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This paper presents an extended savings algorithm for a package delivery system using
unmanned aircraft systems (UAS). The savings algorithm as a heuristic method solves a ve-
hicle routing problem (VRP) that is commonly formulated by an operational plan for each
vehicle. In general, package delivery systems need to establish an operational plan based on
demand and preferred time to be visited for each customer. In UAS-based delivery systems,
however, capacity and traveling time constraints must be additionally considered to create their
operational schedules because of limited payload capacity and short endurance of unmanned
aerial vehicles (UAVs). Because of these limitations, UAVs should be reused during operation
hours to reduce acquisition costs. Thus, a recharging strategy should be included in the op-
erational planning process. However, conventional savings algorithms cannot capture those
properties at once because they have mainly focused on delivery systems with conventional
vehicles such as trucks and passenger/cargo aircraft that have different vehicle features and
operational characteristics, such as the endurance/speed of a vehicle and recharging strategy.
To overcome the limitations of the conventional approaches, this paper proposes the extended
savings algorithm, which can concurrently reflect the characteristics of both delivery systems
and UAVs. To demonstrate the proposed extended savings algorithm this paper preforms
numerical simulations with two representative scenarios in Annapolis, MD and Macon, GA.

I. Introduction

Recently, various research related to UAS have been actively studied because of its benefits such as high agile
platform, easy to implement, and low acquisition/operating cost. Because of these benefits, diverse UAS-based

applications have received attention. As one of UAS-based applications, the last-mile package delivery using UAVs has
been researched because of several advantages. First, a UAV is capable of delivering packages faster than conventional
vehicles for package delivery such as trucks or vans since it does not suffer from a complicated road system and the
uncertainty of the road system like a traffic jam. Second, a UAS-based delivery system can reduce acquisition and
operating cost as compared with conventional vehicles. Because of these benefits of the UAS-based delivery system,
many package delivery companies such as Amazon, DHL, UPS, and FedEx have invested on the research associated
with the last-mile package delivery using UAVs.

This paper addresses the UAS-based last-mile delivery problem. The problem is that all packages in a single depot
should be delivered to customers at their preferred time to be visited. In general, this problem is called the vehicle
routing problem with time windows (VRPTW). The result of solving this problem determines the operational schedules
of each vehicle. To solve the VRPTW, there are two typical approaches; an exact method and heuristic method [1, 2].
The exact method finds an optimal solution, while it requires high computational resource as the problem size increases
because the VRPTW is a NP-hard problem. To overcome this computational issue, the heuristic method can be applied
to solve the VRPTW. Although the result of the heuristic method cannot guarantee the optimal solution, its result can be
a reasonably good solution within reasonable computational time.

Most of the delivery research have focused on solving the problem operated by the conventional vehicles. However,
the UAS-based delivery problem additionally considers two key challenges. The first challenge is that the UAS operation
raises an endurance issue because of low battery energy density [3]. Therefore, the problem how to impose the property
of UAV’s short endurance during an operational planning process is one key challenge in the delivery research. One
way is tracing battery power level for each UAV and determines its returning time depending on the battery level [4].
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However, this approach needs the mathematical model of a battery that precisely characterizes the power consumption
profile. Alternative approach is checking flight time for each UAV directly, and then it defines the returning time based
on a predefined endurance as an upper bound. The second challenge is how to reflect a recharging process for the
reuse of UAVs. Two main issues when modeling a recharging process are places and methods to recharge. As a place
to recharge, a recharging station can be considered [5, 6]. In this approach, each UAV can visit a recharging station
as conventional vehicles visit a gas station. A depot, also, can be considered as a place to recharge [4, 7, 8]. In this
approach, it is assumed that because the UAS-based delivery system serves the last-mile delivery, even if the UAV’s
batteries can be recharged only in the depot, the UAVs can deliver packages to the customers in its operational area. On
the other hand, the recharging can be conducted by directly recharging batteries combined to UAVs or by swapping
batteries. The former should wait until finishing to recharge, while the latter can operate with short recharging time, but
it could require a large supply of batteries.

