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SUMMARY

3D packaging has emerged as a vehicle for scaling system densities and performance

due to i) increased inter-tier bandwidth, ii) reduced inter-tier latencies, and iii) ability to

integrate dies from different process technologies as a means of customization and hence

performance improvement. Moving forward, continued scaling of fine-grained Through

Silicon Vias (TSVs) across a 2D cross section can support a large number of memory

channels, hence concurrency in the memory system. High concurrency in 3D memory

alters the basic relationships between bandwidth, latency, and energy of the memory hier-

archy [53, 105]. We re-evaluate these relationships and identify a few key characteristics,

optimizing which can significantly improve power and performance of the overall system.

These include i) a re-factored memory latency path, in which the difference between the

cache and the DRAM latency is reduced, and the network latency becomes a critical part

of the overall memory-access latency, ii) an increase in the importance of concurrency

management using address space translations to effectively balance various power and per-

formance trade-offs, and iii) a wider thermal operating range of DRAM that significantly

impacts its refresh rate and hence, performance. We exploit these observations by propos-

ing architectural modifications and optimizations at various levels of the memory hierarchy

with a goal of improving performance and energy efficiency of the overall system.

We first identify the need for fine-granularity and highly-parallelism in 3D memories

and characterize its impact on latency in various components of the cache and memory

subsystem. We further establish the role of hardware address translations at various levels

of the memory hierarchy in regulating locality vs parallelism trade-off in concurrent mem-

ory channels and maximize performance [29]. We propose to re-organize the 3D memory

hierarchy in order to reduce network traffic and latency. This re-organization is achieved by
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coupling the addressing scheme of a distributed last-level cache (LLC) with that of a dis-

tributed high-channel-count main memory. To reduce the network latency further, we de-

sign a single-cycle centralized-buffer router (CBR) [33] that supports high-radix networks

with small dependence of buffer area on radix. We extend it to support adaptivity [31]

and multiple virtual channels [4]. Furthermore, we evaluate its power and performance

advantages for both regular and irregular topologies. Lastly, we analyze the temperature

problem of 3D memories and characterize its impact on system performance and reliabil-

ity. We take two distinct approaches. First, we explore how new technologies, such as

microfluidics cooling, can help alleviate temperature and reliability concerns. Second, we

study how adaptations to the current micro-architecture can expand the operating range of

3D memories. Specifically, we propose variable-rate per-bank refresh management for 3D

stacked memories that exploits the variability in 3D DRAM temperature to reduce refresh

power and allow the DRAM to operate at much higher temperatures tolerating hotspots in

the memory subsystem.
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CHAPTER 1

INTRODUCTION

A fundamental limitation of performance scaling in chip multi-processors (CMPs) is the

decreasing memory bandwidth per core, generally referred to as the memory-wall prob-

lem [79]. The problem has worsened over the years as the number of cores per chip

doubled every two years while the external pin bandwidth has not increased at the same

rate. It is further exacerbated by the increasing demand of power delivery pins reducing

the availability of data pins. Three-dimensional (3D) packaging [119] and silicon inter-

poser technology [89] have emerged as promising new solutions to overcome the problem;

mainly because of their i) increased inter-tier bandwidth, ii) reduced inter-tier distance, and

iii) the ability to integrate dies from different process technologies as a means of customiza-

tion. Higher bandwidth is achieved by a large number of fine-grained Through Silicon Vias

(TSVs), or thin metallic wires of the interposer, which, coupled with DRAM RAS / CAS

trends and the need to distribute TSVs evenly across the dies, points towards an increase in

the number of channels, thus concurrency in the memory systems [30]. Smaller inter-tier

distance has brought large amounts of data close to compute, which potentially can reduce

the ever-increasing cost of data movement and has renewed the interest in concepts like

near-data processing (NDP) [71], processing-in-memory (PIM) [121], and memory-centric

computing [41]. A common theme with all these developments is the rise of fine-grained

memory-level parallelism on-chip opening up interesting new challenges and opportuni-

ties. In this thesis, we analyze an exemplar 3D system, identify its major bottlenecks, and

propose architectural modifications to remove these limitations with the goal of improving

performance and energy efficiency of 3D memories.

A 3D system alters the basic relationships (i.e. design points) between bandwidth, la-

tency, and power of the memory hierarchy [53, 105]. We re-evaluate these relationships and

propose architectural modifications and optimizations that adapts to the new challenges.
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Specifically, we identify three key characteristics which will be exploited in this thesis.

1. A 3D system consists of highly parallel memories with large number of banks and

channels, effective utilization of which trades off locality, parallelism, and energy.

These trade-offs can be managed by various types of address translations which can

be used to reshape the memory traffic and optimize power and performance of the

overall system.

2. Reduced 3D DRAM delay leads to refactoring of the memory latency path which

increases pressure on the interconnection network between the memory and the cache

hierarchy. Specifically, network latency becomes comparable to DRAM latency.

3. Lower heat removal capability and higher DRAM density of 3D stacks increases

their temperature and requires larger number of rows to be refreshed at significantly

higher rates. Increased refresh time decreases memory bandwidth availability and

higher temperature puts a limit on core operating frequency; both limiting continued

performance scaling.

Exploiting these observations requires architectural modifications and optimizations at

various levels of the memory hierarchy which is the topic of this thesis; and stated as fol-

lows, ”High concurrency in 3D stacked memory systems have severely impacted locality,

bandwidth, and energy trade-offs, management of which is critical to fully exploit the po-

tential of 3D memory systems”.

Following is a brief summary of the major work accomplished in this thesis and is cat-

egorized into three distinct parts.
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1.1 Analysis and Optimization of an Exemplar 3D System

The first major contribution of this thesis involves analyzing an exemplar 3D system (de-

scribed in chapter 3), identifying its major bottlenecks, and proposing architectural modifi-

cations to address these bottlenecks. The goal is to understand how to carefully manage the

parallelism in 3D memories and remove performance inefficiencies by proposing address

translations and memory hierarchy re-organization without adding or modifying the inter-

nal hardware structures of the core and the memory subsystem. The key insights gained by

the analysis of the exemplar 3D system are as follows.

• Assuming a fixed wiring density between the processor and the memory, a 3D system

with large number of narrow memory channels has superior performance over a 3D

system with a small number of wide memory channels. We use a channel count of

16 for our baseline configuration.

• A large number of channels and banks results in high parallelism, which can be

effectively managed by simple address translation schemes at various levels of the

memory hierarchy to regulate the power and performance trade-offs of the overall

system. A fine-grained interleaving between channels and banks exploits parallelism

increasing performance, but destroys any locality in the memory access stream. It

also increases the load on the network and increases power of the overall memory

subsystem. A coarse-grained interleaving scheme on the other hand does not fully

utilize the high bandwidth of 3D memories and creates hotspots in the network.

• High parallelism in 3D memories reduces the load on individual DRAM banks and

channels, which results in decreased queuing delay and smaller latency in the DRAM

itself; thus putting more pressure on the interconnection network connecting these

channels.

• Reduced DRAM latency and high network traffic increases the criticality of network

latency making it comparable to that of DRAM latency, an observation that does not
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hold true in conventional 2D systems. This makes 2D network bandwidth a limiting

factor for full exploitation of 3D DRAM bandwidth.

• Address management schemes at various levels of the memory hierarchy can nullify

each others benefits. Their careful co-ordination is critical to optimize the power and

performance of the overall system.

Taking these observations into consideration we reorganize the memory hierarchy into a

banked memory-side cache organization that reduces the network traffic. The re-organization

is made possible by the co-ordination of address mapping at the LLC and the MC level. To

reduce the network traffic further we implemented locality based OS page allocation strate-

gies that tries to keep the data close to the requesting cores as much as possible and analyze

their impact on the overall system performance. We also show the importance of traffic dis-

tribution to all the channels in order to utilize maximum bandwidth without violating the

conventional principles of spatial locality and DRAM hit rate; and use customized address

translation schemes to provide this distribution.

1.2 The 2D Network

The first part of the thesis served to identify i) the importance of the 2D network bandwidth

in exploiting 3D bandwidth, and ii) its increasingly dominant role in the overall memory

access latency. The thesis focuses on addressing this challenge via the design of a family of

interconnection networks that enable effective tradeoffs between area (buffer space), power

and bandwidth. The second contribution of this thesis proposes a router micro-architecture

suitable for high-radix on-chip networks that reduces network latency and power while

maximizing throughput. The goal is to minimize network latency and maximize 2D band-

width utilization in order to achieve full potentials of high 3D bandwidth. Network latency

can be reduced by increasing the router radix and reducing the average hop count of the

memory accesses. Higher radix requires large number of links which are also available in

abundance on-chip. However, the problem in using large number of links is that each link
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is associated with multiple buffers, with each one of them taking significant amount of area

and power. Furthermore, the minimum depth of each of these buffers has to be equal to

the credit round-trip latency (to avoid bubbles between successive flits and maximize link

utilization), which also grows with radix and link length. Thus, increasing router radix to

reduce latency amplifies buffer needs and exacerbates energy inefficiency.

In this thesis, we propose the use of centralized buffers (CB) in the routers to decouple

the required buffer space from its radix and link length. We further present modifications

to the baseline centralized buffer router improving its performance and energy and making

it suitable for different network configurations. The key contributions in this domain are

the following.

• We propose centralized buffer router (CBR) - a router micro-architecture based on

the use of centralized buffers (CB) with elastic buffered (EB) links [59] that sup-

ports high-radix networks. At low loads, the CB is power gated, bypassed, and op-

timized to produce single cycle operation. At high loads, flits are streamed through

the buffered path taking three cycles. A novel extension to bubble flow control en-

ables routing deadlock and message-dependent deadlock to be avoided with the same

mechanism having constant buffer size per router independent of the number of mes-

sage types.

• Flow control of the centralized buffer routers works at a granularity of individual

packets in the central buffers. This increases the minimum buffering space required

by the CBs. We reduce the buffering requirement of the central buffers by introduc-

ing Bubble Sharing, a flow control technique that extends the worm-bubble flow-

control [16] scheme to centralized buffer routers, reducing its buffer space.

• We also propose Adaptive Bubble Sharing that enables adaptive routing with bubble-

sharing flow control for wormhole switched networks. This reduces latency of the

centralized buffer routers further, specially in the case of high-radix networks with
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large number of adaptive paths.

• Centralized buffer routers uses elastic buffer (EB) links with variations of bubble-

flow control for deadlock avoidance [32]. However, bubble-flow control works only

for regular topologies, such as rings and torus. For complex irregular topologies,

we extend the centralized buffer design to support multiple VCs. We used recently

proposed ElastiStore [84] technique to allow virtual channel with CBRs.

• To explore VC-based CBRs with high-radix irregular topologies, we used the VC-

enabled CBR design with Slim Fly, a recently proposed high-radix topology by Besta

and Hoefler [5], for an optimum diameter-2 on-chip network with the least number of

ports in the router. The topology is fairly irregular and requires two VCs for deadlock

freedom. Hence CBRs with multi-VC support are used.

We evaluated the centralized buffer router design and its modifications with various

regular and irregular, and low- and high-radix networks and compared its results with var-

ious state-of-the-art routers. The major conclusions of these evaluations are as follows.

i) A small central buffer in an EB-like design (CBR) can avoid deadlock and improves

throughput without the need of having separate virtual channels and physical networks.

The size of this buffer is small which can be further reduced by using bubble-sharing flow

control, thus the area and power requirement reaches that of EB with a single physical

network. The low-load latency is equal to buffer-less routers and the high-load latency is

higher than state-of-the-art buffered routers. ii) CBRs, in general, are superior with high-

radix topologies because of the slow rate of increase of their buffer space with that of their

radix. They perform equally well with low-radix topologies. However, adaptive bubble-

sharing CBRs do not perform well with low-radix topologies because of fewer adaptive

paths in them. In such a case, deterministic bubble sharing routers performs the best with

very small buffering requirements. iii) CBRs that uses bubble-flow control for deadlock
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freedom are applicable only for regular topologies, such as rings and torus. For irregu-

lar topologies, multi-VC CBRs that does not use bubble-flow control are required which

provides the best energy-delay product and throughput per unit power for large networks.

1.3 Thermal Analysis and Optimizations of 3D Memories

The last major contribution of this thesis involves dealing with the temperature problem

of 3D memories. 3D stacked DRAMs with their lower heat removal capability, higher

DRAM density, and higher heat flux operate at much higher temperature as compared to

conventional 2D memories. Thus, their usage has been limited to memory-intensive ap-

plications running at low frequencies which inherently have lower performance. Further

improvement in performance scaling by increasing core complexity or frequency cannot be

achieved as it is limited by thermal constraints of the stack. Increased temperature also has

a negative impact on lifetime reliability of the memory system.

To this end, we analyze the thermal profile of an exemplar 3D system and identify that

thermal constraints are a limiting factor for full utilization of 3D bandwidth. We also ana-

lyze and compare the reliability-performance tradeoffs between multicore systems with 3D

and 2.5D stacked memory identifying correlations between frequency, performance, tem-

perature, and reliability; and uses it to quantify the reliability-performance tradeoff. Our

analysis indicates that 3D-stacked DRAM provides better performance for most applica-

tions, but exhibits poorer lifetime due to higher operating temperature. Furthermore, it also

indicates that compute-intensive applications have better performance-reliability trade-offs

with 2.5D designs, even at higher frequencies, whereas memory-intensive applications fa-

vor 3D stacked systems operating at lower frequencies.

We broadly looked at two different solutions to address the thermal challenges of 3D

memories, i) how new cooling technologies, such as microfluidics cooling, can help alle-

viate temperature and reliability concerns and pushes its envelope to both compute- and

memory-intensive applications operating at much higher frequencies, thus utilizing the full
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potential of high 3D bandwidth, ii) how adaptations to the current memory architecture

and algorithms can expand the operating range of 3D memories improving performance

and power of the overall system. Specifically, we make a case for variable-rate per-bank

refresh management for 3D stacked memories; motivated as follows. Higher temperature

of 3D stacks requires large number of rows to be refreshed at higher rates increasing power.

Further, different DRAM channels and dies operate at different temperatures due to a high

variance in the heat generated by the processor die and a high variance in the heat re-

moval capability of the conventional heat sinks. Exploiting this variation in temperature

by allowing different channels and banks to be refreshed at different rates based on their

operating temperature not only reduces refresh power and performance penalty but also

tolerates thermal hotspots in memory, thus allowing the overall system to operate at much

higher frequencies improving performance.

The rest of the dissertation is organized as follows. Chapter 2 gives a brief background

of various problems along with the related work in that domain. Chapter 3 analyzes an

exemplar 3D system, identifies its performance bottlenecks, and proposes an optimized

memory system organization that uses address co-ordination between various levels of the

memory hierarchy to reduce the traffic in the network. The next three chapters describes our

centralized buffer router (CBR) architecture. Chapter 4 describes the baseline router micro-

architecture along with latency and area reduction optimizations. Chapter 5 reduces the

buffering space of CBR by proposing bubble-sharing scheme that extends worm-bubble-

flow-control to flit level in the CBs. It also proposes adaptive bubble-sharing with CBRs.

Chapter 6 extends CBR for multiple VCs and uses it with a recently proposed high-radix

irregular topology to reduce the buffering and power requirements of the system. Chap-

ter 7 analyzes the thermal problems of 3D memory and quantifies its reliability concerns

along with describing various advantages of microfluidics cooling. Chapter 8 motivates our

variable-rate per-bank refresh management scheme and presents its power and performance

advantages with chapter 9 concluding the dissertation.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Conventional Memory Systems

DRAMs conventionally have evolved to consist of multiple ranks (collection of devices

operating in unison) that combine to form a DRAM channel [36]. Each rank has many

banks which allow multiple outstanding requests to be serviced in parallel by the mem-

ory controller (MC). An MC takes incoming requests from the last level cache and issues

DRAM specific commands to access the data present in the arrays. The corresponding re-

sponse is then sent back on completion. However, the number of channels and thus banks

are limited in a conventional 2D system resulting in application level interference in the

MC. Conventional 2D systems have limited number of memory channels resulting in low

DRAM bandwidth and thus application/thread-level interference in the MC queues. Un-

der high load caused by the increasing number of cores and slow DRAM service rates,

MCs [65] suffer high queuing delays. To minimize the queuing delays, as well as improve

DRAM service rates, several memory scheduling algorithms have been proposed. Their

main optimization criteria is to improve either hit-rate or bank-level parallelism (BLP) of

the memory requests [78, 65]. Some works have also looked upon optimizing both in tan-

dem in a single-MC case [65], as well as in multiple-MC cases [46]. Yuan et al. [120] uses

switch arbitration in the network to increase DRAM hit rate. Das et al. [20] further uses the

notion of criticality over hit rate to improve overall system performance. These algorithms

improve performance by reordering memory requests going to a bank or across different

banks. However, the scope of scheduling is limited, since it is the arrival pattern of requests

that govern the delays, and scheduling alone cannot change them.

The arrival pattern of requests can be modified by the use of various address transla-

tion mechanisms, which have been explored extensively to spread the data across multiple
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channels and banks of a DRAM. Zhang et al. [124] uses XOR of bank bits to spread ac-

cesses from an application across different banks in a single DRAM. Hassan et al. [29]

presents a class of address mapping that distributes traffic to different MCs while preserv-

ing the DRAM hit rate. Impulse [122] performs another level of address translation to

align consecutive requests and improve hit rate. Micro-pages [99] allocate separate physi-

cal DRAM pages to frequently accessed cache lines in order to increase hit rate. Awasthi

et al. [3] proposes dynamic page migration from highly congested DRAM channels to less

congested DRAM channels that distributes the traffic across different DRAMs. Some other

solutions [40] [64] have combined address mapping with memory scheduling to not only

distribute the traffic but also reduce the interference caused by various threads on each

other. Some groups [35] have also explored using address translations and MC scheduling

to reduce DRAM power. All these works improve power and performance of a system

by manipulation of memory request in various manners without changing the inherently-

inefficient internal structures of the DRAM.

Some researchers have explored changing the internal structure of the DRAM to im-

prove bandwidth or power efficiency. These include approaches like early fully-buffered

DIMM [25] and decoupled DIMM [126], which separates the dependence of DRAM bus

with its internal storage sub-arrays to improve bandwidth; rank subsetting [1] and mini-rank

[125], which reduces the DRAM row size to improve its power efficiency; and SSA [106]

and sub-array-level parallelism [47] architectures that propose modifications to the periph-

erals of DRAM sub-arrays to improve parallelism and reduce energy for each DRAM op-

eration. All these schemes try to improve DRAM efficiency, however, they cannot remove

the fundamental challenge of DRAM, that is, the small number of connections between the

CPU die and the DRAM chips. In the next section, we provide two promising solutions

that address this problem.
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2.2 2D vs. 2.5D vs. 3D Stacked Memory

A typical integrated circuit (IC) with a ball grid array (BGA) package consists of a single

die placed on top of a package substrate as shown in Fig 1 a). The connections between

the die and the substrate, called bumps or more recently micro-bumps, has a pitch around

30-50um while the connections between the package substrate and the printed circuit board

(PCB), ball interconnect, is around 400-600um. Although the pitch of micro-bumps can

be reduced further, PCB designers are facing numerous challenges lowering the ball pitch

down resulting in a very slow increase in the pin count of modern chips. Furthermore,

these ball interconnects are connected to long wires in the pcb with non-linear coupling

and impedance mismatch effects that keep the speed of these wires low. The combined

problem has hindered the rapid increase of pin bandwidth mainly affecting off-chip memory

bandwidth and power delivery mechanisms in modern chip multi-processors (CMPs).

(a) 2D (b) SI Design

(c) 3D (d) 2.5D

Figure 1: Various packaging options for CPUs and memories
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A promising solution to this problem is to introduce another silicon layer, a silicon

interposer, between the package substrate and the die and have multiple dies placed together

on a single substrate as shown in Fig 1 b). The interconnections between the two dies will

have a very small pitch and much lesser distance increasing both the number of connections

and their speed. The speed and thus bandwidth is further increased by the fact that the

connection between the two dies passes through a much faster silicon layer than through

the slow metallic wires of a PCB. Lesser distance also means smaller wires with lower

electrical loads and thus smaller drivers to drive these wires, all of which decreases the

overall power dissipation. Another advantage of wires in the faster silicon layer is their

higher signal integrity leading to removal of sophisticated signal preserving techniques like

delay locked loops, on-die termination etc., again improving power efficiency. However,

the area and thus cost of the silicon interposer and the package substrate is high.

Another, even better solution to the problem is to stack multiple dies together and make

a true 3D package as shown in Fig 1 c). Stacking is enabled by etching holes called through-

silicon vias (TSVs) in the bulk silicon portion of the die [7] [24]. TSVs have the advantage

that two dies of completely different technologies can be stacked and later bonded using

various bonding processes [62]. 3D configuration has several important advantages, such

as, reduced distance between the dies, low electrical load on the TSVs, an increase in the

number of interfaces between the dies, and a reduction in overall chip area and thus cost.

A hybrid of the three technologies can also be used as shown in Figure 1 d). The hybrid

configuration has only similar structures like multiple DRAM dies stacked in a 3D con-

figuration with a lower probability of defects due to technology mismatch thus achieving

significantly higher yield.

Any organization of various components of a system can be stacked. The most straight

forward choice is to stack multiple DRAM dies and place them next to a processor die as

a 2.5D structure [118] or put it directly on top of the processor die as a ’true 3D struc-

ture’ [54]. In this thesis, we will analyze the later case [50] of true 3D stacking, which will
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simply be referred to as a 3D system. An example of such a design is 3D-Maps [24], which

has already been successfully taped out and fabricated. Other common 3D configurations

include placing large DRAM- or SRAM-based caches on top of the processor die [105],

splitting individual components like processors or caches into multiple layers[116], or even

splitting small units like ALU to multiple layers [23]. All these approaches are orthogonal

to processor-memory 3D integration and less likely to be adapted in the near future.

2.2.1 Challenges and Trends

3D processor-memory systems have been gaining significant attention since a decade. Ear-

lier approaches tend to exploit higher bandwidth of 3D, for example, Dong et al [115] have

evaluated the use of larger cache lines (equivalent to an OS page) to improve performance.

Others [85, 100] have looked towards either restructuring the DRAM array or modify-

ing the interconnect between various DRAM sub-banks in a manner that reduces DRAM

access time or energy. However, the adoption of these schemes have been slow mainly

because of technology challenges in 1) TSV packaging, 2) thermal management, 3) com-

bined multi-die yield, and 4) DRAM capacity. Recent advancements in packaging [119],

microfluidics [110], and silicon-on-interposer [89] technologies indicate rapid progress to-

wards solving these issues leading to the proposal of a few new memory standards [97, 95].

Increasing the capacity of DRAM, however, is still a problem specially with a small num-

ber of dies being allowed to stack due to thermal constraints. Increasing the chip size is also

not desirable because of lower yield with bigger chips. Consequently, stacked DRAM is

mainly been explored as a 2.5D structure [67] with an optional logic die below the DRAM

stack. This prompted the architects to come up with interesting new designs, such as,

NDC [71] and PIM [121], in which it is used as either a large last-level cache (LLC) [73]

or part of a multi-level main memory [88]. Consequently, the focus has been on the man-

agement of the DRAM caches or the OS- or hardware-based page swapping between the

fast and the slow memory. However, with 4GB of stacked DRAM coming soon [108], the

assumption that stacked DRAM will be used only as a cache or page swapping mechanisms
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are the main performance determinants is less likely to be true. Another problem that arises

from large capacity memories is the higher number of refresh operations to be performed,

which affects memory bandwidth availability, its power, and the wait time during refresh

operations [52]. In this thesis, we revisit the 3D stacked processor-memory system and an-

alyzed it in more detail, identifying its bottlenecks and proposing optimizations to remove

them. We focus on the impact of such a system on on-chip network latency, 3D parallelism

management and thermal regulation.

2.3 Thermal Concerns in 3D Memory

A major problem with 3D stacks, specially in the case of ’true 3D systems’, is their lower

heat removal capability, and higher DRAM density and heat flux which increases their

operating temperature. Higher temperature limits the operating frequency and requires

more frequent DRAM refresh operations (or shorter duty cycles until all DRAM rows are

refreshed), both having a negative impact on overall system performance. Furthermore,

complex, high power cores are not deemed feasible with 3D stacks as are applications with

high compute intensity. Thus, the usage of 3D stacks has been limited to memory-intensive

applications running at low frequencies which inherently have low performance. Further

improvement in performance scaling by increasing core complexity or frequency cannot

be achieved as it is limited by thermal constraints of the stack. We broadly looked at two

different solutions to address the thermal challenges of 3D memories, i) how new cooling

technologies, such as microfluidics cooling, can help alleviate temperature and reliability

concerns and pushes its envelope to both compute- and memory-intensive applications op-

erating at much higher frequencies. ii) how adaptations to the current memory architecture

and algorithms can expand the operating range of 3D memories improving performance

and power of the overall system. Specifically, we make a case for variable-rate per-bank

refresh management for 3D stacked memories.

15



2.3.1 Various Cooling solutions

Several solutions have been proposed to address 3D stack’s heat removal problem. Con-

ventional air cooled heat sinks, as shown in Figure 2a, are placed on top of the stack and has

significantly larger form factor than the chip size. Besides the size, the cooling effectiveness

or heat transfer coefficient of such systems is low in the range of 25 − 200W/m2K [110].

Other solutions that try to reduce air cooling limitations include thermal-aware floorplan-

ning [18] and thermal TSVs [18] with no electrical characteristics to increase thermal con-

ductivity between the dies and the heat sink. These solutions, although, distribute the heat

within or across the dies but does not remove the fundamental problem of high heat flux

within the stack. Furthermore, they are not scalable with the increasing number of dies per

stack. Another orthogonal solution is to place the high power dissipating logic die closer to

the heat sink away from the package substrate but this requires large number of power and

ground connections passing through all the memory layers; a solution which is less likely

to be practical.

(a) Air Cooling (b) Microfluidics Cooling

Figure 2: Various cooling solutions for 3D-stacked memories

Liquid cooling using parallel-plate fins called micro-channels [37] has been identified

as an alternative to air-cooled heat sinks. Micro-channels are embedded in the inter-layers
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of a 3D IC. Liquid coolant is pumped through these channels absorbing heat while flow-

ing to the outlet. Micro-channels has been reported to have cooling capability as high as

790W/cm2 [37]. A problem in using micro-channels with 3D stacks is that they compete

with the TSV area of the dies in the stack. Besides, they require large coolant pumping

power. A hybrid of micro-channel and thermal TSVs is proposed to reduce cooling power

and still enjoy effective cooling capability [86].

2.3.2 Pin-fin Enhanced Microgap Cooling (Microfluidics)

Although microchannels provide effective cooling solution, recent advancements in fabri-

cation technology has allowed researchers to explore more complex geometries to improve

the heat transfer capability of liquid-cooled heat sinks. One promising approach is to have

staggered array of micro-sized pin fins distributed across the dies [110] providing local-

ized cooling as shown in Figure 2b. Zhang et al. [128] recently fabricated inter-tier pin-fin

enhanced microgap cooling solution, and demonstrated that a staggered pin-fin heat sink

with two-die stack can cool at a rate of 100W/cm2 with a maximum junction temperature

of 47°C. The electrical TSVs are embedded in the pin fins allowing them to not compete

with the thermal fins as was the case in micro-channel based heat sink. A compact ther-

mal model to calculate the thermal grids for each of the die was also developed [109]. We

have used an extended version of that model in our infrastructure to generate heat maps for

different dies in the DRAM stack.

