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SUMMARY 

This dissertation proposes a general class of solution and Machine Learning (ML) 

techniques to support the designs of several critical Electromagnetic (EM) structures at 

mm-wave frequency ranges, for which the main applications are to directly address the 

emerging power and efficiency challenges of the next generation of wireless 

communication. Starting from the coupled line theory, we theoretically propose a common 

solution for Impedance Transforming Baluns, Power Combiners, Out-Phasing circuits, and 

Doherty networks, which we refer to as the BCOD structure. The main contribution of this 

dissertation is to develop Machine Learning techniques that, within the computational time 

of seconds, can fully automate EM designs of the BCOD network on various on-chip metal 

stacks for a wide range of electrical specifications. Training neural networks that accurately 

learn the physical-electrical relationship, we show that our ML models can accurately 

predict the electrical properties from physical dimensions, reducing the need for time-

consuming full-wave EM simulations. From that, we formulate multiple ML algorithms 

for automating mm-wave designs, which drastically reduce design time from days-weeks-

months to seconds, considerably improve the reliability of EM designs, and systematically 

accomplish the lowest metal loss. Notably, optimizing for the lowest metal loss is a 

challenging problem, and to the best of our knowledge, we are not aware of any prior 

techniques that can systematically do so.  

Importantly, the application of our proposed ML approaches can go beyond the task of 

automating EM structures. Serving as a new tool for bigger optimization loops, the ML 

techniques can theoretically answer several challenging, abstract, and high-level questions 
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for mm-wave designs, such as the calculation of the optimum transistor sizes, or the 

derivation of the rule of thumb between device sizes and mm-wave frequencies. 
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CHAPTER 1. INTRODUCTION 

The next generation of wireless communication is moving toward mm-wave frequency 

ranges and above. With GHz channel bandwidth and Gsym/s modulation rates, mm-wave 

communication systems promise to deliver 100 to 1000 times higher channel capacity and 

data throughput than the current radiofrequency (RF) systems. This extreme data rate will 

allow life-changing experiences on various applications, such as the fifth generation (5G) 

wireless network, virtual reality (VR), augmented reality (AR), cloud computing, radar, 

and driverless automobiles. The next generation of wireless communication will transform 

our entire infrastructure for extreme indoor/outdoor conditions, remote control, aviation, 

robotic, ultra-broadband communication (>10Gb/s), object tracking, critical infrastructure 

protection and control, smart grid, smart homes/building cities, and smart wearable 

devices. With this premise, enhanced mobile broadband could achieve faster and more 

uniform user experiences, massive internet of things could have more efficient 

communication with a deeper coverage, and mission-critical control could accomplish 

ultra-low latency and high reliability. 

With the next wave of technology, researchers have focused on designing robust and 

efficient mm-wave systems to pave the way for future generations of mm-wave wireless 

communication. On one hand, the fundamental drawback is that mm-wave ranges are close 

to the cut-off frequencies of transistors where the active devices exhibit inferior 

performance. On the other hand, the major challenges are centered on the power and 

efficiency of mm-wave systems, which the power challenge implies designing mm-wave 

systems with adequate output power to overcome extreme mm-wave path loss, and the 
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efficiency challenge involves improving the average efficiency of the entire mm-wave 

system when transmitting modulated signals.  

The development of mm-wave circuits has been driven by the innovation of 

electromagnetic (EM) or passive structures. Mm-wave designs have two complementary 

parts: active circuits and passive structures. Limited innovations in the last two decades 

were on the side of active circuits. Because active devices exhibit similar functionalities in 

both the RF and mm-wave frequencies, researchers still employ conventional techniques 

at RF bands to design active circuits at mm-wave frequency ranges. At the same time, over 

the last two decades, researchers have extensively explored various novel EM structures to 

design numerous mm-wave tasks, where the clear shift in design paradigms are from 

lumped EM structures at RF frequencies to distributed EM structures at mm-wave ranges. 

Challenges 

Designing novel EM structures is the central research approach to resolve the emerging 

mm-Wave challenges. For example, the major research direction to resolve the power 

challenge at mm-wave frequencies has been to design efficient mm-wave EM structures 

that can combine power from as many active devices as possible. Additionally, the main 

direction to improve mm-wave efficiencies when transmitting modulated signals has been 

to explore Out-Phasing circuits or Doherty networks. The current bottleneck of those 

efficiency solutions is the realization of EM structures for the output networks of Out-

Phasing and Doherty structures. Numerous attempts have been directed to design Power 

Combiners, Out-Phasing circuits, and Doherty networks, but all those designs appear to be 

separate topics. Additionally, most of the solutions proposed in the literature have been for 
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single-ended active cores, and to systematically design those EM structures for differential 

active circuits remains a major challenge. 

Furthermore, a full EM design includes a physical realization of a theoretical EM 

structure. Conventionally, this full EM design is often achieved by iteratively updating 

physical dimensions obtained from simulated results of commercial EM solvers, which 

engineers and researchers often take many iteration steps to complete a single EM design. 

The current approach to physically realize EM structures exhibits several major drawbacks. 

The computational time of commercial EM simulators is slow, such that the overall EM 

design often consumes a large amount of time and labor. Also, the iterative process, which 

involves manual updates of design parameters, often exhibits a high variance in the quality 

of designs, as these updates can be highly random and subjective to the experiences and 

impromptu decisions of circuit designers.  

The drawbacks of time consuming, labor intensive, and high variance of the current 

approach to design EM structures motivates us to brainstorm a new approach. Particularly, 

we see value in adding the new dimension of Machine Learning (ML) to existing EM 

methods, and from that we formulate ML techniques that can resolve many drawbacks of 

the current approaches used to design mm-wave EM structures. 

Approaches and Contributions 

In this dissertation, we develop theoretical and Machine Learning techniques to design 

mm-wave EM structures that resolve various challenges of the next generation of wireless 

communication. The first contribution of the thesis is to propose a class of solutions for 

mm-wave EM structures that can answer both the power and efficiency mm-wave 
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challenges. We apply theoretical analysis to develop a unified design element for a variety 

of mm-wave design tasks, including Impedance Transforming Baluns, Combiners, Out-

Phasing circuits, and Doherty networks, which we refer to as the BCOD structure. 

Moreover, the main contribution of this thesis is our proposed automation techniques that 

break the fundamental bottlenecks of the current approaches to design EM structures. 

Adding a Machine Learning (ML) dimension to the existing EM approaches, we present a 

technique to train ML models that can accurately predict electrical labels, and from that we 

develop various automation architectures that can drastically reduce the design time, 

decrease the variance, and improve the EM design quality. 

Combining our BCOD theoretical solutions and our proposed automation pipeline with 

Machine Learning techniques, we illustrate various pipelines that can fully automate the 

EM designs of critical mm-wave structures, such as Directional Couplers, Impedance 

Transforming Baluns, Power Combiners, Out-Phasing circuits, and Doherty networks. 

With our proposed approaches, the full EM structures that resolve the mm-wave power and 

efficiency challenges can be accurately designed within a matter of seconds. Notably, our 

techniques can directly optimize EM circuits for the lowest metal loss. To the best of our 

knowledge, we are not aware of any prior work that can systematically resolve the lowest 

metal loss specifications. 

From the Machine Learning models we built, interestingly, we have a tool to answer 

many challenging, abstract, and high-level circuit questions. For example, the critical 

question when working with a new process at a new frequency is to select the optimum 

device size that maximizes power or efficiency, but how to address this high-level question 

is a challenge. Additionally, the well-known rule of thumb for mm-wave designers is that 
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the size of transistors decreases as the mm-wave frequency goes up, but how to quantify 

this relationship remains elusive. We will apply the Machine Learning approaches we built 

to answer those high-level questions. 

In section 1.1, we begin our dissertation by reviewing the literature on recent efforts to 

design mm-wave architectures and EM structures that can address various emerging mm-

wave challenges. We then review several prior works that apply Machine Learning 

techniques to design EM circuits in section 1.2. Lastly, we discuss the problem scope and 

the organization of this dissertation in section 1.3. 

1.1 Literature Survey on EM Structures for Mm-Wave Designs 

Various prior publications have explored techniques to resolve the fundamental 

challenges of mm-wave designs, which includes designing Power Combiners to boost the 

mm-wave output power and implementing the Out-Phasing circuits and Doherty networks 

to improve mm-wave average efficiencies when transmitting modulated signals. We 

summarize the latest techniques in this literature survey. 

Power Combiner Techniques 

 

Figure 1.1 Examples of T-Line combiners in the literature. 
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Viewed as the key to boost the output power of transmitter systems, Power Combiners 

at mm-wave have been a major topic of research in the last two decades. Particularly, 

researchers have regularly revisited two major directions: Parallel-connected (or T-Line) 

and series-connected (or Distributed Active Transformers) combiners. Figure 1.1 depicts 

the T-Line combiners in several state-of-the-art mm-wave circuits. The T-Line structures, 

which combine signals at T-junctions, can efficiently support a wide range of impedance 

transformation and effectively combine power from many cells. For example, recent 

publications have demonstrated 1-to-8, 1-to-16, or 1-to-32 power combiners with the T-

line structure [1]-[8]. Although scalable and easy to use, the structure can only combine 

power from single-ended ports. Additionally, a design might exhibit an excessive amount 

of passive loss when T-Line traces are lengthened to increase the number of combined 

cells. Isolation between power cells is not necessary, but if imposed, one direction is to 

design an isolation resistor as commonly used in Wilkinson power dividers/combiners. 

 

Figure 1.2 Examples of series-connected Power Combiners from the literature. 
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Furthermore, Fig. 1.2 illustrates the series-connected power combiners that have 

continuously drawn attention from researchers ever since the publications from California 

Institute of Technology demonstrated the first >1W CMOS Power Amplifier (PA) at RF 

frequency (2GHz) in the early 2000s [9][10]. Named as Distributed Active Transformers 

in one specific layout, the structure can be viewed as the default choice when designing 

transmitters at RF frequencies by both academic and industrial designs. However, the usage 

of this network at mm-wave has always been a topic of debate over the last two decades 

[11][12]. Most publications criticize the capacitive coupling for distorting impedances seen 

by active cells and causing the structure not to work in mm-wave frequency ranges. 

Efficiency Techniques: Out-Phasing and Doherty Circuits 

To efficiently transmit modulated signals with large Peak-to-Average Power Ratios 

(PAPR), such as 64-QAM or OFDM, mm-wave transmitters must be efficient at both peak 

power and deep Power Back-Off (PBO). This goal motivates mm-wave circuit designers 

to explore various advanced techniques, such as Out-Phasing or Doherty circuits, rather 

than the conventional class-AB amplifiers to construct a mm-wave system with an 

additional efficiency peak at deep PBO. The common insights of those techniques are to 

actively modulate the output load, so that the impedance seen by PA cells can increase to 

meet the load-pull condition at lower output power, subsequently creating an additional 

efficiency peak at PBO. Invented in the early 1930s, both Out-phasing and Doherty 

architectures are still the major directions in recent research efforts to solve the efficiency 

challenges when transmitting modulated signals [14]-[29]. 
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Out-Phasing Techniques 

Invented earlier was the Out-Phasing architecture that utilizes Out-Phasing circuits 

together with Chirex compensation on the Out-Phasing inputs between 2 signal paths to 

accomplish the second efficiency peak at PBO (see Fig. 1.3) [13]. However, researchers 

often criticize the generation of Out-Phasing signals that involves substantial digital pre-

distortion and baseband overhead for being the major bottleneck when deploying Out-

Phasing systems in practice.  

 

Figure 1.3 Conceptual drawing of the Out-Phasing system and the Out-Phasing network as a non-isolating 

power combiner. 

Although Out-Phasing architectures might look complex in appearance, after working 

out the math, the key to design is essentially a non-isolating power combiner that sums the 

input voltages (see Fig. 1.3). Researchers have actively focused on proposing novel 

electromagnetic (EM) structures to design these non-isolating circuits in recent years [14]-

[19]. For example, [18] presents a triaxial balun Out-Phasing PA, while [19] illustrates an 
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on-antenna Out-Phasing network. Both papers agree that implementing an efficient Out-

Phasing combiner is the major challenge when designing Out-Phasing architectures. 

Doherty Techniques 

 

Figure 1.4 Conceptual drawing of the Doherty architecture with parallel and series combiners, the 

theoretical efficiency curve, and the Microwave network realization. 

Willian Henry Doherty, who invented the architecture named after him in 1936 [20], 

introduced a novel scheme with Main and Auxiliary PAs that actively modulate the loads 

to enhance efficiency at 6dB PBO (see Fig. 1.4). Intrinsically demanding low baseband 

digital signal processing overhead and instantaneously supporting wideband modulation, 

the circuits proposed by Doherty remain a primary and popular choice of architectures to 
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enhance efficiency at PBO almost a century after the original invention. These days, 

researchers still actively develop Doherty architectures for numerous electronic processes 

and at various frequency bands [21]-[29]. 

Two major challenges that researchers and engineers must overcome when designing 

Doherty systems are to accurately synchronize the operation of Main-Auxiliary PAs and 

to efficiently design Doherty output networks that actively modulate output loads. 

Synchronizing between PAs can be done by employing adaptive biasing circuits but 

designing an efficient Doherty output network remains a major challenge at high mm-wave 

frequency ranges. 

1.2 Machine Learning for EM Designs 

 

Figure 1.5 Examples of EM design with Machine Learning (a) from [34], (b) from [37]. 
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Before coming back to the topic of mm-wave EM designs, we make a detour to review 

Machine Learning (ML) and its application to EM designs. Arguably one of the most active 

areas of research today, Machine Learning attempts to solve the fundamental problem of 

learning the relationship between inputs and outputs. Depending on various topics and 

fields of studies, the definition of inputs and outputs can be relatively abstract. For example, 

inputs can be the properties of a house, such as locations, areas, and furniture, and outputs 

can be the prices of houses. In Computer Vision, inputs can be images and outputs can be 

what objects are inside and where they are located, while in Natural Language Processing, 

inputs can be an English sentence and outputs can be a French sentence with the same 

meaning. In Human Computer Interaction, inputs can be a time-series signals from several 

sensors inside an iPhone, and outputs can be the actions the owners of these iPhone make. 

Substantial training data plus advancements in ML techniques allow a high level of 

accuracy when making these input-output predictions, leading to many ML models today 

even surpassing human’s predictions.  

In EM designs, we can apply Machine Learning to learn various input and output 

relationships (see Fig. 1.5) that are either computationally expensive or hard to compute. 

After “squeezing” the input-output information into a compact ML model, we can directly 

utilize optimization techniques to design Microwave circuits. For example, [34] builds a 

ML model to learn the performance of a CPW Symmetric T-Junction that achieves a very 

close result with EM simulation, and then uses this ML model instead of an EM simulator 

to optimize a CPW folded double-stub filter. The ML model has a much faster running 

time compared to the EM simulator, which allows the direct usage of gradient descent to 

optimize EM dimensions. Also, the ML model in [34] learns the large-signal behaviors of 
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a MESFET to design a 3 stage MMIC amplifier. [35] builds ML models to design spiral 

inductors, 4-pole, and 6-pole filters, while [36] presents a novel eigenmode-based ML 

model to automate the design of a microstrip Bandpass filter. In a different approach, [37] 

utilizes the latest development in Deep Reinforcement Learning to design patch antennas 

with improved antenna gain. General agreements are that many behaviors of passive/active 

components/circuits can be accurately learned by ML models. The computation time of 

ML models is much faster than running EM experiments from scratch, and the knowledge 

learnt by ML models can be directly applied to the related engineering tasks without the 

repetition of re-running full-wave EM experiments.  

Applying Machine Learning techniques to solve mm-wave problems remains a rarely 

explored area. Mm-wave designs entail several key EM structures that are repeatedly used 

in many building mm-wave blocks. If some can spare an effort to collect data and train ML 

models that learn how to design these structures accurately and efficiently, the collected 

data and models would be useful for the entire community. 

1.3 Problem Scope and Organization of The Dissertation 

The last decade witnessed many active research activities in mm-wave designs. The 

deployment of the next generation of wireless communication has drawn researchers and 

engineers together at this frequency band. While RF circuit design often utilizes inductors 

and transformers, mm-wave design increasingly employs Microwave circuits. Driven by 

emerging mm-wave challenges, various microwave topics have emerged, and numerous 

microwave solutions have been proposed to resolve mm-wave challenges.  
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In this thesis, starting from the theory of coupled lines, we develop a common class of 

solutions for mm-wave EM designs that can resolve many emerging mm-wave challenges, 

which include Impedance Transforming Baluns, Power Combiners, Out-phasing circuits, 

and Doherty networks. We refer to the common solution as the BCOD structure, for which 

we will first formulate a general theory and then build various Machine Learning 

techniques to automate full EM designs of this class of solution. Interestingly, the Machine 

Learning approaches we develop can advance beyond the BCOD applications and serve as 

a new tool to help answer many high-level and abstract questions arising in mm-wave 

designs. 

The organization this dissertation is as follows: 

Chapter 2 discuss the theory of the proposed BCOD structure. We begin by defining an 

electrical specification, which involves output impedance ZL, device optimum impedance 

ZS, and device parasitic capacitance ZC= ZS/Q, for various critical EM structures such as 

baluns, combiners, Out-Phasing circuits, and Doherty networks. We then mathematically 

and numerically design the BCOD structure when given a mm-wave design task and a 

specification of ZL, ZS, and Q. Our derivation proves that theoretically the proposed BCOD 

structure has a broad design space that contains solutions for many emerging mm-wave 

challenges. 

Chapter 3 employs Machine Learning models to accurately compute electrical 

properties of mm-wave circuits from physical dimensions, which the computation is 

conventionally done by commercial EM solvers. To build the ML models, we sample the 

physical dimensions from a continuous design space and simulate the EM structure to 
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collect data, extract electrical labels from simulated S-parameter files, and train neural 

networks to learn the relationship between the outputs as extracted electrical labels and the 

inputs as physical dimensions. Collecting data and training physical-electrical ML models 

for coupled lines and vanilla baluns, we employ the K-fold validation techniques to 

evaluate those ML models, where the validation results demonstrate the excellent accuracy 

of the prediction from ML models. 

Chapter 4 and 5 propose several automation algorithms to fully automate the design of 

various EM structures, which includes Directional Couplers, Impedance Transforming 

Baluns, Power Combiners, Out-Phasing circuits, and Doherty networks. The proposed 

automation algorithms utilize the theoretical derivation in Chapter 2 to convert from high-

level to mid-level electrical specifications and employ the pre-trained ML models in 

Chapter 3 to compute mid-level parameters from physical dimensions. With multiple 

initializations of physical dimensions and gradient descent, the algorithm gradually 

optimizes physical parameters to achieve the electrical specifications with the lowest loss. 

Chapter 4 demonstrates a number of automation algorithms that employ the ML models 

for coupled lines, while Chapter 5 shows several automation algorithms that use the ML 

models for vanilla baluns. Verified for numerous electrical specifications and dielectric 

thicknesses, the proposed algorithms can accurately automate EM structures for various 

EM design tasks within the design time of seconds. 

