
THE INSTITUTE OF PAPER CHEMISTRY, APPLETON, WISCONSIN

IPC TECHNICAL PAPER SERIES

NUMBER 337

HIGH TEMPERATURE ALKALINE DEGRADATION

OF PHENYL 6-D-GLUCOPYRANOSIDE

WILLIAM E. MOLINAROLO, DONALD R. DIMMEL, EARL W. MALCOLM

AND LELAND R. SCHROEDER

JUNE, 1989



High Temperature Alkaline Degradation of Phenyl B-D-Glucopyranoside

William E. Molinarolo, Donald R. Dimmel, Earl W. Malcolm
and Leland R. Schroeder

Portions of this work were used by WEM as partial fulfillment of the
requirements for the Ph.D. degree at The Institute of Paper Chemistry.
This manuscript has been submitted for consideration for publication

in the Journal of Wood Chemistry and Technology

Copyright, 1989, by The Institute of Paper Chemistry

For Members Only

NOTICE & DISCLAIMER

The Institute of Paper Chemistry (IPC) has provided a high standard of professional service and has exerted its best efforts
within the time and funds available for this project. The information and conclusions are advisory and are intended only for
the internal use by any company who may receive this report. Each company must decide for itself the best approach to solv-
ing any problems it may have and how, or whether, this reported information should be considered in its approach.

IPC does not recommend particular products, procedures, materials, or services. These are included only in the interest of
completeness within a laboratory context and budgetary constraint. Actual products, procedures, materials, and services used
may differ and are peculiar to the operations of each company.

In no event shall IPC or its employees and agents have any obligation or liability for damages, including, but not limited to,
consequential damages, arising out of or in connection with any company's use of, or inability to use, the reported informa-
tion. IPC provides no warranty or guaranty of results.

P

W



HIGH TEMPERATURE ALKALINE DEGRADATION OF
PHENYL P-D-GLUCOPYRANOSIDE1

William E. Molinarolo, Donald R. Dimmel, 2 and Earl W. Malcolm
The Institute of Paper Chemistry

Appleton, WI 54912

Leland R. Schroeder 2

Empire State Paper Research Institute
SUNY College of Environmental Science and Forestry

Syracuse, NY 13210

ABSTRACT

The degradation of phenyl P-D-glucopyranoside in aqueous al-
kali under various conditions has been studied at 100°C and 150-170°C.
The effects of a stronger nucleophile, variations in hydroxide ion
concentration at constant ionic strength, and temperature were invest-
igated. The level of 180 incorporation into the product phenol from
the solvent and the rate constant differences associated with methyla-
ting the C-2 hydroxyl group were also investigated. The results indicate
that, at both 100 and 170°C, phenyl [B-D-glucopyranoside degradation
proceeded by an SNicB(2) reaction. At both temperatures the expected
SNicB(2) product levoglucosan formed in less than quantitative yields
because of competing reactions which occurred after the rate-determin-
ing step.

INTRODUCTION
During alkaline pulping at 170°C, the polymeric carbohydrate

components of wood experience random bond cleavages which cause
pulp viscosities to drop. The reactivities of alkyl glycosides in alkali at
170°C have been extensively studied in order to understand the
mechanisms of bond cleavages that occur with the wood carbo-
hydrates. Phenyl glycosides have not been studied under pulping
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conditions, because these models are much more reactive that the alkyl
glycosides, primarily because of the better leaving group ability of the
phenoxide ion relative to that of an alkoxide ion.

In 1945, McCloskey and Coleman3 studied the 100°C reaction of
phenyl 3-D-glucopyranoside (1) with potassium hydroxide and pro-
posed an SNicB(2) mechanism 4 (Figure 1) to explain the observed
results. Critical steps in the mechanism are ionization of C(2)-OH, a
pyranose ring conformation change from the 4C 1 to 1C4, and C(2)-oxy-
anion bridging to C(1). Displacement of the aglycon by C(2)-oxyanion
yields phenolate ion (2) and 1,2-anhydro-a-D-glucopyranose (3). In
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Figure 1. SNicB(2) mechanism for phenyl P-D-glucopyranoside.
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subsequent rapid reactions, the 1,2-anhydride reacts intramolecularly

to form levoglucosan (4) or, by attack of hydroxide ion at the oxirane

ring to form glycosyl products which degrade rapidly to acidic products.