Liquid cooling can be classified as a single-phase or a two-phase solution based on

whether the fluid boils and changes its phase while flowing inside the chip or not. We

stick to single-phase microfluidics cooling in this dissertation. The flow rate of the coolant

determines the cooling capability or thermal resistance of the system which is generally

determined by the inlet pressure or pumping power of the system. Zheng et al. [127]

shows how thermal resistance decreases with flow rate. The direction of the liquid flow

also impacts the effectiveness of cooling. The heat transfer coefficient at the inlet is higher

removing more heat than the outlet due to variation in the fluid temperature at the inlet
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and the outlet. Another important determinant of cooling capability is the pin-fin geometry

and height. Ideally, we would like to scatter the pin-fins across the die in a manner that

has a uniform heat transfer capability. However, since the TSVs are embedded in the pin-

fins, their placement is regulated by the electrical requirements of the TSVs. Zhiyuan et

al. [117] explored co-placement of pin-fin arrays based on thermal as well as electrical

requirements. Furthermore, higher pin-fin height and larger microgap increases the liquid

flow and thus improves cooling. However, electrical TSVs performance are regulated by

their aspect ratio, which means thicker pin fins and thus reduced cooling if the pin-fin height

is increased further.

2.3.3 Various Refresh Management Schemes

The dynamic nature of DRAM cells means that they lose their charge after a certain amount

of time and require periodic restoration through a process known as refresh. A common

way to perform refresh of all the cells in the DRAM is to stagger the refresh operations

into 8K intervals, generally referred to as distributed refresh [8]. Thus, each refresh opera-

tion refreshes multiple number of rows (equivalent to the total number of rows divided by

8K) taking significant amount of time, which is on the rise with larger capacity DRAMs.

In conventional DDRx, a refresh operation is performed on all the banks simultaneously

making them unavailable during the refresh operations leading to DRAM bandwidth un-

availability and reduced performance. Reducing performance penalty of refresh has been

a target of numerous publications. Earlier works, such as RAIDR [51], exploits the varia-

tion in retention time characteristics of DRAM cells to propose different refresh rates for

different rows of the DRAM. The authors in this work assert that only a few weak cells

or rows require refresh at a faster rate with most rows allowing a slower rate, thus incur-

ring less performance loss. RAPID [107] uses this idea to partition OS pages into two

categories and allocate long-retention-time pages first before allocating the short-retention-

time pages, hence minimizing faster-rate refresh operations. Flikker [52] allocates critical

data into long-retention-time pages and allows non-critical data to have a few errors.
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A problem with all these schemes, however, is that they assume fixed retention time of

various DRAM cells determinable statically at the beginning. However, a few cells also

show variance in their own retention time, a phenomenon called variable retention time

(VRT) [77]. Avatar [72] proposes variable-rate refresh in the presence of VRT cells by pe-

riodically redetermining the retention time of cells using memory scrubbing and prevents

the intermediate errors using error correction codes. Elastic refresh [98] postpones refresh

operations allowing more critical read and write operations to be performed first (more de-

tails of this in section 8.4). A similar idea is presented in refresh pausing [66], which pauses

the refresh operations allowing critical reads to be serviced immediately before the actual

refresh operation can be restored. All these schemes requires refresh mechanism to be con-

trolled from the memory controller which is external to the DRAM. However, JEDEC does

not allow fine row-level control of refresh mechanism. Flexible auto-refresh [9] modifies

the DRAM control register access protocol to overcome this challenge, thus making other

refresh schemes feasible.

More recently, JEDEC has allowed performing refresh at a finer granularity. For ex-

ample, LPPDDR2 and LPDDR3 standards support per-bank refresh. Kevin et. al [13]

shows the advantages of per-bank refresh which allows refreshes to be accessed in paral-

lel with read/write accesses to other banks. Similarly, DDR4 introduces fine-granularity

refresh [63]. The idea is to decrease the number of rows to be refreshed with each re-

fresh operation reducing refresh latency but increase the frequency of refresh operations,

for example, perform 16K or 32K refresh operations in a 64ms cycle; termed as 2x and 4x

modes, respectively. More details of per-bank and fine-grained refresh are given in chap-

ter 8. Partial-array self-refresh (PASR) [21] allows refreshes to be performed for a few

banks only ignoring the rest in the self-refresh mode [8], thus saving refresh power.

Another important characteristic of DRAM cells is that its retention time is severely

impacted by the operating temperature. Typically, for temperatures below 85°C, DRAMs
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are refreshed at a period of 64ms and at double the rate for every 10°C rise [60]. How-

ever, the rate of 64ms is a conservative value designed for the weak cells to operate at

high temperatures. Some recent works have pointed towards decreasing the refresh rate for

lower temperatures [82]. A feature called thermal-compensated self-refresh [103] (TCSR)

is already provided in modern DDRs which reduces the refresh rate based on the device

temperature in self-refresh mode. However, this mechanism is based on internal DRAM

refresh counter in self-refresh mode and temperature cannot be regulated from the out-

side. Our variable-rate per-bank refresh management policy combines per-bank refresh

with temperature-aware refresh [28] for 3D memories. It reduces DRAM power and per-

formance penalty and tolerates thermal hotspots in memory, thus allowing the overall sys-

tem to operate at much higher frequencies improving performance, as will be explained in

chapter 8.

2.4 On-Chip Network

Next, we briefly discuss some recent works done in the area of on-chip networks relevant

to this dissertation. The state-of-the-practice for on-chip networks is the use of wormhole-

switched input-buffered routers that uses multiple virtual channels (VCs). A canonical

on-chip router consists of six stages [19]: input buffering (IB), route computation (RC),

virtual channel allocation (VCA), switch allocation (SA), switch traversal (ST), and link

traversal (LT) organized as a pipeline. Traditionally, the focus has been to combine these

stages and reduce the latency within the router. The body flit can skip the RC and VCA

stage. The IB and LT stages can be reduced to single cycle specially in the case of single

VCs. Similarly, SA and VCA stages can be combined for single VC designs or in the

case of speculative routers [68]. Lookahead routing [22] has been used that performs RC

in parallel with SA/VC stages of the upstream router and sends that information to the

downstream router along with the control path. Thus, the router pipeline has been reduced

within the router to only two stages; RC/VCA/SA and ST along with the combined LT/IB
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stage. Note that LT can be of multiple cycles based on length of the link. Some other

schemes like prediction router [56] and [43] speculatively performs SA stage in parallel

with IB stage and further reduces the latency within the router to a single cycle only. The

overhead of speculation, however, is high.

2.4.1 Topologies

Latency in the network can further be reduced by using high-radix topologies [45, 5] that

decreases the number of hops traversed by a packet before reaching its destination. Al-

though, the increase in the number of metal layers and scaling of wire geometries on chip

entails greater wiring densities, and thus supports high-radix networks, it also means longer

wires, bigger crossbars, and an increase in the router buffer space, thus overall higher

power. Hence, traditional on-chip networks have employed low-radix topologies. (tori

and meshes). More recent designs aim to achieve small hop counts with low-radix topolo-

gies. For example, EVCs [48] enable packets in a mesh-like topology to virtually bypass

routers along their paths lowering the energy-delay product. Similarly, MECS [27] uses

multi-drop technology to connect routers in one dimension with a single long link. Both

requires long wires which may hurt performance. Kilo-NoC [26] combines the advantages

of MECS with elastic links. A recently proposed technique called SMART [15] tries to

remove the negative impacts of the long wires. It is built on driving links asynchronously

and placing repeaters carefully to enable a single-cycle latency in these wires. All these

topologies are fundamentally low-radix and thus they deliver limited throughput at high

injection rates.

There is a power-performance tradeoff between high- and low-radix topologies. High-

radix networks try to minimize their buffer and crossbar space while low-radix networks

design for smaller hop count. SlimFly [5] is a recent approach that aim at securing a close-

to-optimal tradeoff between radix and diameter, ensuring low cost and high performance

for both low and high loads. We proposed on-chip slim-fly along with our central buffering

scheme as part of this thesis (explained later) to reduce the buffering space and power of
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the router while maintaining the network diameter of only 2.

2.4.2 Buffer Area and Power

VC-based routers commonly use edge buffers for deadlock freedom and performance op-

timizations. The size of these buffers grows with the number of VCs, the length of the

wires connecting the routers, and the switch radix. While total storage is optimized for

performance, actual buffer occupancies can be very low. Reducing the size of these buffers

reduces power and improves energy efficiency, hence explored widely. The main focus

has been to either share the buffers among the VCs of a given port, reduce the number of

entries per VC [101, 59], or share a central buffer among all the ports (Roshaq [104] and

high-throughput shared-buffer NOC [75]) along with a fast bypass path for the low-load

common case. Their approach, however, mainly works for packet-based networks. Most

of them uses credit-based flow control and has inherent limitations with longer packets.

The extreme case includes various versions of buffer-less flow control that removes the

input buffers altogether by the use of deflection routing [61]. While networks with such

routers can be effective at low loads, packets in these networks can suffer very long laten-

cies and incur high packet reordering costs in data intensive applications with high core

counts. Some other techniques include flit-reservation flow control [87] and whole packet

forwarding [55] that focuses on the efficient utilization of the input buffers.

2.4.2.1 Elastic Buffer Flow Control

Elastic-buffer networks [58] have recently been proposed which retain the minimal buffer-

ing requirement without the use of deflection routing. An elastic buffer (Figure 3) adds

a simple control logic to the master-slave latches of a D flip-flop to make them two in-

dependent storage locations (2-slot FIFO). EB uses a ready-valid handshake to move a flit

forward. An upstream ready signal is sent to indicate a free buffer slot. A downstream valid

signal is sent to indicate a valid flit. A flit moves to the next buffer when both are asserted

among the two EBs. Pipeline bubbles created with ready-valid handshake are avoided by
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Figure 3: An Elastic Buffer (From [59]). Master slave latches of a flip flop are split along with an
associated control logic to make them two independent storage locations.

providing two slots per EB within a single clock cycle delay. Elastic buffers have the prop-

erty of looking at the next buffer in the pipeline and progress without causing any bubbles

in it. Elastic buffered channels are used to provide link level flow control instead of com-

monly used credit based flow control, which not only requires large input buffers but also

creates unnecessary bubbles between the flits. However, pipelined EB links face obstacles

in integration with standard performance-optimized router architectures [59]. For example,

virtual channels cannot be integrated in the normal manner, and multiple physical channels

are recommended for deadlock avoidance. Hybrid EB-VC [59] adds VC buffers to avoid

deadlocks in EB. They use a technique similar to on-off flow control for drainage of flits

into the VC buffers. Again, on-off flow control requires these buffers to be large enough

increasing their area and power. Kilo-Noc [26] uses EB for its MECS topology. They fall

back to VC based buffering space in the routers to avoid flits of different virtual channels

to cause deadlock. Furthermore, their approach is tailor-made for MECS topology. Elasti-

Store (ES) is another recent EB extension that preserves most of the EB advantages while

supporting VCs [84]. Our design avoids deadlock in the EB channels without VCs by ex-

tending another recently proposed technique known as Bubble Flow Control [70] to the

central buffers. The scope of our router is much broader as it can work with many different
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topologies and favors high radix networks with reduced buffering requirements.

2.4.3 Bubble Flow Control and its Variant

Bubble Flow Control (BFC) has been proposed [69] to avoid deadlocks in a packet based

ring without the use of VCs. The basic idea is to ensure that at least one packet sized bub-

ble (empty buffer space) is kept in the ring all the time, even after a new packet is injected

into the ring. This is ensured locally by allowing injection in any ring only when an empty

space of two packets is available at the input port [70]. The problem with localized bubble

flow control (LBFC) is that it keeps many empty packets in the ring, incurring long injec-

tion delays and reducing throughput. Furthermore, it requires a minimum buffer space of

two packets at the input which makes it impractical for on-chip networks. To ensure that

only one global empty packet is required by each ring, critical bubble scheme (CBS) [17]

was proposed, which marks one packet-sized empty slot in the ring as critical and prohibits

injection into the critical bubble. Critical bubbles are moved among the routers both by

movement of packets through the ring and by proactive displacement. Both LBFC and

CBS, however, only works for packet based networks. A wormhole-based version of CBS

called worm-bubble flow control (WBFC) was presented in [16]. The idea is to keep mark-

ing flit-sized slots or bubbles in the input buffer as critical before injection, and only inject

once enough bubbles are marked to hold a complete packet. In this way, the original critical

bubbles of the ring (inserted at initialization) will always be maintained. Some recent work

includes dimensional bubble flow control [11] which uses bubble to provide adaptivity in

Mesh networks using single VC and [38] which is similar to our packet based flow control

extension with edge buffers only. We extended the WBFC scheme to routers with shared

central buffers, called Bubble Sharing. Both WBFC & Bubble Sharing schemes are fur-

ther explained in chapter 5.1. CBS is also extended for adaptive routing in bubble coloring

scheme (BCS) [113], which maintains one critical bubble in a virtual ring spanning all the

routers and uses it as an escape path for adaptivity. More details of the bubble-coloring

scheme is given in section 5.2.
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CHAPTER 3

ANALYSIS AND OPTIMIZATION OF AN EXEMPLAR 3D
SYSTEM

This chapter takes an exemplar 3D memory system, analyzes its performance, and identify

the critical importance of lower 2D network latency and efficient parallelism management

using address space translations to maximize performance in such a system. We further op-

timize this baseline system in a manner that reduces network traffic and latency. This chap-

ter only considers address translations and memory hierarchy re-organizations, schemes

which can be categorized under careful management of 3D memory parallelism with neg-

ligible hardware overhead. Reducing the network latency by optimizing the network itself

with novel architectures and topologies will be discussed in the following chapters.

3.1 Summarizing the Experiments and Motivation Behind Them

A 3D system provides a large number of connections between the DRAM and the processor

layer which can be used to increase the DRAM bandwidth. However, the new challenge is

to efficiently manage this bandwidth, that is, to understand how to best utilize these con-

nections that improves performance and reduces power. To achieve this goal, this chapter

evaluates and re-organizes the memory hierarchy incorporating state-of-the-art techniques

in 3D stacks.

First, we determine the number of memory channels in a 3D system. We show that

having large number of narrow channels is better as compared to a few wide channels. We

settled with 16 channels for the exemplar system. It consists of a distributed banked L2

cache as the last-level shared memory with directory-based coherence protocol in which

each bank acts as a home directory for part of the global address space. We analyze this

system consisting of a large number of channels and LLC banks and point out the high

parallelism available in the DRAM, efficient management of which can regulate the power
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and performance of the overall system. We identify that this massive parallelism reduces

the load on individual DRAM banks and channels, decreasing their queuing delay, making

the memory-access latency small, and putting more pressure on the interconnection net-

work connecting these channels. This results in the network latency becoming comparable

to that of DRAM latency, an observation that does not hold true in conventional 2D sys-

tems. Furthermore, we identify that address translation mechanisms at various levels of the

memory hierarchy (LLC or DRAM) can severely impact the management of this increased

parallelism and used it to regulate locality vs parallelism tradeoffs in the system. We further

show that a careful co-ordination between addressing schemes at various levels is benefi-

cial to the overall system performance. Lastly, we also touch upon the importance of traffic

distribution to all the channels in order to utilize maximum bandwidth without violating the

conventional principles of spatial locality and DRAM hit rate; and use address translation

schemes to provide this distribution.

With these observations in mind, we reorganize the memory hierarchy into a banked

memory-side cache organization that reduces the network traffic. The re-organization is

made possible by the co-ordination of address mapping at the LLC and the MC level.

To reduce the network traffic further, we implemented locality based OS page allocation

strategies that tries to keep the data close to the requesting cores as much as possible and

analyzes their impact on the overall system performance.

3.2 The Exemplar 3D System - An Overview

Our exemplar 3D system consists of a 3D processor-memory architecture, in which multi-

ple DRAM dies are stacked on top of a processor die as shown in Figure 4. The processor

die consists of 4x4 tiles, each consisting of two cores + two private L1 caches, a bank of

globally shared L2 (divided into 16 banks, one per tile), a router connecting the tiles, and

an MC controlling the DRAM dies/layers above. Similar to the HMC organization [67],

each of the DRAM layers is divided into 4x4 blocks. One block from each layer combines
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with the respective block from each of the other layers, creating a DRAM vault. Each vault

acts as a multi-layered DRAM with its own memory controller. Hence, there are 16 vaults

controlled by 16 MCs in a four-to-eight layered cube. Thus, the basic 3D system consists

of 16 DRAM channels (each vault act as a separate DRAM channel), each consisting of

four-to-eight ranks (each sub-layer in a vault can be treated as a rank since all share a com-

mon bus), and two banks (each sub-layer is divided into two banks that operates in parallel

as is the case with conventional DRAMs).

Rank 

Rank 

Rank 

Rank 

Multiple 
DRAM banks 

Local 
DRAM bus 

MC#
#

#

L2#bank#
X 

L1# L1#
Core# Core#

Core tile + 
DRAM channel 

DRAM stack 

Multicore die 

Figure 4: Full system model

3.3 Simulation Environment

We have used the Manifold multicore simulation infrastructure [112] as our simulation en-

vironment. Our system simulator is organized as follows. The front-end is a multi-core

emulator called Qsim [42] that boots a Linux kernel and executes multi-threaded appli-

cations from SPLASH and PARSEC benchmark suites, generating x86 based instruction

stream for each thread. These instructions are fed into a multi-core processor timing model.

We ran 32 core simulations with one thread per core. The cores are fast forwarded until all

of them start running. As explained earlier, two cores are concentrated in one tile. Loads

and stores are sent to the two-level cache hierarchy. We used the mcp [6] model for cache

27



simulations that uses distributed directory based MESI coherence protocol as explained

in 3.6.1. It can process requests in parallel as long as they belong to different cache lines.

Requests to the same line are stored in a stall buffer before that line’s coherence state ma-

chine is being updated. All requests whether a hit or a miss are first stored in an MSHR that

limits the number of outstanding requests per cache. Iris [112] is used as the network tim-

ing model that models a two-stage pipeline router architecture with flit level flow control

as explained in [68]. Each router connects to two network Interfaces (NIs), one each on the

cache and the MC side. The NI converts flits to/from cache level requests in its separate

injection and ejection queues. The memory model is constructed using the open source

DRAMSim2 memory simulator [81]. 16 vaults correspond to 16 instances of DRAMSim2.

A single DRAM vault consists of four ranks (equivalent to DRAM layers) and two banks

per layer of 32MB each. Thus the total DRAM capacity of the system is 4GB (each vault =

256MB, each sub-layer per vault = 64MB). TSV latency across different layers is kept con-

stant, which is equivalent to the DRAM bus speed. The bus speed is modeled as twice the

DRAM speed. Configuration parameters for various system elements are shown in Table 1.

DRAM timing parameters used are given in Table 2.

Table 1: System configuration
Components Various Parameters & Values

Processor Out-of-order, 6 stage pipeline, 2GHz,
2-wide issue/commit, 64-entry ROB, LSQ

L1 cache per core 32 sets, 4-way, 64B lines, 8 MSHRs,
(8KB) LRU replacement, 2-cyc hit, 5-cyc lookup

L2 cache per tile 256 sets, 16-way, 64B lines, 32 MSHRs,
(256KB) LRU replacement, 10-cyc hit, 20-cyc lookup
Network 4x4 torus, request reply, flit-size - 128 bits

Pkt-size - 3 flits w/o data, 6 filts with data,
baseline x-y routing (2VCs per virtual net.)

Router 6-port, 5 flits IB, 4VCs/port
round robin SA, FCFS VCA

Memory controller rank and bank round robin, close page,
Addr-map - chan:row:col:bank:rank

DRAM config. 64M/die/MC, 1-channel, 4-rank, 2-banks,
per vault 8KB row, and 64 bit bus @ 1333MHz
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Table 2: DRAM timing parameters [97]
Parameter Value - cycles (ns)

tCLK: Clock cycle time 1 (1.5 ns)
tRP: Row precharge time 9 (13.5 ns)
tRCD: RAS to CAS delay 9 (13.5 ns)

tRC: Row cycle time 33 (49.5 ns)
tRAS : Row active time 24 (36 ns)

tCAS : Column access latency 9 (13.5 ns)
tWR: Write recovery time 9 (13.5 ns)

tWTR: Write to read latency 1 (1.5 ns)
tRRD: Row to row active delay 4 (6 ns)
tCCD: Column to column delay 4 (6 ns)
tRT P: Read to precharge delay 5 (7.5 ns)

tRFC: Refresh period 60 (90 ns)
BL: Burst length 8
Refresh Count 8192

The processor, the cache, and the network execute at 2GHz and the MC (DRAMSim2)

executes at 1GHz. We track the Global Instructions Per Cycle (IPC) - the total number

of instructions executed across all threads divided by the total number of cycles, which

in these experiments is set to be 100M (∼1200-2500 million instructions). Next, we will

discuss the impact of various characteristics of the exemplar system on the overall system

performance.

3.4 Impact of the Number of Memory Channels

A basic consideration in arranging a 3D memory system is to determine the number of

memory channels in the system, e.g., if we assume 1024 data I/Os, should they be arranged

as one 1024-bit wide channel or sixteen 32-bit wide memory channels distributed evenly

across the die. Note that the bandwidth of the overall system remains the same in both the

cases. The following two subsections briefly explain why having multiple channels is a

better choice for future memory systems.
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3.4.1 Larger BL and Smaller Transaction Wastes Memory Bandwidth - All Hits
Case

The internal speed of DRAM technology is not scaling fast enough, therefore, keeping

the fundamental latencies of activate, precharge, and CAS operations constant around 13-

18ns across various generations. Similarly, the row cycle time still hovers around 50-60ns.

The DDR bus speeds, however, maintained an upward trend from early 400MHz DDR2,

to 2133MHz, and even 3200MHz LPDDR4. Such bus scaling has been maintained by

over-fetching the data internally and then delivering it to the DDR bus in a burst mode,

which has increased the minimum burst length (BL) parameter from two-to-four in early

DRAMs, to eight-to-sixteen in modern DDRs. Assuming fixed bus widths, larger burst

length results in higher minimum transaction size (e.g., the minimum transaction size of

x32 LPDDR4 with burst length of 16 is 64B). On the other hand, cache line sizes are not

increasing at a fast rate, and with the advent of on-chip accelerators, the size of transactions

being requested from the memory is decreasing as well. As a result, part of the fetched

data will be wasted, e.g., for a 32-byte transaction with the above mentioned LPDDR4

technology (minimum transaction size of 64B), half of the memory bandwidth will be lost

even with all page hits. This is shown in an example in Figure 5, where a request stream

of 32B with a stride of 64B is accessing an LPDDR4 with a minimum transaction size

of 64B. Although, the DRAM is observing 100% hit rate, half of the data being fetched

at each transaction is thrown away without being utilized reducing the memory bandwidth

utilization to 50%. In such a case, reducing the bus width to x16 (minimum transaction size

of 32B) will remove the bottleneck, allowing the memory to have two separate channels

that can operate independently. It should also be noted that the problem will worsen in the

case of writes, in which masking the other half of the bytes will require reading the data

first. We would also like to note here that this is not a very uncommon case and streams

with stride greater than 32 will face this issue.
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Figure 5: Effect of Number of Channels - All Hits Case

3.4.2 Increased Frequency Reduces DRAM Efficiency - All Misses Case

As mentioned earlier, the DRAM bus frequency has been increasing rapidly with modern

DDRs. A problem with high frequency is that a constant row cycle time (tras) of 50-60ns

translates into a larger number of cycles. However, the number of cycles in which the bus

is actually transferring data (the data cycles) for a given transaction size remain constant.

Thus, in the case of consecutive page misses, in which the next transaction can be sent

after a minimum of tras cycles, only a few of the bus cycles will be transferring data. For

example, in Figure 6, the data transfer time with 800MHz DDR is larger than 1.6GHz DDR.

However, the time after which a subsequent miss to the same bank can be served is same in

both the cases. Thus, the efficiency of DRAM will be lower with higher frequency in high

miss rate scenarios. The problem will be worse with large bus widths. For example, in the

case of x1024 bus with tras = 60ns@2133MHz, every subsequent miss transaction can be

sent only after 128 cycles, and the DRAM transfer rate is 128B per data cycle. Even for a

transaction size of 128B, all cycles except the first cycle will be wasted. Hence, the DRAM

in the all page miss case has a maximum efficiency of 1/128 < 1% with a parallelism

of only one. On the other hand, if we use thirty two x32 buses instead of one x1024 bus

(32 data cycles for 128B transactions) and 32 parallel channels, the DRAM efficiency will

jump to 32/128 = 25% without wasting any data burst cycles, and allows for a maximum

parallelism of 32.

It should be noted that reducing the bus width increases the latency in the bus (one data
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Figure 6: Effect of Number of Channels - All Misses Case

cycle vs. 32 data cycles), which may decrease the system performance. However, the time

on the bus is a relatively small portion of the overall DRAM latency, e.g., 32 bus cycles

@2133MHz = 15ns of the 100 or more nanoseconds taken by the memory in general.

The rest of the time is consumed by activate, precharge, and CAS operations, along with

the queuing delays. Hence, increasing the cycles on the bus impacts the overall system

performance only by a small amount, even with a large number of DRAM banks sharing

the bus. Again, this case can also occur frequently with interference among multiple threads

and processes. Not only that, all other cases, which occur between these two extremes, will

face similar concerns.
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Figure 7: 3D bandwidth utilization with various number of channels

We performed simulations with four and sixteen channels having bus width of 256 and
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64 bits, respectively. We increased the number of ranks by 4x in the 4-channel configuration

to reduce the impact of the queuing delay. The rest of the system is configured similar to

the baseline model discussed in section 3.3. Fig 7 shows the 3D bandwidth utilization of

the two configurations. It can be seen that all benchmarks improve their performance by

increasing the number of channels. Overall, reducing the number of channels decreases 3D

bandwidth utilization on average by 12.5%.

3.4.3 Cost of a Channel

The previous analysis shows that increasing the number of channels is extremely beneficial

for performance reasons. However, a problem with increasing the number of channels

is the reduction in DRAM density. Conventionally, DRAM is considered a commodity

device which maximizes its density to reduce cost. However, increasing the number of

channels and banks (aka parallelism) reduces the size of internal DRAM arrays and sub-

arrays, increasing the area taken by decoding, sensing and other peripheral logic attached

to it. All channels operate independently with all the peripheral circuitry, including the

memory controller schedulers, are replicated with each channel increasing its cost. We

haven’t explored the area cost of having large number of channels and fixed our basic

design to 16 channels, a number inspired by hybrid-memory cube (HMC) 1.0’s internal

DRAM structure [67].

3.4.4 Current Standards

In this section, we briefly point out how modern DRAM standards are coping up with the

above mentioned challenges. LPDDR4 [96] supports both very high speed and a burst

length of 16. However, it keeps the bus width small (x16, x32) increasing the number of

channels. DDR4 [94], which again has very high speed, introduces the concept of bank

groups [2]. The idea is to keep the burst length of eight (4 DRAM cycles) but does not

allow another read/write operation to the same bank group for eight DRAM cycles. The

other bank groups, on the other hand, can accept read/write command after only four cycles,
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as is the case with conventional DDRs. (This is achieved by having two separate tCCD.

tCCD L for same bank group and tCCD S for different bank groups). The problem with this

approach, however, is that consecutive hits to the same bank group can only operate at 50%

bus utilization. Wide I/O [93] has low speed and thus very large bus width with only one-to-

two channels supported. However, Wide I/O 2 [97] has increased the number of channels

to four-to-eight allowing the bus width to reduce (with larger prefetch) and increasing the

frequency. At this rate, it is very likely that Wide I/On will support even more channels.

HBM [95] again supports eight channels and HMC 3.0 internally has migrated to 64 vaults

(each vault can be treated as one DRAM channel) with each die partitioned into 64 sub-dies

(one for each channel) similar to the exemplar system.

3.5 Impact of High Bandwidth

Next, we discuss the impact of high DRAM bandwidth on various other components of the

memory subsystem.

3.5.1 Smaller Cache Sizes and Fewer Levels

We build an analytical model to test the impact of 3D bandwidth on the overall system [76].