To address these challenges, we propose a extended savings algorithm for UAS-based delivery systems. The savings
algorithm proposed by Clarke and Wright [9] is a heuristic method for VRPs (See [10] to compare a variety of variants
of conventional savings algorithms). Mirshekarian and Süer [11] present a savings algorithm for a VRPTW. However,
these existing algorithms cannot address the challenges that comes from UAV’s inherent properties since their approach
is based on the conventional delivery method. To solve this limitation of savings algorithms, the proposed extended
savings algorithm includes endurance constraints and a single-depot recharging strategy.

The main contribution of this paper introduces a new extended savings algorithm for UAS-based delivery systems.
The proposed algorithm contains UAV’s physical characteristics such as small payload capacity and short endurance,
which force UAVs to return to the depot due to their limitation. The method additionally considers their reusability
during operating hours, which could reduce the acquisition cost of the delivery systems through decreasing the required
number of UAVS.

This paper is organized as follows: Section II introduces UAS-based delivery systems. Section III discusses the
extended savings algorithm which can handle the characteristics of UAS-based delivery systems. Section IV conducts
numerical simulations with both Annapolis, MD, and Macon, GA, use-cases. This paper ends with conclusions in
Section V.

II. Delivery Systems based on UAS
This section presents the key characteristics of UAS-based delivery systems: some come from UAV’s inherent

natures, and the others originate from operational concepts of the delivery system. For the UAS-based package
delivery, an operational plan must entail the UAS characteristics. The primary UAS features associated with a package
delivery operation consist of five types; small payload capacity, short endurance, recharging batteries, independence of
conventional road systems, and regulations of the Federal Aviation Administration (FAA).

First, a UAV has small payload capacity. Even a UAV could be allowed to convey just a single package at once. This
nature makes two operational concepts; single-package delivery operations and multi-package delivery operations. If
UAVs cannot deliver multiple packages enough to offset increased expense which is the cost difference for acquisitions
and operations between UAVs for single-package delivery and that for multi-package delivery, single-package delivery
operations have a benefit in cost.

Second, UAV’s endurance is relatively short in comparison with operating hours of its delivery system. In the
conventional savings algorithms, each vehicle operates once during operating hours. For instance, let us say that there is
a UAS-based delivery system which operates 60-minute-endurance UAVs. If its operating hours is 8 hours, each UAVs
stays for 7 hours at least from an operational plan created by the conventional approaches. This operational plan is
significantly inefficient in operations. Thus, reuse strategies should be included in operational planning process. In
VRPs, a single operation of vehicle is called a trip which starts from a depot and ends at a depot. However, if reuse of
vehicles is considered, each vehicles could have more than one trip. To mention all routes allocated to a vehicle, let us
call it a journey which is a combination of trips.

Third, UAVs operate by electrical power with rechargeable batteries. When constructing journeys, recharging time
also should be considered to find available vehicles at specific time. In the recharging location issue, there are two
approaches: one is setting up recharging stations in operational area. The other is allowing UAVs to recharge their
batteries only at a depot with reloading packages. In the recharging method issue, UAVs could remain at its recharging
location up to finishing recharging batteries, or they could stay during swapping batteries. If swapping batteries is
considered, the used batteries could be charged at the recharging location, even though UAVs leave the location after
swapping batteries.
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Fourth, UAVs can move without suffering from complicated road systems. That is, UAVs are free from topologies
of roads, traffic signals, and traffic jams. This property is a key advantage of UAS-based delivery systems. Based on this
nature, UAS-based delivery companies are capable of creating more profits by delivering packages faster or delivering
packages at specific time. In an operational point of view, delivering packages at specific time can be modeled as the
VRPTW. In VRPTWs, the preferred time to be visited for each customers can be described as time windows.

Finally, UAVs should operate under regulations. In the United States, the regulations are being developing by the
FAA. Under regulations, the visual line-of-sight (VLOS) operation is required, which forces each vehicle to be watched
by a single pilot or observer. Because this is a substantial limitation on UAS-based delivery systems, we assume that
the beyond visual line-of-sight (BVLOS) operation is allowed. Additionally, we assume that UAV’s technologies are
developed enough to solve other operational issues to focus on operational concepts of UAS-based delivery systems.