Chapter 6 expands the Machine Learning approach to address several abstract and high-

level questions concerning mm-wave designs. One of the challenges is to compute the 

optimum device size that results in highest efficiency when given the process and the 

frequency of operation. Another challenge is to qualify the relationship between device 
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sizes and mm-wave frequencies, where the rule of thumb is to reduce the device sizes when 

operating at higher frequencies. Additionally, we also apply the Machine Learning 

technique to study the implementable range of electrical specifications for the BCOD 

structure. From the results in Chapter 6, we see that the ML approaches have opened doors 

and served as a new tool to understand many bigger pictures associated with mm-wave 

designs. 

Chapter 7 concludes the dissertation and discusses several major directions for future 

research. 
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CHAPTER 2. THE BCOD STRUCTURE: A THEORETICAL 

PERSPECTIVE 

In this chapter, we develop a common class of solutions that can be utilized in a variety 

of mm-wave design tasks, including Impedance Transforming Baluns, Power Combiners, 

Out-Phasing circuits, and Doherty networks, which we refer to as the BCOD structure. As 

an extension of a Marchand balun with shorter electrical lengths and two lumped 

capacitors, the BCOD structure transfers power between differential active cores and a 

single-ended load to support the operation of a differential mm-wave architecture.  

To develop a common theory for the BCOD structure in mm-wave designs that often 

involve strong parasitic capacitance, we redefine all design tasks into a common 

specification that includes a load impedance ZL, an optimum source impedance ZS (or Rin), 

and a device parasitic capacitance ZC = ZS/Q. From the theory of coupled lines and our 

mathematical analysis, we develop a numerical approach to theoretically solve the BCOD 

structure for arbitrary values of ZL, ZS, Q, which represents a wide range of electrical 

specifications in various scenarios of  mm-wave designs. The theoretical analysis proves 

that the proposed BCOD structure has a broad design space that contains solutions for 

many emerging mm-wave challenges.  

2.1 The BCOD Structure 

In this dissertation, for many mm-wave design tasks, we develop a common class of 

solutions that involves Impedance Transforming Baluns, Power Combiners, Out-Phasing 

circuits, and Doherty networks. We call the common solution the “BCOD structure” to 
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annotate various applications of our proposed approaches. We confine the analysis of our 

proposed BCOD design in this dissertation to two basic structures: the vanilla coupler-

based balun and the series-connected coupler-based balun (see Fig. 2.1), which presents an 

extension of the Marchand balun with shorter electrical lengths and several lumped 

capacitors. These structures, while simple in appearance, can resolve many emerging mm-

wave challenges.  

 

Figure 2.1 (a) The vanilla coupler-based balun and its practical implementation (b) The series-connected 

coupler-based balun and its practical implementation. 

Figure 2.1a illustrates the vanilla coupler-based balun, which consists of two distributed 

coupled lines and two lumped capacitors. The balun property of the structure comes from 

the blocking of the even-mode transmission, as theoretically presented in [30]. In practical 

implementation, we utilize two AC short-circuited terminations to provide DC biasing 

without a choke and employ the lumped capacitors to naturally absorb the device parasitic 

capacitance of the PA core. The design space of the vanilla coupler-based balun includes 
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Depicted in Fig. 2.1b, the second structure we want to employ is the series-connected 

coupler-based balun, which extends the ideas of the vanilla coupler-based balun by 

cascading two coupler-based baluns in series. For simplicity, we constrain the design to 

use the same lumped C and ZS for the two coupler sections. Compared to the vanilla 

coupler-based balun, the series-connected balun has 3 additional design dimensions: Ze2, 

Zo2, θ2. The combination of both structures can lead to solutions for designing many 

advanced mm-wave circuit architectures. 

From the definition of the BCOD structure, section 2.2 redefines all design tasks into a 

common specification with a load impedance ZL and differential active cores that with a 

load impedance ZS and a parasitic capacitance ZC = ZS/Q. Section 2.3 mathematically 

derives solutions for Impedance Transforming Baluns, and sections 2.4 and 2.5 propose 

the solutions for Out-Phasing circuits and Doherty networks, respectively. We present 

several theoretical solutions for Power Combiners in section 2.6 and conclude the 

theoretical analysis in section 2.7. 

2.2 Common Specifications for the BCOD Designs 

The BCOD applications, including Impedance Transforming Baluns, Power Combiners, 

Out-Phasing circuits, and Doherty networks, might seem to be separate topics, but all share 

the similar design specifications and mechanisms. All applications require a transfer of 

power between a single-ended load with an impedance ZL and differential active cores that 

inherently exhibit an optimum load ZS with a device parasitic capacitance ZC = ZS/Q. To 

develop a common specification for those applications, in this section, we will define the 

BCOD design from an electrical specification of 3 parameters: ZL, ZS, and ZC = ZS/Q. 
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2.2.1 Impedance Transforming Baluns 
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Figure 2.2 Examples of the use of Impedance Transforming Baluns in several mm-wave blocks. 

The first structure we want to design is Impedance Transforming Baluns. Employed 

everywhere in mm-wave systems, Impedance Transforming Baluns match impedances 

from sources to loads, resonate out device parasitics, and convert differential to single-

ended signals and vice versa (see Fig. 2.2). The Impedance Transforming Baluns at the 

output network of PA designs play a crucial role in determining the efficiency of entire 

mm-wave transmitter systems, because improving the loss of this output balun by 0.5dB 

increases the efficiency of the transmitter system by 10%. When used at the inputs in 

differential LNAs, the balun becomes critical for the overall Noise Figure of receiver 

systems, since an improvement of 1dB in the loss of an input balun boosts the Noise Figure 

of the receiver systems by 1dB. In balanced mixers, the mm-wave impedance transforming 

baluns are employed for matching at both RF and LO paths. The broadband design of PAs, 

LNAs, Mixers, and Phase Shifters requires broadband baluns that maintain the same 

transformation ratio over a broad bandwidth. Advancing the techniques used to design 

Impedance Transforming Baluns will assist the designs of all those mm-wave blocks. 
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Figure 2.3 (a) Schematic of vanilla coupler at the input and output network. (b) An input network with Cin 

and (c) an output network with Cout absorbed inside the impedance transforming balun. 

Regardless of the applications in PAs, LNAs, Mixers, etc., all differential cores have an 

input impedance Rin, a parasitic capacitance Cin, a parasitic capacitance Cout, and a desirable 

output load Rout (see Fig. 2.3a). While baluns in Microwave circuits and discrete 

components often work with standard 50Ω loads at both inputs and output, baluns in mm-

wave designs must additionally resonate out the device parasitic impedance ZC and perform 

impedance matching from ZL (typically 50Ω) to a desirable impedance ZS at the differential 

transistor cells (see Fig. 2.3a).  

In mathematical terms, we want to develop an Impedance Transforming Balun that 

transforms from the load impedance ZL to the source impedance 𝑍𝑆  = Q𝑍𝐶 and resonates 

out the device parasitic capacitance 𝑍𝐶  = 𝑍𝑆/𝑄 for arbitrary values of ZL, ZS, and Q. 
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2.2.2 Power Combiners 

Always the fundamental problem of any wireless communication system, generating 

more output power is often achieved by employing Power Combiner structures, since this 

approach can boost the output power without trading off linearity performance. At mm-

wave frequencies, generating power is even harder because the mm-wave range is close to 

the cut-off frequency of transistors. T-Line parallel combiners are the prevalent choice, but 

to design series-connected power combiners at mm-wave frequencies remains a major 

challenge. 

Power Combiner

   Φ1 Φ2 ΦN

PA1PA2PA N

 I0  I0  I0 ΦN  Φ2  Φ1

ZL=50 

Zout_N Zout_2 Zout_1

Zout_1 = Zout_2 =     Zout_N  

Figure 2.4 Design specifications for mm-wave Power Combiners. 

Compared to Impedance Transforming Baluns, Power Combiners also absorb the 

parasitic capacitance of active devices but must deal with more than one active cores, as 

shown in Fig. 2.4. For simplicity, we assume that all the active cores are identical in the 

design of Power Combiners. Given the same active cores, the condition for Power 

Combiners is that all active devices must see the same conditions. In mathematical terms, 

we want to design a Power Combiner that works with N active differential cores, 

transforms from the load impedance ZL to N source impedances, each of which is 𝑍𝑆  =
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Q𝑍𝐶 ,  and resonates out N device parasitic impedances 𝑍𝐶  = 𝑍𝑆/𝑄. The critical parameters 

in a power combiner are the loss and impedance transformation ratio ZL/ZS and the number 

of combined cells. 

2.2.3 Out-Phasing Circuits 
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Figure 2.5 (a) Derived microwave network definition of Out-Phasing EM networks (b) Design 

specifications for mm-wave Out-Phasing circuits. 

One of the key solutions for improving the efficiency for transmitting modulated 

signals, Out-phasing architectures utilize Out-Phasing EM structures together with Chriex 

compensation to actively modulate the load and boost the efficiency at Power-Back Off 

(PBO). To a certain extent, an Out-Phasing EM structure without Chirex compensation is 

a special case of a Power Combiner with an additional constraint of satisfying a [Y] matrix 

as shown in Fig. 2.5a.  

In mathematical terms, we want to design an Out-Phasing EM structure that works on 

two differential pairs, each having an optimum impedance of ZS, a device parasitic 

impedance of ZC=ZS/Q, and an output impedance of ZL. The [Y] matrix of the structure 

when absorbing the parasitic capacitance ZC must be of the form: 

[𝑌] =  
𝑗𝑌0 𝑗𝑌0

𝑗𝑌0 𝑗𝑌0
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2.2.4 Doherty Networks 

Among all the architectures for transmitting modulated signals, Doherty architectures, 

which feature wideband modulation with no additional digital-signal-processing overhead, 

have been a popular and primary choice for RF/Mm-wave circuits when enhanced PBO 

efficiency is needed. Actively modulating the loads to create an additional efficiency peak 

at 6dB PBO, Doherty EM networks must also resonate out a parasitic device capacitance 

ZC. At 0dB PBO, the circuit transforms an output load ZL to an optimum load ZS = ZCQ 

seen by both the Main and Auxiliary PAs (see Fig. 2.6a). At 6dB PBO, the circuit 

transforms the output load to 2ZS seen by the Main PA when the Auxiliary PA is turned 

off by imposing an open-circuited termination (see Fig. 2.6b). 

The Doherty structure
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Figure 2.6 Design specifications for Doherty architectures (a) at 0dB PBO and (b) at 6dB PBO. 

2.3 The BCOD Designs for Impedance Transforming Baluns 

2.3.1 Theoretical Derivations 

The proposed BCOD structure can be an excellent candidate to design mm-wave 

impedance transforming baluns for several major reasons. First, the structure inherently 

includes lumped capacitors to absorb device parasitic capacitance of mm-wave active 
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cores. Second, the short-circuited terminations instantaneously provide low-impedance 

nodes for DC biasing without any additional overhead (see Fig. 2.3). More importantly, 

the structure can support a wide range of impedance transformation ratios and phase delays, 

as will be shown in this section. 

Mathematical Equations for Transformation Ratio and Phase Delay 

To mathematically solve for the phase-controlled impedance transforming balun 

parameters, we begin with the derived [Y] matrix of the vanilla coupler-based balun [31]: 
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1

𝑍𝑜
 , 

  𝑌𝑐 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑑𝑚𝑖𝑡𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑢𝑚𝑝𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 𝐶.   

From the [Y] matrix of the vanilla baluns, we terminate the source (balanced) ports with 

a resistance ZS and a capacitive impedance ZC to calculate the impedance seen by the load. 

With the help of Mathematica software, we derive the complex transformation ratio and 

the phase delay of the vanilla coupler-based balun as follows: 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =  
2𝑖

2𝑌𝑝𝑆 𝑐𝑜𝑡(2𝜃) −
𝐶2𝑌𝑝𝑆

2 𝑐𝑠𝑐2(𝜃)

−𝑄 + 𝑌𝑝𝑆 𝑐𝑜𝑡(𝜃) + 𝑖

 

𝑃ℎ𝑎𝑠𝑒 𝐷𝑒𝑙𝑎𝑦 =  𝑃ℎ𝑎𝑠𝑒 (
𝐶𝑌𝑝𝑆 𝑐𝑠𝑐(𝜃)

−2𝑄 + 2𝑌𝑝𝑆 𝑐𝑜𝑡(𝜃) + 2𝑖
) 

 𝑤ℎ𝑒𝑟𝑒 𝑌𝑝𝑆 = 𝑌𝑝𝑍𝑆 , 𝐶 =
𝑍𝑒 − 𝑍𝑜

𝑍𝑒 + 𝑍𝑜
, 𝑄 =  

𝑍𝑆

𝑍𝐶
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Designing Impedance Transforming Baluns 

From the derived formula, designing an impedance transforming balun with the BCOD 

structure requires us to solve the equation: 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =  
𝑍𝐿

𝑍𝑆
+ 0𝑗  

The design space of the vanilla coupler-based balun includes 3 design parameters Ze, 

Zo, and θ, but the design of impedance transforming baluns involves only 2 equations for 

real and imaginary values of the transformation ratio, so we have one extra degree of 

freedom. If the condition of phase control is imposed, we can utilize the extra degree of 

freedom to control the phase delay: 

𝑃ℎ𝑎𝑠𝑒 (
𝐶𝑌𝑝𝑆 𝑐𝑠𝑐(𝜃)

−2𝑄 + 2𝑌𝑝𝑆 𝑐𝑜𝑡(𝜃) + 2𝑖
) =  𝐷𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒 𝐷𝑒𝑙𝑎𝑦  

In a broadband design, we can utilize the extra dimension to solve for the transformation 

ratio with the maximum ripple, or if the design goal is for the lowest loss, we can optimize 

several coupler parameters and select the one with the lowest loss. 

2.3.2 Designing Impedance Transforming Baluns  

As the equations to compute transformation ratio and phase delay are nonconvex, we 

must use numerical solvers to derive the electrical parameters of coupled lines (Ze, Zo, θ) 

that satisfy a real transformation ratio and possibly phase delay. The initial values of 

electrical parameters of coupled lines are critical to ensure that the optimizer can converge. 

In this work, we propose to use the following initial values: 
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𝑌𝑝𝑆 =  𝑄 𝑡𝑎𝑛(𝜃) 

𝐶 =  
𝑐𝑜𝑠(𝜃)

𝑄
 √

2

𝑅𝑎𝑡𝑖𝑜
 

When substituting these parameters into the transformation ratio equation, we get: 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =  
Ratio

1 −  𝑖 𝑄 𝑡𝑎𝑛(𝜃) 𝑐𝑜𝑡(2𝜃) Ratio
 

which is close enough to the desirable ratio, except for the imaginary part of the 

denominator. From the proposed initialization values, we numerically solve for the 

theoretical coupled line parameters from the specifications of baluns. Examples of 

theoretical solutions are presented for various values of Q in section 2.2.3. 

2.3.3 Examples of the Proposed Solutions over Various Values of Q 

We apply our proposed approach to determine the BCOD structure for various practical 

scenarios of impedance transformation baluns. Particularly, the baluns often have distinct 

specifications when employed at the output networks as compared to the inputs networks 

of high impedance devices such as CMOS or GaN and the input networks of low 

impedance devices such as SiGe or InP. A desirable output impedance Rout of mm-wave 

PAs is around 15-35Ω to deliver a substantial amount of power, while an input impedance 

for CMOS is around 150-500Ω and an input impedance for SiGe is much lower at 10-30Ω.  

For a given process, one critical constraint is that the ratio 𝑄 =
𝑅

𝑍𝑐
 =  2𝜋𝑓𝐶𝑅 remains 

relatively constant. The reason is that when we increase the size of the device the parasitic 

capacitance C goes up and the optimum impedance goes down, leading to the product RC 
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remaining relatively the same. In various practical scenarios of impedance transformation 

baluns, the loaded Q at the output stage is about 𝑄𝑜𝑢𝑡 ∼ 1 − 2 while the loaded Q at the 

input stage is about 𝑄𝑖𝑛 ∼ 3 − 6 for CMOS and 𝑄𝑖𝑛 ∼ 0.2 − 0.5 for SiGe. In this section, 

we apply our proposed approach to numerically solve for impedance transforming baluns 

with various values of Q.  

[Q = 1-2] Output Networks 

 

Figure 2.7 Numerical solutions for Phase-Controlled Impedance Transforming Balun with Q=1. 

Typically, at the output network of mm-wave circuits, we transform from ZL=50Ω 

impedance to the optimum impedance seen by the PA of ZS=15-35Ω and we resonate out 

a device parasitic capacitance of 60-300fF, resulting in Q values ranging from 1-2 with a 

transformation ratio ZL/ZS=1.2-3.5. To demonstrate designs of the BCOD structure for 
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output networks, we representatively solve for two cases of 𝑄 = 1 and 𝑄 = 1.75. For 

example, Fig. 2.7 illustrates our theoretical analysis for the impedance transformation ratio 

and phase delay of the BCOD structure for Q=1. The structure supports an impedance 

transformation ratio from 1.4-10.0, where a higher transformation ratio typically requires 

the electrical length to approach 45°, and delivers a wide range of phase delays from 5°-

90°, where a greater electrical length results in a higher phase delay. The BCOD structure 

also supports a broad range of transformation ratios from 0.6-4.0 and phase delay from 5°-

90° for Q=1.75, as shown in Fig. 2.8. 

 

Figure 2.8 Numerical solutions for Phase-Controlled Impedance Transforming Balun with Q=1.75. 

[Q = 2.5-6] Typical Values for CMOS Input Networks 
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Frequently, at the input network of mm-wave circuits for CMOS processes, we 

transform from the ZL=50Ω impedance to the optimum impedance seen by the PA of 

ZS=120-350 Ω and we resonate out a device parasitic capacitance of 60-250fF, resulting in 

Q values ranging from 2.5-6 with a transformation ratio ZL/ZS=0.15-0.4. As an illustration, 

we numerically solve the BCOD equations for 𝑄 = 3 and 𝑄 = 6 over various 

transformation ratios and electrical lengths of coupled lines and depict the results in Fig. 

2.9 and Fig. 2.10. From the theoretical solutions, we see that the BCOD structure supports 

transformation ratios of 0.2-2.0 for Q=3 and transformation ratios of 0.1-1.6 for Q=6, 

demonstrating that the proposed BCOD structure can support the requirements of 

transformation ratios ZL/ZS=0.15-0.4 of mm-wave CMOS input matching. 

 

Figure 2.9 Numerical solutions for Phase-Controlled Impedance Transforming Balun with Q=3. 
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Figure 2.10. Numerical solutions for Phase-Controlled Impedance Transforming Balun with Q=6. 