The results indicate that smaller 3D DRAM latency increases cache’s miss tolerance and

achieves the same performance with smaller caches and only two levels of the cache hier-

archy as compared to a larger three-level cache hierarchy in a 2D system. This means that

more chip area and correspondingly power budget can be devoted to compute than storage

further improving performance.

3.5.2 Reduced MC Queuing Delay

As discussed earlier, the fundamental RAS/CAS latencies in conventional DRAMs re-

mained roughly the same over the years, since the time to charge and discharge the DRAM

capacitors did not change significantly across technology generations, a trend that is per-

sisting with 3D as well. Only, a very small reduction in RAS/CAS latencies will be seen

34



canneal dedup ferret fluid stream vips
0

50

100

150

200

250

300

La
te

nc
y 

of
 R

ea
ds

 in
 D

RA
M

3D System 2D System

Figure 8: 2D vs. 3D system DRAM latency (cycles)

because of the sharing of some peripheral logic. On the other hand, bandwidth and par-

allelism will increase, which will lead to reduced memory traffic per channel and thus

reduced queuing delays in the MC. Since the queuing delay is a major component of the

DRAM latency, the overall round-trip time decreases. Figure 8 plots the latency of reads in

DRAM with a 4-channel 2D and a 16-channel 3D system with the same number of cores

and caches. Note that the RAS/CAS latencies in both the systems are kept the same. On

average, the DRAM latency of the 2D system is 2.1 times higher than that of the 3D sys-

tem. The main contributors of this increase in latency is the increased memory interference

in the MCs (a result of higher memory traffic) and an increased queuing delay.

3.5.3 Comparable Network Latency

Due to reduced queuing delays, network latency in a 3D system becomes comparable to

that of the DRAM latency. This behavior is shown in Figure 9, which plots the latency

distribution of DRAM-bound read requests for various PARSEC applications. Note that in

the figure, L1− L2 and L2−DRAM correspond to the latency in the network, and DRAM-

only corresponds to the latency in the DRAM. The impact of DRAM latency on the overall

system is further reduced by the fact that the ratio of the memory traffic that reaches the

DRAM is generally around a quarter to one third of the total number of requests that travel

the network (e.g., 25% for vips). The remaining misses are satisfied by remote caches and
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related coherency traffic, which only travel in the intra-die links.
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To further explore this point, we use a parametric model in which various DRAM timing

parameters are normalized relative to the CAS latency. The model is used to illustrate the

behavior of DRAM bound reads as a function of CAS latency as shown in Figure 10 (left).

The impact on the global IPC is illustrated in Figure 11. From the two figures, it can be

concluded that although increasing the latency of DRAM accesses (CAS) increases the

overall latency of DRAM-bound read requests, the average latency of all L1 misses (Fig 10

right), and hence the IPC, does not decrease at the same rate. On the other hand, the
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latency of the 2D network affects all requests (memory bound and coherence included),

and therefore contributes more towards the overall latency penalty.
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Figure 11: CAS latency vs. IPC

3.6 Impact of Address Translations

Figure 12: Global address space distribution in cache banks and DRAM channels/banks

The exemplar system has multiple L2 banks distributed across the tiles with directory-

based coherence protocol. In such a system, part of the address space is assigned to each

L2 bank, and the corresponding bank is treated as a home directory for the assigned ad-

dresses [39] [80]. Similarly, in systems with multiple DRAM channels, the address space is
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distributed among the channels, or in this case, among the DRAM vaults (Figure 12). The

address translation mechanisms that determine the home L2 bank and the corresponding

DRAM vault for a given physical address (Figure 13) dictate the amount of parallelism and

the number of hops in the network. For DRAMs, the interleaving granularity of address

mapping functions determines whether the memory traffic is distributed among all memory

channels at a particular instant of time (low-order interleaving), or localized to one channel

(high-order interleaving); see Figure 13. For L2 banks, the address assignment policy is

governed by the principle of locality, such as, the commonly used first touch policy that

keeps the data local as much as possible. The design goals at both levels, however, are con-

flicting, and thus the interaction of these address translations brings interesting behaviors

that has not been discussed in the past, which becomes even more important in the case of

3D systems where we have large number of DRAM channels and L2 banks.

Figure 13: Various address space mappings with CAM, GAM, and LAM

The most straight forward translation, known as high-order interleaving (HOI), maps

large blocks of continuous physical addresses to same L2 bank or DRAM vault. On the

other hand, low-order interleaving (LOI) distributes cache-line size blocks to different

banks while page-interleaving (PgI) distributes the address space at the granularity of OS

or DRAM page-sized blocks. HOI preserves any locality present in the application. How-

ever, since applications operate in a small address space in a short instant of time, it can

place a high load on a particular L2 bank or a DRAM vault during that time instant while
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all others remain relatively free. LOI, on the other hand, provides maximum parallelism.

However, it destroys any locality available in the application. Furthermore, it disperses the

network traffic in all directions putting high load on the network. PgI, a commonly used

design choice, preserves most of the locality of an application resulting in higher hit rates

and shorter DRAM access time. Again, consecutive cache line misses, e.g., in the case of

a linear array scan can put higher load on one DRAM vault.

Since all interleaving schemes can happen at both the L2 bank and the MC level, we

need to distinguish between whether one is applied at the L2 bank or the MC level. We

termed the address translation mechanism at the L2 bank level as CAM (cache address

mapping) and the address translations at the MC level as GAM (global address mapping),

respectively. Address translations within a DRAM that decides a particular rank and bank

are called LAM (local address mapping); see Figure 12. Hassan and Yalamanchili [29]

provides more details of various address mapping functions.

The interaction of these address translations at the L2 bank and MC level brings inter-

esting behaviors that has not been discussed in the past. This becomes even more important

in the case of 3D systems with large number of DRAM channels and L2 banks. It should

be noted here that address translations of both L2 bank and DRAM vault have different

design requirements. For example, DRAM does not require multiple parallel requests to

same banks and ranks as DRAMs have a long access time which cannot be pipelined. Thus

all requests have to be serialized. On the other hand, L2 tag match can easily be pipelined

and thus multiple requests to different lines are possible. However, multiple requests to the

same line has to stall and reside in some buffer before the first one finishes. This is because

they have to wait for the updated coherence state machine of that line to decide what to do

next. Next, we show how these address translations can regulate the amount of network

and DRAM traffic.
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Figure 14: Messages generated to fetch from a) a remote cache and b) the DRAM

3.6.1 CAM and GAM under Multi-level Cache Hierarchy

In a system with private L1 caches, and a distributed banked L2 cache, an L1 cache miss

travels through multiple hops in the form of various data- and coherence-related messages

in order to get serviced. The important messages among them are indicated in Figure 14.

When an L1 encounters a miss, the home L2 bank is consulted for the updated copy (shown

in Figure 14 (msg. 1, fig. a)), which can be local or remote based on the address. If the L2

bank experiences a miss, it sends the message to either another L1 that holds the updated

copy (msg. 2, fig. a), or to the corresponding MC (msg. 2, fig. b). The MC generally sends

the reply back via the L2 (msg. 2/4, fig. b), while the L1 either returns the copy directly to

the requesting L1 (msg. 3, fig. a), or sends it to the home L2 first, which in turn sends it

back to the L1 (msg. 3b/4b, fig. a). We use the former case of L1-L1 traffic, in which the

L2 also requires an acknowledgment to update its state machine (not shown in the figure).

The same thing also happens with other requests like invalidations etc. that do not transfer

data but update the cache state machines.

The number of hops that each of these messages have to travel is dependent upon the

following four factors. i) distance of the home L2 bank with respect to the requesting L1

cache, ii) distance of home L2 bank with respect to the owner of the cache line, iii) distance

of the MC with respect to the home L2 bank and iv) distance of the owner with respect to

the requesting cache. The first two are dependent on thread assignment to different cores

and CAM. The 3rd one is dependent upon the interaction of CAM and GAM. The 4th one
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is dependent on thread assignment alone. Thus, both CAM and GAM are important to

reduce the average hop count of an L1 miss. Note that we have ignored acknowledgment

messages in our discussions since they do not lie in the critical path. It should also be noted

that GAM which distributes the traffic across different DRAMs is extremely important

to reduce latency in the DRAM itself by reducing load in each channel and hence their

queuing delays.

The above discussion indicates that each L1 miss results into multiple messages that

travel along the network in both horizontal and vertical directions. The hop count of these

messages can be reduced by careful co-ordination of CAM and GAM schemes. The result

is a modification in the organization of the memory hierarchy explained in the next chapter.

3.7 An Improved 3D Memory System

This section builds on the analysis done in the previous sections and proposes a re-organization

of the memory system that reduces the network traffic, made possible by a careful co-

ordination of CAM and GAM. We further describe the importance of traffic distribution

among different memory channels that maximizes parallelism while trying to keep it to the

local banks or MCs to reduce the traffic in the network.

3.7.1 Same Address Mapping and Memory Side Cache

In this section, we propose the use of the same mapping function for both CAM and GAM,

which is possible only in the case of 3D systems that has comparable number of L2 banks

and memory channels. We show the usefulness of the policy by noting the fact that the use

of same function for CAM and GAM keeps the L2-to-MC traffic local, that is, only in the

vertical direction. The L1 requests have to already travel horizontally in the 2D network (by

2D network we mean links in the horizontal direction) in order to reach the corresponding

L2 bank.

The proposed scheme is described in Figure 15. Figure 15 a) represents a 3D system

which consists of different functions for CAM and GAM. An L1 miss first travels to its
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Figure 15: a) The basic exemplar system, b) same CAM and GAM organization, and c) mem-side
cache organization

home L2 bank, which is located on a remote tile to determine the current state of the cache

line. If the line is not present in the L2 or any of the remote L1s, it is forwarded to the

MC, which again is located in a remote DRAM vault, incurring an additional latency in

the network for the L2-MC traffic that could have been avoided by using the same function

for both CAM and GAM. Figure 15 b) represents the scenario, in which the L2-MC traffic

remains local. Furthermore, since there is no remote traffic between the L2 bank and the

MC, providing a direct connection between them (as shown in Figure 15 c)) will remove

the serialization latency of an L2 miss destined to the corresponding MC through the router

(i.e., a miss has to be converted back and forth from/to flits while traveling through the

router, and a direct link will remove this breakdown). It also reduces the load on the

corresponding router and the NIs. As shown in Figure 9, this latency is 20-25% of the

overall memory latency of the DRAM bound reads, and will be removed altogether.

The result is a memory organization, shown in Figure 15 c), in which the L2 is placed

closed to the memory rather than the L1, making it similar to the memory-side cache orga-

nization. However, the cache is now banked into smaller units with no direct paths among

these banks. Two configurations of the organization can be explored, one in which the link

between the L1 and the local L2 cache bank is maintained, and the other in which it is

removed. Although, removing the link will reduce performance by increasing the latency

of requests destined to the local L2 bank, the reduction is not significant. On the other

hand, the organization with no L1-L2 link is highly attractive, as it is extremely modular

and scalable with each component being designed separately in its own die. Multiple dies
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can even share a single component by splitting it into more sub-components, one in each

die.

3.7.2 DRAM Traffic Distribution - Neighbor Mapping
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Figure 16: Distribution of pages to neighboring nodes in neighbor mapping scheme

Memory-side cache organization can potentially lead to congestion at a particular DRAM

at a particular instant in time, as can be seen with the result of fluidanimate in Figure 18.

For such cases, it may be better to distribute the traffic into different MCs, thus not using

same mapping function. To explore this point, we defined an address space mapping that

distributes pages mapped to an L2 bank or DRAM vault to neighboring banks or vaults.

The idea here is to reduce congestion at one MC or L2 bank and increase memory level

parallelism by spreading references in a local area that does not increase average hop count

significantly. The goal is to better balance parallelism in memory references while keeping

DRAM row buffer locality intact. We will refer to this as neighbor-page mapping or simply

neighbor mapping. Figure 16 shows how neighbor mapping is performed. Each value in

the figure represents the number of pages out of 16 consecutive pages of a particular bank

or vault that are mapped to the neighboring banks or vaults. We are not giving details of

which particular page is mapped to which immediate neighbor but it is decided based on

four bits of the address and is consistent across all banks or vaults, making it a one-to-one

function.
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3.7.3 Keeping Data Local

From earlier discussions, it is clear that traffic on the network is a major component of the

memory latency path. However, our exemplar system distributes the traffic evenly across

all the distributed L2 banks and MCs. In this section, we leverage the virtual-to-physical

page allocation strategies in order to maximize keeping the data to the local MC and the

corresponding L2 bank. This reduces remote L1-L2 accesses, making a large number of

them local, and resulting in an overall decrease in the average number of hops. Since,

page allocation happens at the OS level, it is completely orthogonal to CAM and GAM.

The challenge lies in the placement of the shared data which is accessed by multiple tiles

simultaneously and at different program phases.

3.7.3.1 First-Touch Policy

A commonly used scheme that tackles this issue is the first touch policy, where pages are

mapped to the banks or MCs whose corresponding cores access it for the first time. This

will make all subsequent accesses of the data by that core local; making private only data

to remain almost always local. Subsequent accesses for the shared data that happens at the

other cores access it as a remote memory.

3.7.3.2 Sharing vs. Replication

We have not explored data replication in multiple L2 banks. Our address space is dis-

tributed among all the L2 banks. This can potentially lead to higher remote L2 accesses.

Data replication could have been used to reduce these accesses. However, we would like to

point out that data replication at multiple L2 banks would have complicated the support for

the memory-side cache organization, that is, although the data would have been replicated

in the L2 banks, it would be in a single location in DRAM, resulting in remote L2-MC

accesses. This would again increase the network traffic and its latency. The choice boils

down to reducing remote L1-L2 traffic with a decreased L2 capacity (due to data replica-

tion) vs removing the remote L2-MC traffic completely with an increased cache capacity;

an analysis to be performed in future.
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Similarly, we have not explored the option of migrating data from one MC to another.

This can potentially reduce the remote L2 accesses if the program shifts from accessing

data from one tile to another in long phases. This is orthogonal to our design and can be

explored in future.

3.8 Performance with the Improved Organization

A good metric to characterize applications is by calculating their average hops per kilo in-

struction (HPKI). HPKI is a product of commonly used misses/per kilo instruction (MPKI)

and the total hop length of messages created by each miss. We have defined hop length as

the number of hops taken by a request to return. This does not include the acknowledgment

messages that are not in the critical path. The network interface is also considered one hop.

HPKI captures both the bandwidth requirement from the lower level memory subsystem

and the load on the 2D network. The hop length parameter characterizes application local-

ity. It also captures the communication requirements of the coherence protocol. It depends

upon address space mapping (at both software and hardware level), network topology and

OS thread-core allocation. The MPKI parameter computes the memory vs. compute in-

tensive characteristic of the application and depends upon the L1 & L2 cache sizes. We

have used HPKI as it directly correlates with the network bandwidth requirements of the

applications under fixed link widths.

3.8.1 Address Mapping - Results

Figure 17 shows the Global IPC values for PARSEC applications with various address

mapping functions. In the last three cases, both the shared L2 banks and the DRAM vaults

use the same address mapping, which are either high-order interleaving (HOI), low-order

interleaving (LOI), or page interleaving (PgI). The first two bars correspond to the use of a

different mapping functions for both CAM and GAM.

We can see that the configurations that have different CAM and GAM do not perform
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Figure 17: IPC with vaious address mapping functions

well. The average increase of Both-PgI from CAM-LOI/GAM-PgI and CAM-PgI/GAM-

HOI is 6% and 14%, respectively. This can be explained with Table 3, which illustrates

latency values for different components in vips for all the five mapping functions. The

average number of hops (Row 1 of Table 3 have increased significantly in the first two

cases, which increases the overall network traffic, and hence reduces performance. Among

the three cases with same address mapping for the L2 banks and the DRAM vaults, PgI

performs the best. Table 3 illustrates the loss in performance for HOI and LOI, which

is 14% and 8%, respectively, in comparison with Both-PgI. HOI will direct most of its

requests in a particular time frame to a particular L2 cache and DRAM vault. This will

put that DRAM under high load resulting in an increased queuing delay or DRAM latency

(last row in the table). Furthermore, it creates network hot spots around that particular

node causing an increase in average latency in the network. LOI destroys any locality

present in the memory reference stream, thus increases latency within the DRAM. It also

disperses the traffic across the network putting higher load on it that results in an increase

in the network latency. PgI, which balances locality, average hops, and the DRAM load

distribution, performs the best. The results indicate that apart from using same address

mapping for both CAM and GAM, distributing the traffic among various DRAM channels

without increasing the average number of hops per request is also desirable. All subsequent
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results use PgI for both GAM and CAM unless otherwise stated.

Table 3: Latency Distribution with different Address Mappings for vips
Latencies CAM-PgI CAM-LOI Both- Both- Both-
(cycles) GAM-HOI GAM-PgI HOI LOI PgI

Avg. Hops 11.65 11.94 10.61 10.70 10.68
All Req. 188.25 153.31 215.50 155.39 147.04

Req. From 313.70 208.03 297.67 221.40 189.00
DRAM

L2-DRAM 262.03 138.38 238.04 153.14 135.79
(Round Trip)

DRAM 217.79 88.87 203.26 118.62 105.50

3.8.2 Effect of Mem-Side Caching

canneal dedup ferret fluid stream vips

50

100

150

200

DR
AM

 B
ou

nd
 R

ea
ds

 L
at

.

1) Both-PgI, 2) L1-L2, 3) no_L1-L2

DRAM L2-MC L1-L2

Figure 18: Latency distribution of mem-side cache organization

Figure 18 plots the latency distribution of DRAM bound reads with various memory or-

ganizations. The first bar (Both-PgI) represents the case, where both CAM and GAM have

been assigned the same mapping functions. The 2nd and 3rd bar (L1-L2 and no L1-L2)

represents our memory-side cache organization with and without the L1-L2 link, respec-

tively. It can be seen that the organizations with a direct L2-MC connection almost removes

the L2-MC latency, (It is equal to two cycles, one cycle both ways). Thus, even with higher

load on individual DRAM vaults, the overall latency is reduced by 11.7%. fluidanimate

is an exception, in which the increase in DRAM latency is high enough to surpass the ad-

vantages of reduced L2-MC latency. Furthermore, it should be noted that removing the
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L1-L2 link does not significantly increase the latency of DRAM bound reads except dedup.

We selected the configuration without the L1-L2 link as our improved memory-side cache

organization.
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Figure 19: 3D bandwidth utilization normalized to baseline

Figure 19 presents the memory bandwidth utilization (bandwidth across the DRAM

channels) of various schemes normalized to the baseline CAM-LOI/GAM-PgI case. It can

be observed that in both the cases (that is, applying same mapping for CAM and GAM

and the memory-side cache organization) average 3D bandwidth utilization has increased.

The increase of Mem-Cache and Both-PgI from baseline is 16.4% and 3.1%, respectively.

Small decrease in the case of Both-PgI with fluidanimate can be attributed to the increased

DRAM latency (Figure 18), which results in the reduction of its 3D bandwidth utilization.

3.8.3 Neighbor Mapping - Results

Figure 20 shows the latency distribution of reads destined to DRAM for neighbor mapping

vs. the case in which no neighbor mapping is used. The first bar represents the case without

any neighbor mapping for both CAM and GAM. The second bar represents the case where

neighbor mapping is used for both CAM and GAM. The 3rd bar represents the case when

neighbor mapping is performed only for GAM. All these cases performed neighbor map-

ping without the memory-side cache organization. The last bar added neighbor mapping

for both CAM and GAM on top of the Mem-Cache organization.
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Figure 20: DRAM bound reads latency distribution with neighbor mapping

In all neighbor mapping cases, the queuing latency within the DRAM is reduced. This

indicates a good distribution of traffic into neighboring DRAM vaults that reduces load on

one specific DRAM. However, the network latency (latency between L1-L2 and L2-MC)

has increased significantly for the MC-only neighbor mapping case. This indicates high

load on the router that first sends request to L2 and then immediately sends them to neigh-

boring MCs making them a hot spot which resulted in large increase in latency. Finally, the

case with neighbor mapping on top of Mem-Cache organization further reduces the latency

with no L2-MC traffic. The IPC increase (not shown) averaged across all applications with

neighbor mapping on top of Mem-Cache organization from the case with same CAM and

GAM mapping is 11.3%, while the increase from Mem-Cache only without any neighbor

mapping is 3.5%. Recall that this is in addition to the cases that do not have same CAM

and GAM. We conclude that if the distribution of load among different vaults is required,

it is better to provide this distribution at the L2 bank level and keep CAM and GAM the

same, thus removing any L2-MC traffic in the horizontal direction.

3.8.4 First Touch Policy - Results

Fig 21 presents the global IPC of various benchmarks with and without the first-touch pol-

icy. The round-robin policy sequentially assigns pages, which with pgI means one page for

each MC in a round-robin manner. It can be seen that first-touch improves IPC for most
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of the benchmarks. The average improvement over all the benchmarks is 9.6%. This im-

provement is attributed to the decrease in the average number of hops traveled per response,

which is reduced by 5.8% (not shown).
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Figure 21: Global IPC with and w/o first touch policy

3.9 Concluding Remarks

This chapter analyzed the performance of an exemplar 3D memory system and proposed a

memory subsystem re-organization that places L2 cache banks next to DRAMs with an in-

terconnection network only between the L1 and the L2. It only explored reducing network

and DRAM latency by memory reorganization and traffic distribution but did not consider

changing the topology or improving various policies at different stages of the memory hi-

erarchy. The following chapter tries to reduce the network latency by designing a low-cost,

low-latency router micro-architecture that can be used with high-radix networks to reduce

the number of hops traveled by the cache and memory requests, and hence improve overall

system performance.
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CHAPTER 4

CENTRALIZED BUFFER ROUTERS

The previous section reduces hop counts of the requests without optimizing the network

itself. In general, hop count of a network can be reduced by employing high-radix topolo-

gies. However, larger radix requires increased wiring and buffering area. Although, wires

are abundant on-chip, buffers are a scarce resource and takes significant amount of area and

power. Thus most designs end up using low-radix topologies. In this section, we propose

the use of centralized buffer routers (CBR) in on-chip wormhole networks to decouple the

required buffer space of each router from its radix. Further, we propose to use CBRs in

conjunction with recently proposed elastic buffered (EB) links [59] making it feasible to be

used with long wires present in high-radix networks. At low loads, CBs are power-gated off

and packets bypass them taking two cycles only. At high loads, flits are streamed through

the buffered path taking four cycles. We further propose lookahead switch allocation which

reduces these paths to one and three cycles, respectively. A novel extension to bubble flow

control is used to realize deadlock freedom. The same mechanism avoids both routing as

well as message dependent deadlock using a constant CB size per router independent of

the number of message types. The result is a compact, energy and area efficient physical

channel router whose low load performance approaches that of buffer-less routers and high

load performance approaches that of buffered routers. This chapter describes the base-

line router micro-architecture in detail along with the associated performance and power

optimizations.

4.1 The Baseline Centralized Buffer Router
4.1.1 Motivation

The state of the practice for baseline network-on-chip (NoC) routers has been the use of

edge buffers, whose buffer capacity requirements are proportional to the router radix and

link length (to fully utilize the link in the presence of flow control delays). These buffer
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requirements are commonly increased through the use of virtual channels (VCs) to ensure

deadlock-free routing, and further increased multiplicatively with the number of message

classes, to avoid protocol deadlock [19] [34]. This results in substantial area and power

devoted to buffers, up to several hundred KBs of storage for a 32-64 node NoC. These

overheads mitigate the advantages of NoCs, specially with high-radix routers (which have

low hop count and utilize the increased wiring density of NoCs more effectively). We pro-

pose a router micro-architecture that effectively reconciles this trade-off between radix and

buffer space, using a novel combination of flow control and buffering strategies. The key

idea is to use shared central buffers coupled with novel extensions to bubble flow control

that reduces the total buffering requirement of the network reducing its area and power

while maintaining low-latency, low-throughput operations. The router specially supports

high-radix topologies that can be used to reduce the network latency even further. Next, we

discuss the micro-architectural details of the centralized buffer router.

4.1.2 Router Micro-architecture:

RC

Crossbar

Control 0

Input N-1

Output N-1

CB

Output 0

IBSA

CBA
CBSA

Data 0

Link 
Pipeline

Figure 22: Centralized buffer router (CBR) - Micro-architecture

Figure 22 shows the internal router design. It consists of a large crossbar with single

flit input and a 2-flit output staging-buffer for each port of the router. It also consists of a
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centralized buffer (CB), which is only utilized when a packet from the input buffers cannot

progress to the corresponding output buffers. The control and data information are split in

the links. This separation will be explained in section 4.2. Central buffer allocator (CBA)

performs allocation to the central buffer, while input buffer switch allocator (IBSA) and

central buffer switch allocator (CBSA) performs output port allocation for input buffers

and central buffers, respectively. The central buffer is a DAMQ [101] style multi-ported

output queue in which flits destined to different outputs are kept separate from each other. It

can be considered as multiple output queues (one per port) which share each others space.

We kept the number of read and write ports of the CB to one, more details of which will be

explained in section 4.4.

4.1.3 Pipeline Stages

Figure 23: Centralized buffer router - Pipeline stages

Figure 23 illustrates the different pipeline stages of the router. A flit or packet entering

the input buffer can take two different paths. 1) Bypass path consisting of IBSA (the switch

allocation stage for flits in the input buffer) and the ST stage, and 2) the central buffered

path with four pipeline stages within the router; allocation (CBA) and traversal (CBT) to the

central buffer, and allocation (CBSA) and traversal (CBOT) from the central buffer to the

output port. In both the cases, lookahead routing [22] is used which perform RC in parallel

with IBSA or CBA. At low loads, path 1 will be chosen. If the corresponding output port

is busy servicing another packet from a different port, path 2 will be selected. Since flits

within a packet need to arrive in order, if a path is chosen by the head flit, all subsequent
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body and tail flits will follow the same path. Furthermore, since interleaving of flits of

different packets is not allowed, once an output port is picked by either the CB or any of

the IBs, it is not released until the whole packet is traversed. Every cycle, three allocation

operations (IBSA, CBSA and CBA) are performed simultaneously. The IBSA tries to

allocate a flit at an input buffer to the output port, and if granted, set the necessary crossbar

and mux signals. The CBSA, in the mean time, will try to allocate a flit in the central buffer

to the corresponding output port. Among the two allocations for the output port, CBSA

is given a higher priority, since packets in the CB arrived earlier than the packet in the IB

stage. In parallel to these allocations, CBA will also try to allocate central buffer space

to packets in the input buffers (one packet for each input port simultaneously). A packet

will be allocated to a CB only if the CB has enough space to hold the complete packet.

However, if IBSA wins in allocation, CBA will be ignored. Based on which allocation

wins, one or two of the three traversals will be performed in the next cycle.

4.2 Lookahead SA

Baseline CBR encapsulates an EB router reducing the input buffering requirements. How-

ever, since allocation and traversal are two different stages, the minimal buffering require-

ment is two flits for 100% link utilization. We further reduce the input buffers to single

flit by performing the switch or CB allocation (IBSA/CBA) in parallel with the last LT/IB

stage. This will also reduce the latency within the router to one cycle only. Performing

allocation in parallel with IB is achieved by separating the data and control information

of a single flit and sending the control information one cycle ahead of the data. Note that

lookahead routing decides the output port of the next router in the previous one and sends

this information along the data (other control information includes flit type, etc). If we can

forward this information one cycle ahead of the actual data, e.g., during the ST cycle, it will

reach the downstream router earlier, allowing it to contest for allocation one cycle before

the data arrives in the input buffers. Thus, when a flit reaches its downstream input buffer,
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it will perform the ST or CBT stages immediately in the next cycle without waiting for

the IBSA or CBA stage to complete. Since route computation can also be done in parallel

with allocation, we can again send the next router output port information during the ST

stage, that is, one cycle ahead. Note that this is different from prediction router [56], as

allocations are deterministic and not predictive. Also, note that the flit control information

is already sent out-of-band in most on-chip routers. Even if it is sent in-band, it can be sent

with the flit information of the previous flit. Thus, there is no extra wiring overhead of this

scheme. We will assume out-of-band control information in this paper.