Lindberg 5 was the first to propose that alkaline degradation of
alkyl P-D-glucosides at 170°C may also occur by the SNicB(2) mechan-

ism. This hypothesis was based on the observation that 3-D-gluco-
pyranosides were reactive and produced some levoglucosan while a-D-

linked models were less reactive and gave no levoglucosan. This

observation by Lindberg was later used by Corbett and Richards 6 to

possibly explain random glycosidic bond cleavage of cellulose.

Recent cellulose model studies 71 0 have shown that the SNicB( 2)

mechanism may be the most predominant reaction pathway present

for those model systems; however alternative reaction pathways, such

as an SN1 reaction mechanism, appear to occur simultaneously. 7 An
SN2 mechanism has generally been discounted as a possible reaction

pathway. 9 Henderson11 has suggested that an SNicB(2)-ro mechan-

ism 12 could be important in the case of P-D linked cellulose models.

Also in model systems, oxygen-aglycon cleavage can account for up to

20% of the observed products.8 10

One of the main pieces of evidence for the presence of an

SNicB(2) mechanism was the production df levoglucosan. However,

the levoglucosan yield varied with the model compound, 8' 10 reaction

conditions 10 and nucleophiles present.9 Because of these yield varia-

tions, it is difficult to determine the extent of the SNicB(2 ) mechanism

in the model systems. The behavior of phenyl P-D-glucopyranoside

under the more drastic conditions associated with alkaline pulping has

been studied here in order to provide information on the significance

of levoglucosan formation and the SNicB(2) reaction mechanism in the

case of alkyl glycoside models and, ultimately, in the case of wood

carbohydrates.

RESULTS AND DISCUSSION

Kinetic Studies

Phenyl P-D-glucopyranoside degradation has been followed by
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measurement of phenolate ion production with ultraviolet (UV) spec-
13, 14troscopy.1 Gas chromatographic (GC) analysis was chosen to moni-

tor the reaction in this study. The GC technique allows direct measure
of all neutral reaction species and circumvents the possible interference
of UV chromophores formed in the degradation of glucosyl products. 15

During the course of our studies, Kiryushina et al.16 '1 7 compared UV
and GC techniques in connection with degradation of phenyl P-D-gluco.-
pyranoside in caustic at 170°C and concluded that the UV technique
grossly underestimated the amount of reaction that occurred.

A low temperature alkaline degradation of phenyl P-D-gluco-
pyranoside was run to determine the applicability of the analytical pro-
cedure. A large ratio of sodium hydroxide to substrate was used to
achieve pseudo-first-order reaction kinetics and facilitate determin-
ation of rate constants. The final kinetic equation was:1 8

In R = In Ro - kr t

where R = the phenyl [3-D-glucopyranoside
concentration,

R o = R at time zero, and

kr = the pseudo-first-order reaction rate constant
for degradation.

All products (Pi) proved to be stable over the reaction periods used, and

rate constants for product formation were obtained from parallel

pseudo-first-order kinetics: 18

P- P, =k kr [1-exp(-kr t)]

where Pi = the concentration of product i.

Pi, = Pi at time zero, and

k i = the pseudo-first-order reaction rate constant
for formation of product i.

Fast-Flow Reactor
The projected half life for phenyl P-D-glucopyranoside at 170°C
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in caustic was calculated to be approximately 30 seconds. To study the
reaction, we used a modification of the fast-flow reactor developed by
Green, et al.19 (Figure 2).

For a reaction run, solutions were drawn into the syringes from
their respective reservoirs by movement of the syringe pistons. Pre-
determined amounts of caustic and carbohydrate liquors were forced
into their warm-up coils by movement of a piston and allowed to
warm to reaction temperature. In a preliminary experiment, phenyl
P-D-glucopyranoside was shown to be stable in the aqueous medium at

170°C for times longer than the warm-up period. These solutions were
then forced through the mixer by a second piston movement and reac-
ted for a set time period. The reaction was stopped by forcing water, by
movement of the quench water piston, to carry the reacted liquor into
the sample holder where the liquors were thermally quenched with
iced water.