[Q = 0.4-0.8] Typical Values for SiGe Input Networks 

At the input network of mm-wave circuits for SiGe processes, we transform from the 

ZL=50Ω impedance to the optimum impedance seen by the PA of ZS=10-25 Ω and we 

resonate out a device parasitic capacitance of 60-250fF, resulting in Q values ranging from 

0.4-0.8 with a transformation ratio ZL/ZS=2-5. To demonstrate the BCOD design for input 

networks of SiGe processes, we numerically solve for impedance transforming baluns with 

𝑄 = 0.5 and 𝑄 = 0.8 over various transformation ratios and electrical lengths of coupled 

lines, as shown in Fig. 2.11 and Fig. 2.12. From the theoretical solutions, we see that the 

BCOD structure supports transformation ratios of 2.0-8.0 for Q=0.5 and transformation 

ratios of 1.6-9.0 for Q=0.8, demonstrating that the proposed BCOD structure can cover the 

requirements of transformation ratio from 2-5 of mm-wave SiGe input networks. 
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Figure 2.11 Numerical solutions for Phase-Controlled Impedance Transforming Balun with Q=0.5. 

 

Figure 2.12 Numerical solutions for Phase-Controlled Impedance Transforming Balun with Q=0.8. 
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2.3.4 Analysis 

In this section, we developed a general theory for designing impedance transforming 

balun with the BCOD structure. Mathematically deriving the transformation ratio and 

phase delay, we transform from the commonly used electrical parameters of Ze, Zo to the 

new variables of Yps and C, such that we can greatly simplify the formulas. We proposed 

initial values for those parameters that significantly improved the convergence to the 

desirable solutions. 

We analyzed the baluns for various values of Q for numerous transformation ratios and 

illustrate the designs for three common cases: at the output networks, at the input networks 

of high impedance devices, and at the input networks of low impedance designs. The 

BCOD structure was shown to have solutions for all those practical scenarios. 

2.4 The BCOD Designs for Out-Phasing Circuits 

We are aware of no publication that proposes an efficient Out-Phasing network for 

differential architectures at high mm-wave frequencies. For examples, Out-Phasing 

structures at lower frequencies often employ a series-connected transformer [14], but the 

strong capacitive coupling at high mm-wave frequencies distorts the characteristic of this 

structure [11]. Meanwhile, [18] points out that designing an Out-Phasing network is the 

major challenge for an Out-Phasing system, and the work proposes a tri-axial network that 

works only with single-ended architectures. In another attempt, [19] designs an Out-

Phasing network for a differential active core, but the network is designed on an antenna, 

while many systems require the Out-Phasing architectures to deliver power to a 50Ω load 

rather than directly radiate the output power. 
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θ = 45° θ = 45° θ = 45° θ = 45°

PA1 PA2

ZL=50 ZL

PA1

Baluns 2ZL, ZS, Q, 

delay = 90° 

PA2

Baluns 2ZL, ZS, Q, 

delay = 90° 

ZS, Q ZS, Q

(a) (b)

Ye, Yo  Ye, Yo  

 

Figure 2.13 (a) High-level architectures of Out-Phasing EM structures (b) Proposed BCOD design for Out-

Phasing EM structures. 

In this section, with two identical impedance transforming baluns, we propose the 

BCOD design for Out-Phasing circuits that theoretically supports arbitrary values of ZL, 

ZS, and Q, as shown in Fig. 2.13. Note that we do not depict the Chirex compensation for 

simplicity. The baluns employed in the proposed Out-Phasing circuits have a phase delay 

of 90° from inputs to outputs and transform from ZS to 2ZL, in which the factor of two is 

due to the parallel combination of two PA paths. With the phase-shift of 90°, the baluns 

invert the impedance [31], leading to a desirable [Y] matrix of Out-Phasing networks. We 

then apply the analysis we develop in section 2.2 to convert from balun specifications to 

coupler parameters. Given the design specification of ZL, ZS, ZC = ZS/Q, we drive the 

unique solution for this Out-Phasing structure as follows: 

𝑌𝑂 = 𝑄𝑌𝑆 + √
1

2
𝑌𝑆𝑌𝐿 ;  𝑌𝑒 = 𝑄𝑌𝑆 − √

1

2
𝑌𝑆𝑌𝐿. 

Following this solution, the proposed BCOD structure can be used to design theoretical 

Out-Phasing circuits for arbitrary values of ZL, ZS, and Q. As an illustration, we show a 

theoretical BCOD structure for an Out-Phasing network with an electrical specification of 

ZL=50Ω, ZS=30Ω, Q=1. From the design equation, we choose coupled lines with the 
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electrical parameters of Ze=66.33Ω, Zo=19.38 Ω, and θ=45° and illustrate the Out-Phasing 

load modulation curves of our proposed structure and compare the results with the idealistic 

Out-Phasing response in in Fig. 2.14, where the idealistic Out-Phasing load seen by the 

device depending on the Out-Phasing angle φ is as follows: 

𝑅𝑝 =
𝑍𝑆

𝑐𝑜𝑠2(ϕ)
 

Shown in Fig. 2.14, the Out-Phasing load modulation curves of the design overlap with 

the idealistic response, proving the effectiveness of the proposed designs. 

 

Figure 2.14 Out-phasing load modulation of the proposed Out-Phasing theoretical structure. 

2.5 The BCOD Designs for Doherty Networks 

In this section, we show theoretically that the proposed BCOD structure has solutions 

for the Doherty networks for an arbitrary value of ZL, ZS, and Q. Described in Fig. 2.15, 

we can apply the design of two impedance transforming baluns to construct an EM 

structure for a Doherty network as in [31]. The Main PA requires a balun that transforms 
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from 2ZL to ZS with a phase delay of 90°, and the Auxiliary PA necessitates a balun that 

transforms from 2ZL to ZS with a phase delay of 0°/180°. We then apply the theoretical 

analysis in section 2.2 to solve for the coupled line parameters, and to ease the design of 

the Auxiliary balun, we add a quarter-wavelength T-line to transform from ZL to ZS. From 

that, giving an output load ZL, device parasitic ZC, and optimum impedance ZS=ZCQ, we 

drive a closed-form BCOD solution for the proposed Doherty output network shown as 

follows: 

𝑌𝑜1 = (𝑄 + √
1

2
)𝑌𝑆, 𝑌𝑒1 = (𝑄 − √

1

2
)𝑌𝑆, 

𝑌𝑜2 = 5𝑄𝑌𝑆, 𝑌𝑒2 =
𝑄

2
𝑌𝑆;  

𝑎𝑛𝑑 𝑌𝑇 = √𝑌𝑆𝑌𝐿 

θ = 45°

Main 

PA

Aux. 

PA

θ = 45° θ = 20°

ZSZL, 90°

ZL=50 

Ye1, Yo1  Ye2, Yo2  
θ = 20°

ZT =ZL

Baluns 2ZL, ZS, Q, 

delay = 90° 

Baluns 2ZL, ZS, Q, 

delay = 0°/180° 

ZS, Q ZS, Q
Main 

PA

Aux. 

PA

(a) (b)

ZS, Q ZS, Q

 

Figure 2.15 (a) High-level architectures of Doherty EM structures (b) One of the closed-form solutions for 

mm-wave Doherty output networks. 

As an illustration, we show a theoretical BCOD structure for an Out-Phasing network 

with an electrical specification of ZL=50Ω, ZS=30Ω, Q=1. Following the design equation, 
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we choose coupled lines with the electrical parameters of Ze1=102.4Ω, Zo=17.57Ω, and 

θ1=45° for the Main balun, Ze2=60Ω, Zo=6Ω, and θ1=20° for the Auxiliary balun, and a 

quarter-wavelength with a characteristic impedance ZT=38.73Ω. With those parameters, 

we build the theoretical BCOD circuit for Doherty networks, demonstrate the active load 

modulation results, and compare those with the idealistic Doherty response in Fig. 2.16. 

The load modulation of the BCOD structure tracks closely to the ideal Doherty behaviors, 

which verifies our proposed formulas and proves that the BCOD structure acts as Doherty 

EM networks. 

 

Figure 2.16 Doherty load modulation results of the proposed theoretical BCOD structure. 

2.6 The BCOD Solutions for Power Combiners 

The proposed BCOD structure can also be an excellent candidate for Power Combiners, 

as depicted with parallel-connected and series-connected structures in Fig. 2.17. On one 

hand, the parallel-connected Power Combiners are relatively easier to implement; we can 

simply design an impedance Transforming balun with an electrical specification of NZL, 

ZS, Q and parallelly connect N identical baluns together at the single-ended node, as shown 
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in Fig. 2.17a.  On the other hand, the series-connected Power Combiners are relatively 

more challenging to design; we must employ coupled lines with different characteristic 

impedances with phase shifted inputs and utilize numerical method to solve for the design 

parameters. 

P4P5 P3P2

Balun 1 Balun 2
P1

Series-connected Power Combiners

P4P5 P3P2

Balun 1

2ZL, ZS, Q

Balun 1

2ZL, ZS, Q

P1

Parallel-connected Power Combiners

(a) (b)
 

Figure 2.17 Power Combiners for two active differential cores with the proposed BCOD structure (a) 

Parallel-connected structures (b) Series-connected structures. 

(a)

(b)

Electrical Length = 10º, phase difference Φ = 0º 

Electrical Length = 30º, phase difference Φ = 90º 

 

Figure 2.18 Numerical solutions for series-connected Power Combiners with series-connected coupler-

based structure. 
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As an example, we numerically solve the series-connected coupler for Q=ZS/ZC=1.25, 

a typical value for the output network of a silicon process at high mm-wave frequencies. 

Described in Fig. 2.18a, when the electrical length of both baluns equals 10° and the phase 

difference between two active cores is 0°, the BCOD structure supports a wide range of 

transformation ratios ZL/ZS from 2.5-5.5. Shown in Fig. 2.18b, when the electrical length 

equals 30° and the phase difference equals 90º, the BCOD structure supports impedance 

transformation ratios from 0.5-1.1. Overall, we show that the design space for the BCOD 

structure is broad enough to support the designs of series-connected Power Combiners with 

various transformation ratios. 

2.7 Conclusion 

In this chapter, we present the theoretical aspects of the proposed BCOD structure. We 

first define the common electrical specification for all BCOD design tasks. Moreover, 

based on the coupled line theory, we mathematically derive the BCOD equations and 

propose a numerical approach to convert from electrical baluns to the parameters of 

coupled lines. We show that the BCOD equations have theoretical solutions for various 

Impedance Transforming Baluns at the output networks and the input networks of high and 

low impedance devices. We further advance the concept and apply our results for 

impedance transforming baluns with control of phase delays to produce theoretical 

solutions for both Out-Phasing and Doherty networks, where we demonstrate that the 

BCOD structure can theoretically design Out-Phasing and Doherty circuits with arbitrary 

electrical specifications. The BCOD structure can also support the design of series-

connected Power Combiners, where we have illustrated various design curves. 
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Overall, we show that the BCOD structure has a broad design space that contains 

solutions for many emerging mm-wave challenges. The next step is to develop a 

framework that can fully automate the EM design of the BCOD structure when given a 

mm-wave task and an electrical specification. 
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CHAPTER 3. DEVELOPING PHYSICAL-ELECTRICAL 

MACHINE LEARNING MODELS 

To develop automation algorithms for mm-wave EM structures, we must first build 

several Machine Learning models that can predict the electrical properties of mm-wave 

circuits from physical dimensions. Conventionally, engineers solve this physical-electrical 

conversion by utilizing commercial EM simulators, such as the High Frequency Structure 

Simulator (HFSS) [38], which might require a slow computational time of minutes-hours 

to complete a full-wave simulation. In this chapter, we present an approach to compute the 

physical-electrical relationship with Machine Learning techniques, which in our approach 

includes sampling a continuous design space to collecting data, extracting electrical labels 

from S-parameter files, and training a neural network to predict electrical properties. Note 

that because the ground truth as the outputs of Machine Learning models are often referred 

as labels, we define electrical labels as an equivalent term for the “ground-truth” electrical 

properties of EM structures. Verifying with the K-fold validation technique, we show that 

our ML models can equivalently determine electrical properties from physical parameters 

as accurately as commercial EM solvers but our models drastically reduce computational 

time from minutes-hours to a fraction of seconds.  

With the complete knowledge about the entire design space of the EM structures, our 

pre-trained ML models can help automate various critical mm-wave EM blocks as will be 

presented in Chapters 4-5. The models can also serve as a new tool for mm-wave designers 

to answer many challenging and abstract questions as will be shown in Chapter 6. 
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3.1 Motivations for Developing Physical-Electrical Machine Learning Models 

3.1.1 Drawbacks of Current EM-Design Techniques 

Electrical properties
(Given circuit architectures)

Physical 
dimensions

Commercial Simulators (ADS, HFSS,...)

The job of a microwave designer
Techniques: Trial-and-Error

How do we efficiently 
accomplish this task?

Microwave design task
(e.g., Impedance 

Transforming Baluns)

Input 

Matching 

Network?

Zin=50  
Rin_pa Cin_pa

Rin_pa Cin_pa
Broadband 

matching?

W?

L?

S?

Loss?

How?

Output  Network 

with 

lowest loss?

Cout_paZload-pull?

ZL=50 Cout_pa Out

PA+ PA-
EM Model?

L?

How?

(a)

(b)

 

Figure 3.1 (a) The task of designing Impedance Transformation Baluns (b) A typical design flow. 

The current approach to design EM circuits heavily relies on trial-and-error. To 

physically realize an EM structure, engineers must repeatedly run EM simulators to 

calculate electrical properties and keep updating physical parameters until all electrical 

specifications are met. As an illustration, Fig.5.1a details the task of designing impedance 

transforming baluns. The specification is to design an input/output balun that resonates out 

the parasitic capacitance Zc and matches from a load impedance of ZL to a source 

impedance of ZS. The goal is to design a full EM structure with proper physical dimensions 

(see Fig. 3.1.a) that performs the balun operation and desirable impedance transformations. 

Figure 3.1b illustrates a typical design flow. The first step is to decide a circuit architecture 

for the design task, which the BCOD structure we proposed can be an excellent candidate. 

The second step to realize the physical dimensions is heavily based on trial-and-error. First, 

engineers make an educated guess with a high level of randomness to initialize the first-try 
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physical dimensions. Many times, engineers tend to stay at a local optimum solution due 

to a poor initialization. Then, they use commercial EM simulators, such as the High 

Frequency Structure Simulator (HFSS) [38], to predict the electrical properties. Based on 

the differences between the predicted outputs and actual specifications, engineers decide 

how to update physical parameters, which also involves a high level of uncertainty, and 

then keep running the EM simulators to tune various physical dimensions. Depending on 

the experience of designers and sometimes impromptu decisions, the design time can vary 

from days to weeks or even months, and the design quality can drastically change over 

various design attempts. 

The current design approach is time-consuming and labor-intensive because EM 

simulators are normally slow to run and the number of EM iteration steps are typically 

large. This approach to design EM structures involves a high variance in the design quality 

because the approach heavily depends on the first random initialization and the experience 

and impromptu decisions of circuit designers when updating physical dimensions. Given 

the same electrical specifications, even the same circuit designers might generate different 

EM structures with varying design quality when attempting to design the tasks several 

times. 

3.1.2 Why We Need Machine Learning 

We must be able to compute electrical properties from physical dimensions to properly 

design an EM structure. For example, in the task of designing coupled lines, we must 

calculate the even-/odd-mode impedances, electrical length, and losses when given the 

physical dimensions of coupled lines. In the design of baluns or combiners, we need to 
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calculate the resistive and reactive impedances ZS and ZC seen by device given the load 

impedance ZL and all EM physical parameters. 

Figure 3.2 describes various approaches to compute the physical-electrical relationship. 

In one approach, we look for closed-form mathematical equations that explicitly yield 

electrical parameters as functions of all physical dimensions. If such mathematical 

equations exist, we can accurately calculate the electrical properties over the entire design 

space of physical parameters and from that efficiently optimize the physical dimensions 

for the design task. However, mathematically deriving the closed-form equations is 

extremely challenging. The mapping from even-/odd-mode impedances and electrical 

length to the width and the length of the EM traces can be relatively monotonic, but the 

mapping between loss and EM dimensions is much more complicated to compute. As the 

EM structures grow more complex, solving such structures must demand approximate and 

computational techniques. 

Electrical properties
(Given circuit architectures)

Physical 
dimensions

Instantly compute electrical values 
for the entire physical design space

Mathematical Formulas EM Simulators
Proposed Machine 

Learning techniques

Approaches to compute electrical values 
from physical dimensions

Not possible to explicitly derive 
equations for complex EM structures

Compute accurate electrical values 
even with complex EM structures 

Need to re-run EM simulation for a 
new set of physical parameters

Fast computation time Slow computation time

Instantly compute electrical values 
for the entire physical design space

Fast computation time

Estimate electrical values even for 
complex EM structures by learning 

from data  

Figure 3.2 Comparison among various techniques to calculate electrical properties from physical 

dimensions. 
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In another approach, engineers commonly utilize commercial EM simulators to 

compute electrical parameters from physical dimensions. Although the EM solver can 

accurately predict the electrical performance, the solver can only reveal the physical-

electrical conversion for specific physical parameters. We need to re-run the full-wave 

simulator again to evaluate the circuit performance when physical dimensions changes. 

The computation time is often slow, the update of physical dimension is manual over a 

large number of iteration steps, and as a result, we confront the drawbacks of time-

consuming, labor-intensive approaches with a high variance in quality when designing EM 

structures, as discussed in section 3.1.1. 

Adding Machine Learning techniques to the existing EM methods can resolve these 

challenges. If we can develop ML models that accurately learn the physical-electrical 

relationships over the entire design space of physical dimensions, then the resulting ML 

models are equivalent to the closed-form mathematical equations that derive electrical 

properties from physical parameters, since both have the same inputs and similar outputs. 

Practically, we can train those ML models by continuously sampling data from the entire 

design space of physical parameters and applying various ML models to learn the input-

output relationships. The trained ML models allow us to effectively navigate over the entire 

design space, accurately predict the electrical properties, and efficiently run numerous 

iteration steps to optimize EM designs. 

3.1.3 Applications of Machine Learning Models 

We can apply the ML models to automate various Mm-wave design tasks. The 

theoretical analysis in chapter 2 shows that the design space of the BCOD structure is broad 
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enough to contain solutions for many challenging mm-wave tasks. By collecting EM 

simulated results for coupled lines and vanilla baluns and by learning from data, we can 

develop an ML model that fully learns the entire design space of those structures. Together 

with automation architectures with multiple initializations and gradient descent, the ML 

models can allow us to automate EM design tasks and reduce design time from weeks-

months to seconds, as will be presented in Chapters 4-5. Additionally, the ML models can 

also reveal the bigger pictures about the design problems we are dealing with and can 

advance our understanding of the topic to the next level, as will be discussed in Chapter 6. 

3.2 The Physical Design Space of the BCOD Structure 

Machine Learning models build from data, and the BCOD structures we use to design 

critical mm-wave blocks such as Baluns, Combiners, Out-Phasing, and Doherty circuits 

build from coupled lines. To begin the developments of Machine Learning models for the 

BCOD, we first define the on-chip structures of coupled lines in this section, before we 

present the design space of physical dimensions and demonstrate our method to collect 

data to train physical-electrical ML models for both coupled lines and vanilla baluns in the 

next sections. 