4.2.1 Guaranteeing one cycle lookahead

A problem with lookahead SA is to guarantee that the control information always arrive

one and only one cycle ahead of the corresponding data. This is a necessary condition

because if SA wins earlier than the actual data arrival in the input buffer, a dummy flit will

be propagated forward from that buffer. Note that in general, this is not guaranteed because

data and control can get misaligned along the pipeline.
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Control
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out
buffer

Data Path

Control Path}

}

Figure 24: Guaranteeing one cycle ahead - Ready Valid handshake signals of data and control path

We achieved this goal by utilizing the ready-valid handshake signal of the previous

pipeline stage in the data path to traverse the next pipeline stage in the control path. This

can be seen from Figure 24. The ready out signal of the data path is also routed to the

ready in signal of the same pipeline stage in the control path. Similarly, the valid in signal

of this pipeline stage in the data path will be sent to valid in of the next pipeline stage in the

control path. This will ensure that once the control information is in the first pipeline stage
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of the link and the corresponding data is next to leave the output buffer, both will progress

across the link, with control information always moving one cycle ahead. However, since

the data output buffer can be of multiple flits, ensuring this condition itself requires small

control output buffer as shown in Figure 24. When the output buffer is empty, the control

information is directly sent to the first control pipeline stage. If the output buffer is not

empty, the control information is sent to the control output buffer. The control output buffer,

which is one flit smaller than the data output buffer, keeps sending control information

corresponding to the second last flit of the data buffer to the first pipeline stage of the link

in synchronization with the last flit of the data buffer, thus ensuring that control information

always remain one and only one cycle ahead.

At the input side of the downstream router, it is possible that an allocation operation is

not successful. Since the data in the last pipe stage of the link sees an empty slot in the input

data buffer, it will move forward, resulting in the flit behind it in the link to move forward

as well. The corresponding control information also needs to progress to the input control

buffer, which already contains the control information of the mis-allocated flit. This means

that it is necessary for the input control buffer to be of size one flit larger than the data flit

buffer. In the case, a control flit does not win allocation, it should still move ahead in its

buffer, allowing the control information of the flits behind it to move forward as well. When

the input data buffer is full, the flit in the last pipeline stage of the link cannot progress as

the ready in signal will not be asserted, the control path will stop as well. As long as the

flit occupies the input buffer, the corresponding control flit resides in its buffer. As soon as

the data flit leaves, its corresponding control information also expires.

4.3 Deadlock Avoidance

As mentioned earlier, our design is similar to wormhole-based router with pipelined links.

Therefore, the problem of deadlock avoidance boils down to guaranteeing deadlock free-

dom in flit level wormhole routers without using VCs. Note that VCs have been a de-facto
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choice to avoid deadlock in such networks but EB channels create dependencies between

flits of two different VCs within the channel. Thus, VC-based approaches cannot be used

as a generalized solution. A simple approach to solve this problem is to use strategies

like up-down routing that ensures that no cycles occur in the network. [74] recently

proposed TRANC routing that uses similar concepts to provide deadlock free routing for

multi-dimensional torus networks without using VCs which can be used here. However, a

fundamental problem with any such approach is that they do not guarantee minimal paths.

This may result in an increase in no load latency. On the other hand, our design extends the

bubble flow control technique which guarantee deadlock avoidance (for both routing and

message dependent deadlocks) using minimal paths, thus also ensuring minimum no load

latency. We have evaluated this scheme with non-minimal TRANC routing in our results

section.

Before explaining our scheme, we like to reiterate the three conditions required for

bubble flow control to work. 1) Every ring or cycle must have a bubble 2) If there is a

bubble in the ring, packets within the ring cannot wait indefinitely on any other condition

within the ring, that is, they have to make progress. 3) External packets entering the ring

are not allowed to destroy the bubble.

4.3.1 Avoiding Routing Deadlock

The idea of avoiding routing deadlock is simple. For every ring, even having a single flit

bubble is enough to ensure forward progress of flits. For flits entering the ring, we need

to ensure that all flits of the packet will be allowed to enter the ring when a packet start

entering a ring, while maintaining the original bubble of the ring. This is a necessary

condition because of the following reason. If the whole packet is not allowed to enter the

ring, even having a multi-flit bubble in the ring, e.g., in the input buffer, will not guarantee

forward progress, that is, condition 2 above will not be satisfied. This means that a bubble

of packet length+1 is required when changing dimensions to ensure deadlock freedom.

This bubble can be provided with the output-based CBs without increasing the size of the
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input and the output buffers. Furthermore, since packets in the central buffer of the current

router are part of the overall ring (corresponding to that output port), looking at the space

of the next router’s CB (which will require CB credit information to flow upstream) is not

required. This is because if there is enough space in current router’s CB, it is guaranteed

that flits from the previous routers will move forward to create at least an equal amount of

space in the next router. Thus the condition to avoid deadlock only requires looking at the

empty buffer space of itself and no credit information of the downstream router is needed

which makes our technique perfectly suitable for EB-based channels. A formal proof is

given below.

Definitions: These definitions are derived from [16], [17]. Let Q be the set of input,

output, and link pipeline buffers associated with the routers. For each qi ∈ Q, let cap(qi) be

its maximum capacity in flits and size(qi) be its current occupancy. A bubble of X flits in qi

means that size(qi) <= cap(qi) − X. Let Qy be a subset of Q consisting of all input, output,

and link pipeline buffers that belong to a ring y. Let qi → q j defines the case when a flit

form qi moves to q j. To avoid interleaving of flits of different packets, if a head flit from

buffer qi moves to q j, qi will hold q j until the whole packet is transferred, that is, no other

buffer qk can move any flit to q j. Let L be the size of all the packets.

Rule 1: A unidirectional ring y is deadlock free as long as there exists a single flit bubble

in Qy, that is,

∃qi ∈ Qy : size(qi) <= cap(qi) − 1. (1)

Proof: The rule is a direct consequence of Theorem 1 in [16]. In that paper, the min-

imum bubble size is equal to the size of the input queues. However, this is a necessary

condition for adaptive routing schemes, where head flits cannot make progress if the down-

stream input queue is not free. Since, we are only dealing with deterministic routing, this

condition gets relaxed to a single flit in the downstream input queue and hence the bubble

size of one flit.
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Rule 2: If a head flit of a packet A from qi in the ring x wants to move to q j in ring y

without causing a deadlock, it can do so only if,

∑
∀qk∈Qy

size(qk) ≤

 ∑
∀qk∈Qy

cap(qk)

 − L − 1 Λ @qm ∈ Qx : qm → qn ∈ Qy,∀Qx ⊂ Q. (2)

i.e., a free space of packet length+1 is available in the ring and there is no other flit of

packet b entering the ring y at the same time.

Proof: Multiple cases exist. (i) One monolithic bubble of length L + 1. In this case, this

bubble will flow back such that q j will get a bubble. Head flit from qi will move to q j in ring

y and the remaining bubble length will be L. Since no other head flit or packet can enter ring

y (bubble length is smaller), only flits of packet A can enter the ring.
∑
∀qk∈Qy

size(qk) after

all flits of A have entered the ring is
[∑
∀qk∈Qy

cap(qk)
]
−L−1+L, i.e., bubble length of 1 will

still be there. Rule 1 above will hold and allow ring y to be deadlock free. (ii) If multiple

smaller bubbles are available with aggregate equal or more than L + 1. This means that qi

sees a bubble of length smaller than L + 1, lets say l. However, at least one more bubble

exists in the ring apart from the bubble in q j, i.e., ∃qm ∈ Qy\q j : size(qm) <= cap(qm) − 1.

Rule 1 implies that flits in upstream buffer qn will move forward to qm creating bubbles in

qn. Let qm denote the new buffer with the bubble. The previous process continues, until

qn ≡ q j. Since the number of such bubbles is L + 1 − l, the resultant monolithic bubble in

q j will be equal to L + 1. Case (i) above is applied. (iii) Bubble length is less than or equal

to L. If it is equal to L, after all flits of A enter ring y,
∑
∀qk∈Qy

size(qk) =
∑
∀qk∈Qy

cap(qk).

No bubble exists in ring y, rule 1 will not be satisfied any more. If the bubble length is less

than L, whole packet A is not allowed to enter ring y. Since, incomplete packet traversal

means qi hold q j, no other buffer qk will move flits to q j even if there are bubbles in the ring.

Similarly, no other buffer qm will be able to send to qk and so on. Thus no flit will be able to

move forward resulting in the ring being deadlocked. (iv) If any other packet is allowed to

enter ring y, simultaneously with packet A, it will reduce the bubble size resulting in case

(iii) above.
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Implementation of rule 2 is difficult, since it requires global information to restrict

packets from injection into the ring based on whether any other packet is being injected at

the same time. A much simpler local condition is to check the bubble in the central buffer

of the local router. Suppose that the central buffer reserves 1 packet for each ring. Let Qy2

be the set of reserved packet spaces for ring y in all the central buffers corresponding to

nodes in ring y. Thus, Qy2 becomes part of the new extended ring y. Let Qcy be the union

of Qy and Qy2. Above 2 rules can be applied to the extended ring.

Rule 3: Rule 2 can be satisfied by the following 3 conditions as well. (i) Look for a

space of L in local central buffer corresponding to ring y, (ii) Look for a space of 1 flit in

the output buffer of ring y, and, (iii) Not allow any other packet of the local router to enter

ring y at the same time.

Proof: The proof is straight forward, since having bubble of L + 1 in the local router

for extended ring y satisfies equation 2 with Qy being replaced with Qcy. Also, since we

are only looking at the local router, not allowing any other packet to enter ring y at the

same time is straight forward. This also means other packets can enter ring y in other

routers. Case (iv) of the proof of rule 2 will never happen with flits entering the ring in

other routers.

Reiterating the minimum deadlock condition:

FreeS pace =


1 i = j

PktLength + 1 i , j

where i, j refer to different dimensions of travel. We have used empty space of PktLength

in CB and space of 1 flits in corresponding OB. This condition is checked during allocation

of both OBs and CBs, that is, during IBSA and CBA to ensure a bubble is maintained in the

ring. Furthermore, checking full packet space is not required during CBSA as the packet

has already entered the ring and therefore, same dimension condition will be applied here.

This makes the minimum CB buffer size requirement to 2 ∗ dim ∗ PktLength + 1 flits. In

practice, we can reduce the CB size to 2 ∗ dim ∗ (PktLength − 3) + 1 by leveraging the fact
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that the 2-flit output and 1-flit input buffer is part of the overall ring. We fixed the size of

CB to 18 flits. Starvation is also possible with CBs. We ensured starvation does not occur

by round robin allocation of central buffers to each port. We would also like to mention

here that this solution is feasible for on-chip networks where packet size is not large. In

fact, all bubble flow control techniques except worm-bubble [16] are not good solutions for

networks with large packet sizes. Variable packet sizes are allowed as long as each ring

keeps a bubble of the maximum packet size.

4.3.2 Avoiding Message Dependent Deadlock
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Figure 25: Message Dependent Deadlock

Message dependent deadlocks are usually solved by providing separate virtual networks

as explained in [34]. The basic idea is to provide separate virtual network (channels) to

every class of a message dependent chain. We propose the use of bubble flow control

technique to avoid message dependent deadlocks as well. Note that every reply of a request

message (e.g in a request reply network) can be considered as a 180 degree turn of the same

packet, allowing the possibility of cycles between 2 or more different request-reply pairs.

The packet source injecting new requests can be considered as an external entity that inserts

new packets in this cycle, (Figure 25(a)). These cycles will be deadlock free as long as we

ensure that the three conditions of deadlock avoidance mentioned earlier are satisfied.

Condition 1 and 3 can easily be satisfied by inserting request messages in the injection

queue of the network interface (NI) only when there is a space of at least two packets,

(Figure 25(a)). Satisfying condition 2 means that if there is only one empty space left in
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the injection queue, the reply message of a request will still be generated, even if there is a

new request message pending to get inserted in the injection queue, (Figure 25(b)). Thus a

packet present within the message cycle (request message in the ejection queue) is allowed

to progress to the next buffer (generate a reply message) with space of only one packet

downstream, i.e., in the injection queue. External packets (pending request messages in the

message sources) have to wait. Implementation of this scheme in network terminals means

having the ability to accept new request messages and generate the corresponding reply, if

there is an empty space in the injection queue. If it has no empty space, (Figure 25(c)),

request messages can wait in the ejection queue but since there will be a bubble in the

message cycle somewhere, this bubble will always propagate back to the injection queue

allowing the request messages to get serviced. Note that this scheme is valid for any number

of message classes without adding VCs.

The use of bubble flow control in the preceding manner makes it possible to deal with

routing deadlock and message dependent deadlock with the same mechanism, e.g., there is

no need for additional storage such as separate request and reply networks. In particular,

the cost of dealing with message dependent deadlock is fixed independent of the number

of message classes. Overall, the cost of deadlock freedom at a router is independent of the

network size or the number of message types.

4.4 Power Reduction Techniques

CBR coupled with lookahead SA reduces the input buffering requirements of a router to

only a single flit. However, it increases the area of two more components; 1) it increases the

crossbar size, and 2) it adds the central buffer space. Power advantages gained by removing

the input buffers are reduced significantly by the addition of these components. We applied

two simple techniques to reduce the overall power of the routers.
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4.4.1 Reducing the number of CB ports

Since the utilization of the central buffer is low (only used at high throughput), we can

reduce the number of its input ports and allow them to be shared by different inputs. We

reduced the number of input ports of the CB to only one. This means that if two or more

packets at the input buffers have to traverse to the CB, they will be serialized. The CBA

stage ensures that it allocates only one flit to the CB each cycle. This approach not only

reduces the input ports of the CB, but will also reduce the output ports of the crossbar. The

new crossbar is only Inports × (Outports + 1) switch with much reduced area and power

dissipation. The same principle is applied to the output ports of the CB as well. Again, this

implies that if two flits in the CB want to reach the output buffers in the same cycle, they

need to be serialized by the CBSA, even though they belong to different output ports of

the router. The performance overhead of this serialization is small (since CBs are utilized

seldom and do not require high throughput), however, the power reduction by reducing the

ports is significant.

4.4.2 Power Gating of CB

Since CBs are utilized only at high loads, we applied a simple coarse grained power gating

technique to it. Power gating of CB is simplified as it does not interfere with the main

path of the router. Deadlock avoidance will be guaranteed as long as it turns on in some

finite amount of time. Initially, the CB is kept off. Whenever two packets collide for an

output port, a counter starts counting the wait cycles of the unallocated packet. When the

wait becomes X cycles, the CB is turned on. We assume that it takes three cycles for the

CB to turn on completely. Once on, unallocated packets can be pushed into it allowing the

blocked packets to move ahead. When the CB remains empty in the on-state for a minimum

on-time (empirically set to be 10 cycles), it is turned off. At low loads, this simple power

gating technique keeps the CB turned off, saving power. At high loads, since we wait for X

number of cycles before turning it on, this technique can potentially reduce performance.

In fact, the value of X provides the throughput power consumption trade-off. Greater the
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value of X, lesser will be the power as well as the saturation throughput. The sensitivity of

the value of X is explored in section 4.5.

4.5 Results

Next, we compare the power and performance of our centralized buffer routers with differ-

ent state-of-the-art solutions under different traffic conditions and topologies.

4.5.1 Simulation Setup

We have developed four different router micro-architecture models to understand the la-

tency and throughput impact of our centralized buffer router design. The baseline router

consists of a standard 2-stage pipeline router with two VCs per virtual network. The other

two routers implemented are 2-stage EB router and a simple flit deflection (FD) router sim-

ilar to flit BLESS from [61]. Parametric configurations of each of the routers is given in

Table 7. The DAMQ based central buffer is organized into six slots of 3 flits each. The

default wait time before turning on the power gated CB is 500 cycles. Furthermore, to

reduce the latency and buffering requirements of the deflection router, we retire the pack-

ets as soon as the tail flit arrives without waiting for head and all body flits to reach the

destination. This makes the deflection router very optimistic. Since EB requires duplicate

physical channels, we have assumed its links to be half wide with twice the number of flits

per packet.

Table 4: System configurations of various routers
Parameter Baseline FD EB CBR

Pipeline Depth 2 1 2 1
InBuf Size (per port) 5*VC 1 2*Virt. Net 1
OuBuf Size (per port) 2 2 2 2

CBuf Size na na na 18
Inj/Ej Que Size 20 20 20 20

We have implemented mesh, torus and generalized hypercube (GHC) topologies for

both 2D and 3D networks. The 2D networks are 8x8 while 3D networks are 4x4x4. Number
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of ports for mesh and torus are 2 ∗ dim + 1 and (k − 1) ∗ dim + 1 for GHC topologies.

Thus 2D-GHC, with k = 8 has the highest number of ports and therefore has the highest

power consumption. The torus and mesh networks have single cycle link delays between

adjacent routers. The GHC models multi-cycle links equal to the number of routers between

the source and destination, that is, the link delay for node 2 and 3 from node 0 in the x

dimension will be two and three cycles, respectively. The packet size is kept fixed (= five

flits) except EB routers which are ten flits as discussed earlier. All links are assumed to be

128 bits wide. All designs except deflection routers use minimal dimension order routing.

For torus topologies with single VC and no central buffering, tranc routing from [74] is

used which is an up down style non-minimal routing technique that does not use VCs.

Four different synthetic traffic patterns (random, bit complement, bit reversal and tor-

nado) are evaluated; see table 5. Unless otherwise stated, all results present an average of

all four as shown in Table 5. Random distributes the traffic evenly and has high through-

put. All others are adversarial traffic patterns with relatively low throughput. Tornado

travels equal or more than k/2 hops in each dimension and thus has the highest no load

latency. All simulations are performed for 50 million cycles. Applications traces are taken

by running 64 threaded version of PARSEC and SPLASH benchmarks with 64 cores, 16

MC configuration using an in-house simulator with DRAMSim2 [81] as the main memory

model. The traces are generated at the back side of L1 and messages are classified into

read/write/coherence type requests. A reply of five flits is generated from the destination

every time a read request is received. Read requests and coherent messages for all networks

including EB consists of two flits and write messages are five flits except in the EB network

in which they are ten flits wide. This allows us to test our scheme for variable size packets

as well.

For power modeling, Orion 2.0 [111] is used which calculates the router power as the

sum of the power in its buffers, crossbar, arbiters, and allocators along with the link power.

We modified Orion to get more accurate results. As a conservative estimate, EB links are
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Table 5: Various traffic patterns
Traffic Description

Random destination chosen with uniform distribution
Bit Complement (id) to (NODES-id)

Bit Reversal (x5,x4,x3,x2,x1,x0) to (x0,x1,x2,x3,x4,x5)
Tornado (x,y,z) to ( (x+k/2)%k, (y+k/2)%k, (z+k/2)%k )

modeled to take 3x more device power and 3x more leakage power in routing logic than

non-EB links. Similarly, the CBR which has three arbiters takes 3x more power in arbiters.

VC allocator power is assumed to be negligible for all cases. Segmented crossbars with

two segments are used. For GHC topologies, partitioned crossbars are used. Baseline and

EB routers are assumed to have two message classes, with two VCs per message class. FD

and CBR do not model any VC or message class. CBR has an additional component of

power due to its central buffer. All buffers are assumed to be register based. The network

is modeled to be running at 2.0GHz with Vdd = 1.0V and 45nm technology. Activity

for different components such as crossbar and input output buffers etc. are taken directly

from performance simulations and fed as activity of different components of Orion. Power

gating a CB is assumed to reduce its leakage to 20% of the original.

4.5.2 Performance with Synthetic Traces

Comparison with Other Routers: Figure 26 compares throughput and average packet

latency of CBRs with that of other routers with different network configurations. Note

that the throughput is defined as retired flits per node per cycle. The results presented are

aggregated over all four traffic patterns. At low loads, CBR network has the latency equal

to that of deflection (FD) router. This is because of the single cycle latency within the

router. Both baseline and EB has two cycle latency within the router resulting in increased

no load latency. It should be noted that pipeline bubbles are avoided in these designs by

keeping large buffers at the input. Furthermore, EB has higher serialization latency since

each link is narrower than the other routers.

Baseline and deflection routers have the lowest saturation throughput. For deflection
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Figure 26: Throughput (retired flits / node /cycle) vs average latency (cycles) for different network
configurations

routers, the greater the number of ports per router, more numerous the deflections are, and

thus saturation throughput does not increase with the number of ports. This can be seen in

the case of GHC, where deflection router saturates quickly compared to other routers. The

baseline router has higher throughput than deflection in most cases, but because of extra

bubbles created due to credit-based flow control, their throughput is low as compared to

routers that use elastic links even with multiple VCs. This difference increases with longer

links in GHC topologies.

Both EB and CBRs have much higher throughput due to the use of elastic links. CBR

has higher saturation throughput due to the removal of head of line blocking made possi-

ble through the central buffering. However, since traveling to the central buffer increases

latency within the router, this is not always true. Figure 27 shows the performance of 3D

torus with individual traffic patterns. Note that for Tornado traffic EB performs better than

CBR. Since Tornado is an adversarial traffic pattern, it requires larger number of packets to

traverse the central buffer and thus increased latency within the router and lower through-

put. A similar behavior can be seen for the 3D Mesh topology in Figure 26, where the

CBR curve starts going backwards. This also means that a very high utilization of CB is
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not desirable as it increases the latency within the router by taking buffered path most of

the time.

Figure 27: Throughput (retired flits / node / cycle) vs average latency (cycles) with different traffic
patterns

Comparing different topologies for CBR, it can be said that greater the number of ports,

lower will be the hop count and lower will be the no-load latency with high saturation

throughput. This conforms to the fact that the greater the power and area budget available,

better will be the performance. This is not true in the case of other routers like deflec-

tion and baseline which has relatively slower increase in performance with increase in the

number of ports. This makes CBR an ideal choice for large-radix on-chip networks.

Impact of Individual Optimizations: CBR uses various optimizations for different pur-

poses, e.g., lookahead SA for latency reduction, power gating for power reduction, and

bubble flow control for deadlock avoidance. We compare the advantages of individual

optimizations in Figure 28 for various network topologies. In the figure, NOBUBBLE rep-

resents the case without any optimization and no bubble flow control. NOSA adds bubble

flow control to the NOBUBBLE case. NOGATE adds lookahead SA to the NOSA case

without power gating. It can be seen that NOGATE and GATE cases which have single

cycle latency in the router by adding lookahead SA optimization has significantly low no

load latency. Their throughput, therefore, is higher in general. The torus topologies with

NOBUBBLE have higher no load latency due to non-minimal routing (remember we use

68



tranc routing for these cases). However, the saturation throughput of 3D torus with non-

minimal routing is higher which shows the overhead of having bubbles in the network.

Note that both NOSA and NOBUBBLE case has two flit input buffer as opposed to single

flit in other cases. Lastly it should be noted that power gating closely tracks the case with

no power gating specially in the case of GHC topologies, thus its performance overhead is

low.

Figure 28: Performance Impact (throughput vs latency) of individual optimizations

Comparison of different topologies: The above figures can also be used to compare the

results of different topologies for CBR routers. Note that they have different link band-

width and buffer requirements and therefore different area and power. The no-load latency

of GHC topologies are the lowest. Their saturation throughput is close to one. Mesh

topologies have the highest no-load latency due to large number of hops for a request and

thus lowest throughput. In general, the greater the number of ports, the lower will be the

hop count and lower will be the no-load latency with higher saturation throughput. This is

not true in the case of other routers like deflection and baseline which has slow increase in

performance with increase in the number of ports making CBR well suited for high radix

networks.
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Figure 29: Sensitivity to power gating wait time (cycles)

Sensitivity to Gate Wait Time: As discussed in section 4.4, central buffer is only turned

on after waiting for X number of cycles. The wait time should have an impact on both

throughput and power. Figure 29 plots saturation throughput (Thr) and the percentage

of time CB was on (Ton) by changing the value of X for 2D GHC topology with differ-

ent injection rates. Here, I-5, I-25 and I-50 mean that the maximum injection time between

subsequent packets are 5 (one cycle per flit), 25 and 50 cycles, respectively. We can see that

CB on-time greatly reduces with increase in the wait time while the reduction in through-

put is extremely small. Thus, large values of X can be used allowing higher leakage power

reduction. We fixed the value of X to be 500 in all our power gating simulations. Dy-

namically adjusting the wait time at different loads can further reduce power reduction and

improve throughput.

Table 6: Buffer space (KB) with different configurations
RowNo Parameter 2D-Torus 3D-Torus 3D-GHC 2D-GHC

1 Baseline-M1 100 124 110 145
2 EB-M1 60 68 60 70
3 Baseline-M4 280 376 320 460
4 EB-M4 120 152 120 160
5 FD-P4 55 61 70 85
6 FD-P20 135 141 150 165
7 CBR-GATE 55 61 70 85
8 CBR-NOGATE 73 79 88 103
9 CBR-NOSA 78 86 98 118
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4.5.3 Buffer Space Reduction Analysis

We performed buffer space analysis for different routers and optimizations of CBR. Table 8

gives the total buffer space requirements of different routers with different topologies. The

formula for calculating the buffer space is [(P ∗ (F ∗ VC + O) ∗M) + C + I + E] ∗ L, where

L is the link width, P is the number of ports per router, F, O, C is number of flits in input,

output and central buffer, respectively and I and E are the injection and ejection queue size

in flits. M is the number of virtual networks required to support different message classes.

For this analysis, torus topologies use two physical channels or two VCs in EB or baseline

router, respectively and GHC use one VC.

We can see that the baseline router requires large buffer space even with single message

class (row 1). EB with one message class requires less storage but it increases significantly

with the increase in number of message classes as can be seen by row 4 with four message

classes. Since GHC topologies use only one VC or virtual network, the storage require-

ment is reduced, however this will reduce throughput as well (not simulated). FD (row

5) requires the least buffering space. However, if we consider that it has to re-organize

flits coming out-of-order at the network interface, which requires larger storage, the buffer

space requirement of FD will also increase. If we increase the flits space in ejection queue

by five times, the buffering requirement of FD easily surpass most other networks (row

6), since the total ejection queue size aggregated over all NIs (which is already 20K) will

be increased to 100K. Thus reorganization overhead of FD is high both in terms of buffer

space and latency (not modeled).

Baseline CBR requires more buffer space than EB for single message class due to the

presence of central buffer (row 8). But since, it does not require extra buffer storage to han-

dle message classes, the storage requirement does not increase. When the gating is turned

off, CBR has equal amount of buffer power as that of FD with no re-organization overhead.

With gating on, the storage requirement increases slightly, however the increase is small

specially for high radix topologies. On the other hand, as discussed earlier the throughput
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will be extremely high as compared to FD. Finally, the last row shows that lookahead SA

saves 5K and 15K of buffer space for 2D torus and GHC topologies, respectively.

4.5.4 Power Analysis
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Figure 30: Static and dynamic power distribution (a) varying injection rate, (b) varying topology

Figure 30 (a) compares the static and dynamic power dissipation of different routers

configured in a 2D torus topology and normalized to the baseline case at an injection rate

of 150 cycles per packet. The different bars represent different injection rates (maximum

time between two successive packets from a node) as given by the text in Figure 30(a),

that is, bar 1 represents injection rate of maximum 150 cycles per packet, bar 2 represents

injection rate of 20 cycles per packet and so on. As obvious, baseline and FD have the

maximum and minimum static power, respectively (the bottom component of each bar).