Degradation Studies
Phenyl P-D-glucopyranoside was initially degraded with 1 M

sodium hydroxide at 100.6°C. The reaction had a kr of 5.02 ± 0.04 x 10-5
sec-1 and kievoof 4.43 ± 0.03 x 10-5 sec -1. The phenyl P-D-glucopyran-
oside rate constant is comparable to the 100°C degradation rate constant
of 5.3 x 10-5 sec-1 calculated from the graphical data presented by Lai, et

al.13 Conversion of phenyl P-D-glucopyranoside to levoglucosan, as

defined by the ratio of ke to kr, was 0.88. This amount is consistent
with the 88% yield reported by McCloskey and Coleman.5

The high temperature degradation of phenyl fP-D-glucopyran-
oside was examined by mechanistic probes. Five possible reaction
mechanisms were considered: SNicB( 2), SNicB( 2)-ro, SN 1 , SN 2 , and
SN2Ar.20 Table 1 presents the expected response of each type of mecha-
nism to the reaction probes. Although some mechanisms give the
same response to certain probes, there is a unique set for each
mechanism. For selected probe experiments, NaCl was added to
maintain constant ionic strength. [The nucleophilicity of NaCl was
examined against the SN2 model methyl a-D-glucopyranoside at 182°C

5.
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Table 1. Summary of reaction mechanisms and expected responses
to mechanistic probes.

Reaction Bond Nucleophilic C(2)-OH ASt b,c Levo
Mechanism Cleavagea Effect Blocking Yield

SN1 G-O none none ++ ?

SN2 G-O increase none -- none
SN2Ar 0-A increase none -- none

SNicB(2) G-O none decrease - high

SNicB(2)-ro C1-O 5 none decrease - none

a G-O is the glucosyl-oxygen bond; O-A is the oxygen-aglycon bond;
and C 1-O5 is the anomeric carbon-pyranose ring oxygen bond.

b Expected order.2 1 c The symbols + for positive values, - for negative
values, ++ for a more positive value, and -- for more negative
values.

in 0.5 M NaOH and 2.0 M NaC1; no effect was found on the reaction
rate vs. the 0.5 M NaOH case.9] Prior to using these probes, we estab-
lished that the rate of loss of starting material and the rates of forma-
tion of products were reproducible in a simple 170°C, alkali reaction.
Therefore, single degradations were used in subsequent experiments.

Point of Bond Cleavage
Phenyl 3-D-glucopyranoside was degraded at 171.6°C in 2.5 M NaOH

containing 8.6% 180 labeled water and the liberated phenol was
analyzed for its 180 content. A modified data analysis program devel-
oped by Hendersonll was used to calculate that 0.2% oxygen-aglycon
cleavage took place. Thus, basically all cleavage occurred at the glucosyl-
oxygen bond and the SN2Ar mechanism was not significant.

Effect of a Stronger Nucleophile
Phenyl (3-D-glucopyranoside degradation rate constants of 0.0345

sec 1 with just sodium hydroxide and 0.0349 sec-1 with 0.1 M sodium
sulfide added were observed (Table 2, Exp. 1 and 2). Under the alkaline
conditions used, sodium sulfide hydrolyzes to sodium hydrosulfide
and sodium hydroxide;9 the hydrosulfide anion is a stronger nucleo-
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phile than hydroxide anion. The rate constant difference with and
without sodium hydrosulfide is comparable to that of 1,5-anhydro-
cellob iitol, a model compound which is not considered to react by an
SN2 mechanism.9 Therefore, the SN2 pathway is an unlikely mechan-
ism for phenyl P-D-glucopyranoside degradation.

Effect of Methylating C(2)-OH
Blocking the C(2)-OH with a nonionizable group provides a

simple method to determine whether SNi type mechanisms occur and
the relative importance of underlying reaction pathways. 2-O-Methyl
phenyl P-D-glucopyranoside (5) in 2.5 M NaOH at 171.6°C exhibited a
degradation reaction rate constant of 4.67 ± 0.89 x 10-5 sec-1. The re-
duction in the rate constant by a factor of 1300 times observed for the
blocked and unblocked (Table 2, Exp. 3) models is comparable to the
factor of 2400 reported in a similar study with p-nitrophenyl P-D-
galactopyranoside at 55°C.22 Thus, an SNi type mechanism is the
dominant reaction pathway.

The large decrease in the rate constant by blocking OH-2 also indi-
cates the absence of any appreciable underlying reaction mechanisms.
A much smaller effect on the rate constant decrease, such as a factor of
four seen with methyl P-D-glucopyranoside, 8 would have been ex-
pected for a mixed SN1 and SNicB(2) mechanism. Therefore, the only
viable mechanisms for phenyl (3-D-glucopyranoside alkaline degrad-
ation appear to be SNicB(2) and SNicB(2)-ro.