3.2.1 On-Chip Implementation 

Without a loss of generalization, we automate the BCOD structure with an assumption 

of on-chip implementation. On-chip metal stacks typically share a common 250µm silicon 

substrate but differ in (tm) metal and (td) dielectric thicknesses, as illustrated in Fig. 3.3a. 

On one hand, due to the strong skin effect at mm-wave, a metal thickness tm greater than 

1.5 µm tends to have less effect on the loss performance, thus we set tm=3µm as the metal 



 46 

thickness in this work to follow the metal stack of the GlobalFoundries 45nm CMOS SOI 

process. On the other hand, the dielectric thickness (td) can strongly affect the coupled-line 

parameters, such as length, width, or spacing. On silicon processes with multiple metal 

layers, we can “discretely” vary the dielectric thickness by moving the signal traces from 

one metal layer to another, thus representing the option of changing metal layers by 

including dielectric thickness as one of the design parameters. 
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Figure 3.3 (a) A generalized Silicon process (b) Microstrip, CPW, and broadside coupled lines technologies 

(c) Physical design space of coupled lines structures used in this work. Design dimensions include physical 

length, metal width, metal spacing, ground opening, and dielectric thickness. 

To physically implement coupled lines on chips, engineers commonly employ the 

microstrip, broadside, and co-planar waveguide (CPW) structures, as shown in Fig. 3.3b. 

Two electrical signals can remain parallel as in microstrip designs or stack vertically as in 

broadside configurations. The ground plane near the signal areas can also be opened to 

control the even-mode impedance as in the CPW implementations. In this work, we 

combine the characteristics of microstrip, broadside, and CPW to a common 

implementation of coupled lines as in Fig. 3.3c. The design parameters for the 

implementation includes the physical length of coupled lines, the metal width of both 
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coupled-line signals, the metal spacing of two traces, and the ground opening at the ground 

layer, as shown in Fig. 3.3c. 

3.2.2 Examples of Physically Implemented BCOD Structures  

From the physical implementation presented in Fig 3.3c, we can construct various EM 

structures for the BCOD with examples as shown in Fig. 3.4. A design example of 

Impedance Transforming Baluns that includes two identical coupled lines that transfer 

power between a differential core and an output load is illustrated in Fig. 3.4a. An example 

for Power Combiners consists of two impedance transforming baluns connected in series 

as shown in Fig. 3.4b, while examples of Out-Phasing circuits and Doherty networks are 

depicted in Fig. 3.4c and 3.4d, respectively. 

 

Figure 3.4 Examples of EM implementations for (a) Baluns, (b) Combiners, (c) Out-Phasing networks, and 

(d) Doherty circuits. 
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3.3 The Physical-Electrical Machine Learning Model for Coupled Lines 

After defining the physical design space for the coupled lines, we then develop various 

physical-electrical ML models, where in this section, we first build a ML model for coupled 

lines.   

3.3.1 Data Collection 

ML models build from data, where the data in this physical-electrical ML model for 

coupled line comes from the EM simulated results of coupled structures. Because the data 

we collect must represent the true distribution of the physical design space, we must 

continuously and randomly sample various sets of physical dimensions of coupled lines, 

where the parameters for random sampling include the dielectric thickness, physical length, 

metal width, spacing, and ground opening. Next, we build the HFSS model for coupled 

lines to simulate the S-parameters of each set of randomly sampled physical dimensions. 

Fig. 3.5a demonstrates several examples of HFSS models of randomly generated coupled 

lines with different physical dimensions, and Fig. 3.5b shows the sampling range of 

physical parameters for each model. In total, we sample 3350 HFSS designs of coupled 

lines to train the ML models. The dielectric thickness ranges from 0.1µm – 7.9µm, the 

physical length ranges from 40µm – 799µm, the spacing ranges from -14µm – 60µm, the 

ground gap ranges from 5µm – 80µm, and the width ranges from 2µm – 50µm, as shown 

in Fig.3.5b. 
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Figure 3.5 (a) Examples of randomly generated coupled-line structures (b) Statistical analysis of all the 

collected data for various design parameters. 

3.3.2 Extracting Electrical Labels from S-Parameter Files 

Because the ground truth as the outputs of Machine Learning models are often referred 

as labels, we define electrical labels as an equivalent term for the “ground-truth” electrical 

properties of EM structures. From the simulated S-parameters of EM structure, we develop 

an extraction pipeline to mathematically compute the electrical labels, and we will employ 

those labels to train the physical-electrical ML models. 
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Mathematical Analysis 

We first solve several subproblems to prepare for the extraction process. 

Sub-problem 1: Given a [Z] matrix for a transmission line, calculate the characteristic 

impedance Zo and electrical length theta 

The Z matrix for a 2-port transmission line is as follows: 

𝒁 =  (
𝑍11 𝑍12

𝑍12 𝑍22
) = (

−𝑖𝑍𝑜/𝑡𝑎𝑛(𝜃) −𝑖𝑍𝑜/𝑠𝑖𝑛(𝜃)
−𝑖𝑍𝑜/𝑠𝑖𝑛(𝜃) −𝑖𝑍𝑜/𝑡𝑎𝑛(𝜃)

) 

Given Z11 and Z12, we derive the characteristic impedance and electrical length as follows: 

Z𝑜 = −𝑖√−𝑍11
2 + 𝑍12

2  

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(Z11/Z12) 

Sub-Problem 2: Given a [Y/Z] matrix for a two-port network, compute the conjugate 

matching (resistive and capacitive) input impedance, loss, and phase delay of the network 

(see Fig. 3.6). 

Rin? Cin?

[Y/Z] matrix

Yin?

ZL

Loss/phase delay?

 

Figure 3.6 The sub-problem of calculating conjugate matching impedance, passive efficiency, and phase 

delay. 
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First, we calculate the resistive and capacitive input impedance when given the [Y/Z] 

matrix of network and output impedance ZL. The input admittance can be computed from 

either the [Z] or [Y] matrix as follows: 

𝑌𝑖𝑛 = −
−𝑍22 − 𝑍𝐿

−𝑍12
2 + 𝑍11𝑍22 + 𝑍11𝑍𝐿

 

𝑌𝑖𝑛 = −
−𝑌11 + 𝑌12

2 𝑍𝐿 − 𝑌11𝑌22𝑍𝐿

1 + 𝑌22𝑍𝐿
 

From the above equations, we derive the resistive and capacitive impedance as follows: 

𝑅𝑖𝑛  =  1/𝑟𝑒𝑎𝑙(𝑌𝑖𝑛) 

𝐶𝑖𝑛  =  𝑖𝑚𝑎𝑔(𝑌𝑖𝑛)/2𝜋𝑓 

Second, we compute the passive efficiency and phase delay of the network by exciting 1V 

at the inputs. The power deliver to the network is: 

𝑃𝑖𝑛  = 𝑉𝑖𝑛
2 /𝑅𝑖𝑛 = 1/𝑅𝑖𝑛 

The output voltage at the output can be calculated from either the [Y] or [Z] matrix is: 

𝑉𝑜𝑢𝑡 =
𝑍12𝑍𝐿

−𝑍12
2 + 𝑍11𝑍22 + 𝑍11𝑍𝐿

 

 

𝑉𝑜𝑢𝑡 = −
−𝑌12𝑍𝐿

1 + 𝑌22𝑍𝐿
 

The passive efficiency (loss) and phase delay from input to output are as follows: 

𝑙𝑜𝑠𝑠 =  𝑃𝑜𝑢𝑡/𝑃𝑖𝑛 = 𝑉𝑜𝑢𝑡
2 𝑅𝑖𝑛/𝑍𝐿 

𝑝ℎ𝑎𝑠𝑒 𝑑𝑒𝑙𝑎𝑦 =  𝑝ℎ𝑎𝑠𝑒(𝑉𝑜𝑢𝑡) 
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Extract Coupled Line Parameters 

The critical electrical parameters that characterize a coupled line are the characteristic 

impedances, electrical length, and propagation loss of both even and odd modes. Given the 

simulated [Z] matrix of the 4-port coupled lines, we first excite the circuit in either even or 

odd mode and convert the 4-port network to 2-port sub-circuits (see Fig. 3.7). 

The equations to extract the even mode [Z] matrix are as follows: 

𝑍11_𝑒𝑣𝑒𝑛  = (𝑍11+ 𝑍13 + 𝑍33 + 𝑍31)/2 

𝑍12_𝑒𝑣𝑒𝑛  = (𝑍12+ 𝑍14 + 𝑍34 + 𝑍32)/2 

𝑍22_𝑒𝑣𝑒𝑛  = (𝑍22+ 𝑍24 + 𝑍44 + 𝑍42)/2 

The equations to extract the odd mode [Z] matrix are as follows: 

𝑍11_𝑜𝑑𝑑  = (𝑍11− 𝑍13 + 𝑍33 − 𝑍31)/2 

𝑍12_𝑜𝑑𝑑  = (𝑍12− 𝑍14 + 𝑍34 − 𝑍32)/2 

𝑍22_𝑜𝑑𝑑  = (𝑍22− 𝑍24 + 𝑍44 − 𝑍42)/2 

Next, we apply the mathematical derivation in the subproblem 1 to calculate the 

characteristic impedance and electrical length of both even-/odd-modes. Terminating the 

even-/odd-lines with the even-/odd-mode characteristic impedance, we employ the 

formulas derived from the subproblem 2 to compute the propagation loss of both even-

/odd-modes. We depict the derived electrical length and propagation loss over frequencies 

and compare to the simulation results from the Advanced Design Systems (ADS) simulator 
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[39] as shown in Fig. 3.7. The overlapping of the extracted and simulated curves 

demonstrates the accuracy of the proposed extraction process. 

 

Figure 3.7 The extraction of electrical labels of coupled lines and comparison between mathematically 

extracted and ADS simulated results. 

3.3.3 Training Neural Networks  

From the physical dimensions defined in section 3.2 and the electrical labels extracted 

in section 3.3.2, we build a database that consists of physical dimensions and electrical 

labels for coupled lines. The database spans the entire design space of physical dimensions 

of proposed EM structures. We seek to develop an ML model that can generalize all data 
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points in our database or generalize the entire design space of the physical parameters. As 

discussed in section 3.1.2, building such an ML model is equivalent to explicitly deriving 

closed-form mathematical formulas that map from physical dimensions to electrical 

properties. 

The Machine Learning community has developed several major techniques to 

generalize a model from data, such as Neural Networks, Support Vector Machines, or Tree-

Based techniques. Among those, we choose the Neural Network techniques (see Fig. 3.8), 

because with this approach, we can compute gradients of outputs with respect to inputs, 

which subsequently we can apply gradient descent to optimize input values.  
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Figure 3.8 Neural Networks for the physical-electrical ML models for coupled lines. 

Applying to the task of developing physical-electrical ML models for coupled lines, we 

design neural networks with 3 hidden layers, each of which has 64 neurons. The input 

dimension of the coupled-line ML model equals 6, which represents the dielectric 

thickness, physical length, signal width, signal spacing, ground gap, and frequency. The 
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outputs have a dimension of 1 that indicates the electrical label we want to predict. We 

build separate coupled-line ML models to learn the characteristic impedances, electrical 

length, and most importantly, propagation loss values of both the even and odd modes. 

From the physical-electrical database, we train our neural networks with a batch size of 

128, a learning rate of 0.001, and the loss of mean absolute error. We use Keras [40] to 

build our ML models and employ Adam optimizers [41] to update the learnable weights of 

the models over 10 epochs. 

3.3.4 Evaluating Machine Learning Models  

We use the K-fold validation technique (see Fig. 3.9a) to evaluate the generalization 

score of ML models. We split the data into 5 random portions, take 4 portions as training 

sets and the remaining as testing sets, and report mean absolute loss over various training 

and evaluating data in Fig. 3.9b.  The models can predict the electrical length of both the 

even and odd modes with an average error of 1-2º and predict the loss with an average error 

of less than -0.02dB for even-mode loss and -0.035dB for odd-mode loss. The models also 

can learn the even-mode impedance with an error of less than 5Ω (for an average even-

mode impedance of 70Ω), and odd-mode impedance with an error of less than 0.7Ω (for 

an average odd-mode impedance of 15Ω). Depicted in the second row of Fig. 3.9b, the 

mean values of relative percentage errors are all less than 10% for all electrical labels, 

indicating that the ML models accurately predict the electrical values within the range of 

0.9-1.1 times the actual values. Overall, the K-fold scores are similar for both training and 

evaluating sets, and the error values are small, demonstrating that the ML models for the 

coupled lines well match the physical-electrical relationships. 
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Figure 3.9 (a) K-fold validation concepts (b) K-fold scores for the physical-electrical ML models for 

coupled lines with mean absolute errors in the first row and mean relative errors in the second row. The 

relative errors of less than 10% indicate that the ML models accurately predict electrical properties within 

the range of 0.9-1.1 times the ground-truth values. 
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3.4 The Physical-Electrical Machine Learning Model for Vanilla Baluns 

In this section, we develop the physical-electrical Machine Learning models for vanilla 

baluns, which is the fundamental building block for our proposed BCOD structure. Section 

3.4.1 describes the data collection process, section 3.4.2 shows the extraction of electrical 

parameters, section 3.4.1 illustrates the training of neural networks, and section 3.4.2 

demonstrates the K-fold validation results.  

3.4.1 Data Collection 

 

Figure 3.10 (a) Examples of HFSS models of randomly generated vanilla-balun structures (b) Statistical 

analysis of the sampled data. 
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We connect two identical coupled lines together to construct vanilla baluns. To build a 

physical-electrical ML model for baluns, we also sample from a continuous design space 

of physical dimensions, simulate balun structures with EM solvers, and record simulated 

S-parameters files for further extraction. Fig. 5.6a shows examples of HFSS models of 

randomly generated vanilla baluns, and Fig. 5.6b illustrates the statistical analysis of the 

data collection, where the range of the physical dimensions we collect for the vanilla baluns 

are the same as those of coupled lines. In total, we sample 2089 different designs of vanilla 

baluns to train our ML models. 

3.4.2 Extracting Electrical Labels from S-Parameter Files 

Given the physical dimensions of vanilla baluns, we want to build the physical-electrical 

ML models for baluns that can predict the source impedance ZS (or Rin), the capacitive 

(Cin) impedance seen by the device, the loss of baluns, and the phase delay between inputs 

and outputs. To prepare the data for those ML models, in this sub-section, we extract the 

electrical labels by applying the mathematical analysis from section 3.3.2 to the simulated 

S-parameters files of HFSS models for baluns. 

As the balun is a 3-port network, we first differentially excite the balun to transform the 

3-port network to a 2-port structure: 

𝑌11_𝑑𝑖𝑓𝑓  = (𝑌11− 𝑌12)/2 

𝑌12_𝑑𝑖𝑓𝑓  = 𝑌13 

𝑌22_𝑑𝑖𝑓𝑓  = 𝑌33 
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We subsequently follow the results of sub-problem 2 in section 3.3.2 to calculate the 

input impedance, loss, and phase delay of the networks. Fig. 3.11 compares the extracted 

results to the simulated data from ADS, both of which are similar, indicating the accuracy 

of the proposed extraction process. 

Vanilla Coupler-based 

Baluns 

[Y] matrix
ZL

Extraction

Loss = ?ZS = ? ZC = ?

ZS = ? ZC = ?
 

 

Figure 3.11 Extracting electrical labels of the vanilla baluns and comparison between mathematically 

extracted and ADS simulated results  

3.4.3 Training Neural Networks 

Compared to the ML models for coupled lines, we add the output load ZL as an 

additional dimension for inputs, since we must know ZL in advance to compute ZS (or Rin), 

Cin, Q = ZS/ZC , and passive loss. From all the simulated baluns that are continuously 

sampled from the physical design space, we also randomly sample various values of ZL in 
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the range from 10-150Ω and mathematically apply our extraction technique in sub-section 

3.4.2 to develop our database for baluns. 
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Figure 3.12 Neural Networks for the physical-electrical ML models for vanilla baluns.  

Resolving the task of developing physical-electrical ML models for coupled lines, we 

design neural networks with 3 hidden layers with hidden dimensions of 128, 128, and 64, 

respectively. The input dimension of the ML model for vanilla baluns is 7, which equals 

the input dimensions of the ML models for coupled lines plus one for the additional 

dimension of an output load ZL. The outputs have a dimension of 1 that indicates the 

electrical label we want to predict. We build separate coupled-line ML models to learn the 

source impedance ZS (or Rin), the resonated parasitic capacitor Cin, the loaded Q = ZS/ZC 

of the network, and the passive loss of the baluns, as shown in Fig. 3.12. From the physical-

electrical database, we train our neural networks with a batch size of 128, a learning rate 

of 0.001, and the loss of mean absolute error, and we employ Adam optimizers to update 

the learnable weights of the models over 10 epochs. 



 61 

3.4.4 Evaluating Machine Learning Models  

 

 

Figure 3.13 K-Fold Validation Scores for the ML models for baluns. The first row is absolute errors, and 

the second row is relative errors. The relative errors of less than 10% indicate that the ML models 

accurately predict electrical properties within the range of 0.9-1.1 times the ground-truth values. 

We also apply the K-fold validation technique to evaluate the performance of ML 

models for baluns by splitting the data into 5 random portions following techniques in 

subsection 3.3.4.  The validation shows that the ML models can predict the passive loss 
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with an average error of less than -0.07dB and compute the phase delay from inputs to 

outputs with an average error of 2-3º. The models also can learn the quality factor Q with 

an error of less than 0.1 (for an average Q of 3), and the input impedance ZS (or Rin) of  2-

3Ω (for an average input impedance of 70Ω). Demonstrated in the second row of Fig. 3.9b, 

the mean values of relative percentage errors for passive loss and phase delay are all less 

than 6%, and those for Q and Rin are less than 9%. Note that a relative error of less than 

10% indicates that the ML models accurately predict the electrical values within the range 

of 0.9-1.1 times the ground-truth values. From the K-fold validation results, the error is 

small and identical between the training set and the validation set, which indicates that the 

ML models can accurately match the physical-electrical relationship for baluns.  

3.5 The Physical-Electrical Machine Learning Models for Other EM Blocks 
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Figure 3.14 Example of generating training data for series-connected baluns without re-running HFSS 

simulation 

The framework shown in section 3.3 and 3.4 for coupled lines and vanilla baluns is 

generic, such that we can apply the same framework to build ML models for other EM 
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blocks by sampling from a continuous design space, extracting electrical labels, training 

ML models, and evaluating with K-fold validation.  

However, with the existing data that we have collected, we can simultaneously generate 

new training data for the new EM blocks without rerunning EM solvers to simulate EM 

structures. For example, Fig. 3.14 illustrates the schematic for the series-connected baluns. 