Among the routers with elastic links, EB has more static power than CBR. This is because

of the minimum requirement of having 4 physical networks (2 for each message class). It

also results in EB having the highest dynamic power specially at high loads. Note that EB

routers are 64 bit and individual networks have lower power. Elastic links have high power

compared to others because of their higher activity and larger unit power (power required

to traverse a flit). The dynamic power of CBR is low compared to baseline and EB routers

due to its small buffering space. Power gating of the central buffer, although, reduces static

power but its advantages at high loads are small.
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Figure 30 (b) shows the same plot with various topologies. This time it is normalized

to the baseline case with 2D torus topology. CBR has static power increase comparable to

EB router. The dynamic power of CBR, however, increases rapidly because of its high sat-

uration throughput and thus high activity. Small increase of dynamic power in EB routers

is attributed to thinner channels and crossbars. Although, this along with high saturation

throughput makes EB routers a good candidate for NOCs, they loose on no-load latency.

Furthermore, their power increases dramatically with increased number of message classes.

4.5.5 Results with Real Benchmarks
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Figure 31: Normalized average packet latency for real application traces

Figure 31 shows average packet latency of 2D-Mesh network with different routers

normalized to the CBR case. In general, FD has the maximum average latency while CBR

has the least. In few of the benchmarks, this latency is extremely high. This is due to

unnecessary deflections and lack of starvation avoidance in FD routers. In these routers,

packets at the injection queue are prioritized lower than the packets already present in the

network guaranteeing availability of ports. However, this can potentially lead to starvation

at very high load and thus increased latency. Average latency of baseline and EB routers

increase by 1.4-1.6x than CBR due to increased no load latency and lower throughput. The
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trends are similar across different benchmarks.
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Figure 32: Normalized throughput per unit power for real application traces

Figure 32 shows the throughput per unit power of the same configuration normalized

to the CBR case. CBR performs better than all other routers. Again, FD routers perform

the worst because of its large packet latency. All other routers have similar throughput as

they retired almost equal number of packets in a fixed amount of time. However, the power

consumed by baseline and EB router is higher than the CBR case. This behavior is directly

attributed to higher latency and larger buffering requirements of both the baseline and EB

routers. We conclude that CBR reduces power at fixed load and decreases average packet

latency. If further reduction in latency is required, high radix topologies can be used. Under

a fixed load CBR will perform better (both in terms of latency and power).

4.6 Concluding Remarks

This chapter presented the baseline centralized buffer router, a low-latency, low-power

micro-architecture that is tailor-made for high-radix networks. We showed that a small

central buffer in an EB channel-based design can avoid deadlock and improve throughput

without the need of having separate virtual channels or physical networks. Virtual channels,
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however, are also used to provide support for adaptivity and separation of flows for quality-

of-service purposes. Furthermore, the minimum size of the central buffers is important to

reduce area and power. We will focus on these issues in the next chapter.
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CHAPTER 5

IMPROVING DETERMINISTIC CBR - BUBBLE-SHARING FLOW
CONTROL

Although CBR provides a shared buffer scheme suitable for high-radix routers, the modi-

fied bubble flow control technique still works at a packet level in the central buffers, thus

increasing the minimum buffering requirement of the central buffers. In this chapter, we

reduce the buffering requirements of the central buffers by introducing Bubble Sharing, a

flow-control technique that extends the worm-bubble flow control [16] idea to centralized

buffer routers. The scheme works at a granularity of a few flit-sized slots called worm-

bubbles, reducing the total buffering requirement of the central buffers. We also propose

Adaptive Bubble Sharing that enables adaptive routing with bubble-sharing flow control

for wormhole switched networks. The result is a large reduction in buffer space for both

adaptive or deterministically routed high-radix NOC routers harnessing the benefits of high

radix while minimizing traditional high buffer space overheads.

5.1 Bubble Sharing with the Central Buffers

This section describes our bubble sharing scheme that extends the ideas used in WBFC to

centralized buffer routers. We first explain the key ideas of WBFC using an example and

points out the modifications required to adapt it to centralized buffer routers. We organized

the central buffer as dynamically allocated multi-queue (DAMQ) [101] with shared pool of

small worm-bubble sized slots. Each slot has a space of 2-3 flits and assigned completely

to an output port; that is, once a slot is assigned to output x, all entries will be consumed

by packets going to output x, until the slot is unassigned. Each slot act as a worm bubble

multiple of which can be taken by each ring (explained later).
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5.1.1 Black & White Bubbles:

Consider the example in Figure 33 with edge buffer routers. Suppose each bubble indicates

an empty input buffer in the downstream router and is denoted by worm-bubble or simply

bubble. Black means a marked worm-bubble and white means an unmarked worm-bubble.

Let’s assume the size of each worm-bubble as x and packet size as M. Let PktS WB = M/x

denote packet size in terms of worm-bubbles.

Injection: Before insertion into a ring x, a new packet first marks the worm-bubble of

the corresponding ring as black. This is shown in Fig 33 a), where a packet at R4 is trying to

get injected. It marks the corresponding bubble as black, and also maintains a count of the

marked bubbles, shown by CntI = 1. Forward movement of flits displaces the bubble along

with their color backwards. Hence the black bubble at R4 will be pushed backwards to

R3, leading to the reappearance of a white bubble at R4. The packet trying to get injected

can again mark this bubble as black, further incrementing its count. Now consider the

case when PktS WB-1 worm-bubbles have already been marked for the ring, (i.e., CntI ≥

PktS WB − 1), and it encounters an empty white bubble. If the packet is injected now, it

will occupy the space of bubbles marked by itself and the current white bubble. Hence,

guaranteeing that any black worm-bubble injected in the ring during initialization, will

remain intact. This is the key idea in WBFC that has been used in our Bubble Sharing

scheme as well, using the central buffers. Central buffers, as explained earlier, provide a

shared pool of these bubbles, instead of having one bubble for each ring per router. Hence,

instead of reserving a black bubble every cycle for a particular ring, multiple black bubbles

can be allocated simultaneously. A count, called WhiteBubbleCnt, is maintained to keep

track of the unoccupied white bubbles. Hence, if WhiteBubbleCnt + CntI ≥ PktS WB and

there is an empty white bubble, injection can happen directly. It should be noted that during

injection, CntI is passed to the head flit of the packet that maintains a counter called CntH

to keep track of the marked bubbles by this packet. The rules for injection are given by

label 4 & 6 in algorithm 1.
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Figure 33: Worm-bubble flow control (WBFC)

Transit: In the original WBFC, the marked bubbles are unmarked when the packet

is moving through the ring, decrementing CntH. In case of Bubble Sharing, multiple

black bubbles for a particular ring are unmarked simultaneously at a particular router. This

quickly reduces the amount of black bubbles in the ring leading to a significant reduction

in packet injection delays as compared to WBFC, specially in the case of long packets. The

rule is given by label 11 & 12 in algorithm 1.

Ejection: If the packet does not encounter an equal amount of marked bubbles, the re-

maining count is passed to the ejecting router, which means that this router has already in-

jected a few black bubbles into the corresponding ring. This rule, (label 10 in algorithm 1),

remains the same in both WBFC and Bubble Sharing scheme.

5.1.2 Gray Bubble:

If multiple ports are marking bubbles in the ring simultaneously, it is possible that all

the bubbles in the ring are marked without any packet being injected. This can lead to

starvation. A gray bubble was introduced in the original WBFC that allows packets to

be injected even if the input port has not marked enough bubbles. An example of this

is shown in Fig 33 b), which illustrates a case where all bubbles are either occupied, or

have been marked as black except for one gray bubble. Since the packet encounters a gray

worm-bubble, it will be injected. To ensure that this packet does not consume all the empty

space, PktS WB black bubbles and one gray bubble was inserted in the ring at initialization

(label 1, algorithm 1), which will guarantee that even after injection by the gray bubble, at
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least one original critical bubble remains intact. The gray bubble will be consumed by the

packet after insertion (rule 5), which will prohibit any other packet to enter the ring using

the gray worm-bubble. When the packet containing the gray bubble will be ejected, it turns

the bubble at that port gray, restoring the gray bubble of that ring (rule 7 & 8). Further

details of why gray bubbles work can be found in [16]. Bubble Sharing scheme uses the

gray bubble rules from the original WBFC without any further modifications (label 5, 7, 8).

Furthermore, progressive movement of gray worm-bubble is necessary to ensure forward

progress of all the packets entering the ring. Details can be found in [16].
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Init: for each ring do
1 Insert PktS WB BLACK & 1 GRAY bubble;
2 For each router, assign 1 bubble as BLUE;
3 WhiteBubbleCnt = non-assigned worm-bubbles;

end
Injection:

4 if WhiteBubbleCnt > 0 and CntI + WhiteBubbleCnt ≥ PktS WB then
assignColor(BLACK); // till CntI == PktS WB-1;
HF.CntH = CntI; CntI = 0;

5 else if isColor(GRAY) and CntI ≥ 0 then
HF.color = GRAY; color = WHITE;
HF.CntH = CntI; CntI = 0;

6 else if WhiteBubbleCnt > 0 and CntI < PktS WB − 1 then
assignColor(BLACK); // till CntI == PktS WB-1;
don’t Inject;

end
Ejection:

7 if HF.color == GRAY then
8 if WhiteBubbleCnt > 0 then

assignColor(GRAY);
9 else

turnBlueToGray;
end

end
10 CntI=HF.CntH; HF.CntH = 0; HF.color=WHITE;

Transit:
11 if isColor(BLACK) and HF.CntH > 0 then

removeColor(BLACK); // as much as possible
12 else if isColor(BLACK) and HF.CntH == 0 then

bkwdDispl(BLACK);
end
CntI Logic:

13 if CntI > PktS WB − 1 then
bkwdDispl(CNTI); CntI–;

end
Algorithm 1: Bubble Sharing Flow Control

5.1.3 Blue Bubbles:

It is possible that one ring takes all the white bubbles and starves others. Moreover, the

movement of this ring can be dependent on movement of other rings, for example in xy

routing, movement of rings in the x-dimension are dependent upon successful movement

of rings in the y-dimension. If the ring x takes all bubbles at a particular router, ring y
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may not be able to move through that router, which will stop ring x from moving as well,

causing deadlock. The example in Fig 34 a) explains the situation. A packet in R2 in ringY

wants to move through R6, but all bubbles of R6 are taken by ringX. Thus ringY cannot

move, although it has sufficient bubbles in R10. Since ringY cannot move, a packet at R5

in ringX that wants to eject into ringY cannot make progress.

R7R6R5R4

R10

R14

R2

R7R6R5R4

R10

R14

R2

R7R6R5R4

R10

R14

R2a) b) c)

RingY Blue

RingX Blue

RingY Black

RingX Black

Figure 34: Avoiding one ring to take all bubbles

The problem can be solved by introducing a blue bubble for each router in each ring.

This bubble acts as a normal white bubble assigned to that ring, but as a black bubble

assigned to a different ring for all other rings. This ensures that at least one worm-bubble

slot is kept in each router for each ring, thus allowing that ring to always make forward

progress. In the previous example, Fig 34 b) shows blue bubbles for both rings. The blue

bubble of ringY will allow flits waiting at R2 to move forward into R6 consuming the blue

bubble (Fig 34 c). However, as soon as the flit leaves the router, the blue bubble for that ring

is reclaimed, ensuring forward movement all the time. It should be noted that to guarantee

progressive movement of a gray bubble, the blue bubble should be converted to gray bubble

for that ring, in case no other white or black bubble for that ring is left in that router. This

also holds true in the case of ejection. The ejection rule is slightly changed to encounter

the blue bubble as shown by label 9 in algorithm 1.

5.1.4 Starvation Concern:

As explained earlier, if a packet does not encounter enough black bubbles during transit,

it passes the remaining count of its marked black bubbles (i.e., CntH) to the ejection port.

However, for traffic patterns with 1-1 communication, it is very likely that this counter
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keeps incrementing at a particular ejection point. This means that one router has injected

most of the black bubbles in that ring. This condition can lead to starvation of other routers

in the ring, which may never inject new black bubbles.

We solved this problem by having a separate backward displacement signal for CntI.

Every time CntI becomes greater than the packet size in terms of worm bubbles, CntI is

displaced backwards, evening out the black bubbles injected by different routers in the ring

(rule 13). Backward displacement of CntI means that a router, which has injected too many

black bubbles in the ring, is giving those bubbles to its neighboring routers to decrease their

injection delay.

5.2 Adaptive Bubble Sharing

The injection limitation in WBFC limits its performance specially at high loads when most

ports are marking most of the bubbles as critical, leaving only gray bubbles to allow in-

jection. In such a scheme, allowing support for adaptive routing will increase throughput.

However, the problem with adaptive routing is that it requires additional virtual channels

and thus buffer space. We present adaptive bubble sharing which merges the ideas pre-

sented in bubble-coloring scheme (BCS) [113] with WBFC to provide support for adaptiv-

ity in single-VC centralized buffer routers. We next give a brief description of the bubble-

coloring scheme.

5.2.1 Bubble-Coloring Scheme

[113] presents bubble coloring scheme (BCS), a method to perform adaptive routing using

bubble flow control in packet based networks. The basic idea is to maintain a virtual ring

with a critical bubble that connects all the routers of the network, which can be used as an

escape path for adaptive routing.

Consider the example of a mesh shown in Figure 35. The dotted line represents a

fully connected virtual ring utilizing some channels of the network. A critical bubble is

maintained in the ring using the injection/ejection rules of CBS. This bubble will allow
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Figure 35: Bubble-coloring scheme (BCS)

packets in the ring to always make forward progress. Packets that are not in the ring can

always contest for injection into the ring. e.g. in Fig 35, four packets are waiting on each

other in a cycle. However, packet 0 is also contesting for the north port, which is part of the

virtual ring. The critical bubble present in the ring will move backwards, allowing packet 0

to escape the cycle. The scheme, however, does not work for wormhole networks, since it

does not guarantee that packets ejecting the ring will be drained out completely (discussed

later). We have used the basic idea of providing an escape path using a virtual ring to design

our adaptive bubble sharing scheme for wormhole based centralized buffer routers.

Next, we present the necessary deadlock avoidance requirements for any adaptive rout-

ing scheme to work, which requires three things to be guaranteed:

1. There must always be a deadlock-free escape path from any source to any destination.

2. Packets ejecting the escape path must be consumed.

3. All packets are guaranteed to contest for injection into the escape path.

5.2.2 Satisfying Condition 1

The first condition is satisfied by having a virtual ring with guaranteed bubbles, as used in

BCS. For networks with centralized buffers, bubble sharing can be used instead of a packet-

based critical bubble used in the original bubble coloring scheme. A problem, however, is
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that the virtual ring in BCS allows the use of 180 degree turns. With wormhole networks,

this can lead to deadlocks within a packet, that is, a packet going towards its minimal

direction takes a 180 degree turn to enter the escape ring, and then takes another 180 degree

turn towards its minimal direction, deadlocking itself. We avoided this by having two

separate virtual rings going in opposite directions, and prohibit 180 degree turns. Since

both escape paths are deadlock free, prohibiting one does not break deadlock avoidance

guarantees provided by the other.
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Figure 36: An example showing deadlock with BCS in wormhole networks

5.2.3 Satisfying Condition 2

The second condition is similar to what is generally called the consumption assumption.

However, since packets can leave the virtual ring without reaching their destinations, it is

possible that the head flit leaves the ring and gets blocked in the non-ring channels of the

network, leaving body and tail flits in the virtual ring. Consider the example depicted by

Fig 36 in which router 2,3,6 & 7 of a 4x4 network are zoomed in. Assume that the virtual

ring is the same as shown earlier in Fig 35. Further, assume that the path in router 2 &

3 going west is blocked. A new packet P1 with destination 1 arrives at router 3 from the

east port. Since, the path forward is blocked, it takes the escape virtual ring going south.

Suppose at router 7, the minimal direction, i.e. West, is free. So it leaves the ring towards
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router 6. Router 6 again sends the packet north towards router 2. The scenario is shown in

fig 36. In that figure, H1, B1 & T1 represents head, body & tail flit of packet P1 respectively.

Suppose another packet P3 is also moving through the routers as shown in the figure. Since,

the west direction is blocked, H1 cannot take it. The virtual ring is already occupied by P3.

H3 cannot move forward because T1 is waiting at the input buffer of router 7. The bubbles

present somewhere else in the virtual ring cannot be propagated to router 7 to break the

deadlock. Note that conditions 1 and 3 are satisfied, that is, there are bubbles in the ring and

head flit is contesting for the escape path. However, the second condition of consumption

is not satisfied. This scenario does not happen in original BCS because, in packet-based

networks, when a packet leaves the ring, it always drains, i.e., there are no body and tail

flits to lag behind in the previous routers. With central buffers, we can utilize the above

mentioned fact by checking a space of PktS WB in the central buffer before ejecting a

packet from the virtual ring, ensuring that it will drain completely. Hence, ejection out of

the virtual ring is only allowed if WhiteBubbleCnt > PktS WB − 1, guaranteeing ejection

of the complete packet from the ring, and hence breaking the deadlock condition discussed

above.

5.2.4 Satisfying Condition 3

The third condition is satisfied in edge buffer routers by allowing head flits to leave only

when the input buffers of the downstream router is empty (credit=input buffer size). This

cannot be used with centralized buffer routers due to the presence of EB links with no credit

based flow control. EB links do not guarantee head flits to be at the top of the input buffer

contesting for allocation all the time. This means that it is possible that all head flits wait

behind the tail flits in a cycle, and are not even allowed to contest for the escape path.

The solution requires a guarantee that once a head flit traveling outside the virtual

ring leaves the allocation stage, it will reach the head of the downstream input buffer

and contest for the escape path (if required). A simple way to guarantee this is to al-

low movement only when there is a space of one packet left among the white slots in the
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central buffer. This will ensure that the current packet drains completely and the subse-

quent packet’s head reaches the top of the input buffer. However, it will put a significant

injection bottleneck in the non-ring channels, especially because the virtual ring will be

eager to occupy any available white bubbles. We reserve a pool of bubbles, (let’s call

them yellow bubbles), specifically for the non-ring channels, and prohibit the virtual ring

to take these bubbles. Channels not in the ring are allowed to occupy from the pool of

yellow and white bubbles while channels within the ring can only take white or their

own black, blue, or gray bubbles. Injection in the non-ring channels is allowed as long

as WhiteBubbleCnt + YellowBubbleCnt > PktS WB − 1. This condition is enough for

drainage of packets ejecting the ring as well (condition 2), since they are also injecting

into the non-ring channels. The introduction of yellow bubbles will allow packets to take

minimal non-ring channels more often with a high impact on low load latency. We further

prioritize minimal channels over non-minimal channels during allocation reducing low-

load latency even further. The extended algorithm for adaptive bubble sharing flow control

is given by algorithm 2.

Init:
1 Make 2 opposite fully connected virtual rings;
2 Initialize according to bubble sharing;

Route Computation:
3 Provide minimal adaptive channels;
4 Provide 2 non-minimal escape channels;
5 Prohibit 180 degree turns;

Injection & Transit:
6 Same as bubble sharing for both rings;

Ejection:
7 ejecFlag == (WhiteBubbleCnt + YellowBubbleCnt > PktS WB − 1);

for All non-ring channels do
8 if e jecFlag == true then

Same as bubble sharing;
end

end
Algorithm 2: Adaptive Bubble Sharing Flow Control
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5.3 Modifications to Centralized Buffer Router

The modifications to CBRs required to implement both deterministic and adaptive bubble

sharing is given as shaded regions in Fig 37. As explained earlier, the DAMQ-style central

buffer is organized as small worm-bubble sized slots. A color and a portno field is added

to each slot to determine the color and the ring assigned to the slot. A logic of few gates is

added during the allocation and deallocation of each slot, to determine whether a slot can

be assigned a specific color and ring, based on its current color and status. IBSA stage is

modified to implement algorithm 1, and rules of adaptive bubble sharing. This, however,

works in parallel to the allocation logic, having minimal impact in its critical path. Other

modifications like CntI for each ring, CntH in each head flit, progressive movement, and

backward displacement signals are added similar to the original WBFC and BCS schemes.

Backward displacement hardware is slightly modified to accommodate exchange of CntI

signals. Overall, the modifications added a few gates, flip flops, and control signals, with

almost negligible impact on the critical path of the router.
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Figure 37: Modified centralized buffer router [32] to support bubble and adaptive bubble sharing

87



5.3.1 Worm Bubble Coloring (WBCS)

The idea of adaptive routing with single-VC wormhole networks can also be applied to

edge buffer routers. We only need to satisfy the three conditions given above. Condi-

tion 1 and 3 can be satisfied by WBFC, and by allowing head flits to leave only when

credit=input buffer size. The problem of drainage from the virtual ring can be solved by

providing a small packet size - worm bubble size entry central buffer. Ejection from the

virtual ring is only allowed when this buffer is empty, and there is no other packet leaving

any of the virtual ring. If a head flit is already ejected from the virtual ring, a cntStk counter

is started to count the number of cycles body and tail flits will wait in the router before

being allowed to get ejected from the ring. When the counter reaches a threshold (con-

sidered a sufficient condition for that packet being blocked), body and tail flits are moved

to the central buffer, allowing the head flit of the next packet to enter the input buffer and

contest for the virtual ring. We call this scheme as Worm-Bubble-Coloring and used it for

evaluation purposes.

5.4 Results

Next we discuss the results of our bubble sharing and adaptive bubble sharing schemes.

5.4.1 Simulation Setup

The proposed schemes are evaluated using the same in-house router micro-architectural

simulator that was used with the original CBR design. We also developed three edge buffer

router models for comparison: First using Worm Bubble Coloring, second using WBFC,

and third using standard Duato’s protocol [22] to avoid deadlocks. Any extra VCs in all

edge buffer routers use minimal adaptive routing. We used worm size of two flits for central

buffers in all our simulations. For adaptive bubble-shared routers, the routing logic provides

minimal adaptive paths along with the non-minimal escape rings. We prioritize minimal

paths over non-minimal paths during allocation. We assume that the backward displace-

ment or the progressive movement of bubbles can take place in a single cycle regardless of
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link delays. This can be done by having a separate network for control signals.

Table 7: Buffering configurations of various routers
Router Abbreviation InBuff CBuff

Baseline Base VCx 2*x 0
Worm Bubble Flow Control WBFC VCx 2*x 0

Adaptivity with Edge Buffers Worm BCS VCx 2*x 4
Bubble Sharing Bubble Share Cx 1 x+8

Adaptive Bubble Sharing Adp Bubble Cx y 1 x+y+4

Parametric configurations of each of the routers is given in Table 7. The table also

shows the abbreviations used in the results section for each of the router. Here VCx means

edge buffer router with x number of VCs. Hence WBFC VC2 means a router with worm-

bubble flow control and two VCs. Similarly, Cx y represents bubble sharing routers with x

entries reserved for white bubbles, and y entries reserved for yellow bubbles. Note that the

reserved slots for blue bubbles (one per ring) are additional from the slots given by Cx y.

We have assumed one message class and single flit output buffers. We have evaluated our

schemes using 2D torus topology with 4x4 & 8x8 networks. We further developed 2D

generalized hypercube topology (GHC), which has high number of ports, to understand the

impact on high radix routers. Rest of the network parameters are similar to section 4.5.

5.4.2 Performance with Synthetic Traffic
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Figure 38: Delivered throughput (retired flits / node / cycle) vs average latency (cycles) for 4x4 torus
with different traffic patterns

2D Torus Topologies: Figure 38 compares throughput and average packet latency of
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various schemes in a 4x4 torus network. The performance of single-VC WBFC and single-

VC Worm-BCS is low. This is because of the injection limitations required to enter a ring.

However, with 2VCs, the performance increases significantly, more than the baseline 2VC

router for most traffic patterns. The reason lies in the availability of more non-ring channels

that does not suffer the injection limitation. Bubble sharing gives the best result both in

terms of low load latency and saturation throughput. Reduction in low-load latency is

attributed to elastic links and single cycle pipeline delay in the router. Furthermore, having

multiple bubbles per ring reduces the injection delay, which results in improved throughput

as compared to WBFC. Adaptive bubble sharing suffers performance loss, both in terms of

no-load latency and saturation throughput, because of the ejection limitations discussed in

section 5.2. Since, there are a few number of non-ring channels, ejection limitation does not

allow packets that have already entered the ring to leave it, limiting the throughput equal

to the throughput of the virtual ring. However, the minimum number of buffers required is

extremely low, even with respect to bubble-shared router. This is explained in section 5.4.3.
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Figure 39: Delivered throughput (retired flits / node / cycle) vs average latency (cycles) for 4x4 GHC

2D GHC Topologies: Figure 39 shows the same result with a 4x4 GHC. In this case, the

ejection limitation is reduced because of the high number of non-ring channels available.

Furthermore, prioritizing minimal hops reduces the low-load latency of the adaptive bubble

sharing router, as well as its saturation throughput. Both edge buffer routers suffer due to

the presence of credit base flow control. Figure 40 compares throughput and average packet

90



latency with an 8x8 GHC. It can be seen that the adaptive bubble sharing scheme surpasses

others by a large margin. Again, this is because of the high number of non-ring channels

available along with EB links. Furthermore, the buffering requirement per router did not

change, even with high number of ports. Extremely low no-load latency is also achieved

due to the presence of EB links, priority for minimal hops, and low hop count.
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Figure 40: Delivered throughput (retired flits / node / cycle) vs average latency (cycles) for 8x8 GHC

We conclude this section by making the following remarks. For low radix networks,

adaptivity using bubbles does not help. In such a case, deterministic bubble sharing scheme

performs the best with reduced buffer space due to sharing. However, with high radix

topologies that have many routes to destination, adaptivity provided with bubbles signifi-

cantly improves performance without increasing the buffer area.

5.4.3 Buffer Space Analysis

Edge buffer routers requires at least one worm-sized entry per input port per VC. Worm BCS

also requires a packet size - worm size central buffer for minimum operation. WBFC re-

quires PktS WB black and one gray bubble to be injected per ring at initialization. For a

six flit packet with bubble size of two, this means four bubbles per ring. The total number

of rings in a 4x4 torus are 16, four in each direction. Thus, 4x16=64 bubbles will be in-

jected at initialization. Edge buffer routers use input buffers to provide these bubbles. With

central buffers, minimum number of entries required by each router is 64/16=4 bubbles.

Assuming that we have at least one white bubble per router at initialization, the number of
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entries required at each router = 5 worm-bubbles or 10 flits. Furthermore, each router re-

quires one blue bubble per ring making the minimum central buffer size to be 18 entries for

routers with bubble sharing. It should be noted that with an 8x8 torus, this will be reduced

to 12 entries per router. In the adaptive bubble sharing case, the two virtual rings require

4*2=8 bubbles anywhere in the network, in addition to the two blue bubbles per router.

This makes the minimum requirement with adaptive bubble sharing to be 6-8 entries per

router.

Table 8: Buffer space per router (bytes) with different configurations
RowNo Parameter 2D-Torus 4x4-GHC 8x8-GHC

1 Baseline VC2 400 560 1200
2 WBFC VC2 400 560 1200
3 Worm BCS VC2 464 624 1264
4 Bubble Share C10 448 512 768
5 Bubble Share C12 480 544 800
6 Adp Bubble C4 2 320 384 640
7 Adp Bubble C4 6 384 480 704

Table 8 gives the total buffer space requirements of different routers with different con-

figurations. The formula for calculating the buffer space is [P∗(I∗VC+O)+C]∗L, where L

is the link width, P is the number of ports, I, O, C is number of flits in the input, output and

central buffers, respectively. For 2D-ring topologies, the 2VC baseline and WBFC routers

require 400 bytes per router. Worm BCS requires slightly more with a small central buffer.