In this paper, a single-depot UAS-based delivery systems with homogeneous UAVs is considered with the assumptions
that; first, each UAVs has relatively small payload capacity and endurance to prevent that a UAVs visits too many
customers. Second, every UAV is allowed to swap its batteries and to reload packages at the depot only. Swapping
batteries makes the problem simpler because it can be modeled as an activity requiring fixed time. Third, UAVs can
move straightly between the depot and a delivery location, or between delivery locations. This implies each UAV
operates with simple mission profiles which consists of takeoff, cruise, and landing. Finally, all UAVs operate fully
automatically under BVLOS operation conditions. In Section III, these operational concepts are implemented as the
extended savings algorithm to build an operational plan for the UAS-based delivery system.

III. Extended Savings Algorithm
This section presents an extended savings algorithm for UAS-based delivery systems that can reflect the UAV’s

natures described in Section II. The proposed algorithm deals with the multi-trip vehicle routing problem with time
windows (MTVRPTW), which is a extended variant of the VRPTW allowing each UAV to have multiple trips or a
journey. Based on the graph theory, a MTVRPTW can be described by a graph G(N,A) and a set of vehiclesV, where
N is a set of all nodes in G, and A is a set of all arcs in G. A set of nodes, N = {0, 1, . . . , n, n + 1}, consists of a set of
two depots, depot = {0, n + 1}, and a set of n customers, C = {1, 2, . . . , n}. Note that the two depots indicate the same
depot, but depot0 is used when a vehicle leaves the depot, while depotn+1 is utilized when a vehicle arrives at the depot.
Each customer Ci has preferred time to be visited that is called time window TWi = [ai, bi], which ai is ready time,
and bi is due time. Also, each customer has service time si , which is the total time of landing, delivering, and takeoff.
Each arcAi j has a distance betweenNi andNj , Di j which is symmetric. Finally, each vehicleVi can take a journey Ji
which is a combination of trips in T. With these notions, this section discusses key rules of the proposed method and
present the details of the algorithm structure.

A. Key Rules of the Extended Saving Algorithm
To convert the key characteristics of delivery system using UAVs mentioned in Section II into a savings algorithm,

the rules that can be applied to the algorithm need to be created. First, the properties of small payload capacity, short
endurance and recharging of UAVs can be modeled mathematical expressions. Second, the straight path of UAVs can be
reflected by the straight flight distance among nodes. Last, by the assumption of BVLOS operations and fully advanced
technologies of UAVs, this problem can be handled from the point of view of high-level operations of UAVs-based
delivery system. Additionally, in the proposed method, one more characteristic is infused, which comes from a limitation
of the VRPTW model not a property of UAS-based delivery system. In the VRPTW models, if a vehicle arrives at a
delivery location before the designated time called ready time, then the vehicle should wait until ready time at the place.
If this concept applies to UAVs, they could be wait a long time on the ground or even in the air by hovering. Because the
long time hovering may occur some safety issue, a rule to prevent a long-time hovering is combined.

The proposed method, thus, is based on five key rules: saving rule, time window rule, maximum hovering rule,
maximum endurance rule, and multi-trip rule. Saving rule is the fundamental idea of all savings algorithms, which
provides a priority order of a pair of nodes to be combined. Time window rule describes how to select a customer to be
visited earlier using preferred time to be visited for each customer. Maximum hovering rule prohibits long waiting
at a delivery location. Endurance rules are directly related with UAV’s properties, which guarantees that each UAV
returns at the depot within UAV’s maximum endurance. Lastly, multi-trip rule needs to be to build a journey that is a
combination of trips assigned to a UAV.
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Fig. 1 An example of merging two trips

1. Saving Rule
The saving implies how much distance can be saved when two trips merge into one trip. For instance, there are two

trips that each trip visits a customer respectively as shown in Fig. 1a. Then, total distance vehicles should move is
calculated by

Total Distance[T1,T2] = D0i + Di(n+1) + D0j + Dj(n+1) = 2D0i + 2D0j . (1)

If the two trips merge to form a new trip like Fig. 1b, the total distance is updated by

Total Distance[T1′ ] = D0i + Di j + Dj(n+1) = D0i + Di j + D0j . (2)

Then, the distance that can reduce by merging the two trips, which is called saving, is computed by

SVi j = Total Distance[T1,T2] − Total Distance[T1′ ]
= (2D0i + 2D0j) − (D0i + Di j + D0j)
= D0i + D0j − Di j . (3)

In the savings algorithm, a pair of trips with high saving value has a priority to merge. Note that when merging trips, at
least one of them should be trivial trip which is a trip to visit only one customer.

