛿௣ ൅ 𝑢௣்𝑹𝑢௣൯

ஶ

௣ୀ଴

ሺ24ሻ 

where 𝑸 and 𝑹 are known positive semi-definite and positive definite symmetric constant 

matrices that  weight  the  state  vector  and  the  system  input, respectively. In this work, 

𝑄 was fixed as ቂ1 0
0 0.001

ቃ to ensure the position and velocity measurements were 

converted into the same units while 𝑹 was determined through simulation to be 0.001 in 

order to produce a stable response. Hence, 𝛿௣்𝑸𝛿௣ corresponds to minimization of the state 

vector while 𝑢௣்𝑹𝑢௣ corresponds to minimization of the control effort. Note that Equation 

(24) implies infinite-horizon and discrete-time constraints. Minimization of the cost 

function 𝐽 leads to the following expression for 𝑾 

𝑾 ൌ ሺ𝑹 ൅ 𝑩்𝑷𝑩ሻିଵሺ𝑩்𝑷𝑨ሻ ሺ25ሻ 

where 𝑷 is a positive definite symmetric constant matrix calculated from the solution of 

the Riccati equation [43] 

𝑷 ൌ 𝑨்𝑷𝑨 െ ሺ𝑨்𝑷𝑩ሻሺ𝑹 ൅ 𝑩்𝑷𝑩ሻି𝟏ሺ𝑩்𝑷𝑨ሻ ൅ 𝑸 ሺ26ሻ 

Note that, because 𝛿௣ ൌ ൣ𝛿௣ 𝛿ሶ௣൧
்
, 𝑾 ൌ ሾ𝑤ଵ 𝑤ଶሿ. Hence, the feedback gains 𝑤ଵ and 𝑤ଶ 

are applied to the measured displacement 𝛿௣ and the calculated 𝛿ሶ௣, respectively. Figure 20 

shows a schematic of the control implementation after 𝑾 is calculated for a given robot 

pose using the GPR model described earlier.  
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Figure 20. Control implementation block diagram. Note that in this work, 𝜹𝒓𝒆𝒇 ൌ 𝟎 for 

disturbance rejection implementation. 

4.3.2 Offset Mass Experiments 

To evaluate the performance of the LQR based optimal control approach discussed 

in the previous section, a controlled disturbance experiment was first performed. In this 

experiment, a rotating offset mass was attached to the robot end effector to induce 

vibrations at a prescribed excitation frequency. Figure 21 shows the setup of the offset 

mass experiment for a given arm configuration. The mass 𝑚௢ is fixed at a constant length 

𝐿 from the spindle axis. When the spindle rotates at a constant speed Ω, a centripetal force 

𝐹௖ acts toward the spindle axis. Assuming that the mass experiences minimal drag and the 

centripetal force acts radially, the force can be modeled as a sinusoidal wave relative to a 

fixed reference frame with a period determined by the spindle rotation speed 

𝐹௖ ൌ 𝑚௢𝐿ሺ2𝜋Ωሻଶ sinሺ
2𝜋𝑡
Ω
ሻ ሺ27ሻ 

The above periodic force induces cyclic vibration of the robot tool tip. For these 

experiments, 𝐿 and 𝑚௢ are 50.8 mm and 1 kg, respectively. While the spindle is rotating, 

the robot is commanded to move at 20 mm/s in a straight line in the X direction for 2 
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seconds. The rotating offset mass therefore induces instantaneous path deviations in the Y 

direction at the spindle frequency.  

The offset mass experiments were conducted at spindle speeds of 480 RPM, 960 

RPM, and 1440 RPM, which correspond to excitation frequencies of 8 Hz, 16 Hz, and 24 

Hz, respectively. The instantaneous displacements (vibrations) of the robot were measured 

using a 6-dof laser tracker (Leica AT960 with T-MAC) at a sampling frequency of 1 kHz. 

Finite backward difference was used to compute the velocities from the instantaneous 

position measurements obtained from the tracker. The sensing and control actions were 

implemented in the Beckhoff TwinCAT real-time programming environment running on a 

personal (control) computer. The KUKA KRC4 controller was configured to drive the 

robot along the programmed linear path while the external path corrections in the Y 

direction were implemented using the KUKA Robotic Sensor Interface (RSI). The control 

computer communicated values to the KUKA RSI using the EtherCAT protocol at a 

command rate of 250 Hz. 

For the midpoint robot position shown in Figure 21, the end-effector Cartesian 

configuration defined by XYZ (mm), Rx, Ry, and Rz (degrees) was [2300, 0.00, 680, -

90.37, -89.13, -90.05], and the corresponding joint angles (in degrees) were [-0.11, -27.46, 

94.04, 179.42, 66.83, -0.58]. To first test the optimal control methodology without 

introducing any prediction errors of the GPR model, the robot modal properties were 

measured directly using impact hammer tests at the midpoint of the path and used to tune 

the controller. Note that this approach assumes that the robot’s modal properties change 

significantly over the 20 mm from the sampled configuration. The Y direction natural 

frequency, stiffness, and damping ratio that were 8.5 Hz, 0.775 MN/m, and 0.179, 
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respectively, and the LQR controller gains 𝑤ଵ and 𝑤ଶ were computed to be 0.079 and 

0.0059, respectively. 

 

Figure 21. a) Robot and b) zoomed in tooling setup for offset mass experiments. 

Figure 22 shows the results of applying the optimal controller during the rotating 

offset mass experiments. For the 480 RPM and 960 RPM cases, the controller is seen to 

reduce the vibration amplitudes from 0.93 mm to 0.39 mm and from 0.36 mm to 0.15 mm, 

respectively. However, at 1440 RPM, the controller is unable to suppress the vibrations 

and the robot even experiences harmonic dissonance. This is because the KRC4 robot 

controller exhibits a 32 ms delay between the commanded input and the actuator response. 

The cause of this delay appears to be the required breakaway torque and transition from 

stiction to sliding friction within the robot joints, and possible interface delays between the 

robot controller and the actuator commands [44, 45]. Unfortunately, determination and 

minimization of the root cause of the delay requires proprietary knowledge of the robot 

internal mechanics and software infrastructure, which is not available to end users. 

Therefore, the delay limits the range of spindle speeds where the LQR controller is 
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effective. However, this limitation is hardware dependent and general implementation of 

the proposed optimal control methodology is still applicable. 

 

Figure 22. Offset mass experiment results for spindle speeds of (a) 480 RPM, (b) 960 

RPM, and (c) 1440 RPM. 

4.3.3 Pose-Dependent Controller versus Constant Gain Controller 

To evaluate the performance of the controller over longer paths, the offset mass 

experiments were conducted over a 900 mm long path at spindle speeds of 480 RPM and 

960 RPM. The starting point of the path was the ending arm configuration shown in Figure 

18 with robot motion in the +Y direction at a feed rate of 84 mm/s. Hence, the robot starts 

at an extended configuration and moves closer to its base as it traverses along the path. It 

is evident from Figure 19 that the X direction modal parameters change significantly along 

the 900 mm path length. In addition, note that the controller is configured to minimize 

vibrations in the X direction. Therefore, in these experiments, 𝑾 was calculated at 20 

equally spaced points along the path using 𝑨𝒅 and 𝑩𝒅 matrices predicted by the GPR 

model. The values for the control gains 𝑤ଵ and 𝑤ଶ were then fitted using a polynomial fit 

with respect to distance along the path for gain scheduling within the TwinCAT real-time 
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environment. The fitted polynomial forms for 𝑤ଵ and 𝑤ଶ as a function of distance along 

the path 𝑑 are as follows: 

𝑤ଵ ൌ െ4.3 ∗ 10ିହ𝑑 ൅  0.12 ሺ28ሻ 

𝑤ଶ ൌ െ3 ∗ 10ିଵସ𝑑ସ ൅ 7 ∗ 10ିଵଵ𝑑ଷ െ 6 ∗ 10ି଼𝑑ଶ ൅ 1 ∗ 10ିହ𝑑 ൅ 0.006 ሺ29ሻ 

Figure 23 shows the gains as a function of distance along the path. Interestingly, the gains 

exhibit significant trends as the arm moves closer to its base. For instance, 𝑤ଵ becomes 

smaller because the arm’s compliance and natural frequency in the X direction decrease as 

the end effector moves toward its base. Therefore, the controller requires less control 

action, as indicated by the smaller gains, to suppress vibration as the arm moves closer to 

its base. In addition, 𝑤ଶ also decreases in a nonlinear fashion that corresponds to a decrease 

in the damping ratio as shown before in Figure 19. Hence, 𝑤ଶ decreases in importance to 

compensate for the reduction in damping of the system response to input commands. Note 

that, in each control cycle, the TwinCAT environment calculates the instantaneous 𝑾 as a 

function of the toolpath position. The calculated 𝑾 is then applied to the measured 

disturbance to determine the corresponding control input. These results provide new insight 

into the performance of a pose-dependent optimal controller in that compliant systems such 

as 6-dof industrial robots require larger gains to suppress vibration and that the optimal 

gains for pose-dependent systems can vary significantly over a long path characterized by 

significant changes in the robot’s vibration characteristics. 
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Figure 23. LQR gains for (a) 𝒘𝟏 and (b) 𝒘𝟐 along the path. 

