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sponds to the rhombohedral (2 1 0) Bragg peak before the phase transition
in α-AlF3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.10 Temperature dependence of the lattice parameters, unit cell volume per for-
mula unit, and linear and volume CTEs for InF3 . . . . . . . . . . . . . . . 92

4.11 Temperature dependence of various InF3 structural parameters . . . . . . . 93

5.1 Temperature dependence of the unit cell volume for ScF3 (normalized to 250
K), using two different sample preparation methods . . . . . . . . . . . . . 98

5.2 Variable-temperature X-ray diffraction data for the (2 2 2) reflection in cubic
ScF3, which splits into the (4 4 4) and (4 0 0) reflections after the cubic-to-
rhombohedral phase transition, and the temperature dependence of its full
width at half-maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Reaction vessels for Sc1−xMxF3 syntheses . . . . . . . . . . . . . . . . . . . 106

6.2 Rietveld fits to X-ray diffraction data for Sc1−xTixF3 at 100 and 290 K . . 107

6.3 Ambient laboratory X-ray diffraction data for Sc1−xTixF3 . . . . . . . . . . 108

6.4 Ambient cubic lattice constant of Sc1−xTixF3 as a function of composition . 109

6.5 Variable-temperature (100 to 500 K) synchrotron powder X-ray diffraction
data for Sc1−xTixF3 (x = 0.10 and 0.70) . . . . . . . . . . . . . . . . . . . . 110

6.6 Composition-temperature phase diagram for Sc1−xTixF3 . . . . . . . . . . . 111

xvii



6.7 Temperature dependence of normalized unit cell volume for Sc1−xTixF3 . . 112

6.8 Temperature dependence of volume CTE for Sc1−xTixF3 . . . . . . . . . . . 113

6.9 Temperature dependence of cH/aH for Sc1−xTixF3 . . . . . . . . . . . . . . 113

7.1 Rietveld fits to non-ambient X-ray diffraction data for Sc1−xYxF3 . . . . . . 118

7.2 Ambient laboratory X-ray diffraction data for Sc1−xYxF3 . . . . . . . . . . 119

7.3 Ambient cubic lattice constant of Sc1−xYxF3 as a function of composition . 120

7.4 Composition-temperature phase diagram for Sc1−xYxF3 . . . . . . . . . . . 122

7.5 Temperature dependence of normalized unit cell volume for Sc1−xYxF3 . . 123

7.6 Temperature dependence of volume CTE for Sc1−xYxF3 . . . . . . . . . . . 124

7.7 Pressure dependence of natural logarithm of unit cell volume for ScF3 and
Sc0.75Y0.25F3 at various temperatures . . . . . . . . . . . . . . . . . . . . . 125

7.8 Temperature dependence of natural logarithm of unit cell volume for ScF3

and Sc0.75Y0.25F3 at various pressures . . . . . . . . . . . . . . . . . . . . . 125

7.9 Temperature dependence of average isothermal bulk modulus for Sc1−xYxF3 126

7.10 Pressure dependence of average volume CTE for Sc1−xYxF3 . . . . . . . . . 127

7.11 Temperature dependence of heat capacity at constant pressure for ScF3 (0.35
to 390 K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.12 Temperature dependence of heat capacity at constant pressure for Sc1−xYxF3

(0.35 to 390 K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.1 Representative Rietveld fits to synchrotron data for Sc0.85Al0.15F3 . . . . . 135

8.2 Ambient laboratory powder X-ray diffraction data for (1− x)ScF3:xAlF3 . 136

8.3 Unit cell volumes per formula unit of Sc1−xAlxF3 (at 300 and 800 K) and
extra α-AlF3 phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.4 Variable-temperature (Cryostream, 100-500 K) powder X-ray diffraction data
for Sc0.85Al0.15F3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.5 Composition-temperature phase diagram for Sc1−xAlxF3 at ambient pressure 139

8.6 Temperature dependence of unit cell volume per formula unit and volume
CTE for Sc1−xAlxF3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.7 Pressure (temperature) dependence of natural logarithm of unit cell volume
for Sc1−xAlxF3 at various temperatures (pressures), and temperature (pres-
sure) dependence of their average isothermal bulk moduli (average volume
CTEs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.8 Pressure-temperature phase diagrams for Sc1−xAlxF3 (x = 0.15, 0.20) . . . 144

9.1 Fits of cubic and 3×3×3 supercell models for TaO2F to the pair distribution
function obtained at 80 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

xviii



9.2 Single –Ta–O–Ta–O–Ta–F–Ta– chain from the anion-displaced supercell model
for TaO2F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.3 Temperature dependence of Ta–X–Ta bond angle and anion off-axis displace-
ment δX (X = O, F) in TaO2F . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.1 Variable-temperature (100 to 500 K) synchrotron powder X-ray diffraction
data for Sc1−xTixF3 (x = 0.00, 0.10, 0.30) . . . . . . . . . . . . . . . . . . . 167

B.2 Variable-temperature (100 to 500 K) synchrotron powder X-ray diffraction
data for Sc1−xTixF3 (x = 0.40, 0.50, 0.60) . . . . . . . . . . . . . . . . . . . 168

B.3 Variable-temperature (100 to 500 K) synchrotron powder X-ray diffraction
data for Sc1−xTixF3 (x = 0.70, 0.85, 1.00) . . . . . . . . . . . . . . . . . . . 169

B.4 Estimation of phase transition temperature for Sc1−xTixF3 . . . . . . . . . 170

B.5 Temperature dependence of unit cell volume for Sc1−xTixF3 . . . . . . . . . 171

B.6 Temperature dependence of various unit cell parameters for Sc1−xTixF3 . . 172

C.1 Variable-temperature (>300 K) synchrotron powder X-ray diffraction data
for Sc1−xYxF3 (x = 0.05, 0.10, 0.20, 0.25) . . . . . . . . . . . . . . . . . . . 206

C.2 Variable-temperature (100 to 500 K) synchrotron powder X-ray diffraction
data for Sc1−xYxF3 (x = 0.05, 0.10) . . . . . . . . . . . . . . . . . . . . . . 207

C.3 Variable-temperature (100 to 500 K) synchrotron powder X-ray diffraction
data for Sc1−xYxF3 (x = 0.20, 0.25) . . . . . . . . . . . . . . . . . . . . . . 208

C.4 Temperature dependence of the full width at half-maximum of the cubic (4 2
2) Bragg reflection of Sc1−xYxF3 for estimation of phase transition temper-
atures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

C.5 Temperature dependence of hexagonal unit cell lengths, their ratio, rhombo-
hedral unit cell angle, and octahedral tilt angle for Sc1−xYxF3 . . . . . . . . 210

C.6 Atomic displacement parameters of Sc1−xYxF3 . . . . . . . . . . . . . . . . 211

C.7 Temperature dependence of unit cell volume for Sc1−xYxF3 at ambient pressure212

C.8 Variable-pressure/temperature synchrotron powder X-ray diffraction data for
ScF3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

C.9 Variable-pressure/temperature synchrotron powder X-ray diffraction data for
Sc0.95Y0.05F3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

C.10 Variable-pressure/temperature synchrotron powder X-ray diffraction data for
Sc0.90Y0.10F3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

C.11 Variable-pressure/temperature synchrotron powder X-ray diffraction data for
Sc0.80Y0.20F3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

C.12 Variable-pressure/temperature synchrotron powder X-ray diffraction data for
Sc0.75Y0.25F3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

xix



C.13 Pressure dependence of natural logarithm of unit cell volume at various tem-
peratures for Sc0.95Y0.05F3, Sc0.90Y0.10F3, and Sc0.80Y0.20F3, as well as a
combination plot for all Sc1−xYxF3 . . . . . . . . . . . . . . . . . . . . . . . 218

C.14 Temperature dependence of natural logarithm of unit cell volume at various
pressures for Sc0.95Y0.05F3, Sc0.90Y0.10F3, and Sc0.80Y0.20F3, as well as a
combination plot for all Sc1−xYxF3 . . . . . . . . . . . . . . . . . . . . . . . 219

D.1 Variable-temperature (Cryostream, 100-500 K) powder X-ray diffraction data
for Sc1−xAlxF3 (x = 0.05, 0.10) . . . . . . . . . . . . . . . . . . . . . . . . . 231

D.2 Variable-temperature (Cryostream, 100-500 K) powder X-ray diffraction data
for Sc1−xAlxF3 (x = 0.15, 0.20, 0.25) . . . . . . . . . . . . . . . . . . . . . . 232

D.3 Variable-temperature (Cryostream, 100-500 K) powder X-ray diffraction data
for Sc1−xAlxF3 (x = 0.30, 0.40, 0.50) . . . . . . . . . . . . . . . . . . . . . . 233

D.4 Variable-temperature (furnace, 300-1200 K) powder X-ray diffraction data
for Sc1−xAlxF3 (x = 0.00, 0.10) . . . . . . . . . . . . . . . . . . . . . . . . . 234

D.5 Variable-temperature (furnace, 300-1200 K) powder X-ray diffraction data
for Sc1−xAlxF3 (x = 0.15, 0.25) . . . . . . . . . . . . . . . . . . . . . . . . . 235

D.6 Variable-temperature (furnace, 300-1200 K) powder X-ray diffraction data
for Sc1−xAlxF3 (x = 0.30, 0.40, 0.50) . . . . . . . . . . . . . . . . . . . . . . 236

D.7 Temperature dependence of rhombohedral (2 1 0) peak intensity in variable-
temperature powder X-ray diffraction patterns for Sc1−xAlxF3, used for es-
timation of phase transition temperature . . . . . . . . . . . . . . . . . . . . 237

D.8 Temperature dependence of various unit cell and structural parameters for
Sc1−xAlxF3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

D.9 Atomic displacement parameters for Sc1−xAlxF3 . . . . . . . . . . . . . . . 239

D.10 Composition dependence of volume CTE for Sc1−xAlxF3 at 300, 400, 500,
600, 700, and 800 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

D.11 Temperature dependence of cH/aH for Sc1−xAlxF3 . . . . . . . . . . . . . . 240

D.12 Variable-pressure/temperature synchrotron powder X-ray diffraction data for
Sc0.95Al0.05F3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

D.13 Variable-pressure/temperature synchrotron powder X-ray diffraction data for
Sc0.90Al0.10F3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

D.14 Variable-pressure/temperature synchrotron powder X-ray diffraction data for
Sc0.85Al0.15F3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

D.15 Variable-pressure/temperature synchrotron powder X-ray diffraction data for
Sc0.80Al0.20F3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

D.16 Variable-pressure/temperature synchrotron powder X-ray diffraction data for
Sc0.60Al0.40F3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

D.17 Pressure-composition phase diagrams at constant temperature for Sc1−xAlxF3246

xx



D.18 Pressure-temperature phase diagrams for various Sc1−xAlxF3 compositions 247

E.1 Pair distribution functions for TaO2F at selected temperatures . . . . . . . 248

E.2 TaO2F supercell model, viewed down the crystallographic a–axis . . . . . . 265

E.3 Temperature dependence of the lattice constant and nearest-neighbor Ta· · ·Ta
separations in TaO2F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

xxi



SUMMARY

The cubic ReO3 framework is the simplest structure with all of the key features

required for negative thermal expansion (NTE) arising from the transverse thermal motion

of bridging atoms and rotation of rigid polyhedra. Rhenium trioxide itself displays low

NTE below ambient temperature, but there is a potentially large family of isostructural

fluorides and oxyfluorides that could display NTE. However, the coefficients of thermal ex-

pansion (CTEs) of ReO3-type materials range from strongly positive to strongly negative.

This thesis examines the thermal expansion of several ReO3-type fluorides and oxyfluorides,

demonstrating the effects on CTE and related properties of both cation and anion substi-

tution and the disorder produced by these structural changes, as well as the effects of stress

on these properties. Variable-temperature/pressure X-ray diffraction is used extensively for

characterization of the materials.

Before examining disordered materials, two simple, non-disordered ReO3-type metal

trifluorides are discussed in Chapter 4: α-AlF3 and InF3. At ambient temperature, both

materials have a rhombohedrally distorted form of the ReO3 structure that becomes cubic on

heating. This phase transition occurs at ∼713 K in α-AlF3, while in InF3, there is a rather

large temperature range (approximately 680 to 795 K) with rhombohedral and cubic phase

co-existence. In both fluorides, the rhombohedral phase displays strongly positive volume

thermal expansion. Cubic α-AlF3 continues to display strong positive thermal expansion

(volume CTE, αV , at 900 K ≈ 25 ppm·K−1), while the thermal expansion of cubic InF3

changes from positive to zero (∼850 to 950 K) to negative (above ∼950 K).

The work in Chapter 5 presents a cautionary message concerning thermal expansion

mismatch and suggests limitations of ScF3 during use in composites, a potential appli-

cation of materials displaying NTE. Cubic ReO3-type ScF3 is known to display strong

isotropic NTE over a wide temperature range; the NTE is most pronounced at low tem-

peratures. When ScF3 powder is mixed with a polyvinyl phenolic varnish, an unexpected
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cubic-to-rhombohedral phase transition in ScF3 is observed at ∼50 K, exhibiting smaller

low-temperature unit cell volumes than samples without the varnish matrix. Experimental

observations and quantitative estimates suggest that these anomalies are the result of stress

induced by a thermal expansion mismatch between the varnish matrix (large positive CTE)

and ScF3 (quite large negative CTE).

Solid solution formation is investigated in an effort to control the strongly negative

thermal expansion of ScF3 without forming a composite; thermal expansion studies of

Sc1−xMxF3 (M = Ti, Y, and Al) solid solutions are the focus of three chapters (6, 7, and

8, respectively). The effects on both thermal expansion and compressibility of substituting

differently sized cations into the ScF3 framework are explored. In the case of Sc1−xTixF3,

Sc3+ and Ti3+ are closely size-matched, allowing full solubility of TiF3 in ScF3 at the

synthesis temperature of 1338 K. The temperature for the cubic-to-rhombohedral phase

transition in Sc1−xTixF3 varies linearly with composition (above 100 K), and, at high Ti

content, the transition is clearly first-order. The rhombohedral phase for each composition

examined exhibits strongly positive thermal expansion, while the expansion of the cubic

phase (between 420 and 500 K) is negative or low positive for all compositions, with a small

degree of CTE tunability (average αV between 350 and 470 K varies from ∼-16 to ∼+4

ppm·K−1 with increased Ti content).

The solubility limit of YF3 in ScF3 is restricted by the significant difference in ionic

radius between Sc3+ and Y3+. Insertion of the relatively large Y3+ ion into ScF3 results in

a subtle cubic-to-rhombohedral phase transition upon cooling from ambient temperature to

100 K, even at low substitution levels (5%). The CTE of the rhombohedral phase is strongly

dependent on both composition and temperature; however, above 400 K, where all samples

are cubic, the CTE appears to be largely independent of composition. The isothermal

bulk modulus and CTE of ScF3, but not those of the solid solutions, are independent of

temperature and pressure, respectively. Yttrium substitution lowers the bulk modulus,

even at temperatures where the samples are cubic; the solid solutions also stiffen upon

heating. From heat capacity measurements, no evidence is given for a phase transition in

ScF3 between 0.35 and 390 K at ambient pressure, while the subtle nature of the phase

xxiii



transition in the solid solutions is visible. In addition, the low-temperature heat capacities

of Sc1−xYxF3 are much different than those of ScF3.

The ionic radius of Al3+ is significantly smaller than that of Sc3+; thus, the solubility

limit of α-AlF3 in ScF3 is limited to ∼50% at 1338 K. A second-order cubic-to-rhombohedral

phase transition is again observed, the temperature of which increases smoothly with Al

substitution, approaching 500 K at the solid solubility limit, and also upon compression

for a given composition. The slope of the pressure-temperature phase boundary (∼0.5

K·GPa−1) is steeper than that of most symmetry-lowering phase transitions in perovskites.

The volume CTE of rhombohedral Sc1−xAlxF3 is strongly positive, while the cubic-phase

CTE (>600 K) varies from negative (x < 0.15) to near zero (x = 0.15) to positive (x >

0.20). The cubic solid solutions elastically stiffen on heating, while Al3+ substitution causes

softening at a given temperature.

Finally, a local structural study of anion-disordered cubic ReO3-type TaO2F is presented

in Chapter 9. Local distortions away from the ideal cubic structure, associated with the need

to accommodate the different bonding requirements of the disordered O and F, contribute

to the occurrence of near-zero thermal expansion in TaO2F rather than NTE. The local

structure of TaO2F is poorly described by an ideal cubic ReO3-type model with O and F

randomly distributed over the available anion sites, but a supercell model featuring –Ta–

O–Ta–O–Ta–F– chains along <1 0 0>, with different Ta–O and Ta–F distances and O/F

off-axis displacements, gives much better agreement with pair distribution functions (PDFs)

derived from X-ray total scattering data for small separations (<8 Å). Analyses of PDFs

derived from variable-temperature measurements (80 to 487 K), over different length scales,

indicate an average linear expansion coefficient of close to zero, with similar contributions

from the geometrically distinct Ta–O–Ta and Ta–F–Ta links in TaO2F.
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CHAPTER 1

INTRODUCTION

Most materials, including solids, expand when heated; this positive thermal expansion

(PTE) is a ubiquitous phenomenon. However, some materials exhibit negative thermal

expansion (NTE), or contraction on heating, in one or sometimes multiple directions over

some temperature range. These thermomiotic (from the Greek, “thermo” for “heat” and

“mio” for “contract”) materials are not only interesting as scientific curiosities due to their

anomalous nature but also potentially useful in certain applications [1]. This thesis primar-

ily focuses on the thermal expansion of materials with ReO3-type connectivity. The role

and effects of structural disorder on the thermal expansion and related properties of these

materials are also explored.

In this introductory chapter, the origins and measurement of thermal expansion, pro-

posed mechanisms for NTE, the effects of pressure on NTE, and known families of ther-

momiotic materials are discussed. Thermomiotic behavior arising from lattice vibrations

is of particular note. Previous work on the thermal expansion of ReO3-type materials is

introduced, followed by a brief overview of the work presented in subsequent chapters.

1.1 Thermal expansion

The thermal expansion behavior of solids is critical to many industrial processes and other

applications. Good control of thermal expansion is necessary for the thermal matching of

materials in close contact with one another and the precision positioning of objects such as

optical instruments. Although differences in thermal expansion behavior between materials

can be useful, as in thermostatic bimetals, they are generally problematic and may cause

interfacial cracking. Also, materials with large coefficients of thermal expansion show poor

thermal shock resistance; rapid heating or cooling of such materials creates temperature

gradients that can result in cracking and eventually material failure. Thus, low thermal

expansion is generally desirable because it imparts both dimensional stability and good
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thermal shock resistance; the most preferred case is zero thermal expansion, a lack of

dimensional change with temperature. Furthermore, materials displaying isotropic thermal

expansion (equal expansion/contraction in all directions) are also preferred, as anisotropic

thermal expansion can cause internal microcracking and mechanical failure in polycrystalline

bodies even when monophasic [1, 2, 3, 4, 5, 6, 7, 8]; in a material with isotropic thermal

expansion, orientation does not affect properties.

In this section, the general origins, measurement, and classification of thermal expansion

(both positive and negative) are discussed.

1.1.1 Bond anharmonicity

The principle of thermal expansion is well understood [1, 6, 7, 9, 10, 11] and can be illustrated

by the interatomic potential curves in Figure 1.1. The potential energy of a simple harmonic

oscillator (Figure 1.1a) decreases as the two atoms are brought closer together, and a bond

is formed. However, as the atoms move closer together, the repulsion of the electrons in

each atom causes a sharp increase in potential at low interatomic distances. The interatomic

distance resulting in the minimum potential energy is the average bond distance; however,

due to the parabolic shape of the harmonic potential curve, an increase in temperature from

T1 to T2, with which higher-energy vibrational levels (modes) may be accessed, does not

affect the average distance 〈r〉. At higher temperatures, the parabola becomes wider, so the

harmonic oscillator is able to explore a broader range of interatomic distances. Nevertheless,

the average distance remains the same at all temperatures, and the harmonic oscillator does

not experience thermal expansion.

In most solids, however, the potential energy of a single bond is only harmonic at very

low temperatures. The potential energy curve of such bonds is asymmetric, resulting in

anharmonic behavior (Figure 1.1b). Atoms may not move very close to one another; hence,

the potential energy of these bonds approaches infinity as interatomic distance approaches

zero. In this case, the oscillator is still able to explore a wider range of interatomic dis-

tances r with an increase in temperature from T1 to T2; however, due to the asymmetry

of the potential energy curve, longer interatomic distances are more easily explored than
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Figure 1.1: Potential energy of (a) harmonic and (b) anharmonic oscillators as a function
of interatomic distance. A harmonic oscillator has the same average distance 〈r〉 for all
temperatures T , whereas the average distance for an anharmonic oscillator increases from
〈r1〉 at T1 to 〈r2〉 at T2.
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shorter distances. Therefore, the average distance increases at higher temperatures, and the

bond experiences positive thermal expansion. Strong bonds typically have potential curves

that are harmonic in nature, deepening the potential well and accessing more symmetric

vibrational modes; at low temperatures, the thermal expansion of very strong bonds may

approach zero [4].

In complex systems such as crystalline solids, the interdependent thermal expansion

of all interatomic bonds, changes in bond angles, and population of the entire phonon

density of states as a function of temperature must be considered. Although crystalline

solids are more complex than diatomic molecules, thermal expansion still arises from the

population of higher-energy vibrational modes. In a few categories of materials, however,

the positive thermal expansion of individual bonds may be dominated by other factors,

leading to thermal contraction over some temperature range; some of these factors are

discussed in Section 1.2.2 [5].

1.1.2 Coefficient of thermal expansion (CTE), bulk modulus, and heat capacity

Thermal expansion is typically expressed in terms of the coefficient of thermal expansion

(CTE), which indicates the relative amount by which a material expands (or contracts)

with a given change in temperature at constant pressure; as the CTE of most solids is on

the order of 10−6, the most common unit for CTE is ppm·K−1. The linear coefficient of

thermal expansion (αL) at constant pressure (P ) is defined as

αL =

(

∂lnL

∂T

)

P

=
1

L

(

∂L

∂T

)

P

≈ L− L0

L0(T − T0)
, (1.1)

where L and L0 are unit cell edge lengths at temperatures T and T0, respectively. The

thermal expansion of anisotropic (non-cubic) materials is completely described by a second-

rank CTE tensor [1]:

α =













α11 α12 α13

α21 α22 α23

α31 α32 α33













. (1.2)
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If the three principal axes of α coincide with the crystallographic axes, then α11 = αa,

α22 = αb, and α33 = αc, and the off-diagonal elements αij vanish. However, the off-

diagonal elements in orthogonal coordinates are non-zero in systems with non-orthogonal

axes, leading to shear strain during thermal expansion.

The volume coefficient of thermal expansion (αV ) at constant P is defined as

αV =

(

∂ln V

∂T

)

P

=
1

V

(

∂V

∂T

)

P

≈ V − V0

V0(T − T0)
, (1.3)

where V and V0 are unit cell volumes at temperatures T and T0, respectively. In systems

with orthogonal axes, αV is merely the sum of the individual αL (or αii):

αV = αa + αb + αc = α11 + α12 + α13. (1.4)

Equation 1.4 implies that, for a cubic material in which a = b = c,

αV = 3αa. (1.5)

As the CTE is a function of temperature, the temperature range over which it is calculated

should be specified. Also, as defined here, the CTE at a given temperature is an intrinsic

property that is not dependent on the bulk form of the material; experimental methods for

CTE measurement are discussed in Section 1.1.4.

Positive thermal expansion implies an increase in entropy S on volume increase by the

following Maxwell relations of Equation 1.3:

αV =
1

V

(

∂V

∂T

)

P

= − 1

V

(

∂S

∂P

)

T

=
1

KT

(

∂S

∂V

)

T

, (1.6)

where KT is the isothermal bulk modulus, or the inverse of compressibility, defined as:

KT = −V

(

∂P

∂V

)

T

, (1.7)

and always positive; therefore, the signs of αV and
(

∂S
∂V

)

T
are always the same. Thus, for

positive αV (PTE), entropy increases with volume at constant temperature, while negative

αV (NTE) involves increased entropy with contraction, or alternatively, decreased entropy

on expansion [10]. Also, to connect CTE to the interatomic potential curve (Figure 1.1),

as T → 0 K, the potential becomes increasingly harmonic in nature and α → 0 K−1. This
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requirement is true for all materials as a result of the third law of thermodynamics, which

states that the entropy of a system is zero at 0 K [12].

Thermal expansion may also be expressed as the elastic response to thermally induced

stress by further transforming Equation 1.6:

αV =
1

KT

(

∂S

∂V

)

T

=
1

KT

(

∂P

∂T

)

V

=

(

∂P

∂T

)

V

(−∂ lnV

∂P

)

T

. (1.8)

Thus, the process of thermal expansion can be envisioned as occurring in two stages: an

initial change in pressure as the material is heated at constant volume, followed by a change

in volume as the material relaxes to the original pressure at the new higher temperature [10].

The thermal expansion of a material is related to its heat capacity, the amount of energy

required to change temperature by a certain amount. The
(

∂P
∂T

)

V
term in Equation 1.8

may be expressed as the product of the heat capacity at constant volume per unit volume

(CV /V ), which is the amount of energy gained during a given temperature increase, and

the thermodynamic (bulk) Grüneisen parameter (γth), the effectiveness of that energy in

changing pressure, originally proposed by Grüneisen in the 1920s [13]:

(

∂P

∂T

)

V

=

(

CV

V

)

γth, (1.9)

where

γth =

(

∂P

∂(U/V )

)

V

= −
(

∂ lnT

∂ lnV

)

S

(1.10)

and U is internal energy. A combination of Equations 1.8 and 1.9 yields the following

expression:

γth =
αV KTV

CV
. (1.11)

AsKT , V , and CV are always positive, the signs of αV and the dimensionless thermodynamic

Grüneisen parameter are the same [10].

1.1.3 Lattice vibrations

As suggested above, lattice vibrations (phonons) are critical to thermal expansion. The

quasi-harmonic approximation is often used to explain how lattice vibrations cause ther-

mal expansion. By this approximation, the frequencies of phonons are considered volume-

dependent but otherwise treated as harmonic [10]. Each vibrational mode contributes to
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thermal expansion; the volume derivative of each phonon mode frequency ωi is known as

the mode Grüneisen parameter [14]:

γi = −d lnωi

d lnV
. (1.12)

In a harmonic solid, each ωi is volume-independent; thus, γi for all modes is zero. The

magnitude of the mode Grüneisen parameter is therefore an indicator of the anharmonicity

of the interactions within the solid. For negative γi, the frequency of a mode must decrease

with decreasing volume (i.e., the mode must soften).

The thermodynamic Grüneisen parameter γth is merely an average of the individual γi,

weighted by the heat capacity contributions ci of the individual modes:

γth =

∑

ciγi
∑

ci
. (1.13)

For overall negative thermal expansion at a given temperature, there must be a sufficient

number of excited modes with negative γi to outweigh those with positive γi [10]. Transverse

modes generally have lower energies than longitudinal modes and become excited at lower

temperatures; therefore, transverse modes typically dominate γth at low temperatures in

thermomiotic materials (Section 1.2.2.1).

Finally, a distinction must be made between apparent and true bond lengths. The

apparent bond length, determined from X-ray or neutron diffraction, is the distance between

the mean positions of two atoms, while the true bond length is the mean distance between

the atoms. The true bond length is always longer than the apparent bond length as a

result of libration, a particular vibrational motion in a specific direction relative to the

bond axis [1, 6, 10].

1.1.4 Experimental measurement

Two primary methods for experimental measurement of thermal expansion are diffraction

(microscopic or intrinsic CTE) and dilatometry (macroscopic or extrinsic CTE). Diffraction

is used exclusively in this thesis, so this method is discussed in greater detail.
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Figure 1.2: Illustration of Bragg’s Law. Radiation of wavelength λ scatters from atomic
planes with lattice spacing d. The angle between the incident and scattered beams is 2θ.
By geometry, the path length difference between two adjacent atoms in adjacent planes is
2d sin θ; for constructive interference of the two diffracted beams, this path length difference
must equal an integral multiple of λ.

1.1.4.1 Diffraction

Diffraction with X-rays and/or neutrons is used to examine average or local structures

and measure the thermal evolution of lattice constants and hence the intrinsic CTE. With

current synchrotron and neutron sources, lattice parameters can be determined with high

accuracy and precision; thus, with accurate temperature measurement, diffraction can yield

reliable CTE values.

The fundamental law describing diffraction is Bragg’s Law, derived by Sir William

L. Bragg a century ago:

nλ = 2d sin θ, (1.14)

where n is an integer, λ is the wavelength of the incident beam, d is the spacing between

atomic lattice planes, and θ is the angle between the incident beam and scattering planes

(Figure 1.2). The angle between the incident and scattered beams is 2θ. The d-spacing

of a material is intrinsic, but 2θ is wavelength-dependent. Constructive interference of two

diffracted beams occurs when their path length difference (2d sin θ) is an integral multiple

of their wavelength λ.

Diffraction measurements typically use either X-rays or neutrons to probe materials. The
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wavelengths of X-rays, discovered by W. C. Röentgen in 1895 (for which he was awarded the

first Nobel Prize for Physics in 1901), are on the order of 0.1-1.0 Å, the same length scale

as interatomic distances and chemical bonds. X-rays for modern diffraction experiments

are produced either in the laboratory by an X-ray tube or at a synchrotron facility. In an

X-ray tube, a metal target (such as Cu, Mo, or Ag) is bombarded with high-energy electrons

that excite the electrons in the metal atoms to higher energy levels; upon transitioning to

lower energy levels, photons are emitted. With the proper collimation and monochromator,

X-rays with a specified wavelength reach the sample for diffraction. At a synchrotron

facility, however, high-intensity and high-energy X-rays are produced by rapidly accelerating

electrons. X-rays interact with the electrons in an atom, so the atomic X-ray scattering

factor varies smoothly with atomic number Z. Therefore, X-ray diffraction is best applied

to the study of materials containing high-Z elements, although low-Z elements may be

observed in the absence of high-Z ones. Diffracted X-rays were historically detected by

photographic film, but such detection is now uncommon. Modern X-ray detectors include

scintillation, solid-state semiconductor, and image plate varieties.

Neutrons were discovered by Chadwick in 1932 [15], for which he was awarded the Nobel

Prize for Physics three years later. Unlike X-rays, neutrons have a magnetic moment and

are thus useful for diffraction studies of magnetic structure. Neutrons interact with the

nuclei of atoms, and their scattering power is dependent on nuclear structure. However,

there is no smooth variation of neutron scattering factor with Z; hence, neutron diffraction

can be used to probe low-Z elements (like C, N, or O) even in the presence of high-Z

elements. In many cases, the highest accuracy is obtained by combining neutron and X-ray

data. Neutron diffraction cannot be performed in a typical home laboratory; neutrons are

currently only produced at nuclear fission-based reactors or at spallation sources, primarily

at national laboratory facilities. The fluxes available at these sources, however, are quite

low, even when compared to those from X-ray tube sources. Thus, much larger samples are

required for neutron diffraction than for X-ray diffraction.

Diffraction measurements (both X-ray and neutron) may use either a single crystal at

a particular orientation or a powder, consisting of many individual crystallites in different
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Figure 1.3: Schematic illustration of powder diffraction, showing two Debye-Scherrer cones
from crystallites with d-spacings d1 and d2 and the Debye-Scherrer rings formed by their
intersection with a plane perpendicular to the incident beam.

random orientations. Single-crystal diffraction is preferred for structure solution; however,

in some cases, growth of single crystals can be difficult, especially if large crystals are

required, as in neutron diffraction. Powder diffraction may be used for structure solution

but is better applied to structure refinement. In addition, crystalline materials can be

identified based on their powder patterns. For single-crystal diffraction, the crystal must be

arranged at a particular orientation for Bragg’s Law to be satisfied; if this condition is not

met, the crystal must be rotated to a proper angle for diffraction. However, such rotation

is unnecessary in a powder sample, in which all crystallite orientations are (ideally) equally

likely. In a powder, for any given d-spacing, there are many crystallites with the correct

angular orientation for satisfaction of Bragg’s Law. These correctly aligned crystals all have

orientations about the incident beam, so the diffracted beams form a cone with half-apex

angle of 2θ. For every d-spacing, there is a so-called Debye-Scherrer cone, and the rings

formed by the intersection of the cone with a plane perpendicular to the incident beam are

called Debye-Scherrer rings [16]; these rings are relevant to powder diffraction with an area

detector (Section 2.4.2.1). Some of the basic principles of powder diffraction are illustrated

in Figure 1.3. X-ray powder diffraction techniques (discussed in more detail in Chapter 2)

were used to collect most of the data presented in this thesis.
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1.1.4.2 Dilatometry

Mechanical dilatometric techniques can be used to measure the extrinsic CTE in bulk

specimens and observe change in microstructure. During a dilatometric measurement, the

linear change in sample length is measured as a function of temperature. In general, this

measurement is accomplished by mechanically transmitting the displacement of a sample

at increased temperature to a sensor located away from the heat [17]. Dilatometric data

are typically reported as ∆L/L0 versus temperature, where ∆L and L0 are the change

and original sample length, respectively. Dilatometric measurements may be done in the

laboratory with either commercial or custom-built instruments [1, 17].

Push rod dilatometers are the most common method of dilatometry. In this setup, the

sample is housed in a furnace, and two rods are in contact with opposite faces of the sample,

parallel to the direction of expansion. The rods are attached (outside the furnace) to the

ferromagnetic core of a linear variable differential transformer, which measures displacement

of the rods as a function of temperature based on the voltage change of the ferromagnetic

core [17]. In this instrument, the rods and other parts in contact with the sample must

be made from a material with both low CTE and high melting temperature, such as fused

silica [1]. Another variety is the capacitance dilatometer, in which the sample dictates the

distance between the plates of a capacitor and capacitance is measured as a function of

temperature. Capacitance has an inverse dependence on the separation of the plates, so the

dimensions of the sample can be determined accurately as a function of temperature [18].

A more thorough review of dilatometric methods can be found in ref. [17].

1.1.4.3 Diffraction vs. dilatometry

The thermal expansion coefficients determined from diffraction (intrinsic) and dilatometry

(extrinsic) can sometimes differ greatly. This problem is especially notable for thermomiotic

ceramics with anisotropic thermal expansion. For example, the intrinsic volume CTE of

Al2W3O12 was reported to be low positive, while dilatometry suggested NTE [19]. In the

related material Sc2W3O12, both measurements yielded negative CTEs with significantly

different magnitudes; this difference was attributed to microcracks in the ceramic bar [20].

11



However, the CTEs of cubic (and hence isotropic) thermomiotic materials, such as members

of the ZrW2O8 family [21], are independent of the measurement technique employed.

Unless otherwise stated, all coefficients of thermal expansion reported in this thesis are

estimated using diffraction.

1.1.5 Classification

Materials have been arbitrarily classified in the following groups based on their linear coef-

ficient of thermal expansion [2]:

High Thermal Expansion: αL > 8 ppm·K−1

Intermediate Thermal Expansion: 2 < αL < 8 ppm·K−1

Low Thermal Expansion: 0 ≤ αL < 2 ppm·K−1

Negative Thermal Expansion: αL < 0 ppm·K−1

The linear CTEs of various materials are listed in Table 1.1; the CTEs of many engi-

neering materials have been known for decades.

1.2 Negative thermal expansion (NTE)

Although materials exhibiting high and intermediate thermal expansion are certainly useful

for innumerable applications, materials with low and especially negative thermal expansion

behaviors are the focus of this thesis. In this section, thermomiotic materials are introduced,

including their applications and various mechanisms to explain thermomiotic behavior.

1.2.1 Applications

Negative thermal expansion behavior is of interest for both fundamental and practical rea-

sons [1, 2, 3, 4, 5, 6, 7, 8]. Thermomiotic materials can in principle be used in composites

to compensate for the positive thermal expansion of other materials [40, 41, 42, 43]. Com-

posites consisting of both NTE and PTE components can be tailored to have near-zero

thermal expansion, making them potentially useful in such devices as high-precision optical

mirrors [5, 7]. However, the formation of such composites often leads to stresses from CTE

mismatch between the components of the composite, which can induce deleterious phase
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Table 1.1: Linear coefficients of thermal expansion (αL) for various materials at either a
single temperature or over a temperature range.

Material Average αL (ppm·K−1) Temperature (K) Ref.

H2O (s) +52.7 273 [22]
NaCl +39.86 300 [23]
NaCl +22.78 85 [23]
Al +22.75 297 [23]
Ag +18.73 283-338 [24]
Cu +16.79 295 [23]
Au +13.4 283-338 [24]
Cu +12.03 120 [23]

NbO2F +10.4 20-300 [25]
Al +8.81 85 [23]

SnMo2O8 +7.9 12-500 [26]

Pyrexr 7740 glass +3.25 0-300 [27]
Si +2.5 239.15 [28]

Hg +1.8 295 [29]
Diamond +0.97 273-296 [30]
H2O (s) +0.8 73 [22]
Diamond +0.58 194-273 [30]
SiO2 glass +0.5 298-1273 [2]

Invar (Fe65Ni35) +0.07 293 [31]

Zr0.4Sn0.6Mo2O8 -0.06 12-500 [26]
ReO3 -0.6 2-200 [32]

Ni[Pt(CN)6] -1.02 100-400 [33]
Fe[Co(CN)6] -1.47 4.2-300 [34]
Sc2W3O12 -2.2 50-450 [20]
H2O (s) -6.1 23 [22]
ScF3 ∼-8 295 [35]

ZrW2O8 -9.1 0-300 [36]
Cd[Pt(CN)6] -10.02 100-400 [33]

ScF3 ∼-14 60-110 [35]
Zn(CN)2 -16.9 25-375 [37]
Cd(CN)2 -20.4 150-375 [37]

SrCu3Fe4O12 -22.6 200-230 [38]
Bi0.95La0.05NiO3 -82 320-380 [39]
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transitions [41, 42, 43, 44], discussed further in Section 1.2.3.1 and Chapter 5. Tuning the

CTE of a single-phase material avoids such problems.

1.2.2 Mechanisms

The earliest and most common observation of thermomiotic behavior is likely the “density

anomaly of water” between 273 and 277 K, which has been known for centuries [8]. Thermal

contraction in a solid was first reported by Scheel over a century ago for quartz and vitreous

silica at low temperatures [45, 46]. After World War II, NTE was observed over certain

temperature ranges in several oxide systems, such as cordierite (Mg2Al4Si5O18) [47, 48, 49],

β-eucryptite (LiAlSiO4) and other lithium aluminum silicates (LAS) [50, 51, 52, 53], and the

NaZr2(PO4)3 (NZP) family [2]. These early examples of thermomiotic behavior, however,

were over a small temperature range, and contraction was generally small and anisotropic.

For example, in the case of NZP, thermal expansion in the c-direction is coupled with thermal

contraction in the other two directions [2, 3, 4]. The low-x members of the ZrV2−xPxO7

series were later reported to show isotropic NTE but only above 373 K [54].

Until the mid-1990s, studies of NTE remained somewhat sporadic, and the phenomenon

was generally viewed as a novelty. However, the 1996 report of pronounced isotropic negative

thermal expansion in ZrW2O8 between 0.3 and 1050 K [55] and subsequent connection of

the behavior to structure [56, 57] sparked considerable (and ongoing) interest in materials

displaying NTE over a broad temperature range. ZrW2O8 and related materials have since

been widely studied, and many other thermomiotic materials, including oxides, cyanides,

fluorides, and metal-organic frameworks, have been reported in the last couple of decades.

Several valid mechanisms for thermomiotic behavior in various types of solids have been

suggested. In general, thermomiotic behavior occurs when some phenomenon outweighs the

inherent lengthening of individual bonds so that the thermodynamic Grünesien parameter

becomes negative. In this subsection, various mechanisms for NTE and relevant examples

are introduced; a general overview of negative thermal expansion is intended rather than a

comprehensive review.
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1.2.2.1 Lattice vibrations and rigid unit modes

Negative thermal expansion in open-framework (non-magnetic) solids usually arises from

lattice vibrations. Open-framework materials feature low-density, three-dimensional net-

works of polyhedra (typically, but not limited to, tetrahedra or octahedra) linked by a

two-coordinate moiety (often, but not necessarily, an oxygen atom). The atomic displace-

ments associated with lattice vibrations (phonons) through such networks can be either

along the direction of propagation (longitudinal) or across it (transverse) [1]. Figure 1.4

shows the effect of both longitudinal and transverse vibrations on the metal–metal separa-

tion in a simple metal–oxygen–metal linkage. Upon heating, longitudinal vibrations cause

an increase in the length of each M–O bond due to anharmonicity (Section 1.1.1). However,

transverse vibrations that move the oxygen atom off the M–M axis result in contraction of

the distance between the metal atoms. Transverse modes typically are lower in energy than

longitudinal ones and can be excited at lower temperatures; therefore, transverse modes may

dominate the thermodynamic Grüneisen parameter and cause NTE or low PTE (Equation

1.13), as discussed in Section 1.1.3. In a three-dimensional framework, the effect of trans-

verse modes on thermal expansion also depends on the rigidity of the polyhedra and the

strength of the metal–anion bonds linking them [5].