2. Time Window Rule
In MTVRPTWs, each customer has preferred time to be visited, which is captured by a time window. The time

windows determine the order to visit customers. For example, assume that there are a customer i and customer j who
should be visited. Because each customer has own time window, three scenarios could occur: in the first scenario, the
time window of the customer i start earlier, and even if a UAV moves from the customer i to the customer j after serving
the customer i, it can arrive at the customer j within its time window as shown in Fig. 2a. In this case, the UAV can
serve the two customers on a trip by visiting the customer i earlier. The second scenario is the inverse situation of the
first scenario as illustrated in Fig. 2b. In the same manner, a UAV can serve the two customers with the reverse order to
visit the customers. In the last scenario, if the customer j has a time window which it is impossible to be visited after
visiting the customer i, and the customer i has a time window which it is also impracticable to be visited after visiting
the customer j, then it is unrealizable to allocate two visits for a UAV. Thus, in that case, two trip should remain as
shown in Fig. 2c.

3. Maximum Hovering Rule
Although a UAV can visit two customers on a trip based on their time windows, it is possible that the UAV should

stay in the air until ready time of the second customer. In this case, as hovering time increases, a safety issue could be
emerged with anxieties of neighbors because of noise and privacy issues. In addition, by restricting UAVs to have long
hovering, they are forced to return to the depot more frequently to complete the entire mission, but this could increase
the opportunity of merging trips to build a journey. Thus, we assume that if a UAV has longer hovering time to visit a
customer than the prefixed maximum hovering time, it cannot visit the customer as illustrated in Fig. 3.
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Fig. 2 The effect of time window on the order of visiting customers
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Fig. 3 Maximum hovering rule

4. Maximum Endurance Rule
In conventional savings algorithms, only payload capacity has used to check whether or not a vehicle can visit a next

customer. However, because a UAV has much shorter endurance, it should often visit a location where its battery can be
swapped. If the flight time of a trip becomes longer than maximum endurance of the UAV by visiting more customers,
the trip should not be extended as an infeasible case as shown in Fig. 4.

5. Multi-Trip Rule
Allowing UAVs to have multiple trips is a key point to significantly reduce the acquisition cost of UAS-based

delivery systems. By reusing UAVs, the minimum required number of UAVs decreases, which yields the maximum
available number of UAVs concurrently. In order to merge two trips to create a journey, at least there is time enough to
reload packages and to swap UAV’s batteries as illustrated in Fig. 5.

B. The Algorithm Structure of the Extended Savings Algorithm
The extended savings algorithm consists of three steps; computing savings, creating trips, and building journeys.

Each step sequentially works from computing savings to building journeys. The first step finds a set of feasible arcs to
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Fig. 4 Maximum endurance rule
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Fig. 5 Multi-trip rule

be capable of merging with their own savings. For feasibility checks, time window rule and maximum hovering rule
are applied. If an arc is infeasible, the two customers on the arc cannot be visited sequentially on a trip. For feasible
arcs, saving is computed by saving rule, Eq. (3). We note that before looking over each arc, if there is the sorted list of
customers based on time windows, computational power can be saved.

In the second step, trivial trips need to be made first, which visit just one customer. The set of trivial trips is a
solution of the single-package delivery operation. Thus, if the single-package delivery operation is considered, this step
can be skipped. After creating trivial trips, the list of arcs based on saving values is sorted, which implies the priority
to merge. Then, during looking over each arc sorted by saving values, time window rule, endurance rule, payload
capability check are utilized to find a pair of trip that can merge. Note that when merging two trips, at least one of them
should be a trivial trip. In the conventional savings algorithms, the algorithm ends by returning trips.

In the last step, journeys which are allocated to each UAV are built from the trips created in the second step. Each
journey has at least one trip, because it is a combination of trips. In this step, sorted trip list is utilized as a priority to
merge. Finally, during looking over each trip, journeys are built by journey rule. Note that each journey is assigned to
each UAV. The procedure of the proposed algorithm is described as pseudo codes in Algorithm 1.