In addition, two constant gain controllers were evaluated in addition to the pose-

dependent controller. The constant gain controllers were developed by calculating 𝑾 at a 

single robot configuration. The constant 𝑾 was then applied throughout the entire path. 

One set of gains was computed by using the robot configuration corresponding to the start 

of the path, and the other set was computed by using the robot configuration corresponding 

to the end of the path. The controller gains 𝑤ଵ and 𝑤ଶ computed at the start configuration 

were 0.11 and 0.0065, respectively, and 𝑤ଵ and 𝑤ଶ computed at the end configuration were 

0.06 and 0.005, respectively. Note that robot is significantly more compliant at the start of 

the path than at the end of the path for the offset mass experiments, and therefore the gains 

computed at the start configuration are significantly larger than the gains computed at the 

end configuration. The results of the offset mass experiments are shown in Figure 24, and 

the start and end vibration amplitudes are presented in Table 7. It is seen that the vibrations 

of the robot increase as the arm traverses along the path. The open loop vibration 

amplitudes transition from 0.40 mm to 0.21 mm and 0.15 mm to 0.08 mm for the 480 RPM 

and 960 RPM conditions, respectively. This is expected because, for a given excitation 
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frequency, the robot’s modal parameters change significantly along the path, as seen in 

Figure 19. Note that all the tested controllers appear to initially suppress vibration. 

However, while using the constant gain values computed from the start of the path initially 

results in similar performance as the pose-dependent controller, the system becomes 

unstable as it approaches the end of the path. This is because the gain values computed at 

the start of the path do not consider the change in stability conditions as the arm moves 

towards its base. In addition, the constant gain values computed at the end of the path were 

not able to suppress vibration as well as the pose-dependent controller at the start of the 

path. This is because the robot configuration at the end of the path was significantly stiffer 

and therefore did not require larger control gains. Hence, when applying these gains to 

regions where the robot is significantly more compliant, such as the start position, these 

control gains will not produce significant vibration suppression. These results show that 

the pose-dependent controller outperforms both constant gain controllers by minimizing 

vibration while maintaining stability. 

 

Figure 24. Offset mass experiment results. 
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Table 7. Start and end vibration amplitudes. Units are in mm. 

  Start End 

Speed 
(RPM) 

No 
Feedback 

Pose-
Dependent 

Gains 
Constant 

Gain (Start) 
Constant 

Gain (End) 
No 

Feedback 
Pose-

Dependent 
Gains 

Constant 
Gain (Start) 

Constant 
Gain (End) 

480 0.40 0.13 0.14 0.29 0.21 0.08 1.39 0.09 
960 0.15 0.06 0.50 0.10 0.08 0.03 0.42 0.03 

4.4 Milling Experiments 

This section describes the milling experiments conducted to study the performance 

of the presented vibration suppression controller. The experimental setup is described 

followed by results and discussion. 

4.4.1 Experimental Setup 

To evaluate further the performance of the active vibration suppression 

methodology when using both the GPR model and the LQR controller, robotic milling 

experiments were carried out. Two peripheral end milling experiments were performed 

without coolant on an Acetal Resin workpiece using a two flute, 25.4 mm diameter, 30° 

helix angle, cobalt tool. The axial depths of cut, feed/tooth, and spindle speeds utilized 

were 3 mm and 6 mm, 0.3 mm and 0.5 mm, and 125 and 250 RPM, respectively. The radial 

depth of cut and the length of cut were kept constant at 6 mm and 50 mm, respectively, in 

both tests. As shown in Figure 25, the experiments were conducted at two locations in the 

robot’s workspace to evaluate the effectiveness of the LQR controller to suppress milling 

force induced vibrations as a function of robot arm configuration. Note that the two robot 

configurations in Figure 25 differ significantly from each other and from the configuration 

shown in Figure 21. As discussed earlier, the robot’s modal vibration parameters vary with 
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arm configuration in the workspace, thus requiring the GPR model to predict the modal 

response at these locations. A full factorial experiment resulted in eight cutting conditions 

at two robot poses with and without the LQR controller for a total of 32 cutting tests. The 

same robotic milling setup used in the offset mass experiments was used in these 

experiments. Since the peripheral milling cuts create a machined wall surface and a floor 

surface on the workpiece, two separate, uncoupled controllers were implemented for 

vibrations in the X (wall surface) and Z (floor surface) directions. Note that joint angle 

control can address coupled vibrations in the X and Z directions. However, joint angle 

control requires an Inverse Kinematic approach that requires a highly accurate geometrical 

representation of the robotic arm. No control action was implemented in the robot Y 

direction, which is aligned with the tool feed direction. 

 

Figure 25. Robot poses for milling experiments. The midpoint of the tool path used in the 

milling experiments is provided in Cartesian (top) XYZ (mm), Rx, Ry, and Rz (degrees) 

and joint angles (bottom) notation. 
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The Cartesian positions of the robot end effector were input to the GPR model to 

predict the modal vibration parameters (stiffness, natural frequency, damping ratio) in the 

X and Z directions. Comparison of the predicted and measured modal parameters in Table 

8 shows that the GPR model is able to predict the modal parameters within 10%. The 

largest error corresponds to the X direction modal stiffness of the robot at Position 1, which, 

as seen from Figure 19, corresponds to a region of rapid decrease in the modal stiffness, 

and therefore the prediction accuracy is lower. 

Table 8. GPR model predictions at robot Positions 1 and 2. 

  X Z 
Position  Natural 

Freq. [Hz] 
Stiffness 
[MN/m] 

Damping 
Ratio 

Natural 
Freq. [Hz] 

Stiffness 
[MN/m] 

Damping 
Ratio 

1 
Predicted 9.60 1.32 0.146 11.87 1.95 0.142 
Measured 9.50 1.20 0.150 11.88 1.99 0.13 

2 
Predicted 7.45 0.73 0.186 9.00 1.10 0.16 
Measured 7.40 0.74 0.190 9.06 1.15 0.15 

Table 5 lists the optimal control gains computed from Equation (25) using the cost 

function in Equation (24). The GPR model predictions in Table 8 were used to determine 

the LQR controller gains corresponding to the two robot positions where milling was 

performed. Note that the control gain 𝑤ଵ for Position 2 is significantly larger than the 

corresponding control gain for Position 1, which corresponds to the results shown in Figure 

23. This is to be expected because the system is more compliant at Position 2, which 

requires a stronger control action to suppress the vibration. In addition, 𝑤ଶ is larger for 

Position 2 than Position 1 because the damping ratio increases as the arm is outstretched. 

Therefore, the importance of the velocity term increases to compensate for the increase in 

damping of the system response to input commands. 
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Table 9. Optimal control gains. 

Position 
X Z 

𝒘𝟏 𝒘𝟐 𝒘𝟏 𝒘𝟐 

1 0.061 0.0054 0.037 0.0033 
2 0.11 0.0080 0.069 0.0057 

4.4.2 Vibration Measurements 

Table 6 lists the RMS vibration amplitudes for all the robotic milling experiments 

obtained from laser tracker measurements. It can be seen that the LQR controller is able to 

reduce the RMS vibration amplitudes for a range of cutting conditions. The largest 

vibration amplitude was observed in Test 5, which had a larger feed and axial depth of cut, 

and a tooth passing frequency of 8.3 Hz that is close to the robot’s dominant natural 

frequencies of 9.50 Hz and 7.40 Hz in the X direction, and 11.88 Hz and 9.06 Hz in the Z 

direction at Positions 1 and 2, respectively. The smallest vibrations occurred in Test 4, 

which had the lowest feed and axial depth of cut and a tooth passing frequency of 4.16 Hz 

that is farther away from the robot’s natural frequencies. In this work, the average controller 

vibration reduction at the tooth passing frequencies of 4.2 Hz (Tests 1, 2, 3, and 4) and 8.3 

Hz (Tests 5, 6, 7, and 8) were found to be 42% and 52%, respectively. Hence, the controller 

demonstrates better performance at 8.3 Hz than opposed to 4.2 Hz. This is because the 

controller is able to best suppress vibrations closest to the robot’s predicted natural 

frequencies that were used in developing the controller. The controller performance for the 

cutting feeds of 0.3 mm (Tests 3, 4, 7 and 8) and 0.5 mm (Tests 1, 2, 5, and 6) were found 

to be 48% and 46%, respectively, demonstrating insignificant influence of the cutting feed 

in these experiments. In addition, the controller performance was found to be similar for 

axial depths of 3 mm (Tests 2, 4, 6 and 8) and 6 mm (Tests 1, 3, 5, and 7) with 
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improvements of 47% and 48%, respectively. Hence, the controller appears to be 

significantly influenced by the vibration frequency. On average, the controller is able to 

reduce the vibration amplitude by 51% ± 13% and 43% ± 16% in X and Z directions, 

respectively. 