The transverse thermal motion of the oxygen atom shown in the simple cartoon in

Figure 1.4 may also have an effect in real framework solids. In open-framework materials

with anion-connected rigid polyhedra, the transverse thermal motion of the M–X–M unit

results in coupled rocking of the polyhedra. In the rigid-unit mode (RUM) model, the

polyhedra are treated as “rigid units” that, when heated, rock without distortion and give

rise to the transverse motion of the bridging atoms [56, 58, 59]. This model is illustrated in

Figure 1.5 by a top-down view of rigid, corner-sharing octahedra; heating the system causes

the octahedra to rock back and forth and the unit cell volume (magenta box) to decrease in

a time-averaged sense. The distortion of the linkages requires less energy than distortion of

the rigid polyhedra; therefore, framework contraction outweighs polyhedral expansion and

allows for overall NTE. There are some cases in which polyhedral rotations do cause small

distortions in the polyhedra themselves; these so-called “quasi-RUMs” (qRUMs) [60] have
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Figure 1.4: Effect of longitudinal and transverse vibrational modes on the metal–metal sep-
aration in a simple metal–oxygen–metal (M–O–M) linkage at elevated temperature. Upon
heating, longitudinal vibrations of the linkage result in expansion due to anharmonicity,
while transverse vibrations result in contraction of the M · · ·M distance. Redrawn from
refs. [1, 5].

been reported in the AM2O7 [61] and A2M3O12 [62] families.

Several families of materials that are thermomiotic as a result of lattice vibrations are

introduced in Section 1.2.4 below.

1.2.2.2 Changes in symmetry or bond length

In some cases, individual bond distances can decrease in a material, perhaps due to poly-

hedral distortion. One classic example of this phenomenon is the ferroelectric perovskite

material PbTiO3, which contains highly distorted TiO6 octahedra below its ferroelectric-

paraelectric phase transition at 763 K. At ambient conditions, the Ti–O bond lengths dif-

fer greatly (1.766, 4 × 1.979, and 2.390 Å) [63], and the crystal structure is tetragonal;

upon heating, the octahedra regularize (crystal structure becomes cubic), and the aver-

age Ti–O bond length decreases. The a- and b-axes both show PTE, but the c-axis shrinks

rapidly enough on heating for overall volume contraction below 763 K (normalized αL = -3.3

ppm·K−1) [4, 5]. Negative thermal expansion in PbTiO3-based materials arising from the

spontaneous polarization displacement of cations continues to be studied [64, 65, 66, 67, 68].

As mentioned above, the anisotropic thermomiotic behaviors of several lithium alu-

minum silicate (Li2O–Al2O3–SiO2) phases, including β-spodumene (Li2Al2SinO4+2n) [53],
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Figure 1.5: Top-down view of rigid, corner-sharing octahedra, with the unit cell outlined in
magenta. Heating the system causes the octahedra to rock back and forth, and the unit cell
volume decreases in a time-averaged sense. Reprinted with permission from B. K. Greve
et al. J. Am. Chem. Soc., 132(44):15496-15498, 2010. Copyright 2010, American Chemical
Society.

β-eucryptite [52], and cordierite [47], have been known for several decades, as well as that

of the NZP family [2]. In each of these materials, PTE in one or two dimensions is coupled

with NTE in the other dimension(s) [3]. In corderite and β-eucryptite, the a- and b-axes

display PTE, while the c-axis shows NTE; however, in NZP, PTE along the c-axis is coupled

with contraction along a and b. The overall volume expansion of these materials can be

either negative or positive in principle. The thermal expansion behavior of these materials

arises from their structure; the materials consist of two-dimensional sheets composed of

ionic bonds (such as Li–O, Mg–O, and Na–O) that are connected by strong covalent bonds

like Al–O, Si–O, P–O, and Zr–O. The ionic bonds lengthen with increasing temperature,

so the sheets expand two-dimensionally; however, the rigidity of the linking covalent bonds

causes the sheets to be pulled closer together, and there is significant NTE in the direction

normal to the sheets [3, 4, 7].

The family of sodium super-ionic conductors (NaSICON) is based on NZP; various

substitutions of the metal ions can lead to a variety of thermal expansion properties [69, 70].

The thermal expansion of this family is anisotropic and can be negative along either the a-

or c-axis, depending on the space group [71]. For example, in NbTi(PO4)3, αa is negative

between 293 and 973 K, while αc is positive; the overall αV is negative [72].

ZERODURr (Schott AG, Mainz, Germany) is a commonly used LAS-related material

17



with very low thermal expansion that consists of a crystalline phase in an amorphous matrix.

The crystalline phase is thermomiotic and has a high-temperature quartz structure; the

amorphous phase, however, exhibits low PTE. Hence, the overall CTE can be controlled by

changing the crystalline/amorphous composition [73].

1.2.2.3 Charge transfer

Thermomiotic behavior in some materials results from charge transfer between atoms. In

this mechanism, electron-accepting species expand, while electron-donating species shrink.

In practice, however, atomic or ionic radius variation depends on the elements and their

electronic configurations. For overall volume contraction, the contraction of the electron-

donating atoms must outweigh the expansion of the electron-accepting atoms [7].

An example of NTE arising from thermally induced charge transfer is Sm2.75C60 [74].

Some perovskite oxides also display NTE as a result of atomic radius contraction. One

example, Bi0.95La0.05NiO3, shows “colossal” NTE (αL ≈ -82 ppm·K−1, 320-380 K) that

results from charge transfer from Ni to Bi upon heating, with an accompanying first-order

phase transition [39]. Strong NTE has also been reported for LaCu3Fe4O12 [75, 76] and

SrCu3Fe4O12 [38] (αL ≈ -22.6 ppm·K−1, 200-230 K), which feature charge transfer from Fe

to Cu upon heating. Zero thermal expansion (and NTE in the a-b plane) was reported in

YbGaGe between 100 and 400 K as a result of electronic charge transfer (Yb to Ga) [77].

1.2.2.4 Magnetic transitions

In some cases, magnetostriction can cause thermomiotic behavior, as changes in magnetic

structure can compensate for thermal lengthening of bonds [5]. One classic example of such

materials is Invar (Fe65Ni35) [31], an alloy discovered in 1897 by Guillaume (for which he

was awarded the Nobel Prize in Physics in 1920) that shows low thermal expansion below

its Curie temperature. The “Invar effect” has also been reported in magnetic metals such

as Lu2Fe17 and Y2Fe17 [78] and intermetallics such as YMn2 [79], Y2Al3Fe11Mn3 (αV ≈ -75

ppm·K−1, 185-200 K) [80], and Tm2Fe16Cr [81].

In recent years, antiperovskite manganese nitrides, Mn3AN, have attracted interest for

their highly thermomiotic behavior over a broad temperature range, accompanied by a
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first-order phase transition from antiferromagnetic to paramagnetic phases [7]. Several A

cations have been explored, including Cu, Ga, Zn, Sn, both separately and in combina-

tion [82, 83, 84, 85]. Nanometric Mn3(Cu1−xGex)N has more pronounced NTE than the

bulk material [86].

1.2.3 Effects of pressure

The effects of pressure on the crystal structure and thermal expansion properties of ther-

momiotic materials are of both technological and fundamental importance. The same

characteristics that lead to NTE in open-framework materials (enhanced flexibility and

low-energy transverse modes) also lead to interesting pressure-related effects. In this sub-

section, the effects of pressure on NTE are discussed in terms of both applications and

thermodynamics.

1.2.3.1 Technological considerations

The formation of composites combining materials with PTE and NTE can lead to stresses

due to thermal expansion mismatch, which, coupled with the typically open-framework

structures of thermomiotic materials, can induce deleterious phase transitions and, corre-

spondingly, significant changes in thermal expansion behavior [40, 41, 42, 43, 44]. The

thermomiotic material ZrW2O8 has been widely explored for use in composites; however, a

phase transition in ZrW2O8 at approximately 0.2 GPa causes a reduction in the negative

CTE by an order of magnitude [57, 87], which adversely affects the use of the material in

composites with tailored thermal expansion, such as those with Cu [40, 88, 89]. In Chapter

5, the behavior of another thermomiotic material, ScF3, is examined in a varnish matrix at

low temperature, where stress associated with thermal expansion mismatch induces a phase

transition and CTE sign change [44].

Pressure-induced phase transitions have been reported in several thermomiotic frame-

work oxide materials, such as cubic ZrMo2O8 [90, 91, 92, 93], cubic HfMo2O8 [92], cubic

ZrW2O8 [57, 93, 94], HfW2O8 [95], Sc2W3O12 [96, 97], and Al2W3O12 [98, 99]; these mate-

rials are discussed in Section 1.2.4. Generally, these phase transitions involve tilting of rigid

polyhedral units, a decrease in unit cell volume, and lowering of symmetry. In Chapters 7
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and 8, the effects of pressure on solid solutions of the thermomiotic compound ScF3 with

YF3 and α-AlF3, respectively, are explored.

1.2.3.2 Pressure dependence of CTE

The isothermal bulk modulus (KT , Equation 1.7) is the reciprocal of isothermal compress-

ibility and a measure of elastic stiffness. Hence, materials with high bulk moduli are stiffer

than those with low ones. The bulk modulus, which has units of pressure, can be as high as

442 GPa for a highly stiff material like diamond [100], but, for many common engineering

metals, like steel or copper, KT is on the order of 100 GPa [11]. Softer materials such as

some glasses and polymers have much lower bulk moduli, on the order of a few GPa.

The temperature dependence of KT is related to the pressure dependence of αV [101,

102]:
(

∂αV

∂P

)

T

=
1

K2
T

(

∂KT

∂T

)

P

. (1.15)

As initially proposed by Wachtman et al. [103] based on empirical observations and later

justified theoretically by Anderson [104],

KT = K0 − bTe−T0/T , (1.16)

where K0 is the bulk modulus at 0 K and b and T0 are constants. From this relationship,

the temperature derivative of bulk modulus at constant pressure is

(

∂KT

∂T

)

P

= −be−T0/T

(

1 +
T0

T

)

. (1.17)

The T0/T term is always positive; thus, the sign of the above derivative depends only on

the sign of parameter b. Anderson demonstrated that most materials have positive b; hence,
(

∂KT

∂T

)

P

is negative (most materials soften on heating) [104]. As KT is always positive,

Equation 1.15 thus suggests that most materials experience decreased CTE on compression.

Fang and Dove have recently suggested that pressure-induced softening (i.e.,

(

∂K0

∂P

)

<

0) would be a feature of many thermomiotic materials; this behavior has been observed

in ZrW2O8 [105], ZrMo2O8 [92], HfW2O8 [95], Zn(CN)2 [106], and various thermomiotic

zeolites [107, 108, 109]. The same authors have subsequently demonstrated that pressure-

induced softening is temperature-dependent [110].
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1.2.4 Examples

As introduced in Section 1.2.2.1, NTE may arise from lattice vibrations in open-framework

solids. Since the mid-1990s, much of the work on thermomiotic materials has focused on

this mechanism. These materials share some common features: strong metal–anion bonds

with high covalency, two-coordinate bridging atoms, and low-density and flexible framework

structures [111]. In this subsection, various families of thermomiotic materials, including

oxides, cyanides, and metal-organic frameworks (MOFs), and the use of solid solutions

for thermal expansion control are summarized. For some of the materials, behavior under

pressure is also discussed.

1.2.4.1 AM2O8 family

The most widely studied thermomiotic framework material is undoubtedly ZrW2O8. The

compound was first synthesized in 1959 by Graham et al. [112], and thermomiotic behavior

was actually reported nine years later by Martinek and Hummel [113] but not further

explored for many years afterward. However, the report of strong isotropic NTE between 0.3

and 1050 K by Mary et al. [55] inspired a large body of subsequent research on thermomiotic

materials, particularly ZrW2O8 and its relatives. The AM2O8 structure (Figure 1.6) consists

of corner-sharing AO6 octahedra and MO4 tetrahedra; each AO6 octahedron is connected

to six MO4 tetrahedra, but each tetrahedron is only connected to three octahedra, leaving

a single terminal O atom per tetrahedron.

Although ZrW2O8 shows strong isotropic NTE from 0.3 to 1050 K, the magnitude of its

CTE changes significantly at 448 K (αL = -9.1 ppm·K−1 below 350 K and -5.0 ppm·K−1

above 450 K) as a result of an orientational order-disorder phase transition [21]. The two

phases, both of which are cubic, are illustrated in the bottom panels of Figure 1.6. The low-

temperature phase, α-ZrW2O8 (space group P213), features orientationally ordered WO4

tetrahedra; as α-ZrW2O8 is heated, the population of WO4 pairs with the initial orienta-

tion decreases, and the population of WO4 pairs with the opposite orientation increases.

At the phase transition temperature, the populations of the two different orientations be-

come equivalent. In the high-temperature phase, β-ZrW2O8 (space group Pa3̄), the WO4
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Figure 1.6: (top) A unit cell of completely orientationally ordered α-ZrW2O8, in which
WO4 tetrahedra are blue and ZrO6 octahedra are yellow. (bottom left) A pair of WO4

tetrahedra (blue) aligned along the [1 1 1] direction in completely orientationally ordered
ZrW2O8. (bottom right) As α-ZrW2O8 is heated, the population of WO4 pairs with the
initial orientation (blue) decreases, and the population of WO4 pairs with the opposite ori-
entation (magenta) increases. At the α → β phase transition temperature, the populations
of the two different orientations become equivalent. Reproduced from ref. [93] by permission
of the PCCP Owner Societies.
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tetrahedral orientation is disordered.

Other materials with the AM2O8 structure have been studied extensively. Soon after

its discovery in ZrW2O8, NTE was reported in ZrMo2O8 [114] and HfW2O8 [21]. HfW2O8

shows thermal expansion behavior that is similar to that of ZrW2O8 and has a similar

order-disorder phase transition temperature (463 K) [21, 115]. However, metastable cubic

ZrMo2O8 adopts the oxygen-disordered Pa3̄ structure below 673 K [114] and exhibits NTE.

The magnitude of NTE changes at around 200 K (from approximately -8 to -5 ppm·K−1)

due to a transition from dynamic to static oxygen disorder [116]. The complete range of

Zr1−xHfxW2−yMoyO8 solid solutions has been prepared, all of which show NTE; the magni-

tude of NTE depends primarily on the phase (α or β) and not as much on composition [117].

Attempts at substitution of other elements in the AM2O8 structure have had mixed

success. Introduction of Sn4+ has been attempted in ZrW2O8, but solubility is limited to

approximately 30% (Zr0.7Sn0.3W2O8) [118]. Sn-substitution in ZrW2O8 results in a decrease

in the α → β phase transition temperature but little change in CTE. The thermal expansion

behavior of the full range of Sn-substituted ZrMo2O8 was recently reported; average αL of

the solid solutions vary between -5.9 and +7.9 ppm·K−1 for the end members, ZrMo2O8 and

SnMo2O8, respectively, and near-zero thermal expansion was observed for Zr0.4Sn0.6Mo2O8

(αL = -0.06 ppm·K−1) [26]. The solubility of Ti4+ is significantly lower than that of

Sn4+ (about 5%) because of its much smaller ionic radius. As with Sn, substitution of

Ti in ZrW2O8 does not change CTE substantially but lowers the α → β phase transition

temperature [119]. Finally, there have been reports of trivalent metal substitution on the

A site by a number of metals, including Sc, In, Y, Eu, Er, and Yb, which have limited

solubility but can strongly affect the phase transition temperature [120, 121, 122, 123, 124].

The high-pressure behavior of the AM2O8 family has been studied extensively. Al-

though no solid solutions have been examined to date, ZrW2O8 [57, 87, 93, 94, 125, 126],

HfW2O8 [95, 127], ZrMo2O8 [90, 91, 92, 93, 128], and HfMo2O8 [92] have all been studied at

high pressure. ZrW2O8 and HfW2O8 both undergo phase transitions on compression (∼0.2

and 0.63 GPa, respectively) to an orthorhombic (γ) polymorph [87, 127]; no such transi-

tion has been observed for the molybdates at comparable pressures [92]. All four materials
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undergo pressure-induced amorphization (PIA) at sufficiently high pressures [91, 125, 128].

ZrW2O8 is examined at high pressure (and temperature) in Section 3.3.1.

1.2.4.2 AM2O7 family

The AM2O7 family is another commonly studied class of thermomiotic materials. This

family contains a large number of members; while M is mainly limited to P, V, or As,

the A cation can be any tetravalent cation that can adopt octahedral coordination [1].

The archetypal member of the family is ZrV2O7, in which NTE was first reported in the

mid-1990s [54]. The AM2O7 structure consists of corner-shared AO6 octahedra and MO4

tetrahedra. The high-temperature phase is cubic (Pa3̄) and shows NTE. This structure

is similar to the high-temperature phase of the AM2O8 family, but there are no terminal

oxygen atoms in AM2O7. Instead, MO4 tetrahedra share three vertices with neighboring

AO6 octahedra and the fourth with another MO4. Unlike in the AM2O7 family, the trans-

verse vibrations of corner-sharing O atoms that may give rise to NTE involve polyhedral

distortions. Therefore, such vibrations cannot be described by the RUM model but are in-

stead quasi-RUMs [59]. The low-temperature AM2O7 phase always displays PTE and often

adopts a rather complicated 3 × 3 × 3 cubic superlattice [54]. However, the low-temperature

structures of some AM2O7 have been suggested to have lower symmetry, including mon-

oclinic (GeP2O7 [129] and SnP2O7 [130]), orthorhombic (HfP2O7 and ZrP2O7 [131, 132]),

and triclinic (CeP2O7 [133] and AnP2O7 (An = Th, U, Np, Pu) [134]).

Of the many members of the AM2O7 family, only TiP2O7 [135, 136], ZrP2O7 [135, 137],

CeP2O7 [133], ZrV2O7 [135, 138], and HfV2O7 [139] have been examined under pressure.

Neither TiP2O7 nor ZrP2O7 (both of which show PTE) shows evidence for pressure-induced

phase transitions or amorphization, compressing smoothly up to 40.3 and 20.5 GPa, respec-

tively, the highest investigated pressures [135]. However, CeP2O7, ZrV2O7, and HfV2O7

undergo symmetry-lowering high-pressure phase transitions at 0.65, 1.6, and 3.7 GPa, re-

spectively [133, 138, 139]. A second reversible phase transition has been observed in CeP2O7

at ∼5 GPa [133]. ZrV2O7 and HfV2O7 both amorphize upon sufficient compression; for
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ZrV2O7, complete amorphization occurs above 4.0 GPa [138], while HfV2O7 gradually un-

dergoes amorphization that is still not complete at 41.7 GPa [139].

1.2.4.3 A2M3O12 family

Another widely studied family of framework oxides with interesting thermal expansion

properties is A2M3O12 [19, 140]. Many A2M3O12 phases of interest have orthorhom-

bic [20, 141, 142] or monoclinic [143] structures (Figure 1.7); the A cation in these phases is

a small trivalent metal (such as Al or In) or rare earth (Ho to Lu), and M is W or Mo [1, 8].

In both forms of this structure, AO6 octahedra share vertices with six MO4 tetrahedra, and

each MO4 is connected to four AO6; there are no terminal oxygen atoms. Many (but not

all) of the orthorhombic phases transform to monoclinic symmetry at lower temperatures,

the latter of which only shows PTE. The temperature of this phase transition varies widely

with composition; some compounds do not show the transition at the lowest temperatures

examined, while Fe2Mo3O12 is monoclinic up to 772 K [143]. The phase transition temper-

ature is directly related to the electronegativity of the A cation and tends to be higher for

molybdates than for tungstates [143].

Several compounds with the orthorhombic structure show anisotropic negative thermal

expansion (a and c contract while b expands on heating). There are no RUMs in this struc-

ture, but NTE may still arise from transverse oxygen vibrations [59]. The polyhedra in

A2M3O12 are increasingly distorted with increasing temperature, with less rigid octahedra

leading to more negative CTEs [62]. The archetypal compound of this family, Sc2W3O12,

is thermomiotic from 10 to 1300 K [20, 144], with an average αL of -2.2 ppm·K−1 be-

tween 50 and 450 K estimated from X-ray diffraction data [20]. However, as mentioned

in Section 1.1.4.3, dilatometric measurements of thermal expansion revealed more negative

CTEs (-6 to -11 ppm·K−1) because of microcracks in the ceramic bars. In a similar man-

ner, the thermal expansion of polycrystalline Al2W3O12 was initially unclear: dilatometry

suggested low NTE, while neutron diffraction suggested low PTE [19]. A later dilato-

metric study of a single crystal of Al2W3O12 reported PTE along the b-axis, NTE along
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(a)

(b)

Figure 1.7: Two forms of A2M3O12: (a) monoclinic (P21/a) and (b) orthorhombic (Pbcn).
In both structures, MO4 tetrahedra are blue, AO6 octahedra are yellow, and O atoms are
red.
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a, and near-zero thermal expansion along c [145]. The polyhedra in the A2M3O12 struc-

ture are more easily distorted when larger A cations are used, resulting in more negative

CTEs. For example, Y2W3O12 [146] and Y2Mo3O12 [62] have average linear CTEs of -7.0

and -9.02 ppm·K−1, respectively. Also, a number of solid solutions have been prepared,

some of which show near-zero thermal expansion, such as Al1.68Sc0.02In0.30W3O12 [140] and

Al0.30(HfMg)0.85W3O12 [147].

Many A2M3O12 compounds also undergo a symmetry-lowering phase transition on mod-

est compression. For example, Sc2W3O12, which remains orthorhombic (Pnca) down to the

lowest temperatures studied [20], becomes monoclinic (P21/a) when compressed to between

0.25 and 0.3 GPa [96, 97]. Similarly, Sc2Mo3O12 becomes monoclinic (P21/a) upon cooling

below ∼178 K [148] and also upon compression to ∼0.25 GPa [99]. The orthorhombic-

to-monoclinic transition is usually associated with a dramatic decrease in the bulk modu-

lus of the material [149], and for some materials, the orthorhombic phase displays highly

anisotropic compressibility. Al2W3O12, which becomes monoclinic on cooling to 267 K at

ambient pressure [143], has previously been studied by in situ diffraction at high pressure

using a diamond anvil cell (DAC); however, the onset pressure of the orthorhombic-to-

monoclinic transition was so low (<0.08 GPa) compared with the uncertainty of the pres-

sure measurement and the precision of the pressure control that is possible in a DAC that

the behavior of orthorhombic Al2W3O12 on compression could not be determined with a

high level of confidence [99]. This phase transition is examined with finer pressure control

in Section 3.3.2.

1.2.4.4 AMO5 family

Negative thermal expansion has been reported in two forms of NbOPO4, a member of

the AMO5 family of framework oxides. Tetragonal NbOPO4 (P4/n below ∼473 K and

P4/nmm above) shows NTE only along the a-axis in the high-temperature form [150]. The

monoclinic form (P21/c), which transforms to orthorhombic symmetry (Pnma) at ∼565 K,

also shows NTE only along the a-axis; however, the high-temperature orthorhombic form

displays isotropic NTE [151]. All forms of this material are composed of NbO6 octahedra
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and PO4 tetrahedra with the following corner-sharing connectivity: NbO6 are connected

to four PO4 and two other NbO6, and PO4 are connected to four NbO6 [150, 151]. Other

members of the AMO5 that show NTE include NbVO5 [152] and TaVO5 [153].

1.2.4.5 M2O family

A somewhat unusual oxide family is the cuprites, M2O, of which the M = Cu and Ag

forms have been reported to display NTE. The cubic structure of the cuprites features two-

coordinate cations (Cu2+ or Ag2+), while the O2− are four-coordinate; the overall structure

consists of a pair of independent but interpenetrating OM4 networks [8]. However, the

mechanism for NTE is similar to that in other framework oxides. Ag2O displays NTE over

its thermal stability range, while Cu2O is only thermomiotic below approximately 200 K,

where it changes to PTE [154]. This change from NTE to PTE in Cu2O has been explained

by the domination of cuprophilic interactions when Cu atoms are brought in sufficiently

close proximity; these same interactions do not occur in Ag2O [155].

1.2.4.6 ReO3 family

Materials with ReO3-type connectivity, which include oxides, oxyfluorides, and fluorides,

are the primary focus of this thesis. These materials and their properties are discussed in

greater detail in Section 1.3.

1.2.4.7 Zeolites and aluminophosphates

The final families of thermomiotic framework oxides to be discussed are zeolites (microp-

orous aluminosilicates) and aluminophosphates (AlPOs). The structures of these materials

consist of alternating, corner-sharing SiO4 (or PO4) and AlO4 tetrahedra. NTE was pre-

dicted in zeolites and AlPOs in the 1990s [156] and has since been measured experimentally

in several zeolite-related materials, including Na-zeolite X [157], siliceous faujasite (isotropic

NTE, αL = -4.2 ppm·K−1, 25-573 K) [158], AlPO4-17 (αV = -35 ppm·K−1, 18-300 K) [159],

and ferrierite (anisotropic NTE, average αV = -24 ppm·K−1, 420-560 K) [160]. Many other

zeolite-type materials have been studied, and Lightfoot et al. have suggested that NTE in

these microporous oxides is the “norm rather than the exception” [161]. Furthermore, Fang
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and Dove have recently shown via molecular dynamics simulations that most cubic zeolites

show NTE accompanied by pressure-induced softening [107].

1.2.4.8 Cyanides (M(CN)2 and Ax[M(CN)6])

The flexibility of framework cyanides is greater than that of metal oxides because M–C≡N–

M linkages allow for a greater number of low-energy RUMs than do M–O–M linkages. The

additional atom allows each rigid unit to rotate independently, giving the structure RUMs at

a wide range of wave vectors [37]. As a result, some cyanide-based framework materials show

thermomiotic behavior that is much more pronounced than that of oxide-based materials.

Pronounced isotropic NTE has been observed in the simple single-network cyanides

Zn1−xCdx(CN)2 (0 ≤ x ≤ 1), with αL in the range of -17 to -20 ppm·K−1 between 150

and 375 K, increasing with x (Cd substitution) [37, 162]. Another study reported a lin-

ear CTE of -33.5 ppm·K−1 for Cd(CN)2 between 170 and 375 K [163]. The network of

these simple cyanides consists of cyanide bridges tetrahedrally coordinated to M . Pair dis-

tribution function analysis of the NTE mechanism in these materials has shown that the

average transverse displacement of the cyanide bridge increases with temperature, which

counteracts the PTE of individual Zn–(C/N) bond lengths [164]. A later computational

study reported low-energy, nearly dispersionless, transverse acoustic modes with negative

mode Grüneisen parameters that arise from translation motion of all atoms in one direction,

coupled with CN translation in the other two directions [165, 166]. A pressure-dependent

CTE for Zn(CN)2 has been reported, implying a modest temperature dependence to the

bulk modulus (Equation 1.15) [106]. Fang and Dove have recently reported temperature-

dependent, pressure-induced softening in Zn(CN)2 [108, 109].

Thermomiotic behavior was also reported in Ni(CN)2, which features a two-dimensional

framework in which the cyanide units bind to Ni in a square-planar geometry to form a

layered structure. In the plane of the sheets, NTE was observed between 28 and 300 K

(αL = -6.5 ppm·K−1), but the weak interactions between individual sheets result in strong

PTE in the direction perpendicular to the sheets (αL = +61.8 ppm·K−1) and a large positive

volume CTE of +48.5 ppm·K−1 [167].
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Other metal cyanides are also known to exhibit NTE. The Prussian Blue analogs,

M2+[Pt(CN)6] (M = Mn, Fe, Co, Ni, Cu, Zn, Cd), which have a cubic ReO3-type structure

(see Section 1.3) with alternating corner-sharing MN6 and PtC6 octahedra, are thermomi-

otic, with greater NTE occurring for larger M . For example, the linear CTE of Ni[Pt(CN)6]

between 100 and 400 K is nearly zero (-1.02 ppm·K−1), while that of Cd[Pt(CN)6] over the

same temperature range is an order of magnitude more negative (-10.02 ppm·K−1) [33].

These differences in thermal expansion arise from differences in M–cyanide bond strengths;

larger M form weaker bonds and thus more flexible lattices in which transverse vibration

of the cyanide bridges (the cause of NTE) requires less energy [33]. Incorporation of water

molecules into the nanopores of Zn[Pt(CN)6] and Cd[Pt(CN)6], however, has been shown

to increase the CTE by dampening transverse vibrations [168]. In addition, very low NTE

(average αL = -1.47 ppm·K−1) was reported for the Prussian Blue analog Fe[Co(CN)6]

between 4.2 and 300 K [34].

Other Prussian Blue analogs with formula unit M3[Co(CN)6]2 (M = Mn, Fe, Co,

Ni, Cu, Zn) also show strong isotropic NTE, with αL ranging from -19.6 ppm·K−1 for

Fe3[Co(CN)6]2·14H2O to -48.0 ppm·K−1 for Mn3[Co(CN)6]2·12H2O. The hexacyanofer-

rate form M3[Fe(CN)6]2 shows a wider range of linear CTEs, from +47.8 ppm·K−1 for

Mn3[Fe(CN)6]2·14H2O to -39.6 ppm·K−1 for Zn3[Fe(CN)6]2·14H2O [169]. In these materi-

als, the waters of hydration can partially replace some of the cyanide bridges, resulting in

unlinked vertices on the octahedra that enhance the framework flexibility and potentially

enhance NTE [169].

The first material reported to have “colossal” positive and negative thermal expansion

(|αL| ≥ 100 ppm·K−1) over a broad temperature range was Ag3[Co(CN)6] [170]. The

material has a layered structure; upon heating, the layers show colossal PTE (αL = +140

ppm·K−1), while colossal NTE occurs in the direction perpendicular to the layers (αL =

-125 ppm·K−1). The resulting αV is large and positive. The mechanism for this interesting

behavior is believed to be driven by Ag+ repulsions [170], as substitution on the Ag site

reduces the CTE by an order of magnitude [171].
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1.2.4.9 Metal-organic frameworks (MOFs)

MOF materials feature metal-oxygen clusters connected by organic linkers and have at-

tracted much attention in recent years for such applications as gas adsorption because of

their large surface areas and easily tunable pore sizes [172]. However, the open-framework

structure and flexible polyhedra of MOFs also makes strong NTE possible in such mate-

rials. NTE in MOF-5 [Zn4O(1,4-benzenedicarboxylate)3] was first predicted [173], later

simulated [174, 175], and then measured experimentally (αL ≈ -10 to -16 ppm·K−1, 4-600

K) [176]. The pronounced thermomiotic behavior of MOF-5 is attributed to RUMs in which

ZnO4 tetrahedra and phenyl rings serve as rigid units and carboxyl groups are the bridges

with large-amplitude transverse vibrations that lead to NTE [176].

Thermomiotic behavior has also been observed in the MOF Cu3(btc)2 (btc = 1,3,5-

benzenetricarboxylate), which consists of Cu2(carboxylate)4 “paddle-wheel” units bridged

by btc [177, 178, 179]. Cu3(btc)2 shows NTE from 50 to 500 K, with αL = -4.1 ppm·K−1

over this range [178]. The unique mechanism for NTE involves two components: transverse

vibration of planar (rather than linear) btc linkers and local dynamic deformation of the

“paddle-wheel” nodes [178, 179].

Very recently, thermomiotic behavior arising from another new mechanism has been

reported in MOF-14 [Cu3(btb)2; btb = 4,4′,4′′-benzene-1,3,5-triyl-tribenzoate] [180]. The

linear CTE of MOF-14 increased in magnitude from -4 to -13 ppm·K−1 between 3 and 400 K.

MOF-14 features two interpenetrating networks that, upon heating, have an increasingly

repulsive interaction, resulting in greater framework distortion; the overall result of this

distortion is isotropic contraction of the unit cell.

1.2.5 Solid solutions

Solid solution formation can be used to control thermal expansion. Interstitial solid so-

lutions, in which a small solute occupies a hole in the lattice, are not known to display

NTE [1]. However, substitutional solid solutions have shown more promise for thermomi-

otic behavior. These materials are formed when some fraction of one type of atoms in a

lattice are replaced by another type of atoms, in either a disordered or ordered manner.

31



For maximum solubility, substitutional solid solutions follow the Hume-Rothery rules [181]:

solute and solvent atomic radii must not differ by more than 15%; solute and solvent crys-

tal structures must match; and solute and solvent must have similar electronegativities and

similar valences [18].

Much prior work has involved solid solutions of thermomiotic materials, some of which is

discussed above. Korthuis et al. reported that solid solution formation in the ZrV2−xPxO7

and HfV2−xPxO7 systems suppressed an order-disorder phase transition. In the middle

range of these solid solutions, x ≥ 0.3, the phase transitions above ambient temperature

were completely suppressed [54]. ZrW2−xMoxO8 solid solutions improve both thermal and

mechanical properties of ZrW2O8; incorporation of Mo in ZrW2O8 lowers the temperature

of the order-disorder phase transition [182, 183]. More recently, tunable thermal expansion

was reported for Zr1−xSnxMo2O8 (0 ≤ x ≤ 1) between 12 and 500 K, with average αL

varying between -5.9 and +7.9 ppm·K−1 for the end members, ZrMo2O8 and SnMo2O8,

respectively; near-zero thermal expansion was observed for Zr0.4Sn0.6Mo2O8 (αL = -0.06

ppm·K−1) [26]. The control of thermal expansion with solid solutions is further explored in

Chapters 6, 7, and 8.

1.3 ReO3 family

As suggested in the above sections (for example, in Figures 1.6 and 1.7), many thermomiotic

framework materials have rather complicated crystal structures. However, the cubic ReO3

structure (Figure 1.8) features the simplest arrangement of polyhedra to illustrate NTE

in framework solids; the transverse motion of the anion results in rocking of the rigid

polyhedral units [59] and a time-averaged reduction in the distance between neighboring

metal centers (Figure 1.5). This primitive cubic structure is a simpler version of the common

perovskite structure ABX3 in which the A site is vacant, creating a large amount of free

space in the crystal structure for transverse motion of the anion. This simple illustration

might suggest that all ReO3-type materials are thermomiotic, but, as discussed below, not

all members of this family show negative or even low positive thermal expansion. In this

section, several members of the ReO3 structural family, including oxyfluorides and fluorides,
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Figure 1.8: The cubic ReO3 structure, related to the ABX3 perovskite structure with a
vacant A site, consists of corner-sharing ReO6 octahedra. Green (blue) spheres represent
Re (O) atoms, and the unit cell is outlined in red. Reprinted from Journal of Solid State
Chemistry, 219, C. R. Morelock et al., Thermal expansion and phase transitions of α-AlF3,
143-147, Copyright 2014, with permission from Elsevier.

and previous research on their thermal expansion properties are introduced; studies of this

family comprise the bulk of this thesis.

1.3.1 Rhenium trioxide

Although its structure is often the archetype for NTE in open-framework solids (Figure

1.5), ReO3 itself demonstrates very complex thermal expansion [32, 184, 185, 186]. ReO3 is

an unusual framework oxide due to its excellent electrical conductivity; the low resistivity

of ReO3 at ambient conditions is close to that of a metal like Ag [187, 188]. Matsuno et

al. in 1978 initially reported low negative thermal expansion in ReO3 below 340 K [189].

However, Taylor subsequently reported low but positive thermal expansion between 123 and

486 K [190]; the frequent citation of this paper left ReO3 unrecognized as a thermomiotic

material. More recently, Chatterji et al. reported that ReO3 displays low NTE between

2 and 200 K (αL ≈ −0.6 ppm·K−1) [32] and possibly around 600 K [185] but strong

PTE near ambient temperature [185]. In a thorough neutron powder diffraction study of

ReO3, Rodriguez et al. demonstrated the strong dependence of thermal expansion on crystal

structural defects and specifically static disorder of O atoms transverse to the Re· · ·Re

axis [186].
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The void spaces in the framework of the cubic ReO3 structure allow for accommoda-

tion of tilting of the rigid octahedra upon modest compression. A pressure-induced phase

transition in ReO3 was first observed by Razavi et al. in 1978 [191]; a slightly later study

reported the critical pressure to be 0.24 GPa at 2 K [192]. Upon compression at ambient

temperature, ReO3 undergoes a structural phase transition to another cubic phase (Im3)

at ∼0.5 GPa [193, 194]. An intermediate phase transition to tetragonal (P4/mbm) sym-

metry was observed by some workers [195, 196] but not by others [197]. The Im3 phase

further transforms to other phases at even higher pressures [198, 199, 200, 201, 202]. ReO3

experiences a “compressibility collapse,” in which its compressibility increases by an order

of magnitude in the high-pressure phase [192]. A similar change in compressibility was

observed in the cubic (δ) polymorph of UO3 [203].

Despite the lack of pronounced NTE in ReO3, there are potentially many isostructural

oxyfluorides (MO2F and MOF2) and fluorides (MF3) with thermomiotic behavior.

1.3.2 Oxyfluorides (MO2F and MOF2)

The ReO3-type oxyfluorides TaO2F and NbO2F, both initially synthesized and character-

ized in 1956 by Frevel and Rinn [204], have been studied recently as potential thermomiotic

materials. Tao and Sleight reported strong PTE in NbO2F between 20 and 300 K (αL ≈

10.4 ppm·K−1) and very low, near-zero thermal expansion in TaO2F between 20 and 773 K

(-1 < αL < +1 ppm·K−1) [25]. The PTE in NbO2F has been found to be dependent on both

sample preparation and thermal history [205]. The very low thermal expansion of TaO2F

has led to interest in the material for application in infrared-transparent, thermal-shock-

resistant components [206]. Both NbO2F and TaO2F adopt the cubic ReO3 structure at

ambient conditions, and neither features long-range ordering of O and F across the available

anion sites. The lack of O/F ordering is not atypical; none of the perovskites KTiO2F [207],

BaScO2F [208], BaFeO2F [209], SrFeO2F [210], PbScO2F [211], or PbFeO2F [212] are known

to be anion-ordered. Brink, Withers, and co-workers have published several studies examin-

ing O/F ordering in NbO2F and related compounds [213, 214, 215, 216, 217]. Furthermore,

analysis of the atomic displacement parameters of TaO2F suggests anion static disorder [25]
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Figure 1.9: Transformation of the ReO3 structure from rhombohedral (space group R3̄c)
to cubic (Pm3̄m) symmetry upon heating (or compression), as viewed down the cubic (1 1
1) axis. This phase transformation can be conceptualized as the rotation of MX6 octahedra
around the threefold rotation axis. The orange octahedron is in the plane closest to the
viewer, followed by the red, blue, and then magenta octahedra. Reprinted with permission
from C. R. Morelock et al. Chem. Mater., 26(5):1936-1940, 2014. Copyright 2014, American
Chemical Society.

that is similar to that observed for ReO3 itself [186]. The lack of NTE in TaO2F and NbO2F

has prompted further investigation; the near-zero thermal expansion of TaO2F as a result

of O/F site disorder is explored in Chapter 9 [218].

The high-pressure behavior of both NbO2F and TaO2F has been examined. NbO2F

was studied using a diamond anvil cell and synchrotron radiation up to 40.1 GPa [219,

220]. Carlson et al. determined that NbO2F transforms from ambient cubic (Pm3̄m) to

rhombohedral (VF3-type, R3̄c) symmetry at 0.47 GPa, with amorphization observed above

18.5 GPa [219]; the bulk modulus (K0) of the cubic phase is 24.8 GPa, which drops by a

factor of two to 9.6 GPa in the rhombohedral phase [220]. This phase transformation was

attributed to tilting of the octahedra around the cubic threefold rotation axis (Figure 1.9),

and compression and slight distortion of the Nb(O/F)6 octahedra was also observed [219].