C. Merge Strategies: Sequential vs. Parallel
When merging two routes into one route, two approaches can be used; sequential and parallel merge strategies.

First, the sequential merge strategy works with a single base route which has the largest saving value. The approach
extends the base route as much as possible, then it considers a next base route. Second, the parallel merge strategy unites
two routes along the order of a sorted list of saving values without considering a base route. The literature written by
Laporte et al. reports that the parallel merge strategy generally creates better routes than the corresponding sequential
merge strategy [12].
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Algorithm 1 Pseudo code of the proposed extended savings algorithm
Input: G(N,A) andV
Output: J

< STEP 1: computing savings using saving, time window, and maximum hovering rules >

Initialization
Sort nodes based on the order of time windows
for i in C do
for j in C do
if the order to be visited and max hovering time constraint are feasible then
SVi j = D0i + D0j - Di j

end if
end for

end for

< STEP 2: creating trips using time window and maximum endurance rules >

Create T with trivial trips for each customer
Sort A by descending order based on SV
for (i, j) in A do
Find trips that visit Ci and Cj respectively
if at least either Ci or Cj is in a trivial trip then

Estimate time schedule and payload capacity to be used after merging two trips
if time schedule, payload capacity, endurance constraints are feasible then
Merge two trips

end if
end if

end for

< STEP 3: building journeys using time window and multi-trip rules >

J = empty set
Sort T based on the order of departure time
for Ti in T do
for Ji in J do
if Ti can be merged into Ji then
Update Ji as Ji with Ti

end if
end for
if there is no journey which Ti can be merged into then

Add a journey as Ti into J
end if

end for
return J

For instance, let us consider four trivial routes such that [0, 1, 5], [0, 2, 5], [0, 3, 5], and [0, 4, 5], where 0 and 5
indicate a depot, and the others are delivery locations. It is also assumed that a sorted list of saving values is given such
that (1, 2): 10, (3, 4): 8, (2, 4): 7, which means when two nodes in parenthesis are merged, the saving value after colon
can be obtained. In the sequential merge approach, [0, 1, 5] and [0, 2, 5] routes can be combined into [0, 1, 2, 5] called a
base route. Then, the pair of node 3 and 4 in the list is skipped because it cannot be used to extend the base route. Next,
the route [0, 4, 5] is merged into the base route. As the result, the algorithm returns [0, 1, 2, 4, 5] and [0, 3, 5] routes as
a solution with the total saving value, 17.

On the other hand, in the parallel merge approach, after combing [0, 1, 5] and [0, 2, 5] routes into [0, 1, 2, 5] route,
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Table 1 Summary of numerical simulation of the canonical problem

Method # of nodes Merge strategy # of trips # of UAVs Max hovering time Max endurance
Conventional 25 Parallel 9 9 68 197

Extended 25
Sequential 15 11 4 133
Parallel 14 10 4 145
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Fig. 6 Results of a conventional savings algorithm for R101.25

[0, 3, 4, 5] route is created by merging [0, 3, 5] and [0, 4, 5] routes rather than [0, 1, 2, 4, 5] route in the sequential merge
approach. This behavior is expected because the saving value from merging [0, 3, 5] and [0, 4, 5] routes is larger than
that from combining [0, 1, 2, 5] and [0, 4, 5] routes. That is, the parallel approach tries to maximize total saving value
by combining with multiple routes at once along the sorted list of saving values. Next, the algorithm considers to unite
two route visiting node 2 and 4 respectively. However, node 2 and 4 cannot be connected because both are not trivial
routes. Thus, the parallel approach returns [0, 1, 2, 5] and [0, 3, 4, 5] routes as a solution with total saving value, 18.