Since, worm size is only two flits, and we have one flit staging buffer in the centralized

buffer routers, the total buffer space in bubble sharing router with central buffer entries of

20 is high. However, the buffer size increases very slowly with increase in the number of

ports and gets extremely low, e.g., for 8x8 GHC. The adaptive bubble sharing router will

always have smaller buffering requirement than others because of its small entry central

buffer. Furthermore, its throughput with large number of adaptive channels is high making

it an ideal candidate for high-radix routers.
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Figure 41: Router area distribution with different configurations

5.4.4 Impact on Area

Fig 41 gives the area distribution of a 4x4 Torus and an 8x8 GHC router with different con-

figurations. Baseline has a large area in the input buffer for both 4x4 and 8x8 routers even

with a single message class. The input buffer area for bubble sharing routers is low. How-

ever, central buffer takes a significant amount of area as well. In 2D-Torus, this area dom-

inates over other parts making bubble shared routers 3% more expensive than the baseline

2VC router. However, with adaptive bubble sharing and small buffers, the area decreases by

27% making it the cheapest. Furthermore, with high radix, such as in GHC, the increase in

central buffer area is very low, as compared to area requirements of multi-VC input buffers

and crossbars, thus reducing the area of adaptive bubble router by 46% and 52% compared

to the Base VC2 and Worm-BCS VC2 routers, respectively. Note that the crossbars are

configured as input channels X output ports, that makes their area larger depending upon

the number of VCs. Since centralized buffer routers do not have VCs, their crossbar area

does not increase as significantly as edge buffer routers.

5.4.5 Impact on Power

Figure 42a compares the static and dynamic power dissipation of different routers at low

loads configured in a 4x4 torus and 8x8 GHC topology. At low loads, most of the router

power is static, with very small dynamic power in the buffers. The static power of the
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Figure 42: Router power distribution with different configurations: a) Low-load power distribution,
b) high-load power distribution

bubble shared router is 24% lower than the baseline in the 4x4 torus topology. This is due

to the presence of a smaller crossbar (single-VC) in it. Adaptive bubble shared routers

further reduces it to 32% & 41% for 4x4 torus and 8x8 GHC, respectively, because of their

smaller central buffers.

At high loads, as shown in Figure 42b, buffers take a significant portion of the over-

all dynamic power, with reduced distribution in links & crossbars. The highest for torus

topology is taken by bubble sharing routers because of the largest buffer size. However,

the adaptive bubble sharing case, as can be seen with the GHC topology, requires the least

amount of dynamic buffer power even with the highest throughput.

We conclude this section by pointing out the fact that bubble sharing not only reduces

the buffer space, it also removes the need of virtual channels. This may lead to reduction

in crossbar area as well along with reduced buffering.

5.4.6 Results with Real Benchmarks

Fig 43a gives the average packet latency of various schemes with an 8x8 GHC topology

normalized with respect to the baseline 2VC router. As can be seen, adaptive bubble sharing

consistently gives lower latency across a range of benchmarks. The percentage improve-

ment on average is 31%. Similar results can be seen in Fig 43b showing throughput per

unit power. Average percentage improvement in this case is 41%. With 8x8 torus (Fig 44),
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Figure 43: Results with benchmark traces - Normalized average packet latency and throughput per
unit power for 8x8 GHC

although adaptive bubble sharing did not perform as good, our bubble sharing scheme out-

performs all other schemes with an average improvement in throughput per unit power by

13% and 25% compared to Base VC2 and WBFC VC2, respectively.
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5.5 Concluding Remarks

This chapter addressed the buffer space reduction problem in centralized buffer routers by

proposing the use of variants of bubble flow control; specially for high-radix networks. A

wormhole-based version of the bubble coloring scheme is also presented to provide adap-

tivity without the use of VCs in CBRs. However, the design only works for regular topolo-

gies like torus with fixed cyclic paths or rings. Bubble flow control and its variants may not
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be the ideal choice for more complex, irregular topologies with non-deterministic cycles in

them. The next chapter extends CBRs to support multiple VCs and use them with an ir-

regular high-radix topology reducing its buffering requirement while maintaining deadlock

freedom with the help of multiple virtual channels.
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CHAPTER 6

DETERMINISTIC CBR WITH VCS FOR IRREGULAR
TOPOLOGIES

Centralized buffer routers uses elastic buffer (EB) links to reduce the latency penalty of

long wires. EB links, however, does not allow the use of virtual channels in the links.

Hence, we used variations of bubble-flow control to provide deadlock freedom. However,

bubble-flow control only works for regular topologies, such as rings and torus. For com-

plex irregular topologies, we extend the centralized buffer design to support multiple VCs.

We used recently proposed ElastiStore [84] technique to allow virtual channel with CBRs.

To explore VC-based CBRs with high-radix irregular topologies, we used the VC-enabled

CBR design with Slim Fly, a recently proposed high-radix topology by Besta and Hoe-

fler [5], to come up with an optimum diameter-2 on-chip network with the least number

of ports in the router. The topology is fairly irregular and requires two VCs for deadlock

freedom, hence CBRs with multi-VC support are used.

6.1 Multi-VC Centralized Buffer Router
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Figure 45: A basic ElastiStore link

The main modification in a multi-VC CBR is the use of ElastiStore (ES) links instead
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of elastic-buffer (EB) links. ES links, as shown in Figure 45, use a separate pipeline buffer

and the associated control logic for each VC in the links along with a per-VC ready-valid

handshake signal. The per-VC ready-valid handshake signals independently progress flits

of each VC, removing their mutual dependence in the pipelined link. The design is further

extended by only keeping the slave latch per VC and sharing the master latch among all

VCs. This reduces the overall area and power due to ES links. The performance cost is

minimal and reaches 1
|VC| only when all VCs except one are blocked in the pipeline. Other

modifications include using per-VC (instead of per-port) I/O staging buffers and head/tail

pointers of the CB, ensuring mutual VC independence. The crossbar radix is still k′ ·(k′+1),

like in the original CBR. This is enabled by having small multiplexer / demultiplexer before

and after the crossbar inputs and outputs. We maintain single input and single output for

the CB, which does not impact performance significantly [4].

To explore VC-based CBRs with high-radix irregular topologies, we used the VC-

enabled CBR design with Slim Fly, a recently proposed high-radix topology by Besta and

Hoefler [5], to come up with an optimum diameter-2 on-chip network with the least num-

ber of ports in the router. Smaller diameter and thus hop count meant lower latency while

fewer number of ports resulted in lower power. The design, however, has long multi-cycle

links which can result into large buffers at the inputs and severe performance loss due to

credit-based flow control. Central buffers provide an ideal solution in this case with their

single-flit input buffers and elastic-buffered links. Furthermore, the topology is fairly ir-

regular and requires two VCs for deadlock freedom, hence CBRs with multi-VC support is

used. We next present a brief description of rack-based Slim Fly Topology and its extension

to on-chip networks.
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6.2 The Slim Fly Topology (SF)

SF [5] is a low-diameter cost effective topology for large computing centers that uses math-

ematical optimizations to minimize the network diameter D for a given radix k while main-

taining full global bandwidth. The main SF design uses graphs introduced by McKay,

Miller, and Širán [57] (denoted as MMS graphs) to connect routers and it has a diameter

of 2 ensuring lowest latency for many traffic patterns [5]. More importantly, decreasing D

also reduces the number of required network resources (packets traverse fewer routers and

cables), directly translating to reductions in cost and power consumption.

Figure 46: High-level overview of Slim Fly topology

SF has a highly symmetric structure presented in Figure 46. Here, we illustrate the

intuition behind the SF structure necessary for the on-chip design; the details are discussed

by Besta and Hoefler [5]. Routers in SF are grouped into SF subgroups with the same given

number of routers (denoted as q). There are two types of subgroups, each type with the

same pattern of intra-group cables. Every two subgroups of different types are connected

with the same number of cables (also q). There are no cables between subgroups of the

same type. Thus, subgroups form a fully-connected bipartite graph where each edge is

formed by q cables. Subgroups of different types can be merged pair-wise into identical

SF groups, each with 2q routers. Groups form a fully-connected graph where each edge

consists of 2(q−1) cables. q is a parameter that determines the structure of a specific SF [5].
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An SF with a given q is characterized by the following parameters [5]: the number of

routers Nr = 2q2, the network radix k′ =
3q−u

2 , and the number of endpoints N = Nr p. The

concentration p is equal to bk′/2c+ κ; κ determines the desired tradeoff between increasing

endpoint density (larger κ) and decreasing contention (smaller κ).

Figure 47: Labeling and respective indexes of SF routers

Each SF router is labeled as [G|a, b]. G ∈ {0, 1} determines the type of a subgroup that

the router belongs to, a is the number of the subgroup of type 0 or 1, and b is the router’s

ID in the subgroup; (a, b) ∈ {1, 2, ..., q}2. The index i (1 ≤ i ≤ Nr), assigned to each router

can be computed as i = G · q2 + (a− 1) · q + b, for a given label [G|a, b]. Figure 47 presents

the labeling and respective indexes of different routers.

A model for placing routers on a 2D grid is illustrated in Figure 48. Here, a router i

(1 ≤ i ≤ Nr) is assigned to coordinates (xi, yi) on a 2D grid. We assume that routers form

a rectangle where 1 ≤ xi ≤ X and 1 ≤ yi ≤ Y . For two connected routers i and j, the

connecting link is placed along the line segments determined by the points (xi, yi), (xi, y j),

and (x j, y j) (if |xi − x j| > |yi − y j|), or (xi, yi), (x j, yi), and (x j, y j) (if |xi − x j| ≤ |yi − y j|).

Intuitively, SF is similar to the balanced dragonfly DF topology [44]. DF also consists of

groups of routers that form a fully-connected graph. Yet, there is only one cable between
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Figure 48: The layout model with two example wires

two groups in DF resulting in higher D. Moreover, the internal structure of each DF group

also forms a fully-connected graph, which is not necessarily true for SF. Finally, SF reduces

the number of routers by ≈25% in comparison to a DF with comparable N.

6.3 ON-CHIP SLIM FLY

We now describe an on-chip SF design. SFminimizes the radix k, reducing the total buffer-

ing size ∆. However, SF’s low diameter may need a large number of longer multi-cycle

links. In such a scenario bigger buffers would be required to fully utilize the wire band-

width, overshadowing the advantages provided by small k. To alleviate this, we use two

strategies:

Optimizing Layouts To keep the wires short, we propose several physical on-chip

SF layouts that lower the average Manhattan distance M between connected routers and

reduce edge buffers and latency. This strategy reduces the area/power consumption in on-

chip SFs without the need to incorporate any additional micro-architectural mechanisms.

Orthogonally, we use SMART links to further reduce wire latencies.

Incorporating Central Buffers We add CBRs to SF and illustrate that this reduces
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buffering requirement even further. This strategy uses state-of-the-art on-chip schemes that

can be manufactured in the foreseeable future.

Figure 49: Different physical SF layouts

6.3.1 Slim Fly Layouts

We created four generic on-chip SF layouts that minimize average wire length and buffer

space as shown in Figure 49. The first one is the basic layout (sf basic) in which sub-

groups with identical intra-subgroup connections are grouped together and a router [G|a, b]

is assigned coordinates (b, a + Gq). As such subgroups are not directly connected, this

layout may increase the length of inter-subgroup connections. Thus, we mix subgroups

pairwise to reduce the length of wires between subgroups and obtain the subgroup layout

(sf subgr). A router [G|a, b] has coordinates (b, 2a − (1 − G)) in the subgroup layout.

Both sf basic and sf subgr have a rectangular shape (q × 2q routers) and thus can eas-

ily be manufactured. Finally, to reduce the wiring complexity, we create the group layout

(sf gr) by merging subgroups of different types pairwise and grouping the resulting groups

in a shape as close to a square as possible. Intuitively, there are q groups, each group has

identical intra-group connections, and there are 2(q − 1) wires between every two groups.
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6.3.2 Ensuring Deadlock Freedom

SF with D = 2 uses two VCs to avoid deadlocks: VC0 for the first and VC1 for the second

hop (assuming paths of lengths up to 2). Here, the only dependency is that of VC0 on

VC1, which is not enough to form cycles. We now extend this scheme to the CBR design.

To ensure deadlock-freedom, two conditions must be met. First, CB’s allocation must be

atomic: it cannot happen that some flits have entered the CB and the rest is stalled in the

links waiting for the CB to get free. This will create a false dependency of one port on the

other. Second, head flits of all the packets in different ports and VCs should always be able

to compete for the allocation of the output ports and VCs, that is, they must always reach

the head of the input buffers and not wait in the link pipelines behind body and tail flits

indefinitely.

The first condition is satisfied by reserving a complete packet space during the CB

allocation stage. Thus, once a packet decides to take the central buffer path, it is guaranteed

to move completely into the central buffer. A packet in the central buffer is always treated

as part of the output buffer of the corresponding port and VC. Thus, if the baseline routing

algorithm is deadlock free, it will be deadlock free with the central buffers too. The second

condition always holds true in the case of edge buffer routers since a head flit is only

allowed to move forward when the downstream buffer is completely empty. With no credit

based flow control in the EB links, this condition is not guaranteed. We only focus on

deadlock-free deterministic routing algorithms. In such a case, head flits are guaranteed to

reach the head of the input buffer. But since we are only focusing on deterministic routing

with fixed paths, this condition is not required for deadlock-freedom.

This fact, however, indicates that our design does not support adaptive routing with the

CBRs. We plan to extend it to support adaptivity in future.

6.4 EVALUATION OF ON-CHIP SLIM FLY

The next section compares SF’s using CBRs with other topologies and buffering options.
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6.4.1 Simulation Setup

Comparison Targets We compare SF to: concentrated 2D meshes (CM, D = d
√

Nr − 2e),

tori (T2D, D = d1/2
√

Nre), and two-level flattened butterflies [45] (FBF, D = 2). CM and

T2D represent low-radix baselines. FBF represents a state-of-the-art high-radix topology

with D = 2. Yet, for a fixed N and for D = 2, k is much higher in FBF than in SF. Thus, for

fair comparison, we developed a partitioned FBF (PFBF) with fewer links to keep k equal

to SF’s k.

Figure 50: An example partitioned FBF (1D). Cores are not shown.

To get PFBF we partition an original FBF into smaller identical FBFs. The smaller FBFs

are connected with one another by one port per node in each dimension. An example is

shown in Figure 50. Here, router nodes are divided into two groups of three, each having

its own butterfly structure. A single link is connected from a node of first partition to the

corresponding node of the second partition. Thus, if a packet has to travel from 0-4, it first

takes the inter-partition link to reach 3 and then takes the intra-partition link to reach router

4. It can be seen, that the number of links per dimension has been reduced to 3 instead of 5

as is the case with a full flattened butterfly. The manhattan distance between the two nodes

remains the same in most cases, however, the diameter of the 2D network increases to four.

We consider two classes of network sizes: N ≈ 200 and N = 1, 296. Network configu-

ration details are presented in Table 9.

Router Architectures We use both routers with edge buffers and with central buffers.

An edge router has a standard 2-stage pipeline with two VCs [68]. A CB router takes two

cycles in the bypass path and four cycles in the buffered path; we turned off lookahead

switch allocation for this analysis.

Buffering Strategies We use: InBuf-F-S and InBuf-F-L (all edge buffers have

104



Table 9: Considered network configurations

Network
N ≈ 200 N = 1, 296

Sym. p k′ k Routers Sym. p k′ k Routers

T2D
t2d3 3 4 7 8x8 t2d9 9 4 13 12x12
t2d4 4 4 8 10x5 t2d8 8 4 12 18x9

CM
cm3 3 4 7 8x8 cm9 9 4 13 12x12
cm4 4 4 8 10x5 cm8 8 4 12 18x9

FBF
fbf3 3 14 17 8x8 fbf9 9 22 31 12x12
fbf4 4 13 17 10x5 fbf8 8 25 33 18x9

PFBF
pfbf3 3 8 11

4 FBFs
(4x4 each)

pfbf9 9 12 21
4 FBFs

(6x6 each)

pfbf4 4 9 13
2 FBFs

(5x5 each)
pfbf8 8 17 25

2 FBFs
(9x9 each)

SF sf * 4 7 11 10x5 sf * 8 13 21 18x9

the size of 5 and 15 flits, respectively), InBuf-O-S and InBuf-O-N (edge buffers have

minimal possible sizes for 100% link utilization with/without SMART links), CBR-S and

CBR-L (CBs of sizes 6/40), and Only-EB (neither edge buffers nor CB). Other simulation

parameters are similar to the previous two chapters. We also used an adversarial traffic

pattern ADV1 which maximizes the load on a single-link path. Simulations with synthetic

traffic patterns are performed for 1M cycles only because of the large size of the networks.

Multiple copies of 64-threaded version of each benchmark is used to model real benchmark

traffic of large networks.

6.4.2 Performance: Synthetic Traffic

We start the analysis by comparing performance of SF to other topologies using synthetic

traffic. The analysis results are presented in Figures 51 and 52. As expected, SF outper-

forms CM and T2D for all the analyzed cases. For example, for RND and N = 1, 296, it

improves latency by ≈45% (over T2D) and ≈57% (over CM), and throughput by 10x. This

is a direct consequence of SF’s significantly lower D and higher bandwidth. Then, SF’s

throughput is marginally lower than that of PFBF in some cases (e.g., N ≈ 200, REV) be-

cause of PFBF’s minimum Manhattan paths. Yet, in most cases SF has a higher throughput
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Figure 51: Performance analysis (synthetic traffic) of networks with N ≈ 200 endpoints and with
SMART links

(e.g., >60% for N = 1, 296 and RND). SF’s latency is always lower (≈6-25%) than that of

PFBF due to its lower D. Finally, without SMART links, SF’s longer wires result in higher

latency than in FBF (≈%26 for RND and N = 1, 296). With SMART links, both topologies

consistently have comparable latency. Yet, SF delivers lower throughput (≈40%) due to its

smaller radix. We will later (section 6.4.4) illustrate that SF offers a lower energy-delay

product than that of FBF, achieving a better performance/power tradeoff.
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Figure 52: Performance analysis (synthetic traffic) of networks with N = 1, 296 endpoints and with
SMART links

6.4.3 Buffer Sizes

We now present the total buffer size in various networks with different buffering strategies;

see Table 10. All the designs with edge buffers require significantly larger buffer space

than the CBR designs; the higher the radix is, the larger is the total buffer space required by

routers with edge buffers. With central buffers the buffer space does increase with higher

radix but the rate of increase is very slow due to single-flit I/O staging buffers. Only-EB has
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Table 10: Buffering requirements [KB] for different configurations

Strategy N ≈ 200 N ≈ 1, 296

CM FBF PFBF SF subgr SF gr CM FBF PFBF SF subgr

InBuf-F-S 267 477 351 305 305 1424 2275 1802 1926
InBuf-F-L 547 1157 791 649 649 2594 5065 3692 4052
InBuf-O-N 267 701 431 433 459 1424 3594 2222 3513
InBuf-O-S 267 477 351 306 310 1424 2293 1802 2001
CBR-S 161 211 181 173 173 968 1172 1060 1091
CBR-L 195 245 215 199 199 1046 1249 1136 1177
Only-EB 155 205 175 167 167 956 1159 1046 1076

the smallest buffering requirement but it suffers from head-of-line-blocking as mentioned in

chapter 4.5. SF gives an optimal tradeoff of k (hence the crossbar size) for a given diameter

and thus it has the lowest buffering space with a diameter-2 topology.
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Figure 53: (section 6.4.4) PARSEC/SPLASH benchmarks (with SMART).

6.4.4 Performance & Power: Traces

We now compare SF to other topologies by running traces of PARSEC/SPLASH bench-

marks; see Figure 53. As a summary, we illustrate energy-delay (ED) product for each

benchmark. SF reduces ED by 55% on average (geometric mean) compared to FBF as it

consumes less static and dynamic power. Moreover, SF’s ED product is 29% smaller than
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that of PFBF due to the latter’s higher latencies and power consumption. Similarly, SF re-

duces the ED product by 19% compared to CM. After normalizing the results per router, SF

retains its advantages over FBFs, with its ED product being on average 45% and 10% lower

than in fbf3 and pfbf3.

6.5 Concluding Remarks

The previous three chapters proposed centralized buffer routers that attempts to reduce

latency in on-chip wormhole networks while keeping the buffering space and thus power

of the routers small. We explored both deterministic and adaptive versions of CBR and

analyzed their performance and power with both regular and irregular topologies under

different traffic patterns. Such low-cost, low-latency networks are ideally suited for a 3D

stacked system with large number of memory channels. As mentioned before, network

latency, address management, and thermal regulation are the three major challenges of 3D

stacked memories. Until now, we have explored memory re-organization, network traffic

and latency reduction, and address management to improve performance of 3D memories.

Next, we shift our focus to thermal problems of 3D stacks. More specifically, we analyze

the rise in operating temperature for 3D stacks and propose optimizations to reduce the

negative impact of high temperature on the performance of the overall system.
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CHAPTER 7

THERMAL ANALYSIS OF 3D MEMORIES

A fundamental problem with 3D ICs is the removal of heat from multiple dies stacked

on top of each other leading to various new thermal challenges. These include, 1) higher

thermal coupling among processor and memory dies, 2) higher variation in heat removal

capability, power density, and temperature; thus rapid thermal degradation among various

dies (logic vs. DRAM), and channels within the die (uneven usage of parallel channels),

and 3) lower charge retaining capability of DRAMs because of higher temperature; thus

more refreshes and reduced DRAM bandwidth availability. These problems can make ther-

mal constraints a major bottleneck in a 3D stacked memory system. Increased temperature

also has a negative impact on lifetime reliability of the memory system. Thus, 3D mem-

ories have mainly be used with memory-intensive applications running at low frequencies

which inherently have low performance. Further improvement in performance scaling by

increasing core complexity or frequency is generally limited by thermal constraints of 3D

memory. We identify 3D memory’s thermal wall problem and explore the performance

scaling improvements made possible by using microfluidics cooling technology in a 3D

stacked memory system. We also analyzes and compares the reliability-performance trade-

offs between multicore systems with 3D and 2.5D stacked memory identifying correlations

between frequency, performance, temperature, and reliability and uses it to quantify the

reliability-performance tradeoff.

7.1 Evaluation Methodology

Figure 54 depicts simulation flow used for our experiments. We used Manifold micro-

architecture simulator [112] to compose 3D network and memory controllers (MC) con-

necting 32 out-of-order cores that execute PARSEC parallel application threads [10] as

described in 3.2. We compared our 3D system configuration with a comparable silicon
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Figure 54: Evaluation methodology for thermal analysis of 3D stacked memories

interposer based memory system. We called it 2.5D a stacked memory system as shown in

Figure 55.

Figure 55: 2.5D Stacked Memory System for Comparison Purposes

For 2.5D stack, the base logic layer consists of four MCs connected through four par-

allel memory channels. The four MCs each control a quarter of a die, with multiple dies

sharing a channel similar to the 3D system. The bank size of both DRAM systems are kept

constant to 64MB with the same number of rows and page sizes. However, the 2.5D system

has eight banks per rank (due to lower number of channels) as compared to two banks in the

3D stack. This changes the refresh time tRFC for both memories which is 160ns for 3D and

300ns for 2.5D-stacked DRAM. This also impacts various current values which are given

in Table 11. Other timing parameters remain the same for both DRAMs; see Table 11. The

total DRAM capacity in both the systems is set as 8GB.

Architectural activity counters calculated from Manifold simulations are supplied to

111



Table 11: DRAM parameters [60] [95]
Parameter Value-both 3D and 2.5D Parameter 2.5D-value 3D-value

tCLK 1.25 ns IDD0 95 85
tRP 11 IDD2P 3 2.6

tRCD 11 IDD2N 32 8
tRC 39 IDD3P 19 5
tRAS 28 IDD3N 47 12
tCAS 11 IDD4R 265 66
tWR 12 IDD4W 294 73

tRRD: 5 IDD5 200 50
tRT P 6 IDD6 4.3 1.1
tWTR 6 tRFC 300ns 160ns

Kitfox [90] which uses McPAT [49] to estimate core area and power. We adopted USIMM [14]

to simulate 3D and 2.5D stacked DRAMs and estimate the power of DRAM banks. Col-

lected power traces were input to a compact 3D thermal model [109] which first converts

the floorplan power to thermal grid power and calculates the temperature based on power

density and thermal coupling of each grid. The calculated steady-state temperatures are

then used to calculate refresh rates of different dies (ranks) and channels which is fed back

to USIMM to calculate the updated performance results. For temperature calculations, we

assumed silicon-based interposer with negligible thermal coupling between the core and

DRAM dies, this is line with [127] which shows that this coupling is low as long as the

distance between the two dies is greater than 10mm.

For microfluidics cooling simulations, we used parameters given in Table 12 which are

directly taken from [109]. For air cooling, a high end server class heat sink is considered

and the channel height between subsequent dies in the stack is reduced; see Table 12.

7.2 Thermal Characteristics of a 3D System

As discussed earlier, one of the fundamental challenges of a 3D stacked system is to cool a

high power dissipating die which is hidden several layers beneath the heat sink. Figure 56

a) gives thermal maps for the 3D stack explained earlier with CPUs operating at a frequency

of 2.4GHz. Two important observations can be made from the figure.
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Table 12: Cooling parameters
Parameters Values

Liquid Cooling:
Pin fin height 300um

Pin fin diameter 100um
Width of thermal grid cell 200um
Height of thermal grid cell 200um

Effective heat transfer coefficient
for the bottom of stack 2200W/m2K

Ambient heat transfer coefficient
for the top of stack (Hamb) 10W/m2K

Ambient temp 20°C
Pumping Power 0.5W

Air Cooling:
Effective heat transfer coefficient (Hamb) 100W/m2K

Height between dies 100um

Figure 56: 3D Thermal map @2.4GHz with die separation of a) 300e-6m and b) 100e-6m
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7.2.1 Higher Overall Temperature

The baseline many-core processor die dissipates a large amount of power increasing its

temperature. In a 3D system, this die is at the bottom of the stack while the heat sink and

the fans are connected to the top with multiple DRAM layers in between. This decreases

the heat removal capability of the heat sinks increasing the temperature of the chips. Fur-

thermore, since the processors, the caches, and the DRAMs are stacked, the overall power

of the system is dissipated in a smaller area increasing power density and hence has a higher

overall temperature as compared to conventional 2D or 2.5D designs. Furthermore, unlike

2D or 2.5D systems, the temperature of DRAM is induced by the activity of the underlying

multicore die and the characteristics of the applications running on it.

7.2.2 High Variance within and across the Dies

The second observation to make is the high variation within and across the dies. Thus, the

dies at the top will be cooler as compared to the dies at the bottom. The amount of variation

across the dies depends upon the thermal coupling between the dies, which is a function of

the distance between them, that is, the TSV height. A reduced height of 100um, as shown

in figure 56 b), increases the thermal coupling decreasing variation and hence have higher

temperature specially of the top dies even with the same heat sink. Variations within a

die depends upon the application characteristics, processor floorplan, and memory access

pattern across various DRAM channels.

7.2.3 Higher DRAM leakage

Higher temperature decreases the charge retaining capability of DRAM, increasing its leak-

age. Typically DRAMs restore their charge by periodically reading and writing the DRAM

cells, a process known as DRAM refresh. Lower charge retaining capability means re-

fresh operations at a faster rate increasing refresh power and performance penalty. We will

analyze the refresh problem of 3D memories in detail in the next chapter.
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Figure 57: 3D thermal wall. Temperature of 3D stacks rise sharply with activity of cores.