Apparent Thermodynamic Functions of Activation
The apparent thermodynamic functions of activation for phenyl

P-D-glucopyranoside degradations at 150-170°C in 2.5 M NaOH (Table 2,
Exp. 3,4,5) were AHt.of 28.3 kcal mol- and ASI of -1.3 cal mol1 °K-1.
The AHt and ASt values for phenyl p-D-glucopyranoside are compared

to those of other glycosides degraded at 170°C in 2.5 M NaOH in Table 3.
The ASt value for phenyl P-D-glucopyranoside (-1.3 cal mol-1

°K-1) is similar to those of glycosides believed to react by SNicB(2) mech-
anisms10 ,23 and similar to the value for the SNicB(2)-ro reaction

associated with the glucosyl-oxygen bond cleavage in 1,5-anhydro-

9



Table 3. Thermodynamic data for phenyl P-D-glucopyranoside and
other glycosides.

Glycoside Proposed AHt, ASt, Ref
'Mechanism kcal/mol cal/mol L

Phenyl P-D-glucopyranosidea SNicB(2) 28.3 -1.3

1,5-Anhydromannobiitolb SNicB(2)-ro 35.3 -4.3 11
Levoglucosanc SNicB(2) 32.8 -3.8 23
1,5-Anhydro-2,3,5-tri-Q- SNicB(2) 35.5 -3.2 10

methyl-cellobiitola

1,5-Anhydrocellobiitold SN1 41.7 6.9 7
Methyl a-D-glucopyranosidea SN2 , 32.4 -13.6 23
1,5-Anhydrocellobiitola. mixed 37.1 1.0 7

SNicB(2) & SN1

* This study. a Glucosyl-oxygen bond cleavage. b C 1-0 5 ring opening.
c C 1-06 ring opening d Oxygen-aglycon bond cleavage.

mannobiitol. 11 The small difference between ASt values for com-
pounds reacting by the SNlcB(2 ) and SNlcB( 2)-ro pathways does not
allow a distinction to be made as to which mechanism is operative.
However, it is apparent that an SN1 mechanism, which would be ex-
pected to have a much more positive ASt value (Table 3), can be ruled
out.

The 28.3 kcal mol-1 AHt value for phenyl 3-D-glucopyranoside is
much lower than the AHt values for other compounds in Table 3
reacting by the SNi mechanisms.10 '11'23 The difference in the AHt
values is attributed to the fact that the phenoxy anion is a much better
leaving group than the alkyloxy anions in the other compounds. For
the SNicB(2)-ro reaction mechanism, the ring oxygen is the leaving
group. Both 1,5-anhydromannobiitol and phenyl P-D-glucopyranoside
contain similar substituents [i.e., ring oxygen oxyanion and C(5) groups]
and would be expected to exhibit similar AHt values for an SNicB(2)-ro
mechanism. The AHt value for the phenyl P-D-glucopyranoside de-
gradation was much lower than that for 1,5-anhydromannobiitol, thus,
indicating that an'SNicB( 2) rather than an SNlcB(2)-ro pathway is

10



operative. The low AHt value also ruled out the presence of an SN1
mechanism.

Effect of Varying the Hydroxide Concentration at Constant Ionic
Strength

An analytical method suggested by Lai, et al.13 and modified by
later researchers 7' 8' 10,11 was used to further probe the presence of the
SNicB(2) mechanism; the method examined the effect of hydroxide
concentration at constant ionic strength,.

The governing equation7,8,10,11,13 for the analysis of an SNicB(2)

reaction is:

1 1 1.

kobs k + kK[OH ]

where ' kobs the observed rate constant,
K = the equilibrium constant for formation of the

conjugate base of the glucoside, and
k = the rate constant for conversion of the, ion-

ized glycoside to product

A plot of kobs versus the reciprocal of the hydroxide ion concen-

tration was linear (Figure 3), giving supporting evidence for the pre-

sence of an SNicB(2) mechanism.

Formation of 1,6-Anhydro-[P-D-glucopyranose and Phenol
The levoglucosan yield (Table 4), except for the addition of

sodium sulfide, averaged ca. 83% and appeared independent of

temperature, ionic strength, and hydroxide concentration at constant

ionic strength. This behavior is different from that seen by earlier

researchers 7 '10 because their models exhibited several different reaction

pathways, while phenyl [3-D-glucopyranoside degrades in caustic by

only the SNicB(2) mechanism.
Hydrosulfide ion addition to the reaction system caused a 10%

decrease in levoglucosan yield. This data and the less than 100% yield

of levoglucosan in the other cases indicates that the oxirane ring of the
1,2-anhydride (3) is susceptible to opening by a variety of nucleophiles,

as seen in Figure 1. This effect of hydrosulfide ion was reported pre-

11
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Figure 3. Relationship between the reciprocals of hydroxide ion
concentration and observed rate constant for phenyl 3-D-
glucopyranoside at constant-ionic strength of 2.5 Mat
171.6C (Table 2, experiments 2,3,6,7).