IV. Numerical Simulations

A. Study Case: a Canonical Problem
In this section, computational simulations employing one of Solomon’s benchmarking data set for the VRPTW∗,

which is called R101.25, are conducted to demonstrate the extended savings algorithm. The test scenarios are that: first,
∗http://w.cba.neu.edu/~msolomon/problems.htm (accessed 5 November 2018)

8

http://w.cba.neu.edu/~msolomon/problems.htm


10 20 30 40 50 60
Location

10

20

30

40

50

60
Lo

ca
tio

n

Vehicle Routes
Vehicle 0
Vehicle 1
Vehicle 2
Vehicle 3
Vehicle 4
Vehicle 5
Vehicle 6
Vehicle 7
Vehicle 8
Vehicle 9
Vehicle 10
Vehicle 11
Vehicle 12
Vehicle 13
Vehicle 14

(a) Route plot based on trips

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526
Customer and Depot (Nodes)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220

Ti
m

e

Time-space Network
Vehicle 0
Vehicle 1
Vehicle 2
Vehicle 3
Vehicle 4
Vehicle 5
Vehicle 6
Vehicle 7
Vehicle 8
Vehicle 9
Vehicle 10
Vehicle 11
Vehicle 12
Vehicle 13
Vehicle 14
Time window

(b) Time schedule of the routes based on trips

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Customers (Nodes)

0

1

2

3

4

Ti
m

e

Hovering Time for Each Customer

(c) Hovering time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Vehicles

0

20

40

60

80

100

120

140

Ti
m

e

Trip Time of Each Vehicle

(d) Endurance based on trips

10 20 30 40 50 60
Location

10

20

30

40

50

60

Lo
ca

tio
n

Vehicle Routes
Vehicle 0
Vehicle 1
Vehicle 2
Vehicle 3
Vehicle 4
Vehicle 5
Vehicle 6
Vehicle 7
Vehicle 8
Vehicle 9
Vehicle 10

(e) Route plot based on journeys

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526
Customer and Depot (Nodes)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220

Ti
m

e

Time-space Network
Vehicle 0
Vehicle 1
Vehicle 2
Vehicle 3
Vehicle 4
Vehicle 5
Vehicle 6
Vehicle 7
Vehicle 8
Vehicle 9
Vehicle 10
Time window

(f) Time schedule of the routes based on journeys

Fig. 7 Results of the extended sequential savings algorithm for R101.25

there are a single depot and 25 customers. Each customers has own time window and package demand with 10 service
time. This benchmark data set uses unit time and unit distance. Each vehicle moves unit distance at unit velocity, and it
is capable of carrying packages up to maximum payload capacity. For the extended algorithm, let us assume that: first,
the preferred maximum hovering time is 5 unit time. Second, maximum endurance of the UAV is 150 unit time. With
those conditions, Computational simulations for a conventional savings algorithm and the extended savings algorithm
are conducted respectively. All the numerical simulations are executed with Intel® CoreTM i7-7700HQ processor and
32 Gb memory. The computational result is summarized in Table 1.

As a baseline, the conventional savings algorithm for the VRPTW is employed, which does not include maximum
hovering, maximum endurance, and journey rules. The solution of the VRPTW can be reconstructed as a route plot and
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(b) Time schedule of the routes based on trips
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(c) Hovering time
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(d) Endurance based on trips
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(e) Route plot based on journeys
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(f) Time schedule of the routes based on journeys

Fig. 8 Results of the extended parallel savings algorithm for R101.25

a time schedule. The results of the conventional savings algorithm are illustrated in Fig. 6. The route plot shows how
the vehicles move spatially like Fig. 6a. In this case, to serve 25 customers, 9 vehicles need to be in the UAS-based
delivery system. Then, the temporal information of each vehicles can be obtained in the time schedule as shown in Fig.
6b. Note that x-axis of the plot shows just a list of nodes, which implies that it does not provide any spatial information.
In conventional savings algorithm, because there is no rules of maximum hovering and maximum endurance, longer
hovering than the preferred maximum hovering time occurs as presented in 6c. Moreover, some routes require longer trip
time than maximum endurance of the UAV. Note that this result clearly shows that the conventional savings algorithms
have a limitation to apply the UAS-based delivery problems.

The simulation results of the extended savings algorithm with sequential merge strategy are described in Fig. 7. In
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the spatial and temporal results as shown in 7a and 7b, they require the more number of vehicles than the conventional
algorithm. However, as each trip satisfies the constraints of both maximum hovering time rule as shown in Fig. 7c and
7d. This result represents that the proposed algorithm has a capability of dealing with UAS-based delivery problems
by directly handing the characteristics of both the UAV and the delivery system. Moreover, by applying journey rule,
the required number of UAVs can be reduced as illustrated in Fig. 7e and 7f. This is a key characteristic of multi-trip
algorithms, which allows to build an operational plan for entire hours of operation with a minimum of vehicles.