Table 10. RMS vibration amplitude results (mm) for milling experiments. “Open” refers 

to open loop and “Control” refers to LQR control. 

    RMS Vibration Amplitude (mm) 
    Position 1 Position 2     X Z X Z 
Test 
No. 

Speed 
(RPM) 

Feed 
(mm) 

Axial Depth 
of Cut (mm) Open Control Open Control Open Control Open Control 

1 125 0.5 6 0.279 0.142 0.067 0.042 0.331 0.191 0.115 0.046 
2 125 0.5 3 0.293 0.132 0.069 0.046 0.216 0.143 0.049 0.031 
3 125 0.3 6 0.249 0.109 0.058 0.035 0.202 0.166 0.071 0.038 
4 125 0.3 3 0.146 0.066 0.033 0.025 0.113 0.071 0.047 0.020 
5 250 0.5 6 0.388 0.158 0.101 0.036 0.401 0.244 0.093 0.049 
6 250 0.5 3 0.147 0.073 0.041 0.036 0.259 0.092 0.048 0.024 
7 250 0.3 6 0.284 0.118 0.064 0.045 0.378 0.174 0.098 0.037 
8 250 0.3 3 0.158 0.048 0.050 0.030 0.209 0.075 0.066 0.018 

Figure 26 shows representative time series data for the vibrations in Test 1 and Test 

8. It can be seen that the larger arm compliance at Position 2 yields open loop vibrations in 

the X and Z directions that are larger than the corresponding vibrations at Position 1. 

Hence, the two positions exhibit two significantly different vibration responses for the 

same cutting conditions. For instance, the open loop RMS vibration amplitudes were 0.067 

mm and 0.115 mm in the Z direction at Positions 1 and 2, respectively. In addition, the 

open loop RMS vibration amplitudes in the X direction at Positions 1 and 2 were 0.279 

mm and 0.346 mm, respectively. In addition, it can be seen that the controller is able to 

significantly reduce the vibration amplitudes. For instance, Figure 26(b) shows that the 
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RMS vibration amplitude in the X direction is reduced from 0.158 mm to 0.048 mm at 

Position 1, and from 0.209 mm to 0.075 mm at Position 2. Similarly, the vibration 

amplitude in the Z direction is reduced from 0.050 mm to 0.030 mm at Position 1, and from 

0.066 mm to 0.018 mm at Position 2. Note that the controller is unable to suppress the 

vibration completely due to the actuator delay and physical limitations of the actuator force 

that can be applied by the robot.  

 

Figure 26. Vibration data with and without LQR control for (a) Test 1 and (b) Test 8. 

Figure 27 shows the spectral decompositions of the vibration signals obtained in 

Test 1 and Test 8. Figure 27(a) shows that the controller is able to reduce vibration 

amplitudes at approximately 4 Hz and 8 Hz for both robot arm configurations 

(corresponding to Positions 1 and 2). Interestingly, the controller is also able to reduce the 

amplitude of some of the higher vibration modes. For instance, Figure 27(a) shows that the 

amplitude of the 24 Hz mode vibration mode in the X direction response at Position 2 is 

reduced. This is because reducing vibrations at 4 Hz and 8 Hz reduces their corresponding 

harmonics, including at 24 Hz. Hence, the controller’s ability to suppress lower frequency 
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vibrations can propagate to minimization of higher frequency vibrations as well. In 

addition, it can be seen that both Position 1 and Position 2 exhibit significantly different 

frequency responses for the same cutting conditions, thus demonstrating that Position 1 

and Position 2 have significantly different vibration characteristics. For instance, Figure 

27(b) shows that the frequency response at 8 Hz in the Z direction is almost twice as large 

at Position 1 as at Position 2. In addition, the frequency responses in the Z direction show 

that the influence of the higher vibration modes is more prevalent at Position 2 than at 

Position 1, especially in Test 8.  

 

Figure 27. Spectral decomposition of the vibration data for (a) Test 1 and (b) Test 8. 

4.4.3 Part Surface Measurements 

The eventual goal of the proposed optimal control methodology is to enhance the 

machining accuracy of the robot. To evaluate this, the wall and floor surface features, 

oriented in the X and Z directions, respectively, generated by the open and closed loop 

milling experiments were measured using a Coordinate Measuring Machine (CMM). The 

CMM line scans were spaced 0.5 mm along the axial depth of cut. Each scan consisted of 



 67

30 mm linear paths with a scanning increment of 50 points/mm. All the points along the 

scans were then averaged to calculate the average wall and floor surface profiles for each 

test. Figure 28 shows the average surface profiles obtained in Test 1 and Test 8. It can be 

seen that the measured deviations of the wall and floor surfaces are reduced when the LQR 

controller is implemented. Table 11 shows the RMS surface deviations for all cutting tests. 

The RMS surface deviations are found to be correlated with the vibrations with a Pearson’s 

Correlation Coefficient of +0.76. On average, the LQR control methodology is able to 

reduce the surface deviations by 25% ± 12% in both the X and Z directions. 

 

Figure 28. CMM results for (a) Test 1 and (b) Test 8. 
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Table 11. RMS surface deviations (in mm) in milling experiments. “Open” refers to open 

loop and “Control” refers to closed-loop optimal control. 

    RMS Vibration Amplitude (mm) 
    Position 1 Position 2     X Z X Z 
Test 
No. 

Speed 
(RPM) 

Feed 
(mm) 

Axial Depth 
of Cut (mm) Open Control Open Control Open Control Open Control 

1 125 0.5 6 0.060 0.045 0.032 0.021 0.064 0.044 0.035 0.020 
2 125 0.5 3 0.056 0.049 0.017 0.015 0.045 0.037 0.034 0.021 
3 125 0.3 6 0.034 0.027 0.024 0.016 0.040 0.034 0.022 0.018 
4 125 0.3 3 0.024 0.018 0.011 0.009 0.027 0.020 0.018 0.014 
5 250 0.5 6 0.068 0.052 0.039 0.019 0.064 0.042 0.036 0.027 
6 250 0.5 3 0.032 0.026 0.015 0.013 0.048 0.041 0.024 0.020 
7 250 0.3 6 0.027 0.020 0.011 0.010 0.029 0.021 0.019 0.014 
8 250 0.3 3 0.026 0.019 0.012 0.010 0.029 0.020 0.020 0.014 

4.5 Summary 

This section presented an optimal control methodology for active vibration 

suppression in robotic milling with a 6-dof industrial robot characterized by pose-

dependent modal parameters consisting of the modal stiffness, undamped natural 

frequency, and damping ratio. The modal parameters predicted by a Gaussian Process 

Regression (GPR) model were used to formulate and solve the robot pose-dependent LQR 

optimal control problem to compute pose-dependent optimal gains for active vibration 

suppression. The LQR control methodology was validated using both offset mass 

experiments and robotic milling experiments under various excitation conditions and robot 

poses. The displacement gain was found to increase with the robot’s compliance while the 

velocity gain was found to positively trend with the robot’s damping ratio. The pose-

dependent optimal controller was demonstrated to outperform constant gain controllers in 

the offset mass experiments. The controller was demonstrated to reduce milling vibration 
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amplitudes by 51% ± 13% and 43% ± 16% in X and Z directions, respectively, which was 

also shown to be correlated with a decrease in the machined surface deviations. Future 

generations of industrial robots should minimize actuator delay to facilitate better active 

control and therefore enhanced milling accuracy at even higher excitation frequencies. 
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CHAPTER 5. HYBRID STATISTICAL MODELLING OF ROBOT 

FREQUENCY RESPONSE FUNCTION 

5.1 Introduction 

Modal impact hammer experiments are generally used to calibrate pose-dependent 

FRF-prediction models because they can be used at any point in the workspace regardless 

of application constraints (e.g., workpiece locations for milling). However, this approach, 

known as Experimental Modal Analysis (EMA), can only be used at discrete points in the 

workspace corresponding to specific robot arm configurations, and therefore requires 

significant off-line testing effort to obtain adequate spatial resolution over the entire 

workspace. Alternatively, the process of determining robot FRFs through Operational 

Modal Analysis (OMA), which utilizes on-line milling process data (e.g., forces, 

vibrations, accelerations, etc.) gathered during robot operation, can continuously sample 

arm configurations along the tool path and thereby achieve greater spatial resolution. 