Levoglucosan and phenol formation from
glucopyranoside degradations.

phenyl I3-D-

Temp., °C
149.6

159.6,
171.6

171.6

171.6
171.6

171.6
171.6

Reagent Molarities (M)
NaOH NaCl

2.5
2.5

2.5

0.5

0.5
1.0

1.5
1.4

2.0
1.5

1.0

1.0

Na2 S Xlevoa X b

- 0.82 1.00

- 0.82 0.96

- 0.79 -

- 0.86 -

- 0.84 -

- 0.82 1.00

0.10

0.85 1.00
0.72 0.93

a Xevo is the ratio of ke to kr
b X is the ratio of kp to k.

viously by Blythe and Schroeder.9

In earlier studies, the observed yield of levoglucosan was

equated with the extent of SNicB(2 ) mechanism. It is now clear from

12
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our data that the amount of that pathway was underestimated. For

degradations in NaOH alone, a 1.20 multiplying factor, which is the

reciprocal of the levoglucosan yield noted in this study, could be

applied to the amount of SNicB(2) mechanism originally determined.

For 1,5-anhydro-2,3,6-tri-O-methyl-cellobiitol, the original 0.5 M NaOH

data suggested a 67% SNicB(2) level,1 0 but the adjusted value would be

80%. The multiplying factor was not extended to sodium sulfide

studies 9 because the reaction conditions were quite different.

Phenol formation (Table 4), which provided another means to

monitor phenyl P-D-glucopyranoside degradation, was 'close to stoichio-

metric for all cases, except in the sodium sulfide experiment. Further

experimental work did not reveal the cause of phenol loss in the latter

case.

Products from Phenyl 2-O-methyl-P-D-glucopyranoside Degradation
Two neutral products were found in the phenyl'2-O-methyl-P-D-

glucopyranoside (5) (Figure 4) degradation at 171.6°C in 25 M NaOH

One product, 1,6-anhydro-2-O-methyl-3-D-glucopyranose (6), was

identified against an authentic standard. The other product is believed

to be 1,4-anhydro-2-O-methyl-a-D-glucopyranose (7).
1H and 13C NMR analyses of 8 (acetylated 7) indicated the ab-

sence of a phenyl ring, presence of one.methoxyl and two acetate

groups, and the presence of a low field 1H signal (5.52 ppm). The two

acetyl groups suggested the formation of an anhydro ring, along with

the presence of the pyranose ring. The low field signal is indicative of

an anhydro ring at C(1), an acetal carbon; 24 the singlet at C(1) suggested

a rigid structure in which C(1) and C(2) protons 90 ° are to each other. 25

The C(1)-proton postulated for 8 and the C(1)-proton of 1,4-anhydro-2,3-

di-O-methyl-a-D-ribopyranose (9)26 arein very similar environments

and would be expected to have similar 1H NMR resonances. Indeed,

the C(1)-H signals for both 8 and 9 appear as singlets at 5.52 ppm. Also,

8 and 2,3,6-tri-O-acetyl-1,4-anhydro-a-D-glucopyranose 27 (10) have near-

ly identical C(5)-C(6) environments and show a great deal of similar-

ities in the 3.9 to 4.8 ppm region of their lH NMR spectra. These data

13
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help support the spectral assignments made for 8.
Figure 4 presents a possible scheme for the formation of the 1,6-

and 1,4-anhydrides, 6 and 7, from treatment of phenyl 2-Q-methyl-P-D-
glucopyranoside (5) with alkali. Capon28 has postulated a similar

H2 0

O ph HPh HO-

OH

OH
OPh -b

O°- 8

OH- H2 0

OH'VMe r AMe 'Me0
- 0-

6

Figure 4. Proposed mechanism for alkaline degradation of phenyl
2-O-methyl-P-D-glucopyranoside (5).
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scheme for the formation of 1,6-anhydro-3-D-mannopyranose during

the alkaline degradation of phenyl 3-D-mannopyranoside. In this
scheme, the C(4)-oxyanion displaces the phenoxide ion at C(l), an intra-

molecular SN2 displacement, to give the 1,4-anhydride 7. Analogous

chemistry has been observed upon treating 2,3,6-tri-O-benzyl-1-fluoro-3-
D-glucopyranose in alkali to give 1,4-anhydro-2,3,6-tri-O-benzyl-a-D-