On the other hand, the results from the proposed savings algorithm with the parallel merge strategy are illustrated in
Fig. 8. The solution of the parallel extended savings algorithm, also, satisfies maximum hovering, maximum endurance,
and journey rules. However, the solution is different from that of the sequential algorithm. This result shows the merge
strategy has an impact on creating building routes. In this canonical example, the parallel savings algorithm creates a
better solution by requiring the less number of vehicle to complete the given delivery tasks: the parallel merge strategy
requires 10 vehicles whereas the sequential strategy needs 11 vehicles.

B. Study Case: Two UAS-based Delivery Systems in Annapolis, MD, and Macon, GA
As UAVs can fly more straightly among nodes, the benefits of UAS-based delivery systems increase. If there are

obstacles such as tall buildings at the operational altitude, UAVs should make a detour to avoid the obstacles, which
makes routes worse in flight distance and time. From Part 107 of the FAA, small UAVs under 55 lb can operate at
or below 400 ft †. In order to reduce the effects of urban obstacles such as tall buildings on vehicle’s routes, both
Annapolis, MD, and Macon, GA, cities are selected for numerical simulations of UAS-based delivery scenarios because
an operational altitude without obstacles can be utilized: the tallest building in Annapolis, MD, is about 98 ft with 8
floors ‡, whereas the one in Macon, GA, is about 215 ft with 15 floors §. Each city scenario is simulated with both the
sequential and parallel extended savings algorithms.

In the Annapolis scenario, there are a depot, which is a USPS distribution center, and 51 delivery locations consisting
of gas stations and USPS offices with 161 time windows, which implies that this scenario has 163 nodes. The depot and
delivery locations in Annapolis, MD, are shown in Fig. 9a and 9b. The distribution is illustrated with a Probability
Density Function (PDF) estimated by the Kernel Density Estimation (KDE) which is a non-parametric approach to
estimate a PDF of random variable. In the Macon scenario, a depot, which is a FedEx ship center, and 139 delivery
locations which are gas stations are selected with 466 time windows, which consists of 468 nodes. The depot and
delivery locations in Macon, GA, are illustrated in Fig. 9c and 9d. In both scenarios, most of delivery locations are
within 10 mi from the depot, but delivery locations in Macon, GA, are relatively far away from the depot. Each delivery
location has a demand for every time window, which are created by a uniform distribution as described in Fig. 10. The
common assumptions for both simulations are summarized below.

• Operational altitude of UAVs is 300 ft.
• UAVs fly straightly among the depot and nodes.
• Delivery systems operate for 8 hours.
• UAVs operate at speed of 50 mph.
• Maximum payload capacity of UAVs is 10 lb.
• Maximum demand of delivery location is 5 lb.
• Maximum endurance of UAVs is 60 mins.
• Maximum hovering time is 5 mins.
• Time for reloading packages and swapping batteries is 15 mins.
• Each delivery location can have at most 5 time windows.
• Each time window is a period of time from 5 to 30 mins.
• Time windows at a delivery location cannot be overlapped.
• UAVs spend 3 mins at each delivery location including landing, delivery, and take-off.

The numerical simulation results are summarized in Table 2. As a mid-size problem, the Annapolis scenario has 161
nodes, whereas the Macon scenario has 466 nodes as a large-size problem. In the Annapolis scenario, the sequential
merge strategy requires 11 UAVs while the parallel merge strategy needs 10 UAVs to deliver all packages. In the Macon

†https://www.faa.gov/uas/getting_started/part_107/ (accessed 5 November 2018)
‡https://www.emporis.com/statistics/tallest-buildings/city/101532/annapolis-md-usa (accessed 5 November 2018)
§https://www.emporis.com/statistics/tallest-buildings/city/101707/macon-ga-usa (accessed 5 November 2018)
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(a) Delivery locations of the Annapolis scenario with a 10 mi
radius circle at the depot (Google Earth)
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(b) Delivery location distribution of the Annapolis scenario