Conventionally, we need to build an HFSS model with two baluns connected in series, then 

continuously sample various values for physical dimensions of those baluns. Equivalently, 

we might ignore the minor effect of the connection between 2 baluns, sample two simulated 

baluns directly from our database, and connect two S-parameters files in series to construct 

S-parameters for a series-connected balun. Similar to the LEGO concepts, where we reuse 

previous designs to immediately build a new one, we can reuse the existing simulated S-

parameter files to develop new S-parameters for new EM blocks. 

After generating new data by “LEGO”-ing the existing data, we can apply mathematical 

extraction and train ML models for new EM blocks. While developing ML models for 

other EM blocks are not so challenging, those tasks are beyond the topics we want to 

explore in this thesis. 
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CHAPTER 4. MACHINE LEARNING FOR AUTOMATING MM-

WAVE DESIGNS - PART 1 

The current approach to design EM structures is heavily based on trial-and-error, such 

that the quality of EM design exhibits high variance, and the overall design process 

consumes a large amount of time and engineering effort. To resolve this problem, we 

propose in this chapter an automation technique that can drastically reduce the design time 

from days-weeks-months to seconds while maintaining the high quality of EM designs. 

Utilizing the BCOD theory presented in Chapter 2 and our pre-trained ML models 

developed in Chapter 3, our proposed approach can fully automate the mm-wave EM 

designs to achieve the lowest loss for numerous mm-wave design tasks. Notably, 

optimizing physical dimensions for the lowest metal loss is a challenging problem, and to 

the best of our knowledge, we are not aware of any prior techniques that can systematically 

address the specification of the lowest metal loss for mm-wave EM designs.  

The automation pipeline we propose in this chapter is generic, and we can apply the 

same principle to automate various mm-wave design tasks, including Directional Couplers, 

Impedance Transforming Baluns, Series-Connected Power Combiners, Out-Phasing 

circuits, and Doherty networks. From a specification of the output load impedance ZL, the 

optimum load impedance ZS (or Rin), and the parasitic capacitance of active device ZC = 

ZS/Q, numerous automation examples over a wide range of mm-wave tasks verify that our 

proposed approach can both accurately design various electrical specifications for many 

mm-wave EM structures and efficiently complete all those tasks within a computational 

time of seconds. 
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4.1 The Proposed Approach to Automate Mm-Wave EM Designs 

The current approach to design EM circuits, as shown in Fig. 4.1a, heavily relies on 

trial-and-error. Engineers must keep running EM simulators to calculate electrical 

properties and keep updating physical parameters for many iterations until all electrical 

specifications are met. As a result, the design process consumes a large amount of time and 

labor, and the outcome of the process often exhibits high variance in terms of the final 

quality (see section 3.1). 
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Figure 4.1 (a) Current approach of designing EM structures (b) Proposed pipeline to design EM structures. 
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In this dissertation, we propose an automation approach that leverages Machine 

Learning techniques to resolve the drawbacks of the current approach to design EM 

structures. Described in Fig. 4.1b, the proposed approach includes developing a database 

or library of critical EM structures, training ML models from extracted electrical labels, 

applying an automation algorithm, and exporting the final designs and their S-parameter 

files. We present our approach to build a database for EM structures by sampling physical 

parameters from a continuous design space and training ML models utilizing neural 

networks with extracted electrical labels. In Chapter 3, the K-fold validation results show 

that ML techniques can accurately compute electrical parameters from physical 

dimensions. In this chapter, we demonstrate the automation algorithm with various 

automation architectures to fully design numerous mm-wave tasks, including Directional 

Couplers, Impedance Transforming Baluns, series-connected Power Combiners, Out-

Phasing circuits, and Doherty networks. Given a design task and a specification for an 

output load ZL, an optimum impedance ZS, and a parasitic capacitance ZC = Q/ZS of a 

device, the pipeline automatically calculates the optimum physical dimension and 

generates a full EM design that satisfies all electrical specifications. 

Compared to the current approach to design mm-wave EM structures, our approach is 

drastically faster, because we can use ML approaches to effectively compute electrical 

properties within a small fraction of seconds while the current approach takes minutes-

hours to complete an EM simulation. Our technique is also more reliable than the current 

technique because our automation algorithm does not depend on subjective judgements to 

update the EM parameters while the current technique heavily relies on the experience of 

circuit designers to make an update. Additionally, the proposed approach directly optimizes 
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for the lowest metal loss, whereas the current technique might not have a systematic way 

to fully address the loss specifications. 

In this chapter, we start from the automation architectures of fundamental blocks, such 

as Directional Couplers or Impedance Transformation Baluns, and leverage those 

automations to design more complex structures, such as Series-Connected Power 

Combiners, Out-Phasing circuits, or Doherty networks. We present the architectures that 

use the ML model for coupled lines in this chapter and illustrate those that use the ML 

model for vanilla baluns in Chapter 5. 

The organization of this chapter is as follows: Section 4.2 demonstrates the architecture 

for designing Directional Couplers, section 4.3 illustrates the indirect approach to automate 

Impedance Transforming Baluns, and section 4.4 outlines the technique used to implement 

Power Combiners. In Chapter 5, we will automate the design of Baluns, Out-Phasing 

circuits, and Doherty networks. 

4.2 Automating the Design of Directional Couplers  

The first EM design we automate is that of Directional Couplers, which utilize coupled 

lines to couple the power from the input to the coupled port with a 90° phase shift. In 

practical application, this automated technique can assist EM designs in many critical Mm-

wave blocks, such as the inputs and outputs of Balanced Amplifiers, IQ phase shifters, 

Balanced Low Noise Amplifiers, or inputs of Doherty architectures. To demonstrate our 

proposed approach, we mathematically formalize the automation problem and outline our 

algorithm in subsection 4.2.1. We then verify the effectiveness of the proposed technique 

by presenting design examples with 50Ω characteristic impedance for various coupling 
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factors of -3dB, -10dB, and -20dB in subsections 4.2.2, 4.2.3, and 4.2.4, respectively. 

Notably, the proposed algorithm can complete all design specifications within a design 

time of seconds. 

4.2.1 Automation Problems and Algorithms 

Automation Problem: Given the coupling factor C in dB, characteristic impedance Zo of 

the termination impedance, and the frequency of operation, automate a full EM design of 

directional coupler with the lowest loss. 

Among many ways of computing the overall loss, we define the loss to be minimized 

in this automation problem as the sum the even-mode and odd-mode loss. 

Approaches 
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Figure 4.2 Proposed automation architecture for designing Directional Couplers. 

Figure 4.2 depicts our automation architecture for designing couplers. From the 

coupling factor and characteristic impedance, we compute the even- and odd-mode 

impedances of the coupler, utilize our pre-trained physical-electrical ML model for coupled 

lines and gradient descent to optimize for physical dimensions, and then use HFSS [38] to 
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generate and simulate a full EM design. To start the automation loop, we must initialize 

the random physical dimensions for the coupled line and employ gradient descent to update 

those parameters toward the design goal. Conventionally, we only choose one initialization 

point for the optimization. In this work, to make the automation process less sensitive to 

the initialization, we initialize N sets of physical dimensions, which is equivalent to 

attempting to design the coupler N times, where the value of N is typically from 20-100. 

Among those N attempts, we select the design with the lowest loss. 

Loss Functions 

For all the physical dimensions, we compute the characteristic impedance, electrical 

length, and loss of the even and odd modes. The optimization loss is computed as the 

weighted mean absolute error between the predicted outputs and the desirable electrical 

labels, where the weights are inversely proportional to the values of electrical labels: 

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 =  ∑
|𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒|

|𝑦𝑡𝑟𝑢𝑒|
,

𝑘

 

The ground truth value 𝑦𝑡𝑟𝑢𝑒 includes the characteristic impedances Ze, Zo for the even 

and odd modes and the electrical lengths θeven = θ, θodd = θ. The metal loss is computed as 

the sum of the losses for the even and odd modes, as defined in the automation problem, 

and the final loss is the sum of the optimization loss and the metal loss: 

𝑚𝑒𝑡𝑎𝑙 𝑙𝑜𝑠𝑠 =  ∑|𝑙𝑜𝑠𝑠𝑒𝑣𝑒𝑛| + |𝑙𝑜𝑠𝑠𝑜𝑑𝑑|,

𝑘

 

𝑙𝑜𝑠𝑠 =  𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 +  𝑚𝑒𝑡𝑎𝑙 𝑙𝑜𝑠𝑠 
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Subsequently, we compute the gradient of the loss with respect to all physical 

parameters and apply gradient descent with Adam optimizers to update the physical 

dimensions to minimize the loss. Repeating the loop for 2000 iterations, we finalize the 

physical dimensions for N designs, select the one that has optimization loss below a certain 

threshold (typically 0.5) with the lowest metal loss, and use HFSS to generate a full EM 

design and simulate the performance of this final design.  

Algorithms 

Overall, the algorithm for automating coupler designs is as follows: 

Algorithm for Automating the Design of Couplers 

 Compute Ze, Zo, θ from electrical specifications 

Randomly initialize N sets of physical dimensions for N coupled lines as an N×4 vector 

Fix the dielectric thickness and frequency to initialize an N×6 input vector for the ML 

models  

Load the physical-electrical ML models for coupled-lines 

For step = 1, M do 

Predict the impedance, electrical length, and loss of both even and odd modes 

Compute the optimization loss as the weighted mean absolute error between 

predicted outputs and desirable electrical labels. The weights are inversely 

proportional to the values of electrical labels. 
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Sum the optimization loss and metal loss as the final loss 

Compute the gradient of the loss with respect to each physical parameter 

Update N sets of physical dimensions by gradient descent with Adam update rules 

Select the dimensions with the lowest metal loss which have optimization loss less than 

threshold 

Simulate the selected dimensions with HFSS and generate S-parameters 

4.2.2 Design Examples for -3dB Couplers 

 

Figure 4.3 HFSS models of automated EM designs for -3dB couplers over various dielectric thicknesses. 

We apply the automation pipeline to design directional couplers with a -3dB coupling 

factor for 50Ω characteristic impedances over several dielectric thicknesses of 1.6µm, 3.2 

µm, 4.8 µm, and 6.4 µm. Those values of dielectric thicknesses represent various possible 
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td = 3.2µm
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td = 6.4µm

-3dB Directional Couplers
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cases for on-chip metal options. Taking less than 20 seconds for the entire design process, 

the proposed algorithm automatically generates an EM design for -3dB directional couplers 

as shown in Fig. 4.3. As all couplers have the same electrical length, the algorithm also 

constructs couplers with similar physical lengths. Because the coupling factors are the same 

over all dielectric thicknesses, the algorithm learns to widen the metal width as the 

dielectric thickness increases to maintain a constant coupling factor. Shown in Fig. 4.4, the 

HFSS results from those automated designs verify that all generate -3dB coupled power 

and satisfy all other design specifications. 

 

Figure 4.4 Simulated results for automated designs of -3dB couplers over various dielectric thicknesses. 

4.2.3 Design Examples for -10dB Couplers 

Another example is to design -10dB couplers for 50Ω characteristic termination 

impedances over several dielectric thicknesses of 1.6µm, 3.2 µm, 4.8 µm, and 6.4 µm. 
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With a total design time for all dielectric thicknesses of less than 20 seconds, the proposed 

algorithm automatically constructs EM structures for -10dB directional couplers as shown 

in Fig. 4.5. The automated pipeline produces lines with similar physical length for all 

designs to achieve the same electrical length and narrows down the metal spacing as the 

dielectric thickness goes up to maintain constant coupling factors. Depicted in Fig. 4.6, the 

simulated results demonstrate that all automated designs exhibit -10dB coupling across all 

dielectric thicknesses, confirming the accuracy of the proposed approach. 

 

Figure 4.5 HFSS models of automated EM designs for -10dB couplers over various dielectric thicknesses. 
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Figure 4.6 Simulated results for automated designs of -10dB couplers over various dielectric thicknesses. 

4.2.4 Design Examples for -20dB Couplers 

We also automate the design of -20dB couplers for 50Ω characteristic termination 

impedances over various dielectric thicknesses of 1.6µm, 3.2 µm, 4.8 µm, and 6.4 µm. 

Completing all design tasks in less than 20 seconds, the pipeline automatically generates 

full EM designs for -20dB directional couplers as illustrated in Fig. 4.7. As a -20dB 

coupling factor implies only a limited amount of power is coupled, all the automated 

designs have the ground plane underneath the coupled signals to reduce the coupled power. 

The spacing between two metal traces is relatively large, leading to the dielectric thickness 

having an insignificant effect on the coupling factor. Consequently, the automation 

algorithm generates similar geometries for all designs. Simulated with HFSS, all automated 

designs exhibit approximately -20dB coupling factors for all dielectric thicknesses, as 

illustrated in in Fig. 4.8, which demonstrates the effectiveness of the proposed technique. 
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Figure 4.7 HFSS models of automated EM designs for -20dB couplers over various dielectric thicknesses. 

 

Figure 4.8 Simulated results for automated designs of -20dB couplers over various dielectric thicknesses. 
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4.3 Automating the Design of Impedance Transforming Baluns – The Indirect 

Approach  

The second EM design we automate is that of Impedance Transforming Baluns, which 

transform the output load ZL to the source impedance ZS and resonate out a device parasitic 

capacitance ZC = ZS/Q. To generate physical dimensions for baluns, in this section, we 

introduce an intermediate step of computing coupled-line parameters based on the lossless 

theory developed in Chapter 2, and subsequently, we call this technique the “indirect” 

approach.  

This automation pipeline can support all the blocks in mm-wave systems involving 

differential pairs, e.g., PAs, LNAs, Mixers, and Phase Shifters. The designs of Impedance 

Transforming Baluns are highly critical at the output network of Power Amplifiers, where 

the requirement for minimizing the passive loss of the baluns is exceptionally stringent. 

For example, an improvement of 0.5dB in the loss of balun can boost the efficiency of an 

entire transmitter system by 10%. We also utilize baluns at the input stages for differential 

signal generation and impedance matching. In this functionality, Impedance Transforming 

Baluns generally have two distinct specifications for two different type of active devices: 

high impedance devices, such as CMOS, GaN, and low impedance devices, such as SiGe 

or InP. 

To present our approach, we define the automation problems in mathematical terms and 

our proposed algorithm in subsection 4.3.1. As the specification for baluns can vary over 

several applications, we demonstrate three examples of baluns: (1) for mm-wave output 

networks in subsection 4.3.2, (2) for mm-wave CMOS (high impedance devices) input 
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networks in subsection 4.3.3, and (3) for mm-wave SiGe (low impedance devices) input 

networks in subsection 4.3.4. 

4.3.1 Automation Problems and Algorithms 

Automation Problem: Given the ZL as the load impedance, ZS as an optimum impedance 

seen by device, and the loaded Q of the network, automate a full EM design of an 

impedance transformation with the lowest loss at the frequency of operation. 

Approaches 
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Figure 4.9 Proposed indirect approach to automate the design of Impedance Transforming Baluns. 

Depicted in Fig. 4.9, our proposed approach to indirectly automate the design of 

Impedance Transforming Baluns is formulated by the theorem of vanilla baluns developed 

in Chapter 2 and the physical-electrical coupled-line ML model built in Chapter 3. Given 

the electrical specifications, the first step is to compute the electrical parameters of coupled 

lines (Ze, Zo, θ), and the second step is to convert from electrical properties to physical 

dimensions, which we resolve by leveraging the automation pipeline for couplers as shown 

in section 4.2.  
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This indirect approach mimics how an engineer often designs the Microwave circuits: 

gradually transform from top-level specifications to low-level electrical parameters and 

utilize EM simulators to iteratively realize the structure’s physical dimensions.  In this 

design task for baluns, we can have many solutions for Ze, Zo, θ which all can satisfy the 

impedance transformation ratio and lead to good designs. As a result, we sweep values of 

θ from 5° to 45° in 2° incremental steps, solve the theoretical coupled line parameters 

numerically for each value of θ, and automate the physical dimensions for all. Among many 

possible coupled line parameters, we choose the design with the lowest loss when 

evaluating the physical-electrical ML models for vanilla baluns. 

Loss functions 

The numerical solver can compute exact values of Ze, Zo, θ that satisfy the specification 

of baluns by following the lossless assumption of coupled lines. The step of obtaining 

physical dimensions has the same loss as the automation pipeline for couplers. 

Algorithms 

Overall, the algorithm to indirectly automate the Impedance Transforming Baluns is as 

follows: 

Algorithm for Indirectly Automating the Design of Impedance Transforming Baluns 

 For θ = 5°, 7°, 9°, …, 45° do: 

Follow the technique in section 2.2 to numerically solve Ze, Zo, θ  
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Generate a list of all possible theoretical solutions and follow the automation pipeline for 

coupler designs to convert to a list of possible physical dimensions 

Employ the ML model for vanilla baluns to select designs with the lowest loss 

Simulate the selected parameters with HFSS and generate the S-parameter files 

Design Examples 

We frequently design Impedance Transformation Baluns for use in output networks, 

CMOS input networks with high ZS, and SiGe input networks for low ZS. To evaluate the 

effectiveness of the proposed approach, we present three design examples for those 

commonly used cases. 

Design Specifications: Design an impedance transforming balun at 60GHz for three 

different sets of specifications 

(1) Output networks: ZL=50Ω, ZS=30Ω, Q=1.2 

(2) CMOS input networks: ZL=50Ω, ZS=200Ω, Q=6  

(3) SiGe input networks: ZL=50Ω, ZS=20Ω, Q=0.5 

The thickness of the metal can be 1.6µm, 3.2µm, 4.8µm, 6.4µm. 

4.3.2 Design Examples for Output Baluns 

The first design example evaluates the algorithm on the specification of ZL=50Ω, 

ZS=30Ω, Q=1.2, which is typically the specification for an output balun at 60GHz. 

Following the steps presented in subsection 4.3.1, the algorithm first derives the theoretical 

values of coupled lines over various values of theta, as shown in the blue curves in the top 



 80 

row of Fig. 4.10, and then utilizes the physical optimizer to generate the physical 

dimensions of those coupled lines, where the extracted electrical parameters of those 

physical implementations are depicted in the yellow curves in the top row of Fig. 4.10.  The 

theoretical solutions exist for θ=10-50°, as in the blue curves in the top row of Fig. 4.10, 

but not all those theoretical values can be physically realized on-chip. Shown as the yellow 

curves in the top row of Fig. 4.10, the physical optimizer can only design a physical 

realization for θ=20-46°. One of the critical design insights that the algorithm yields is that 

coupled lines with an even-mode impedance greater than 100Ω or with a coupling factor 

greater than 0.8 are typically challenging to implement on-chip. 

 

 

Figure 4.10 Theoretical values and physically implemented values for the coupled lines that result in 

impedance transforming baluns with ZL=50Ω, ZS=30Ω, and Q=1.2 (the first row), and predicted loss for 

various implementation of the automation algorithm (the second row). 
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Figure 4.11 HFSS models of automated designs with the indirect approach for impedance transforming 

baluns with ZL=50Ω, ZS=30Ω, and Q=1.2. 

We employ the vanilla balun ML model to compute the loss for all the coupled lines 

that are possible to be realized on chip and illustrate the results in the second row of Fig. 