However, use of only OMA from milling process data is constrained by workpiece and 

fixturing limitations. For instance, the workpiece must be sufficiently large to sample a 

large workspace, which increases cost. In addition, the length and spacing of the required 

tool paths to sufficiently sample the robot workspace is unknown. Therefore, conducting 

OMA alone can be expensive and time-consuming. In light of these limitations, a hybrid 

modelling approach that combines FRF measurements from EMA and OMA can be helpful 

for efficiently creating a more accurate pose-dependent robot FRF prediction model valid 

over a larger workspace. 
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This chapter presents a statistical modelling approach to efficiently create an 

accurate robot FRF model valid over its workspace by combining FRFs calculated from 

EMA and OMA. An example schematic of the EMA and OMA measurement procedures 

used in the hybrid modelling approach is shown in Figure 29. Impact hammer experiments 

are conducted at discrete points in the robot’s workspace to initially train a Gaussian 

Process Regression (GPR) model of the robot’s pose-dependent FRF. Following this, 

OMA is used to calculate more spatially dense robot FRFs from milling experiments along 

a tool path in the robot’s workspace. The FRF calculated from OMA is then used to 

augment the GPR model calibrated (or trained) with EMA data. Instead of complete model 

retraining, the OMA-based FRFs are used to update the posterior distribution of the GPR 

model using Bayesian updating. In addition, prior knowledge of the GPR model 

hyperparameters is used to reduce the number of iterations required for hyperparameter 

optimization during model augmentation. The results of the statistical modelling approach 

are discussed, and the key conclusions of the work are summarized.  

 

Figure 29. Example of hybrid modelling approach. 
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5.2 Hybrid Modelling Methodology 

This section describes the hybrid modelling approach used in this chapter. The 

approach to calculate the FRFs using EMA to initially calibrate the data-driven is 

described. Then, the OMA approach to calculate the FRF using milling force and tool tip 

vibration data is described. Finally, the hybrid modelling approach that updates the initially 

calibrated EMA-based model using OMA-based FRFs is detailed. 

5.2.1 FRF Computation using EMA 

In the hybrid modelling approach, EMA is conducted through modal impact 

hammer tests performed at discrete points in the robot’s workspace corresponding to 

specific arm configurations to determine the pose-dependent FRFs used to initially 

calibrate the GPR model. Note that the EMA based FRF computation and GPR modeling 

methods in this chapter is conducted in the same manner as described in Chapters 3 and 4. 

Therefore, Equation (5) was used to calculate the robot FRFs from the auto spectral 

densities of the input force signals and the cross-spectral densities of the force and 

acceleration signals acquired from impact hammer tests.  

5.2.2 FRF Computation using OMA 

After the initial model calibration step using the EMA-based FRFs, OMA is 

performed using the milling force and tool tip vibration data to calculate the robot FRFs 

along a more densely sampled tool path. Note that OMA methods including the 

transmissibility function–based [51] and Enhanced Frequency Domain Decomposition 

(EFDD) [52] methods have been used in prior robotic milling applications. However, the 
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transmissibility function–based method requires at least two tool paths to be executed for 

each robot configuration and the EFDD method only determines the mode shape. In this 

chapter, an alternative method of conducting OMA, which does not require multiple tool 

paths and can identify the mode shape in addition to scaling, is presented.  

The OMA method in this chapter involves computing the robot FRF using Equation 

(5), similar to the EMA experiments, from the auto spectral densities of the cutting forces 

and the cross-spectral densities between the milling forces and tool tip vibrations. Note that 

milling forces theoretically consist of harmonics associated with the spindle and tooth 

passing frequencies, and therefore the milling force auto-spectral density at the 

unassociated frequencies would be 0. Thus, Equation (5) can theoretically only compute 

compliances at the spindle and tooth passing frequencies. However, prior work [58-60, 68] 

has shown that background noise in the force signal can generate broadband excitation of 

the dynamic structure, which enables determination of robot FRFs from operational data. 

Therefore, the robot FRF can actually be calculated from milling force and tool tip 

vibration data by using Equation (5) when there is sufficient background noise excitation 

in the milling force signal.  

5.2.3 Initial Model Calibration 

The output forms of the GPR model that predicts the FRF as a function of robot 

Cartesian position are given in Equation (9) and (10) presented in Chapter 3. However, the 

GPR modelling approach in Chapter 3 was limited to predicting the natural frequency, 

damping coefficient, and modal stiffness of only the dominant vibration mode of a 6-dof 

industrial robot. However, modelling of the entire robot FRF is desired for a more accurate 
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prediction of the robot’s vibration characteristics. Therefore, this chapter extends the prior 

robot FRF modelling approach to predict the entire FRF. To accomplish this, the robot FRF 

is separated into individual frequency bins. Then, an individual GPR model is trained to 

predict the FRF compliance of its corresponding frequency bin as a function of the arm 

configuration. Therefore, this approach results in multiple GPR models that together 

describe the entire FRF of the robot. Note that an alternative approach is to consider 

frequency and robot pose as input parameters in the GPR model, which would capture the 

correlations between frequency bins. However, this approach was previously shown to be 

computationally more expensive for model calibration and prediction due to the increase 

in size of the covariance matrix [69]. For instance, in this work, the size of the covariance 

matrix is 3x3 while the size of the covariance matrix using frequency as an input is 

393x393. 

5.2.4 Bayesian Updating with OMA-based FRFs 

Note that the posterior distribution of a GPR model is traceable through Bayesian 

inference. Thus, when a new data point, i.e. OMA-based FRF, is added to the initially 

calibrated EMA-based data set, the covariance matrix can be simply recomputed and the 

updated Equations (9) and (10) constitute the updated GPR model. However, this method 

does not update 𝜎௟, 𝜎௙, 𝜎ଶ, and the coefficients of the basis function 𝜇ሺ𝑝ሻ, which make up 

the set of hyperparameters 𝜃. To calculate the hyperparameters during initial model 

calibration, the following marginal log-likelihood function is maximized 

𝑃ሺ𝑦|𝑝, 𝜃ሻ  ൌ െ
1
2
ሺ𝑦 െ  𝜇ሻ்ሾ𝑲ሺ𝑝, 𝑝ሻ ൅ 𝜎ଶ𝑰ሿିଵሺ𝑦 െ  𝜇ሻ െ

𝑛
2

log 2𝜋

െ
1
2

log|𝑲ሺ𝑝,𝑝ሻ ൅ 𝜎ଶ𝑰| ሺ33ሻ
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Therefore, when new OMA-based FRF data is added to the initially calibrated GPR 

model, Equation (33) must be completely re-optimized to recalculate the hyperparameters. 

Equation (33) is generally optimized using Newton quasi-static optimization, where the 

Newton step at iteration 𝑘 is given by [70] 

∆𝜃௞ ൌ  െ𝛼௞𝑨௞
ିଵ∇𝑃ሺ𝑦|𝑝,𝜃௞ሻ ሺ34ሻ 

where 𝑨௞ is an approximation of the Hessian matrix and 𝛼௞ is the step size. In this thesis, 

the Broyden–Fletcher–Goldfarb–Shannon (BFGS) algorithm is used to update the Hessian 

inverse at each iteration as follows [71] 
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where 𝝉௞ is defined as 

𝝉௞ ൌ ∇𝑃ሺ𝑦|𝑝,𝜃௞ାଵሻ െ ∇𝑃ሺ𝑦|𝑝,𝜃௞ሻ ሺ36ሻ 

Note that Newton quasi-static optimization is the most time-consuming step in 

calibrating the GPR model [72]. Prior researchers have attempted to alleviate this problem 

by either selecting hyperparameters that are assumed to not vary significantly [73] or 

periodically updating hyperparameters after updating the covariance matrix [74]. 

Generally, updating the hyperparameters is not necessary because sufficient (though 

suboptimal) model accuracy can be achieved with constant hyperparameters [75]. 

However, updating the hyperparameters to their optimal values has been shown to at least 

marginally improve model accuracy [76]. Note that there are certain occasions where 

updating the hyperparameters is absolutely necessary, such as when the underlying process 
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physics and statistics change significantly [61].  In this thesis, the process statistics are 

assumed to have changed since the OMA-based FRFs are computed from sensors 

(force/torque sensor and laser tracker) that exhibit different noise characteristics than 

sensors used to calculated the EMA-based FRFs (accelerometer and impact hammer).  

In this chapter, the hyperparameters are updated by starting the Newton quasi-static 

optimization search ∆𝜃଴ from the optimal hyperparameters determined during initial 

calibration of the GPR model using FRFs obtained from EMA. By starting the search at 

the initially calibrated hyperparameters, the number of optimization iterations is reduced if 

the optimal set of hyperparameters is close to the starting set. Therefore, this approach still 

ensures that an optimal set of hyperparameters is found while reducing the number of 

functional computations. 

5.3 OMA and EMA Experiments 

This section describes the experiments conducted to perform EMA and OMA for 

the hybrid modelling approach. The experimental procedures are described followed by 

presentation of the collected data. 

5.3.1 EMA Experiments 

EMA was performed on a KUKA KR500-3 6-dof industrial robot at three points at 

0 m, 585 m, and 1.235 m along a linear tool path in the Y direction, as shown in Figure 30. 