7.2.4 3D Thermal Wall

Figure 57 gives the rate of increase of temperature in 3D and 2.5D stacks by increasing the

frequency of the cores. It indicates a linear increase in temperature for both the stacks. The

increase in the 3D case, however, is much higher as compared to the 2.5D case, primarily

because it’s temperature is governed by the temperature of the underlying multicore die ex-

periencing much wider range, whereas the temperature of the 2.5D stack is mainly induced

by DRAM activities which occur at a significantly slower rate. This sharp rise in tempera-

ture prohibits the full potential of 3D stacks even though they have much higher bandwidth

and thus capability to handle higher loads. In other words, 3D stacks hit the thermal wall

at higher frequencies prohibiting performance scaling. It should be noted that the rise in

temperature is caused by the higher activity of the cores which can occur due to various

reasons, such as, higher frequency, complex cores, compute-intensive applications, power-

hungry accelerators, etc. Furthermore, the increase in temperature decreases the charge

retention capability of DRAM increasing refresh rate, and also has a significantly negative

impact on DRAM lifetime and reliability. As a result, it is advised to use 3D stacks only

for memory-intensive applications running at a lower frequency.
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7.3 3D Reliability and Thermal Dependency

In the previous section, we established that 3D DRAM operates at much higher tempera-

ture than their 2.5D counterpart. We will later show that this rise in temperature has low

impact on performance specially for memory-intensive applications. However, increased

temperature in 3D may affect system reliability significantly. To understand how DRAM

reliability is dependent on its operating temperature, we adopted a DRAM lifetime relia-

bility model from Micron [102], where mean-time-before-failures (MTBF) is proportional

to temperature and voltage acceleration factors, AFT and AFV ,

MTBF ∝ AFT × AFV = e
Ea
k

(
1

To
− 1

Ts

)
× eβ(Vs−Vo) (3)

where Ea is the activation energy, and k is the Boltzmann’s constant. To and Ts denote

operation and stress temperatures, respectively. β is a process-dependent constant, and Vo

and Vs are operation and stress voltages.
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Figure 58: Impact of temperatures on DRAM lifetime reliability, and the extent of thermal variations
in 2.5D and 3D processors. Lifetime reduces exponentially with temperature.

Figure 58 shows the correlation between operating temperature and the resulting DRAM

lifetime. It can be seen that DRAM lifetime degrades very quickly with increased operating

temperature.
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Figure 59: 2.5D and 3D lifetime at different operating frequencies. 3D lifetime degrades rapidly
with frequency.

Using the thermal-reliability relation discussed above, Figure 59 shows the impact of in-

creasing core frequency on DRAM lifetime reliability. The result is an average of multiple

PARSEC/SPLASH benchmarks. Since the estimated operating temperatures of 3D stacks

are greater than 2.5D stacks, 3D DRAMs exhibits much lower lifetime. Furthermore, 3D

lifetime degrades quickly with increased frequency, which suggests that 3D systems should

be operated at much lower frequency than their 2.5D counterparts.

7.3.1 Reliability-Performance Tradeoff

Figure 60a and 60b plot the performance and reliability of 2.5D and 3D-stacked processors

for representative compute- and memory-intensive applications. For compute-intensive ap-

plication, 2.5D designs are better. They not only have better reliability characteristics but

also have higher performance than 3D at the same reliability design point. Performance

can further be improved by operating at higher frequencies. For memory-intensive applica-

tions, on the other hand, 3D stacked designs are better based on their superior performance.

Reducing frequency to improve lifetime reliability still achieves better performance relative

to comparable 2.5D design even at higher frequencies.
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Figure 60: Performance and reliability tradeoff between 2.5D and 3D-stacked DRAM processors.
Compute-intensive applications has better tradeoff with 2.5D while memory-intensive applications
prefers 3D memory systems.

7.3.2 Throughput-Lifetime Product

Song et al. [91] suggested using a metric of throughput-lifetime product (TLP) to quantify

reliability-performance tradeoffs. Figure 61 and 62 illustrate the TLP of various appli-

cations at different frequencies for 2.5D and 3D stacked memory systems, respectively.

In general, TLP of 3D design is higher at low frequency, specially in the case of memory-

intensive applications. However it decreases rapidly with increasing frequency due to lower

lifetime reliability. On the other hand, the variation in TLP in a 2.5D stacked system is

much lower, due to a much smaller variation in temperature with varying core frequencies.

In fact, for most applications (except canneal), small increase in frequency increases the
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Figure 62: Throughput-lifetime product of various applications with various frequencies. 3D stacks
show higher variation in TLP.
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overall TLP, showing 2.5D stacks can be operated at higher frequencies. To conclude, the

3D design is suited for cases of memory-intensive applications operating at low frequency.

For all other cases, the 2.5D system achieves better performance-reliability tradeoff.

7.4 Impact of Microfluidics Cooling

Liquid cooling has been proposed as a viable solution to keep the temperature of 3D stacks

low. Various type of liquid cooling solutions have been proposed. Bakir et. al proposed pin-

fin enhanced microgap cooling [123] that allows the fluid to flow next to the chip increasing

its effective heat transfer coefficient and cooling capability. Lower temperature increases

the operating range of the overall system allowing sustained performance scaling. This

section attempts to quantify the advantages of using microfluidics technology for continued

performance scaling.

7.4.1 Thermal Maps with and w/o Microfluidics Cooling

Figure 63: Heat-map of blackscholes @2.4GHz with and w/o microfluidics. Microfluidics cooling
keeps the temperature very nominal.

Figure 63 gives the heat map of blackscholes at a particular time instant with and with-

out microfluidics cooling in a 3D stacked DRAM. The air cooled system has a high vari-

ation in temperature. The bottom core die dissipates large amount of power and its tem-

perature reaches almost 350 Kelvin. The top die is closer to heat sink and thus has higher
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cooling capacity and operates at a much lower temperature; around 320 Kelvin in this

particular case. The microfluidics cooled system, on the other hand, is much cooler with

maximum temperature below 320 Kelvin. We assume that microfluidics is only applied at

the logic core die. The variation in temperature across the dies is also very minimal. Since

the coolant flow from one direction to the other, the temperature at one side is slightly

lower than the temperature at the other side. However, the variation is low. With such low

operating temperatures using microfluidics cooling technology, the refresh rate can be kept

at a minimal leading to significant reduction in refresh power and performance penalty.

Furthermore, programs can be run at much higher frequency without heating the system

significantly.

7.4.2 Performance Scaling with and w/o Microfluidics

Figure 64: Frequency vs Performance. Microfluidics cooling allow continued performance scaling
specially for compute intensive applications.

We analyzed the impact of microfluidics technology on performance scaling using var-

ious scaling parameters. These techniques are known to increase power of the cores and

hence temperature. We assumed that we have infinite power budget, and memory band-

width and temperature are the main performance limitations. Microfluidics cooling will
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keep the temperature low, hence have lower refresh rate and thus more bandwidth avail-

ability at much higher operating power. We analyzed performance scaling with three dif-

ferent knobs. 1) by increasing frequency, 2) by increasing the number of active cores, and

3) by increasing the core complexity (super-scalar width and ROB size). At low frequen-

cies (Figure 64), the performance with microfluidics remain similar to the case with no

microfluidics technology. Here, 3d − noM indicates air cooling and 3d − M represents

3D stacks with microfluidic cooling. At higher frequency, the impact of higher refresh

rate in the no microfluidic solution starts to dominate. However, microfluidcs keeps the

temperature low and hence allows for continued performance scaling with frequency.

Figure 65: Active Cores vs Performance. Microfluidics cooling supports core scaling in the logic
die.

The impact of microfluidics is even higher with increasing core count. Larger number

of cores increases the pressure on DRAM bandwidth and hence makes it more sensitive

to refresh rate. Even more, it increases the power of the logic die significantly. Figure 65

plots the performance of canneal with and without the microfluidics technology. The im-

provement using microfluidics is 6-7%. For compute intensive applications, performance
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improvement is even higher. Similar results can be obtained by increasing the complexity

of cores (not shown), which increases the ROB size, and hence puts a significant load on

DRAM bandwidth making it sensitive to temperature.

7.4.3 Impact of Microfluidics using the Roofline Model

A common way to understand the performance of a computer system is to look at the

roofline model [114]. The roofline model relates a system’s overall performance with op-

erational intensity of applications and memory bandwidth in a 2D graph. Figure 66a shows

the roofline model for a 2.2GHz Opteron X2 (taken from the original roofline paper [114]).

Operational intensity of an application, which is the x-axis of the graph, is defined as the

number of operations or flops per byte of DRAM traffic. The y-axis plots the maximum

attainable performance. The model has two distinct lines; the compute line, valid at high

operational intensity, plots the peak floating point performance of the system. The perfor-

mance of an application cannot be higher than this (compute-bound). And the memory line,

valid at low operational intensity, determines the peak memory performance for memory

intensive applications. The attainable performance can be obtained as the minimum of the

two as shown in Figure 66a. The peak performance line is a function of the frequency of

the cores. It moves up and down based on the operating frequency (Figure 66b). Similarly,

the slope of the memory line is a function of peak memory bandwidth of the system. On a

log scale, this is equivalent to shift in the memory line as shown in Figure 66b where the

intercept determines the peak memory bandwidth.

Figure 66c shows the roofline model of a 3D stack with peak memory bandwidth of

160GB/s compared with a 2.5D stack with memory bandwidth of 40GB/s. Due to higher

bandwidth, a 3D memory system can achieve higher performance at a much lower op-

erational intensity indicating its usefulness for memory-intensive applications. However,

thermal constraints limits operation at higher frequencies. Thus, the peak performance is

well below the maximum performance that can be achieved by a 2.5D stack running at
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(a) Roofline model of AMD Opteron X2

(b) Roofline model - memory bandwidth and frequency dependence

(c) Roofline model of 2.5D and 3D stack with and without microfluidics

Figure 66: The roofline model with thermal constraints and microfluidics cooling. Microfluidics
cooling allow both compute and memory intensive applications to run at higher frequencies.
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higher frequency, specially for applications with high operational intensity (aka compute-

intensive applications). It can be deduced that although 3D stacks have higher bandwidth,

the utilization of that bandwidth is limited only to memory-intensive applications running

at low core frequencies.

As shown in Figure 66c, microfluidics cooling removes the thermal constraints allow-

ing 3D stacks to operate at same peak core performance as a 2.5D stack. In the figure,

the dark shaded region constitutes of the applications that were not feasible for both 2.5D

and 3D stacks due to their moderate operating intensity and higher frequency. With mi-

crofluidically cooled 3D stacks, these applications are not only feasible but can achieve

maximum performance. Example of such applications include memory-intensive acceler-

ators like neural networks and GPUs running at a very high frequency. Figure 67 shows

the utilized bandwidth vs temperature for canneal running at different frequencies with and

without microfluidics technology. If we assume a thermal cap of 70C, we can see that the

maximum utilized bandwidth that can be achieved at this temperature is almost 50% higher

in the case of microfluidics cooling instead of an air-cooled system.

Figure 67: Utilized 3D bandwidth with and without microfluidics cooling

The light shaded region of Figure 66c constitutes compute-intensive applications and

core configurations such as complex out-of-order cores that were only feasible with 2.5D

stacks. We conclude by pointing out the fact that although 3D stacking has removed the
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memory bandwidth bottleneck for a number of applications, thermal constraints has put a

limit on the achieved utilization of this bandwidth both for memory-intensive applications

running at higher frequencies and compute-intensive applications. Microfluidics cooling

allow us to fully utilize the bandwidth available in 3D memories and pushes its envelope to

newer domains.

7.4.4 Challenges and Future Potential of Microfluidics Cooling

Sarvey et al. [83] explored different types of microfluidics cooling solutions. As discussed

earlier, we can provide pin-fin enhanced heat sink to all the dies or only to the high power

generating core die. The first solution has higher cost and power but can work with high

power dissipating solutions, such as 3D FPGAs. The second solution works in the cases

where there is a clear distinction between high power and low power generating dies. An-

other solution can be to pump coolant only through the interposer using similar micro pin-

fins. Since, the logic die is at the bottom, large amount of heat can be reduced by cooling

the interposer layer only. However, the design has two challenges. First, it will increase the

thickness of the interposer which will result in longer TSVs with increased losses. Second,

thermal coupling between the processor and memory die will still increase the tempera-

ture of the memory dies hurting performance. The paper proposes thermal resistant air

gap between high power dissipating core dies and low power dissipating memory dies to

reduce the thermal coupling between them. Another challenge that is discussed briefly in

the paper is the impact of thermal coupling between different stacks placed on an inter-

poser, specially if the horizontal distance among them is small. As discussed previously,

yet another challenge with pin fin based cooling is the distribution of the pins. Since TSVs

can only be placed inside the pins, thermal and electrical design considerations have to be

taken simultaneously as proposed in [117].

We conclude by pointing out that our analysis is the first attempt to understand the

impact of high-end cooling solutions, such as microfluidics, on the performance of a 3D

stacked system. However, the analysis has a number of limitations. We have not explored
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the impact of different cooling design parameters and various implementation options in

this study. Furthermore, the study uses same application to run all the cores. This means

our workload was either memory intensive or compute intensive. On the other hand, mixing

various compute- and memory-intensive applications simultaneously will give an interest-

ing behavior where the overall temperature is higher due to compute-intensive applications

while the memory bandwidth requirement is also high due to the memory-intensive appli-

cations. This case incurs penalty of both scenarios, higher temperature with higher memory

bandwidth demand. We plan to explore these options in future.

7.5 Concluding Remarks

In this chapter, we analyzed the thermal problems of 3D memory. We identified the rise in

temperature and its variance within and across the dies as the two major thermal bottlenecks

leading to increased DRAM leakage and hence higher refresh rate. We also quantified

the impact of high temperature on DRAM’s lifetime reliability. We showed that newer

cooling solutions, such as microfluidics cooling, can help alleviate 3D stacks temperature

problem and allow it to run new compute-intensive applications and operate at much higher

frequencies utilizing the full potential of the high bandwidth of 3D memories. In the next

chapter, we exploit the variance in stack DRAM’s temperature to propose variable-rate

refresh that not only reduces 3D stacks refresh power but also increases its operating range

by allowing DRAMs to function correctly at significantly higher temperatures.
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CHAPTER 8

VPREM - VARIABLE-RATE PER-BANK REFRESH
MANAGEMENT FOR 3D STACKED SYSTEMS

3D stacks provide greater memory bandwidth but DRAM dies suffer from higher operat-

ing temperatures induced by underlying multicore die and application characteristics. The

major problem is a lower heat removal capability which increases their temperature and re-

quires larger number of rows to be refreshed at significantly higher rates. Increased refresh-

ing time decreases memory bandwidth availability and increases refresh power prohibiting

continued performance scaling. Another problem with 3D stacks is the high variance in

temperature within and across the dies. Variance across the dies is created by the variation

in heat removal capability of conventional air-cooled heat sinks. Variance within the dies is

caused by the uneven activity of the underlying multicore die heating DRAMs differently

at different banks and channels. This chapter exploits the variation in 3D DRAM tempera-

ture and propose variable-rate per-bank per-channel refresh allowing different channels and

banks to be refreshed at different rates based on their operating temperatures. It allows the

DRAM to operate at higher temperatures tolerating hot-spots in the memory while keeping

the refresh power in check.

8.1 DRAM Refresh Problem

DRAM cells are leaky, that is, they lose their charge after a certain amount of time. To

restore the charge all the DRAM cells are read and written again periodically; a process

known as DRAM refresh. The frequency of DRAM refresh depends on the retention time

characteristics of the cells which is a function of temperature. Typically, for temperatures

below 85°C, DRAMs are refreshed at a period of 64ms and at double the rate for every

10°C rise [60]. Since a DRAM has a large number of rows, the refresh operation is stag-

gered, typically in 8K intervals [8]. Each refresh operation refreshes multiple number of

128



rows (equivalent to the total number of rows divided by 8K). The time taken to perform

a refresh operation t RFC depends on the number of rows per refresh which is increas-

ing rapidly with higher density DRAMs. In conventional DDRx, a refresh operation is

performed on all the banks simultaneously making them unavailable during the refresh op-

erations. This leads to unavailability of DRAM bandwidth during refresh. Furthermore,

with lower device feature size across technology generations, DRAM reliability becomes

a major challenge leading to the proposal of refresh rate of 32ms in modern devices [96].

Table 13 give t RFC values for different DRAM sizes along with the percentage of time

DRAM is unaccessible [51]. With more denser DRAMs, refresh can lead to DRAM band-

width unavailability for almost one third of the time for 64Gb DRAMs.

Table 13: Refresh rate with various device sizes
DRAM Density t RFC BW Loss @64ms BW Loss @32ms

512Mb 90ns 1.15% 2.3%
1Gb 110ns 1.41% 2.82%
2Gb 160ns 2.05% 4.1%
4Gb 260ns 3.33% 6.66%
8Gb 350ns 4.49% 8.98%

16Gb 480ns 6.15% 12.3%
32Gb 640ns 8.21% 16.42%

The second major problem with refresh is its high power consumption, specially with

large capacity DRAMs. As a general rule of thumb, refresh power is linearly proportional to

DRAM capacity. Furthermore, the DRAM capacity requirement of large data centers keeps

on increasing but its utilization of individual DRAM components reduces. With lower

DRAM utilization, the power to do the actual read/write operations decreases, making

background and refresh power the major components of DRAM power. Figure 68 gives

a breakdown of DRAM energy consumption with various device sizes (Taken from [12]).

Activate / precharge and read / write power is related to the actual DRAM activity and

depends on the number of accesses and their access patterns. Background and refresh

power, on the other hand, can be considered as the static or idle power of the DRAM.
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It can be seen that both background and refresh power increases rapidly with increasing

device size, with refresh taking almost 23% of the total DRAM power in 32Gb devices.

Background power can be reduced by utilizing various low power modes during the low

activity modes of DRAM. However, reducing the refresh power remains a challenge and

can be reduced mainly by reducing the number of actual refresh operations, the goal of this

chapter.

Figure 68: DRAM power breakdown with various device sizes [12]

8.1.1 DRAM Refresh Dependency on Temperature

The retention time characteristics of various DRAM cells varies widely. The rate of 64ms

is a conservative value designed for the weak cells to operate at high temperatures. Some

recent works have pointed towards decreasing the refresh rate for lower temperatures [82].

A feature called thermal-compensated self-refresh [103] (TCSR) is already provided in

modern DDRs which reduces the refresh rate based on the device temperature in self-

refresh mode. However, this mechanism is based on internal DRAM refresh counter in self-

refresh mode and temperature cannot be regulated from the outside. We propose thermal-

regulated variable rate refresh across different DRAM banks and channels, controlled by

the memory controller. We extrapolated temperature vs. refresh rate curve using different

current values in TCSR mode as shown in Figure 69.
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Figure 69: Refresh cycle time for DRAM under different operating temperatures [82]. The graph is
made by looking at current values of temperature-compensated self-refresh

8.2 Impact of 3D Characteristics on Refresh

This subsection explains the impact of 3D stacking technology on performance and power

overheads of DRAM refresh. We will focus on the differences related to DRAM refresh in

3D compared to the conventional 2D or 2.5D systems.

8.2.1 Reduced Refresh Performance Penalty

The first observation to make is that high parallelism in 3D memory systems reduces the

performance penalty of DRAM refresh operations. Figure 70a gives the refresh rate vs

normalized performance for a memory-intensive and a cpu-intensive application for a 3D-

stacked memory with 16 channels and a 2.5D-stacked memory system with four memory

channels as explained in section 3.2 and 7.1, respectively. The performance is minimized to

the baseline 64ms case. The simulation parameters are the same as explained in section 7.1.

It can be seen that higher refresh rates have smaller impact on 16-channel 3D systems as

compared to 4-channel 2.5D systems mainly because of the following two reasons. First, it

is because of the smaller DRAM bank size leading to lower refreshing time and thus lesser

performance penalty. Second, it is because of the higher channel-level parallelism available

in 3D memories. Higher parallelism decreases the probability that a DRAM access will
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collide with the refreshing channel leading to unavailability of memory bandwidth and

reduced performance. Furthermore, with the advent of per-bank refreshing [13], bank-

level parallelism can also be exploited to further reduce the performance penalty of DRAM

refresh.

8.2.2 Thermal Limit Affecting Performance

(a) Performance vs refresh rate (b) Performance vs temperature

Figure 70: Correlation between performance, power, and temperature of 3D vs. 2.5D stacks

We increase the frequency of cores from 800MHz to 4GHz. We observe a rapid linear

increase in temperature with increasing frequency for both 2.5D- and 3D-stacked mem-

ory. The increase in the 3D case is much higher primarily because it is governed by the

temperature of the underlying multicore die. Figure 70b shows the impact of DRAM tem-

peratures (and corresponding refresh rates) on performance. The DRAM bandwidth of

memory-intensive applications is already saturated. Higher temperature by increasing fre-

quency does not improve performance significantly. Any improvement in performance is

mitigated by the increased refresh rate reducing memory bandwidth availability. The per-

formance of compute-intensive applications, on the other hand, increases with frequency.

Even though the 3D design requires more frequent DRAM refresh operations than the 2.5D

design, channel-level parallelism in the 3D design effectively hides DRAM refresh opera-

tions. Thus, higher operating temperature and refresh rate has relatively minor impact on

the overall performance. However, at very high temperature and frequencies, refresh oper-

ations dominates the DRAM activity allowing the performance to degrade abruptly. Thus,
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for compute-intensive applications, performance scaling by increasing the frequency of

cores is limited by refresh operations or, in other words, by the temperature of the DRAM.

8.2.3 Correlation Between Performance and Refresh Power

As mentioned earlier, 3D stacked DRAMs operate at higher temperature requiring DRAM

refresh to be performed at a higher rate, thus increasing refresh power. Furthermore, in

conventional DRAM systems, refresh power is directly proportional to the capacity of the

DRAM. System operating conditions like the activity of the cores or activity of the DRAM

itself has negligible effect on refresh power. In fact, during high DRAM activity, e.g,

with high-bandwidth applications, refresh power constitutes a very small component of the

overall DRAM power as the activate/precharge and read/write energy starts dominating.

This trend, however, changes with 3D stacked DRAMs. In 3D DRAMs, the temperature of

a DRAM channel and thus its refresh rate and power directly depends upon the activity of

the cores placed right below the channels. Thus the compute-intensive applications, which

dissipates significantly more heat in the core die because of its higher utilization, has much

larger stack temperature than the corresponding memory-intensive applications, even if

they have lower activity in the DRAM itself. Higher temperature means higher refresh

rate and thus higher refresh power. Hence increasing the performance by increasing the

frequency or complexity of the cores is directly proportional to increasing refresh power

which may become a limiting factor of performance scaling. Exploiting the variation in

DRAMs temperature to reduce the refresh power will directly impact performance scaling.

8.2.4 Summarizing the Idea

The summary of the discussion in the previous two sections is given in Table 14. In short,

DRAM refresh has smaller performance penalty in 3D stacked systems as compared to

their 2D or 2.5D counterparts. However, refresh power in the active mode becomes a

bigger challenge because of 3D DRAM’s higher operating temperature, its dependence

on the activity of the cores, and its correlation with system performance. In this work,
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Table 14: Refresh related differences in conventional and 3D memories

Conventional Memory 3D Memory

Performance penalty of refresh High Low
Thermally-limited DRAM performance No Yes
Refresh power % vs system performance Inverse correlation Direct correlation
Refresh power sensitivity to core’s activity Low High
Temperature and refresh rate variation Low High
Exploitation of variation in refresh rate Low potential High potential

(a) Core Die Floorplan (b) Heat Map

Figure 71: An example floorplan and thermal profile of a heterogeneous 3D stacked system

we propose to exploit the variation in DRAM temperature to reduce the overall refresh

power and allow some parts of the DRAM to operate at much higher temperature than the

regular operating range. Next, we present a motivating example showing how variation in

temperature can be used to reduce refresh power.

8.3 A Motivating Example

Consider an example of a heterogeneous system with a single out-of-order and multiple in-

order cores in the baseline logic die of a 3D stacked memory system as shown in figure 71a.

The die area is divided into a 6x6 tiles with the high-power out-of-order core taking 4x area

of a low-power in-order core. The in-order cores will be waiting mostly for the read/write

requests to get serviced from memory. Thus, their activity and power will be low. On

the other hand, the activity, thus the power and the heat generated by the out-of-order
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core will be significantly higher as compared to the power generated by the in-order cores.

Figure 71b gives the thermal profile of the system. The high power of the out-of-order

core will increase the temperature at the center of the baseline logic die, which will be

propagated both horizontally and vertically because of the thermal coupling within and

across the dies. However, this coupling will be strong near the hotspots and low away

from it. Thus, we will get a highly variable temperature map of the overall system. The

difference in temperature reaches almost 70C between the hotspot logic and the corner

of the top die. The temperature gradient between various parts of the DRAM reaches

almost 50C. Thus, the difference in charge retaining capability of DRAM cells in hot and

cold regions will be very high. Furthermore, it is very likely that the memory data for

in-order cores is mapped closer to the core in the sub-stacks above it in order to reduce

the traversals and latency in the horizontal direction. Note that the commonly used first

touch OS allocation policy will try to keep the data local to the requesting cores. Thus,

high percentage of memory requests of the in-order cores may come from the cold regions

stacked directly on top. Refreshing the cold regions at the same rate as hot regions not

only increases refresh power, it will unnecessarily penalize the latency of requests coming

from the in-order cores, thus reducing their performance. Furthermore, by refreshing only

the hot regions at a much faster rate and saving refresh power for the cold regions, we can

increase the operating thermal range of the overall system. Hence, we propose thermally-

compensated variable-rate per-channel per-bank refresh that reduces DRAM refresh power

and increases its operating thermal range.

The discussion aboves supports the following key point. Refreshing all DRAM chan-

nels and dies based on the hottest operating temperature unnecessarily increases total exe-

cution time and energy degrading both performance and power. For example, in the previ-

ous example, if we refresh the whole DRAM based on the operating temperature of the die

right above the hotspot, we will either refresh at a very fast rate incurring significant refresh

performance and power penalty or we will reduce the frequency of the out-of-order core
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reducing temperature and performance both. In such a scenario, allowing the channels and

banks close to the hotspot to refresh at a much higher rate while keeping nominal refresh

for others allows us to keep refresh power low as well as keep the operating frequency of

the out-of-order core high, thus maintaining high performance.

8.4 Various Refresh Management Aspects

Next, we will discuss various aspects of modern refreshing techniques that is necessary to

understand the advantages and disadvantages of variable-rate per-bank refresh.

(a) Demand Refresh (b) All-Bank Postponed Refresh

Figure 72: Advantages / disadvantages of postponed refresh

8.4.1 Demand vs. Opportunistic vs. Postponed Refresh

As explained earlier, a common way to perform refresh is to divide a refresh cycle into 8K

intervals with one refresh command sent per interval, referred here as demand refresh, and

shown in Figure 72a.

The interval length, denoted by DRAM timing parameter t REFI determines the refresh

rate, e.g., 7.8us for a refresh period of 64ms. However, forcing refresh after every 7.8us

can delay critical reads if it collides with the refresh operation. A common approach to

solve this problem is to perform refresh opportunistically, that is, send a refresh command

whenever the DRAM rank or channel is not busy serving any reads or writes while main-

taining a refresh cycle of 64 ms. This mechanism has the potential of performing many

refresh operations in a short interval of time. Similarly, this mechanism allows postpon-

ing the refresh operations during high bandwidth periods. However, it can also increase

the time between two subsequent refreshes going to the same memory location. Although
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some slack can be tolerated due to higher retention time in most cases, JEDEC allows

refreshes to be postponed only slightly. For example in DDRx devices, eight refresh com-

mands can be postponed or sent in advance to allow for more critical read/write requests to

be serviced earlier without any delay. However, if eight refresh commands are not sent in

8 ∗ t REFI window, the memory controller stops servicing requests and forces all the post-

poned refreshes to be completed in a burst as shown in Figure 72b. We called the scheme

where refreshes are performed opportunistically with fall back to a burst period in case of

incompletion as opportunistic refresh, while the scheme in which refreshes are done only

in a burst after every 8*t REFI without taking advantage of opportunistic refresh is referred

to as postponed refresh. We will later show the challenges and advantages of opportunis-

tic and postponed refreshes with our variable-rate per-bank refresh management (VPReM)

scheme and provides a few solutions to overcome the challenges.