4.10b. From the loss curves, we select the designs with the lowest loss as the final EM 

designs and show the automated Impedance Transforming Baluns for various thicknesses 

in Fig. 4.11.  Among all realizable values, in this design example, the lowest possible 

electrical length also minimizes the loss. Additionally, Fig. 4.11 demonstrates the strategy 

the algorithm adopts when working with various dielectric thicknesses. The coupling factor 

should stay relatively constant over all dielectric thicknesses, and the algorithm maintains 

this coupling factor by widening the metal traces as the dielectric thickness increases. 
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The results also inform us about the trade-off when choosing the metal layers to 

implement the baluns. On one hand, when two metal layers are close to each other with a 

smaller dielectric thickness, they can achieve tighter coupling factors, so we can realize a 

wider range of electrical parameters. As an example, the dielectric thickness of 1.6µm 

supports the implementation of input baluns with electrical lengths from 20°-48°, but the 

dielectric thickness of 6.4µm only realize the range from 28° to 46°. On the other hand, 

higher dielectric thicknesses often result in lower loss. The second row of Fig. 4.10 

illustrates that the loss curve gradually increases as the dielectric thickness goes up from 

1.6µm to 6.4µm. 

 

Figure 4.12 Automated results for impedance transforming baluns with ZL=50Ω, ZS=30Ω, and Q=1.2. The 

first row describes the predicted specification by the physical-electrical ML models, and the second row 

shows the actual physical-electrical values obtained from HFSS. 
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Finally, the algorithm selects the design with the lowest predicted loss, builds the HFSS 

model, and simulates the S-parameters files. From HFSS simulated files, we terminate the 

output load with ZL=50Ω and utilize ADS software to compute the ZS (Rin), Q, and loss in 

the bottom row of Fig. 4.11. The predicted electrical label shown in the top row closely 

agrees with the actual results from HFSS and ADS, demonstrating that our pre-trained ML 

models can accurately compute electrical parameters over all frequencies and design cases. 

Note that the HFSS software takes several hours to simulate the results, but the ML models 

take less than a second to compute the prediction. Guided by the lossless coupled line 

models, the automated designs achieve ZS (or Rin) from 25-28Ω, Q from 0.5-0.75, and 

passive loss from -0.85dB to -0.78dB across many dielectric thicknesses, which are 

relatively close to the design specifications. We further improve the automation pipeline 

with the direct approach and present the results in section 5.1. 

4.3.3 Design Examples for CMOS Input Baluns 

As the second illustration, we automate the design of CMOS input baluns with ZL=50Ω, 

ZS=200Ω, and Q=6 at 60GHz. Following the steps presented in subsection 4.3.1, the 

algorithm first computes the theoretical values for coupled lines, as shown in the blue 

curves in the first row of Fig. 4.13, where the theoretical solutions exist for θ=10-50°. 

Among those solutions, the algorithm physically realizes the coupled lines with electrical 

length θ in the range of 24-50°, as shown in the yellow curves in the first row of Fig. 4.13. 

The constraint here is that the even-mode impedance Ze must be less than 120Ω and the 

odd-mode impedance Zo must be less than 45Ω. The pipeline then utilizes the vanilla balun 

ML model to evaluate the loss of all physical realizations, in which we depict the results in 

the second row of Fig. 4.13. The optimum electrical length for this design specification is 
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approximately θ=32°.  The final physical dimensions are shown in Fig. 4.14, where one 

critical observation is that the algorithm moves two lines closer to each other as the 

dielectric thickness increases, so that the coupling factor remains constant across various 

thicknesses. 

 

 

Figure 4.13 Theoretical calculated values and physically implemented values for the electrical properties of 

coupled lines that lead to impedance transforming baluns with ZL=50Ω, ZS=200Ω, and Q=6 (the first row) 

and predicted loss for various automated EM design from the automation algorithm (the second row). 

From the simulated S-parameter files generated by HFSS, we terminate the output load 

with ZL=50Ω and utilize the ADS software to evaluate the ZS (or Rin), Q, and passive loss 

of the automated EM designs, as shown in the second row of Fig. 4.15. The predicted 

values using our vanilla balun models for ZS (or Rin), Q, and passive loss, as depicted in 

the first row of Fig. 4.15, exhibit good agreement with the actual results by commercial 
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simulators, demonstrating the accuracy of our ML models. Based on the lossless coupled 

line models, the automated designs accomplish ZS (or Rin) from 125-145Ω, Q from 4.0-

4.5, and passive loss from -0.85dB to -0.78dB across many dielectric thicknesses, 

compared to the specification of ZL=50Ω, ZS=200Ω, Q=6. 

 

Figure 4.14 HFSS models of automated designs with the indirect approach for impedance transforming 

baluns with ZL=50Ω, ZS=200Ω, and Q=6. 
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Figure 4.15 Automated results for impedance transforming baluns with ZL=50Ω, ZS=200Ω, and Q=6. The 

first row describes the predicted specification by the physical-electrical ML models, and the second row 

shows the actual physical-electrical results from commercial simulators. 

4.3.4 Design Examples for SiGe Input Baluns 

As the third illustration, we automate the design of SiGe input baluns with ZL=50Ω, 

ZS=20Ω, and Q=0.5. The algorithm initially evaluates the theoretical parameters for 

coupled lines, where the solutions exists for values of θ=30-40°, as shown in the blue 

curves in Fig. 4.16. Transferring those values to physical dimensions, the automaton 

pipeline for couplers can physically realize a range of electrical length θ=30-38°, where 

the constraint is that the even-mode impedance Ze must be less than110Ω and the coupling 

factor must be less than 0.8 (see the yellow curves in Fig. 4.16). Among all the possible 

dimensions, we utilize our pre-trained ML model to compute the passive loss of all 
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automated designs and illustrate the results in the second row of Fig. 4.16. The optimum 

electrical length for this design specification is approximately θ=35°. Increasing the 

dielectric thickness leads to lower passive loss, with the highest loss occurring with 1.6µm 

and the lowest losses with 4.8µm and 6.4µm. 

 

 

Figure 4.16 Theoretical calculated values and physically implemented values for the electrical properties of 

coupled lines that lead to impedance transforming baluns with ZL=50Ω, ZS=20Ω, and Q=0.5 (the first row) 

and predicted loss for various automated EM design from the automation algorithm (the second row). 

Show in Fig. 4.17, the final automated designs illustrate several strategies the algorithm 

uses to maintain the same coupling factor over various dielectric thicknesses. At td=3.2µm, 

two metals stack directly on top of each other. When td increases to 4.8µm or 6.4µm, the 

algorithm widens the metal traces to compensate for the higher value of thickness. 
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However, when td reduces to 1.6 µm, the algorithm learns to keep a similar line width but 

moves the lines further away from each other to retain the same coupling strength.  

td = 1.6µm

td = 3.2µm

td = 4.8µm

td = 6.4µm

ZL=50Ω, ZS=20Ω, Q=0.5 

400µm

The Indirect Approach

 

Figure 4.17 HFSS models of automated designs with the indirect approach for impedance transforming 

baluns with ZL=50Ω, ZS=20Ω, and Q=0.5. 

We utilize the simulated S-parameters with HFSS and terminate the output load with 

ZL=50Ω to evaluate the ZS (or Rin), Q, and passive loss of the automated EM designs. The 

predicted values using our vanilla balun models for ZS (or Rin), Q, and passive loss are 

shown in the first row, and the actual results by commercial simulators are illustrated in 

the second row of Fig. 4.18. Over the entire frequency range from 40-80GHz, the ML 

model predictions match closely with the actual results by commercial simulators. Note 

that the HFSS software takes several hours to compute the results, but the ML models take 

a fraction of a second to complete the prediction. Guided by the lossless coupled line 
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models, within the design time of seconds, the automated designs exhibit ZS (or Rin) from 

20-27Ω, Q from 0.25-0.6, and passive loss from -0.5dB to -0.3dB across many dielectric 

thicknesses, compared to the specification of ZL=50Ω, ZS=20Ω, and Q=0.5. 

 

Figure 4.18 Automated results for impedance transforming baluns with ZL=50Ω, ZS=20Ω, and Q=0.5. The 

first row describes the predicted specification by the physical-electrical ML models, and the second row 

shows the actual physical-electrical results from commercial simulators. 

4.3.5 Analysis 

Developed from the lossless model of coupled lines, the indirect approach allows us to 

optimize physical dimensions for Impedance Transformation Baluns that achieve results 

that are close to desirable specifications. Demonstrated on multiple cases of baluns on 

various dielectric thicknesses, we verify that the proposed pipeline can effectively 

automate design tasks within the design time of seconds. Also, by comparing between the 
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predicted and actual results, we show that our pre-trained ML models can accurately 

predict the electrical performance over various ranges of frequency and design 

specifications. The approach also informs us about the realizable range of coupled lines 

when implementing on-chip. The low loss solution typically has even mode impedance 

less than 120Ω and the coupling factor less than 0.8. 

Although we can leverage the theoretical analysis to automate EM structures in this 

indirect approach, the inherent drawback of this approach is the assumption of a lossless 

model, while the coupled lines undoubtedly exhibit metal loss when physically 

implemented on chips. 

4.4 Automating the Design of Series-Connected Power Combiners 

Having been the common and popular choice of designs to combine power at RF 

frequencies, series-connected Power Combiners have been frequently revisited at mm-

wave ranges. However, researchers find it difficult to implement this structure at mm-wave 

bands, where much of the criticism is directed at the strong mm-wave capacitive coupling 

that distorts the impedance seen by active cores.  Analyzing this structure in Chapter 2, we 

have showed that designs for series-connected power combiners exist at mm-wave 

frequency ranges, given that we must design the coupled lines asymmetrically and add 

phase-shifts at the inputs.  

Advancing from the theoretical study, we will apply Machine Learning techniques and 

build automation algorithms to physically implement the design of series-connected Power 

Combiners in this section, where subsection 4.4.1 illustrates the automation problems and 
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our proposed solutions, and subsection 4.4.2 shows a design example of automating series-

connected power combiners. 

4.4.1 Automation Problems and Algorithms 

Automation Problem: Given the ZL as the load impedance, ZS as an optimum impedance 

seen by device, the loaded Q of the network, and the number of active cells (N_baluns) 

from which we want to combine the power, automate a full EM design of a Power Combiner 

with the lowest loss at the frequency of operation. 
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Figure 4.19 Proposed architectures to automate the design of Series-Connected Power Combiners. 

Given the electrical specifications, we apply the theoretical analysis to compute the 

electrical parameters of all coupled lines (Ze, Zo, θ) for all active cells. We then convert 

from electrical properties to physical dimensions by the automation pipeline for couplers 

as presented in section 4.2. Among many sets of automated design, we select the design 
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that minimize the overall loss defined as the sum of the even-mode and odd-mode loss of 

all coupled lines. 

Algorithms 

Algorithm for Automating the Design of Series-Connected Power Combiners 

 Compute N sets of coupled lines parameters that satisfy the specification of Power 

Combiners 

Follow the pipeline for coupler design to convert to a list of possible physical dimensions 

Select the design that minimizes the sum of even- and odd-mode losses for all coupled 

lines 

Simulate the selected parameters with HFSS and generate S-parameters 

4.4.2 Design Examples 
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Figure 4.20 HFSS models for automated Power Combiners with two baluns, ZL=25Ω, ZS=30Ω, and Q=1.2. 
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We demonstrate a design example for the case when ZL=25Ω, ZS=30Ω, Q=1.2, and 

N_baluns=2. Numerical methods from Chapter 2 are used to extract the electrical 

specification of two baluns, both of which have the same electrical length of 30°. With an 

input phase difference of 90°, we calculate the electrical parameters of coupled lines as 

Ze1=55.7Ω, Zo1=19.9Ω, Ze2=55.7Ω, and Zo2=7.11Ω. We then apply the physical optimizer 

for the coupled line design to physically realize those values and select the design with the 

lowest loss defined as the sum of the even-mode and odd-mode propagation loss for both 

baluns. We depict the automated designs for the Power Combiners in Fig. 4.20 and the 

electrical properties of those in Fig. 4.21. Generally, both differential cores see a resistive 

impedance close to the desirable value of 30Ω and a series imaginary impedance close to 

the desirable value of 0Ω, as we already absorb the parasitic capacitance inside the network. 

 

 

Figure 4.21 Automated results for Power Combiners with 2 baluns, ZL=25Ω, ZS=30Ω, and Q=1.2. 
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4.5 Analysis 

In this chapter, we made an assumption that the coupled lines are lossless such that we 

can mathematically convert from high-level electrical specifications to mid-level 

parameters of coupled lines and apply our physical optimizer for couplers to automate 

various design tasks. Indeed, this is the pipeline that engineers often use to design EM 

structures, and we follow a similar path but build new tools to reduce the design time to 

seconds. The automated results are encouraging, producing EM designs close to electrical 

specifications, but the mismatches still show the limitation of both the lossless assumptions 

and the typical pipeline that engineers often use to design EM structures. 

To remove this lossless assumption, we will build more comprehensive ML models that 

learn electrical properties of actual simulated metal traces to account for all non-ideal 

effects. We will present the results of the approach without the lossless assumption in 

Chapter 5. 
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CHAPTER 5. MACHINE LEARNING FOR AUTOMATING MM-

WAVE DESIGNS – PART 2 

 

In the previous chapter, we proposed several algorithms that employed the physical-

electrical ML models for coupled lines to fully automate several mm-wave EM design 

tasks, such as Directional Couplers, Impedance Transforming Baluns, and Power 

Combiners. The major drawback is that the previous approaches assumed that coupled lines 

are lossless to compute mid-level electrical parameters from the high-level electrical 

specifications, which at times leads to automated solutions with marginal accuracies.  

To resolve this challenge, in this chapter, we develop automation algorithms that 

leverage the physical-electrical ML models for baluns while incorporating actual metal loss 

in our optimization algorithm. We demonstrate that even without an intermediate step of 

mathematically analyzing EM structures, ML algorithms that can directly design 

Impedance Transforming Baluns, Out-Phasing circuits, and Doherty networks with both 

high accuracies and seconds-level design time. Overall, we complete the ML algorithms to 

fully automate all BCOD design tasks. 

5.1 Automating the Design of Impedance Transforming Baluns – The Direct 

Approach  

This section revisits the design of Impedance Transforming Baluns, but we apply the 

physical-electrical Machine Learning models for baluns to automate the design process in 

the “direct” approach. Unlike the “indirect” approach investigated in Chapter 4, the direct 
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approach incorporates loss in the coupled line models. To the best of our knowledge, this 

is the first work that comprehensively analyzes the loss of the on-chip baluns. We  present 

our proposed algorithm in subsection 5.1.1 and demonstrate various automated examples 

for output baluns, input baluns for high-impedance devices, and input baluns for low-

impedance devices in subsections 5.1.2-5.1.3 to verify the effectiveness of our proposed 

approach. 

5.1.1 Automation Problems and Algorithms 

Automation Problem: Given the ZL, Zs, Q as the load impedance, optimum impedance 

seen by device, and loaded Q of the network, automate a full EM design of an impedance 

transformation with the lowest loss at the frequency of operation. 

Approaches 
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W,S,G, L 

Gradient descent/
Adam

Output

Full EM 

Design

Input

Mm-Wave design tasks:

+ Impedance 
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Specifications
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Approach 2 for automating Baluns

Physical-Electrical 
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 loss,

Phase-delay
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Figure 5.1Proposed direct approach to automate the design of Impedance Transforming Baluns. 

Figure 5.1. illustrates our proposed approach to directly automate the design of an 

Impedance Transforming Baluns. Given a specification of an output load ZL and the 

frequency of operation, we initialize multiple physical dimensions to formulate the input 

vectors for the balun ML models and from that compute the resulting ZS (or Rin), C, Q, and 
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loss of those physical parameters. Subsequently, we compute the loss function, apply 

gradient descent and Adam optimizers to obtain the physical dimensions, and select the 

design with the lowest loss. 

Loss Functions 

For all the physical dimensions, the output impedance ZL, and the frequency of 

operation, we compute the resistive impedance ZS (or Rin) seen by the source, the capacitor 

Cin that the network resonates out, the quality factor Q of the baluns, and the passive loss 

associated with the path from inputs to outputs. The optimization loss is computed as the 

weighted mean absolute error between the predicted outputs and the desirable electrical 

labels, where the weights are inversely proportional to the values of electrical labels: 

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 =  ∑
|𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒|

|𝑦𝑡𝑟𝑢𝑒|
,

𝑘

 

The ground truth value 𝑦𝑡𝑟𝑢𝑒 includes the ZS, Cin, and Q. The metal loss is computed as 

simply the passive loss of the structure: 

𝑚𝑒𝑡𝑎𝑙 𝑙𝑜𝑠𝑠 =  𝑝𝑎𝑠𝑠𝑖𝑣𝑒 𝑙𝑜𝑠𝑠,  

𝑙𝑜𝑠𝑠 =  𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 +  𝑚𝑒𝑡𝑎𝑙 𝑙𝑜𝑠𝑠 

From the overall loss as the sum of optimization loss and the metal loss, we compute 

the gradient of the overall loss with respect to all physical parameters and apply gradient 

descent with Adam optimizers to update the physical dimensions to minimize the loss. 

Repeating the loop for 2000 iterations, we finalize the physical dimensions for N designs, 

select the one that has optimization loss below a certain threshold (typically 0.5) with the 
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lowest metal loss, and use HFSS to generate a full EM design and simulate the performance 

of the final design. The typical value for N is from 20-100, which is equivalent to 

attempting to design the baluns 20-100 times to select the structure with the lowest loss.  

Algorithms 

Overall, the algorithm to directly automate the design of Impedance Transforming 

Baluns is as follows: 

Algorithm for Directly Automating the Design of Impedance Transforming Baluns 

 Randomly initialize N set of physical dimensions for N coupled lines as an N×4 vector 

For step = 1, M do 

Predict the ZS, Cin, Q, and passive loss of the Impedance Transforming Baluns 

Compute the optimization loss as the weighted mean absolute error between 

predicted outputs and desirable electrical labels. The weights are inversely 

proportional to the values of electrical labels. 

Compute the gradient of the loss with respect to each physical parameter 

Update N sets of physical dimensions by gradient descent with Adam update rules 

Select the dimensions that have optimization loss less than threshold and achieves the 

lowest metal loss  

Simulate the selected dimensions with HFSS and generate S-parameters 
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As discussed in Chapter 2, we need impedance transformation baluns in three common 

cases: at output networks, at input networks of high impedance devices (CMOS), and at 

input networks of low impedance devices (SiGe). To evaluate the effectiveness of this 

direct approach, we demonstrate three design examples as follows: 

Design Specifications: Design an impedance transforming balun at 60GHz for three 

different sets of specifications 

(1) Output networks: ZL=50Ω, ZS=30Ω, Q=1.2 

(2) CMOS input networks: ZL=50Ω, ZS=200Ω, Q=6  

(3) SiGe input networks: ZL=50Ω, ZS=20Ω, Q=0.5 

The thickness of the metal can be 1.6µm, 3.2µm, 4.8µm, 6.4µm. 