glucopyranose. 29 The 1,6-anhydride (6) is postulated to form via an

SN1 mechanism involving a C(6)-oxyanion and a C(1)-cation. In sup-

port of this sequence of steps, a time-product profile showed that the

ratio of 1,4-anhydride to 1,6-anhydride was high initially, but decreased

with time.
CONCLUSIONS

The 100°C alkaline degradation of phenyl [3-D-glucopyranoside,

exhibited a reaction rate constant similar to that obtained by Lai, et al.13

and an 88% levoglucosan yield consistent with McCloskey and

Coleman.3 The 170°C-degradation of phenyl [3-D-glucopyranoside

appears to go by an SNicB(2) reaction pathway. The lower conversion

to levoglucosan with Na2 S present (72%) and the less than quantitative

yield observed with NaOH alone (82%) suggested that 1,2-anhydro-ca-D-

glucopyranose, a key intermediate in the SNicB(2) reaction, was being

partially diverted to acidic products by the nucleophiles (HO and HS ).

The data indicate that phenyl 3-D-glucopyranoside reacts similar-

ly at 100°C and 170°C. From the observed levoglucosan yields for'

phenyl [3-D-glucopyranoside and assuming a pure SNicB( 2) mechanism

in this case, it is now possible to estimate the amount of SNicB( 2)

mechanism occurring in other glucoside studies done at 170°C. This

knowledge may be useful, because most of the glucosides exhibit

multiple degradation pathways that produce nonunique degradation

products.

EXPERIMENTAL

General Analytical Procedures

Melting points were determined on a Thomas Hoover capillary

melting point apparatus calibrated against known compounds. Optical

15



rotations were performed on a Perkin-Elmer 141 recording polarimeter
at room temperature. NMR spectra were recorded by Spectral Data

Services (818 Pioneer, Champaign, IL 61820).
Gas liquid chromatography (GC) was performed on a Hewlett-

Packard 5890 instrument utilizing a flame ionization detector and
interfaced to a Hewlett-Packard 3392A integrator. Helium was used as

the carrier gas at a flow rate of 30 mL min ' 1. The column used was OV-

1 on Supelcoport (100-120 mesh) in glass tubing (6 ft x 2 mm) rigged for

on-column injection. Carbohydrate analyses were run using the
conditions: injector; 275°C; detector, 300°C; and column, 130°C, for 1
minute, and 7°C min - to 230°C. Phenol analyses were under the

conditions: injector, 275°C; detector, 300°C; and column, 60°C, for 1
minute; and 7°C min- 1 to 110°C, and hold at 110°C for one minute.

Gas liquid chromatography/mass spectrometry was performed

on a Hewlett-Packard 5895 system. The 180 phenol incorporation was

determined using electron impact (EI) mass spectrometry and an OV-17

column. Operating conditions of the column were: start at 60°C and

program at 7°C min- to 300°C. The 180 enriched liquor was analyzed

on Porapak Q by EI under isothermal conditions of 100°C. All other

samples were analyzed on an OV-1 column by EI with column

conditions starting at 130°C and programming at 7°C min-1 to 300°C.

Materials Used

Samples of 1,6-anhydro-P-D-glucopyranose (levoglucosan), 9

phenyl P-D-glucopyranoside, 30 methyl a-D-glucopyranoside, 3 1 phenyl 2-

O-methyl-P-D-glucopyranoside 32 were purified and crystallized prior to

use; in each case the observed melting points and optical rotations

agreed with literature values.33- 35

Procedures for Kinetic Analysis

The high temperature kinetic samples were run in the modified

fast flow reactor developed by Green et al.19 Further description of the

apparatus and procedures are provided by Molinarolo.36

All reaction solutions were made under oxygen-free nitrogen

conditions. The carbohydrate reaction liquorscontained model (0.01

16



M), methyl a-D-glucopyranoside internal standard (0.005 M), and
oxygen-free water. All molarities shown in the parentheses are after
mixing. The molarity of the reaction solution at room temperature
accounts for thermal expansion of the liquids and mixing of equal
volumes of reacting liquors. Sodium hydroxide reaction liquors were
made from stock solution and diluted with oxygen-free water. Phenol
internal standard, 4-isopropylphenol3 7 (0.05 M), was added to all caustic
reaction liquors prior to dilution. The sodium hydroxide molarity was
measured by titration against potassium acid phthalate to a phenol-
phthalein endpoint.