More recently, Cetinkol et al. studied TaO2F using a DAC and synchrotron radiation and

observed a transformation to rhombohedral symmetry in this material as well. The phase

transition begins around 0.7 GPa and is completed by 4 GPa; a bulk modulus of 36 GPa

was measured for cubic TaO2F, and an average bulk modulus of 60 GPa was measured
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for the rhombohedral phase on decompression from 8 to 4 GPa [221]. A very recent high-

pressure Raman spectroscopy study of TaO2F has confirmed the co-existence of both cubic

and rhombohedral phases between 0.7 and 4 GPa [222]. In a variable-pressure/temperature

study, it was also determined that, upon compression, the CTE of TaO2F becomes more

positive, and the bulk modulus increases upon heating; these effects are possibly due to local

structural disorder in the material and the phase transformation at modest pressures [223].

Another ReO3-type oxyfluoride, TiOF2, was also initially synthesized and characterized

several decades ago [224]. Like the above oxyfluorides, TiOF2 also features anion site

disorder. The material displays positive thermal expansion, with a transformation from

rhombohedral to cubic symmetry on heating to ∼340 K [225].

1.3.3 Metal trifluorides (MF3)

Many metal trifluorides (MF3; M = Al, Cr, Fe, Ga, In, Ti, V) are only cubic at elevated

temperatures; upon cooling, they adopt a rhombohedrally distorted form of the ReO3 struc-

ture (VF3-type) [226, 227, 228, 229]. The VF3-type structure was initially solved by Jack

and Gutmann in 1951 [230]. The temperature of the phase transition in MF3 varies from

∼340 K in TiF3 to ∼1250 K in CrF3 [227]. As in the oxyfluorides discussed above, this

phase transformation involves the coupled rotation of the constituent MF6 octahedra (Fig-

ure 1.9). The exception to this trend is ScF3, which remains cubic down to at least 10

K [35].

The thermal expansion behavior of a few ReO3-type MF3 has been studied. The un-

folding of the rhombohedral phase on heating is accompanied by strongly positive thermal

expansion, while the cubic phase shows much lower or even negative thermal expansion.

TiF3 is cubic above ∼340 K [226, 228], and the CTE of the cubic phase is nearly zero [228].

The rhombohedral-to-cubic phase transition in α-AlF3 (∼730 K [231]) has been studied

extensively [227, 231, 232, 233, 234, 235], but its thermal expansion has not been reported

in detail. Ravez et al. provided some information on the temperature dependence of unit

cell volume but did not report expansion coefficients [236]; they reported that both cubic

and rhombohedral phases display positive thermal expansion. Chaudhuri et al. studied
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the mechanism of the cubic-to-rhombohedral phase transition using molecular dynamics

simulations and suggested local distortions and NTE above the phase transition tempera-

ture [234]. The thermal expansion of α-AlF3 [237] and InF3 is further explored in Chapter

4, and that of TiF3 [238] is discussed in Chapter 6. Materials with the rhombohedral VF3-

type structure are typically highly compressible but do not undergo phase transitions on

modest compression [239, 240, 241, 242]. In this structure, the M–F–M links are bent, and

further reduction of this bond angle on compression provides an energetically low-cost path

for volume reduction, leading to much lower bulk moduli than those observed for materials

with the cubic ReO3 structure, in which these same links are linear.

In contrast to most MF3, cubic ScF3 displays isotropic negative thermal expansion over

a wide temperature range (at least 10 to 1100 K), with a linear CTE of approximately

-14 ppm·K−1 between 60 and 110 K [35]. In an inelastic neutron scattering study, Li et

al. determined that the thermomiotic behavior of ScF3 has very strong contributions from

low-energy phonons close to the R point, some of which involve the motion of bridging F

atoms transverse to the Sc–(F)–Sc axis in a quartic potential [243]. A high-pressure X-ray

and neutron diffraction study of cubic ScF3 revealed a phase transition to rhombohedral

symmetry between ∼0.5 and 0.8 GPa at ambient temperature, consistent with prior high-

pressure micro-Raman work [244, 245, 246]. The critical pressure of ScF3 was also reported

to increase with temperature; for example, at 50 K, ScF3 becomes rhombohedral at ∼0.15

GPa [35]. This relatively modest critical pressure may limit the use of ScF3 in compos-

ites with PTE components (Chapter 5) [44]. Similar to other ReO3-type materials, the

bulk moduli for the two phases of ScF3 were reported to be significantly different; K0 at

room temperature changed from 57(3) to 9(3) GPa between the cubic and rhombohedral

phases [35, 223]. In an effort to control its CTE, solid solutions of ScF3 with other MF3

(M = Ti, Y, Al) are discussed in Chapters 6, 7, and 8, including the effects of cation

disorder on both CTE and compressibility [238, 247, 248].
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1.4 Overview of thesis

This thesis explores the thermal expansion of ReO3-type fluorides and oxyfluorides, with

particular focus on the effects of disorder and stress on thermal expansion and related

properties.

An overview of instrumentation and data analysis methods is given in Chapter 2. Meth-

ods for controlling temperature and pressure in X-ray diffraction experiments are intro-

duced. X-ray total scattering, which is used in this thesis to collect data for local structure

studies using pair distribution functions (PDFs), and heat capacity measurements are de-

scribed. Finally, the Rietveld method and PDF analysis are described in some detail.

Chapter 3 provides a more detailed discussion of the background-reducing internal mask

(BRIM), a device that allows for collection of Rietveld-quality diffraction data with precise

control over temperature and pressure and reduction of parasitic scattering from the pres-

sure vessel. The capabilities of the BRIM are demonstrated through studies of ZrW2O8

and Al2W3O12. The BRIM is a critical tool for collecting the high-pressure data presented

in Chapters 7 and 8.

The thermal expansion behaviors of two simple ReO3-type metal trifluorides are explored

in Chapter 4. Variable-temperature studies of α-AlF3 and InF3 are discussed. The thermal

expansion of the rhombohedral and cubic phases in both materials is quantified, and the

phase transition temperature is determined.

The limitations of ScF3 (and other thermomiotic materials) in composites with large

CTE mismatch are illustrated in Chapter 5. An unexpected low-temperature phase transi-

tion in ScF3 is observed due to stresses arising from CTE mismatch with a varnish matrix.

In an effort to control the thermal expansion of ScF3, the material is doped with other

metal trifluorides, and variable-temperature/pressure X-ray diffraction data are collected.

The thermal expansion and pressure-related behavior of these Sc1−xMxF3 solid solutions

are discussed in Chapters 6 (M = Ti), 7 (M = Y), and 8 (M = Al).

The role of anion site disorder in the previously reported near-zero thermal expan-

sion [25] of cubic ReO3-type oxyfluoride TaO2F is explored in Chapter 9. The local struc-

ture of TaO2F is probed via X-ray total scattering. The average cubic model, featuring
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random O and F distribution, does not adequately describe the local structure of TaO2F.

However, a supercell model featuring ordered –Ta–O–Ta–O–Ta–F– chains along <1 0 0>

with different Ta–O and Ta–F distances and O/F off-axis displacements describes the local

structure significantly better than does the cubic model.

Finally, overall conclusions and future directions for this work are presented in Chapter

10.

39



CHAPTER 2

INSTRUMENTATION AND DATA ANALYSIS

In this chapter, experimental methods are presented for both laboratory and synchrotron

powder X-ray diffraction (PXRD), introduced in Section 1.1.4.1. Synchrotron in situ powder

X-ray diffraction and methods of controlling both temperature and pressure are introduced.

The background-reducing internal mask (BRIM) is described; this device is discussed in

greater detail and applied in later chapters (3, 7, and 8). The theory behind total scattering

and experimental methods for data collection are presented. In addition, the experimental

measurement of heat capacity is introduced. Finally, data analysis methods are discussed.

2.1 Laboratory X-ray diffraction

The laboratory powder X-ray diffraction data presented herein were collected at the Georgia

Institute of Technology (Atlanta, GA, USA) using a Scintag X1 diffractometer (Scintag,

Inc.; Cupertino, CA, USA) equipped with a Cu Kα tube (λ ≈ 1.54 Å) and Peltier cooled

solid state detector. This diffractometer (Figure 2.1a) uses the Bragg-Brentano theta-theta

configuration, featuring a stationary sample around which the X-ray source and detector

are rotated. Laboratory PXRD was only used herein to check sample purity and estimate

ambient lattice parameters prior to synchrotron characterization.

Many of the materials characterized in this thesis are moisture-sensitive; hence, an air-

tight sample holder was employed during laboratory PXRD of those materials. This sample

holder, fabricated from stainless steel and Kapton film at Georgia Tech, is pictured in Figure

2.1 (b and c). The holder consists of three pieces: a sample tray, base, and top. The base

contains an O-ring that allows the sample to be isolated from the ambient atmosphere by

tightening outer screws. The sample tray is positioned in such a manner that the sample

surface sits at the correct height required by the instrument. The top features a window

made of Kapton, a polyimide film that is nearly invisible to X-rays, allowing escape of

diffracted radiation from the sample. For proper isolation from moisture, the sample is
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(a)

(b) (c)

Figure 2.1: (a) Scintag X1 diffractometer at Georgia Tech, showing the Bragg-Brentano
theta-theta configuration. In this configuration, the sample remains fixed while the X-ray
source and detector rotate about it at identical angles. (b) Front view of the fully assembled
air-tight sample holder for the diffractometer that was used for analysis of moisture-sensitive
samples and (c) the three pieces of the diassembled holder (left to right: top, base, sample
tray).
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loaded in the holder in an inert atmosphere (glove box).

2.2 Synchrotron diffraction

Most of the X-ray diffraction data presented in this thesis were collected at the Advanced

Photon Source (APS), a third-generation synchrotron at Argonne National Laboratory,

near Chicago, IL, USA. Five different beamlines at the APS were used: 1-BM-C and 17-

BM-B (variable-temperature PXRD with a Cryostream or wire-wound furnace), 11-ID-B

(variable-pressure/temperature PXRD with the BRIM), 11-BM-B (low-temperature PXRD

with a helium cryostat), and 1-ID-C (variable-temperature total scattering).

A synchrotron such as the APS operates under the principle that radiation is emitted

when the path of a circulating electron changes. The synchrotron consists of electrons

circulating at relativistic speeds (near the speed of light) around an evacuated ring. Devices

such as bending magnets (BM), wigglers, and undulators are used to change the path of

the electrons, releasing radiation that is then guided through beamlines to experimental

stations called hutches.

Synchrotron X-rays are preferred over those available from a laboratory tube source

for many structural investigations. Tube sources (such as Cu, Ag, or Mo) offer a limited

range of radiation energies, and the X-rays are not very intense. However, the X-rays

produced at synchrotrons have very high intensities, and their energies can be tuned over

a wide range [249]. The high X-ray energies available at the APS were required for high-

pressure studies using a thick titanium pressure vessel. Furthermore, because it has a

well-defined time structure, synchrotron radiation can be used for kinetics and other time-

related studies. The high intensities of synchrotron X-rays allow for rapid collection of

diffraction data; measurements that require hours or days with a laboratory X-ray source

can be accomplished in minutes or even seconds at a synchrotron. Therefore, diffraction

data may be collected in situ while varying temperature or pressure on a reasonable time

scale. In this section, methods for controlling temperature and pressure in synchrotron

diffraction experiments are discussed.
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2.2.1 Variable-temperature synchrotron diffraction

Variable-temperature, ambient-pressure PXRD measurements were conducted at beamlines

1-BM-C, 17-BM-B, and 11-BM-B of the APS.

2.2.1.1 Cryostream and wire-wound furnace

Variable-temperature, ambient-pressure PXRD experiments (100-1200 K) at 1-BM-C and

17-BM-B are summarized in Table 2.1; the results of these measurements are discussed in

Chapters 4, 6, 7, and 8. These experiments used either ∼20 (1-BM-C) or ∼17 keV (17-BM-

B) X-rays that were selected using a Si (111) double-crystal monochromator. Data were

recorded on a PerkinElmer (Waltham, MA, USA) amorphous silicon-based area detector

(2048 × 2048, 200 µm pixels). Two methods were used for temperature control: an Oxford

Cryosystems Cryostream (Oxford, UK) and a wire-wound furnace. In both methods, the

sample is mounted in a flowcell body developed by Chupas et al. [250] that is described

below.

For measurements between 100 and 500 K, an Oxford Cryosystems Cryostream was

used to control temperature. The setup for these experiments, all of which were performed

at beamline 1-BM-C, is shown in Figure 2.2. In this setup, the powdered sample is held

in a Kapton capillary in the flowcell body without heat shields, furnace elements, or gas

flow through the sample. The Cryostream cools or heats the area of the sample in contact

with the X-ray beam; for the most accurate temperatures, the Cryostream tip must be ∼5

mm from the sample position. The nitrogen gas temperature is measured by a platinum

resistance thermometer located in the gas exchanger portion of the probe, prior to entering

the Cryostream nozzle for release onto the sample; the temperature output to the controller

is a mapped temperature for the sample position [251]. For each measurement, the sample

is packed in a Kapton capillary with outer diameter of 0.86 mm that is sealed with epoxy;

for mechanical rigidity, each of these small capillaries is held with glass wool in a Kapton

capillary with outer diameter 1.02 mm. For all Cryostream experiments, the following

schedule was used, with a rate of 180 K·h−1 for temperature ramps: cooling from ambient

temperature to 100 K, holding for 15 min, heating to 500 K, holding for 15 min, cooling to
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Table 2.1: Summary of variable-temperature, ambient-pressure powder X-ray diffraction
experiments at 1-BM-C and 17-BM-B of the Advanced Photon Source. C = Cryostream;
F = Furnace.

# Beamline λ (Å) Material Method Chapter(s)

1.1 1-BM-C 0.60665 Sc0.90Y0.10F3 C 7
Sc0.75Y0.25F3 C 7

1.2 1-BM-C 0.60665 ScF3 C 7
Sc0.95Y0.05F3 C 7
Sc0.90Y0.10F3 F 7

2 1-BM-C 0.60650 Sc0.80Y0.20F3 C 7
Sc0.90Al0.10F3 C 8

3 1-BM-C 0.60570 Sc0.95Al0.05F3 C 8
Sc0.85Al0.15F3 C 8
Sc0.80Al0.20F3 C 8
Sc0.75Al0.25F3 C 8
Sc0.70Al0.30F3 C 8
Sc0.60Al0.40F3 C 8
Sc0.50Al0.50F3 C 8
Sc0.70Ti0.30F3 C 6
Sc0.50Ti0.50F3 C 6
Sc0.30Ti0.70F3 C 6
Sc0.95Y0.05F3 F 7
Sc0.80Y0.20F3 F 7
Sc0.75Y0.25F3 F 7

4 1-BM-C 0.61072 Sc0.90Ti0.10F3 C 6
Sc0.60Ti0.40F3 C 6
Sc0.40Ti0.60F3 C 6
Sc0.15Ti0.85F3 C 6

TiF3 C 6

5 1-BM-C 0.61610 ScF3 C 6, 8
ScF3 F 8

Sc0.85Al0.15F3 F 8
Sc0.70Al0.30F3 F 8
Sc0.60Al0.40F3 F 8

6 17-BM-B 0.72910 Sc0.90Al0.10F3 F 8
Sc0.75Al0.25F3 F 8
Sc0.50Al0.50F3 F 8

InF3 F 4

7 17-BM-B 0.7270 α-AlF3 F 4
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100 K, holding for 15 min, and finally heating to ambient temperature (Figure 2.2b).

High-temperature (>323 K) data were collected at 1-BM-C and 17-BM-B using a wire-

wound furnace (Figure 2.3). The Chupas flowcell body was used with two heating elements

attached and a thermocouple placed close to the X-ray beam position; each heating element

was made from Kanthal A-1 resistive wire wound around a ceramic tube, and sample tem-

perature was monitored by a sheathed K-type thermocouple (Omega Engineering, Stamford,

Connecticut, USA) [250]. Heat shields were placed on the flowcell body to both protect

the detector and keep heat close to the sample. The samples were held in fused quartz

capillaries under slowly flowing He. Figure 2.3a shows an assembled flowcell with heating

elements and thermocouple attached, and Figure 2.3b shows the furnace experimental setup

with heat shields in place and gas input/output lines attached. During furnace experiments,

temperature was increased at 180 K·h−1 without cooling.

2.2.1.2 Helium cryostat

Low-temperature high-resolution synchrotron powder diffraction data were collected for

ScF3 (Chapter 5) using beamline 11-BM-B at the APS, with an average wavelength of

0.413 Å [252, 253]. A mixture of NIST standard reference materials Si (SRM 640c) and

Al2O3 (SRM 676) was used to calibrate the instrument, in which the Si lattice constant

determined the wavelength for each detector.

An Oxford Instruments closed-flow helium cryostat (OptistatCF with exchange gas) was

used as a sample environment. The sample stick for this device is pictured in Figure 2.4.

In this device, temperature is controlled by a combination of manual helium flow control

and power dissipated in an electrical heater, both of which are regulated by a temperature

controller; the temperature is monitored by a rhodium iron temperature sensor located on

the heat exchanger. Data were collected at 14 K intervals when heating from the base

temperature (∼6 K) to 146 K, filling in the gaps upon cooling, which resulted in data for

every 7 K; data were also collected at 230 and 300 K afterwards. An equilibration time of

15 min was used for each temperature point.

An Oxford Instruments Cryostream 700 Plus N2 gas blower was also used at 11-BM-B.
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Figure 2.2: (a) Experimental setup for variable-temperature PXRD measurements with
the Cryostream at beamline 1-BM-C of the Advanced Photon Source. The sample is held
in a Kapton capillary that is loaded in the flowcell body (without furnace elements, heat
shields, or gas flow) mounted on a goniometer. The Cryostream cools/heats the area of the
sample in the X-ray beam path. X-rays enter from the right of the photo, diffract from the
sample, and reach the detector, which is off-camera to the left. (b) Heating and cooling
schedule used for all Cryostream experiments.
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(a)

(b)

Figure 2.3: Wire-wound furnace used for high-temperature PXRD at beamlines 1-BM-C
and 17-BM-B of the Advanced Photon Source. (a) Flowcell body with heating elements
attached and thermocouple inserted. (b) Furnace experimental setup, photographed when
heated to ∼1100 K.
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Figure 2.4: Helium cryostat sample stick used at beamline 11-BM-B of the Advanced
Photon Source. The sample capillary, shown at left, is placed at the end of the stick at the
bottom of the image.
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Table 2.2: Specifications of the four BRIM designs. The outer diameter (OD) and inner
diameter (ID) listed are those of the titanium pressure vessel. The ID of the pressure vessel
is approximately equal to the OD of the BRIM itself. Pmax is the maximum pressure limit
of the setup.

BRIM OD (mm) ID (mm) Pmax (MPa) Chapter(s) Refs.

MK2BRIM 138 ∼14.3 ∼7.9 ∼138 3 [254]
MK2BRIM 276 ∼14.3 ∼6.4 ∼276 3,7 [93, 247, 254]
MK3BRIM 276 ∼14.3 ∼6.4 ∼276 None [93]
MK3BRIM 414 ∼14.3 ∼4.8 ∼414 8 [95, 248]

For these measurements, data were collected while heating in 10 K intervals from 100 to

160 K and then in 20 K intervals up to 300 K.

2.2.2 Variable-pressure synchrotron diffraction1

The variable-pressure PXRD studies presented in this thesis make use of the background-

reducing internal mask [254]. Initial evaluation of the BRIM concept is presented in Chapter

3, and the device is applied to the study of new materials in Chapters 7 and 8. In this

section, the high-pressure setup and specifications of the various BRIM designs (Table 2.2)

are described.

Variable-pressure/temperature PXRD measurements were conducted on beamline 11-

ID-B at the Advanced Photon Source; the experiments are summarized in Table 2.3, includ-

ing samples examined and BRIM designs used. High-energy X-rays (∼58 keV, λ ≈ 0.2127

Å) were selected to provide adequate penetration of the sample environment (described be-

low), dispersion of the diffraction from the sample under study, attenuation by the BRIMs,

and incident intensity. Data were recorded on a PerkinElmer amorphous silicon-based area

detector (2048 × 2048, 200 µm pixels). Parameters, including the position of the detector,

its tilt angle relative to the beam, and its distance from the sample, were determined with

the aid of a CeO2 calibrant (Section 2.4.2.1).

1The work presented in this subsection has been previously published and is edited to fit the context
of this thesis. Reproduced from ref. [93] with permission from the PCCP Owner Societies. Reprinted with
permission from L. C. Gallington et al. J. Appl. Phys., 115(5):053512, 2014 (ref. [95]). Copyright 2014, AIP
Publishing LLC. Reproduced from ref. [254] with permission of the International Union of Crystallography.
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Table 2.3: Summary of variable-pressure/temperature PXRD experiments at 11-ID-B of
the Advanced Photon Source.

# λ (Å) Material BRIM Chapter(s)

B1 0.21270 ZrW2O8 MK2BRIM 138 3
Al2W3O12 MK2BRIM 276 3

B2 0.21280 ScF3 MK2BRIM 276 7, 8
Sc0.90Y0.10F3 MK2BRIM 276 7

B3 0.21280 Sc0.95Y0.05F3 MK2BRIM 276 7
Sc0.80Y0.20F3 MK2BRIM 276 7
Sc0.75Y0.25F3 MK2BRIM 276 7

B4 0.21270 Sc0.95Al0.05F3 MK3BRIM 414 8
Sc0.90Al0.10F3 MK3BRIM 414 8
Sc0.85Al0.15F3 MK3BRIM 414 8
Sc0.80Al0.20F3 MK3BRIM 414 8
Sc0.70Al0.30F3 MK3BRIM 414 8
Sc0.60Al0.40F3 MK3BRIM 414 8

2.2.2.1 High-pressure sample environment

Figure 2.5 shows the general arrangement of the pressure vessel and heater block that was

used for BRIM experiments. The samples were contained inside a vertically mounted Grade

5 titanium pressure tube, purchased from the High-Pressure Equipment Company (HiP),

Erie, Pennsylvania, USA. Threaded and coned tubes (“pipe nipples”) of various dimensions

were used (Table 2.2), and the ends of these tubes were capped using Grade 5 Ti fittings

from HiP. The system was pressurized using a silicone oil medium and a hand-driven syringe

pump. Care was taken to rigidly restrain the pressure vessel and minimize strain from the

plumbing so that the vessel position did not move during a sequence of measurements,

as such movement would lead to changes in the sample-to-detector distance that would

be significant (tens of micrometers) when trying to determine precise bulk moduli. An

aluminum heater block, equipped with four 50 W, 110 V cartridge heaters, was clamped

around the pressure vessel, and temperature was monitored by two K-type thermocouples

sheathed in Kapton whose junctions were placed in holes in the heater block. A temperature

calibration curve for the apparatus was created by comparing the controller set point with

that measured by a thermocouple secured within a Kapton tube at the sample position;

the temperature at the sample position varied from that of the heater block by only a few
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Figure 2.5: General arrangement of the titanium pressure vessel and heater block for BRIM
experiments. Reproduced with permission of the International Union of Crystallography
from ref. [254].

Kelvin, even at the maximum experimental temperature of ∼540 K [93, 95].

2.2.2.2 Background-reducing internal mask (BRIM)

Four different BRIM designs have been manufactured, three of which are used in this thesis;

the four are summarized in Table 2.2 and shown in Figure 2.6. All BRIM bodies were made

from a machinable tungsten alloy using electrode discharge machining (EDM) to cut the

required slots. The blade that serves as a beam stop was cut by EDM from a tungsten

(rhenium) sheet and then positioned in its slot on the MK2BRIM (MK3BRIM) body with

the aid of a high-temperature epoxy resin.

The BRIM design concept is shown in Figure 2.7. Two versions of the MK2BRIM

design were created, differing in their maximum pressures (138 MPa for MK2BRIM 138

and 276 MPa for MK2BRIM 276). In this design, the hole parallel to the BRIM axis for

the sample capillary is located on-axis, and the BRIM body fits snugly inside the pressure

vessel body. Scattering from the upstream wall of the pressure vessel is largely stopped

by the highly absorbing tungsten BRIM body, but some is observed on the detector at
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Figure 2.6: Blade-side view of the four BRIM designs, with a penny for scale. Left to right:
MK2BRIM 138, MK2BRIM 276, MK3BRIM 276, MK3BRIM 414.

Figure 2.7: Schematic cross-section through the MK2BRIM, sample, and pressure tube at
X-ray beam height. The tungsten components of the BRIM are in blue. Reproduced with
permission of the International Union of Crystallography from ref. [254].
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low angles (Figure 2.8a). The extent to which this scattering contaminates the recorded

diffraction data depends upon the dimensions of the incident-beam slit in the BRIM and its

length along the beam path. Much of this parasitic scattering could be excluded from the

final one-dimensional diffraction patterns by use of a well-chosen mask during integration

of the two-dimensional image using FIT2D [255] (Section 2.4.2.1). The beam stop blade

prevents X-rays from hitting the downstream wall of the pressure vessel. However, as it is

located close to the sample (∼1.25 mm), the blade also obscures some scattering from the

sample at low angles. The utility of the low-angle part of a diffraction pattern is degraded by

residual scattering from upstream titanium and a reduction in sample scattering due to the

width of this blade combined with its position close to the sample. For both MK2BRIMs,

shadowing of the sample scattering by the beam stop blade is expected to occur below

2θ ≈ 11.5◦. However, diffraction data recorded with the MK2BRIMs were found to be

useful for Rietveld analyses, without correction, at lower 2θ than this supposed minimum.

At Bragg angles close to the onset of shadowing, little of the sample scattering volume lies

“behind” the beam stop blade. In the case of the MK2BRIM 138, with a 0.5-mm-wide by

1.9-mm-deep beam stop blade and an ∼0.3-mm-wide by ∼3.2-mm-long incident-beam slit,

the diffraction data above 2θ ≈ 8◦ (d < 1.55 Å) were used for Rietveld analyses, and there

was no titanium scattering apparent in the patterns. In the case of the MK2BRIM 276,

with a 0.5-mm-wide by 1.2-mm-deep beam stop blade and an ∼0.3-mm-wide by ∼2.4-mm-

long incident-beam slit, the diffraction data above 2θ ≈ 8◦ (d < 1.55 Å) were similarly used

for Rietveld analyses, but there was some minor residual titanium scattering in the patterns

(Figure 2.8).

The MK3BRIM design (Figure 2.6) is an improvement of the MK2BRIM design. Two

versions of MK3BRIM were created (Pmax = 276 MPa for MK3BRIM 276 and 414 MPa

for MK3BRIM 414). This design delivers much better data quality at low scattering angles

by using a smaller sample tube diameter that is offset from the BRIM axis to give greater

distance between the internal beam stop rhenium blade and the sample; the design also

has a narrower X-ray entrance slit. Another improvement of the MK3BRIM design is coil

springs that prevent the BRIM from moving in the pressure vessel after being pushed into
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Figure 2.8: (a) Image recorded from cubic ZrW2O8 in the MK2BRIM 138. Some scat-
tering from the upstream titanium vessel wall is apparent at low angles. (b) Background
scattering from a silicone oil-filled pressure vessel, equipped with a MK2BRIM 276, without
a sample present. (c) Rietveld fit to data from CaF2 in an oil-filled vessel equipped with
a MK2BRIM 276. Parasitic scattering from Ti is weak compared with that of the sample.
The purple line is the Rietveld difference curve, and the blue line is a scaled section of the
empty-cell data shown in (b). The diffraction patterns shown in (b) and (c) were integrated
in FIT2D using the same mask. Reproduced with permission of the International Union of
Crystallography from ref. [254].
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place [93].

2.2.2.3 Sample preparation

A paste made from finely ground powder and silicone oil was placed in a short Kapton

capillary that had been sealed at one end using a high-temperature epoxy resin. The

Kapton capillary was chosen so that its size matched the inner bore of the BRIM. The

capillary was centrifuged so that the powder formed a dense column and any bubbles were

eliminated. If a taller column were needed, excess oil was removed, and more paste was

added; the capillary was then centrifuged again.

2.2.2.4 Alignment of BRIM inside pressure vessel

For both BRIM designs, a stainless steel tube spacer was placed in the bottom of the

pressure vessel to support the BRIM at the correct height. After adding silicone oil to just

cover the top of the stainless steel tube, a BRIM containing the sample was slid into the

pressure vessel. The BRIM was roughly aligned with a screwdriver-like device engaged in

the top slot on the BRIM, so that its incident-beam slit and collimator blade lay parallel

to the beam direction. The vessel was then filled with oil and sealed.

An initial X-ray alignment of the BRIM was performed with a PIN diode monitoring

the transmitted beam. The bottom of the ⊥-shaped slot was located and positioned at

beam height. A combination of scans, translating the pressure vessel across the X-ray beam

and rotating it around its axis, was used to center the beam stop blade approximately in

the X-ray beam and align it parallel to the beam direction. The pressure vessel was then

lowered so that the incident X-ray beam passed through the vertical narrow slot at the

top of the ⊥. Final adjustments to the orientation and position of the BRIM were made

so that the diffraction image from the sample was clean and symmetrical, with equivalent

intensities to the left and right of the beam stop blade shadow.

2.2.3 X-ray total scattering and pair distribution functions

Traditional diffraction patterns of crystalline materials feature sharp Bragg peaks that arise

from long-range order. Information about the average (crystal) structure of a material can
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be determined from analysis of these peaks. However, diffraction patterns also contain

diffuse scattering, which is modeled as part of the background in Rietveld analyses of the

data. The diffuse scattering contains information about short-range order and hence the

local structure of a material. In the X-ray (or neutron) total scattering approach, Bragg

and diffuse scattering are combined to calculate atomic pair distribution functions (PDFs).

These functions are defined in real space (as opposed to reciprocal space) in terms of actual

interatomic separations. The ability to explore short-range order makes this approach

especially well-suited for materials without long-range order, such as liquids or amorphous

solids [256]. Either X-rays or neutrons may be used for PDF studies; X-ray total scattering

is used in Chapter 9 to examine the local structure of TaO2F, so only X-rays are discussed

here. In this subsection, the theory behind pair distribution functions and experimental

methods for data collection are introduced.

2.2.3.1 Pair distribution and structure functions, G(r) and S(Q)

The atomic pair distribution function, G(r), is the Fourier transform of the total scattered

X-ray intensity function, S(Q), as follows:

G(r) =
2

π

Qmax
∫

Q=0

Q[S(Q)− 1] sin(Qr)dQ, (2.1)

in which momentum transfer Q is related to wavelength λ and angle 2θ by:

Q =
4π sin θ

λ
. (2.2)

The typical units for Q are Å−1. The Q[S(Q) − 1] part of Equation 2.1 is known as the

reduced structure function, F (Q).

G(r) is a function of radial distance r also defined as

G(r) = 4πr[ρ(r)− ρ0], (2.3)

where ρ0 is the average atomic number density and ρ(r) is the atomic pair density. The

PDF gives information about the number of atoms in a spherical shell of unit thickness at

some distance r from a reference atom [256]. The peaks in G(r) occur at real interatomic
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Figure 2.9: Examples of (a) I(Q), (b) S(Q), (c) F (Q), and (d) G(r). These plots are
derived from total scattering data for TaO2F at 328 K.

distances, while peak integrated intensities and widths are related to coordination number

and thermal or static disorder, respectively.

The structure function, S(Q), is derived from the measured coherent X-ray scattering

intensity Icoh(Q) from a sample (corrected for background and other experimental effects

and normalized by the flux and number of atoms in the sample):

S(Q) = 1 +
Icoh(Q)−

∑

ai|fi(Q)|2
|∑ aifi(Q)|2 , (2.4)

where ai and fi are the atomic concentration and X-ray atomic form factor, respectively,

for atom type i.

Figure 2.9 shows example plots of I(Q), S(Q), F (Q), and G(r), derived from total

scattering data for TaO2F at 328 K.
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2.2.3.2 Experimental information

One necessary experimental feature to obtain high real-space resolution in a PDF is the

ability to measure to high values of Q. Ideally, Qmax should be greater than 30 Å−1,

so X-rays of at least ∼45 keV should be used for proper total scattering measurements.

Although laboratory sources such as Mo and Ag can provide the proper X-ray energies,

the much higher energies available at synchrotron sources are preferred for high-resolution

total scattering measurements [256]. Recent growing interest in disordered materials has led

to the development of dedicated high-energy beamlines (∼87 keV is possible at beamline

11-ID-B of the APS) and the means for rapid acquisition of total scattering data with

a two-dimensional detector [257, 258]. With high-energy X-rays and the right detector

instrumentation, a high-quality PDF may be obtained with only a few seconds of data

collection; this process previously took hours, even at a synchrotron. The ability to quickly

obtain total scattering data also makes possible the study of local structural changes with

temperature or pressure [259].

In the study of TaO2F presented in Chapter 9, variable-temperature (80-441 K) X-ray

total scattering data were collected2 at beamline 1-ID-C of the Advanced Photon Source (λ

= 0.18505 Å) using an Oxford Cryosystems Cryostream. The sample was held in a Kapton

capillary while 2D diffraction images were recorded on a General Electric amorphous silicon-

based detector [260]. CeO2 (NIST SRM 674a) was used for calibration, and scattering from

an empty Kapton capillary was used for background subtraction.

Analysis of total scattering data is described in Section 2.4.3.

2.3 Heat capacity measurements

All heat capacity measurements (Chapter 7) were accomplished with a Physical Property

Measurement System (PPMS) model 6000 from Quantum Design (San Diego, California,

USA), a commercial relaxation calorimeter located in the laboratory of Prof. M. A. White

2The total scattering data were collected by G. J. Halder.
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at Dalhousie University (Halifax, Nova Scotia, Canada)3. This calorimeter determines heat

capacity at constant pressure (CP ) by measuring the heat (q) added or removed from a

sample with change in temperature:

CP =

(

dq

dT

)

P

. (2.5)

From CP , the heat capacity at constant volume (CV ), which is used in the Grüneisen

relationship (Equation 1.11), may be calculated if the volume CTE (αV ) and isothermal

bulk modulus (KT ) are known; in an isotropic system,

CV = CP − α2
V KTTV, (2.6)

where T and V are temperature and volume, respectively [1]. The typical units for heat

capacity are J·K−1.

For heat capacity measurements of ScF3 and Sc1−xYxF3, samples (∼1 mm thick) were

broken into small shards (<3 mm × 3 mm) and affixed to the measurement platform with

a grease that served as the thermal couplant. The heat capacities were measured from 2 to

300 K using a 4He cryostat and Apiezonr N grease, from 275 to 390 K using a 4He cryostat

and Apiezonr H grease, and from 0.35 to 10 K using a 3He cryostat and Apiezonr N grease.

All reported data points met reliability criteria (≥90% thermal coupling constant between

sample and platform and ≥40% sample contribution to total heat capacity). Temperature

was monitored and controlled by a CernoxTM sensor (Lake Shore Cryotronics, Westerville,

Ohio, USA) and thin-film resistive RuO platform heater attached directly to the bottom

side of the sample platform and connected to the puck frame by eight small thermally

conductive wires.

For more details concerning the proper measurement of heat capacity with a PPMS,

please consult the work of Lashley et al. [261] and Kennedy et al. [262].

2.4 Data analysis

In this section, the data analysis methods that are employed in the thesis are discussed.

3Heat capacity data were collected by C. A. Romao and M. B. Johnson of Dalhousie University and the

author.
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2.4.1 Phase identification from powder diffraction data

The program JADE from Materials Data, Inc. (Livermore, CA, USA), with the ICDD

(International Center for Diffraction Data) PDF database, was used for phase identification

in powder samples.

2.4.2 Synchrotron diffraction data

In this subsection, methods for analyzing synchrotron powder diffraction data, including

integration of two-dimensional diffraction images, correction of patterns for angular distor-

tion, and Rietveld analysis, are discussed.

2.4.2.1 Diffraction image collection and integration

Two-dimensional synchrotron powder diffraction images were collected on an area detector

(Figure 2.10a) at the Advanced Photon Source and processed using the program QXRD.

Diffraction is observed as a collection of concentric rings (Figure 2.10b), which represent the

intersection of Debye-Scherrer cones (Section 1.1.4.1) with the plane of the detector. The

radii of these diffraction rings contain information about diffraction angles; integration of

the intensity of a given ring yields the intensity of a particular Bragg peak at some angle.

For integration, the ring center coordinates (the “beam center”) on the detector must be

known (represented by parameters xC and yC). Furthermore, this integration process is not

simply integration around a circle, as the detector is not perfectly aligned perpendicular

to the incident beam; therefore, the diffraction rings are slightly elliptical in shape. To

describe the shape and orientation of these ellipses for integration, two parameters must be

known: the angle between the principal axes of the ellipses and the coordinate axes of the

image in the detector plane (the “tilt plane rotation angle”, φTPR) and the angle between

the normal of the detection plane and the direction of the incident beam (the “tilt angle”,

φT ), which can also be viewed as the non-orthogonality of the detector plane. Finally, for

integration in units of 2θ, two additional parameters must be known: the wavelength of

the incident beam (λ) and the distance between the sample and detector (dSD). Figure

2.11 illustrates these six parameters graphically. With the program FIT2D [255], samples
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Table 2.4: Parameters for FIT2D integration of diffraction data collected on an area de-
tector at the Advanced Photon Source: λ is the incident X-ray beam wavelength, xC and
yC are the x- and y-coordinates (in pixels) of the beam center, respectively, dSD is the
sample-to-detector distance, and φTPR and φT are the detector tilt plane rotation angle
and tilt angle, respectively. Beamtime labels (#) are defined in Tables 2.1 and 2.3, and
parameters are defined in Figure 2.11.

# Calibrant(s) λ (Å) xC (px) yC (px) dSD (mm) φTPR (◦) φT (◦)

B1 CeO2 0.21270 1052.292 1032.517 888.738 58.810 0.100
B2 CeO2 0.21280 1055.647 1033.015 830.000 -113.344 -0.137
B3 CeO2 0.21280 1056.169 1032.230 798.000 73.551 0.233
B4 CeO2 0.21270 1056.683 1033.117 884.500 -112.391 -0.293
1.1 LaB6 0.60665 1024.933 1018.871 249.895 32.316 -0.225
1.2 LaB6 0.60665 1024.707 1018.831 249.880 31.365 -0.220
2 LaB6 0.60650 1023.529 1018.118 250.040 34.530 -0.228
3 LaB6 0.60570 1028.018 1017.790 248.551 35.145 -0.221
4 LaB6 + CeO2 0.61072 1035.298 1027.861 249.724 38.252 -0.187
5 LaB6 0.61610 1032.461 1026.086 249.430 -153.073 0.175
6 LaB6 0.72910 1024.966 1031.201 251.071 -52.519 -0.099
7 LaB6 0.72700 1021.790 1028.938 300.691 -29.913 -0.116

of NIST standard reference materials, either LaB6 (NIST SRM 660a) or CeO2 (NIST SRM

674), were used to calibrate these parameters, which are listed for each beamtime in Table

2.4. After applying a custom mask to eliminate shadowing from the beam stop and other

artifacts, the two-dimensional diffraction images were integrated with FIT2D using the

appropriate parameters to produce a one-dimensional diffraction pattern (intensity versus

angle, Figure 2.10c) and converted into an appropriate format for further analyses using

CMPR [263].

2.4.2.2 Correction of angular distortion

Angular distortions were observed in the integrated diffraction patterns from variable-

temperature, ambient-pressure experiments at 1-BM-C and 17-BM-B that were possibly

associated with the oblique incidence of the X-ray beam on the relatively thick active layer

of the detector. These distortions were corrected prior to Rietveld analysis (discussed be-

low) using a calibration curve derived from the measured and expected peak positions for a

standard LaB6 sample (2θactual and 2θexpected, respectively). Figure 2.12a shows a Rietveld

fit to uncorrected LaB6 data; the fit is poor (Rwp = 0.1820) due to shifted peak positions.
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(a) (b)

(c)

Figure 2.10: (a) Two-dimensional synchrotron diffraction images are collected on an area
detector. (b) These diffraction images consist of concentric Debye-Scherrer rings. (c) With
FIT2D, the 2D images are integrated to create a 1D diffraction pattern. The data shown
here are from an LaB6 sample (NIST SRM 660a).
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Figure 2.11: Parameters for FIT2D integration of diffraction data collected on an area
detector. Only one diffraction ring is shown for simplicity. The figure is not to scale; some
sizes, angles, and distances are exaggerated for emphasis. Parameter definitions: dSD =
sample-to-detector distance, λ = incident X-ray beam wavelength, (xC ,yC) = coordinates of
the beam center on the detector, φTPR = detector tilt plane rotation angle, φT = detector
tilt angle.
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Figure 2.12: Rietveld fits to a diffraction pattern for LaB6 (a) before and (b) after correction
for angular distortion. An example ∆θ versus 2θactual correction curve is shown in (c).