An impact hammer (PCB 086D05) was used to apply an impulse excitation in the direction 

of the measurement axis of a uniaxial piezoelectric accelerometer (PCB 352A21) mounted 

on the cutting tool tip. The applied impulse force and the corresponding acceleration 
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response were sampled at 17 KHz through the MetalMax software [77]. The corresponding 

FRFs were calculated from the force and twice-integrated acceleration data. Note that 

cross-coupling was assumed to be negligible [5] and therefore the robot FRFs were 

calculated only in the X, Y, and Z directions. The robot joint angles [𝜃ଵ … 𝜃଺] 

corresponding to the start, middle and end positions of the tool path were [87.9, -15.9, 

128.3, 178.9, 113.1,-1.15], [84.1, -15.6, 98.7, 173.3, 83.9, 0.4], and [88.9,-5.9, 45.6, 179.9, 

40.6, -0.7] degrees, respectively. Note that although the example robot path considered in 

this work is a straight line aligned with a particular robot coordinate axis, the methodology 

is general and can be applied to other tool paths in the robot’s workspace. 

 

Figure 30. Robot configurations for impact hammer experiments. Note that the linear tool 

path is aligned with the Y direction of the robot base frame. 

FRFs calculated from modal impact hammer tests performed in the X, Y, and Z 

directions of the three robot configurations are shown in Figure 31. It can be seen that as 

the robot arm extends from its base along the linear tool path, the X and Z direction 

compliances at frequencies less than 10 Hz increase while the compliance in the Y direction 

decreases. This is because of a cantilever beam effect that occurs with extension of the 

robot arm. In addition, there appears to be a dominant mode of vibration in each of the X, 
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Y, and Z direction FRFs (~8 Hz, ~23 Hz, and ~8 Hz, respectively) accompanied by weaker 

vibration modes. For instance, there appears to be a weaker mode at approximately 25 Hz 

in the X direction. Thus, these results justify the use of a data-driven modelling approach 

to predict the entire pose-dependent robot FRF. 

 

Figure 31. Robot FRFs computed from EMA experiments. 

5.3.2  OMA Experiments 

Dry peripheral milling tests (shown in Figure 32) with radial and axial depths of 

cut of 6 mm and 6 mm, respectively, were performed on Acetal Resin using a 30° helix 

angle, two flute, 25.4 mm diameter, cobalt end mill. The tool paths in these milling 

experiments were collinear with the Y direction of the robot base frame similar to the EMA 

tests shown in Figure 30. The feed per tooth was 0.85 mm and the spindle speed was 2700 

RPM. The length of cut was 600 mm (from 0.635 m to 1.235 m along the tool path), and 

therefore the robot FRF cannot be assumed to be constant over the length of cut. Thus, the 
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cutting path was discretized into 50 mm cut lengths and the OMA-based FRFs were 

calculated over each cut length. 

 

Figure 32. Milling experimental setup for OMA. 

An ATI Omega 160 strain gauge-based force/torque sensor and a Leica AT960 6-

dof laser tracker with T-MAC were used to measure the instantaneous milling forces and 

robot vibrations, respectively. Note that the laser tracker measures the vibrations at the T-

MAC location and not at the tool tip. Therefore, the tool tip vibrations were calculated by 

applying a constant matrix transformation from the T-MAC location to the tool tip. In this 

work, the robot compliance is assumed to dominate the system vibrations compared to 

compliance of the tool-toolholder-spindle assembly. In addition, the milling forces at the 

tool tip were calculated by applying a constant matrix transformation from the force/torque 

sensor location to the tool tip. The force and vibration data were sampled synchronously at 

1 kHz via the Beckhoff TwinCAT real-time programming environment. Similar to the 

modal impact hammer tests, the vibrations and milling forces were measured in the X, Y, 

and Z directions of the robot base frame. Note that robot vibrations have been shown to 

distort the force/torque sensor measurements and therefore an inverse filtering approach 
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described in detail in the author’s prior work [69] was used to improve the accuracy of the 

measured cutting forces. 

Figure 33 shows the milling force and tool tip vibration data for the OMA 

experiment. Note that the robot vibration amplitudes change as the tool tip moves along 

the tool path. Specifically, the X and Z direction vibrations visibly increase in amplitude 

because the compliance in these directions increases as the arm extends further from its 

base. Conversely, the Y direction vibrations decrease since the arm is stiffer in the Y 

direction as it extends further from the base. It is clear from these data that the robot FRF 

cannot be treated as constant throughout the tool path and therefore a pose-dependent FRF 

must be considered when modeling the robot’s FRF. 

 

Figure 33. Measured a) milling forces and b) robot vibrations obtained in the longer tool 

path OMA experiment. 
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5.4 Hybrid Statistical Modeling Evaluation 

The accuracy of the hybrid modelling methodology was evaluated using the 

following approach. The robot FRF corresponding to the arm configuration at 1.040 m 

along the linear path indicated in Figure 30 was predicted before and after updating the 

GPR model with the OMA based FRFs. Figure 34 schematically shows the validation test 

point in addition to the EMA and OMA points used for initial GPR model calibration and 

for model updating, respectively. Note that the validation point lies on the milling tool path. 

Therefore, to ensure proper validation, OMA-based FRFs were not computed within 50 

mm of the validation point, and the model was updated using the remaining 10 OMA-based 

FRFs. The following section discusses the prediction accuracy of the hybrid modeling 

approach relative to the EMA-only model. In addition, the computational efficiency of the 

model updating procedure compared to complete model retraining is discussed.  

 

Figure 34. Top-down view of the calibration and validation points used in the 

experiments.  
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5.4.1 Prediction Accuracy 

To predict the robot FRF using the GPR model, the robot FRF was separated into 

131 frequency bins. Thus, each of the GPR models was calibrated for each frequency bin 

resulting in 131 GPR models that together describe the entire FRF for a single robot 

position. Figure 35 shows the prediction results before and after model updating. Note that 

before updating, the model prediction error for the dominant modes in the X, Y, and Z 

directions (8.3 Hz, 22.9 Hz, and 9.1 Hz, respectively) are 26%, 22%, and 33%, 

respectively. However, after updating the errors in the X, Y, and Z directions improve to 

3.4%, 2.6%, and 4.2%, respectively. In addition, Table 12 lists the RMSE values for the 

entire FRF before and after model updating. Overall, it is seen that model updating 

improves the FRF prediction model accuracy across all frequencies. 

Table 12. RMSE of FRF predictions (all units in µm/N). 

 X Y Z 

Before Updating 0.275 0.156 0.540 

After Updating 0.150 0.125 0.340 
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Figure 35. Model prediction a) before and b) after updating. The solid and dashed lines 

represent FRFs determined from modal impact hammer experiments and the model, 

respectively. 

5.4.2 Updating Iterations 

The number of iterations in the quasi-Newton optimization search required for 

completely retraining the model, i.e. determining the hyperparameters from the EMA and 

OMA points as a single dataset, were compared against the number of iterations required 

for updating the EMA-calibrated GPR model using the updating methodology presented in 

the previous section. The number of iterations per model type was calculated by summing 

the total number of optimization iterations for all 131 GPR models.  The average number 
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of iterations for the 131 GPR models are given in Table 13. Interestingly, the table shows 

that the proposed GPR model updating method requires significantly less number of 

average number of iterations compared to complete retraining of the model. Recall that the 

GPR models were initially calibrated using only 3 EMA-based FRFs and updated with 10 

OMA-based FRFs. Thus, it is expected that complete retraining of the model with all 13 

FRFs would not result in much difference in optimization iterations as opposed to updating 

with 10 FRFs. However, the results in Table 13 clearly show that using an initial guess of 

the hyperparameters based on only the 3 initial calibration FRFs is still superior to an initial 

guess starting from no prior information. The number of optimization iterations can be 

further reduced if the variance is assumed to be constant, which would be a valid 

assumption if the underlying physics and the statistics of the measured data were similar. 

Also, the computation time for all methods can be further reduced by parallelizing the 

calibration of the 131 GPR models though the total number of iterations would remain the 

same. 

Table 13. Number of optimization iterations for complete retraining of GPR models vs. 

using model updating with OMA-based FRFs. 

Complete Retraining Updating 
4186 ± 135 2078 ± 103 

5.5 Summary 

This chapter described and experimentally validated a hybrid statistical modelling 

approach to efficiently derive a higher fidelity model for predicting the entire FRF of an 

industrial robot by combining the use of Experimental Modal Analysis (EMA) with 

Operational Modal Analysis (OMA) of a milling process. The GPR modeling approach 
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presented in Chapter 3 was extended to enable the prediction of the entire pose-dependent 

FRF. A Bayesian inference approach for updating the EMA-calibrated GPR models of the 

robot FRF with OMA-based FRF data was shown to improve the model’s RMSE by 34% 

compared to only EMA-based calibration. In addition, the proposed updating methodology 

was demonstrated to reduce the average number of iterations required to determine the 

optimal hyperparameters by 50.3%. Future work involves expanding this methodology to 

higher dimensional workspaces to further realize its practicality. In addition, a methodical 

approach to determine the optimal number of required points and tool paths for EMA and 

OMA, respectively, should be investigated to improve measurement efficiency. 
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

This chapter summarizes the main conclusions and the original contributions of this 

thesis. In addition, it recommends possible areas for future work. 