For salt effect experiments, sodium chloride was added with the
sodium hydroxide, stock solution prior to dilution. In the nucleophilic
effect experiment, sodium sulfide stock was added with the stock
sodium hydroxide prior to dilution. Sodium sulfide concentrations
were measured by titration with 0.1 M mercuric chloride by an Orion
silver/silver sulfide specific ion electrode and an Orion 901 ion-
analyzer.38 Samples were titrated to an endpoint of -450 to -400 mV.
Liquor active alkali was determined by titration with 1.0 M HCl in the
presence of formaldehyde to a phenolphthalein endpoint. The sodium
hydroxide concentration was calculated by subtraction of the sodium
sulfide concentration from the active alkali.39

Reaction Liquor Analysis

The carbohydrate reaction liquor sample (16 mL, ca. 0.01 mmol
of glucoside) was neutralized to pH 7 with acetic acid (1 M). The
solution was reduced in vacuo to a syrup. Isopropyl alcohol (reagent
grade, 12 mL) was added to the syrup and the slurry was reduced in
vacuo to dryness. The residue was acetylated overnight with
pyridine/acetic anhydride (2:1, v/v, 2 mL) with gentle shaking. The
reaction was quenched with cold water (10 mL), shaken for two
minutes, and extracted with chloroform (2 x 5 mL). The chloroform
layers were combined and washed with 1 M hydrochloric acid (2 x 75
mL) and water (3 x 10 mL). The chloroform layer was reduced in vacuo
to dryness; the residue was transferred to a 4-mL vial with chloroform
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(2 mL). The sample was reduced in vacuo to dryness to aid in the
removal of any water that may have been carried over, and dissolved
in ethyl acetate for GLC analysis.

The sample (16 mL, ca. 0.01 mmol phenolics) for phenol analysis
was placed in a 50-mL Erlenmeyer flask and the NaOH concentration
was adjusted to 0.5 M by addition of 5 M NaOH. Dimethyl sulfate (98%,
2 mL) was added and the flask was stoppered. The two phase solution
was vigorously stirred for 15 minutes. Concentrated ammonium
hydroxide (9 mL) was added to quench the excess dimethyl sulfate and
the solution was stirred for another 15 minutes. The liquor was extract-
ed with chloroform (2 mL) by stirring for two minutes. The chloro-
form layer was separated, placed in a 4-mL vial, and analyzed by GC.

180 Incorporation Experiment
Carbohydrate liquor (25 mL) was made as outlined above, but

180 water 40 was added prior to dilution to produce a final reaction
liquor level of 8.6% 180 water. The sample was reacted in 2.5 M NaOH
at 171.6°C for 20.62 seconds in the fast-flow reactor.

The phenol product with incorporated 180 was derivatized as
outlined above. Analysis by GC/MS was used to measure the isotopic
levels of 180 in the product and the water. 11

Degradation of 1 at 100°C and Methyl a-D-Glucopyranoside at 182°C
These degradations were performed in a bomb reactor as describ-

ed earlier.7' 11 The low temperature degradation was performed at
100°C in 1.0 M NaOH with phenyl 3-D-glucopyranoside as the reactant,
while the salt experiment was performed at 181.6°C in 0.5 M NaOH and
2.0 M NaCi with methyl cc-D-glucopyranoside. Reaction analyses were
similar to those described above, but the internal standard was added
after taking the sample.

Phenyl 2-O-Methyl--D-Glucopyranoside Degradation
Phenyl 2-O-methyl-p-D-glucopyranoside (0.01 M) was reacted in

2.5 M NaOH for 24 hours at 171°C in a bomb reactor described earlier.7-

ll The solution was deionized with Amberlite MB-3 (H +, OH-) ion ex-
change resin (500 mL), and the resin was washed with water (1L). The
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water fractions were combined and reduced in vacuo to a solid. The

solid was acetylated with a mixture of pyridine and acetic anhydride (5
mL, 2:1, v/v) for two days with gentle agitation. The reaction was
quenched with iced water (100 mL), stirred for 20 min, and extracted
with chloroform (2 x 50 mL). The chloroform extracts were combined,

washed with 1 M HC1 (3 x 25 mL) and water (4 x 25 mL), and reduced in

vacuo to a syrup.