An example of the calibration curve appears in Figure 2.12c; this curve is a fifth-order poly-

nomial fit to ∆θ versus 2θactual of each LaB6 Bragg peak, where ∆θ = 2θexpected − 2θactual.

The coefficients of this correction curve f(x) = A+Bx+Cx2+Dx3+Gx4+Hx5 are listed

in Table 2.5 for each beamtime, and an example of a Rietveld fit to corrected LaB6 data

appears in Figure 2.12b; the fit is significantly improved (Rwp = 0.0340). Furthermore, the

lattice parameter calculated from corrected LaB6 data (a = 4.156892(18)) is in significantly

better agreement with the NIST SRM value (a = 4.1569162(97)) [264] than that calculated

from uncorrected data (a = 4.150856(105)).
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Table 2.5: Coefficients of the angular distortion correction curve f(x) = A+Bx+Cx2+Dx3+Gx4+Hx5 for each beamtime. Beamtime
labels (#) are defined in Tables 2.1 and 2.3.

# A B C D G H

1.1 -7.56864×10−3 3.81208×10−3 -3.27496×10−4 1.63516×10−5 -4.31714×10−7 3.99548×10−9

1.2 -5.80009×10−3 3.15405×10−3 -2.32607×10−4 1.11411×10−5 -3.13190×10−7 3.03914×10−9

2 -6.08687×10−3 2.95287×10−3 -2.42350×10−4 1.20343×10−5 -3.25555×10−7 3.08613×10−9

3 -3.45113×10−4 1.67276×10−3 -1.23625×10−4 7.07614×10−6 -2.31149×10−7 2.38864×10−9

4 -1.69351×10−2 6.54719×10−3 -6.04396×10−4 2.82346×10−5 -6.55759×10−7 5.54399×10−9

5 9.90229×10−3 -8.24588×10−4 1.69826×10−4 -6.13737×10−6 1.89587×10−8 5.65221×10−10

6 4.33378×10−3 5.65055×10−4 1.25218×10−4 -9.60364×10−6 2.36248×10−7 -2.33966×10−9

7 1.33766×10−2 -1.93370×10−3 2.46359×10−4 -8.71641×10−6 4.08488×10−8 9.60579×10−10
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2.4.2.3 Rietveld analysis

Rietveld analysis of powder diffraction data is used to extract various structural parameters

such as lattice constants and atomic displacement parameters. The method was initially

developed by H. M. Rietveld in the 1960s [265]. In the Rietveld method, a powder pattern is

expressed in terms of the intensity observed at a given 2θ (yobs). From models for structure,

experimental peak shape, and background, the calculated intensity (ycalc) is determined

at each 2θ. A least-squares method is then employed to adjust various parameters to

minimize the difference between yobs and ycalc over the entire pattern. Refinement quality

can be quantified by agreement factors, most commonly Rwp, the weighted profile R value:

Rwp =

{∑

iwi[yi,obs − yi,calc]
2

∑

iwi[yi,obs]2

}1/2

, (2.7)

where wi is a weighting factor. Goodness of fit is expressed by χ2, which compares Rwp to

the statistically expected value Rexp:

χ2 =

(

Rwp

Rexp

)2

(2.8)

where

Rexp =

{

n− p
∑n

i=1wi[yi,obs]2

}1/2

; (2.9)

n is the number of observations, and p is the number of parameters. Also, although less

quantitative, refinement quality can be monitored visually by a difference curve, which can

reveal specific issues with an individual fit, such as a faulty structural or peak shape model.

Perhaps the most common function for describing peak shape is the pseudo-Voigt ap-

proximation of the Voigt function, a convolution of Gaussian and Lorentzian profiles [266].

As derived by Caglioti et al. [267], the variation of the full width at half-maximum (FWHM)

of the Gaussian contribution to peak shape with 2θ is described by

FWHM2
G = GU tan2 θ +GV tan θ +GW , (2.10)

while that of the Lorentzian contribution is described by

FWHML = LX tan θ +
LY

cos θ
. (2.11)
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During Rietveld analysis, some or all of the parameters GU , GV , GW , LX , and LY are

refined. The background is usually modeled by a polynomial function or linear interpo-

lation between selected points. Structure-related parameters that are commonly refined

in Rietveld analysis include lattice constants, fractional coordinates, atomic displacement

parameters, and scale factor. A more detailed description of the Rietveld method is beyond

the scope of this thesis but can be found elsewhere, such as ref. [268].

Several examples of Rietveld fits are shown throughout the thesis. For an example in

this chapter, Figures 2.12a and 2.12b show Rietveld fits to LaB6 ambient diffraction data

before and after correction for angular distortion, respectively.

A number of programs have been developed for the Rietveld analysis of diffraction

data. However, all Rietveld analyses in this thesis were accomplished with the General

Structure Analysis System (GSAS ) [269] and the EXPGUI graphical user interface [270];

for variable-temperature and -pressure experiments, in which sometimes many hundreds of

patterns were collected for a given sample, SEQGSAS, the batch refinement mode of GSAS,

was employed. Details of specific refinements are provided in the relevant chapters.

2.4.3 X-ray total scattering data

Raw X-ray total scattering images were integrated using FIT2D [255]. Pair distribution

functions, G(r), introduced and defined in Section 2.2.3, were computed from these data us-

ing the program PDFgetX2 [271]. Standard corrections for background subtraction, sample

absorption, oblique incidence, and Compton scattering were performed within PDFgetX2

prior to calculation of S(Q) and G(r) [271]. Structural models were fit to G(r) and refined

using the program PDFgui [272].

2.4.4 Other programs

Throughout this work, the open-source program Fityk was an invaluable tool for curve and

peak fitting [273].
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CHAPTER 3

BACKGROUND REDUCTION AND PRECISE CONTROL OF

PRESSURE IN VARIABLE-PRESSURE X-RAY DIFFRACTION

3.1 Introduction and motivation1

As discussed in Section 1.1.4.1, diffraction measurements are commonly undertaken to gain

insight into the structure and behavior of a material under non-ambient and, in some cases,

extreme conditions. However, parasitic scattering from the sample environment is always

of concern, as it can severely degrade, or in some cases overwhelm, the scattering from

the sample being studied. Such scattering is particularly problematic for studies at high

pressure, where sample cell designs often place a considerable thickness of high-strength

material in the beam path.

Background scattering from the sample environment can be controlled by using low-

or null-scattering materials in the beam and collimation that discriminates between scat-

tering from the sample and that from its environment. In neutron diffraction experiments,

vanadium or null-scattering TiZr alloys may be used for in-beam components, and radial col-

limators are employed to limit the volume around the sample that the detector views [274].

In X-ray diffraction experiments, beryllium, various low-Z polymers, and boron-filled poly-

mers can be used for in-beam components, and multichannel collimator systems have been

developed [275, 276] to allow efficient angle-dispersive experiments using two-dimensional

detectors without major interference from background scattering when using multi-anvil

and “Paris-Edinburgh”-type pressure cells.

The construction of diffracted-beam collimators capable of eliminating nearly all scat-

tering from the sample environment is relatively expensive and an engineering challenge,

1The work presented in this chapter was previously published [254] and is edited to fit the context of
this thesis. Reproduced with permission of the International Union of Crystallography.
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particularly when the sample volume is small. In this chapter, the performance of a lower-

cost alternative to traditional diffracted-beam radial or multichannel collimators is demon-

strated that is suitable for high-energy X-ray diffraction studies in fluid-pressurized large-

volume cells. This design, the background-reducing internal mask (BRIM), introduced and

described in Section 2.2.2, contains the powder sample at its center and fits inside the

pressure vessel so that it blocks scattering from the upstream vessel wall and “stops” the

straight-through X-ray beam before it hits the downstream wall.

This experimental setup offers another benefit to the study of materials that display

low and negative thermal expansion: fine pressure control in a modest pressure regime.

As discussed in Section 1.2.3, many thermomiotic materials have highly flexible and low-

density structures that are sensitive to relatively modest pressures. Most high-pressure

diffraction methods are used to achieve pressures on the order of several gigapascals, such

as diamond anvil cells (DACs) or multi-anvil presses, or require large sample volumes for

neutron diffraction, such as helium gas pressure cells [277]. Fine pressure control in the

low-pressure regime is often not possible. In this setup, a hand-driven syringe pump with

silicone oil is used to apply hydrostatic pressure to the sample with precise control over

pressure; the maximum pressure depends primarily on the pressure vessel specifications but

does not exceed 414 MPa.

As shown in Table 2.2, four versions of the BRIM have been constructed and used in

experiments. In this chapter, the use of the two MK2BRIM designs, MK2BRIM 138 and

MK2BRIM 276, which have maximum pressures of 138 and 276 MPa, respectively, is eval-

uated. Studies of cubic ZrW2O8 and Al2W3O12 are presented to illustrate the potential of

this device for studying the behavior of materials at low pressures and modest temperatures.

3.2 Experimental

A detailed description of the BRIM device and high-pressure setup, as well as other exper-

imental information, can be found in Section 2.2.2.

69



3.3 Demonstrations of BRIM use

To verify that high-quality diffraction data could be obtained using the BRIM with suffi-

ciently precise and reliable control of temperature and pressure, samples of cubic ZrW2O8

and Al2W3O12 were examined. The thermomiotic material cubic ZrW2O8 (Section 1.2.4.1)

has a relatively simple crystal structure and shows an order-disorder phase transition that

has been reported to occur at 428 K and ambient pressure [21, 55] or 448 K and ambient

pressure [36]. The structures of both forms of ZrW2O8 appear in Figure 1.6. Al2W3O12

(Section 1.2.4.1) is part of a large family of tungstates and molybdates, many of which show

negative thermal expansion when orthorhombic [19, 140] and undergo an orthorhombic-to-

monoclinic transition on cooling or compression [96, 97, 99, 143]. The crystal structures of

these phases are quite complex (Figure 1.7).

3.3.1 Order-disorder phase transition in cubic ZrW2O8

Powder X-ray diffraction (PXRD) data for cubic ZrW2O8 were collected, using an ∼0.2 mm

(horizontal) by ∼0.6 mm (vertical) X-ray beam and the MK2BRIM 138 device in ∼7.9 mm

ID titanium pressure tubing, at 21, 41, 62, 83, 103, and 124 MPa for each temperature (298,

324, 375, 433, 483, and 538 K). The total exposure time for each measurement, including

the dark frames, was 10 min. No pressure dependence of the previously reported order-

disorder phase transition temperature is observed within the relatively coarse temperature

resolution of the experiment. At each pressure studied, the transition occurs between 375

and 433 K (as in, for example, Figure 3.1).

While good Rietveld fits to the ZrW2O8 diffraction data (from both P213 and Pa3̄ forms)

were readily obtained (Figure 3.2), the ambient-temperature bulk modulus derived from the

lattice constants (∼57 GPa) is in very poor agreement with the values of 69.4 GPa and 72

GPa reported in prior neutron diffraction studies [57, 126]. This difference is attributed

to changes in the sample-to-detector distance during the experiment. Improvements in the

rigidity of the sample cell mounting and a rearrangement of the high-pressure plumbing

to minimize any strain on the sample fixture were undertaken. After these changes, an

experiment using an NaCl sample at ambient temperature (∼300 K) led to an estimated

70



298 K
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Figure 3.1: Selected diffraction data for ZrW2O8 collected at 62 MPa with the
MK2BRIM 138. There are pronounced changes in peak intensities (see peaks in box and
below arrow) between 375 and 433 K that are associated with a transition from P213 to
Pa3̄ symmetry. Redrawn from ref. [254].

isothermal bulk modulus of 23.06(3) GPa for this material, in reasonable agreement with

previously reported values between 23.5 and 24 GPa [278].

Over the angular range used for Rietveld analyses, the full width at half-maximum

(FWHM) of the peaks in the ZrW2O8 data increases from 2θ ≈ 0.03 to 0.045◦. The

resolution of the data is limited by a combination of sample tube diameter, beam size,

detector pixel size, and sample-to-detector distance. At a sample-to-detector distance of

850 mm and a scattering angle of 2θ ≈ 10◦, a 200 µm detector pixel spans ∼0.013◦, and

the projection of the illuminated path through the sample (∼1.6 mm) spans ∼0.018◦. The

contribution to peak broadening from the illuminated path through the sample increases as

the Bragg angle increases.

Although the data used for the Rietveld analyses are essentially free of Bragg peaks from

the pressure vessel, the peak-to-background ratio in the patterns is quite low. The BRIM

device, unlike a diffracted-beam multichannel collimator, is not capable of either reducing

the scattering from the pressure-transmitting medium that lies in the direct beam path or

discriminating against background that originates when diffracted X-rays from the sample

are scattered by the pressure vessel walls.

While the crystal structure of ZrW2O8 is relatively simple, accurate determination of the
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Figure 3.2: Rietveld fits using (a) P213 (ordered structure, 62 MPa, 324 K, RF = 0.030)
and (b) Pa3̄ (disordered structure, 62 MPa, 483 K, RF = 0.054) models for cubic ZrW2O8.
The data were collected with the MK2BRIM 138 in an ∼7.9 mm ID pressure cell. Redrawn
from ref. [254].

location of its oxygen atoms by PXRD is challenging, as most of the scattering arises from

the high-Z atoms (Zr and W). The fit shown in Figure 3.2a was performed with all atomic

coordinates freely varying, independent isotropic atomic displacement parameters for the

four crystallographically distinct oxygen positions, and independent anisotropic displace-

ment parameters for the three distinct metal positions, leading to chemically reasonable

lengths and angles for all of the bonds, with the exception of the terminal W–O bonds,

which were both unrealistically very short. Also, the anisotropy of the displacement param-

eter for Zr was unreasonably high. However, the isotropic and equivalent isotropic atomic

displacement parameters were reasonable for all of the atoms, suggesting that shadowing

from the beam-stop blade has only a modest effect on the intensities of the low-angle peaks.

Since the publication of this work, ZrW2O8 and its relatives ZrMo2O8 and HfW2O8

have been studied in greater detail with the BRIM [93, 95].

3.3.2 Orthorhombic-to-monoclinic phase transition in Al2W3O12

There is a large family of materials with the orthorhombic A2M3O12 structure (Section

1.2.4.3) [141], many of which show negative thermal expansion [19, 140]. Typically, though

not always, these materials undergo a symmetry-lowering phase transition both on cooling

and modest compression. For example, Sc2W3O12 remains orthorhombic (Pnca) down to
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the lowest temperatures studied [20] but becomes monoclinic (P21/a) when compressed to

between 0.25 and 0.3 GPa; Sc2Mo3O12 becomes monoclinic (P21/a) on cooling below ∼178

K [148] and monoclinic on compression to ∼0.25 GPa [99]. This orthorhombic-to-monoclinic

transition is usually associated with a dramatic decrease in the bulk modulus of the ma-

terial [149], and for some materials, the orthorhombic phase displays highly anisotropic

compressibility. Al2W3O12, which has been reported to become monoclinic on cooling to

267 K at ambient pressure [143], has previously been studied by in situ diffraction at high

pressure using a DAC [99]. However, the onset pressure of the orthorhombic-to-monoclinic

transition was so low (<0.08 GPa) compared with the uncertainty of the pressure measure-

ment and the precision of the pressure control that is possible in a DAC that the behavior

of orthorhombic Al2W3O12 on compression could not be determined with a high level of

confidence.

Ambient-temperature, high-pressure diffraction data for Al2W3O12 were collected using

an ∼0.2 mm (horizontal) by ∼0.6 mm (vertical) X-ray beam and the MK2BRIM 276 in ∼6.4

mm ID titanium pressure tubing. The maximum pressure attained for these measurements,

207 MPa, was limited by the pump used for these studies. The total exposure time at each

pressure was ∼20 min.

The integrated PXRD data (Figure 3.3) show the onset of the phase transition at 83

MPa, in remarkably good agreement with prior DAC experiments [99]. The transition

appears to be complete at 103 MPa, although a two-phase mixture was observed at 0.14

GPa in the DAC study.

The orthorhombic and monoclinic structures are both sufficiently complex to give a very

high density of Bragg peaks in the d-spacing range available for analysis. Although the

complexity of the crystal structures, combined with the limited resolution of the available

data and the presence of both high- and low-Z atoms in the sample, effectively precludes

the refinement of reasonable-quality crystal structures using the available data, Rietveld

analyses, rather than Le Bail or similar fits, were used to obtain lattice constants. For the

low-pressure data, restraints were used on the metal–oxygen bond lengths. For the high-

pressure data, in which the material has a complex monoclinic structure, only the Al and
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Figure 3.3: Selected diffraction data for Al2W3O12 on compression, collected with the
MK2BRIM 276 at ambient temperature, showing the onset of a phase transition from or-
thorhombic (low-pressure) to monoclinic (high-pressure) symmetry at ∼83 MPa. Redrawn
from ref. [254].

W positions were refined. In these analyses, the calculated intensities from the structural

model help ensure that the unit cell constants are correct, whereas the density of the Bragg

peaks, combined with the limited resolution of the data, may lead to difficulties with Le

Bail fitting. An example fit with the monoclinic model is shown in Figure 3.4.

The P21/a monoclinic unit cell for Al2W3O12 can be transformed to a larger (centered)

cell with a monoclinic angle close to 90◦ and axes almost parallel to those of the original

orthorhombic structure [99]. The transformed monoclinic cell dimensions are used in the

following analyses and discussion.

The bulk moduli for the orthorhombic and monoclinic phases were estimated from

straight-line fits to ln(V/V0) versus pressure to be 41.5(9) and 20.2(6) GPa, respectively. At

83 MPa (close to the onset pressure), the reduction in volume per formula unit associated

with the transition is 1.28%. This volume reduction arises entirely from compression parallel

to the orthorhombic b- and c-directions; the softening of these directions is responsible for

the lower bulk modulus of the monoclinic phase. The orthorhombic phase displays a near-

isotropic response to pressure (Figure 3.5), but the monoclinic phase is mildly anisotropic,

with linear compressibilities of βa ≈ 0.97(2) × 10−2 GPa−1, βb ≈ 2.20(8) × 10−2 GPa−1,

and βc ≈ 1.78(8) × 10−2 GPa−1.
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Figure 3.4: Rietveld fit with the monoclinic Al2W3O12 (P21/a) model. The data were
collected at 207 MPa and ambient temperature with the MK2BRIM 276 in an ∼6.4 mm ID
pressure cell. Redrawn from ref. [254].

Figure 3.5: (a) Pressure dependence of the normalized unit cell volume per formula unit
for Al2W3O12 (orthorhombic phase, red squares; monoclinic phase, blue circles). (b) Pres-
sure dependence of the normalized lattice constants. The points below 0.08 GPa are for
the orthorhombic phase (a-axis, red squares; b-axis, blue inverted triangles; c-axis, green
diamonds), and the points above this pressure are for the monoclinic phase (a-axis, red
circles; b-axis, blue triangles; c-axis, green pentagons). Redrawn from ref. [254].
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3.4 Conclusion

The BRIM device can be used to acquire high-quality powder diffraction data under condi-

tions of elevated pressure and temperature where structural information or precise lattice

constants are sought. The angular resolution of the diffraction patterns and their Qmax

could be improved by changing the detector position and/or the detector itself, facilitating

the examination of more complex crystal structures. The MK2BRIMs used in this chapter

(and Chapter 7) are far from optimized. The parasitic scattering from the pressure vessel,

present at low angles, would be reduced further by narrowing the slit through which the

incident beam passes. The systematic decrease of sample Bragg peak intensity that is seen

at low angle from shadowing by the beam stop could be reduced by making the beam stop

blade thinner, increasing the distance between the sample and blade, reducing the sample

tube diameter, and/or displacing the sample tube off the BRIM axis away from the beam

stop. All of these improvements were made in the MK3BRIM design, shown in Section

2.2.2 and used in Chapter 8.
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CHAPTER 4

THERMAL EXPANSION AND PHASE TRANSITION OF α-AlF3

AND InF3

4.1 Introduction1

As discussed in Section 1.3, the simple cubic ReO3 structure (Figure 1.8), consisting of

metal-centered octahedra that share anions at their corners, is of interest because of its

potential for low or negative thermal expansion (NTE). This structure is related to that of

perovskites, ABX3, with a vacant A site and hence significant empty volume, and has been

used to illustrate how NTE can arise from the transverse thermal motion of bridging atoms

and the resulting rocking of relatively rigid units [6, 59]. Rhenium trioxide itself displays low

thermal expansion at ambient conditions [32, 184, 185, 186], but members of this structural

family, including fluorides and oxyfluorides, have coefficients of thermal expansion (CTE)

ranging from strongly positive to strongly negative [25, 35, 205].

Many metal trifluorides (MF3; M = Al, Cr, Fe, Ga, In, Ti, V) are only cubic at elevated

temperatures, adopting a rhombohedrally distorted form of the ReO3 structure (VF3-type,

space group R3̄c [279]) upon cooling [226, 227, 228, 229]. This phase transformation in-

volves the coupled rotation of the constituent MF6 octahedra (Figure 1.9). The thermal

expansion of some ReO3-type MF3 has been studied but rarely quantified. The unfolding

of the rhombohedral phase on heating is accompanied by strongly positive thermal expan-

sion (PTE), while the cubic phase shows much lower or even negative thermal expansion.

Notably, cubic ScF3 displays pronounced NTE over a wide temperature range (at least 10

to 1100 K) [35]. TiF3 is cubic above ∼340 K [226, 228], and its CTE is slightly positive

just above the phase transition but then becomes slightly negative above ∼400 K; TiF3 is

examined in Chapter 6 in the context of ScF3/TiF3 solid solutions [238].

1The work on α-AlF3 presented in this chapter was previously published [237] and is edited to fit the
context of this thesis. Reprinted from Journal of Solid State Chemistry, 219, C. R. Morelock et al., Thermal
expansion and phase transitions of α-AlF3, 143-147, Copyright 2014, with permission from Elsevier.
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α-AlF3 and InF3 also have ReO3-type connectivity; at ambient temperature, both ma-

terials are rhombohedral. α-AlF3 becomes cubic at ∼730 K [231], and the rhombohedral-

to-cubic phase transition in α-AlF3 has been studied rather extensively [227, 231, 232, 233,

234, 235]; however, the thermal expansion of α-AlF3 has not been reported in detail. In

1984, Ravez et al. provided some information on the temperature dependence of unit cell

volume but did not report expansion coefficients; they reported that both cubic and rhom-

bohedral phases display positive thermal expansion [236]. In 2001, Chupas et al. studied

α-AlF3 in the context of γ-Al2O3 fluorination and catalysis. They reported that some weak

reflections, potentially indicative of a residual rhombohedral distortion, persisted above the

phase transition at ∼739 K, and their Rietveld analyses suggested that bent Al–F–Al links

persisted above the phase transition temperature [231]. A later total scattering study of

α-AlF3 revealed that the cubic phase contains local octahedral tilts [235]. The mechanism

of the cubic-to-rhombohedral phase transition was studied using molecular dynamics sim-

ulations, and the authors suggested local distortions and NTE above the phase transition

temperature [234]. In contrast to α-AlF3, however, the thermal expansion of InF3 has not

been reported, although its phase transition temperature was estimated many years ago by

differential scanning calorimetry (DSC; 656 ± 10 K) [227]. In this chapter, the thermal

expansion behaviors of α-AlF3 and InF3 are examined in detail and quantified.

4.2 Materials and methods

4.2.1 Sample preparation

InF3 (Alfa-Aesar, 99.99 %) was used as supplied without further treatment. However, anhy-

drous α-AlF3 (American Elements, 99.99%) was ground thoroughly in an inert atmosphere

and sealed in a nickel tube by welding. The Ni tube was then sealed in an evacuated fused

quartz ampoule and heated at 1338 K for 72 h, after which it was quenched by remov-

ing from the furnace, located in a fume hood (see Chapter 6 for more information). Both

samples were maintained in an inert atmosphere to avoid moisture exposure.
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4.2.2 Variable-temperature synchrotron powder diffraction

Variable-temperature powder X-ray diffraction (PXRD) data were collected at beamline 17-

BM-B of the Advanced Photon Source, Argonne National Laboratory, Illinois, USA, using

a wire-wound furnace for temperature control (Figure 2.3) [250], heating at a rate of 180

K·h−1 from 323 to 1177 K for both α-AlF3 and InF3. No data were collected on cooling, as

the sample capillary failed upon reaching the maximum temperature. The α-AlF3 and InF3

powder samples were packed in fused quartz capillaries under argon, and ultra-high-purity

nitrogen was very slowly flowed through each capillary during data collection to avoid the

ingress of any moisture. Exposure times of ∼30 s were used, with a ∼30 s wait between

exposures. Section 2.2.1.1 provides more detail on the wire-wound furnace setup.

4.2.3 Data analysis

The analysis of synchrotron diffraction data is described generally in Section 2.4.2. Two-

dimensional area detector images were reduced to one-dimensional patterns with FIT2D [255].

A calibration curve (Figure 2.12) was created from the measured and expected peak posi-

tions for a standard LaB6 sample to correct for angular distortions in the 1D patterns that

are believed to be associated with the oblique incidence of the X-ray beam on the relatively

thick active layer of the detector. Finally, all Rietveld analyses were accomplished in the

sequential refinement mode of GSAS [269, 270].

4.2.3.1 α-AlF3

A fit to α-AlF3 data at 323 K with a primitive rhombohedral model (space group R3̄c)

served as the starting point for sequential refinement. An isotropic atomic displacement

parameter (ADP) was refined for the Al atom, while anisotropic ADPs were used for the

F atoms. Unit cell volumes per formula unit were extracted during Rietveld analyses and

plotted with respect to temperature; the temperature variation of the volume CTE (αV )

was estimated by differentiation of sixth-order polynomial fits to these data. For some of the

analyses, the primitive rhombohedral lattice constant aR and unit cell angle αR extracted

during Rietveld analyses were converted to hexagonal lattice constants aH and cH by the
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Figure 4.1: Rietveld fits (green line) to powder X-ray diffraction data (red +) using a
primitive rhombohedral model for α-AlF3: (a) 500 K; (b) 900 K. In both plots, the difference
curve appears in blue, and Bragg peak positions are indicated by magenta tick marks (|).

following relationships:

aH = 2aR sin
αR

2
(4.1)

and

cH = aR
√
3 + 6 cosαR. (4.2)

Example Rietveld fits are shown in Figure 4.1 for data collected below and above the phase

transition temperature, 500 and 900 K, respectively.

4.2.3.2 InF3

The coexistence of phases in the InF3 sample somewhat complicated its analysis. The follow-

ing phases exist at some temperature range in this sample: rhombohedral InF3 (space group

R3̄c), cubic InF3 (space group Pm3̄m), and an InOF impurity (space group Fddd [280]).

The diffraction data were divided into four temperature regions (A, B, C, and D) based on

the phases present (Table 4.1).

An example Rietveld fit from each region is shown in Figure 4.2. At nearly all tempera-

tures, for both InF3 phases, an isotropic ADP was refined for the In atom, and anisotropic

ADPs were used for the F atoms. Furthermore, to better model the peak asymmetry

of the InF3 phases, profile function 4 was used in GSAS, which is based on the work of

Stephens [281]. This function was used for the rhombohedral phase over its entire range
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Table 4.1: Divisions of InF3 variable-temperature PXRD data. R = rhombohedral; C =
cubic.

Division Temperature range Phase(s) present

A 323-587 K InF3 (R)
B 587-677 K InF3 (R), InOF
C 677-794 K InF3 (R), InOF, InF3 (C)
D 794-1170 K InOF, InF3 (C)

of existence and for the cubic phase in region “C”. Otherwise, the pseudo-Voigt function

described in Section 2.4.2.3 (profile function 3 in GSAS ) was used.

4.3 Results and discussion

4.3.1 Sample composition and phase transition

The appearance of superlattice peaks and the splitting of other peaks at low temperatures

in the variable-temperature PXRD patterns of both α-AlF3 (Figure 4.3) and InF3 (Figure

4.4) are evidence for the rhombohedral-to-cubic phase transition previously observed in

many ReO3-type metal trifluorides [226, 228, 229, 236]. For α-AlF3, the phase transition

appears quite clearly just above 700 K (Figure 4.3). An α-Al2O3 phase is also observed,

an impurity likely incorporated into the sample during the annealing process; the α-Al2O3

peaks exist over the entire temperature range but are quite small (<1% weight fraction at

323 K). Another unidentified impurity phase appears above ∼1000 K that may be a product

of the reaction of α-AlF3 and the quartz capillary. However, the α-AlF3 peaks are much

more intense than these impurity peaks.

The variable-temperature PXRD data for InF3 (Figure 4.4) are more complex than

those for α-AlF3. This complexity is due to the existence of an InOF impurity and also

a large region (>100 K) of rhombohedral/cubic InF3 phase co-existence (Table 4.1). At

323 K, rhombohedral InF3 exists, along with at least one unidentified impurity in trace

amounts. Upon heating above 587 K, InOF peaks appear that persist to 1170 K. InOF

is presumably formed by reaction with either the quartz capillary or trace moisture in the

capillary. However, this InOF impurity is not present in large amounts, forming only a few

weight percent of the overall sample (Figure 4.5). The cubic form of InF3 begins to appear
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Figure 4.2: Rietveld fits (green line) to powder X-ray diffraction data (red +) for InF3 at
several temperatures: (a) 323 K; (b) 640 K; (c) 700 K; (d) 828 K. In each plot, the difference
curve appears in blue, and Bragg peak positions are indicated by tick marks (|): magenta
for rhombohedral InF3, black for cubic InF3, and cyan for InOF. The same intensity scale
is used in each plot for the sake of comparison.
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Figure 4.3: (a) Variable-temperature (323 to 1177 K) powder X-ray diffraction patterns
for α-AlF3, displayed in order of collection from bottom to top. The horizontal white lines
are from frames that were lost during data collection. (b) X-ray diffraction data for α-AlF3
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respectively.

at ∼677 K, and the rhombohedral form persists to ∼794 K. This ∼120 K region of phase

co-existence can also be observed in the weight fractions extracted from Rietveld analyses

(Figure 4.5). Cubic InF3 survives to 1170 K; complete decomposition does not occur, as

In2O3 peaks are not observed at any temperature.

4.3.2 Thermal expansion

4.3.2.1 α-AlF3

The temperature dependence of both unit cell volume per formula unit (V/Z) and volume

CTE (αV ) of α-AlF3 are plotted in Figure 4.6. When heated from ambient temperature,

rhombohedral α-AlF3 exhibits strongly positive volume thermal expansion (αV (500 K) ≈ 86

ppm·K−1) as it unfolds. Above the first-order phase transition, cubic α-AlF3 continues to

expand but with a much lower CTE (αV (900 K) ≈ 25 ppm·K−1). The thermal expansion

of rhombohedral α-AlF3 is strongly anisotropic (Figure 4.7). The a-axis displays strong

positive thermal expansion, while the CTE along the c-axis is close to zero. This anistropy

occurs because the rhombohedral-to-cubic phase transition involves rotation of the AlF6

octahedra around their threefold axes, which are parallel to the crystallographic c-axis.

Based on the temperature dependence of c/a (Figure 4.8a), the phase transition temperature

is ∼713 K, which is consistent with the temperature reported in another PXRD study (715
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analyses of PXRD data, and αV were estimated from polynomial fits to the V/Z versus
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Reproduced from ref. [237].

± 10 K) [236] but slightly lower than that measured by DSC (725 K) [227] and PXRD (741

± 10 K) in other studies [235].

As shown in Figure 4.3, there are some diffuse peaks at approximately the positions

of the rhombohedral supercell reflections that persist to temperatures well above that of

the phase transition, and the transition is accompanied by a significant increase in “back-

ground” scattering; notably, these diffuse peaks are incommensurate, in that they do not

index on the α-AlF3 unit cell. The most prominent of the diffuse peaks appears at Q ≈

3.0 Å−1 (marked by an arrow in Figure 4.3), which, prior to the phase transition, corre-

sponds approximately to the rhombohedral (2 1 0) Bragg peak; its area drops significantly

with increased temperature, and its width, which is greater than that of the Bragg peaks,

increases sharply immediately above the phase transition temperature, 713 K (Figure 4.9).

In addition, the peak shifts to higher angles on heating, counter to the PTE of α-AlF3.

These diffuse peaks and the jump in background due to diffuse scattering suggest the pres-

ence of short-range structural distortions in the cubic phase. Such distortions have been

noted previously. Chupas et al. also observed weak superlattice PXRD peaks persisting
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past the phase transition and calculated an Al–F–Al bond angle of 175.8◦ at 723 K, sug-

gesting a small degree of local rhombohedral distortion [231]. Both molecular dynamics

simulations [234] and pair distribution function analysis [235] confirmed the presence of

bent Al–F–Al bonds and tilted octahedra in the cubic structure.

Attempts to fit a cubic model with a split F site to the data above the phase transition

in the manner of Chupas et al. [235] yielded unrealistic values for the F position and atomic

displacement parameters, perhaps because the Q range of these data is much smaller than

that used by the previous authors (Qmax ≈ 6 and 13 Å−1, respectively). However, by using

the primitive rhombohedral model at all temperatures, where the variable xF partially ac-

counts for disorder in the cubic phase, Al–F–Al bond angles were estimated that reasonably

matched the previous observations [231, 234, 235] (Figure 4.8d). Such an approach must

be treated with caution, due to the incomplete nature of the model and possible correla-

tions involving ADPs. The apparent Al–F–Al bond angle estimated from the rhombohedral

model increases steadily with temperature to at least 1100 K, which is consistent with the

observation of quite strong PTE in cubic α-AlF3. Furthermore, the Al–F distance does not

vary greatly with temperature (300 to ∼600 K, Figure 4.8e), indicating the presence of rigid

AlF6 octahedra, with the positive thermal expansion principally driven by coupled rotation

of these octahedra. However, beginning at ∼600 K, as the phase transition is approached,

the Al–F distance appears to decrease with temperature. This behavior presumably reflects

the presence of static/dynamic disorder rather than an actual decrease in the instantaneous

Al–F distance. Zhao et al. reported similar but more pronounced behavior for the Mg–F

distance in the perovskite NaMgF3 [282].

Strong PTE in cubic α-AlF3 contrasts with the behaviors of cubic InF3 (low PTE or

NTE, see below), ScF3 (strong NTE [35]) and TiF3 (low PTE or low NTE depending upon

temperature, see Chapter 6). However, there are other examples of PTE in the cubic ReO3

family; for example, cubic NbO2F expands on heating between 20 and 500 K [25, 205]. The

local structural study of TaO2F presented in Chapter 9 [218] suggests that PTE in NbO2F

may arise from the presence of bent Nb–(O/F)–Nb links whose bond angles increase on

heating. A similar phenomenon may be involved in the quite strong PTE of cubic α-AlF3.
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Figure 4.9: Temperature dependence of (a) center, (b) area, and (c) full width at half-
maximum (FWHM) for the peak at Q ≈ 3.0 Å−1, which corresponds to the rhombohedral
(2 1 0) Bragg peak before the phase transition in α-AlF3 but is a diffuse peak that is incom-
mensurate after the transition. The peak notably shifts to higher angles on heating above
the phase transition temperature, indicative of NTE, and rapidly broadens. Reproduced
from ref. [237].
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4.3.2.2 InF3

The temperature dependence of both V/Z and αV of InF3 (rhombohedral and cubic) are

plotted in Figure 4.10 (a and b, respectively). The region of phase co-existence (“C” in

Table 4.1) is indicated by dashed lines in the figure. Rhombohedral InF3 shows strong

PTE, reaching a maximum (αV ≈ 275 ppm·K−1) around 700 K, roughly coinciding with

the initial appearance of the cubic phase. When formed, cubic InF3 initially has a high

positive CTE (αV ≈ 25 ppm·K−1 at 794 K). From ∼850 to ∼950 K, cubic InF3 shows zero

thermal expansion; finally, the CTE is low negative above ∼950 K. Although not observed

in α-AlF3, other MF3 exhibit low or negative thermal expansion (ScF3 [35] and TiF3 [228]);

hence, the behavior of cubic InF3 is not unexpected.

As in α-AlF3, thermal expansion in rhombohedral InF3 is strongly anisotropic (Fig-

ure 4.10c and d). Strong PTE occurs along the a-axis, with low NTE along the c-axis.

The magnitude of αa is approximately identical in both fluorides (∼35 ppm·K−1 at 323

K, increasing to ∼110 ppm·K−1 at the phase transition), while αc is negative in InF3 but

near-zero in α-AlF3. The temperature dependence of various rhombohedral InF3 structural

parameters is presented in Figure 4.11. A greater amount of structural distortion is evident

in rhombohedral InF3 than in α-AlF3. Strong distortion remains even at the final disap-

pearance of the rhombohedral phase (794 K); octahedral tilt angle ω is ∼7◦, and thus, the

In–F–In bond angle is ∼166◦.

The appearance of cubic InF3 at 677 K is close to the phase transition temperature

measured via DSC by Daniel et al. (656 ± 10 K) [227]. However, the >100 K region

of phase co-existence is unexpected. Three possibilities for this large region of phase co-

existence are proposed below.

1. The “rhombohedral” InF3 starting material was inhomogeneous or impure. The InF3

sample was used as received without purification, whereas the α-AlF3 sample was

heat-treated before characterization. Although the sample appeared pure by labo-

ratory PXRD, the synchrotron data suggest small extra peaks at the starting tem-

perature (323 K). The sample may have contained an additional impurity and/or
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Figure 4.10: Temperature dependence of (a) the unit cell volume per formula unit (V/Z),
(b) volume CTE (αV ), (c) lattice parameters, and (d) linear CTEs of InF3. Unit cell volumes
and lattice parameters were extracted from Rietveld analyses of PXRD data, and CTEs
were estimated from polynomial fits to the V/Z or lattice parameter versus temperature
data. Hexagonal values aH and cH are reduced to their cubic equivalents by the indicated
factors. The dashed lines indicate the region of phase co-existence (677 to 794 K).
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Figure 4.11: Temperature dependence of various rhombohedral InF3 structural parameters.
(a) Ratio of lattice constants c and a (hexagonal cell). (b) Fractional x-coordinate of
F (primitive rhombohedral cell). (c) Octahedral tilt angle ω, calculated from xF by the
equation shown. (d) In–F–In bond angle, related to ω by the equation shown. Lattice
constants a and c as well as xF were determined by Rietveld analysis of the variable-
temperature PXRD data. The expected values for c/a and ω in the cubic phase are

√
6 =

2.449 and 0◦, respectively. The dashed lines indicate the region of phase co-existence (677
to 794 K).
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incorporated hydroxyl groups at the F sites (which is consistent with the formation

of InOF on heating). Sample inhomogeneity may have resulted in one part of the

sample undergoing the phase transition sooner than others. Heat treatment of the

sample would have ensured homogeneity.

2. The kinetics for the rhombohedral-to-cubic phase transition are very sluggish. With a

180 K·h−1 heating rate, the ∼120 K region of phase coexistence required ∼40 min of

data collection. While it is possible that the kinetics for the transition are very slow,

a previous DSC study of the phase transition in InF3, using various (non-specified)

cooling and heating rates, reported a hysteresis of only 20(1) K [227].

3. The temperature in the volume illuminated by the X-ray beam was inhomogeneous.

This option is possible but unlikely, as the X-ray beam was quite small (300 µm);

thus, the temperature should be consistent within this small volume.

Phase co-existence of ∼120 K in InF3 may not be intrinsic to the material. An additional

study with a pure (annealed) sample would provide insight into this problem.

4.4 Conclusion

Both α-AlF3 and InF3 have a rhombohedrally distorted (VF3-type) ambient crystal struc-

ture that becomes cubic (ReO3-type) on heating. This phase transition occurs at ∼713 K

in α-AlF3, while in InF3, there is a rather large temperature range with rhombohedral and

cubic phase co-existence; the cubic phase first appears at ∼677 K, while the rhombohedral

phase disappears ∼794 K. In both materials, the rhombohedral phase displays strongly pos-

itive volume thermal expansion. Cubic α-AlF3 continues to display strong positive thermal

expansion (αV (900 K) ≈ 25 ppm·K−1), while the thermal expansion of cubic InF3 changes

from positive to zero (∼850 to 950 K) to negative (above ∼950 K). The positive thermal

expansion of cubic α-AlF3 may be partially due to the presence of local octahedral tilts and

an associated increase in the average Al–F–Al bond angle on heating. The large region of

phase co-existence in InF3 sample is unexpected and may not be intrinsic to the material;

inhomogeneity in the sample may have caused this behavior.
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The discussion of ReO3-type metal trifluorides continues in subsequent chapters: ScF3

(Chapter 5) and ScF3–MF3 solid solutions (M = Ti, Y, Al; Chapters 6, 7, and 8).
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CHAPTER 5

STRESS-INDUCED PHASE TRANSITION IN ScF3 DUE TO

LOW-TEMPERATURE THERMAL EXPANSION MISMATCH

5.1 Introduction1,2

Materials displaying negative thermal expansion (NTE) continue to attract attention due

to the unusual nature of this behavior and the possibility of unique applications (Section

1.2) [4, 5, 7, 8]. Many thermomiotic materials whose contraction on heating is due to

lattice vibrations have complex crystal structures. However, ScF3, which has a simple cubic

ReO3-type structure (Figure 1.8), exhibits strong NTE at and below ambient temperature;

the NTE of the material persists to ∼1100 K [35]. The prior neutron diffraction study by

Greve et al. found that ScF3 remains cubic down to at least 10 K, consistent with prior

Raman studies in which no transition was observed down to 4 K [245]. As there is little

available information on how the coefficient of thermal expansion (CTE) of ScF3 changes

from strongly negative at ∼100 K to zero at 0 K, as required by thermodynamics, a powder

X-ray diffraction study of this material was undertaken using a helium flow cryostat.