6.1 Conclusions 

The main conclusions of this thesis are summarized below. 

1. Data-Driven Modeling of the Modal Properties of a 6-DOF Industrial Robot 

 A Gaussian Process Regression (GPR) based statistical modeling approach was 

developed to determine the pose-dependent modal parameters of a 6-dof industrial 

robot.  

 The GPR model was found to accurately model the robot’s dominant natural 

frequency, stiffness, and damping coefficient in its measurement space with 

maximum root mean square errors of 3.31 Hz, 150 KN/m, and 810 Ns/m, 

respectively.  

 The experimental modal analysis results were compared with the modal parameters 

determined from an analytical model. This comparison showed that the undamped 

natural frequency and stiffness of the robot obtained from the analytical model 

deviate significantly from the experimental values as the robot arm is extended 

further from its base. 

 The results showed that the average peak-to-valley vibrations predicted by the 

model followed the experimental trends measured by a laser tracker. The largest 
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and smallest errors between the predicted and measured values were 0.028 mm and 

0.006 mm, respectively. 

2. Pose-Dependent Optimal Controller in Robotic Milling 

 An optimal control methodology for active vibration suppression in robotic milling 

was developed using the outputs of the GPR model to formulate pose-dependent 

state-space matrices to solve the Linear Quadratic Regulator (LQR) problem. 

 The control methodology was shown to reduce the vibration amplitudes from 0.93 

mm to 0.39 mm and from 0.36 mm to 0.15 mm for 480 RPM and 960 RPM speeds, 

respectively. However, at 1440 RPM, the controller is unable to suppress the 

vibrations due to the 32 ms delay between the commanded input and the robot 

controller response. 

 The controller was demonstrated to reduce milling vibration amplitudes by 51% ± 

13% and 43% ± 16% in X and Z directions, respectively, which were also shown 

to be correlated with a decrease in machined surface deviations. 

3. Data-Driven Model Augmentation using Milling Process Data 

 A statistical modelling methodology combining the use of impact hammer 

experiments and milling process measurements to predict the FRF of industrial 

robots was presented and experimentally validated.  

 The OMA results show that cutting data pertaining to milling harmonics far from 

the robot’s natural frequencies can be used to calculate the robot’s FRF since the 

robot’s natural modes were excited by background white noise in the milling force.  
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 Updating a previously calibrated statistical model from impact hammer 

experiments was shown to improve the RMSE by 34% while reducing the number 

of iterations by 50.3% required to determine the optimal hyperparameters and 

update the covariance matrix. 

6.2 Original Contributions 

This research has yielded the following significant contributions: 

1. A robust data-driven modeling approach to predict the tool tip vibrations of a 6-dof 

industrial robot arm in milling applications. 

2. An optimal control strategy for online vibration suppression of a 6-dof articulated 

arm robot. 

3. An approach to improve the prediction accuracy of a data-driven model of the 

robot’s modal vibration parameters incorporating data obtained from milling 

experiments. 

6.3 Recommendations for Future Work 

All methods presented in this thesis can apply to structures with pose-dependent 

vibratory behavior including cranes and humanoid robot structures. In addition, these 

methods can apply to alternate robotic applications including robotic painting and additive 

manufacturing. Even in low-force industrial robotic applications, high acceleration in the 

robot trajectory can induce inertial forces and result in end effector vibrations. Therefore, 

the methods in this thesis can be used to analyze and suppress inertial vibrations and 

improve robot performance. In addition, the data-driven modelling aspect can apply to 
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vibration suppression methods that require knowledge of structural modal properties 

including inertial stiffening and resonant frequency detuning. Inertial stiffening optimal 

control algorithms require a plant model describing how the command input influences the 

structural behavior. Knowledge of the pose-dependent plant model using the data-driven 

modelling approach in this thesis can be used in optimal controller formulation to 

significantly reduce the required manual tuning. In addition, resonant frequency detuning 

involves shunting the structural natural frequency when the external force approaches the 

structure’s natural frequency. Using the data-driven modelling approach in this work for 

structures pose-dependent dynamics, the natural frequency can be tracked as a function of 

position and therefore the resonant frequency detuning approach can be used in a more 

optimal (as opposed to robust) fashion. However, note that use of the data-driven modelling 

for computation of the robot FRF is time consuming and may not satisfy control cycle time 

requirements in vibration suppression. Therefore, alternative efficient methods of utilizing 

the data-driven model for online vibration suppression techniques are critical. In addition, 

though more accurate, data-driven models are known to require more calibration 

measurements than analytical models. Therefore, a hybrid model combining both data-

driven models and analytical models would be an optimal method of improving model 

accuracy while minimizing required measurements. 
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APPENDIX A. MODAL PARAMETER MEASUREMENTS 

 Table A1. Modal parameters from calibration experiments. Z (mm), Rx (degree), 

and Ry (degree) were fixed at 325, 0, and 0, respectively. 

Test 
no. 

 X 
[mm] 

Y 
[mm] 

 Rz 
[deg] 

Natural Frequency [Hz] Stiffness [MN/m] Damping Coefficient [KNs/m] 

X Y Z X Y Z X Y Z 
1 2100 -300 0 16.00 9.00 11.25 3.00 1.10 1.05 7.13 9.89 5.64 

16.00 8.50 11.25 3.00 1.20 1.05 7.13 10.30 5.64 

16.00 9.00 11.25 3.00 1.25 1.05 7.13 9.79 5.64 

2 2100 -300 45 16.09 8.00 11.00 3.50 0.86 1.25 8.31 7.51 5.79 

16.09 8.00 11.00 3.50 0.84 1.00 8.31 8.20 4.63 

16.50 8.00 11.00 3.60 0.80 1.00 8.33 7.64 4.63 

3 2100 -300 90 21.50 9.50 10.79 3.20 1.25 1.32 6.16 7.54 5.44 

21.50 9.00 10.79 3.20 0.95 1.32 6.16 6.05 5.44 

21.50 9.00 10.79 3.20 0.95 1.32 6.16 6.05 5.44 

4 2100 -300 135 15.33 8.98 10.79 2.80 1.00 1.35 6.98 7.36 5.97 

15.33 8.98 10.79 2.80 1.00 1.35 6.98 7.36 5.97 

15.33 8.98 10.79 2.80 1.00 1.35 6.98 7.36 5.97 

5 2100 -300 180 15.33 8.23 11.23 2.99 1.10 1.79 6.14 9.36 8.51 

15.33 8.23 11.23 2.50 1.00 1.79 5.14 8.51 8.51 

15.33 8.23 11.23 2.50 1.00 1.79 5.14 8.51 8.51 

6 2100 0 0 16.00 9.28 11.50 2.50 1.55 1.40 5.47 9.04 6.78 

16.00 9.28 11.50 2.50 1.55 1.40 5.47 9.04 6.78 

16.00 9.28 11.50 2.50 1.55 1.40 5.47 9.04 6.78 

7 2100 0 45 15.50 8.70 11.50 3.00 1.06 1.50 7.70 7.77 6.64 

15.50 8.70 11.50 3.00 1.06 1.50 7.70 7.77 6.64 

15.50 8.70 11.50 3.00 1.10 1.50 7.70 8.05 6.64 

8 2100 0 90 21.83 10.00 11.50 3.50 1.00 1.40 5.10 5.41 6.20 

21.83 9.50 11.50 3.50 1.00 1.40 5.10 5.70 6.20 

21.83 9.50 11.50 3.50 1.00 1.40 5.10 5.86 6.20 

9 2100 0 135 15.00 9.00 11.23 3.00 0.95 1.25 6.54 6.86 5.93 

15.00 9.00 11.23 3.00 0.95 1.25 6.54 6.86 5.93 

15.00 9.00 11.50 3.00 0.95 1.35 6.54 6.86 6.35 

10 2100 0 180 15.33 9.50 11.00 2.88 1.25 1.70 5.91 7.54 8.36 

15.33 9.50 11.00 2.88 1.40 1.70 5.91 8.44 8.36 

15.33 9.50 11.00 2.88 1.40 1.70 5.91 8.44 8.36 

11 2100 300 0 16.51 8.23 11.00 3.40 1.29 1.15 7.21 8.99 5.82 

16.51 7.97 11.00 3.40 1.35 1.15 7.54 9.71 5.82 

16.51 7.97 11.00 3.40 1.20 1.15 7.54 9.11 5.82 

12 2100 300 45 15.50 8.23 11.25 3.00 1.10 1.40 6.78 7.23 6.73 

15.50 8.23 11.25 3.00 1.10 1.40 6.78 7.66 6.73 

15.50 8.23 11.25 3.00 1.10 1.40 6.78 7.66 6.73 
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13 2100 300 90 21.00 8.23 11.00 3.20 1.05 1.35 5.34 7.72 6.14 