8.4.2 Fine- vs. Coarse-Grained Refresh

As mentioned earlier, a DRAM refresh cycle generally consists of 8K intervals. However,

the number of rows in a DRAM are much higher than 8K, (e.g., 64K rows in each bank

with a DRAM size of 4GB and a row buffer size of 8K). A refresh operation divides all the

rows into 8K groups and refreshes one group or multiple rows simultaneously at each in-

terval (four per bank in the previous example). The time for each refresh operation t RFC

is dependent on the number of rows being refreshed simultaneously. With large capac-

ity DRAMs, this number is on the rise, hence increasing the value of t RFC for modern

DDRs. Read and write requests have to wait longer for their turn while a channel is be-

ing refreshed. To overcome long waiting time because of high t RFC values, DDR4 [94]

introduces the concept of fine-grained refreshes. The idea is to refresh a smaller number

of rows per refresh command but with more frequent refresh operations, such as in 16K or

32K intervals for 2x and 4x modes, respectively. 1x refresh is a direct extension of DDR2

and DDR3 refresh: each refresh command takes t RFC ns, and it must be issued every

t REFI = 7.8us. 2x and 4x modes require that refresh commands be issued twice and four
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times as frequently at a rate of 3.9us and 1.95us, respectively.

In the next sections, we will discuss the challenges and advantages of two other refresh

management aspects (i.e., per-bank vs. all-bank refresh and fixed-rate vs. variable-rate

refresh) in more detail.

8.5 Per-Bank Refresh

In commodity DRAMs, a refresh is performed at a rank-level, that is, a refresh operation

is performed on all the banks simultaneously making the whole rank unavailable during

the refresh operations, generally referred to as an all-bank refresh. This decreases the

total memory bandwidth availability of DRAM, which is declining with the rising value of

t RFC. More recent LPDDRs, however, have enabled a new mode called per-bank refresh,

performing refresh one bank at a time, allowing other banks to be accessed simultaneously

while one of the bank is unavailable performing the refresh operation. This leads to refresh

being performed in parallel with read/write accesses reducing the bandwidth loss problem

during refresh. Let’s call the command sent to perform all-bank refresh as REFab and the

command sent to perform per-bank refresh as REFpb The time taken to perform refresh of a

single bank t RFCpb is much lesser than the time taken to perform all-bank refresh t RFCab.

However, the frequency of REFpb is NUM BANKS times higher than the frequency of

REFab. Thus the command bandwidth of per-bank refresh is much higher than its all-bank

counterpart. We next present a few advantages and challenges with per-bank refresh and

explain how we overcame these challenges in our design.

8.5.1 Advantages

The main advantage of per-bank refresh is that it parallelizes refreshes with read/write

accesses to the same rank or channel. This is explained in Figure 73. Suppose, two read

operations, one for bank 0 and one for bank 1 are waiting to get serviced. However, a

pending all-bank request command is being sent prior to servicing the reads as shown in the

figure on left. Since, all banks are blocked, both reads have to wait for the refresh operation
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to finish, only after which can they be serviced, incurring long memory-access latencies

and DRAM bandwidth loss. In the per-bank refresh case (figure on right), when REFpb

for bank 0 is being serviced, read request of bank 1 can be sent to the DRAM. Similarly,

read request of bank 0 can be sent in parallel with the refresh command for bank 1. Hence,

in general, most read/write accesses remain unblocked while refreshing, incurring smaller

memory-access latency and negligible DRAM bandwidth loss. We performed opportunistic

per-bank refresh, i.e., anytime a bank is idle and the next refresh for that bank is possible

in an 8 ∗ t REFI window, we opportunistically performed per-bank refresh for that bank,

allowing read/write accesses to other banks in parallel to the refresh operation.

Figure 73: Comparison of all-bank and per-bank refresh management

The example above considers an ideal scenario where read accesses of other banks are

always available during refresh. However, this scenario does not happen very often because

of a few limitations and disadvantages of per-bank refresh, which will be discussed next.

8.5.2 Challenges

This section describes the challenges with per-bank refresh and discuss simple solutions

that we used to solve these problems.

8.5.2.1 Bank round-robin order

The JEDEC standard defines per-bank refresh to be performed in a sequential round robin

order, that is, an internal counter is maintained for the next bank to be refreshed, which is

incremented every time a new refresh command is sent. This reduces the number of bits

required for per-bank refresh command as the bank number to be refreshed does not have

to be forwarded externally from the memory controller. However, this in-order refreshing

policy limits the potential for improvement by not allowing refreshes to be performed in
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parallel with accesses. E.g., suppose we have a request stream accessing only one bank out

of all the eight banks of the DRAM (Let’s say bank 2). Suppose, refreshes are being done

in a sequential round-robin order and suppose we have a policy which postpones refreshes

because of active read/write requests. Thus, refresh for bank 2 gets postponed. The next

refresh for bank 3 will get delayed as well (sequential nature dictates bank 3 cannot be

served before bank 2) although there are no read/write request pending for bank 3. Similar

is the case for refreshes for bank 4, bank 5, and so on. When eight such refreshes are

aggregated, DRAM will stop servicing all requests and send all the refreshes in a burst,

thus leading to DRAM bandwidth unavailability. It can be seen that in this scenario, no

refresh will be performed in parallel with accesses, thus per-bank refreshing will have no

advantage over the all-bank case. Furthermore, it will still incur the other disadvantages of

per-bank refresh (explained later) making its performance worse than the all-bank case.

We solve the problem by allowing refreshes to be performed out-of-order as done

in [13]. With out-of-order refreshing, pending refreshes for idle banks can get serviced

while the refresh for a busy bank is waiting for read/write accesses to be finished. Hence,

in the previous case, refresh for bank 3 will be serviced before refresh for bank 2, and so

on; allowing read/write accesses to happen in parallel with refreshes.

8.5.2.2 Increased t RRD Penalty

Figure 74: Increased t RRD penalty

An important timing parameter which limits the performance of DRAMs is the row-

row activation delay t RRD between different banks of a DRAM. t RRD is the minimum
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time between subsequent activate commands to different banks. It also specifies the time

required before sending an activate command to any bank after sending a refresh command.

In the case of per-bank refresh, this timing constraint occurs NUM BANKS times more

often than the case of all-bank refresh. The scenario is explained in Figure 74, in which the

channel has to incur t RRD penalty twice for a 2-bank system performing per-bank refresh

as compared to only once in the all-bank refresh case. Not allowing a bank to activate

can delay a read/write operation that could have been done in parallel with the refresh

operations. Since, a 3D system has a large number of banks, this can limit the performance

gains of per-bank refresh by almost 6%.

8.5.2.3 t RFCpb<t RFCab<NUM BANKS ∗ t RFCpb

As mentioned before, the time to perform one REFpb operation is smaller than the re-

freshing time to perform one REFab operation. However, the number of REFpb operations

are NUM BANKS times more than REFab cases. The total time to perform at least one

per-bank operation in all banks (i.e. NUM BANKS ∗ t RFCpb) is greater than t RFCab.

Hence, t RFCpb<t RFCab<NUM BANKS ∗ t RFCpb. This phenomenon leads to the fol-

lowing problem with per-bank refresh.

8.5.2.4 Per-bank refresh problem with postponing

Figure 75: Per-bank postponed refresh

Figure 75 shows per-bank postponed refresh. Since the total time to perform eight per-

bank refresh commands across all the banks, i.e. 8 ∗ NUM BANKS ∗ t RFCpb, is greater

than performing eight all-bank commands, burst period in per-bank postponed refresh is

larger than the burst-period in the all-bank postponed mode. Thus, all DRAM operations
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are being blocked for a much larger period in the per-bank postponed refresh case, making

it significantly worse than its all-bank counterpart. This means that if DRAMs are operating

in the postponed mode more often than the normal opportunistic mode, per-bank refresh

can have larger performance penalty than the all-bank case. We solve this problem by

parallelizing accesses with refreshes in the burst period as well; as explained in Figure 76a

and 76b .

(a) Postponed Refresh - All banks scattered

(b) Postponed Refresh - One Bank at a time

Figure 76: Two competing postponed refresh options with per-bank refresh

Figure 76 indicates that refresh interleaving across banks in a burst period can be done

142



in two different ways. The first case interleaves the refresh operations across banks, i.e.

the first REFpb refresh command is for bank 0, the next is for bank 1, and so on. This is

shown in Figure 76a and termed as scattered per-bank refresh. The second case completes

all refresh operations of bank 0 first, then send all refresh commands for bank 1, followed

by refresh commands of bank 2, and so on. We called it optimized per-bank refresh. In

the former case (scattered per-bank refresh), since refreshes to all the banks are being per-

formed one after the other, it is difficult to maintain the strict timings of the burst mode and

still allow parallel accesses. In the latter case (optimized per-bank refresh), access to other

banks can be performed in parallel to refreshes while maintaining the strict timing require-

ments of the burst mode. The only operation not allowed is sending a read/write request to

the next bank to be refreshed during the last refresh operation of the previous bank. Hence,

the former case keeps all the banks blocked for the entire postponed period while the latter

case only blocks one particular bank at a particular instant of time, thus allowing parallel

accesses in the burst-refresh mode.

Another problem that occurs because of an elongated postponed period even in the

second case is that if a read corresponding to the bank being refreshed gets stuck in the

cache’s MSHRs or come at the head of the ROB, no new accesses will arrive at the memory

controller. Thus, there will be no access parallelization with refreshes limiting memory

bandwidth. Another point to note is that since all-bank burst period is smaller, we can also

switch to all-bank mode in the burst period (the approach used in [13]). However, this

approach will not be possible in the case of variable rate refresh where different banks will

be refreshing different row numbers at a particular time instant. Thus, in those scenarios, as

will be explained later, switching from per-bank to all-bank mode will have high penalty.

For our design, we stick to the per-bank refresh mode with postponing one bank at a time.
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8.6 Variable-Rate Per-Bank Refresh Management (VPReM)

The previous section described the advantages and challenges of per-bank refresh and the

approaches that we took to overcome these challenges. In this section, we discuss variable-

rate refresh. We apply it with per-bank refresh to implement our variable-rate per-bank

refresh (VPReM) scheme. We looked at various aspects of variations in temperature, such

as temporal vs spatial variations, variations across different channels vs variations across

different banks or dies, etc.

8.6.1 Fixed- vs Variable-Rate Refresh

In commodity DRAMs, refresh is performed at a fixed rate across all the channels and

banks, typically at a period of 64ms for temperatures below 85°C and double that rate

for every 10°C rise in temperature. Performing refresh at a fixed rate is feasible in 2D or

2.5D stacked memory systems, where the temperature variations across the DRAM dies

and channels remain small. In such systems, the rise of temperature is dependent on the

activity of different components of the DRAM itself, which are utilized rather uniformly

across the dies. Furthermore, the overall DRAM temperature remains low. Thus, there is

very low potential for exploiting temperature variations across the dies and channels. 3D

systems, on the other hand, exhibits large variations across different dies and channels, as

explained earlier. Since the frequency of refresh can be adjusted based on the operating

temperature of the DRAM, variation in temperature can be exploited to perform refresh

at a different rate for different channels and banks. We performed refresh for channels

and banks at their own respective rate based on their operating temperature. We call this

variable-rate refresh and used it for our VPReM policy.

A DRAM can exhibit large variations in temperature because of many reasons. In the

next few subsections, we will briefly describe a few of those reasons.
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8.6.2 Temporal vs Spatial Variations

As mentioned earlier, the temperature of a stack DRAM is dependent on the activity of the

underlying multi-core die. This die exhibits large variations in temperature both temporally

and spatially. Temporal variations occur because of various phases of the application, i.e.

an application can have a varying range of activity in the cores at different instants of time

running different phases of the program. For example, suppose a phase of a bigger pro-

gram has many compute operations with a small memory footprint that can easily reside

in the first-level cache. In this scenario, the activity of the cores and thus their temper-

ature will be very high requiring high refresh rates. Now, suppose the program shifts to

a phase where it has to access large amounts of data, which is placed highly irregularly

in the memory and cannot be prefetched in the cache, such as pointer chasing accesses

in heaps. In this scenario, the core will mostly be waiting for memory to fetch the data

having very low activity, and thus the temperature will decrease. We detected the changes

in temperature by using temperature sensors already provided in most DRAMs. We ad-

justed the refresh-rate of all the channels and banks based on this temperature according to

Figure 69. We call this ’temperature-compensated refresh management’ or TCReM. This

is similar to temperature-compensated self-refresh (TCSR) but in the active DRAM mode.

Furthermore, this requires temperature sensor information to be readable externally by the

memory controller. TCReM can detect program phases and adjust the refresh rate accord-

ingly saving refresh power. Furthermore, it can help improve performance since it reduces

the refresh rate during high DRAM activity phases, thus decreases refresh performance

penalty.

A problem with TCReM, however, is that it only exploits temporal variations in tem-

perature, which occur only because of the changes in the program phases. As explained

earlier, a multicore die exhibits high spatial variation in temperature as well, because of the

varying activity of different cores specially in the case of heterogeneous systems. Another

problem is that the rate of change in temperature is generally very slow, thus the potential
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for improvement with TCReM only is low. We can exploit spatial variations in temperature

as well which is explained next.

8.6.3 Exploiting Variations Per Channel

Spatial variations in temperature of a 3D stack DRAM can be exploited at both per-channel

or at a per-bank level. Different channels or vaults of a DRAM is stacked on different

components (cores/caches/tiles) of the underlying multicore die. Each component of the

underlying multicore die, such as a core or a cache, is running on its own thread with its own

set of instructions and activity, thus has its own temperature. The difference in temperature

of these components can be high as already discussed in section 8.3. Thus, the channels

present on top of these components will have high variance in temperature. Each DRAM

channel can be refreshed at its own rate based on its respective temperature. The memory

controller for each channel can send refresh commands at their respective rate without any

synchronization among different channels. In this case, we require one temperature sensor

for each DRAM channel. However, since TCSR generally operates at a per-channel level, it

is highly likely that modern DDRs have more than one sensors already, one per channel in

this case. We call this scheme ’variable-rate per-channel refresh management’ or VCReM.

VCReM has the advantage of exploiting spatial variations in temperature within a

DRAM die. Thus, it allows some cores to operate at a much higher temperature or fre-

quency and some to operate at a much lower frequency, but still keep the refresh power

low. However, VCReM cannot exploit temperature differences across different dies. Thus,

its potential for power saving is also limited.

8.6.4 Exploiting Variations Per Bank

Different dies of a 3D stacked DRAM operate at different temperature because of the un-

even heat removal capability of the heat sinks present on top. This difference can be as large

as 30°C in certain cases. We can exploit this difference in temperature by allowing different

refresh rates for different sub-dies of a channel. Each sub-die consists of two or more banks
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for that channel. Allowing different rates for different dies means refreshing each bank of a

DRAM at its own rate based on its own temperature. We call this scheme as ’variable-rate

per-bank refresh management’ or VPReM. This allows us to refresh each bank of a channel

at a different rate, fully exploiting the variations in temperature of a 3D stacked DRAM.

In this case, we require per-bank temperature sensors. We believe that a modern stacked

DRAM already has temperature sensor for each sub-die of a channel. For this reason, we

restrict changing the refresh rate to a granularity of a sub-die only, with all the banks in that

sub-die to operate at the same rate. This will not reduce the advantages of VPReM, since

the difference in temperature between different banks of a sub-die is generally very small

and hence unlikely to require variable-rate refresh. VPReM requires DRAMs to operate in

a per-bank mode since different refresh commands will be sent for each bank. Our VPReM

policy combines the per-bank refresh optimizations discussed in section 8.5 with variable-

rate refresh improving both performance and power of a 3D stacked memory and allow it

to tolerate hotspots in the memory.

8.7 Results

Next, we will discuss some power and performance results of our variable-rate per-bank

refresh management scheme but first we will describe our evaluation methodology for this

study.

8.7.1 Evaluation Methodology

We evaluated our refresh management schemes using the same simulation infrastructure

as described in section 7.1. The baseline 3D system compose of a 4x4 tiled architecture

with 32 simple out-of-order cores and sixteen memory channels as discussed in section 3.2.

Any 2.5D design used for comparison purposes consists of 4 channels as described in sec-

tion 7.1. Other configurations, such as the core, cache, and DRAM configurations remain

the same. As mentioned before, manifold [112], kitfox [90], and usimm [14] is used to es-

timate power of different dies, which is fed back to 3D-ICE [92] thermal model to calculate
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temperature of different channels and banks. At every time epoch, the calculated steady-

state temperatures are then used to calculate refresh rates of different dies and channels,

which is fed back to usimm to calculate the updated performance and power results.

8.7.2 Per-Bank Refresh Management Results

We first compare the performance of various per-bank refresh management schemes with

the all-bank refresh case. Figure 77 gives the performance of various benchmarks with

different refresh mechanisms normalized to the case where refresh has been turned off no−

re f resh. Note that the refresh rate is set to be 16ms, a high operating temperature scenario.

In the figure, oab means an opportunistic all-bank refresh scheme while opb means an

opportunistic per-bank refresh. opb−S represents scattered per-bank refresh while opb−O

represents our optimized approach. ppb represents the case where the opportunistic feature

of per-bank refresh is turned off and all refreshes happen in a postponed mode. We only

present the second case of one bank at a time in the postponed burst period.

Figure 77: Performance of various per-bank refresh management schemes normalized to the no-
refresh case

The results show that the all-bank refresh case exhibit almost 9% performance loss on

average compared to the case with no − re f resh. Note that we have used opportunistic all-

bank refresh, where the refresh operation can be done opportunistically if all the banks of

a channel are empty. However, for high refresh rates, this scenario does not occur too often
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incurring performance loss. The opportunistic per-bank cases, on the other hand, performs

better than the all-bank case for all the benchmarks. This indicates that per-bank refresh is

able to find opportunities to refresh banks while accesses to other banks are being serviced.

The performance decrease with opb − S as compared to the no − re f resh case is around

6.5% on average. However, the difference reduces to less than 2% with our optimized ap-

proach in the postponed burst mode. To understand this difference, recall that opb − S

does not allow parallel accesses with refreshes in the postponed burst mode while opb −O

does allow them. Also, recall that the total time taken by per-bank refresh in the postponed

mode is much larger than the postponed mode of the all-bank case, and hence occurs more

frequently. This is indicated by the case with postponed per-bank refresh ppb, which has

the least performance for most of the benchmarks, an average performance loss of 10.5%

as compared to the no − re f resh case. The difference in performance between the two op-

portunistic per-bank approaches means that a significant number of refresh operations does

not find opportunities to be performed in parallel with read/write accesses in the normal

mode due to various timing constraints of the DRAM, and have to resort to the postponed

burst mode in order to get serviced. Hence, our optimized approach which let’s accesses to

be performed along with refreshes in the burst mode significantly improves performance,

with IPC reaching almost close to ideal, even with a significantly higher refresh rate of

16ms. We conclude by saying that our optimized per-bank scheme can be used to perform

refreshes at significantly higher rates with negligible performance loss. We can utilize this

fact to increase the thermal operating range of 3D stacks, allowing them to operate at much

higher temperature and thus frequency, improving the performance of the overall system.

Figure 78 compares the bandwidth loss observed with all-bank and per-bank refresh

for the canneal benchmark from a scenario that has no refresh. The increase in requested

bandwidth is achieved by pumping up the frequency of the cores. Figure 78a compares

scattered per-bank refresh opb − S with all-bank refresh while Figure 78b compares our

optimized per-bank approach opb − O. In both the cases, increasing bandwidth demand
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(a) Bandwidth Loss due to Refresh - Scattered
Mode

(b) BW Loss due to Refresh - Optimized Mode

Figure 78: Bandwidth loss due to refresh with various refresh management schemes

increases the performance loss due to refresh as more and more read/write operations gets

in conflict with refresh operations. Canneal is a memory intensive application, and hence

operates in the postponed burst mode often. For opb − S , its bandwidth loss and hence

performance decrease by operating in the postponed mode is higher than the all-bank case

at lower frequencies. With increasing bandwidth demand, the rate of increase of bandwidth

loss reduces since the per-bank feature finds more refreshes in parallel with read/write

accesses. On the other hand, for the all-bank case, the bandwidth loss keeps increasing

linearly reaching more than 11% for high bandwidth demand. The optimized per-bank

refresh, as shown in Figure 78b, however outperforms all-bank refresh in all scenarios

because of its ability to perform accesses in parallel to refreshes even in the postponed

burst mode. The bandwidth difference between the all-bank refresh and the optimized per-

bank refresh is greater than 6%.

8.7.3 VPReM Results

This section discusses the results of our variable-rate refresh management (VPReM) scheme.

Figure 79 gives the performance overhead of various refresh management options by chang-

ing the number of cores. Performance overhead is defined as the percentage difference in

cycles with a case in which refresh has been turned off. Here, ab − opr represents op-

portunistic all-bank refresh while pb − opr indicates our optimized opportunistic per-bank
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technique. Both implements fixed-rate refresh at a period of 16ms. We chose 16ms for our

comparison purposes because it corresponds to peak temperature of the whole program.

var indicates VPReM, the variable-rate per-bank refresh management scheme. We also

implemented a per-bank refresh mechanism in which at each epoch, the peak temperature

of all the banks is calculated and used to set the refresh rate of all channels and banks of

the DRAM. This scheme captures temporal variations but loses any spatial variations in the

DRAM, similar to our TCReM approach and indicated by pb − peak.

Figure 79: Performance overhead with different variable-rate refresh schemes

ab − opr has the lowest performance because of no parallelization of refreshes and

accesses as indicated in section 8.7.2. pb − opr, on the other hand, has a much smaller

overhead (around 1-4%) as explained earlier. The performance overhead for both the cases

increases with the increase in the number of cores and thus higher bandwidth requirement.

However, with variable-rate refresh (both pb − peak and var), the performance penalty

is negligible (<1%). This is because both TCReM and VPReM captures the variations

in temperature of a DRAM well and refreshes the DRAM accordingly. Thus, for program

phases where the compute intensity and thus temperature is low, temperature compensation

of our schemes allow us to operate at very low refresh rates reducing performance penalty.

However, when the intensity is high, we can bump up the refresh rate and still incur low

performance overhead with the optimized per-bank approach.

Figure 80a gives the power advantages of variable-rate refresh. Both ab − opr and
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(a) Refresh Power Savings (b) Memory Power Savings

Figure 80: Power savings with various variable-rate refresh management schemes

pb − opr has high refresh power because of their very high refresh rate. pb − opr shows a

slightly higher value (almost 4% greater) because it consumes the same amount of energy

in a shorter span of time (superior performance), thus increasing dynamic power. pb− peak

and var, which represents TCReM and VPReM, can adjust to different temperature phases.

Thus, their power is much lower than the fixed-rate schemes. The refresh power improve-

ment of pb − peak and var are 57% and 63% on average, respectively from the ab − opr

case; indicating that temperature of an application changes with time and a temperature-

compensated refresh mechanism can reduce the negative impacts associated with refreshes,

significantly. The difference between pb − peak and var, however, is small (almost 16%

power improvement). The results show that our simulation mechanism is able to capture

temporal variations well. However, spatial variations and their advantages are low. We

believe that this is because of the homogeneous cores and multiple instances of the same

application running across different cores, making the power profile across cores and thus

DRAM channels very similar. We will extend our simulations and use heterogeneous cores

and benchmarks in future to exploit the advantages of spatial variations as well.

Figure 80b gives the overall memory power advantages. Again, ab − opr has the least

power because of its higher number of cycles, and pb − opr has the highest power because

of its high refresh rate. VPREM or var has lesser power than the pb − opr case (average
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improvement of 9.7%), although it has higher performance and hence lesser number of

cycles. The power advantage of VPReM, however, reduces with increasing core count,

e.g., from 16% in 4-core case to 3% in a system with 16 active cores. More cores increases

the temperature of DRAMs and hence increases its refresh rate, thus the potential for power

saving using variable-rate refresh becomes low.

8.8 Concluding Remarks

We conclude the chapter by restating that refresh power is a bigger challenge in 3D stacked

DRAMs than conventional 2D memories specially in active DRAM modes. In such a case,

refreshing all the channels and banks of the stack based on the hottest operating temper-

ature increases total execution time and energy degrading both performance and power.

VPReM allows us to exploit the variation in 3D DRAM temperature and distributes the re-

fresh power non-uniformly across the stack allowing the DRAM to operate at much higher

temperatures tolerating hot-spots in the memory without incurring performance loss. It

can further be used to bump up the frequency or activity of certain regions while keeping

the temperature of other regions low, thus improving performance. The per-bank feature

of VPReM reduces the performance penalty of operating at higher temperatures while the

variable-rate feature allows us to adapt to spatial and temporal variations. Our results indi-

cate improvements in both performance and power with significant power savings because

of temporal variations. Exploiting spatial variations to reduce power by exploring more

heterogeneous domains will be done in future.
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CHAPTER 9

CONCLUSION

This dissertation looked at the advantages and challenges of high parallelism in 3D stacked

memory systems. Parallelism, in such systems, alters the fundamental relationships be-

tween latency, bandwidth, and energy of the memory hierarchy. We re-evaluated these

relationships and identified three key challenges; network latency, parallelism management

using address translations, and thermal regulation; that were addressed in this thesis. We

first established the need for fine-grained, highly-parallel 3D memory systems and char-

acterized their impact on latency in various components of the cache and the memory

subsystem. We also established the role of hardware address translations in regulating

locality vs parallelism and bandwidth vs power trade-off in concurrent memory channels.

Keeping these observations in mind, we proposed a memory subsystem re-organization of

the baseline system that places L2 cache banks next to DRAMs with an interconnection

network only between the L1 and the L2, thus reducing the traffic in the network. This

re-organization is achieved by coupling the addressing scheme of a distributed last-level

cache (LLC) with that of a distributed high-channel-count main memory.

Next, to reduce the network latency further, we designed a single-cycle centralized-

buffer router (CBR) [33] that supports high-radix networks with small dependence of buffer

area on radix. We reduced the buffer space of centralized buffer routers by proposing the

use of variants of bubble flow control; specially for high-radix networks. We explored both

deterministic and adaptive versions of CBR and analyzed their performance and power

advantages with both regular and irregular topologies under different traffic scenarios. Such

low-cost, low-latency routers are ideally suited for a 3D stacked system with large number

of memory channels.

Lastly, we analyzed 3D stack’s thermal problem and characterized its impact on system

performance and reliability. We identified the rise in temperature and its variance within
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and across the dies as the two major thermal bottlenecks leading to increased DRAM leak-

age and hence higher refresh rate. We showed that newer cooling solutions, such as mi-

crofluidics cooling, can help alleviate 3D stacks temperature problem and allow it to run

new compute-intensive applications and operate at much higher frequencies utilizing the

full potential of the high bandwidth of 3D memories. To exploit the variance in stack

DRAM’s temperature, we proposed a variable-rate per-bank refresh management scheme

that not only reduces 3D stacks refresh power but also increases its operating range by

allowing DRAMs to function correctly at significantly higher temperatures.

In short, this dissertation proposed various modifications and optimizations to an ex-

emplar 3D system that exploits its high concurrency to reduce the power and performance

bottlenecks of such a system. All optimizations proposed requires small changes in the

existing architecture and can be adopted easily in the near future. Future work includes

using address management to regulate bandwidth vs. power trade-off of multiple chan-

nels, more tight coupling of last-level cache and memory controller policies in 3D memory

systems, providing quality of service support with centralized buffer routers, and explor-

ing solutions for geometry challenges of electrical TSVs and thermal pin-fins with the

microfluidics cooling technology.
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