5.1.2 Design Examples for Output Baluns 

The first example automates the design of Impedance Transforming Baluns for use at 

an output network with a specification of ZL=50Ω, ZS=30Ω, Q=1.2. Given the 

specification, we solve the physical dimensions over various physical lengths of the 

coupled lines and show the results in Fig. 5.2 with the ZS (or Rin) and Q in the first row and 

the passive loss in the second row. The direct approach illustrates an excellent optimization 

loss, where both automated values for Rin and Q are close to the desirable specifications, 

with Rin ranging from 28-34Ω and Q ranging from 1.1-1.25 when the physical length ranges 

from 50-250µm. The passive loss curve in the second row of Fig. 5.2 demonstrates that the 

optimum physical length over various dielectric thicknesses for this design problem is 

approximately 80-110µm. Fig. 5.3 shows HFSS models with the optimum physical 

dimensions for the design tasks at various dielectric thickness. A common trend is that the 
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automated algorithm widens the metal traces as the dielectric thickness increases to 

maintain the same coupling factor over various designs. 

 

Figure 5.2 Automation results for the direct approach to design Impedance Transforming Baluns with 

ZL=50Ω, ZS=30Ω, and Q=1.2 over numerous physical lengths of baluns. 

Next, the automation pipeline simulates the design with the lowest predicted passive 

loss with the HFSS software to obtain S-parameters files. In Fig. 5.4, we depict the 

predicted results from our pre-trained physical-electrical ML models for baluns in the first 

row and illustrate the actual results from commercial EM simulators in the second row. 

Both results are well correlated across the entire frequency range, demonstrating the 
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prediction accuracy of our ML models. The results show Rin=30-35Ω, Q=1.25-1.3 when 

ZL=50Ω, which are identical to desirable electrical values. Overall, in a design time of less 

than 15 seconds, our proposed algorithms can fully automate EM designs of output baluns 

that both meet the specifications and achieve the lowest possible loss over various dielectric 

thicknesses. 

td = 1.6µm

td = 3.2µm

td = 4.8µm

td = 6.4µm

ZL=50Ω, ZS=30Ω, Q=1.2 

200µm

The Direct Approach

 

Figure 5.3 HFSS models of automated EM designs with the direct approach for baluns with ZL=50Ω, 

ZS=30Ω, and Q=1.2. 
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Figure 5.4 Automated results for impedance transforming baluns with ZL=50Ω, ZS=30Ω, and Q=1.2. The 

first row describes the predicted specification by the physical-electrical ML models, and the second row 

shows the actual physical-electrical results from commercial simulators. 

5.1.3 Design Examples for CMOS Input Baluns 

The second example automates the design of Impedance Transforming Baluns for use 

at an input network of high impedance devices with a specification of ZL=50Ω, ZS=200Ω, 

Q=6. Figure 5.5 presents the results of the automation algorithm over various physical 

length of the coupled lines, all of which demonstrate automated baluns with Rin and Q close 

to the desirable values, with Rin ranging from 182-200Ω and Q ranging from 5-6 when the 

physical length ranges from 120-180µm. The realizable range for physical length in this 

design is much narrower than in the previous design example. Additionally, the smallest 

electrical lengths do not imply the lowest passive loss in this design example. As shown in 
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the second row of Fig. 5.5, passive loss peaks at the highest physical length of the realizable 

ranges. 

 

Figure 5.5 Automation results for the direct approach to design Impedance Transforming Baluns with 

ZL=50Ω, ZS=200Ω, and Q=6 over numerous physical lengths of baluns. 
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Figure 5.6 HFSS models of automated EM designs with the direct approach for baluns with ZL=50Ω, 

ZS=200Ω, and Q=6. 

Figure 5.6 shows HFSS models with the optimum physical dimensions for the design 

tasks at various dielectric thicknesses. A common trend is that the automated algorithm 

moves two metal traces closer to each other as the dielectric thickness increases, so that the 

coupling factor over various designs can remain the same. Figure 5.7 depicts the predicted 

results from our ML models in the first row and the simulated results from commercial EM 

simulators in the second row. Both results are similar across the frequency bands, 

illustrating the high prediction accuracy of our ML models. The results demonstrate 

Rin=190-200Ω, Q=5.6-6 when ZL=50Ω, both of which are identical to the desirable values. 

Overall, within a design time of less than 15 seconds, the direct approach fully automates 

various high-quality input baluns for high impedance devices with both accurate electrical 

specifications and the lowest passive loss. 
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Figure 5.7 Automated results for impedance transforming baluns with ZL=50Ω, ZS=200Ω, and Q=6. The 

first row describes the predicted specification by the physical-electrical ML models, and the second row 

shows the actual physical-electrical results from commercial simulators. 

5.1.4 Design Examples for SiGe Input Baluns 

The third example automates the design of Impedance Transforming Baluns for use at 

an input network of low impedance devices, such as SiGe, with a specification of ZL=50Ω, 

ZS=20Ω, Q=0.5. Figure 5.8 details the results of the proposed algorithm when we fix 

various values of physical lengths, all of which illustrate automated baluns with Rin and Q 

close to the desirable values, with Rin ranging from 20-24Ω and Q ranging from 0.48-0.54 

when the physical length ranges from 50-250µm. 
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Figure 5.8 Automation results for the direct approach to design Impedance Transforming Baluns with 

ZL=50Ω, ZS=20Ω, and Q=0.5 over numerous physical lengths of baluns. 

Interestingly, in this design of input baluns for low-impedance devices, we see two 

distinct modes, one for short physical lengths less than 100µm where solutions exist for 

dielectric thicknesses of 1.6µm and 3.2µm, and another for long physical lengths greater 

than 150µm where solutions exist for dielectric thicknesses from 3.2-6.4µm. The optimum 

physical dimensions shown in Fig. 5.9 illustrate these two modes. At a dielectric thickness 

of 1.6µm, the algorithm selects the short physical length, while at dielectric thicknesses 

from 3.2-6.4µm, the pipeline generates designs with longer physical lengths. 
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Figure 5.9 HFSS models of automated EM designs with the direct approach for baluns with ZL=50Ω, 

ZS=20Ω, and Q=0.5. 

Describes in Fig. 5.10, both the predicted results from our ML models shown in the first 

row and the simulated results from commercial EM simulators illustrated in the second row 

exhibits similar responses over the entire frequency range, illustrating the high prediction 

accuracy of our ML models. We also see two distinct patterns of the response for two 

models. The results show Rin=20-24Ω, Q=0.5, both of which are close to the desirable 

specifications of Rin=20Ω, Q=0.5. Overall, within a design time of under 15 seconds, the 

proposed algorithm generates full EM designs that both fulfill the electrical specifications 

of various input baluns for low-impedance devices and achieve the lowest passive loss. 
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Figure 5.10 Automated results for impedance transforming baluns with ZL=50Ω, ZS=20Ω, and Q=0.5. The 

first row describes the predicted specification by the physical-electrical ML models, and the second row 

shows the actual physical-electrical results from commercial simulators. 

5.1.5 Analysis 

Several design examples with various electrical specifications and dielectric thicknesses 

verify the effectiveness of the ML approach. Within the design time of seconds, the 

algorithm generates full EM designs that yield electrical properties almost identical to the 

desirable specifications while demonstrating the lowest passive loss. Without effective ML 

models that accurately learn the physical-electrical relationships of baluns, those results 

might not be achievable. 

We end this section with a thought about the automation algorithm. When gradually 

receiving more example S-parameter files for baluns, the learning algorithm eventually 
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understands the entire design space, and from that the algorithm can navigate directly from 

problems to solutions, or from the electrical specifications to physical dimensions, without 

any intermediate steps of analyzing what is actually inside the circuits. In other words, 

without any explicit analysis of the design space, the learning algorithm can still become a 

mastermind by just observing enough of discrete behaviors of this design space. We find 

this fact both interesting and fascinating. 

5.2 Automating the Design of Out-Phasing and Doherty Networks 

To improve the average mm-wave efficiency when transmitting modulated signals, 

researchers and engineers commonly use advanced mm-wave architectures, such as Out-

Phasing circuits or Doherty networks. The current challenges to implement those 

architectures are still the Out-Phasing and Doherty EM structures that can actively 

modulate the load. In this thesis, not only have we proposed the theoretical solutions for 

the Out-Phasing and Doherty EM designs in Chapter 2, but we will also develop an 

automation algorithm that can physically realize those EM structures within a 

computational time of seconds. We first present the automation problem and our proposed 

algorithm in subsection 5.2.1 and then demonstrate automated design examples for Out-

Phasing circuits in subsection 5.2.2 and Doherty network in subsection 5.2.3. 

5.2.1 Automation Problems and Algorithms 

Automation Problem: Given the ZL, Zs, Q as the load impedance, optimum impedance 

seen by device, and loaded Q of the network, automate a full EM design of an Out-Phasing 

or Doherty EM network with the lowest loss at the frequency of operation. 
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Figure 5.11 The BCOD structures for (a) Out-Phasing circuits (b) Doherty networks. 

Approaches 

In chapter 2, we theoretically solved the BCOD structure for Out-Phasing circuits and 

Doherty networks and proposed explicit parameters for theoretical EM circuits that satisfy 

the design specifications for arbitrary values of ZL, ZS, and Q. One possible way to 

automate the EM designs is to follow the indirect approach presented in Chapter 4, by 

assuming that the coupled lines are relatively lossless, utilizing mathematical analysis to 

convert electrical specifications to mid-level parameters, and leveraging the ML models 

for coupled lines to indirectly compute physical dimensions. 

Interestingly, given more comprehensive ML models of vanilla baluns, we can directly 

automate the Out-Phasing and Doherty networks without explicitly analyzing mid-level 

parameters of coupled lines inside the baluns. As demonstrated in Fig. 5.11, we only need 

to automate two baluns, one with 2ZL, ZS, Q, and phase delay=90°, and another with 2ZL, 
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ZS, Q, and phase delay=0°/90°, to construct the full EM designs of Out-Phasing and 

Doherty EM networks. We visualize our proposed approach to automate the designs tasks 

as in Fig. 5.12. 

Output

Full EM 

Design

Input

Mm-Wave design tasks:

+ Out-Phasing circuits 
+ Doherty networks

Specification

ZL, ZS, ZC

HFSS

Balun1

2ZL, ZS, ZC, 90° 

Balun2

2ZL, ZS, ZC, 

0°/90° 

Physical 

Realization

W1,S1,G1, L1 

Physical 

Realization

W2,S2,G2, L2 

Automate 
Baluns

Automate 
Baluns

Automating Out-Phasing/Doherty

 

Figure 5.12 Proposed architectures to automate the design of Out-Phasing circuits and Doherty networks. 

Loss Functions 

Both balun 1 and 2 in Fig. 5.12 have optimization loss and metal loss: 

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠1,2  =  ∑
|𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒|

|𝑦𝑡𝑟𝑢𝑒|
,

𝑘,{1/2}

 

𝑚𝑒𝑡𝑎𝑙 𝑙𝑜𝑠𝑠1,2 = 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 𝑙𝑜𝑠𝑠1,2, 

The overall loss is the sum of the optimization loss and the metal loss: 

𝑙𝑜𝑠𝑠1,2 = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠1,2 + 𝑚𝑒𝑡𝑎𝑙 𝑙𝑜𝑠𝑠1,2 

In common with the previous automation algorithms, we employ the multi-initialization 

for the physical dimensions, which is equivalent to attempting to design the structure 

multiple times. Among all the generated designs, we choose those with optimization loss 
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smaller than a certain threshold, which typically we set to 0.6, and select the remaining 

design with the lowest metal loss. 

Algorithms 

Overall, the algorithm to fully automate the design of Out-Phasing circuits and Doherty 

networks is as follows: 

Algorithm for automating the Design of Out-Phasing Circuits and Doherty Networks 

 Automate the design of balun1 with the specification 2ZL, ZS, Q, and phase delay = 90° 

If designing Doherty structures: 

Automate the design of balun2 with 2ZL, ZS, Q and the phase delay = 0°/180° 

Else if designing Out-Phasing structures: 

Keep balun2 the same as balun1  

Utilize the balun automation to design balun1 and balun2 

Simulate the selected parameters with HFSS and generate S-parameters 

5.2.2 Design Examples for Out-Phasing Circuits 

This subsection presents an example of designing an Out-Phasing network for a 

specification ZL=50Ω, ZS=30Ω, and Q=1. Applying the automation algorithm presented in 

subsection 5.2.1, we automate the Out-Phasing EM structures over various dielectric 

thicknesses and show the finalized HFSS models of those automated designs in Fig. 5.13.  



 113 

ZL

 Φ I0

PA1

 -Φ I0

PA2
VDD VDD VDD

ZL

 Φ I0

PA1

 -Φ I0

PA2
VDD VDD VDD

ZL

 Φ I0

PA1

 -Φ I0

PA2
VDD VDD VDD

ZL

 Φ I0

PA1

 -Φ I0

PA2
VDD VDD VDD

td = 1.6µm

td = 3.2µm

td = 4.8µm

td = 6.4µm

600µm

 

Figure 5.13. Automated designs for Out-Phasing circuits with specifications ZL=50Ω, ZS=30Ω, and Q=1 

over various dielectric thicknesses. The Chirex compensation is not included for simplicity. 

Ideally, the active load modulation curves of Out-Phasing should follow: 

𝑅𝑝 =
𝑍𝑆

𝑐𝑜𝑠2(ϕ)
 

where 𝜙 is the Out-Phasing angle. From the simulated HFSS results, we apply the Out-

Phasing input signals to our automated design, plot the active load modulation curves as 

functions of Out-Phasing angles, and compare with the idealistic Out-Phasing response in 

Fig. 5.14. The Out-Phasing active load modulation curves for our automated design closely 
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track the idealistic response, demonstrating that we accurately generate EM designs for 

Out-Phasing circuits over various dielectric thicknesses. We also depict the passive loss of 

the automated designs in Fig. 5.15, where the best Out-Phasing design exhibits a small loss 

from -0.9dB to -0.5dB across all Out-Phasing angles. 

 

Figure 5.14 Active Load Modulation curves for the automated Out-Phasing designs over various dielectric 

thicknesses. 
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Figure 5.15 Passive Efficiency curves for the automated Out-Phasing designs over various dielectric 

thicknesses. 

5.2.3 Design Examples for Doherty Networks 
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Figure 5.16 Automated designs for Doherty circuits with specifications ZL=30Ω, ZS=30Ω, and Q=1. 
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Next, we present an example of designing a Doherty network with ZL=30Ω, ZS=30Ω, 

and Q=1. For simplicity, we assume that we implement both Main and Auxiliary baluns 

on the same dielectric thickness. Employing the algorithm presented in subsection 5.2.1, 

within a design time of less than 15 seconds, we complete the automated EM designs of 

Doherty structures and display the HFSS models of those automated Doherty networks in 

Fig. 5.16. For this electrical specification, balun 2 requires a strong coupling factor, such 

that the solutions only exist at dielectric thicknesses of 1.6-3.2µm.  

From the simulated S-parameters of HFSS models, we plot the active load modulation 

curves of the automated Doherty design in Fig. 5.17 and the passive loss over normalized 

input voltage in Fig. 5.18. The automated EM structures also exhibit low passive loss from 

-0.9dB to -0.5dB for a 3.2µm dielectric thickness over the entire Doherty operation. 

Additionally, the active load modulation curves shown in Fig. 5.17 closely track the 

idealistic Doherty response, demonstrating the Doherty functionality of the automated 

designs and the effectiveness of our proposed algorithm. 

 

Figure 5.17 Active Load Modulation curves for the automated Doherty designs over various dielectric 

thicknesses. 
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Figure 5.18 Passive Efficiency curves for the automated Doherty designs over various dielectric 

thicknesses. 

5.3 Analysis 

Chapter 4-5 presents our proposed Machine Learning approach to fully automate EM 

designs for the BCOD tasks. From a number of design examples for many critical EM 

structures, we verify that our proposed automation algorithm can both generate EM designs 

that fulfill the electrical specifications with the lowest loss and can complete all design 

tasks within a computational time of seconds. Notably, we directly optimize all EM 

structures for the lowest metal loss. We are not aware of any existing approach that can 

systematically optimize this critical parameter. 

The main motivation to develop automated algorithms is to resolve the drawbacks of 

the current approach used to design EM structures, which is time-consuming, labor 

intensive, and involves high variance in the quality of designs. While the current approach 

is effective if the designers have enough experience to complete the design within a small 
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number of iterations, we believe that adding the Machine Learning dimension to existing 

EM methods can lead to fruitful results.  

Current Approach to design EM Proposed Approach to design EM

Good: if designers have enough of 
experience to get the design Done 

within few iterations

Time Consuming + Labor Intensive

Somebody has to collect 
+ share the data

High Variance in Design Quality

 (Super) Fast 

Reliable 

Has the answer for metal loss

Is a tool for 
bigger optimization loop/ 

higher level questions  

Figure 5.19 Comparison between the current and our proposed approach to design EM structures. 

We compare the current and our proposed approach to design EM structures in Fig. 

5.19. Obviously, someone must collect and share the data used to train ML models, but the 

rest of our automated algorithm is generic and can be readily applied to any new automation 

problems. First, the proposed approach to design EM structures can be super-fast, where 

we have drastically reduced the design time from days-weeks-months to seconds. Second, 

the automated algorithm can be ultra-reliable because it does not depend on any subjective 

judgements to update physical parameters. The current approach might lead to EM 

structures with varying qualities over various attempts to design, but our proposed 

approach can compute similar optimum solutions every time we run the algorithm. Third, 

the Machine Learning approach to design EM allows the incorporation of the metal loss, 

which is arguably one of the most critical parameters for EM designs, and we are not aware 
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of any other approaches that can address the metal-loss challenge. Lastly, we find both 

interesting and fascinating that our proposed Machine Learning techniques can be a tool 

for bigger optimization loops to resolve higher level mm-wave questions, which we will 

analyze in Chapter 6. 
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CHAPTER 6. MACHINE LEARNING REVEALS BIGGER 

PICTURES 

In previous chapters, we develop the Machine Learning models that accurately predict 

electrical properties from physical dimensions and formulate various algorithms that can 

fully automate EM designs for numerous mm-wave EM design tasks. To further advance 

the concepts, in this chapter, we will apply our Machine Learning techniques as a tool for 

more general optimization problems and from that present our answers for several 

challenging, abstract, high-level questions of mm-wave designs. 

6.1 Introduction 

A Machine Learning model that both accurately, reliably, and quickly computes 

electrical properties from physical dimensions can be highly useful even beyond the 

application of automating EM structures. In this chapter, we will apply the ML approach 

to resolve several high-level and abstract questions of mm-wave designs. 