(c) Delivery locations of the Macon scenario with a 10 mi radius
circle at the depot (Google Earth)
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(d) Delivery location distribution of the Macon scenario

Fig. 9 Spatial information of two simulation scenarios
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(a) The Annapolis scenario
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(b) The Macon scenario

Fig. 10 Demand distributions of simulation scenarios

scenario, the solution of the sequential approach requires 25 UAVs while the solution of the parallel approach needs 18
UAVs. Those results show that the solution of the parallel merge strategy dominates the solution of the sequential merge
strategy. The journeys of each solution are illustrated in Fig. 11, but many lines for each journey are overlapped, thus

12



Table 2 Summary of numerical simulation of city scenarios

City
# of delivery

# of nodes
Merge

# of trips # of UAVs
Elapsed time (sec)

locations strategy First Second Third
Annapolis,

51 161
Sequential 68 11 8.630 8.690 9.012

MD Parallel 59 10 0.709 0.718 0.706
Macon,

139 466
Sequential 168 25 421.489 418.161 417.859

GA Parallel 134 18 6.631 6.584 6.480

(a) The Annapolis scenario with sequential merge strategy: 11 UAVs (b) The Annapolis scenario with parallel merge strategy: 10 UAVs

(c) The Macon scenario with sequential merge strategy: 25 UAVs (d) The Macon scenario with parallel merge strategy: 18 UAVs

Fig. 11 Solution journeys

the solutions are reconstructed as a distribution of fight time as described in Fig. 12. The shape of PDFs of the trip
distribution are similar with those of the node distribution. However, the PDFs of the parallel merge strategy in Fig. 12b
and 12d is denser then that of the sequential merge strategy in Fig. 12a and 12c with a lower mean value. This implies
that the parallel algorithm creates a solution requiring the total flight hours less than the sequential algorithm.

Each simulation is executed three times as shown in Table 2. The parallel approach is faster then the sequential
approach as well as it has more potentialities to solve a larger size problem: the elapsed time of the parallel approach
increases up to 9.23 times when solving the problem with the Macon scenario based on the Annapolis scenario whereas
that of the sequential approach increases up to 47.74 times.
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(a) The Annapolis scenario with sequential merge strategy

0 10 20 30 40 50 60
Flight time of each route (mins)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
ob

ab
ilit

y

Mean
KDE

(b) The Annapolis scenario with parallel merge strategy
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(c) The Macon scenario with sequential merge strategy
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(d) The Macon scenario with parallel merge strategy

Fig. 12 Trip distribution of solution based on flight time

V. Conclusions
This paper proposed an extended savings algorithm to handle UAS-based package delivery problem. For the

operational planning of UAS-based delivery systems, the characteristics of UAVs must be considered as well as that of
the logistics to guarantee the feasible operational route and schedule, which precisely takes into account limited payload
capacity and short endurance requirement. Existing conventional savings algorithms for the VRPTW can deal with the
characteristics of the logistics, but they cannot reflect the properties of UAVs. Therefore, this paper introduces five rules
of UAS-based delivery systems: saving rule, time window rule, maximum hovering rule, maximum endurance rule,
and journey rule. Based on these rules, this paper formulates an extended savings algorithm for UAS-based delivery
systems, which is capable of capturing the features of both vehicles and the logistics to generate an operational plan.

Through the numerical simulations, this paper shows that the proposed extended savings algorithm is more suitable to
handle UAS-based delivery problems than the conventional savings algorithms because the proposed algorithm considers
key five UAS operational rules: maximum hovering rule, maximum endurance rule, and journey rule. Moreover, this
paper compares the solution of the sequential merge strategy with that of the parallel merge strategy. The results present
that the parallel merge strategy leads a better solution with less computational time.

One of the potential extensions of this work is to add more practical logistic aspects such as multiple depots or
recharging stations for UAS-based delivery systems to cover wider area. Another possible extension is to reformulate
energy-based savings algorithm rather than maximum endurance of UAVs because UAS endurance can vary according
to flight status. Although the energy-based algorithm requires more complexity in the algorithm, it can produce more
accurate solutions for real UAS operations.
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