During this investigation, two ScF3 samples were prepared: one with powder packed

under helium gas into an epoxy-sealed Kapton capillary and another in which the powder

was embedded in GE-7031 varnish. In the latter, the role of the varnish was to provide

improved thermal contact with the helium exchange gas in the cryostat. GE-7031 is a

polyvinyl phenolic varnish that has been commonly used for decades in various cryogenic

applications as an adhesive or sample coating due to its good thermal conductivity and

mechanical strength at quite low temperatures [283, 284, 285, 286, 287, 288, 289, 290, 291].

However, as reported in this chapter, the sample embedded in GE-7031 varnish showed an

unexpected symmetry-lowering phase transition at ∼50 K and yielded anomalous lattice

1The work presented in this chapter and Appendix A was previously published [44] and is edited to fit
the context of this thesis. Reproduced with permission of the International Union of Crystallography.

2Supporting material for this chapter can be found in Appendix A.
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constants below ∼150 K.

This chapter not only serves as a message of caution on the use of GE-7031 varnish as a

sample matrix to enhance thermal equilibration at low temperatures but also demonstrates

the limitations of ScF3 (and thermomiotic materials in general) when used in composites.

Based on experimental observations and quantitative estimates, the observed thermal ex-

pansion anomalies arise from stress induced by the significant thermal expansion mismatch

between ScF3 and the varnish.

5.2 Materials and methods

Scandium trifluoride (American Elements, 99.99%) was heat-treated for 72 h at 1273 K in a

welded copper ampoule sealed in an evacuated fused quartz jacket; the furnace was located

in a fume hood. The resulting white powder was a single phase and had a cubic crystal

structure (space group Pm3̄m), as determined by laboratory X-ray diffraction.

Variable-temperature, high-resolution synchrotron powder diffraction data were col-

lected using beamline 11-BM-B at the Advanced Photon Source, Argonne National Labo-

ratory, Illinois, USA, with an average wavelength of 0.413 Å [252, 253]. A helium cryostat

was used for temperature control; this device and other experimental details are discussed

in Section 2.2.1.2.

Two different sample preparation methods were used. In the “no varnish” method,

the ground powder was packed under a helium atmosphere into an epoxy-sealed Kapton

capillary; in the “varnish” method, the powder was mixed in a small amount of GE-7031

varnish (Lake Shore Cryotronics, Westerville, Ohio; diluted with 1:1 v/v toluene-ethanol

mixture) under a helium atmosphere, and the resulting slurry was rolled into a ball and

stuck on the end of a Kapton capillary.

Rietveld analyses of the diffraction data were accomplished using the program suite

GSAS [269, 270]. Lattice constants and unit cell volumes extracted during Rietveld analyses

at all temperatures are summarized in Table A.1 (Appendix A).
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K), using two different sample preparation methods. Data from previously reported neutron
diffraction measurements [35] are included for comparison. Reproduced with permission of
the International Union of Crystallography from ref. [44].

5.3 Results and discussion

5.3.1 Low-temperature thermal expansion of ScF3 without varnish

The initial low-temperature measurements (6-300 K) on ScF3 did not use GE-7031 varnish

as a sample matrix (i.e., the “no varnish” sample described above). Rietveld analyses of

these measurements yielded unit cell volumes for ScF3 that are generally consistent with

previously reported values derived from neutron powder diffraction [35], especially above

100 K, as shown in Figure 5.1 (points labeled “No Varnish, He (heat/cool)” and “Neutron”).

However, the difference between the unit cell volumes derived from the X-ray measurements

and those from the previous neutron experiments below 100 K raised the possibility that

the true sample temperature was higher than the apparent temperature, perhaps by ∼10

K at 50 K (Figure 5.1).

To test this theory, a powder sample of CuFeO2 was obtained and prepared in a way

similar to the “no varnish” method described above. CuFeO2 undergoes a clear (by diffrac-

tion) symmetry-lowering antiferromagnetic ordering transition at around 11 K [292]. When

this “no varnish” sample was cooled to an apparent temperature of ∼6 K, as indicated by

the cryostat temperature sensors, no peak splitting indicative of the known CuFeO2 phase

transition was observed, implying that the true sample temperature was at least 5 K higher
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than that indicated. The unit cell volumes obtained on cooling and heating the “no varnish”

ScF3 sample itself also show signs of mild hysteresis that could be associated with sluggish

thermal equilibration (compare the crosses and circles in Figure 5.1).

5.3.2 Low-temperature thermal expansion of ScF3 embedded in varnish

To improve thermal contact between the sample powder and helium exchange gas, GE-7031

varnish was subsequently used as a sample matrix. Use of the varnish appeared to improve

the agreement between the apparent and true sample temperatures, as peak splitting was

observed at an apparent temperature of ∼6 K for CuFeO2 in a varnish matrix (below the

transition at ∼11 K). However, the agreement between the unit cell volumes of the “varnish”

ScF3 sample and those from the previous neutron study is worse than that observed for the

“no varnish” sample (Figure 5.1). There is also considerable peak broadening in the patterns

for the “varnish” sample that is not present in the absence of varnish (Figure 5.2). Large unit

cell volume discrepancies observed below 150 K are dependent on the sample, not the sample

environment; the “varnish” sample gives the same results when a nitrogen Cryostream is

used for cooling. Most significantly, while the “no varnish” sample remains cubic down to

base temperature and exhibits NTE over the entire temperature range, the “varnish” sample

undergoes a cubic-to-rhombohedral phase transition at ∼50 K, accompanied by a change in

the sign of the CTE from negative to positive. The reduction in unit cell volume observed

for ScF3 in varnish, compared with the previous neutron results and those for the “no

varnish” samples, cannot be explained as arising from improved thermal contact with the

sample environment. ScF3 is a thermomiotic material, so improved thermal contact, which

leads to a lower true sample temperature, would cause an increase in the unit cell volume,

not a decrease. In the previous neutron diffraction study of ScF3, a cubic-to-rhombohedral

phase transition similar to that observed on cooling the “varnish” sample to 50 K occurred

on compression to between 100 and 200 MPa [35]. These two observations strongly suggest

that the anomalous behavior of the “varnish” sample arises from stress due to the thermal

expansion mismatch between the varnish and ScF3.
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5.3.3 Stress in ScF3/varnish mixture

No data on the elastic or thermal expansion properties of GE-7031 varnish were found in

the literature. However, assuming that the varnish displays zero thermal expansion and is

completely rigid, ScF3 embedded within it, with an average volume CTE of ∼-30 ppm·K−1

and a bulk modulus of ∼60 GPa [35], would experience a stress of ∼450 MPa upon cooling

from 300 to 50 K. In reality, the varnish is far from rigid, which would act to considerably

reduce the stress on ScF3 below this crude estimate, but the varnish presumably displays

positive thermal expansion, which would serve to increase the stress due to the thermal

expansion mismatch. Using the formula of Speight and Lobb [293] for elastic stress at a

particle/matrix interface:

σ =
−6EmKp(αp − αm)∆T

2Em + 3Kp(1 + νm)
(5.1)

and assuming that the Young’s modulus (Em), Poisson’s ratio (νm), and linear CTE (αm)

of the varnish matrix are 7 GPa, 0.37, and 50 ppm·K−1, respectively, which are typical

values for polymers at low temperatures [294], the estimated normal stress σ on the ScF3

particles (Kp = 60 GPa and αp = -10 ppm·K−1) upon cooling from 300 to 50 K would be

∼145 MPa. This value is close to that expected to induce the cubic-to-rhombohedral phase

transition for ScF3 at 50 K. For a material with a bulk modulus of 60 GPa, this stress is

roughly consistent with the observed difference in V/V250 of ∼0.001 at ∼60 K between the

“no varnish” and “varnish” samples.

Finally, stresses due to differential thermal expansion would not be completely insignif-

icant even if the filler in the varnish were not a thermomiotic material like ScF3. Assuming

the above estimates for varnish properties are reasonable, a filler with a linear CTE of 10

ppm·K−1, which is not unusual for oxides, would still be expected to experience a stress

of nearly 100 MPa. Stress-induced phase transitions due to differential thermal expansion

have been previously observed in metal-matrix-ceramic composites where the thermomiotic

material ZrW2O8 was used as a filler [40].
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5.4 Conclusion

Although it allowed for good thermal contact, the use of GE-7031 varnish as a sample matrix

for low-temperature X-ray diffraction measurements of ScF3 resulted in anomalous behavior

that is consistent with the presence of considerable stress due to the large thermal mismatch

between ScF3 and the varnish. In general, GE-7031 varnish should not be used as a sample

matrix to improve thermal contact where there is likely to be significant thermal expansion

mismatch between the varnish and the material under study. Furthermore, the use of

ScF3 in composites for CTE control may be limited due to the relatively modest pressures

required for a phase transition and change in thermal expansion behavior. Though the use

of ScF3 in composites may be problematic, another method of CTE control, solid solution

formation, is explored in the subsequent three chapters.
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CHAPTER 6

THERMAL EXPANSION AND PHASE TRANSITION OF Sc1−xTixF3

(0 ≤ x ≤ 1)

6.1 Introduction1,2

As discussed in Chapter 1, thermomiotic materials are of fundamental interest and have

potential for application [1, 2, 3, 4, 5, 6, 7, 8]. Careful control of a material’s coefficient of

thermal expansion (CTE) can reduce stresses due to mismatched CTEs between different

components in an assembly, and zero thermal expansion imparts both dimensional stabil-

ity and good thermal shock resistance. Thermomiotic materials can in principle be used

in composites to compensate for the positive thermal expansion (PTE) of other materi-

als [40, 41, 42, 43]. However, the formation of such composites often leads to stresses from

CTE mismatch between the components of the composite, which can induce deleterious

phase transitions [41, 42, 43, 44]. Tuning the CTE of a monophasic material avoids such

problems. Anisotropic thermal expansion even in monophasic materials can cause inter-

nal microcracking and hence mechanical failure; therefore, materials displaying isotropic

thermal expansion are desirable [1, 2, 3, 4, 5, 6, 7, 8].

As shown in Section 1.2.2, several different mechanisms for negative thermal expansion

(NTE) have been established, including transverse thermal motion, whereby lattice modes

involving the transverse displacement of atoms or molecular fragments that bridge between

coordination polyhedra have large negative Grüneisen parameters [1, 56, 59]. The trans-

verse thermal motion mechanism is responsible for NTE in a variety of oxides, fluorides,

cyanides, and MOFs (Section 1.2.4), and, in many cases, probably involves the coupled

rocking of more or less rigid coordination polyhedra [56, 59]. This so-called rigid-unit mode

1The work presented in this chapter and Appendix B was previously published [238] and is edited to fit
the context of this thesis. Reprinted with permission from C. R. Morelock et al. Chem. Mater., 26(5):1936-
1940, 2014. Copyright 2014, American Chemical Society.

2Supporting material for this chapter can be found in Appendix B.
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(RUM) mechanism is perhaps most easily visualized by considering the cubic ReO3 struc-

ture (Figures 1.5 and 1.8), which is related to that of perovskites ABX3, with a vacant A

site that creates significant empty volume [59]. ReO3 itself displays low PTE at ambient

temperature [184, 185, 186], but the isostructural ScF3 was recently reported to display

pronounced thermomiotic behavior at low temperatures (αL ≈ -12 ppm·K−1 at 100 K),

with its CTE remaining negative up to ∼1100 K [35]. ScF3 remains cubic over the entire

temperature range examined by diffraction (∼10 to 1600 K) at ambient pressure [35]. The

thermomiotic behavior of ScF3 has very strong contributions from low-energy phonons close

to the R point, some of which involve the motion of bridging F atoms transverse to the

Sc–(F)–Sc axis in a quartic potential [243].

As discussed in Chapter 4, unlike ScF3, many metal trifluorides MF3 (M = Al, Cr,

Fe, Ga, In, Ti, V) are rhombohedrally distorted (VF3-type) at ambient conditions [227,

228]. Upon heating, this rhombohedral phase transforms to the cubic ReO3-type structure

via the coupled rotation of MF6 octahedra. This transition can be visualized as rotation

of octahedra about the crystallographic threefold axis (Figure 1.9). This “unfolding” is

typically accompanied by significant volume expansion and hence a large positive CTE;

however, the high-temperature cubic form displays much lower thermal expansion [226,

227, 228, 234, 235, 236]. TiF3, for example, has been reported to undergo a first-order

phase transition from rhombohedral to cubic symmetry just above room temperature, with

strong PTE below and near-zero thermal expansion above the transition [228]. At low

temperatures and relatively modest pressures (50 K and ∼150 MPa), ScF3 undergoes a

symmetry-lowering phase transition [35]. The stress required to induce this transition is

relatively low; the CTE mismatch between ScF3 and a polymer matrix is sufficient to induce

it upon cooling a composite to 50 K (Chapter 5) [44].

Rare earth metal fluorides such as ScF3 are potentially of interest for optical applications

due to their transparency over a wide wavelength range. In particular, glasses based on ScF3

are transparent from 300 nm in the ultraviolet region to 7000 nm in the infrared, typically

with a classical O–H band around 3000 nm arising from hydroxyl groups trapped during
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Table 6.1: Ionic radii of M3+ involved in Sc1−xMxF3, as reported by Shannon [300]

Species Ionic radius (Å)

Al3+ 0.535
Ti3+ 0.670
Sc3+ 0.745
Y3+ 0.900

preparation [295]. A variety of fluoroscandate systems have been explored, including ScF3–

BaF2–YF3 [295], ScF3–BaF2–ZnF2 [296], ScF3–BaF2–InF3 [296], and ScF3–MgF2 [297].

Crystalline ScF3 is cubic and thus optically isotropic; a scintered and fully dense polycrys-

talline body with appropriately tuned thermal expansion characteristics could be of interest

for some optical applications.

At least in principle, solid solution formation (introduced in Section 1.2.5) provides a

means of controlling the thermal expansion of ScF3 without forming a composite. There is

very little prior work on ScF3 solid solutions, but phase diagrams have been reported for

the YbF3–ScF3 and LuF3–ScF3 systems [298, 299]; significant solid solubility was reported

for both systems at high temperature. In the next three chapters (6, 7, and 8), substitution

of three trivalent cations M3+ of various sizes into ScF3 is systematically explored. The

cations, Ti3+, Y3+, and Al3+, were chosen because of their sizes relative to Sc3+: closely

matched, significantly larger, and significantly smaller, respectively (Table 6.1).

Substitution of Ti3+ to form Sc1−xTixF3 (0 ≤ x ≤ 1) is first explored. The ionic radii

of Sc3+ and Ti3+ are similar (0.745 and 0.670 Å, respectively [300]); hence, full solubility of

TiF3 in ScF3 is to be expected, and there should be no major structural distortions asso-

ciated with the substitution. However, TiF3 is known to undergo a cubic-to-rhombohedral

phase transition just above room temperature [228], and Ti3+ is Jahn-Teller active. Any

structural distortion driven by this Jahn-Teller instability is likely to be small, as Ti3+ has

a single 3d electron in its t2g orbitals. The phase transition on cooling TiF3 breaks the de-

generacy of the t2g orbitals and leaves the single d electron in an a1g symmetry orbital [301].

In contrast, MnF3 has quite significantly Jahn-Teller-distorted MnF6 octahedra due to the

high-spin d4 Mn3+ ion [302].
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Figure 6.1: For Sc1−xMxF3 syntheses, welded nickel (or copper) ampoules were sealed in
evacuated fused quartz tubes. This figure shows two reaction vessels containing Ni ampoules
prior to heating in a furnace for 72 h.

In this chapter, the preparation, phase transitions, and thermal expansion characteristics

of Sc1−xTixF3 (0 ≤ x ≤ 1) between 100 and 500 K are reported.

6.2 Materials and methods

6.2.1 Syntheses and laboratory X-ray diffraction

Sc1−xTixF3 (x = 0.00, 0.10, 0.30, 0.40, 0.50, 0.60, 0.70, 0.85, 1.00) samples were prepared

from stoichiometric amounts of ScF3 (99.99%, American Elements) and TiF3 (99.99%, Alfa-

Aesar) powders. In an inert atmosphere, the powders were thoroughly mixed and pelletized.

Each pellet was enclosed in either an arc-welded Cu (for x = 0.00, 0.10, 0.30) or Ni (all

other samples) ampoule. The Cu (Ni) ampoules were sealed in evacuated fused quartz

tubes, heated at 1273 (1338) K for 72 h, and then quenched by removing from the furnace,

which was located in a fume hood. Figure 6.1 shows two reaction vessels prior to heating:

Ni tubes in evacuated fused quartz ampoules.

Sample purity and lattice parameters were examined at ambient conditions using a

Scintag X1 powder X-ray diffractometer (PXRD) equipped with a Cu Kα X-ray source and

Peltier cooled solid state detector (Section 2.1). The patterns were analyzed by the Rietveld

method (Section 2.4.2.3) in GSAS [269, 270], using either a cubic (Pm3̄m) or rhombohedral

(R3̄c) model.
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Figure 6.2: Rietveld fits (green line) using a rhombohedral model to data (red +) collected
for Sc0.30Ti0.70F3 at (a) 100 and (b) 290 K. In each plot, the difference curve appears in
blue, while Bragg peak positions for the main and rutile impurity phases are indicated by
magenta and cyan markers (|), respectively. Reproduced from ref. [238].

6.2.2 Variable-temperature synchrotron X-ray diffraction

Variable-temperature PXRD data (100 to 500 K) were collected at beamline 1-BM-C

of the Advanced Photon Source, Argonne National Laboratory, Illinois, USA, using the

Cryostream setup described in Section 2.2.1.1 and pictured in Figure 2.2.

6.2.3 Data analysis

Area detector images were integrated with FIT2D [255], and Rietveld analyses were ac-

complished using the sequential refinement mode of GSAS [269, 270]. General analysis of

synchrotron diffraction data is described in Section 2.4.2. A fit to data collected at 100

K was used as a starting point for the sequential analyses in GSAS ; these fits employed a

rhombohedral (x > 0.10) or cubic (x = 0.00 and 0.10) model for the entire temperature

range (100→500 K). The analyses for all samples, except x = 0.00, included a rutile-type

impurity phase (space group P42/mnm), as discussed in Section 6.3.1. Representative Ri-

etveld fits using a rhombohedral model are shown in Figure 6.2 for the x = 0.70 sample

both before (100 K, Figure 6.2a) and after (290 K, Figure 6.2b) its phase transition. A

separate set of sequential fits for all the samples was performed using a cubic model over

the entire temperature range (500→100 K), with an initial fit to the 500 K data serving as

a starting model.
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Figure 6.3: Powder X-ray diffraction data collected at ambient conditions on a laboratory
diffractometer for Sc1−xTixF3. Most patterns appear to be monophasic, with a few small
extra peaks evident in the x = 0.70 and 1.00 patterns from a rutile-type impurity (marked
with an arrow). In addition, there are small W Lα peaks from the X-ray tube, most
apparent close to 2θ = 20◦, just to the left of the leftmost sample peak. Reproduced from
ref. [238].

6.3 Results and discussion

6.3.1 Solid solution formation

Ambient laboratory PXRD data (Figure 6.3) suggest that most Sc1−xTixF3 samples are

monophasic, with some small extra peaks visible in the patterns for the x = 0.70 and 1.00

samples. The much higher signal-to-noise ratio of the synchrotron data reveals small extra

peaks in all samples (except x = 0.00). These peaks match those of the rutile structure,

suggesting that trace water present during the syntheses resulted in the pyrohydrolysis of the

fluorides to form TiO2 or a TiO2-ScOF solid solution. The variation of the unit cell volume

per formula unit for the cubic samples (x ≤ 0.85) with targeted composition rather closely

follows Vegard’s Law (Figure 6.4), and the phase transition temperature varies linearly with

targeted composition (discussed in Section 6.3.2), indicating that the true compositions of

the Sc1−xTixF3 phase are very close to those targeted.

All samples except TiF3 (x = 1.00) are cubic at ambient conditions and show no evidence

of TiF3 exsolution; the annealed TiF3 sample is rhombohedral at ambient temperature as
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Figure 6.4: Ambient unit cell volumes per formula unit of Sc1−xTixF3 as a function of
composition. The dashed line was fit to the data x ≤ 0.90 (red squares) as a guide to the
eye. In this plot, error bars are smaller than the symbols. All samples are cubic at ambient
conditions, except for TiF3 (x = 1.00), which is rhombohedral (blue diamond); thus, it does
not fit the Vegard’s Law linear trend of the others. Reproduced from ref. [238].

expected [228]. The observed complete solid solubility at the synthesis temperature of 1338

K is consistent with the small ionic radius difference between Sc3+ and Ti3+ (∼10%). Solu-

bility in LnF3–ScF3 systems with small lanthanides (Ln) is known to be low at room tem-

perature and strongly dependent on synthesis temperature, as reported for YbF3–ScF3 [298]

and LuF3–ScF3 [299].

6.3.2 Cubic-to-rhombohedral phase transition

Inspection of the synchrotron PXRD data (Figures 6.5, B.1, B.2, and B.3) reveals peak

splitting and the appearance of superlattice peaks upon cooling for some samples. These

results are indicative of a cubic-to-rhombohedral phase transition, analogous to that ob-

served in several other ReO3-type fluorides, such as α-AlF3 [237, 234], InF3 (Chapter 4),

and TiF3 [226, 228]. The phase transition is not observed for x < 0.30 between 100 and

500 K. The effects of the phase transition become more evident as x increases. Figure 6.5

compares variable-temperature PXRD data for the x = 0.10 and 0.70 samples to illustrate

the changes associated with the phase transition; the effects are visible for x = 0.70 (bottom

panels) but not for x = 0.10 (top panels).
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Figure 6.5: Variable-temperature (100 to 500 K) synchrotron PXRD data for Sc0.90Ti0.10F3

(top panels) and Sc0.30Ti0.70F3 (bottom panels). The plots in the left column show the full
angular range used for Rietveld analyses, while those on the right show a high-angle portion
in which the splittings associated with the phase transition are most apparent. Within each
plot, the diffraction patterns are arranged in order of collection from bottom to top, which
followed the temperature ramp in Figure 2.2b. Reproduced from ref. [238].
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the experimentally determined transition temperatures, and the red dashed line is a guide
to the eye. The transition temperature for ScF3 is assumed to be 0 K, as it remains cubic
down to at least 0.35 K (Chapter 7). Reproduced from ref. [238].

The phase transition temperature for each sample was estimated by following the ap-

pearance/disappearance of a supercell peak, which is only present in the low-temperature

phase, upon cooling/heating (Figure B.4, Appendix B). These estimates were used to con-

struct a composition-temperature phase diagram for Sc1−xTixF3 (Figure 6.6). For x ≥

0.30, the transition temperature increases linearly with titanium content. This behavior is

typical for solid solutions in the temperature range where quantum effects are not impor-

tant [303]. Extrapolation of the linear trend observed for Sc1−xTixF3 to x = 0.00 suggests

a phase transition temperature of ∼0 K for ScF3, consistent with the observation that ScF3

does not undergo a phase transition above 10 K [35] as well as the heat capacity measure-

ments in Chapter 7, which do not suggest a phase transition above 0.35 K. Furthermore,

the estimated transition temperature for TiF3 (340 K) is in excellent agreement with that

previously measured by calorimetry (340 K) [226] and somewhat close to that reported in

a prior synchrotron diffraction study (370 K) [228].

The thermally induced cubic-to-rhombohedral phase transition observed in ReO3-type

MF3 is typically first-order, with a sharp volume discontinuity at the phase transition

temperature [228]. Ti3+ is quite closely size-matched to Sc3+, and the phase transition in

Sc1−xTixF3 is clearly first-order for large values of x; the unit cell volume changes abruptly
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at the phase transition (Figure 6.7).

6.3.3 Thermal expansion

The temperature dependence of V/V400K for each sample is shown in Figure 6.7. The unit

cell volumes per formula unit (V/Z) were determined from Rietveld analyses (Figure B.5,

Appendix B) and normalized by the value at 400 K (V400K). The temperature dependence

of the volume CTE, αV , for each sample is shown in Figure 6.8; these CTEs were estimated

by fitting polynomials to the V/Z versus T curves. Figure 6.8b expands the region of 6.8a

between 350 and 470 K, and the average CTE for each composition over that temperature

range is shown in the inset.

In the temperature range over which the materials are rhombohedral, their volume

CTEs are strongly positive and their thermal expansion highly anisotropic (Figure B.6).

On cooling, the quite rigid MF6 octahedra rotate around the crystallographic threefold

axis (Figure 1.9), leading to a reduction in the unit cell constant aH while cH expands;

thus, cH/aH increases rapidly (Figure 6.9).

On heating to temperatures near the phase transition, the volume CTE increases quite

rapidly. Immediately after the transition, the CTE becomes small and positive but then

negative on further heating. Consistent with a previous diffraction study [228], cubic TiF3
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exhibits low PTE at temperatures just above the phase transition and then low NTE at

higher temperatures.

As shown in Figure 6.8b, the formation of Sc1−xTixF3 enables some control of thermal

expansion, but the occurrence of the cubic-to-rhombohedral phase transition limits the

temperature range over which useful tuning might be achieved. The average CTE between

350 and 470 K generally increases with Ti composition; this temperature range is just

above the phase transition for TiF3, which hence has the most variation in CTE over this

temperature range (positive to low negative). A similar trend to that in the inset results

when using a different temperature range to calculate the average, such as 420 to 470 K,

but with a much lower (low negative) value for TiF3. The small amount of scatter in

the inset may partly arise from minor variations in the position of the Cryostream from

experiment to experiment, affecting the accuracy of sample temperature estimation and

thus the estimated CTE.

6.4 Conclusion

As TiF3 is fully soluble in ScF3, the negative thermal expansion of Sc1−xTixF3 is tunable at

high temperatures between the behaviors of the end members. However, the temperature

range over which controllable NTE can be achieved is limited by the cubic-to-rhombohedral

ferroelastic phase transition that is observed in this system. The transition temperature

varies in a linear fashion with composition, as commonly observed for solid solutions.

The study of Sc1−xMxF3 solid solutions continues in Chapters 7 and 8 using MF3 that

are not fully soluble in ScF3.
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CHAPTER 7

THERMAL EXPANSION, COMPRESSIBILITY, AND HEAT

CAPACITY OF Sc1−xYxF3 (x ≤ 0.25)

7.1 Introduction1,2

As discussed in previous chapters, cubic ScF3 displays pronounced isotropic negative ther-

mal expansion (NTE) at low temperatures (αL ≈ −14 ppm·K−1, 60-110 K), with NTE

persisting to ∼1100 K [35]. The simple structure of ScF3 allows for relatively easy ex-

amination of the underlying phenomena leading to NTE, and the material is amenable to

chemical substitution. In Chapter 5, the possible limitations of ScF3 in composites for

controlled thermal expansion were discussed. The possibility of CTE control through solid

solution formation with TiF3 was demonstrated in Chapter 6 [238]. However, the temper-

ature range over which controllable NTE can be achieved in Sc1−xTixF3 is limited by a

cubic-to-rhombohedral ferroelastic phase transition.

The study of ScF3 solid solutions continues in this chapter, in which Y3+ substitution is

used to form Sc1−xYxF3. The solubility limit of YF3 in ScF3 is restricted by the significant

difference in ionic radius between Sc3+ and Y3+ (0.745 and 0.900 Å, respectively [300]).

The relatively large difference in ionic radius (21%) between Sc3+ and Y3+ provides an

opportunity to examine how the structural distortions that must be associated with this size

mismatch affect physical properties. In this chapter, the thermal expansion behavior from

100 to 800 K, effects of pressure on thermal expansion, and heat capacities of Sc1−xYxF3

(x ≤ 0.25) are reported.

1The work presented in this chapter and Appendix C was previously published [247] or is part of an
upcoming publication [304] and is edited to fit the context of this thesis. Reprinted with permission from
C. R. Morelock et al. J. Appl. Phys., 114(21):213501, 2013. Copyright 2013, AIP Publishing LLC.

2Supporting material for this chapter can be found in Appendix C.
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7.2 Materials and methods

7.2.1 Synthesis and initial characterization

For non-ambient synchrotron powder X-ray diffraction (PXRD), Sc1−xYxF3 (x = 0.00, 0.05,

0.10, 0.20, 0.25, 0.30, 0.40) samples were prepared via the solid-state stoichiometric reaction

of ScF3 and YF3 powders (both American Elements, 99.99%) in a similar process to that

described in Section 6.2.1. In an argon-filled glove box, the powders were thoroughly mixed

and pelletized; each pellet was enclosed in a Cu ampoule made by crushing the ends of a ∼5

cm length of oxygen-free Cu tube [305]. The Cu ampoules were then sealed in an evacuated

fused quartz tube, along with a small amount of Ti sponge that served as a gettering agent.

The tubes were heated at 1283 K for 72 h and then quenched by removing from the furnace,

which was located in a fume hood.

Sc1−xYxF3 (x = 0.05, 0.10, 0.20, 0.25) samples for heat capacity measurements were

prepared similarly. However, arc-welded Ni ampoules were used instead of crimped Cu, no

gettering agent was used, and the tubes were heated at 1338 K for 72 h. After laboratory

powder X-ray diffraction, the solid solution samples as well as a sample of ScF3 were then

pressed (2.0 GPa) and scintered at 1338 K in vacuum.

Ambient laboratory PXRD patterns were analyzed with the Rietveld method using

GSAS [269, 270]. A cubic structural model (space group Pm3̄m) was used for the analyses

of all ambient data. In the x = 0.30 and 0.40 samples, several extra peaks were present

that matched those of orthorhombic YF3 (Pnma). The Rietveld analyses for these samples

included YF3 as a second phase.

7.2.2 Non-ambient synchrotron powder X-ray diffraction

Variable-temperature PXRD data (100 to 800 K) were collected at beamline 1-BM-C of the

Advanced Photon Source (APS), Argonne National Laboratory, Illinois, USA, using the

Cryostream (Figure 2.2) and wire-wound furnace (Figure 2.3) setups described in Section

2.2.1.1.

High-pressure/temperature data were collected using beamline 11-ID-B at the APS.
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These measurements used the MK2BRIM discussed in Section 2.2.2 and Chapter 3. Mea-

surements were performed at 0.034, 0.069, 0.103, 0.138, 0.172, 0.207, 0.241, and 0.276 GPa

for each of the following temperatures: 298, 343, 388, 433, 478, and 523 K. However, the

highest pressure (0.276 GPa) was not used for the two highest temperatures.

7.2.3 Analysis of non-ambient data

As discussed in Section 2.4.2, all 2D detector images were integrated with the program

FIT2D [255]. Rietveld analyses were accomplished using GSAS [269, 270]. SEQGSAS,

the batch analysis mode of GSAS, was used to analyze the variable-temperature diffraction

patterns.

A fit of a rhombohedral (R3̄c) structural model to data collected at 100 K was used

as the starting point for SEQGSAS analyses. As each Cryostream measurement included

two heating and two cooling ramps, there were a total of four SEQGSAS analyses for each

measurement. A representative Rietveld fit to the ambient-pressure, variable-temperature

data is shown in Figure 7.1a. A separate set of SEQGSAS runs was also performed using

a cubic (Pm3̄m) model. These analyses employed a fit to the 500 K data as a starting

point. In each Rietveld fit of Cryostream data, the lattice parameters, isotropic atomic

displacement parameters for Sc and Y (constrained to be identical), anisotropic atomic

displacement parameters for F, scale factor, and a pseudo-Voigt profile function with three

terms were refined; the background was modeled using a shifted Chebyschev function.

For the x = 0.25 sample only, Rietveld refinements with anisotropic atomic displacement

parameters for F were unstable above roughly the phase transition temperature, so its

atomic displacement parameter was constrained to be isotropic at high temperatures.

All samples were cubic over the entire temperature range of the furnace experiments

(>323 K); thus, a fit to data collected at 323 K using the Pm3̄m model was used as the

starting point for their batch analyses.

During the analyses of high-pressure data acquired in the MK2BRIM, some regions of

the diffraction patterns were excluded from the fits due to shadowing by the beam stop

and residual scattering from the Ti pressure vessel. A cubic structural model was used
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Figure 7.1: (a) Rietveld fit (green line) to data (red +) collected for Sc0.90Y0.10F3 at 100 K
and ambient pressure in the Cryostream setup, using a rhombohedral model. (b) Rietveld
fit (green line) to diffraction data (red +) for Sc0.80Y0.20F3 under ambient conditions in the
high-pressure sample environment, using a cubic model. The data around Q = 7.4 Å−1

were excluded from the analysis due to scattering from the Ti pressure cell. In both plots,
the residual curve appears in blue, and the reflection markers (black |) indicate Bragg peak
positions. Reproduced from ref. [247].

exclusively for these analyses, as the diffraction patterns showed no supercell reflections or

peak splittings within experimental resolution. Figure 7.1b shows an example fit to the

data recorded in the high-pressure sample environment. In the Rietveld analyses of high-

pressure data, the cubic lattice constant, isotropic atomic displacement parameters for Sc

and Y (constrained to be identical), anisotropic atomic displacement parameters for F, scale

factor, and three parameters of a pseudo-Voigt profile function were refined; the background

was modeled using a shifted Chebyschev function. As the high-pressure measurements were

performed over two blocks of beam time with somewhat different calibrations, the unit cell

volume data for the solid solutions were placed on the same scale using diffraction patterns

for a CaF2 sample that was examined during both beam times.

7.2.4 Heat capacity measurements

Experimental information for the heat capacity measurements of Sc1−xYxF3 are given in

Section 2.3.
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Figure 7.2: Powder X-ray diffraction (PXRD) data collected at ambient conditions on
a laboratory diffractometer (Cu Kα radiation) for several Sc1−xYxF3: (a) samples used
for synchrotron diffraction and (b) heat capacity measurements. In (a), reflections from
insoluble YF3 are indicated by red ∗, while in (b), Kβ peaks from the X-ray tube are
marked by red arrows. Reproduced from ref. [247, 304].

7.3 Results and discussion

7.3.1 Solubility of YF3 in ScF3

Ambient laboratory diffraction data (Figure 7.2) suggest that all Sc1−xYxF3 with x ≤ 0.25

consist of a single cubic phase (Pm3̄m). The patterns for x = 0.30 and 0.40 show several

extra peaks matching those of orthorhombic YF3 (Pnma), indicating a solubility limit of

25-30% at a reaction temperature of 1283 K. The ambient cubic lattice constants obtained

by Rietveld analysis vary linearly with composition for x ≤ 0.25, in agreement with Vegard’s

Law (Figure 7.3). Above x ≈ 0.25, the lattice constant is no longer sensitive to YF3 content;

the values for the x = 0.30 and 0.40 samples are consistent with a solubility limit of x ≈

0.28. Estimated lattice constants for the heat capacity samples (Figure 7.3) are lower than

those of the other samples for all compositions, suggesting possible differences in actual

yttrium content between two samples with the same nominal content. Alternatively, the

difference in quenching temperature between the two sets of reactions (1273 and 1338 K)

may actually produce samples with the same yttrium content but slightly different lattice

constants.

The solubility limit of YF3 in ScF3 is similar to that observed by Fedorov et al. in the

YbF3–ScF3 system (25-30% at 1273 K), although Yb3+ is slightly smaller than Y3+ [300].
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In the YbF3–ScF3 system, however, solubility was strongly temperature-dependent, rang-

ing from a few percent at low temperature to ∼44% at 1338 K [298]. The solubility of

LuF3 in ScF3 has been reported to reach a maximum of 45% and to be less temperature-

dependent [299]. The high-temperature diffraction data in Figure C.1 (Appendix C) show

that, for some samples, YF3 comes out of solution on heating to >800 K, which is consistent

with a strong temperature dependence for the solid solubility of YF3 in ScF3.

The large size difference between Sc3+ and Y3+ (21%) is responsible for the relatively

low solubility of YF3. Furthermore, the difference in structure type between ScF3 and YF3

precludes full solubility. From the slope of the a versus x plot (Figure 7.3), the lattice

constant of the hypothetical ReO3-type YF3 is estimated to be a = 4.281 Å. Assuming

that all Y–F–Y links in the hypothetical material are linear, this value suggests an effective

ionic radius for Y3+ of 0.880 Å, somewhat smaller than the value given by Shannon (0.900

Å) [300]. This discrepancy may be due to errors in the radius estimates, compressed Y–F

bond lengths, or structural buckling (nonlinear M–F–Y links) in the solid solutions.

The relatively low solubility of YF3 in ScF3 contrasts with the full solubility of TiF3

at a similar reaction temperature (Figure 6.4), which is again due to the sizes of Y3+ and
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Ti3+ relative to that of Sc3+.

7.3.2 Cubic-to-rhombohedral phase transition on cooling

The variable-temperature diffraction data (Figures C.2 and C.3) show peak splittings and

the appearance of superlattice peaks at low temperature, indicative of a symmetry-lowering

phase transition. The high signal-to-noise ratio of the synchrotron data also reveals some

small extra peaks. The nature of the impurities could not be identified, but the presence of

YF3, Y2O3, Sc2O3, YOF, and ScOF was excluded.

Initial Rietveld analyses confirmed that the cubic (Pm3̄m) materials become rhombo-

hedral (R3̄c) on cooling, as previously reported for several other MF3 with ReO3 struc-

tures [227, 228], as well as Sc1−xTixF3 (Chapter 6), but unlike ScF3, which does not show

a phase transition at ambient pressure between 0.4 and 1600 K [35, 304]. This cubic-to-

rhombohedral transition involves the cooperative rotation of the constituent MF6 octahe-

dra [306] (a−a−a− type in Glazer notation [307]). The phase transition temperature for

each solid solution was estimated from peak broadening at low temperatures (Figure C.4).

A composition-temperature phase diagram is shown in Figure 7.4. The transition tem-

perature increases rapidly on initial doping and plateaus at below ∼200 K. The transition

temperature is lower than the volume maximum in the volume versus temperature curve for

each sample (Figure 7.5), which may be associated with changes in the local structure prior

to the onset of long-range cooperative MF6 tilting at the phase transition temperature. Un-

like the symmetry-lowering phase transitions observed in many ReO3-type MF3 on cooling,

including Sc1−xTixF3 (Chapter 6), the transition in Sc1−xYxF3 is clearly not first-order.

The distortion associated with the phase transition evolves quite slowly with temperature

and is small even well below the transition temperature; at 100 K, the rhombohedral unit

cell angle, α, for the x = 0.25 sample is only ∼59.75◦, corresponding to a rotation of the

octahedra around 〈111〉, ω, of ∼6◦ (Figure C.5). It has been argued that the cubic-to-

rhombohedral phase transition in ReO3-type MF3 occurs in part because the displacement

of F away from its ideal position in the cubic structure leads to a set of energetically favor-

able dipole-dipole interactions [308]. In Sc1−xYxF3, the size mismatch between Y3+ and
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Figure 7.4: Composition-temperature phase diagram for Sc1−xYxF3. The red dashed curve
is a guide to the eye. The black circles are the experimentally estimated transition temper-
atures. The transition temperature for ScF3 is assumed to be 0 K, as it is known to remain
cubic down to at least 0.35 K (Figure 7.11). Reproduced from ref. [247].