The syrup was chromatographed on a silica gel column (Merck
Kieselgel 60, 35 cm x 1.2 cm) by elution with ethyl acetate-chloroform

(1:5, v/v). Fractions yielded the unknown believed to be the peracetate

of 1,4-anhydro-2-O-methyl-a-D-glucopyranose and the peracetate of 1,6-
anhydro-2-O-methyl-P-D-glucopyranose. The samples were analyzed,

by GC/MS and NMR.

An authentic sample of 1,6-anhydro-2-O-methyl-J3-D-glucopyran-

ose 23 (2 mg), acetylated by the procedure outlined for the reaction

samples, had: 13C NMR data (CDCl3 ) ppm 170.2, 169.3 (-C(=O)CH 3 ),
100.2 (C-1), 76.9, 73.5, 70.6,68.9,65.2 (C-2, C-3, C-4, C-5, C-6), 58.3 (-OCH3 ),

21.1 (-C(=O)CH 3 ); 1H NMR data (CDCl3 ) ppm 5.50 (1H, s, -C(1)H-), 4.88

(1H, t, J = 1:4 Hz), 4.67 (1H, s), 4.60 (1H, d, J = 5.2 Hz), 4.09 (1H, d, J = 7.6

Hz), 3.79 (1H, d of d, J = 7.6 Hz and 5.8 Hz), 3.52 (3H, s, -OCH3 ), 3.07 (1H,

s); 2.17 (3H, s), 2.12 (3H, s, -C(=O)CH 3 ); and EI mass spectrum in m/z

(relative intensity) 158 (32), 129 (56), 126 (12), 116 (17), 113 (78), 112 (46),

97 (12), 87 (64), 85 (13), 81 (41), 74 (100), 71 (11), 70 (9), 43 (51).

The fraction identified as 1,6-anhydro-2-Q-methyl-P-D-gluco-

pyranose (6), as acetate derivative, had: 13C NMR data (CDC13) ppm

100.1 (C-1), 73.5, 70.6, 68.8, 65.2, 58.4 (-OCH3 ), 21.1 (-C(=O)CH 3 ) [The

NMR spectrum of the acetylated 1,6-anhydro-2-Q-methyl-p-D-gluco-

pyranose obtained in the reaction was virtually identical to that

described above, but due to the extremely small sample size not' all of

the 13C-signals were visible above the noise level.]; 1H NMR data

(CDCl3 ) ppm 5.50 (1H, s, -C(1)H-); 4.88 (1H, t, J = 2.5 Hz), 4.67 (lH,s), 4.60

(1H, d, J.= 5.3 Hz), 4.09 (1H, d, J = 7.6 Hz), 3.79 (1H, d of d, J = 7.5 Hz and

6.4 Hz), 3.52 (3H, s, -OCH3 ), 3.07 (1H, s), 2.18 (3H, s), 2.12 (3H, s,

-C(=O)CH3 ); and EI mass spectrum in m/z (relative intensity) 158 (12),
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129 (22), 126 (5), 116 (8), 113 (28), 112 (18), 97 (5), 87 (37), 85 (7), 81 (20), 74

(64), 71 (6), 70 (6), 43 (100). [The EI mass spectrum was similar to the
known, with the signal intensities being similar, but not identical.]

The fractions believed to be 1,4-anhydro-2-O-methyl-a-D-gluco-
pyranose (7), as acetate derivative (8), had: 13C NMR data (CDCl3) ppm
102.7 (C-l), 97.0, 85.9, 79.1, 75:9, 63.0, 57.2, 55.4, 20.7 (-C(=O)CH3 ); 1H
NMR data (CDC13 ) ppm 5.52 (1H, s, -C(1)H-), 4.90 (2H, t of d, J = 3.0 Hz
and 7.6 Hz, C(6)H2-), 4.42 (1H, d of d, J = 8.6 Hz and 11.7 Hz), 4.27 (1H, d
of d, J = 11.7 Hz and 4.5 Hz), 4.12 (1H, t of d, J = 3.0 Hz and 8.3 Hz), 3.63
(1H, d, J = 1.4 Hz), 3.39 (3H, s, -OCH3 ), 2.12 (3H, s, -C(=O)CH3 ), 2.08 (3H,

s, -C(=O)CH 3 ) [The NMR spectrum showed some impurities, presum-

ably giving rise to weak signals in the 2.0-2.2 and 3.4-3.6 ppm regions];
and EI mass spectrum in m/z (relative intensity) 177 (7), 141 (4), 140 (4),

129 (26), 115 (13), 113 (32), 112 (21), 87 (71), 85 (11), 81 (13), 74 (20), 71 (11),
69 (15), 43 (100).
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