First, one of the major questions for mm-wave engineers when working on a new 

process at a new frequency band is to select the optimum size for the mm-wave transistors 

at the last stages of transmitter chains. The reason is that knowing this optimum size can 

help evaluate the upper limits of electrical performance, such as power or efficiency, of the 

entire mm-Wave system at a particular frequency. We present our approach to address this 

question in section 6.2. 

Second, the well-known rule of thumb in mm-wave designs is that we must use a smaller 

device for a higher mm-wave frequency, but to the best of our knowledge, the relationship 
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between device and frequency remains abstract, and none of the existing publications can 

quantify this relationship. Utilizing the ML approach, we attempt to answer this high-level 

question in section 6.3. 

Third, not all electrical specifications for the BCOD structure can be physically realized 

on chip, even when the theoretical Microwave circuits for those specifications exist. To 

evaluate the practicality of realizing the theoretical solutions, we use the ML algorithms to 

study the implementable specifications of several BCOD designs in section 6.4. 

6.2 The Optimum Transistor Size  

One of the critical questions for mm-wave designers is to choose an optimum size for 

mm-wave devices for a given process. We pay special attention to the devices at the last 

stage of Power Amplifiers since those devices determine the overall power and efficiency 

of the entire transmitter systems. Also, we define the concept of “optimum” as the value 

that results in the highest power or efficiency performance. The optimum value of device 

sizes is an abstract question for mm-wave designs, for which engineers frequently employ 

the trial-and-error technique to resolve but often does not have a conclusive answer. 

Interestingly, the Machine Learning techniques we propose can mathematically quantify 

this abstract question with an assumption that we work with differential mm-wave 

architectures.  

All mm-wave devices exhibit a device parasitic capacitance C and a load-pull 

impedance Rin. When we double the device size, the parasitic capacitance C doubles while 

the load-pull impedance Rin reduces by half, thus the quality factor 𝑄 = 2π𝑓𝐶𝑅𝑖𝑛 remains 

relatively constant. If the given device size has a parasitic capacitance C, the optimum 
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impedance would be 𝑅𝑖𝑛 = 𝑄/2π𝑓𝐶. With the assumption of differential architectures, we 

must design an impedance transforming balun that transforms from ZL to Rin and resonates 

out this parasitic C. We utilize the proposed ML algorithm developed in previous chapters 

to optimally automate baluns with the electrical specification of ZL, Rin, and C. By 

comparing the performance of those automated balun designs, we can deduce the optimum 

value of parasitic capacitance C, or in other words, the optimum size for mm-wave devices.  

Parasitic 

Capacitance 

C

Load-pull 

Impedance 

Rin

Q = 2πfCRin Optimum

Passive Loss 

of Baluns

Automated 

Baluns 

ZL, Rin, C 
Power 

+ 

Efficiency

Mm-Wave 
Devices

Mm-Wave 
Performance

Last Stage of TX
 

Figure 6.1 Computational process from the transistor device with a parasitic capacitance C to the high-level 

mm-wave power and efficiency performance. The proposed ML approach allows us to directly evaluate 

mm-wave performance when given the size of mm-wave devices. 

We summarize the computational process that can answer the high-level question of the 

optimum device size in Fig. 6.1. As an illustration, we mathematically solve this abstract 

question on a metal stack that supports dielectric thickness ranging from 1.6µm-6.4µm, an 

on-chip process with a loaded Q=1, an output load of 50Ω, and a frequency of operation of 

60GHz. Without any assumption on the size of transistors, we study all possible sizes of 

on-chip devices. Particularly, we sweep the parasitic capacitance C from 5fF-300fF with 

5fF incremental steps, which represents various transistor sizes, automate the optimum 

impedance transformation balun for each value of C, and describe the results of optimum 

baluns in Fig. 6.2. The left column illustrates the passive loss, while the right column shows 

the optimum physical dimensions for length and width of metal traces.  
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Figure 6.2 Performance of the optimum output baluns at 60GHz over the values of parasitic capacitance for 

a process with loaded Q=1 over several dielectric thicknesses. 
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Following the current approach to design EM structures, we might not be able to 

compute the best dimensions for each parasitic capacitance value. The reason is that the 

current approach involves high variance in the final quality of design and provides no 

systematic evidence about achieving the optimum physical dimensions even for a single 

device size. However, the proposed ML algorithms can reliably complete the optimum EM 

parameters within a computational time of seconds for each value of C, consequently 

allowing us to efficiently resolve the bigger optimization questions. Demonstrated by the 

optimization results in Fig. 6.2, we learn that in order to design mm-wave systems with 

highest efficiency at 60GHz, the optimum device size has a parasitic capacitance ranging 

from 80fF-100fF because those devices allow the output baluns to exhibit the lowest 

passive loss. 

We also analyze the results in Fig. 6.2 in several other aspects. First, after running the 

ML algorithm, we see the curves exhibit sharp changes at C=120fF or 90fF for dielectric 

thickness 1.6µm-3.2µm or 4.8µm-6.4µm. This sharp change illustrates the strategy that the 

ML algorithm thinks is optimum. At a low value of parasitic capacitance C, the strategy to 

design an optimum balun is to reduce the physical length and widen the metal width when 

the value of parasitic capacitance C increases. When the value of C exceeds certain 

thresholds, this strategy no longer yields solutions, and the next strategy is to set the 

physical length to around 300µm or 45°electrical length to optimally design baluns for 

higher ranges of parasitic capacitance C.  

Second, the results again illustrate a trade-off when selecting the metal layers, or the 

dielectric thickness, to implement the EM structures. Smaller values of dielectric thickness 

can support EM solutions for a wider range of mm-wave devices, while higher values of 
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dielectric thickness often imply lower loss. For example, the dielectric thickness of 1.6µm 

exhibits the best loss of -0.4dB and can support mm-wave devices with 45fF-300fF 

parasitic capacitance, while the dielectric thickness of 6.4µm exhibits the best loss of -

0.3dB and can support mm-wave devices with 50fF-135fF parasitic capacitance, as shown 

in the first and last row of Fig. 6.2. 

6.3 The Rule of Thumb between Device Sizes and Frequencies 

The rule of thumb in mm-wave designs is to use smaller mm-wave devices for higher 

mm-wave frequencies. However, how to express this rule of thumb in mathematical values 

remains an elusive question for the mm-wave community. To the best of our knowledge, 

we are not aware of any prior works can answer this fundamental relationship. 

To a certain extent, this rule of thumb is an advanced version of the optimum device 

question addressed in section 6.2, which we expand from a single frequency as considered 

in section 6.2 to the entire mm-Wave frequency ranges in this section. With an assumption 

of a differential architecture, at each frequency, we calculate the optimum device size over 

various values of the loaded Q and the metal stack size and plot the results over the mm-

Wave frequencies ranging from 25-80GHz in Fig. 6.3. The left column depicts the mm-

wave device parasitic capacitance and frequencies, and the right column shows the best 

passive loss when we design baluns at various frequencies. We mathematically compute 

the high-level and abstract relationship between device size and frequencies, and the 

computation demonstrates the inverse relationship in all the cases as shown in Fig. 6.3. 

Interestingly, the ML approach also reveals the trade-off between power and efficiency, 
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because higher loaded Q values support larger device sizes to increase output power but 

results in higher passive loss or decreased efficiency, and vice versa. 
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Figure 6.3 The high-level relationship between the optimum mm-wave device size/passive loss and mm-

wave frequencies, as calculated by our proposed Machine Learning approaches. The plots verify the rule of 

thumb that the optimum mm-wave device size reduces as the frequency increases. 

6.4 The Implementable Specifications for the BCOD Tasks 

In Chapter 2, we theoretically analyze the BCOD structure with the assumptions of 

lossless coupled lines and infinite realizable ranges for even and odd mode characteristic 

impedances. Without the Machine Learning approaches, we only have the coupled line 

theory as the mathematical tool to calculate mid-level coupled line parameters, and as a 

result, we can only design the BCOD structure with ideal Microwave schematics. 

Advancing from the designs of theoretical circuits, we developed the Machine Learning 

techniques in this thesis as a new tool that allow us progress to the next level of fully 

designing the physical EM structures, where we demonstrated that we can accurately 

realize physical-level EM networks for the BCOD circuits within a computational time of 

seconds. Importantly, employing the ML techniques does not require the assumptions of 

lossless couplers and infinite realizable ranges of Ze and Zo that we must adopt in the 

theoretical methods (see Fig. 6.4). 
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Figure 6.4 Comparison between the theoretical approach and the ML approach. The theoretical approach 

assumes lossless coupled lines and infinite ranges for Ze and Zo and can only produce designs of theoretical 

circuits, while the ML approach can analyze the design tasks without those assumptions and produce 

physical realization of EM structures. 

The theoretical solutions for the BCOD structure exist for various specifications of ZL, 

ZS, and Q, as shown in Chapter 2, but those solutions are still theoretical and might not be 

implementable. To evaluate the practicality of those theoretical solutions, in this section, 

we leverage our ML approaches to revisit several mm-wave design tasks to evaluate the 

range of electrical specifications that is implementable by our ML techniques. On one hand, 

this section shows the limitation that our ML algorithms cannot overcome. Also, note that 

this limitation might also be the inherent limit of the on-chip implementation as well. On 

the other hand, the results from this section can assist engineers to make high-level design 

choices when designing mm-Wave systems that involve the BCOD networks. 

6.4.1 Impedance Transforming Baluns 

Not all the electrical specifications of Impedance Transforming Baluns with an output 

load ZL, a device with capacitive impedance ZC, and the optimum impedance ZS = QZC 

can be implementable on-chip. For output baluns with Q from 0.7-1.8, we have intensively 

studied the implementable ranges of electrical specifications in sections 6.2-6.3 over many 
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mm-wave frequencies and dielectric thicknesses of metal stacks. For example, results from 

Fig. 6.2 show that on a metal stack with dielectric thickness of 1.6µm, the implementable 

specifications at 60GHz for Q = 1 and ZL = 50Ω require that the parasitic capacitance C be 

from 40-300fF, for which the optimum range is from 50-120fF. For input baluns, we can 

apply the same technique to study the implementable range. For example, in Fig. 6.5, we 

illustrate input baluns at 60GHz with ZL= 50Ω for high impedance devices with Q=6 in the 

first row, and for low impedance devices with Q=0.6 in the second row. Generally, the 

implementable specifications for parasitic capacitance is from 40-350fF, where the 

optimum range for high and low impedance device is from 60-250fF and 60-80fF, 

respectively.  

 

 

Figure 6.5 The implementable range for input baluns at 60GHz with high impedance devices (high Q) in 

the first row and with low impedance devices (low Q) in the second row. 
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6.4.2 Out-Phasing Circuits 

The proposed BCOD structure has theoretical solutions for Out-Phasing circuits for 

arbitrary values of ZL, ZS, and Q = ZS/ZC, as shown in section 2.4, but not all those values 

might be physically realized on-chip. To understand the limitation, we leverage the ML 

algorithms to study the implementable range of the theoretical solutions for Out-Phasing 

circuits in this subsection. Compared to a typical Impedance Transforming Baluns with 

specifications of ZL, ZS, and Q, our proposed Out-Phasing network has two identical baluns 

with specifications of 2ZL, ZS, and Q, but additionally requires a phase delay of 90° from 

inputs to outputs.  Note that the specification changes from ZL to 2ZL due to parallel 

combiners, but we can compensate for this ratio by adding an impedance transformation 

network. 

 

Figure 6.6 The optimum passive loss and implementable range for typical baluns on the left column and for 

Out-Phasing circuits with phase delay = 90° on the right column. Both have the specifications of ZL=50Ω, 

Q=1, and dielectric thickness=1.6µm. 

To illustrate the effect of adding the phase-controlled dimension, we describe the 

optimum passive loss for ZL = 50Ω and Q = 1 over a wide range parasitic capacitance 

without phase control in the left column of Fig. 6.6 and with phase delay of 90° in the right 
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column of Fig. 6.6. The ML algorithm yields several critical insights about designing Out-

Phasing circuits. On one hand, we can only physically realize Out-Phasing networks with 

a limited range of specifications. For example, Fig. 6.6 shows that both Out-Phasing 

circuits and typical baluns have an optimum parasitic capacitance in the range from 60-

110fF for the given settings. On the other hand, the optimum passive loss of the Out-

Phasing circuits is worse than those of baluns over the range from 60-110fF, which is 

mainly due to the additional constraint of the phase delay of 90° for Out-Phasing circuits. 

In this example, the best passive loss for Out-Phasing circuits is -0.8dB, while that for 

typical baluns is -0.4dB. For other specifications, we can apply a similar procedure to 

reveal the high-level pictures and trade-offs of Out-Phasing designs. 

6.4.3 Doherty Networks 

 

Figure 6.7 The optimum passive loss and implementable range for typical baluns on the left column and for 

the Auxiliary side of Doherty networks with phase delay = 0°/180° on the right column. Both have the 

specifications of ZL=50Ω, Q=1, and dielectric thickness=1.6µm. 

The implementable range of electrical specifications for on-chip Doherty networks is 

also limited, and we can utilize the ML algorithms as a tool to study this range. Compared 

to the design of Out-Phasing circuits, the design specifications for Doherty networks is 
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even more stringent, because Doherty EM structures require a phase delay of both 90° for 

Main PAs and 0°/180° for Auxiliary PAs. Because we presented the high-level picture for 

a 90° phase delay in subsection 6.4.2, we only show the analysis by the ML algorithms for 

0°/180° phase delays in this subsection. Depicted in the right column of Fig. 6.7, the 

optimum passive loss of Impedance Transforming Baluns in the range from 75-110fF is 

approximately identical to those of the Auxiliary side of Doherty networks that requires 

0°/180° phase delay, indicating that this delay also results in the lowest passive loss. 

Moreover, the study shows that the implementable range for parasitic capacitance of the 

Auxiliary side of 60GHz Doherty structures with ZL=50Ω, Q=1, and dielectric 

thickness=1.6µm is from 75-110fF. We can also apply similar techniques to understand 

the implementable ranges for other specifications of Doherty designs. 

6.5 Analysis 

Going beyond the original motivation of automating the BCOD structure, in this 

chapter, we leveraged the ML techniques to add theoretical interpretations for several 

aspects of mm-wave designs. For example, we employed the ML approaches to reveal 

high-level insights about the optimum transistor sizes, the rule of thumb between device 

sizes and mm-Wave frequencies, or the implementable range of electrical specifications. 

Without the ML algorithms that can accurately, reliably, and quickly transfer from 

problems (electrical specifications) to optimum solutions (physical dimensions), we might 

not be able to answer those high-level questions.  
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CHAPTER 7. CONCLUSIONS 

In this dissertation, we develop Machine Learning techniques for automating mm-wave 

EM designs. Starting from the emerging mm-wave power and efficiency challenges, we 

theoretically propose the BCOD structure with a broad design space that has solutions for 

Impedance Transforming Baluns, Power Combiners, Out-Phasing circuits, and Doherty 

networks. Following that, the main contribution of the dissertation is to formulate Machine 

Learning techniques that can fully automate EM designs for the BCOD structures. To build 

various physical-electrical Machine Learning models, we randomly sample physical 

dimensions from a continuous design space, extract electrical labels from S-parameter files, 

train neural networks to learn the physical-electrical relationships, and evaluate the ML 

models with K-fold validation. The results demonstrate that our ML models can accurately 

predict electrical properties from physical dimensions, reducing the need for time 

consuming full-wave EM simulations. 

From our pre-trained ML models for couplers and baluns, we propose several 

automation algorithms that can fully generate EM designs for BCOD structures within a 

computational time of seconds. We demonstrated design examples for Directional 

Couplers, Impedance Transforming Baluns, Out-Phasing Circuits, and Doherty networks 

over a wide range of electrical specifications, all of which exhibit the electrical properties 

closely matched with desirable values. Notably, our automation algorithms can optimize 

for the lowest metal loss, and to the best of our knowledge, we are not aware of any prior 

techniques that can systematically do so for mm-wave designs. From a higher-level 
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perspective, we show that adding the Machine Learning dimension to existing EM methods 

can resolve many drawbacks of the current design approach. The time to design an EM 

structure could be reduced from days-weeks-months to seconds, the quality of design could 

be more reliable and exhibit less variance, and the condition of the lowest metal loss could 

be systematically guaranteed. 

The Learning Algorithm 

The learning algorithm

Inputs = Discrete Events

(EM simulator) A  mastermind 

Problems 

(Electrical Specification ZL, ZS, Q)

Optimum Solutions

 

Figure 7.1 A conceptual drawing of the learning algorithm presented in this dissertation. 

Observing enough discrete events (EM simulated results) of the design space, the 

learning algorithm eventually becomes a “mastermind” that can directly know the optimum 

solutions (full EM designs) when given the problems (electrical specifications), as 

described a conceptual drawing in Figure 7.1. The critical requirement of the proposed 

learning algorithm is to collect enough data to understand the design space. On one hand, 

we might need to extensively run full-wave EM simulations to collect the data if we are 

not able to “LEGO” previous EM results to construct the desirable EM results, as discussed 

in section 3.5. On the other hand, we need to intensively simulate EM experiments only 

once, or we can even leverage the existing EM data collected by other engineers or 
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researchers, and from that we could immediately formulate the learning algorithm that 

helps directly navigate from problems to optimum solutions.  

When the EM structures get more complex and involve many design parameters, 

making the right decision when updating the physical dimensions from simulated results 

can be highly challenging for engineers if following the current technique to design EM 

circuits. The reason is that the circuit analysis might be too complicated for engineers to 

manually make a meaningful choice of amending physical dimensions. At the same time, 

the learning algorithm still works because the gradient of the loss with respect to the design 

parameters will serve as a circuit-analysis tool to guide the update of EM parameters. After 

training the ML models that accurately learn the physical-electrical relationship of the 

design space, in the computational time of seconds, the learning algorithm could still 

generate the optimum EM designs even with the high complexity of the EM structures. 

In Chapter 6, we demonstrated that the application of the proposed Machine Learning 

techniques can go beyond just automating specific EM designs. We see that the ML models 

can serve as a new tool for bigger optimization questions, and we used our proposed 

techniques to answer several challenging, abstract, and high-level questions, such as the 

calculation of the optimum transistor size, the derivation of the rule of thumb between the 

device size and mm-wave frequencies. 

New Tools for Designing EM Structures 

During the last several decades, computational EM and commercial EM solvers such as 

ADS or HFSS have been the major driving force that moved EM designs forward. The 

capability of the software to predict the electrical properties of complex EM structures with 
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a very high level of accuracy has allowed electrical engineers to realize many advanced 

wireless systems. Engineers spend considerable time tuning EM designs, and the results 

have been fruitful, but many designs are still based heavily on trial-and-error. Looking 

forward to the next decades, we see the importance of developing new tools to not only 

verify that certain EM designs achieve all specifications but also help automating EM 

circuits and exploring novel EM structures. The new tools will creatively design circuits 

rather than simply compute circuits. For example, those should help us to search in a wide 

variety of design spaces, explore repeated patterns, and from that invent novel structures 

[42][43]. We think Machine Learning will play an important role in building such tools, 

and we are looking forward to the future. 
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