Sc3+ may well be accommodated by local structural distortions that lead to a disordered

arrangement of fluoride displacements. The existence of quite large off M–(F)–M axis static

displacements for the fluoride ions is supported by an examination of the atomic displace-

ment parameters (ADPs) as a function of temperature (Figure C.6); an extrapolation of

the transverse component of the ADP (U22) for fluoride in the cubic phase to 0 K yields

quite large values, suggesting considerable static displacements in the solid solutions. This

displacement of fluoride in the solid solutions may contribute to the occurrence of the phase

transition even at very low doping levels. The disorder associated with accommodating Y3+

in a ScF3 matrix may also be responsible for the very small rhombohedral strains below the

phase transition temperature, as they could interfere with the cooperative tilting of MF6

octahedra.

7.3.3 Thermal expansion at ambient pressure

The unit cell volume per formula unit (V/Z), normalized by the value at 400 K (V400K) and

averaged across all heating/cooling cycles, is plotted with respect to temperature for each

sample in Figure 7.5. The temperature dependence of the volume CTE for each sample,

estimated by fitting sixth-order polynomials to the V/Z versus T curves, is shown in Figure
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7.6.

At low temperatures, the volume CTE, αV , changes rapidly with temperature and

depends strongly on composition due to the cubic-to-rhombohedral phase transition. Below

the phase transition temperature, the expansion of the samples is quite strongly anisotropic

(Figure C.5). The anisotropy was evaluated by converting the primitive rhombohedral cell

constants, aR and αR, to the equivalent hexagonal values, aH and cH , by Equations 4.1 and

4.2. Lattice parameter aH contracts quite strongly on cooling below the phase transition

temperature, as expected for coupled rotation of quite rigid MF6 octahedra around the

crystallographic threefold axis, while cH expands.

While CTE is significantly dependent on composition at temperatures immediately

above the phase transition, αV is largely independent of x above ∼400 K and slowly in-

creases with temperature for all x up to at least 800 K while remaining negative. This

near-independence of CTE and composition is unexpected. The thermal expansion of a

material is intimately related to its phonon density of states (PDOS) and the volume de-

pendence of phonon frequencies [9, 10]. The occurrence of a cubic-to-rhombohedral phase

transition on cooling, which is presumably associated with a mode softening, and the lo-

cal strains and distortions associated with substituting the large Y3+ into ScF3 are all

suggestive of changes in the PDOS when solid solutions are formed.
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Reproduced from ref. [247].

7.3.4 Effect of composition on the isothermal bulk modulus and thermal ex-
pansion under pressure

All diffraction patterns acquired at high pressure for Sc1−xYxF3 are shown in Appendix

C (Figures C.8, C.9, C.10, C.11, and C.12). These data were analyzed using a cubic

model, as there are no noticeable peak splittings or superlattice peaks that might indicate a

transformation to lower symmetry. Unit cell volumes were determined by Rietveld analysis.

The variation of lnV with respect to both pressure and temperature was plotted, and

straight-line fits to these plots were used to estimate average isothermal bulk moduli and

volume CTEs. Isotherm and isobar plots for pure ScF3 (x = 0.00) are presented in Figures

7.7a and 7.8a, respectively, and the corresponding plots for Sc0.75Y0.25F3 are shown in

Figures 7.7b and 7.8b for comparison. Isotherm and isobar plots for the other compositions

are included in Appendix C (Figures C.13 and C.14, respectively).

The average values of isothermal bulk modulus (KT ) for each composition are plotted

with respect to temperature in Figure 7.9, and the average αV values (298-523 K) of each

sample are plotted with respect to pressure in Figure 7.10. In the temperature and pressure

ranges studied, the bulk modulus and CTE of undoped ScF3 are almost invariant with

temperature and pressure, respectively (Figures 7.9 and 7.10). However, this independence

is changed by insertion of Y3+ into the ScF3 framework. The average isothermal bulk moduli
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respect to temperature at various pressures (0.034, 0.069, 0.103, 0.138, 0.172, 0.207, 0.241,
and 0.276 GPa) for (a) undoped ScF3 (x = 0.00) and (b) Sc0.75Y0.25F3. The data points are
connected with line segments as a guide to the eye. For each sample, the lowest pressure
points are in green and have the highest volumes; conversely, the highest pressure points
are in black and have the lowest volumes. The single unconnected point at 300 K was
measured at P = 0. In both plots, error bars are smaller than the point size. Reproduced
from ref. [247].

125



25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

 300  350  400  450  500

K
T
 (

G
P

a)

Temperature (K)

x = 0.00
x = 0.05
x = 0.10
x = 0.20
x = 0.25

Figure 7.9: Average isothermal bulk moduli (KT ) of Sc1−xYxF3 plotted with respect to
temperature. Reproduced from ref. [247].

increase on heating, and the CTEs become more positive on compression. At ambient

temperature, the bulk modulus for pure ScF3 is ∼60 GPa, in good agreement with prior

reports [35]. Fang and Dove have recently reported that many thermomiotic materials are

likely to become softer on compression [107]. However, the absence of obvious downward

curvature in the lnV versus P plot (Figure 7.7a) indicates that ScF3 does not show pressure-

induced softening within the accuracy of the measurements.

Yttrium substitution leads to a reduction in bulk modulus regardless of temperature; in

the x = 0.25 sample, KT is reduced by ∼25% relative to ScF3 at 523 K. The plots of lnV

versus T for x = 0.20 and 0.25 (Figures C.14c and 7.8b, respectively) go through maxima

on cooling at high pressure, similar to that observed at ambient pressure and cryogenic

temperatures. The slight volume reduction on cooling after going through the maxima

is presumably associated with local structural changes that are a precursor to a phase

transition at lower temperatures or higher pressures. As the temperature for the cubic-to-

rhombohedral phase transition is expected to increase on compression, these transition pre-

cursor effects are observed near ambient temperature, rather than cryogenic temperatures,

when the samples are compressed. In addition, the relationship of lnV and P is not highly

linear for higher x, especially at low T (x = 0.25, Figure 7.7b); the shapes of these isotherm

curves appear somewhat concave-down, indicating pressure-induced softening, consistent
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with the behavior reported for Zn(CN)2 and various thermomiotic zeolites [107, 108, 109].

A recent high-pressure X-ray and neutron diffraction study of cubic ScF3 revealed a

phase transition to rhombohedral symmetry between ∼0.5 and 0.8 GPa at ambient temper-

ature, consistent with prior high-pressure micro-Raman work [244, 245, 246]. The critical

pressure of ScF3 was also reported to increase with temperature [35]. Similar to other ReO3-

type materials, the bulk moduli for the two phases of ScF3 were reported to be significantly

different; K0 at room temperature changed from 57(3) to 9(3) GPa between the cubic and

rhombohedral phases [35, 223]. Consistent with these observations, a phase transition is

not observed in undoped ScF3 in the pressure and temperature range studied (below 0.276

GPa, 298-523 K).

Materials with the VF3-type structure are typically highly compressible but do not un-

dergo phase transitions on modest compression [239, 240, 241, 242]. In this structure, the

M–F–M links are bent, and further reduction of this bond angle on compression provides

an energetically low-cost path for volume reduction, leading to much lower bulk moduli than

those observed for materials with the cubic ReO3-type structure, in which these same links

are linear. In Sc1−xYxF3, insertion of the relatively large Y3+ into the ScF3 matrix presum-

ably locally distorts the ideal cubic structure. Local bending of M–F–M may be responsible
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for the observed reduction in bulk moduli on yttrium substitution (Figure 7.9), as changes

in already bent M–F–M bond angles on compression could provide a relatively low-energy

path for volume reduction. The temperature dependence of the bulk moduli for the solid

solutions could be a reflection of thermally induced changes in local structure, as suggested

above in the discussion of the maxima in the lnV versus T plots for x = 0.20 and 0.25

(Figures C.14c and 7.8b). The pronounced stiffening on heating exhibited by Sc1−xYxF3

has not been observed in other thermomiotic materials. A pressure dependence to the CTE

for Zn(CN)2 has been reported, implying a modest temperature dependence to the bulk

modulus [106]. The expansion coefficients for the thermomiotic material Zr2(WO4)(PO4)2

were found to be largely independent of pressure [309].

7.3.5 Heat capacities of ScF3 and Sc1−xYxF3

The temperature dependence of the experimentally measured molar heat capacity at con-

stant pressure (CP ) of ScF3 is plotted in Figure 7.11. With Equation 2.6, CP can be

converted to CV (the molar heat capacity at constant volume); however, the difference be-

tween CP and CV is quite small for these samples (CP−CV

CP
≤ 0.8% for ScF3), so only CP is

given here. There is no evidence of a phase transition at any point between 0.35 and 390 K;

previous studies of ScF3 only examined as low as 10 K (PXRD) [35] and 4 K (Raman) [245].

These experimental data will be compared with density functional theory calculations in a

future publication [304].

Experimentally measured CP of Sc1−xYxF3 are shown in Figure 7.12, while complete

data tables are available in Appendix C. The molar heat capacities of the Y-substituted

materials are close to that of ScF3 in their cubic (ambient) phases; however, upon cooling,

they transition between 250 and 100 K (transition temperature varies with composition)

to rhombohedral phases (Figure 7.4), at which point their heat capacities begin to diverge

from that of ScF3. The low-temperature heat capacities of Sc1−xYxF3 are smaller than

those of ScF3, which correlates with the positive thermal expansion of the rhombohedral

phases.

A cubic-to-rhombohedral phase transition is evident in the heat capacity data for x =
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0.20 and 0.25 at approximately 220 K and very weakly for x = 0.10 at 150 K. These temper-

atures are somewhat higher than those estimated from variable-temperature PXRD (Figure

7.4) but are close to the inflection point in the volume–temperature curves (Figure 7.5).

The small anomalies in heat capacity are consistent with second-order phase transitions,

as suggested by the PXRD data. A phase transition is not observed in the heat capacity

data for x = 0.05, possibly because it was below the detection limit. A low enthalpy change

is consistent with the low-temperature heat capacity results; the relatively high values for

low-temperature heat capacities suggest that yttrium-substituted ScF3 solid solutions have

considerable vibrational entropy in their rhombohedral phases [310], contributing to their

stability and leading to a small enthalpy of transition to the cubic phase.

7.4 Conclusion

The formation of Sc1−xYxF3 leads to a symmetry-lowering phase transition upon cooling,

the temperature of which initially increases rapidly with x and then approaches a plateau

at ∼200 K. Strongly composition- and temperature-dependent CTEs are observed below

and immediately above the transition temperature. However, above ∼400 K, where all the

samples are cubic, αV is largely independent of x; therefore, yttrium substitution is not

a useful approach to tailoring the expansion characteristics of ScF3-based solid solutions.

Yttrium substitution also significantly lowers the bulk moduli of the solid solutions. Dis-

tortions in the local structure that are needed to accommodate the large yttrium cation

likely provide a low-energy path for volume reduction on compression. The bulk moduli of

the solid solutions increase with temperature over the entire temperature range examined,

contrary to the behavior of most materials. The strongly temperature-dependent bulk mod-

uli and stress-dependent CTEs of the solid solutions may limit their use in composites or

other applications. In contrast, however, the thermal expansion and bulk modulus of pure

ScF3 are independent of pressure and temperature, respectively. Based on heat capacity

measurements between 0.35 and 390 K, no evidence of a phase transition is observed for

ScF3, while a subtle, second-order phase transition is observed for the x = 0.10, 0.20, and

0.25 samples. The low-temperature heat capacities of the rhombohedral phases of these
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solid solutions do not share the behavior of ScF3.

The behavior of Sc1−xYxF3 differs greatly from that of Sc1−xTixF3, where solid solubility

is not limited, and the phase transition temperature varies linearly with composition. The

unusual independence of CTE in cubic Sc1−xYxF3 is not observed in cubic Sc1−xTixF3, in

which CTE is tunable over a limited temperature range between those of the end members.

The discussion of ScF3-based solid solutions concludes in Chapter 8.
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CHAPTER 8

THERMAL EXPANSION AND COMPRESSIBILITY OF Sc1−xAlxF3

(x ≤ 0.50)

8.1 Introduction1,2

In the preceding two chapters, thermal expansion control in ScF3 has been explored through

solid solution formation with TiF3 (Chapter 6) and YF3 (Chapter 7). These species were

chosen based on the size of the trivalent cation relative to that of Sc3+; Y3+ is significantly

larger, while Ti3+ is a relatively close size match [300]. In this chapter, the study of ScF3

solid solutions concludes with α-AlF3 substitution. Unlike Y
3+ or Ti3+, Al3+ is significantly

smaller than Sc3+ (ionic radii, 0.535 and 0.745 Å, respectively) [300]. The difference in

ionic radius (33%) between Al3+ and Sc3+ is larger than that between Y3+ and Sc3+. The

structural distortions resulting from substitution of a small ion (Al3+) in the ScF3 matrix

are possibly different than those arising from substitution of a large ion (Y3+). Herein, the

solid solubility, phase transitions, and thermal expansion behavior of Sc1−xAlxF3 (x ≤ 0.50)

between 100 and 900 K as well as the effects of composition on bulk modulus and thermal

expansion upon compression (≤0.414 GPa) are reported.

8.2 Materials and methods

8.2.1 Synthesis and ambient characterization

Powder samples of (1−x)ScF3:xAlF3 (x = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50, 0.55,

0.60, 0.70, 0.80, 0.90) were prepared by the solid state reaction of stoichiometric amounts of

ScF3 (American Elements, 99.99%) and α-AlF3 (Alfa-Aesar, 99.99%) in a similar manner

to that described in Sections 6.2.1 and 7.2.1. The powders were thoroughly mixed and

pelletized in an inert atmosphere and then sealed in a Cu (x ≤ 0.20) or Ni ampoule by

1The work presented in this chapter and Appendix D is edited from an upcoming publication [248] to
fit the context of this thesis.

2Supporting material for this chapter can be found in Appendix D.
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arc-welding. The Cu (Ni) ampoules were sealed inside evacuated fused quartz tubes, which

were then heated at 1273 (1338) K for 72 h and quenched by removing from the furnace,

which was located in a fume hood.

Ambient laboratory powder X-ray diffraction (PXRD) patterns were analyzed by the

Rietveld method with GSAS [269, 270], using either a cubic (Pm3̄m) or rhombohedral

(R3̄c) structural model.

8.2.2 Non-ambient synchrotron X-ray diffraction

Variable-temperature (ambient-pressure) PXRD data were collected at beamlines 1-BM-C

(λ ≈ 0.61 Å) and 17-BM-B (λ ≈ 0.7291 Å) of the Advanced Photon Source (APS), Argonne

National Laboratory, Illinois, USA, using the Cryostream (100 to 500 K, Figure 2.2) and

wire-wound furnace (300 to ∼1200 K, Figure 2.3) setups described in Section 2.2.1.1.

Variable-pressure/temperature PXRD data were collected at beamline 11-ID-B of the

APS. The samples (x = 0.05, 0.10, 0.15, 0.20, and 0.40) were slurried in silicone oil and

loaded in Kapton capillaries that were sealed at one end with a high-temperature epoxy

resin. The capillaries were loaded in the MK3BRIM 414 device introduced in Section 2.2.2

and positioned in a Grade 5 Ti pressure vessel.

Measurements were performed at pressures of 0.017, 0.052, 0.103, 0.155, 0.207, 0.259,

0.310, 0.362, and 0.414 GPa and the following temperatures: 298, 343, 388, 433, 478, and

523 K. At the highest two temperatures, the highest two pressures were not accessed. Data

for the x = 0.10 sample above 310 MPa are not presented, as the apparatus did not hold

pressure during attempted measurements.

The unit cell volumes obtained from five out of the 234 variable-pressure/temperature

diffraction measurements (pressure ∼259 MPa with x = 0.05, 298 K; x = 0.20, 298 K; x =

0.40, 298 K; x = 0.40, 388 K; and x = 0.40, 433 K) were not used for the determination of

bulk moduli and expansion coefficients, as they did not follow the trends displayed by the

other data, apparently due to problems with accurate pressure determination.
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8.2.3 Data analysis

As discussed in Section 2.4.2, all area detector images were integrated with FIT2D [255], and

Rietveld analyses were accomplished with GSAS [269, 270]. The sequential refinement mode

of GSAS was utilized to analyze the variable-temperature data. Representative Rietveld

fits are shown in Figure 8.1. To account for differences between conditions in synchrotron

measurements, the ambient-pressure unit cell volumes were scaled using the values obtained

from laboratory PXRD data. Herein, only Cryostream data between 100 and 350 K are

used for analysis (in samples for which both types of data were collected), while only furnace

data above 350 K are used.

8.3 Results and discussion

8.3.1 Solid solubility

In the ambient laboratory PXRD patterns for the (1−x)ScF3:xAlF3 products (Figure 8.2),

a Sc1−xAlxF3 phase is observed for all x but is the only phase for x ≤ 0.50; additional

peaks corresponding to either α-AlF3 or α-AlF3 substituted by small amounts of ScF3 are

evident for x > 0.50, the intensities of which increase with x. The unit cell volumes and

weight fractions for each of these phases (where applicable) were determined by Rietveld

analyses of the laboratory PXRD data (Figure 8.3a, c). The volumes follow Vegard’s Law

below x ≈ 0.50, suggesting that the solubility limit of α-AlF3 in ScF3 is between 50 and

55% at reaction temperature (1338 K). Notably, an extrapolation of a straight-line fit to

the unit cell volumes for Sc1−xAlxF3 at 800 K (Figure 8.3b), where all of the samples are

cubic, agrees well with the volume for pure AlF3 at this temperature, which indicates that

the effective size of Al3+ in the solid solutions is the same as that in AlF3, even though the

large size mismatch between Al3+ and Sc3+ must lead to considerable structural distortions

in the solid solution. Samples with x > 0.50 contain an α-AlF3-type second phase, the

amount of which increases linearly with x. The unit cell volume for this phase appears

invariant with overall sample composition, indicating a solid solubility for ScF3 in AlF3 of

<10%. The asymmetry in solid solubility (∼50% AlF3 in ScF3 but <10% ScF3 in AlF3)

suggests that cation size mismatches are more readily accommodated in ReO3-type MF3
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Figure 8.1: Rietveld fits (green line) to data (red +) collected for Sc0.85Al0.15F3 at (a) 100 K
and ambient pressure, (b) ambient temperature and pressure, and (c) ambient temperature
and 413 MPa. A rhombohedral model was used in panels (a) and (c), while a cubic model
was used in (b). In these plots, the difference curve appears in blue, and Bragg peak
positions are marked by magenta tick marks (|). The data in panel (a) were collected in the
Cryostream setup, while panels (b) and (c) were collected in the high-pressure setup; extra
peaks in the latter two are residual scattering from the tungsten BRIM body and rhenium
beam stop blade. Reproduced from ref. [248].
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Figure 8.2: Powder X-ray diffraction data collected at ambient conditions on a laboratory
diffractometer for (1−x)ScF3:xAlF3. With the signal-to-noise ratio of the lab diffractometer,
samples with x ≤ 0.50 appear to be a single phase (Sc1−xAlxF3). Patterns for samples
containing a second α-AlF3-rich phase (x > 0.50) are colored grey. The pattern for ScF3

(x = 0.00) also appears in Figure 6.3. Reproduced from ref. [248].

solid solutions when the substituting cation is smaller than the matrix cation.

The solubility limit for α-AlF3 in ScF3 (50%) at 1338 K is much higher than the ∼25%

limit observed for YF3 in ScF3 at 1273 K (Chapter 7), even though the size mismatch

between Y3+ and Sc3+ is less than that between Al3+ and Sc3+ (21 and 33%, respectively).

Insertion of a relatively small cation (such as Al3+) into the ScF3 matrix is apparently easier

than insertion of a large cation (such as Y3+). In contrast to Sc1−xYxF3 and Sc1−xAlxF3,

however, full solubility is observed in Sc1−xTixF3 at 1338 K due to the similar ionic radii

of Sc3+ and Ti3+ (Chapter 6). Previous reports of LnF3–ScF3 (Ln = Yb [298], Lu [299])

systems suggest that solubility in these solid solutions is probably strongly dependent on

reaction temperature.

8.3.2 Phase transition and thermal expansion at ambient pressure

Variable-temperature, ambient-pressure synchrotron PXRD data for all Sc1−xAlxF3 are

shown in Appendix D (Cryostream: Figures D.1, D.2, D.3; Furnace: Figures D.4, D.5,

D.6). In the furnace data, the solid solutions decompose at some point above 900 K;
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Figure 8.3: (a) Ambient unit cell volumes per formula unit of Sc1−xAlxF3 extracted from
Rietveld analyses of laboratory PXRD data using either a cubic (red squares) or rhombohe-
dral (blue diamonds) model. V/Z of the extra α-AlF3 phase (rhombohedral) are indicated
by green diamonds. The dashed lines are linear fits to the data; their intersection is an in-
dicator of the solubility limit of α-AlF3 in ScF3. The V/Z for ScF3 (x = 0.00) also appears
in Figure 6.4. (b) Unit cell volumes per formula unit of Sc1−xAlxF3 at 800 K, extracted
from Rietveld analyses of synchrotron PXRD data. The dashed line is a linear fit to the
data (R2 = 0.9994). The volume for pure α-AlF3 is from Figure 4.6. In (a) and (b), error
bars are smaller than the symbols. (c) Weight fractions of Sc1−xAlxF3 (cubic or rhombohe-
dral, blue squares) and α-AlF3 (green diamonds) in each sample, extracted from Rietveld
analyses. Reproduced from ref. [248].
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Figure 8.4: Variable-temperature (Cryostream, 100-500 K) PXRD data collected for
Sc0.85Al0.15F3. Only the high-angle portion of the patterns is shown to demonstrate the
peak splitting indicative of a symmetry-lowering phase transition. Patterns are arranged
in order of collection from bottom to top, which followed the temperature ramp in Figure
2.2b. Reproduced from ref. [248].

hereafter, only data collected below 900 K are discussed.

An example of Cryostream variable-temperature PXRD data (x = 0.15) is shown in

Figure 8.4. From peak splitting and the appearance of supercell peaks in the PXRD data

at low temperatures, a symmetry-lowering phase transition is evident in all samples be-

tween 100 and 500 K (x ≥ 0.05). As demonstrated in previous chapters, the same cubic-

to-rhombohedral transition occurs in other ReO3-type MF3 [237, 227, 228], as well as

Sc1−xTixF3 (Chapter 6) and Sc1−xYxF3 (Chapter 7), but not ScF3, which remains cubic

down to 0.35 K, according to the heat capacity measurements in Chapter 7. In some cases

(x > 0.15), this transition is evident above ambient temperature, which is not the case in

any Sc1−xYxF3 compositions or Sc1−xTixF3 with x ≤ 0.80.

The phase transition temperature of each sample was estimated from the temperature

dependence of supercell peak intensity (Figure D.7). A composition-temperature phase

diagram (at ambient pressure) for Sc1−xAlxF3 is shown in Figure 8.5. Phase transition

temperature increases smoothly with composition and plateaus at ∼500 K as the solubility
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Figure 8.5: Composition-temperature phase diagram for Sc1−xAlxF3 at ambient pressure.
Blue circles are experimental transition temperatures from Cryostream measurements, while
red circles are those from furnace measurements. ScF3 remains cubic down to at least 0.35 K
(Chapter 7), so its transition temperature is given here as 0 K. Reproduced from ref. [248].

limit is reached, similar to Sc1−xYxF3 (Figure 7.4). While ScF3 is not known to become

rhombohedral above 0.35 K at ambient pressure (Chapter 7), the first-order phase transition

in pure α-AlF3 occurs at ∼713 K (Chapter 4), well above the transition temperature of any

Sc1−xAlxF3.

The cubic-to-rhombohedral phase transformation of the ReO3 structure occurs due to

the coupled rotation of octahedra when cooled (Figure 1.9). In the case of Sc1−xAlxF3,

octahedral rotation around <1 1 1> is large, reaching ∼14◦ at 100 K for the most Al-rich

solid solutions, which corresponds to a M–F–M bond angle of ∼156◦ (Figure D.8). As

in Sc1−xYxF3, the significant size mismatch between Sc3+ and Al3+ apparently leads to

local structural distortions that create a disordered arrangement of fluoride displacements

away from their crystallographic average positions. This disorder is reflected in the atomic

displacement parameters (ADPs) for fluorine (Figure D.9). In particular, as the aluminum

content increases, the value for the transverse component of the ADP for F (U22) extrapo-

lated to 0 K increases significantly.

The unit cell volumes per formula unit (V/Z) of Sc1−xAlxF3 were extracted during

Rietveld analyses and are plotted with respect to temperature in Figure 8.6a. Unlike the

phase transition observed in α-AlF3 (Chapter 4) and TiF3 (Chapter 6), but similar to that
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in Sc1−xYxF3 (Chapter 7), the transition in these solid solutions is not first-order.

The volume CTE (αV ) for each Sc1−xAlxF3 composition was estimated by fitting poly-

nomials to V/Z versus T data; the temperature dependence of αV is plotted in Figure 8.6b.

As in other ReO3-type MF3, the CTE of rhombohedral Sc1−xAlxF3 is strongly positive

and changes rapidly with temperature. The CTE of the cubic form increases steadily with

x, varying from negative (x < 0.15) to near-zero (x = 0.15) to positive (x > 0.15) above

∼600 K. However, the variation of the cubic-phase CTE with x decreases as temperature

increases (Figure 8.6c); CTEs for the solid solutions at several temperatures between 300

and 800 K are plotted with respect to x in Figure D.10. Although the CTE is tunable over

a significant range above 600 K, the temperatures at which tuning is possible, while remain-

ing cubic, are probably too high for most applications. The CTE of cubic Sc1−xAlxF3 is

much more sensitive to composition than that observed for either cubic Sc1−xYxF3, whose

CTE is unexpectedly almost constant with composition (Figure 7.6), or cubic Sc1−xTixF3,

whose CTE is tunable above 350 K but over a limited, negative range (Figure 6.8). The

thermal expansion behavior of highly-doped Sc1−xAlxF3 (x > 0.15) is similar to that of

pure α-AlF3, in that the cubic form shows PTE rather than NTE (Chapter 4).

As in other ReO3-type MF3, including α-AlF3, Sc1−xTixF3, and Sc1−xYxF3 (Chap-

ters 4, 6, and 7, respectively), thermal expansion in rhombohedral Sc1−xAlxF3 is strongly

anisotropic. As shown in Figure D.8, the hexagonal a-axis expands rapidly with tempera-

ture due to rotation of the rigid MF6 octahedra about the threefold symmetry axis, while

the hexagonal c-axis contracts, with overall positive volume thermal expansion (Figure 8.6).

8.3.3 Phase transitions, isothermal bulk modulus, and thermal expansion un-
der pressure

The larger solid solubility range of Sc1−xAlxF3 (x ≤ 0.50) allows for a more thorough

exploration of the effects of composition on bulk modulus than that reported for Sc1−xYxF3

(x ≤ 0.25, Chapter 7). Based on the splitting of certain peaks and appearance of supercell

peaks, either a cubic or rhombohedral model was used in Rietveld analyses of the variable-

pressure/temperature PXRD data for Sc1−xAlxF3 (Figures D.12 to D.16) to extract unit

cell volumes (V ). Figure 8.7 (a and b) shows ln V with respect to pressure and temperature,
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Figure 8.6: Temperature dependence of (a) unit cell volume per formula unit (V/Z) and
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respectively, for all samples. All lattice constants and unit cell volumes are tabulated in

Appendix D.

Phase diagrams for all samples, based on the structural model used in the Rietveld anal-

yses, appear in Appendix D (pressure-composition and pressure-temperature, Figures D.17

and D.18, respectively); however, the pressure-temperature phase diagrams for the x = 0.15

and 0.20 samples are shown in Figure 8.8. As expected, the samples become rhombohedral

with sufficient compression (cooling) at a constant temperature (pressure). Although the

x = 0.05 sample remains cubic upon compression to 413 MPa at all temperatures between

298 and 523 K (Figure D.18), increased Al3+ substitution shifts the critical temperature

upward at a given pressure and the critical pressure downward at a given temperature. In

contrast to these materials, all Sc1−xYxF3 (x ≤ 0.25) remain cubic on compression to 276

MPa at all temperatures between 298 and 523 K (Chapter 7).

The slope of the pressure-temperature phase boundary for each of the solid solution

compositions studied (Figures 8.8 and D.18) is 0.4-0.5 K·MPa−1, which is close to that esti-

mated for undoped ScF3 (∼0.4 K·MPa−1) based on the low-temperature data (<300 K) in a

previous study [35]. These values are much larger in magnitude than that typically found for

perovskites undergoing octahedral-tilting phase transitions [311]. The principles governing

displacive phase transitions in perovskites have received considerable attention due to their

technological and geological importance. This work is directly applicable to Sc1−xAlxF3,

as the ReO3 structure is that of a perovskite with a vacant A site. In 1975, based on an

analysis of the balance between short- and long-range interactions, it was proposed that,

for perovskites displaying zone-boundary phase transitions, like that in Sc1−xAlxF3, the

temperature-pressure phase boundary slope (dTc

dP ) should be positive, whereas zone-center

transitions should show a negative slope [311]. After finding examples of perovskites dis-

playing octahedral tilting transitions, which typically involve the softening of zone-boundary

phonon modes, where the phase boundary slope was negative, such as LaAlO3 [312], An-

gel et al. reanalyzed the problem [313], concluding that the slope of the phase boundary

depends on the relative compressibility of the A- and B-site coordination polyhedra in the
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Figure 8.7: (a) Natural logarithm of unit cell volume (ln V ; units of V are Å3) with respect
to pressure at various temperatures (298, 343, 388, 433, 478, and 523 K), and (b) ln V
with respect to temperature at various pressures (0.017, 0.052, 0.103, 0.155, 0.207, 0.258,
0.310, 0.362, and 0.413 GPa) for Sc1−xAlxF3. In both plots, data points are connected
with line segments as a guide to the eye, and error bars are smaller than the point size. In
(a), the lowest temperature points for each sample are blue, and the highest temperature
points are red. Similarly, in (b), the lowest pressure points for each sample are green
and have the highest volumes, while the highest pressure points are black and have the
lowest volumes. (c) Temperature dependence of average isothermal bulk modulus (KT )
and (d) pressure dependence (<0.35 GPa) of average volume CTE (αV , 298-523 K) for
Sc1−xAlxF3. In (c)/(d), squares (diamonds) indicate that the structure of the material is
cubic (rhombohedral) at all pressures/temperatures at the specified temperature/pressure;
open circles denote that the phase transition occurs over the pressure/temperature range
used to calculate the given value. All data for pure ScF3 (x = 0.00) also appear in Figures
7.7, 7.8, 7.9, and 7.10. Reproduced from ref. [248].
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perovskite. In LaAlO3, the LaO12 polyhedron is less compressible than the AlO6 octahe-

dron, and volume reduction on compression involves compression of the AlO6 octahedra

combined with a reduction in the octahedral tilts, leading to an unusual situation in which

compression is associated with a transition that involves an increase in symmetry (R3̄c

to Pm3̄m) [313]. In Sc1−xAlxF3, the A site is vacant, so the AF12 polyhedron is highly

compressible relative to the BF6 octahedron, leading to a positive phase boundary slope.

Average isothermal bulk moduli (KT ) were calculated from straight-line fits to ln V

versus P plots and are plotted with respect to temperature in Figure 8.7c. In a similar

manner, average volume CTEs were calculated from straight-line fits to ln V versus T plots

and are plotted with respect to pressure in Figure 8.7d. These linear fits are good for

cases in which the structure remains cubic or rhombohedral at all pressures/temperatures

at the specified temperature/pressure; such cases are marked by solid symbols in Figures

8.7c and 8.7d. However, for cases in which the phase transition occurs over the pressure

or temperature range used to calculate KT or αV , the linear fits are poor; these cases are

denoted by open circles in Figures 8.7c and 8.7d.

Increasing Al3+ substitution in ScF3 leads to a decrease in bulk modulus at each tem-

perature between 298 and 523 K (Figure 8.7c). Unlike cubic ScF3 in the range 300-550 K

(Section 7.3.4), the bulk moduli of the cubic solid solution samples increase on heating. This

thermal stiffening is atypical of most materials, although it has been observed in Sc1−xYxF3

(Chapter 7) and strongly laser-excited gold [314]. Fang et al. recently provided a possible

theoretical basis for this behavior and indicated that thermal stiffening might occur in ther-

momiotic materials that are highly anharmonic [315]. The strong temperature dependence

of the bulk moduli implies that the materials must also display pressure-dependent thermal

expansion. These two characteristics are related by Equation 1.15. The expansion coef-

ficients shown in Figure 8.7d are strongly temperature-dependent, but, as many of them

were computed over a temperature range in which there is a phase transition, there is also

a contribution from the phase transition to this behavior.

In contrast with the cubic form, rhombohedral Sc1−xAlxF3 is quite soft (KT ≈ 10-15

GPa), although K0 at ambient temperature for rhombohedral ScF3 is similar, 9(3) GPa [35,

145



223]. Another ReO3-type material, NbO2F, has a similar bulk modulus (K0 = 9.6 GPa)

when rhombohedral above 0.47 GPa [220]. This rhombohedral structure features bent

M–F–M links that are easily bent further upon compression; hence, materials with this

structure are more compressible than those with the cubic structure, in which these same

links are linear. This relationship is best illustrated by comparing the bulk moduli of ScF3

and Sc0.60Al0.40F3 in Figure 8.7c. ScF3 is cubic at all temperatures and pressures examined

and thus features linear Sc–F–Sc links that are not readily compressed; however, the highly-

doped solid solution is rhombohedrally distorted at nearly all temperatures and pressures

examined and thus has a much lower bulk modulus at all temperatures.

Most materials stiffen upon compression; however, pressure-induced softening has been

observed in several thermomiotic materials, including highly doped Sc1−xYxF3 (Chapter 7),

ZrW2O8 [105], ZrMo2O8 [92], HfW2O8 [95], Zn(CN)2 [106, 109], and various zeolites [107];

this phenomenon has been shown to be temperature-dependent [110]. Pressure-induced

softening is not evident in ScF3 within the accuracy of the measurements in Chapter 7 nor

is the behavior observed in Sc1−xAlxF3 compositions that remain cubic for all pressures at

a given temperature.

8.4 Conclusion

Similar to many ReO3-type MF3, such as α-AlF3, a cubic-to-rhombohedral phase transition

is observed in Sc1−xAlxF3, the temperature of which increases smoothly with x, approaching

∼500 K at x ≈ 0.50. The CTE of rhombohedral Sc1−xAlxF3 is strongly positive, while the

cubic-phase CTE (>600 K) varies from negative (x < 0.15) to near-zero (x = 0.15) to

positive (x > 0.20), providing a greater possibility for tuning than either cubic Sc1−xTixF3

or cubic Sc1−xYxF3. However, the Sc1−xAlxF3 system does not provide for a tunable CTE

in a cubic material at ambient temperature. The isothermal bulk moduli of the cubic solid

solutions are lowered by Al3+ substitution; the unusual property of thermal stiffening is

also observed, a behavior similar to that observed for Sc1−xYxF3 (Chapter 7).
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CHAPTER 9

ROLE OF ANION SITE DISORDER IN THE NEAR-ZERO

THERMAL EXPANSION OF TaO2F

9.1 Introduction1,2

While very strong negative thermal expansion (NTE) has been observed in ScF3 at and

below room temperature that persists up to ∼1100 K [35, 243], other well-studied materials

with the cubic ReO3 structure, including several oxyfluorides, do not exhibit notable NTE

(Section 1.3.2) [25, 225]. TaO2F [204], for example, exhibits very low, nearly zero, thermal

expansion [25, 206]. The lack of NTE in these materials has inspired further investigation.

As discussed in previous chapters, negative thermal expansion in ReO3-type materials

can be explained as arising from the thermally induced rocking of MX6 octahedral rigid

units, connected only at their corners via M–X–M linkages (Figure 1.5). The rocking

involves transverse motion of the X anion normal to the M · · ·M axis; this motion is

expected to produce negative thermal expansion when the M–X–M angle is close to 180◦,

as displacement of X off the M · · ·M axis in any direction (with comparatively minor

expansion of the individual M–X bonds) leads to a reduction in the M · · ·M separation.

However, M–X–M angles significantly smaller than 180◦ are not optimal for NTE, as the

displacement ofX in some directions will increase theM · · ·M separation [25]. The behavior

of some MF3 on cooling illustrates these points (Chapter 4); similar behavior is observed

in the Sc1−xMxF3 solid solutions discussed in Chapters 6, 7, and 8. These compounds

have cubic ReO3 structures at elevated temperatures and undergo a cubic-to-rhombohedral

phase transition upon cooling due to the coupled rotation of the MF6 octahedra. The

rhombohedral forms, with bent M–F–M bonds, show strong positive thermal expansion,

1The work presented in this chapter and Appendix E was previously published [218] and is edited to fit
the context of this thesis. Reprinted with permission from C. R. Morelock et al. Chem. Mater., 25(9):1900-
1904, 2013. Copyright 2013, American Chemical Society.

2Supporting material for this chapter can be found in Appendix E.
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but the cubic forms, with crystallographic M–F–M bond angles of 180◦, display near-zero or

perhaps low negative thermal expansion [226, 228, 234, 235]. However, as shown in Chapter

4, cubic α-AlF3 continues to show PTE, perhaps due to the presence of local octahedral

tilts and an associated increase in the average Al–F–Al bond angle on heating.

Under ambient conditions, TaO2F adopts a cubic ReO3-type average structure, with

a disordered distribution of O and F over the available anion sites. The material dis-

plays a cubic-to-rhombohedral phase transition at low pressures on compression [221] and

has recently attracted attention for its potential as a mid-IR transparent window mate-

rial [206]. The presence of O/F disorder in materials of this type is typical; none of the

perovskites KTiO2F [207], BaScO2F [208], BaFeO2F [209], SrFeO2F [210], PbScO2F [211],

or PbFeO2F [212] have been reported as anion-ordered. In TaO2F, there is only a single

crystallographic average Ta–X (X = O, F) distance, but on chemical grounds, the Ta–O

and Ta–F bonds are expected to have different lengths. Using the bond valence parameters

of Brese and O’Keeffe [316], the expected lengths for the Ta–O and Ta–F bonds are 1.92

and 2.14 Å, respectively. To accommodate these different lengths, the local, short-range

structure of TaO2F must deviate from the average (crystal) structure. In an electron diffrac-

tion study of closely related NbO2F, one-dimensional ordering of the O and F atoms with

unequal Nb–X (X = O, F) bond lengths was reported, with significant static displacements

of Nb from the ideal cation site [213]. Furthermore, in a variable-temperature neutron

diffraction study of TaO2F, Tao and Sleight reported that the O and F atoms have large

transverse atomic displacement parameters (ADPs) that persist at low temperatures. The

authors suggested that these large ADPs likely arise from static tilting of the TaO4F2 octa-

hedra and the possibility of non-linear Ta–(O/F)–Ta bonds [25]. In this chapter, the local

structure of TaO2F is examined using variable-temperature X-ray total scattering to better

understand the role of the disordered O/F anion site in the material’s thermal expansion.
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9.2 Materials and methods

9.2.1 Synthesis

Based on the procedure of Frevel and Rinn [204], TaO2F was prepared3 by dissolving Ta2O5

(STREM Chemicals, 99.8%) in a Pt crucible with concentrated HF (Mallinckrodt, 48%),

followed by slow evaporation to dryness. The remaining powder was transferred to a Teflon

container and heated at ∼453 K for 10 h. Note that hydrofluoric acid is highly toxic and

corrosive and must be handled cautiously with the proper protective equipment; contact

with liquid or vapor requires immediate treatment with proper procedures [317, 318, 319,

320].

9.2.2 X-ray total scattering

Variable-temperature (80 to 441 K) X-ray total scattering data were collected4 on beamline

1-ID-C of the Advanced Photon Source using an Oxford Cryosystems Cryostream; further

experimental details are provided in Section 2.2.3.2. Analysis of total scattering data is de-

scribed in Section 2.4.3, and examples of extracted5 G(r) for TaO2F at various temperatures

appear in Figure E.1.