21.00 8.23 11.25 3.20 1.05 1.60 5.34 7.72 7.24 

21.00 8.23 11.25 3.20 1.00 1.60 5.34 6.96 7.24 

14 2100 300 135 15.76 8.75 11.23 3.00 1.10 1.20 6.97 7.04 5.70 

15.76 8.75 11.23 3.00 1.10 1.45 6.97 7.04 6.88 

15.76 8.75 11.23 3.00 1.10 1.20 6.97 7.04 5.70 

15 2100 300 180 15.25 9.00 11.00 2.60 1.50 1.30 6.51 8.60 6.40 

15.25 9.00 11.00 2.60 1.50 1.30 6.51 8.60 6.40 

15.25 9.00 11.00 2.60 1.50 1.30 7.05 8.60 6.40 

16 2100 600 0 16.94 7.97 11.25 3.10 1.40 1.20 6.99 10.60 6.28 

16.94 7.97 11.25 3.10 1.40 1.10 6.99 10.60 5.60 

17.00 7.97 11.25 3.40 1.40 1.20 7.64 10.60 6.28 

17 2100 600 45 16.09 8.53 11.25 2.85 1.10 1.10 7.05 7.59 5.76 

15.50 8.53 11.25 2.85 1.30 1.10 7.32 8.49 5.76 

16.09 8.53 11.25 2.85 1.30 1.00 7.05 8.49 4.95 

18 2100 600 90 22.00 9.25 11.23 3.50 0.88 1.50 6.08 6.29 7.12 

22.00 9.25 11.23 3.30 0.88 1.50 5.73 6.29 7.12 

22.00 9.25 11.23 3.30 0.83 1.50 5.73 5.93 7.12 

19 2100 600 135 16.50 9.50 11.23 3.50 1.10 1.35 7.43 7.74 6.89 

16.50 9.50 11.23 3.75 1.10 1.35 7.96 7.74 6.51 

16.50 9.50 11.23 3.05 0.95 1.25 6.47 6.37 6.02 

20 2100 600 180 15.33 8.70 11.23 2.80 1.30 1.25 6.40 9.04 6.55 

15.33 8.70 11.23 2.80 1.30 1.25 6.40 9.04 6.55 

15.33 8.70 11.23 2.80 1.30 1.25 6.40 9.04 6.55 

21 2400 -300 0 16.51 8.53 10.18 3.50 1.20 0.98 6.07 8.51 5.49 

16.51 8.53 10.18 4.00 1.20 0.98 6.94 8.51 5.49 

16.51 8.53 10.18 3.50 1.20 0.98 6.75 8.51 5.49 

22 2400 -300 45 16.51 7.78 10.18 4.00 0.93 0.98 8.87 6.47 5.49 

16.51 7.78 10.18 4.00 0.93 1.05 9.25 6.47 5.91 

16.51 7.78 10.18 4.00 0.93 1.05 9.25 6.47 5.91 

23 2400 -300 90 22.50 8.23 10.50 4.50 0.90 1.30 7.00 5.92 6.70 

22.50 8.75 10.50 4.50 0.83 1.20 7.64 5.59 6.18 

20.00 8.75 10.50 3.80 0.83 1.10 6.96 5.59 5.34 

24 2400 -300 135 15.76 8.53 10.50 3.20 0.95 1.15 7.77 6.03 5.58 

15.76 8.53 10.50 3.20 0.95 1.15 7.77 6.03 5.93 

15.76 8.25 10.50 3.20 0.93 1.15 7.77 6.07 5.93 

25 2400 -300 180 15.76 7.50 10.50 3.60 1.20 1.30 8.74 8.66 6.70 

15.76 7.50 10.50 3.60 1.10 1.30 8.74 7.94 6.70 

15.76 7.50 10.50 3.60 1.10 1.20 8.74 7.94 6.18 

26 2400 0 0 16.51 7.50 10.00 4.00 1.15 0.99 8.85 8.79 5.67 

16.51 7.50 10.00 4.00 1.05 0.99 8.85 8.02 5.67 

16.51 7.50 10.00 4.00 1.15 0.99 8.85 8.79 5.67 

27 2400 0 45 16.51 8.50 10.25 4.20 0.95 1.10 9.29 6.40 5.47 

16.51 8.50 10.25 4.20 0.95 1.10 9.29 6.40 5.47 

16.51 8.50 10.50 4.20 0.95 1.25 9.29 6.40 6.06 

28 2400 0 90 22.00 8.23 10.50 3.75 0.88 1.25 6.51 6.09 6.06 
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22.00 8.23 10.47 3.75 0.88 1.00 6.51 6.09 5.44 

22.00 8.23 10.47 3.75 0.88 1.00 6.51 6.09 5.44 

29 2400 0 135 15.76 8.23 10.50 3.40 0.90 1.10 8.25 6.27 5.67 

15.76 8.23 10.50 3.40 0.90 1.15 8.25 6.27 5.93 

15.76 8.23 10.50 3.40 0.90 1.15 8.25 6.27 5.93 

30 2400 0 180 15.76 8.23 10.47 3.27 1.20 1.20 7.27 8.59 6.53 

15.76 8.23 10.47 3.27 1.00 1.25 7.27 7.16 6.80 

15.76 8.23 10.47 3.27 1.10 1.25 7.27 7.87 6.80 

31 2400 300 0 16.85 7.78 10.47 5.00 1.35 1.00 9.45 10.50 5.44 

16.85 7.78 10.47 5.00 1.10 1.05 9.45 8.10 5.72 

16.85 7.78 10.47 5.00 1.10 1.00 9.45 8.10 5.44 

32 2400 300 45 16.50 7.78 11.00 4.30 0.90 1.10 8.30 6.48 5.70 

16.50 7.78 11.00 4.30 0.90 1.10 8.30 6.48 5.70 

16.50 7.78 11.00 4.30 0.93 1.10 8.30 6.66 5.70 

33 2400 300 90 21.50 8.50 10.47 4.50 0.88 1.10 6.00 6.06 5.99 

21.50 8.50 10.47 4.50 0.88 1.00 6.00 6.06 5.44 

21.50 8.50 10.47 4.50 0.95 1.10 6.00 6.76 5.99 

34 2400 300 135 16.09 8.25 10.47 4.00 0.85 1.00 8.70 5.90 5.32 

16.09 8.25 10.47 3.80 0.85 1.05 8.27 5.90 5.43 

16.09 8.25 10.47 3.80 0.85 1.05 8.27 5.90 5.43 

35 2400 300 180 15.76 8.75 10.50 3.20 1.15 1.15 7.11 7.53 6.70 

15.76 8.75 10.50 3.00 1.15 1.15 6.67 7.53 6.70 

15.76 8.75 10.50 3.00 1.15 1.20 6.67 7.53 7.28 

36 2400 600 0 17.27 8.00 10.00 4.20 1.15 0.97 8.13 8.80 5.71 

17.27 8.00 10.00 4.20 1.15 0.97 8.13 8.80 5.71 

17.27 8.00 10.00 4.20 1.15 0.97 8.13 8.80 5.71 

37 2400 600 45 16.75 8.53 10.50 3.80 1.10 0.93 7.58 7.22 5.19 

16.75 8.53 10.50 4.00 1.10 0.93 7.60 7.22 5.19 

16.75 8.53 10.50 4.00 1.10 0.93 7.60 7.22 5.19 

38 2400 600 90 21.50 7.78 10.50 3.75 0.83 1.05 5.55 6.28 5.09 

21.50 7.25 10.50 4.20 0.75 1.20 5.60 6.59 5.82 

21.50 7.25 10.50 4.20 0.75 1.05 5.60 6.59 5.09 

39 2400 600 135 16.09 7.78 10.50 4.00 0.90 1.10 8.70 6.26 5.34 

16.09 8.25 10.50 4.00 0.92 1.10 8.70 6.39 5.67 

16.09 8.00 10.50 4.00 0.88 1.05 8.70 6.27 5.41 

40 2400 600 180 15.76 8.23 10.18 3.35 1.05 1.15 6.77 7.93 6.83 

15.76 8.23 10.18 3.35 0.95 1.15 6.77 7.35 7.01 

15.76 8.23 10.18 3.35 0.98 1.10 6.77 7.54 6.71 

41 2700 -300 0 64.00 8.23 10.00 4.75 0.85 0.85 1.28 6.21 4.87 

64.00 8.23 10.00 4.75 0.88 0.85 1.28 6.77 4.87 

64.00 8.23 10.00 4.75 0.88 0.80 1.28 6.77 4.58 

42 2700 -300 45 17.27 8.23 10.00 5.40 0.70 0.95 10.90 5.66 5.14 

17.27 8.23 10.00 5.40 0.70 0.95 10.90 5.66 5.14 

17.27 8.23 10.00 5.40 0.70 0.95 10.90 5.66 5.14 

43 2700 -300 90 22.94 7.50 10.00 7.00 0.70 0.90 8.74 5.35 4.87 

22.94 7.50 9.50 7.00 0.70 0.90 8.74 5.35 5.13 
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22.94 7.50 9.50 7.00 0.70 0.90 8.74 5.35 5.13 

44 2700 -300 135 16.09 7.78 9.50 5.00 0.80 0.98 9.89 5.89 5.55 

16.09 7.78 9.50 5.00 0.70 0.98 9.89 5.16 5.55 

16.09 7.78 9.50 5.00 0.70 0.98 9.89 5.16 5.55 

45 2700 -300 180 61.87 7.25 9.50 4.10 0.75 1.00 1.16 6.75 6.37 

63.00 7.50 9.50 4.50 0.83 1.00 1.36 7.18 6.37 

63.00 7.50 9.50 4.00 0.78 1.00 1.11 6.74 6.37 

46 2700 0 0 64.00 7.50 9.73 4.50 0.78 0.80 1.22 6.74 5.03 

64.00 7.50 9.73 4.50 0.78 0.80 1.22 6.74 5.03 

64.00 7.50 9.73 4.50 0.78 0.80 1.22 6.74 5.03 

47 2700 0 45 17.27 8.09 9.73 5.50 0.73 0.80 10.10 5.13 4.84 

17.27 8.09 9.73 5.50 0.73 0.80 10.10 5.13 4.84 

17.27 8.09 9.73 5.50 0.73 0.80 10.10 5.13 4.84 

48 2700 0 90 23.00 8.50 9.73 5.50 0.78 0.92 7.61 5.22 5.56 

23.00 8.25 9.73 5.50 0.76 0.92 7.61 5.24 5.11 

23.00 8.25 9.73 5.50 0.70 0.90 7.61 4.86 5.01 

49 2700 0 135 16.09 7.24 9.73 5.25 0.73 0.90 9.80 6.06 5.45 

16.09 7.50 9.73 5.25 0.75 0.90 9.80 6.05 5.45 

16.09 7.50 9.73 5.25 0.75 0.90 9.80 6.05 5.45 

50 2700 0 180 63.00 8.09 9.73 4.00 0.85 0.93 1.01 6.52 5.45 

63.00 8.09 9.73 4.00 0.85 0.93 1.01 6.52 5.45 

63.00 8.09 9.73 4.00 0.85 0.93 1.01 6.52 5.45 

51 2700 300 0 63.44 7.46 9.73 4.00 0.83 0.78 1.20 6.66 4.71 

63.44 7.49 9.73 4.00 0.85 0.78 1.20 7.22 4.71 

63.44 7.49 9.73 4.00 0.83 0.78 1.20 7.01 4.71 

52 2700 300 45 17.00 7.78 9.73 5.25 0.80 0.78 11.30 6.29 4.71 

17.00 7.78 9.73 5.25 0.80 0.78 11.30 6.29 4.71 

17.00 7.78 9.73 5.25 0.80 0.78 11.30 6.29 4.71 

53 2700 300 90 22.00 7.78 9.73 5.75 0.70 0.83 7.90 5.58 4.99 

22.00 7.78 9.73 5.75 0.70 0.83 7.90 5.58 4.99 

22.00 7.78 9.73 5.75 0.68 0.83 7.90 5.39 4.99 

54 2700 300 135 16.51 8.00 9.73 4.00 0.70 0.88 8.85 5.36 5.30 

16.51 8.00 9.73 4.50 0.65 0.88 9.95 4.97 5.30 

16.51 8.00 9.73 4.50 0.65 0.88 9.95 4.97 5.30 

55 2700 300 180 63.00 7.78 9.73 4.30 0.93 0.90 1.06 7.33 5.45 

63.00 8.00 9.73 4.30 0.90 0.90 1.06 6.89 5.59 

63.00 8.00 9.73 4.30 0.90 0.90 1.06 6.89 5.59 

56 2700 600 0 63.84 7.49 9.28 3.50 0.83 0.85 1.14 7.36 5.25 

63.84 7.49 9.75 3.75 0.83 0.80 1.23 7.36 4.70 

63.84 8.00 9.75 3.75 0.80 0.80 1.23 6.53 4.70 

57 2700 600 45 17.27 7.50 9.50 5.25 0.90 0.88 10.60 6.88 4.98 

17.27 7.50 9.50 5.25 0.85 0.88 10.60 6.49 4.98 

17.27 7.50 9.50 5.00 0.85 0.88 10.10 6.49 4.98 

58 2700 600 90 22.00 7.78 9.50 5.00 0.75 0.88 7.96 5.90 4.98 

22.00 7.78 9.50 5.00 0.75 0.88 7.96 5.90 4.98 

22.00 7.78 9.50 5.00 0.75 0.88 7.96 5.90 4.98 
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59 2700 600 135 16.85 7.78 9.50 5.00 0.70 0.88 9.45 5.58 4.98 

16.85 7.78 9.50 5.00 0.70 0.93 9.45 5.58 5.27 

16.85 8.00 9.50 0.65 0.93 0.93 9.45 5.43 5.27 

60 2700 600 180 64.50 7.49 9.50 0.77 0.98 0.98 1.05 6.74 5.88 

64.50 8.00 10.00 0.80 0.95 0.95 1.05 6.53 5.44 

64.50 8.00 10.00 0.77 0.95 0.95 1.05 6.28 5.44 
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Table A2. External validation measurements. Z (mm), Rx (degree), and Ry (degree) were 

fixed at 325, 0, and 0, respectively. 

Test 
no. 

 X 
[mm] 

Y 
[mm] 

 Rz 
[deg] 

Natural Frequency [Hz] Stiffness [MN/m] Damping Coefficient [KNs/m] 

X Y Z X Y Z X Y Z 

1 2250 -150 0 16.00 8.50 11.33 3.75 1.20 1.70 7.46 8.32 7.16 

2 2250 -150 45 16.09 8.00 10.75 3.25 1.00 1.30 7.07 8.36 5.77 

3 2250 -150 90 19.25 8.50 11.00 2.90 0.88 1.15 4.80 7.54 5.32 

4 2250 -150 135 15.51 8.00 11.00 3.15 0.96 1.50 7.11 7.45 6.51 

5 2250 -150 180 15.10 8.25 10.75 3.25 1.12 1.35 6.51 8.21 6.00 

6 2250 150 0 16.50 7.50 10.75 4.00 1.10 1.35 7.72 8.87 6.00 

7 2250 150 45 18.00 8.50 11.01 3.50 0.97 1.35 6.85 6.54 5.85 

8 2250 150 90 19.13 8.00 10.79 3.00 0.85 1.35 4.49 6.09 6.37 

9 2250 150 135 18.00 8.00 10.75 3.50 0.96 0.94 7.18 6.88 4.71 

10 2250 150 180 15.00 8.25 10.63 3.00 1.18 1.05 6.68 8.00 5.01 

11 2250 450 0 16.50 8.00 11.25 4.25 1.15 1.55 8.21 8.69 7.02 

12 2250 450 45 17.00 8.25 10.75 2.65 1.00 1.10 5.91 6.94 5.54 

13 2250 450 90 19.42 8.01 11.00 1.99 0.90 1.15 4.13 6.26 6.09 

14 2250 450 135 16.27 8.50 10.63 3.50 1.03 1.12 7.53 6.94 6.54 

15 2250 450 180 15.00 8.50 10.41 3.25 1.15 1.30 6.66 7.75 7.35 

16 2550 -150 0 17.27 9.31 9.95 5.19 1.05 1.10 10.49 7.64 6.69 

17 2550 -150 45 18.03 7.50 10.00 4.00 0.78 0.83 7.06 6.66 4.49 

18 2550 -150 90 19.25 7.60 10.00 3.50 0.73 1.03 5.22 7.01 5.23 

19 2550 -150 135 16.00 8.23 9.88 4.50 0.78 0.88 8.06 5.99 4.82 

20 2550 -150 180 15.76 7.50 10.10 3.25 0.90 1.02 6.56 7.64 5.95 

21 2550 150 0 16.85 7.00 10.03 5.98 0.80 0.93 10.18 7.09 4.99 

22 2550 150 45 17.65 7.25 10.03 3.90 0.73 0.88 7.03 5.73 4.72 

23 2550 150 90 19.25 7.50 10.10 3.25 0.79 0.90 4.85 6.54 5.07 

24 2550 150 135 18.00 7.75 10.10 5.00 0.80 0.85 8.80 6.08 4.62 

25 2550 150 180 15.76 7.75 10.10 3.25 0.85 0.83 6.56 6.63 4.55 

26 2550 450 0 16.85 7.50 9.73 5.50 0.92 0.88 10.39 7.81 5.72 

27 2550 450 45 17.65 8.00 10.00 4.00 0.75 0.83 6.85 5.97 4.99 

28 2550 450 90 19.25 7.75 10.00 3.15 0.73 0.83 4.95 6.25 5.12 

29 2550 450 135 16.44 7.75 9.88 6.00 0.75 0.80 8.07 6.24 4.67 

30 2550 450 180 15.76 8.01 9.75 3.10 0.82 0.80 6.26 6.48 4.90 
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