9.3 Results and discussion

9.3.1 Simple cubic ReO3-type model

A simple cubic ReO3-type model (Pm3̄m) was initially fit to the PDF data obtained at 80

K. The model provides an excellent fit at distances beyond ∼8 Å (RW [8-40 Å] = 12.6%;

Figure 9.1a); however, there are significant deficiencies in the fit at low r (RW [1.5-8.0 Å]

= 61.0%; Figure 9.1b). The deviations in the fit are principally associated with Ta· · ·Ta

correlations between linearly bridged metal centers: Ta–(X)–Ta at ∼3.9 Å and, to a lesser

extent, Ta–(X–Ta–X)–Ta at ∼7.8 Å. The simple cubic model only allows for single distinct

Ta· · ·Ta distances of these types, but the data suggest the presence of two distinct Ta· · ·Ta

distances in each case. Peak fitting indicates that the nearest-neighbor Ta· · ·Ta separations

3The TaO2F sample was prepared by M. Cetinkol.
4The total scattering data were collected by G. J. Halder.
5PDFs were extracted by M. Cetinkol and K. W. Chapman and initially analyzed by B. K. Greve.
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Figure 9.1: (a) Fit for a simple cubic ReO3-type model (dashed blue line) to a PDF (red
circles) obtained at 80 K for TaO2F. The agreement is poor for r <∼8 Å but significantly
better at higher r. (b) The 1.5-8.0 Å region of (a), emphasizing the poor fit of the Ta–X
and Ta–(X)–Ta peaks (X = O, F). (c) 3× 3× 3 supercell model (solid blue line) fit to the
same PDF as in (a). The agreement is good for r <∼8 Å but worse at higher r. (d) The
1.5-8.0 Å region of (c), with the Ta–(O/F) and Ta–(O/F)–Ta peaks labeled. Reproduced
from ref. [218].

are 3.773 and 4.118 Å, with a population ratio of approximately 2:1. Two distinct Ta–

(X–Ta–X)–Ta distances are also evident at ∼7.5 and ∼7.9 Å, with a population ratio of

approximately 1:2. The distinct Ta· · ·Ta distances and population ratios are consistent

with the existence of different Ta–O and Ta–F bond lengths and bridging distances, as well

as the sample stoichiometry (dTa–O–Ta < dTa–F–Ta 2:1 relative abundance; sample O:F =

2:1).
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9.3.2 Supercell model

As the deviations in the fit of the simple cubic model are limited to approximately two

unit cell lengths, a supercell model was constructed to better describe the local structure.

On the basis of diffuse scattering observed in electron diffraction patterns, Brink et al. pro-

posed that O and F ordered along <1 0 0> in NbO2F, giving rise to –Nb–O–Nb–O–Nb–F–

chains [213]. This ordering pattern implies that the metal is always cis-coordinated by

fluorine, as might be expected [217], which is consistent with the observation of two distinct

Ta–(X–Ta–X)–Ta distances at ∼7.5 and ∼7.9 Å, with a population ratio of ∼1:2. A cubic

3×3×3 supercell model was constructed, featuring ordered O· · ·O· · ·F along <1 0 0> and

propagated displacements of Ta and the bridging anions along the Ta–X–Ta direction to

give contracted Ta–(O)–Ta and expanded Ta–(F)–Ta distances of ∼3.8 and ∼4.1 Å, respec-

tively. The F positions along each chain in the supercell were chosen randomly, yielding

TaO5F, TaO4F2, and TaO3F3 octahedra in the model used, not just TaO4F2. The O/F

were placed midway between bridged Ta· · ·Ta pairs. This model gave a much improved

fit to the local structure (RW [1.5-8.0 Å] = 23.9%). The most notable deviation in the fit

occurred for the directly bonded Ta–(O/F) distance, which was contracted relative to the

data, suggesting that the anions are displaced from the Ta· · ·Ta axis.

The supercell model was modified to include <1 0 0> displacement of the anions per-

pendicular to the Ta· · ·Ta axis, and the displaced anions were disordered over four sites.

The magnitude for the displacement, δ, was estimated based on geometric considerations

using Ta–X distances and Ta–(X)–Ta distances determined from direct peak fitting (Ta-

ble 9.1). These values were averaged over the temperature range examined (80-487 K).

The Ta–X distances are in remarkably good agreement with those expected based on bond

valence sum considerations. The displacements are consistent with the large transverse

component of the atomic displacement parameters for O/F observed by Tao and Sleight in

a low-temperature neutron diffraction study [25]. A detailed description of the supercell

model and its creation is found in Appendix E.

The anion-displaced supercell model provides an excellent fit to the local structure (RW

[1.5-8.0 Å] = 23.6%; Figure 9.1d) compared to the simple ReO3 or ordered supercell models,

151



Table 9.1: Temperature-averaged Ta–X–Ta (X = O, F) bond angles, Ta–X and Ta–(X)–
Ta separations, and anion displacements δX from the Ta· · ·Ta axis in TaO2F over 80-487
K. Average atomic separations were obtained by curve fitting to the variable-temperature
PDFs, and angles and δX were calculated geometrically from the separations. Estimated
standard deviations for the temperature-averaged values are given in parentheses. Note
that a systematic error, which would not show up in least-squares based error estimates, of
only ∼0.004 Å in the Ta–O separation estimates would be enough to imply linear rather
than bent Ta–O–Ta links.

Link Angle (◦) Ta–X (Å) Ta–(X)–Ta (Å) δX (Å)

Ta–O–Ta 172(1) 1.891(2) 3.7731(2) 0.13(2)
Ta–F–Ta 155(1) 2.109(6) 4.1181(10) 0.45(3)

Figure 9.2: Single –Ta–O–Ta–O–Ta–F–Ta– chain from the TaO2F anion-displaced supercell
model. Reproduced from ref. [218].

supporting the observation of non-linear Ta–X–Ta geometry. Beyond ∼8 Å, the goodness of

fit decreases (RW [8-40 Å] = 33.8%; Figure 9.1c), likely reflecting the limitations of applying

an inherently long-range ordered model to an intrinsically disordered system and/or strain.

A single representative –Ta–O–Ta–O–Ta–F–Ta– chain is shown in Figure 9.2.

The proposal that both the Ta–F–Ta and Ta–O–Ta links are bent is initially some-

what surprising. On average, the longer Ta–F and Ta–(F)–Ta distances should be under

compression, which can be accommodated by bending. By contrast, the shorter Ta–O and

Ta–(O)–Ta distances may be expected to be under tension, which is in apparent conflict

with the bending of the Ta–O–Ta linkages. However, the best estimate for the bending of

these linkages is very small when considering the errors in these analyses and, if real, may

be driven by the need to avoid unfavorable distortions of the TaX6 octahedra.
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It is reasonable to expect geometrically distinct M–X–M links, as observed in TaO2F,

in other disordered mixed-anion materials with ReO3-type or perovskite structures, such

as ATaO2N (A = Ba, Sr, Ca) [321]. However, the X-ray total scattering measurements

on TaO2F are particularly sensitive to this difference, as contributions to the PDFs from

Ta· · ·Ta correlations are strong when compared to those from anion-anion correlations;

furthermore, there are no A-site cations to add complexity to the PDFs, and the expected

difference between the Ta–O and Ta–F bond lengths is large. In a neutron total scattering

study of BaTaO2N [322], models with different Ta–O and Ta–N bond lengths were used, but

the existence of geometrically distinct Ta–O–Ta and Ta–N–Ta links was not qualitatively

obvious from the neutron PDFs. However, the existence of distinct Ta–O–Ta and Ta–F–Ta

is readily apparent from the X-ray PDFs for TaO2F. Recent work on SrMO2N (M = Nb, Ta)

has shown that, in these materials, there is robust local ordering of oxide and nitride. The

nitrogen atoms linking cis-MO4N2 octahedra tend to lie preferentially in two-dimensional

sheets within the structure, leading to materials that appear to be almost metrically cubic

at elevated temperatures but are in fact of lower symmetry [323]. As the PDFs for TaO2F

clearly show very different Ta–O–Ta and Ta–F–Ta separations, two-dimensional ordering

of the Ta–F–Ta chains, analogous to that found for M–N–M in SrMO2N, would lead to a

pronounced deviation from cubic metric symmetry that is not observed in TaO2F.

9.3.3 Thermal expansion of TaO2F

As the cubic ReO3-type model agrees with experimental PDFs at high r (Figure 9.1a), it

was used to extract the temperature dependence of the lattice constants from the PDFs by

fitting the PDFs from r = 13 to 40 Å. As expected, the lattice constant is equivalent to

the weighted average of the Ta–(O)–Ta and Ta–(F)–Ta separations. Notably, none of the

three distances varies significantly with temperature; their coefficients of thermal expansion

(CTEs) all lie within the range -1 to +1 ppm·K−1 between 100 and 380 K.

This near-equivalent response to heating is somewhat surprising, as the local struc-

ture of TaO2F clearly contains geometrically distinct Ta–O–Ta and Ta–F–Ta links that

have different Ta· · ·Ta separations and average Ta–X–Ta angles (Table 9.1). As discussed
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in previous chapters, heating metal trifluorides with rhombohedrally distorted ReO3-type

structures, such as α-AlF3, leads to an increase in the crystallographic M–F–M bond angle

and strong positive thermal expansion until this crystallographic bond angle approaches

180◦ (as in, for example, Figure 4.8), suggesting that the Ta–O–Ta and Ta–F–Ta links,

with their different average bond angles, might respond differently to temperature; yet, no

significant systematic change with temperature is observed for these angles (Figure 9.3a)

or the anion off-axis displacements δX calculated from the angles (Figure 9.3b). However,

in rhombohedrally distorted MF3, the increase in the M–F–M angle on heating and the

resulting positive thermal expansion occur in the context of a cooperative tilting of MF6

octahedra. Such a cooperative tilting is not possible in TaO2F, as it is cubic on average.

TaO2F does not display significant NTE due to the “buckled” nature of its local structure

(it contains bent Ta–X–Ta links) and the strains associated with the disordered arrangement

of geometrically distinct Ta–O–Ta and Ta–F–Ta links. There is no particular reason why

this type of local structure should lead to near-zero thermal expansion rather than modest

positive or negative thermal expansion. However, the “bent” nature of the Ta–X–Ta links

is not ideal for NTE, and the disordered nature of the local structure inhibits the complete

elimination of these bent links by the cooperative tilting of octahedra, which leads to the

strong positive thermal expansion observed in rhombohedral MF3. Note that NbO2F,

which is expected to have a similar local structure, is known to display quite strong thermal

expansion below room temperature [25, 205]. This proposal for TaO2F is consistent with

work on ReO3 itself, in which the absence of strong NTE has been attributed to static

displacement of the oxygen atoms transverse from the Re–O–Re bond [186], and prior work

on TaO2F by Tao and Sleight, in which the observation of large O/F transverse ADP values

persisting to low temperatures was associated with the near-zero thermal expansion [25].

9.4 Conclusion

Local distortions away from the ideal ReO3-type structure, associated with the need to

accommodate the different bonding requirements of the disordered O/F anions, contribute

to the occurrence of near-zero thermal expansion in TaO2F rather than NTE. The local
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Figure 9.3: Temperature dependence of (a) Ta–X–Ta bond angle and (b) anion off-axis
displacement δX (X =O, F) in TaO2F, calculated from interatomic separations by geometry.
Reproduced from ref. [218].
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structure of TaO2F is poorly described by an ideal cubic ReO3-type model with O and F

randomly distributed over the available anion sites, whereas a 3 × 3 × 3 supercell model

featuring –Ta–O–Ta–O–Ta–F– chains along <1 0 0> with different Ta–O and Ta–F dis-

tances and O/F off-axis displacements gives much better agreement with the PDFs for

small separations (< 8 Å). Analyses of PDFs derived from variable-temperature measure-

ments over different length scales indicate an average linear CTE close to zero with similar

contributions from the geometrically distinct Ta–O–Ta and Ta–F–Ta links in TaO2F.
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CHAPTER 10

CONCLUSIONS AND POSSIBLE FUTURE DIRECTIONS

The thermal expansion behaviors of several materials with ReO3-type connectivity have

been explored in this thesis, with a particular focus on the effects of structural disorder and

stress on thermal expansion. The cubic ReO3 framework is a very simple structure with all of

the key features required for negative thermal expansion (NTE) arising from the transverse

thermal motion of bridging atoms and rotation of rigid polyhedra. In the preceding chapters,

with extensive use of in situ variable-temperature/pressure synchrotron X-ray diffraction

as well as X-ray total scattering, the effects on thermal expansion and related properties

(compressibility and heat capacity) of both cation and anion substitution and the stress

and disorder produced by these structural changes have been demonstrated. Despite the

simplicity of the ReO3 structure, some rather complex and unexpected phenomena are

observed, especially when disorder is introduced. A variety of thermal expansion behaviors

in the ReO3 family is observed, with volume coefficients of thermal expansion (CTEs) that

range from highly negative to near-zero to highly positive; in addition, CTE can be affected

by modest stress. In this concluding chapter, the results of this thesis are summarized, and

possible future studies are suggested.

Even the thermal expansion of simple, ordered ReO3-type metal trifluorides is not

straightforward, as demonstrated in Chapter 4. At ambient conditions, both α-AlF3 and

InF3 have a rhombohedrally distorted form of the ReO3 crystal structure that becomes

cubic on heating. This phase transition occurs at ∼713 K in α-AlF3, while in InF3, an

unexpectedly large temperature range (between ∼680 and ∼795 K) is observed with rhom-

bohedral and cubic phase co-existence. The rhombohedral phase of both α-AlF3 and InF3

displays strongly anisotropic and positive thermal expansion. However, while α-AlF3 con-

tinues to display strong positive thermal expansion (volume CTE at 900 K ≈ 25 ppm·K−1),
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the thermal expansion of cubic InF3 changes from positive to zero (∼850 to 950 K) to neg-

ative (above ∼950 K) upon heating. The positive thermal expansion of cubic α-AlF3 may

be partially due to the presence of local octahedral tilts and an associated increase of the

average Al–F–Al bond angle on heating. The phase co-existence observed in InF3 may not

be intrinsic to the compound but instead due to sample inhomogeneity.

In contrast to other ReO3-type metal trifluorides, such as α-AlF3 and InF3, cubic ScF3

displays strong isotropic NTE over a broad temperature range that is most pronounced at

low temperatures [35]. At ambient pressure, ScF3 remains cubic down to very low temper-

atures (∼10 K from neutron diffraction [35], 4 K from Raman spectroscopy [245], or 0.35

K from the heat capacity measurements in Chapter 7). However, when ScF3 powder is

mixed with a polyvinyl phenolic varnish (GE-7031), an unexpected cubic-to-rhombohedral

phase transition in the trifluoride is observed at ∼50 K, exhibiting smaller low-temperature

unit cell volumes than samples without the varnish matrix. Experimental observations and

quantitative estimates suggest that these anomalies are the result of stress induced by ther-

mal expansion mismatch between the varnish matrix (large positive CTE) and ScF3 (quite

large negative CTE). The potentially deleterious effects of thermal expansion mismatch

and limitations of ScF3 during use in CTE-controlled composites, a potential application

for materials showing NTE, were demonstrated in Chapter 5.

As an alternative to composites, solid solution formation for thermal expansion con-

trol in ScF3 was investigated; thermal expansion studies of Sc1−xMxF3 (M = Ti, Y, and

Al) solid solutions were the focus of Chapters 6, 7, and 8, respectively. Differently sized

cations were substituted into the ScF3 framework and, via variable-temperature/pressure

synchrotron diffraction (including use of the background-reducing internal mask (BRIM)

discussed and demonstrated in Chapter 3), explored the effects on both thermal expansion

and compressibility. In the simplest case, Sc1−xTixF3, Sc3+ and Ti3+ are closely size-

matched, allowing full solubility of TiF3 in ScF3 at synthesis temperature (1338 K). The

temperature for the cubic-to-rhombohedral phase transition in Sc1−xTixF3 varies linearly

with composition (above 100 K), and, at high Ti content, the transition is clearly first-order.

The rhombohedral phase for each composition examined exhibits strongly positive thermal
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expansion, while the expansion of the cubic phase (between 420 and 500 K) is negative

or low positive for all Sc1−xTixF3, with a small degree of CTE tunability (average volume

CTE between 350 and 470 K varies from ∼-16 to ∼+4 ppm·K−1 with increased Ti content).

The two solid solution families featuring size-mismatched cations, however, exhibit some-

what different behaviors than Sc1−xTixF3. Full solubility is not observed in either family

at reaction temperature as a result of the size mismatch. First, insertion of the relatively

large Y3+ ion into ScF3 results in a subtle (clearly not first-order) cubic-to-rhombohedral

phase transition upon cooling from ambient temperature to 100 K, even at low substitution

levels (5%); this subtle phase transition is also observed via heat capacity measurements.

The rhombohedral-phase CTE is strongly dependent on both composition and temperature;

however, above 400 K, where all samples are cubic, the CTE appears to be largely inde-

pendent of composition. Also, as shown in Chapters 7 and 8, the isothermal bulk modulus

and CTE of ScF3, but not those of its solid solutions, are independent of temperature and

pressure, respectively. Y3+ substitution lowers the bulk modulus, even at temperatures

where the samples are cubic; the solid solutions also stiffen upon heating. The larger sol-

ubility range of Sc1−xAlxF3 (∼50%) compared to Sc1−xYxF3 (∼25%) allows for a broader

exploration of the effects of composition on thermal expansion and compressibility, although

insertion of the relatively small Al3+ ion into ScF3 has similar effects to Y3+ substitution.

A second-order cubic-to-rhombohedral phase transition is also observed in Sc1−xAlxF3, the

temperature of which increases smoothly with Al3+ substitution, approaching 500 K at high

Al content. The rhombohedral-phase CTE is strongly positive, while that of the cubic phase

above ∼600 K varies from negative (x < 0.15) to approximately zero (x = 0.15) to positive

(x > 0.20) with Al3+ substitution. As in Sc1−xYxF3, cubic Sc1−xAlxF3 elastically stiffen

on heating, and Al3+ substitution causes softening at a given temperature. The slope of

the pressure-temperature phase boundary (∼0.5 K·MPa−1) is much steeper than that for

most symmetry-lowering phase transitions in perovskites.

In addition to cation disorder, a cubic ReO3-type material that features anion disorder,

TaO2F, was also studied. Local distortions away from the ideal cubic structure, associated

with the need to accommodate the different bonding requirements of the disordered O and
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F, contribute to the (previously reported [25]) occurrence of near-zero thermal expansion

rather than NTE in TaO2F. The local structure of TaO2F is poorly described by a cubic

ReO3-type model with O and F randomly distributed over the available anion sites, but a

supercell model featuring –Ta–O–Ta–O–Ta–F– chains along <1 0 0>, with different Ta–O

and Ta–F distances and O/F off-axis displacements, gives much better agreement with pair

distribution functions (PDFs) derived from X-ray total scattering data for small separa-

tions (<8 Å). Analyses of PDFs derived from variable-temperature X-ray total scattering

measurements of TaO2F (80 to 487 K), over different length scales, indicate an average

CTE close to zero, with similar contributions from the geometrically distinct Ta–O–Ta and

Ta–F–Ta links.

Based on the results presented in this thesis, the following additional studies are sug-

gested:

1. The ∼120 K region of phase co-existence observed in InF3 (Chapter 4) is unusual and

should be further examined. Unlike α-AlF3, the InF3 sample used in Chapter 4 was not

annealed prior to characterization and may not have been adequately homogeneous;

thus, the observed phase co-existence may not be intrinsic to InF3. An additional

high-temperature PXRD study of InF3 with an annealed sample may provide insight

into this question.

2. The thermal expansion behavior of additional ReO3-type MF3 should be character-

ized. The thermal expansion of InF3 is reported and that of α-AlF3 quantified for

the first time, but the CTEs of several other MF3 (for example, M = Fe, Ga, and

V) have not been reported to date. A high-temperature PXRD study of FeF3 was

attempted (not reported) but failed due to decomposition of the sample before any

phase transition was observed. With the proper samples and experimental setup, the

CTEs of these simple, ordered materials could be measured over a wide temperature

range, providing benchmarks for studies of solid solutions or other related disordered

materials.

3. Solid solutions of ScF3 with otherMF3 (besidesM = Al, Ti, and Y) could be explored,
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one of which may offer a wider range of thermal expansion control than M = Al, Ti,

and Y at near-ambient temperatures. In addition, the synthesis of these solid solutions

used in this work, especially reaction temperature, could be optimized. Solid solubility

in ScF3 solid solutions is known to be strongly temperature-dependent, so higher

solubility limits than 25 and 50% may be possible in Sc1−xYxF3 and Sc1−xAlxF3,

respectively, at higher reaction temperatures than those used herein (1273 and 1338

K).

4. One particular result from the solid solution studies that requires further exploration

is the independence of volume CTE with composition above ∼400 K in Sc1−xYxF3

(Figure 7.6). Knowledge of the entire phonon density of states for Sc1−xYxF3 and the

volume dependence of its phonon frequencies is needed. From the lattice dynamics

of Sc1−xYxF3, perhaps explored with variable-temperature/pressure inelastic neutron

scattering, the mode Grüneisen parameters of the solid solutions could be calculated.

If possible, density functional theory calculations for these disordered systems would

also provide some insight into lattice dynamics. The effort required for such studies,

however, may not be worth the outcome.

5. This study of Sc1−xMxF3 demonstrates the contribution of local-scale structural dis-

tortions (those of the size-mismatched cations) to thermal expansion. In the examples

discussed in this thesis, lowering temperature results in long-range rhombohedral dis-

tortion (i.e., a symmetry-lowering phase transition) that contributes to the existence

of positive thermal expansion. However, a structure featuring non-ordered, local-scale

structural distortions could provide the desired control over CTE but suppress the

phase transition. One such possibility based on this work is the introduction of some

amount of both Al3+ and Y3+ into the ScF3 framework (assuming cation-site disorder).

6. TaO2F displays near-zero thermal expansion rather than NTE probably due to local

distortions introduced by the different bonding requirements of O and F. The closely

related cubic ReO3-type material NbO2F displays strong positive thermal expansion

between 20 and 300 K [25]. A closer examination of the local structure of NbO2F with
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X-ray total scattering (similar to the study discussed in Chapter 9) would be useful

to explain the difference in thermal expansion behaviors of the two oxyfluorides.
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APPENDIX A

CHAPTER 5 SUPPORTING MATERIAL

Table A.1: Cubic lattice constants, unit cell volumes, and volumes normalized to 250 K,

at various temperatures, of ScF3. The lattice constants (a) were extracted during Rietveld

analysis of powder diffraction data. For the “No Varnish, He” sets, V250 was linearly extrap-

olated from surrounding values (64.771); the same is true for both “Varnish” sets (64.748

was used for both). The V/V250 are plotted in Figure 5.1. The “Neutron” lattice constants

are from ref. [35].

T (K) a (Å) V (Å3) V/V250 Data set

10 4.02398 65.158 1.0079 Neutron

60 4.02204 65.064 1.0065 Neutron

110 4.01932 64.932 1.0044 Neutron

180 4.01618 64.780 1.0021 Neutron

250 4.01339 64.645 1.0000 Neutron

6.6 4.025686(5) 65.241 1.0073 No Varnish, He (heat)

19.7 4.025338(5) 65.224 1.0070 No Varnish, He (heat)

33.75 4.024906(4) 65.203 1.0067 No Varnish, He (heat)

48.25 4.023837(4) 65.179 1.0063 No Varnish, He (heat)

62.15 4.023215(4) 65.151 1.0059 No Varnish, He (heat)

76.05 4.023215(4) 65.121 1.0054 No Varnish, He (heat)

90.1 4.022593(4) 65.091 1.0050 No Varnish, He (heat)

104 4.022058(4) 65.065 1.0046 No Varnish, He (heat)

118.05 4.021441(4) 65.035 1.0041 No Varnish, He (heat)

132.1 4.020798(4) 65.003 1.0036 No Varnish, He (heat)

Table A.1: Continued on next page

163



Table A.1: Continued from previous page

T (K) a (Å) V (Å3) V/V250 Data set

146.2 4.020154(4) 64.972 1.0031 No Varnish, He (heat)

230.2 4.016597(4) 64.800 1.0005 No Varnish, He (heat)

298 4.014483(7) 64.698 0.9989 No Varnish, He (heat)

13 4.025749(5) 65.244 1.0073 No Varnish, He (cool)

27.1 4.025237(5) 65.219 1.0069 No Varnish, He (cool)

40.95 4.024803(5) 65.198 1.0066 No Varnish, He (cool)

55 4.024294(4) 65.173 1.0062 No Varnish, He (cool)

68.95 4.023705(4) 65.145 1.0058 No Varnish, He (cool)

82.95 4.023090(4) 65.115 1.0053 No Varnish, He (cool)

96.9 4.022463(4) 65.084 1.0048 No Varnish, He (cool)

111.05 4.021793(4) 65.052 1.0044 No Varnish, He (cool)

125.05 4.021125(4) 65.019 1.0038 No Varnish, He (cool)

139.1 4.020469(4) 64.988 1.0034 No Varnish, He (cool)

6.65 4.019261(23) 64.929 1.0026 Varnish, He

7.3 4.018627(25) 64.898 1.0021 Varnish, He

10 4.018734(24) 64.903 1.0022 Varnish, He

20 4.021092(22) 65.018 1.0040 Varnish, He

30.2 4.021388(22) 65.032 1.0042 Varnish, He

39.95 4.022528(17) 65.087 1.0051 Varnish, He

50.05 4.022403(15) 65.081 1.0050 Varnish, He

59.95 4.022300(11) 65.076 1.0049 Varnish, He

69.9 4.021892(10) 65.057 1.0046 Varnish, He

80 4.021618(8) 65.043 1.0044 Varnish, He

90 4.021167(8) 65.021 1.0040 Varnish, He

100.15 4.020867(8) 65.007 1.0038 Varnish, He

109.85 4.020480(7) 64.988 1.0035 Varnish, He

Table A.1: Continued on next page
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Table A.1: Continued from previous page

T (K) a (Å) V (Å3) V/V250 Data set

120 4.020113(7) 64.970 1.0033 Varnish, He

130 4.019731(6) 64.952 1.0030 Varnish, He

139.7 4.019424(6) 64.937 1.0027 Varnish, He

149.55 4.019009(6) 64.917 1.0024 Varnish, He

100.4 4.020846(8) 65.006 1.0038 Varnish, N2

110.15 4.020504(7) 64.989 1.0035 Varnish, N2

120.05 4.020102(7) 64.970 1.0033 Varnish, N2

130.1 4.019750(6) 64.953 1.0030 Varnish, N2

140.25 4.019399(6) 64.936 1.0027 Varnish, N2

150.1 4.019059(5) 64.919 1.0025 Varnish, N2

160.1 4.018699(5) 64.902 1.0022 Varnish, N2

180.15 4.018130(4) 64.874 1.0018 Varnish, N2

200.15 4.017473(4) 64.842 1.0013 Varnish, N2

220.1 4.016796(4) 64.810 1.0008 Varnish, N2

240.15 4.016085(4) 64.775 1.0002 Varnish, N2

260.1 4.015450(4) 64.744 0.9998 Varnish, N2

280.4 4.014883(4) 64.717 0.9993 Varnish, N2

300.1 4.014321(4) 64.690 0.9989 Varnish, N2
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Figure B.1: Variable-temperature (100-500 K) powder X-ray diffraction (PXRD) data
collected for Sc1−xTixF3 in which x = 0.00 (top), 0.10 (middle), and 0.30 (bottom). The
plots in the left column show the full angular range used for Rietveld analyses, while those
on the right show a high-angle portion in which the splittings associated with the phase
transition are most apparent (where applicable). Within each plot, diffraction patterns are
arranged in order of collection from bottom to top, which followed the temperature ramp
in Figure 2.2b. Reproduced from ref. [238].
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Figure B.2: Variable-temperature (100-500 K) PXRD data collected for Sc1−xTixF3 in
which x = 0.40 (top), 0.50 (middle), and 0.60 (bottom). The plots in the left column show
the full angular range used for Rietveld analyses, while those on the right show a high-angle
portion in which the splittings associated with the phase transition are most apparent.
Within each plot, diffraction patterns are arranged in order of collection from bottom to
top, which followed the temperature ramp in Figure 2.2b. Reproduced from ref. [238].
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Figure B.3: Variable-temperature (100-500 K) PXRD data collected for Sc1−xTixF3 in
which x = 0.70 (top), 0.85 (middle), and 1.00 (bottom). The plots in the left column show
the full angular range used for Rietveld analyses, while those on the right show a high-angle
portion in which the splittings associated with the phase transition are most apparent.
Within each plot, diffraction patterns are arranged in order of collection from bottom to
top, which followed the temperature ramp in Figure 2.2b. Reproduced from ref. [238].
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Figure B.4: The cubic-to-rhombohedral phase transition temperature for each Sc1−xTixF3

sample was estimated by monitoring the intensity of the rhombohedral (2 1 0) Bragg re-
flection (d ≈ 2.3-2.4 Å), which is only present in the rhombohedral structure (low temper-
atures). A pseudo-Voigt profile with linear background was fit to the synchrotron PXRD
data using the program Fityk [273]. Straight lines were fit to the peak intensity versus tem-
perature curves (shown here) at both high temperatures (where there was some residual
intensity, perhaps associated with diffuse scattering) and low temperatures (just before the
phase transition); the intersection of these lines was considered the transition temperature.
The values estimated for heating and cooling curves differed somewhat, so the average is
reported here. In this figure, the phase transition temperature of each sample is indicated
by a black dashed vertical line: (a) x = 0.30, (b) x = 0.40, (c) x = 0.50, (d) x = 0.60,
(e) x = 0.70, (f) x = 0.85, (g) x = 1.00. Data for x = 0.00 and 0.10 are not included, as
these samples remain cubic between 100 and 500 K. In each plot, red points indicate data
collected on heating, while blue points indicate data collected on cooling. Reproduced from
ref. [238].
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Figure B.5: Temperature dependence of V/Z for Sc1−xTixF3. These volumes were ex-
tracted in Rietveld analyses of the variable-temperature PXRD data and then corrected to
account for calibration differences between experiments conducted during different beam
times. Phase transition temperature estimates (see Figure B.4) are indicated by black
vertical lines. Reproduced from ref. [238].
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Figure B.6: Temperature dependence of unit cell parameters for Sc1−xTixF3: (a), (b)
hexagonal lattice constants aH and cH , both normalized to 400 K, (c) primitive rhombo-
hedral unit cell angle αR, (d) octahedral tilt angle ω, and (e) fractional x-coordinate of F
(rhombohedral cell). Primitive rhombohedral cell constants aR and αR were determined by
Rietveld analysis of the variable-temperature PXRD data and converted to hexagonal con-
stants using Equations 4.1 and 4.2. Octahedral tilt angle was computed using cosω = aH

cH

√
6.

The expected values for αR and ω in the cubic phase are 60 and 0◦, respectively. The rhom-
bohedral model used in the Rietveld analyses is over-parameterized, which in combination
with imperfections in the data, leads to small discrepancies between the observed and ex-
pected values of αR and ω. Samples that are cubic between 100 and 500 K (x = 0.00 and
0.10) are not shown here, and x = 0.30 is excluded because its phase transition occurs just
above 100 K. Reproduced from ref. [238].
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APPENDIX C

CHAPTER 7 SUPPORTING MATERIAL

Table C.1: Lattice constants and unit cell volumes of ScF3 at various temperatures

and pressures. These values were determined by Rietveld analyses of high-pressure, high-

temperature data and are presented here without scaling.

T (K) P (GPa) a (Å) esd(a) V (Å3) esd(V )

298 0.000 4.011752 0.000031 64.566 0.001

298 0.069 4.010346 0.000030 64.498 0.001

298 0.138 4.008869 0.000032 64.427 0.002

298 0.207 4.007273 0.000031 64.350 0.001

298 0.270 4.005854 0.000033 64.281 0.002

298 0.242 4.006557 0.000032 64.315 0.002

298 0.173 4.008102 0.000032 64.390 0.002

298 0.104 4.009581 0.000032 64.461 0.002

298 0.035 4.011175 0.000030 64.538 0.001

343 0.069 4.009232 0.000032 64.444 0.002

343 0.138 4.007714 0.000032 64.371 0.002

343 0.207 4.006182 0.000034 64.297 0.002

343 0.271 4.004741 0.000039 64.228 0.002

343 0.240 4.005401 0.000040 64.260 0.002

343 0.173 4.006985 0.000040 64.336 0.002

343 0.103 4.008482 0.000038 64.408 0.002

343 0.035 4.010003 0.000036 64.481 0.002

388 0.069 4.008175 0.000037 64.393 0.002

Table C.1: Continued on next page
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Table C.1: Continued from previous page

T (K) P (GPa) a (Å) esd(a) V (Å3) esd(V )

388 0.138 4.006680 0.000039 64.321 0.002

388 0.207 4.005127 0.000041 64.246 0.002

388 0.270 4.003715 0.000054 64.178 0.003

388 0.240 4.004346 0.000053 64.209 0.003

388 0.172 4.005871 0.000049 64.282 0.002

388 0.104 4.007429 0.000043 64.357 0.002

388 0.035 4.008924 0.000038 64.429 0.002

433 0.069 4.007224 0.000041 64.347 0.002

433 0.138 4.005709 0.000046 64.274 0.002

433 0.207 4.004158 0.000046 64.200 0.002

433 0.268 4.002815 0.000056 64.135 0.003

433 0.239 4.003423 0.000055 64.164 0.003

433 0.172 4.004923 0.000053 64.237 0.003

433 0.104 4.006423 0.000047 64.309 0.002

433 0.035 4.007951 0.000045 64.382 0.002

478 0.069 4.006355 0.000047 64.306 0.002

478 0.138 4.004850 0.000048 64.233 0.002

478 0.207 4.003272 0.000052 64.157 0.003

478 0.241 4.002535 0.000055 64.122 0.003

478 0.172 4.004075 0.000054 64.196 0.003

478 0.103 4.005599 0.000048 64.269 0.002

478 0.034 4.007150 0.000046 64.344 0.002

523 0.069 4.005605 0.000046 64.269 0.002

523 0.138 4.004069 0.000049 64.196 0.002

523 0.207 4.002519 0.000054 64.121 0.003

523 0.241 4.001874 0.000056 64.090 0.003

Table C.1: Continued on next page
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Table C.1: Continued from previous page

T (K) P (GPa) a (Å) esd(a) V (Å3) esd(V )

523 0.172 4.003330 0.000052 64.160 0.003

523 0.104 4.004869 0.000050 64.234 0.002

523 0.035 4.006435 0.000046 64.309 0.002

Table C.2: Lattice constants and unit cell volumes of Sc0.95Y0.05F3 at various temperatures

and pressures. These values were determined by Rietveld analyses of high-pressure, high-

temperature data and are presented here without scaling.

T (K) P (GPa) a (Å) esd(a) V (Å3) esd(V )

298 0.000 4.011346 0.000067 64.546 0.003

298 0.069 4.009468 0.000062 64.456 0.003

298 0.138 4.007596 0.000066 64.365 0.003

298 0.207 4.005882 0.000095 64.283 0.005

298 0.276 4.003748 0.000079 64.180 0.004

298 0.241 4.004792 0.000067 64.230 0.003

298 0.172 4.006886 0.000065 64.331 0.003

298 0.103 4.008821 0.000064 64.424 0.003

298 0.035 4.010351 0.000064 64.498 0.003

343 0.069 4.008599 0.000056 64.414 0.003

343 0.138 4.006867 0.000071 64.330 0.003

343 0.207 4.004883 0.000072 64.235 0.003

343 0.276 4.003031 0.000078 64.146 0.004

343 0.241 4.003883 0.000082 64.187 0.004

343 0.172 4.005874 0.000065 64.282 0.003

343 0.103 4.007658 0.000061 64.368 0.003

343 0.035 4.009446 0.000059 64.454 0.003

Table C.2: Continued on next page
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Table C.2: Continued from previous page

T (K) P (GPa) a (Å) esd(a) V (Å3) esd(V )

388 0.069 4.007721 0.000057 64.371 0.003

388 0.138 4.005941 0.000065 64.286 0.003

388 0.207 4.004175 0.000075 64.201 0.004

388 0.276 4.002416 0.000078 64.116 0.004

388 0.241 4.003325 0.000067 64.160 0.003

388 0.172 4.004996 0.000065 64.240 0.003

388 0.103 4.006724 0.000056 64.323 0.003

388 0.035 4.008421 0.000058 64.405 0.003

433 0.069 4.006787 0.000055 64.326 0.003

433 0.138 4.005127 0.000065 64.246 0.003

433 0.207 4.003427 0.000067 64.165 0.003

433 0.276 4.001772 0.000078 64.085 0.004

433 0.241 4.002672 0.000071 64.128 0.003

433 0.172 4.004499 0.000064 64.216 0.003

433 0.103 4.005958 0.000064 64.286 0.003

433 0.035 4.007754 0.000049 64.373 0.002

478 0.069 4.006091 0.000049 64.293 0.002

478 0.138 4.004576 0.000054 64.220 0.003

478 0.207 4.002871 0.000062 64.138 0.003

478 0.276 4.000946 0.000069 64.045 0.003

478 0.241 4.001986 0.000079 64.095 0.004

478 0.172 4.003626 0.000061 64.174 0.003

478 0.103 4.005335 0.000055 64.256 0.003

478 0.034 4.007060 0.000040 64.339 0.002

523 0.069 4.005407 0.000049 64.260 0.002

523 0.138 4.003836 0.000056 64.184 0.003

Table C.2: Continued on next page
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Table C.2: Continued from previous page

T (K) P (GPa) a (Å) esd(a) V (Å3) esd(V )

523 0.207 4.002047 0.000066 64.098 0.003

523 0.241 4.001331 0.000067 64.064 0.003

523 0.172 4.002943 0.000059 64.141 0.003

523 0.103 4.004661 0.000052 64.224 0.003

523 0.035 4.006356 0.000047 64.306 0.002

Table C.3: Lattice constants and unit cell volumes of Sc0.90Y0.10F3 at various temperatures

and pressures. These values were determined by Rietveld analyses of high-pressure, high-

temperature data and are presented here without scaling.

T (K) P (GPa) a (Å) esd(a) V (Å3) esd(V )

298 0.000 4.038371 0.000044 65.860 0.002

298 0.069 4.036293 0.000037 65.758 0.002

298 0.138 4.034289 0.000045 65.660 0.002

298 0.207 4.031917 0.000039 65.544 0.002

298 0.275 4.029396 0.000037 65.421 0.002

298 0.241 4.030705 0.000032 65.485 0.002

298 0.173 4.032951 0.000031 65.595 0.002

298 0.104 4.035282 0.000034 65.709 0.002

298 0.035 4.037446 0.000036 65.814 0.002

343 0.069 4.035586 0.000035 65.723 0.002

343 0.138 4.033648 0.000037 65.629 0.002

343 0.207 4.031591 0.000034 65.528 0.002

343 0.275 4.029279 0.000035 65.416 0.002

343 0.241 4.030679 0.000034 65.484 0.002

343 0.172 4.032490 0.000034 65.572 0.002

Table C.3: Continued on next page
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Table C.3: Continued from previous page

T (K) P (GPa) a (Å) esd(a) V (Å3) esd(V )

343 0.103 4.034559 0.000038 65.673 0.002

343 0.035 4.036598 0.000035 65.773 0.002

388 0.069 4.034975 0.000037 65.694 0.002

388 0.138 4.033135 0.000040 65.604 0.002

388 0.206 4.031110 0.000041 65.505 0.002

388 0.275 4.028932 0.000034 65.399 0.002

388 0.241 4.030127 0.000034 65.457 0.002

388 0.173 4.032149 0.000039 65.556 0.002

388 0.104 4.034086 0.000037 65.650 0.002

388 0.035 4.035872 0.000037 65.737 0.002

433 0.069 4.034262 0.000036 65.659 0.002

433 0.138 4.032314 0.000039 65.564 0.002

433 0.207 4.030336 0.000035 65.467 0.002

433 0.275 4.028502 0.000035 65.378 0.002

433 0.241 4.029333 0.000040 65.418 0.002

433 0.172 4.031507 0.000038 65.524 0.002

433 0.104 4.033264 0.000041 65.610 0.002

433 0.035 4.035086 0.000036 65.699 0.002

478 0.069 4.033381 0.000040 65.616 0.002

478 0.138 4.031559 0.000040 65.527 0.002

478 0.207 4.029757 0.000041 65.439 0.002

478 0.242 4.028748 0.000038 65.390 0.002

478 0.172 4.030767 0.000043 65.488 0.002

478 0.104 4.032623 0.000037 65.579 0.002

478 0.035 4.034295 0.000039 65.660 0.002

523 0.069 4.032836 0.000041 65.589 0.002

Table C.3: Continued on next page
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Table C.3: Continued from previous page

T (K) P (GPa) a (Å) esd(a) V (Å3) esd(V )

523 0.138 4.030993 0.000039 65.499 0.002

523 0.207 4.029324 0.000038 65.418 0.002

523 0.241 4.028403 0.000040 65.373 0.002

523 0.172 4.030113 0.000038 65.456 0.002

523 0.104 4.031859 0.000040 65.541 0.002

523 0.035 4.033791 0.000041 65.636 0.002

Table C.4: Lattice constants and unit cell volumes of Sc0.80Y0.20F3 at various temperatures

and pressures. These values were determined by Rietveld analyses of high-pressure, high-

temperature data and are presented here without scaling.

T (K) P (GPa) a (Å) esd(a) V (Å3) esd(V )

298 0.000 4.051765 0.000039 66.516 0.002

298 0.069 4.049467 0.000029 66.404 0.001

298 0.138 4.046966 0.000037 66.281 0.002

298 0.207 4.044309 0.000040 66.150 0.002

298 0.276 4.040680 0.000039 65.973 0.002

298 0.241 4.042571 0.000023 66.065 0.001

298 0.172 4.045513 0.000026 66.210 0.001

298 0.104 4.048393 0.000038 66.351 0.002

298 0.035 4.050605 0.000033 66.460 0.002

343 0.069 4.048948 0.000050 66.378 0.002

343 0.138 4.046877 0.000036 66.277 0.002

343 0.207 4.044380 0.000039 66.154 0.002

343 0.276 4.041732 0.000040 66.024 0.002

343 0.241 4.042823 0.000031 66.078 0.002

Table C.4: Continued on next page
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Table C.4: Continued from previous page

T (K) P (GPa) a (Å) esd(a) V (Å3) esd(V )

343 0.172 4.045508 0.000031 66.209 0.002

343 0.104 4.048109 0.000046 66.337 0.002

343 0.035 4.050087 0.000040 66.434 0.002

388 0.069 4.048696 0.000032 66.366 0.002

388 0.138 4.046429 0.000045 66.255 0.002

388 0.207 4.044262 0.000044 66.148 0.002

388 0.276 4.041673 0.000038 66.021 0.002

388 0.241 4.043019 0.000047 66.087 0.002

388 0.172 4.045338 0.000033 66.201 0.002

388 0.103 4.047669 0.000033 66.316 0.002

388 0.035 4.049731 0.000042 66.417 0.002

433 0.069 4.048097 0.000039 66.337 0.002

433 0.138 4.045856 0.000035 66.226 0.002

433 0.207 4.043851 0.000043 66.128 0.002

433 0.276 4.041388 0.000039 66.007 0.002

433 0.241 4.042775 0.000037 66.075 0.002

433 0.172 4.044714 0.000033 66.170 0.002

433 0.104 4.047087 0.000032 66.287 0.002

433 0.035 4.049067 0.000037 66.384 0.002

478 0.069 4.047474 0.000039 66.306 0.002

478 0.138 4.045438 0.000029 66.206 0.001

478 0.207 4.043234 0.000035 66.098 0.002

478 0.241 4.042330 0.000036 66.053 0.002

478 0.172 4.044425 0.000040 66.156 0.002

478 0.103 4.046603 0.000037 66.263 0.002

478 0.035 4.048363 0.000041 66.350 0.002

Table C.4: Continued on next page
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Table C.4: Continued from previous page

T (K) P (GPa) a (Å) esd(a) V (Å3) esd(V )

523 0.069 4.047033 0.000039 66.284 0.002

523 0.138 4.045047 0.000038 66.187 0.002

523 0.207 4.042686 0.000042 66.071 0.002

523 0.241 4.041837 0.000041 66.029 0.002

523 0.172 4.044052 0.000044 66.138 0.002

523 0.104 4.045967 0.000036 66.232 0.002

523 0.035 4.047770 0.000045 66.320 0.002

Table C.5: Lattice constants and unit cell volumes of Sc0.75Y0.25F3 at various temperatures

and pressures. These values were determined by Rietveld analyses of high-pressure, high-

temperature data and are presented here without scaling.

T (K) P (GPa) a (Å) esd(a) V (Å3) esd(V )

298 0.000 4.065204 0.000039 67.181 0.002

298 0.069 4.062762 0.000040 67.060 0.002

298 0.138 4.060169 0.000040 66.932 0.002

298 0.207 4.057369 0.000040 66.793 0.002

298 0.276 4.054030 0.000042 66.629 0.002

298 0.241 4.055717 0.000039 66.712 0.002

298 0.172 4.058764 0.000039 66.862 0.002

298 0.103 4.061700 0.000044 67.008 0.002

298 0.035 4.064203 0.000044 67.131 0.002

343 0.069 4.062583 0.000046 67.051 0.002

343 0.138 4.060236 0.000046 66.935 0.002

343 0.207 4.057759 0.000048 66.813 0.002

343 0.276 4.054961 0.000047 66.675 0.002

Table C.5: Continued on next page
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Table C.5: Continued from previous page

T (K) P (GPa) a (Å) esd(a) V (Å3) esd(V )

343 0.241 4.056363 0.000042 66.744 0.002

343 0.172 4.058910 0.000040 66.870 0.002

343 0.103 4.061455 0.000042 66.995 0.002

343 0.035 4.063722 0.000053 67.108 0.003

388 0.069 4.062094 0.000055 67.027 0.003

388 0.138 4.059903 0.000046 66.919 0.002

388 0.207 4.057589 0.000041 66.804 0.002

388 0.276 4.054913 0.000040 66.672 0.002

388 0.241 4.056258 0.000039 66.739 0.002

388 0.172 4.058672 0.000047 66.858 0.002

388 0.103 4.060901 0.000047 66.968 0.002

388 0.035 4.063115 0.000059 67.078 0.003

433 0.069 4.061485 0.000064 66.997 0.003

433 0.138 4.059230 0.000053 66.885 0.003

433 0.207 4.057035 0.000045 66.777 0.002

433 0.276 4.054567 0.000042 66.655 0.002

433 0.241 4.055865 0.000044 66.719 0.002

433 0.172 4.058198 0.000045 66.834 0.002

433 0.103 4.060357 0.000055 66.941 0.003

433 0.035 4.062582 0.000066 67.051 0.003

478 0.069 4.060823 0.000076 66.964 0.004

478 0.138 4.058753 0.000053 66.862 0.003

478 0.207 4.056478 0.000044 66.749 0.002

478 0.241 4.055362 0.000044 66.694 0.002

478 0.172 4.057676 0.000047 66.809 0.002

478 0.103 4.059966 0.000061 66.922 0.003
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Table C.5: Continued from previous page

T (K) P (GPa) a (Å) esd(a) V (Å3) esd(V )

478 0.035 4.061946 0.000072 67.020 0.004

523 0.069 4.060289 0.000083 66.938 0.004

523 0.138 4.058182 0.000060 66.834 0.003

523 0.207 4.056064 0.000052 66.729 0.003

523 0.241 4.054840 0.000046 66.669 0.002

523 0.172 4.057005 0.000049 66.775 0.002

523 0.103 4.059142 0.000060 66.881 0.003

523 0.035 4.061242 0.000080 66.985 0.004

Table C.6: Experimental heat capacity data for ScF3, listed in order of collection (columns

wrap across multiple pages). Sample mass was 15.46 mg. Only data points that met two re-

liability criteria (≥90% thermal coupling constant between sample and platform and ≥40%

sample contribution to the total heat capacity) are included. Units of CP are J·K−1·mol−1.

T (K) CP T (K) CP T (K) CP T (K) CP

303.35 82.806 86.29 36.246 23.91 4.082 6.62 0.155

302.98 82.421 86.28 36.288 23.89 4.036 6.61 0.154

303.01 82.417 86.28 36.264 23.89 4.025 6.61 0.155

282.68 80.628 77.57 32.478 21.47 3.129 5.94 0.113

282.84 80.853 77.56 32.517 21.47 3.106 5.94 0.113

282.84 80.804 77.56 32.481 21.46 3.119 5.95 0.113

262.59 78.323 69.70 28.524 19.30 2.395 5.33 0.085

262.70 78.490 69.69 28.506 19.28 2.389 5.33 0.084

262.70 78.512 69.69 28.494 19.28 2.393 5.33 0.084

242.43 75.863 62.61 24.941 17.34 1.836 4.79 0.063

242.52 76.080 62.60 24.908 17.32 1.825 4.79 0.063
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T (K) CP T (K) CP T (K) CP T (K) CP

242.51 75.941 62.60 24.899 17.32 1.825 4.79 0.062

222.29 73.158 56.26 21.481 15.58 1.401 4.30 0.046

222.37 73.276 56.25 21.448 15.57 1.393 4.30 0.045

222.36 73.235 56.25 21.445 15.57 1.394 4.30 0.046

202.13 69.510 50.54 18.150 14.01 1.066 3.86 0.034

202.18 69.563 50.53 18.119 13.99 1.063 3.86 0.032

202.18 69.506 50.53 18.111 13.99 1.060 3.86 0.033

181.94 65.727 45.41 15.237 12.58 0.811 3.47 0.024

181.98 65.753 45.40 15.210 12.57 0.806 3.47 0.024

181.98 65.660 45.40 15.194 12.57 0.808 3.47 0.024

161.75 61.112 40.81 12.563 11.30 0.616 3.12 0.017

161.76 61.098 40.80 12.535 11.30 0.613 3.11 0.017

161.76 61.205 40.80 12.534 11.29 0.614 3.11 0.017

141.55 55.828 36.67 10.269 10.15 0.469 2.80 0.012

141.55 55.868 36.66 10.247 10.15 0.467 2.80 0.012

141.55 55.869 36.66 10.244 10.15 0.466 2.80 0.012

121.36 49.661 32.95 8.282 9.11 0.354 2.52 0.008

121.35 49.699 32.93 8.262 9.11 0.353 2.51 0.008

121.35 49.735 32.94 8.259 9.11 0.354 2.51 0.008

101.18 42.518 29.61 6.577 8.19 0.270 2.26 0.006

101.17 42.577 29.59 6.569 8.19 0.269 2.26 0.006

101.16 42.454 29.59 6.574 8.19 0.269 2.26 0.006

96.13 40.190 26.60 5.168 7.35 0.202 2.03 0.004

96.12 40.191 26.59 5.183 7.35 0.202 2.03 0.004

96.12 40.187 26.59 5.180 7.35 0.201 2.03 0.004
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Table C.7: Experimental heat capacity data for ScF3, listed in order of collection (columns

wrap across multiple pages). Sample mass was 6.41 mg. Only data points that met two re-

liability criteria (≥90% thermal coupling constant between sample and platform and ≥40%

sample contribution to the total heat capacity) are included. Units of CP are J·K−1·mol−1.

T (K) CP T (K) CP T (K) CP T (K) CP

222.34 72.616 62.61 24.828 19.27 2.374 5.93 0.108

222.42 72.614 62.58 24.799 19.26 2.369 5.93 0.106

222.42 72.737 62.59 24.775 19.26 2.368 5.93 0.105

202.16 69.073 56.25 21.377 17.32 1.817 5.33 0.079

202.21 69.047 56.23 21.361 17.31 1.811 5.32 0.079

202.21 69.145 56.23 21.361 17.31 1.811 5.33 0.080

181.97 65.322 50.53 18.067 15.57 1.382 4.79 0.059

182.00 65.313 50.51 18.037 15.56 1.380 4.78 0.060

181.99 65.368 50.51 18.028 15.56 1.379 4.79 0.059

161.78 60.781 45.40 15.165 13.99 1.048 4.30 0.043

161.79 60.867 45.38 15.131 13.98 1.046 4.30 0.043

161.78 60.866 45.38 15.138 13.98 1.046 4.30 0.043

141.60 55.407 40.79 12.500 12.57 0.795 3.86 0.031

141.57 55.583 40.77 12.477 12.56 0.793 3.86 0.031

141.57 55.543 40.77 12.480 12.56 0.793 3.86 0.031

121.41 49.547 36.65 10.192 11.28 0.601 3.47 0.023

121.36 49.538 36.63 10.202 11.28 0.599 3.47 0.022

121.35 49.535 36.64 10.186 11.28 0.600 3.47 0.022

101.22 42.322 32.93 8.199 10.13 0.453 3.12 0.016

101.16 42.272 32.91 8.223 10.13 0.450 3.11 0.016

101.16 42.357 32.91 8.220 10.13 0.451 3.11 0.017

96.09 40.258 29.59 6.426 9.10 0.344 2.80 0.012
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T (K) CP T (K) CP T (K) CP T (K) CP

96.10 40.232 29.56 6.536 9.10 0.341 2.79 0.012

96.10 40.252 29.57 6.537 9.10 0.341 2.80 0.012

86.31 36.143 26.59 5.170 8.18 0.259 2.52 0.008

86.27 36.187 26.57 5.134 8.17 0.257 2.51 0.008

86.27 36.383 26.57 5.143 8.18 0.257 2.51 0.008

77.58 32.333 23.88 4.019 7.35 0.193 2.26 0.006

77.55 32.277 23.87 3.981 7.34 0.192 2.26 0.006

77.56 32.324 23.87 4.016 7.35 0.193 2.26 0.006

69.70 28.384 21.46 3.101 6.61 0.146 2.03 0.004

69.68 28.365 21.44 3.099 6.60 0.146 2.03 0.004

69.68 28.384 21.45 3.089 6.60 0.146 2.03 0.004

Table C.8: Experimental heat capacity data for ScF3, listed in order of collection (columns

wrap across multiple pages). Sample mass was 10.30 mg. Only data points that met two re-

liability criteria (≥90% thermal coupling constant between sample and platform and ≥40%

sample contribution to the total heat capacity) are included. Units of CP are mJ·K−1·mol−1.

T (K) CP T (K) CP T (K) CP T (K) CP

10.09 455.91 4.28 44.05 1.81 2.53 0.78 0.23

10.07 453.95 4.28 43.84 1.81 2.52 0.78 0.23

10.07 454.43 4.27 43.92 1.81 2.50 0.78 0.22

9.26 363.59 3.93 34.10 1.67 1.92 0.72 0.19

9.25 363.04 3.93 34.00 1.67 1.90 0.72 0.19

9.24 363.49 3.93 33.94 1.67 1.91 0.71 0.19

8.50 292.81 3.60 25.81 1.53 1.44 0.66 0.17

8.49 291.46 3.60 25.70 1.53 1.43 0.66 0.17
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T (K) CP T (K) CP T (K) CP T (K) CP

8.49 292.65 3.60 25.73 1.53 1.42 0.66 0.17

7.79 234.36 3.31 19.82 1.41 1.09 0.60 0.15

7.78 234.06 3.31 19.79 1.41 1.07 0.60 0.14

7.79 234.38 3.31 19.67 1.41 1.08 0.60 0.15

7.14 187.07 3.04 15.02 1.29 0.83 0.56 0.14

7.14 186.66 3.04 14.92 1.29 0.83 0.56 0.14

7.14 186.92 3.04 14.86 1.29 0.82 0.56 0.13

6.57 148.49 2.79 11.22 1.19 0.64 0.51 0.12

6.56 148.03 2.79 11.18 1.19 0.64 0.51 0.11

6.56 147.87 2.79 11.19 1.19 0.64 0.51 0.12

6.03 118.06 2.56 8.27 1.09 0.50 0.47 0.11

6.02 117.94 2.56 8.17 1.09 0.50 0.47 0.11

6.02 118.05 2.56 8.20 1.09 0.50 0.47 0.11

5.53 92.94 2.35 6.25 1.00 0.40 0.44 0.10

5.53 92.74 2.35 6.18 1.00 0.40 0.44 0.09

5.53 93.03 2.35 6.26 1.00 0.40 0.44 0.10

5.08 73.16 2.14 4.61 0.92 0.33 0.41 0.08

5.07 72.78 2.15 4.62 0.92 0.32 0.41 0.09

5.07 72.66 2.15 4.64 0.92 0.33 0.41 0.09

4.66 56.83 1.97 3.36 0.85 0.26 0.38 0.09

4.66 56.57 1.97 3.39 0.85 0.27 0.38 0.09

4.66 56.65 1.97 3.41 0.85 0.27 0.38 0.09
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Table C.9: Experimental heat capacity data for ScF3, listed in order of collection (columns

wrap across multiple pages). Sample mass was 8.136 mg. Only data points that met two re-

liability criteria (≥90% thermal coupling constant between sample and platform and ≥40%

sample contribution to the total heat capacity) are included. Units of CP are mJ·K−1·mol−1.

T (K) CP T (K) CP T (K) CP T (K) CP

302.20 82013.24 4.67 56.51 1.97 3.23 0.85 0.28

302.27 82053.52 4.66 56.33 1.97 3.23 0.85 0.27

302.30 81869.41 4.66 56.35 1.97 3.24 0.85 0.30

10.09 457.63 4.28 43.49 1.81 2.41 0.78 0.24

10.07 456.60 4.28 43.43 1.81 2.40 0.78 0.24

10.07 455.81 4.28 43.33 1.81 2.41 0.78 0.25

9.26 364.64 3.93 33.68 1.67 1.84 0.72 0.20

9.24 364.43 3.93 33.45 1.67 1.83 0.72 0.22

9.24 364.03 3.93 33.44 1.67 1.78 0.66 0.18

8.49 292.56 3.59 25.13 1.53 1.38 0.66 0.17

8.48 292.18 3.59 25.11 1.53 1.37 0.66 0.18

8.48 291.81 3.60 25.14 1.53 1.34 0.60 0.16

7.80 234.27 3.32 19.42 1.41 1.05 0.60 0.13

7.78 234.42 3.31 19.23 1.41 1.04 0.60 0.15

7.78 234.42 3.31 19.20 1.41 1.06 0.56 0.17

7.15 187.64 3.04 14.56 1.29 0.80 0.56 0.16

7.14 187.25 3.04 14.46 1.29 0.87 0.51 0.14

7.14 187.67 3.04 14.45 1.29 0.81 0.51 0.13

6.57 148.21 2.79 10.85 1.19 0.69 0.51 0.14

6.56 147.65 2.79 10.74 1.19 0.62 0.47 0.12

6.55 147.69 2.79 10.80 1.19 0.60 0.47 0.11

6.55 147.96 2.56 7.91 1.09 0.54 0.47 0.12

Table C.9: Continued on next page

188



Table C.9: Continued from previous page

T (K) CP T (K) CP T (K) CP T (K) CP

6.56 147.99 2.56 7.86 1.09 0.52 0.44 0.10

6.56 148.24 2.56 7.84 1.09 0.49 0.44 0.11

5.54 92.34 2.35 5.97 1.00 0.41 0.40 0.08

5.52 92.24 2.35 5.93 1.00 0.42 0.40 0.09

5.52 92.29 2.35 5.96 1.00 0.42 0.40 0.10

5.08 72.69 2.15 4.43 0.92 0.35 0.38 0.10

5.08 72.61 2.15 4.39 0.92 0.34 0.38 0.10

5.08 72.46 2.15 4.38 0.92 0.35 0.38 0.10

Table C.10: Experimental heat capacity data for ScF3, listed in order of collection. Sample

mass was 8.62 mg. Only data points that met two reliability criteria (≥90% thermal coupling

constant between sample and platform and ≥40% sample contribution to the total heat

capacity) are included.

T (K) CP (J·K−1·mol−1)

279.29 79.616

279.00 79.456

279.01 79.398

295.61 80.640

295.63 80.431

295.62 80.384

312.14 81.615

312.16 81.436

312.15 81.415

329.06 83.359

328.62 83.311
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Table C.10: Continued from previous page

T (K) CP (J·K−1·mol−1)

328.65 83.262

345.04 84.306

345.04 84.099

345.04 83.862

Table C.11: Experimental heat capacity data for ScF3, listed in order of collection. Sample

mass was 12.78 mg. Only data points that met two reliability criteria (≥90% thermal

coupling constant between sample and platform and ≥40% sample contribution to the total

heat capacity) are included.

T (K) CP (J·K−1·mol−1)

278.75 79.087

278.38 78.936

278.39 78.859

301.62 80.588

301.65 80.457

301.64 80.326

324.89 81.951

324.91 81.842

324.90 81.837

347.49 83.120

347.52 82.730

347.51 82.982

369.34 84.964

369.48 84.476

369.45 84.613
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T (K) CP (J·K−1·mol−1)

392.44 86.112

392.47 85.806

392.43 85.849

Table C.12: Experimental heat capacity data for Sc0.95Y0.05F3, listed in order of collection

(columns wrap across multiple pages). Sample mass was 13.86 mg. Only data points that

met two reliability criteria (≥90% thermal coupling constant between sample and platform

and ≥40% sample contribution to the total heat capacity) are included. Units of CP are

J·K−1·mol−1.

T (K) CP T (K) CP T (K) CP T (K) CP

303.32 82.437 171.45 64.013 151.69 59.394 36.69 10.457

302.87 82.314 171.48 63.982 151.63 59.476 36.67 10.441

302.88 82.399 171.48 64.034 151.64 59.429 36.67 10.437

287.00 81.564 169.64 63.524 126.39 52.131 32.96 8.408

287.14 81.647 169.68 63.546 126.40 52.189 32.95 8.386

287.14 81.620 169.67 63.608 126.40 52.145 32.94 8.387

271.30 79.389 167.84 63.151 101.18 43.317 29.62 6.675

271.41 79.453 167.86 63.201 101.17 43.253 29.61 6.653

271.42 79.427 167.87 63.191 101.16 43.308 29.61 6.649

255.57 77.936 166.03 62.752 96.13 41.000 26.62 5.214

255.67 78.049 166.06 62.822 96.13 41.027 26.60 5.208

255.67 77.949 166.07 62.742 96.13 41.080 26.61 5.206

239.82 75.915 164.23 62.333 86.33 37.006 23.90 4.024

239.92 75.973 164.26 62.385 86.31 36.962 23.90 4.000

239.91 75.902 164.25 62.397 86.31 36.972 23.90 4.004
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T (K) CP T (K) CP T (K) CP T (K) CP

224.11 73.919 162.43 61.977 77.60 33.194 21.48 3.086

224.19 74.064 162.46 61.976 77.57 33.237 21.46 3.056

224.19 74.014 162.45 62.019 77.57 33.227 21.48 3.055

208.38 70.984 160.63 61.487 69.74 29.159 19.30 2.299

208.44 71.038 160.65 61.535 69.71 29.139 19.29 2.292

208.44 71.117 160.65 61.564 69.71 29.140 19.28 2.285

192.62 68.426 158.82 61.160 62.64 25.482 17.34 1.701

192.67 68.483 158.85 61.100 62.61 25.454 17.33 1.696

192.66 68.555 158.85 61.120 62.61 25.462 17.33 1.695

176.85 65.084 157.02 60.775 56.30 21.857 15.58 1.247

176.89 65.186 157.05 60.771 56.26 21.879 15.57 1.243

176.89 65.168 157.04 60.812 56.26 21.886 15.57 1.242

176.98 65.216 155.21 60.365 50.59 18.503 14.00 0.904

176.89 65.156 155.24 60.375 50.55 18.515 13.99 0.900

176.88 65.219 155.24 60.300 50.55 18.518 13.99 0.901

175.05 64.733 153.42 59.835 45.45 15.500 12.58 0.649

175.08 64.848 153.44 59.869 45.42 15.489 12.58 0.647

175.09 64.856 153.44 59.909 45.42 15.499 12.58 0.646

173.25 64.398 151.61 59.372 40.84 12.797 11.30 0.460

173.29 64.367 151.64 59.452 40.81 12.774 11.30 0.458

173.28 64.409 151.64 59.416 40.81 12.781 11.30 0.458
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Table C.13: Experimental heat capacity data for Sc0.95Y0.05F3, listed in order of collection.

Sample mass was 8.58 mg. Only data points that met two reliability criteria (≥90% thermal

coupling constant between sample and platform and ≥40% sample contribution to the total

heat capacity) are included. Units of CP are mJ·K−1·mol−1.

T (K) CP T (K) CP T (K) CP

301.83 82900.71 8.49 173.64 6.56 71.71

302.02 83182.42 8.47 173.22 6.55 70.76

302.02 83369.99 8.47 172.66 6.54 70.44

10.09 312.34 7.78 129.76 6.01 52.86

10.07 311.16 7.77 128.96 6.00 52.50

10.06 311.04 7.77 128.68 6.00 52.49

9.25 233.24 7.14 97.07 5.54 40.17

9.23 231.75 7.13 96.30 5.53 39.40

9.23 231.42 7.13 96.53 5.52 39.08

Table C.14: Experimental heat capacity data for Sc0.90Y0.10F3, listed in order of collection

(columns wrap across multiple pages). Sample mass was 9.58 mg. Only data points that

met two reliability criteria (≥90% thermal coupling constant between sample and platform

and ≥40% sample contribution to the total heat capacity) are included. Units of CP are

J·K−1·mol−1.

T (K) CP T (K) CP T (K) CP T (K) CP

303.23 81.350 150.89 59.427 77.54 33.083 17.31 1.678

302.90 81.410 148.71 58.788 77.54 33.134 17.31 1.672

302.91 81.421 148.73 58.823 69.68 29.068 17.31 1.670

283.06 80.583 148.73 58.836 69.69 29.001 15.55 1.216

282.74 79.854 146.55 58.154 69.69 29.002 15.55 1.212
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T (K) CP T (K) CP T (K) CP T (K) CP

282.74 79.706 146.57 58.233 62.58 25.448 15.55 1.210

262.51 77.692 146.56 58.184 62.59 25.393 13.97 0.869

262.60 77.850 144.38 57.652 62.59 25.400 13.97 0.868

262.60 77.851 144.41 57.551 56.24 21.875 13.97 0.866

242.37 75.674 144.40 57.597 56.24 21.842 12.55 0.616

242.43 75.714 142.22 56.845 56.23 21.849 12.55 0.613

242.43 75.604 142.24 56.867 50.53 18.535 12.55 0.613

222.26 73.051 142.24 56.895 50.53 18.511 11.28 0.431

222.29 73.262 140.05 56.170 50.53 18.501 11.28 0.429

222.29 73.172 140.08 56.206 45.40 15.534 11.28 0.429

202.11 69.658 140.07 56.196 45.40 15.495 10.14 0.297

202.10 69.800 137.89 55.549 45.39 15.494 10.13 0.295

202.10 69.741 137.91 55.638 40.78 12.845 10.14 0.294

181.94 66.264 137.91 55.564 40.79 12.795 9.10 0.204

181.91 66.410 135.78 54.987 40.78 12.796 9.10 0.203

181.91 66.639 135.75 54.912 36.64 10.486 9.10 0.203

161.75 61.848 135.76 54.944 36.65 10.462 8.18 0.139

161.71 61.897 133.57 54.256 36.65 10.453 8.18 0.139

161.71 61.845 133.59 54.337 32.92 8.427 8.18 0.139

161.75 61.988 133.58 54.349 32.92 8.404 303.24 81.739

161.70 61.915 131.40 53.772 32.92 8.404 171.88 64.182

161.70 61.884 131.42 53.730 29.58 6.694 171.82 64.226

159.52 61.294 131.41 53.681 29.58 6.667 171.82 64.134

159.54 61.424 126.41 52.191 29.58 6.666 169.79 63.758

159.53 61.477 126.36 52.360 26.57 5.236 169.81 63.760

157.36 60.931 126.37 52.208 26.57 5.224 169.81 63.732
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Table C.14: Continued from previous page

T (K) CP T (K) CP T (K) CP T (K) CP

157.38 60.894 106.14 45.128 26.58 5.219 167.77 63.119

157.38 60.792 106.17 45.116 23.85 4.014 167.79 63.240

155.19 60.373 106.16 45.126 23.87 3.996 167.78 63.109

155.22 60.495 95.90 41.762 23.87 4.012 165.75 62.810

155.22 60.500 96.08 41.086 21.43 3.009 165.76 62.792

153.04 59.964 96.09 40.982 21.44 3.047 165.76 62.767

153.05 59.939 86.25 36.979 21.45 3.051 163.72 62.302

153.05 59.943 86.28 36.871 19.27 2.276 163.74 62.332

150.87 59.387 86.27 36.954 19.27 2.230 163.74 62.301

150.89 59.419 77.52 33.165 19.25 2.269

Table C.15: Experimental heat capacity data for Sc0.95Y0.10F3, listed in order of collection.

Sample mass was 15.05 mg. Only data points that met two reliability criteria (≥90% thermal

coupling constant between sample and platform and ≥40% sample contribution to the total

heat capacity) are included. Units of CP are J·K−1·mol−1.

T (K) CP T (K) CP T (K) CP

276.06 79.917 316.52 82.052 370.94 85.545

275.75 79.846 316.51 82.294 370.96 85.500

275.76 79.783 336.92 82.601 390.85 86.711

296.09 81.214 336.91 82.513 390.99 86.166

296.13 80.986 353.35 83.845 390.97 86.308

296.12 80.884 353.34 84.032

316.48 82.316 370.77 85.550
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Table C.16: Experimental heat capacity data for Sc0.80Y0.20F3, listed in order of collection

(columns wrap across multiple pages). Sample mass was 7.72 mg. Only data points that

met two reliability criteria (≥90% thermal coupling constant between sample and platform

and ≥40% sample contribution to the total heat capacity) are included. Units of CP are

J·K−1·mol−1.

T (K) CP T (K) CP T (K) CP T (K) CP

234.06 74.240 216.47 70.676 102.48 43.909 28.13 6.418

233.98 74.087 214.86 70.507 97.38 41.782 28.13 6.409

233.97 74.188 214.88 70.561 97.40 41.781 25.13 4.954

232.36 74.079 214.88 70.466 97.40 41.780 25.13 4.943

232.39 73.914 213.26 70.497 86.95 37.358 25.13 4.950

232.39 73.796 213.29 70.410 86.92 37.364 22.46 3.779

230.77 73.656 213.29 70.395 86.92 37.350 22.45 3.792

230.80 73.754 211.68 70.207 77.71 33.317 22.46 3.769

230.79 73.805 211.70 70.299 77.68 33.366 20.05 2.769

229.18 73.642 211.69 70.310 77.68 33.377 20.05 2.807

229.21 73.582 210.08 70.199 69.42 29.154 20.06 2.807

229.20 73.437 210.11 70.182 69.40 29.151 17.91 2.053

227.58 73.403 210.10 70.199 69.40 29.141 17.91 2.049

227.62 73.309 208.49 70.026 61.99 25.439 17.92 2.051

227.61 73.188 208.51 70.072 61.97 25.427 16.00 1.479

225.99 72.975 208.51 70.175 61.97 25.423 16.00 1.475

226.02 73.189 206.90 69.939 55.37 21.803 16.01 1.475

226.02 73.004 206.92 70.093 55.36 21.772 14.31 1.046

224.40 72.811 206.92 69.975 55.36 21.764 14.30 1.041

224.43 72.626 205.31 69.770 49.46 18.298 14.30 1.043

224.42 72.715 205.33 69.961 49.45 18.265 12.78 0.724

Table C.16: Continued on next page
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Table C.16: Continued from previous page

T (K) CP T (K) CP T (K) CP T (K) CP

222.81 72.286 205.33 69.937 49.45 18.262 12.77 0.722

222.84 72.279 203.72 69.781 44.18 15.311 12.77 0.723

222.83 72.393 203.74 69.735 44.18 15.274 11.42 0.495

221.21 71.919 203.73 69.818 44.18 15.264 11.41 0.494

221.24 71.845 184.00 66.492 39.47 12.705 11.41 0.494

221.24 71.982 183.90 66.621 39.46 12.670 10.17 0.324

219.63 71.377 183.90 66.530 39.46 12.674 10.18 0.326

219.65 71.592 156.75 60.869 35.24 10.274 10.18 0.327

219.65 71.378 156.77 60.884 35.24 10.264 9.10 0.220

218.04 71.058 156.76 60.853 35.25 10.260 9.09 0.218

218.06 70.979 129.62 53.381 31.48 8.183 9.09 0.219

218.06 71.115 129.62 53.410 31.48 8.177

216.45 70.782 129.62 53.455 31.49 8.174

216.48 70.673 102.52 43.959 28.13 6.422

Table C.17: Experimental heat capacity data for Sc0.75Y0.25F3, listed in order of collection

(columns wrap across multiple pages). Sample mass was 5.40 mg. Only data points that

met two reliability criteria (≥90% thermal coupling constant between sample and platform

and ≥40% sample contribution to the total heat capacity) are included. Units of CP are

J·K−1·mol−1.

T (K) CP T (K) CP T (K) CP T (K) CP

161.78 64.123 69.81 30.080 32.97 9.031 15.59 1.349

161.76 64.274 69.74 30.152 32.96 8.998 15.58 1.344

161.75 64.381 69.74 30.157 32.96 9.011 15.59 1.343

141.63 58.962 62.70 26.385 29.63 7.207 14.02 0.966

Table C.17: Continued on next page
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Table C.17: Continued from previous page

T (K) CP T (K) CP T (K) CP T (K) CP

141.57 59.084 62.64 26.421 29.62 7.193 14.00 0.961

141.57 59.134 62.63 26.453 29.62 7.190 14.01 0.961

121.43 52.454 56.34 22.846 26.61 5.707 12.60 0.683

121.37 52.466 56.29 22.847 26.61 5.648 12.59 0.678

121.36 52.548 56.28 22.852 26.62 5.654 12.59 0.679

101.25 44.781 50.60 19.431 23.93 4.419 11.32 0.474

101.22 44.751 50.58 19.429 23.92 4.356 11.31 0.472

101.21 44.741 50.58 19.433 23.91 4.364 11.32 0.471

96.17 42.448 45.46 16.379 21.48 3.350 10.17 0.326

96.17 42.435 45.45 16.348 21.49 3.340 10.17 0.322

96.18 42.530 45.44 16.340 21.48 3.323 10.17 0.323

86.39 38.169 40.84 13.600 19.32 2.511 9.14 0.223

86.34 38.060 40.84 13.561 19.31 2.505 9.13 0.222

86.34 38.263 40.83 13.562 19.31 2.504 9.13 0.221

77.68 34.175 36.69 11.167 17.35 1.855 8.21 0.151

77.59 34.332 36.69 11.139 17.34 1.847 8.20 0.151

77.60 34.421 36.69 11.139 17.34 1.846 8.21 0.150

Table C.18: Experimental heat capacity data for Sc0.75Y0.25F3, listed in order of collection

(columns wrap across multiple pages). Sample mass was 10.60 mg. Only data points that

met two reliability criteria (≥90% thermal coupling constant between sample and platform

and ≥40% sample contribution to the total heat capacity) are included. Units of CP are

J·K−1·mol−1.

T (K) CP T (K) CP T (K) CP T (K) CP

303.62 81.879 202.34 71.346 23.96 4.374 2.81 0.004

Table C.18: Continued on next page
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Table C.18: Continued from previous page

T (K) CP T (K) CP T (K) CP T (K) CP

303.25 81.557 202.35 71.357 21.53 3.363 2.81 0.004

303.26 81.658 182.25 68.131 21.52 3.340 2.81 0.004

282.91 80.514 182.14 68.089 21.52 3.348 2.52 0.003

283.08 80.631 182.14 68.071 19.34 2.527 2.52 0.003

283.07 80.531 161.89 63.645 19.34 2.516 2.52 0.003

262.76 78.746 161.93 63.631 19.34 2.512 2.27 0.002

262.91 78.768 161.92 63.703 17.37 1.867 2.26 0.002

262.89 78.783 141.72 58.440 17.37 1.859 2.26 0.002

242.59 76.776 141.73 58.476 17.38 1.847 2.03 0.002

242.72 76.865 141.73 58.443 15.61 1.359 2.03 0.002

242.71 76.801 121.53 52.091 15.60 1.353 2.03 0.002

222.45 74.552 121.52 52.039 15.61 1.354 203.53 68.002

222.55 74.531 121.52 52.074 14.04 0.976 203.35 68.167

222.54 74.622 101.36 44.607 14.03 0.971 203.35 68.221

222.69 74.563 101.34 44.505 14.03 0.971 204.73 68.476

222.54 74.523 101.33 44.534 12.62 0.691 204.81 68.350

222.54 74.508 96.29 42.220 12.61 0.688 204.81 68.327

221.05 74.270 96.30 42.138 12.61 0.688 206.17 68.605

221.10 74.270 96.29 42.152 11.33 0.481 206.25 68.474

221.09 74.199 86.46 38.029 11.33 0.478 206.25 68.435

219.60 73.910 86.46 37.879 11.33 0.479 207.61 68.698

219.66 74.037 86.45 37.912 10.18 0.330 207.69 68.629

219.66 73.924 77.72 34.209 10.17 0.329 207.69 68.573

218.16 73.655 77.70 34.147 10.18 0.329 209.02 69.043

218.22 73.675 77.70 34.121 9.14 0.227 209.10 68.981

218.21 73.665 69.86 30.016 9.13 0.225 209.11 68.624

Table C.18: Continued on next page
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Table C.18: Continued from previous page

T (K) CP T (K) CP T (K) CP T (K) CP

216.73 73.386 69.83 29.996 9.14 0.226 210.44 68.917

216.77 73.403 69.83 30.002 8.21 0.155 210.49 68.861

216.77 73.359 62.76 26.329 8.21 0.153 210.50 68.829

215.28 73.154 62.72 26.312 8.21 0.154 211.86 69.123

215.34 73.130 62.73 26.309 7.38 0.105 211.95 68.983

215.33 73.167 56.40 22.756 7.37 0.104 211.94 68.982

213.84 73.038 56.37 22.732 7.37 0.104 213.39 69.236

213.90 72.876 56.37 22.732 6.65 0.073 213.47 69.093

213.88 72.986 50.69 19.338 6.63 0.073 213.46 69.072

212.40 72.780 50.65 19.352 6.63 0.073 214.83 69.348

212.45 72.712 50.65 19.342 5.96 0.049 214.91 69.184

212.44 72.762 45.55 16.259 5.95 0.049 214.90 69.209

210.96 72.510 45.50 16.285 5.95 0.049 216.30 69.294

211.01 72.515 45.51 16.291 5.35 0.034 216.33 69.385

211.00 72.544 40.93 13.512 5.35 0.034 216.35 69.368

209.51 72.349 40.89 13.513 5.35 0.034 217.77 69.313

209.57 72.344 40.89 13.515 4.80 0.024 217.75 69.650

209.56 72.359 36.77 11.128 4.80 0.024 217.80 69.581

208.07 72.229 36.75 11.111 4.80 0.024 219.24 69.362

208.12 72.315 36.75 11.114 4.31 0.017 219.18 69.858

208.12 72.225 33.04 9.016 4.31 0.017 219.23 69.812

206.64 71.942 33.02 8.997 4.31 0.017 220.60 69.689

206.68 72.013 33.02 8.997 3.87 0.012 220.55 70.059

206.67 71.879 29.69 7.201 3.87 0.012 220.60 70.003

205.19 71.743 29.67 7.184 3.87 0.012 222.04 69.961

205.23 71.691 29.67 7.180 3.48 0.008 222.00 70.305

Table C.18: Continued on next page
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Table C.18: Continued from previous page

T (K) CP T (K) CP T (K) CP T (K) CP

205.23 71.713 26.68 5.672 3.48 0.008 222.04 70.226

203.75 71.571 26.66 5.662 3.48 0.008 223.48 70.196

203.79 71.660 26.67 5.660 3.13 0.006 223.44 70.481

203.79 71.609 23.97 4.376 3.12 0.006 223.48 70.465

202.30 71.373 23.95 4.371 3.12 0.006

Table C.19: Experimental heat capacity data for Sc0.75Y0.25F3, listed in order of collection

(columns wrap across multiple pages). Sample mass was 9.37 mg. Only data points that

met two reliability criteria (≥90% thermal coupling constant between sample and platform

and ≥40% sample contribution to the total heat capacity) are included. Units of CP are

J·K−1·mol−1.

T (K) CP T (K) CP T (K) CP T (K) CP

304.68 85.048 220.98 75.720 77.08 34.616 19.82 2.793

304.30 85.073 219.29 75.168 77.08 34.571 19.81 2.771

304.32 84.885 219.31 75.189 68.83 30.148 19.82 2.772

283.86 83.064 219.30 75.156 68.84 30.116 17.70 2.028

284.04 83.269 217.62 74.727 68.84 30.106 17.69 2.017

284.04 83.152 217.64 74.688 61.46 26.260 17.70 2.019

263.68 81.240 217.63 74.719 61.45 26.251 15.80 1.452

263.83 81.236 215.94 74.342 61.45 26.251 15.80 1.447

263.82 81.336 215.97 74.303 54.89 22.443 15.80 1.445

243.45 79.106 215.96 74.309 54.88 22.396 14.11 1.022

243.57 79.064 214.27 74.136 54.88 22.400 14.11 1.017

243.56 79.058 214.30 74.180 49.01 18.855 14.11 1.018

232.79 77.909 214.29 74.272 49.02 18.808 12.60 0.708

Table C.19: Continued on next page
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T (K) CP T (K) CP T (K) CP T (K) CP

232.68 77.899 212.60 73.905 49.01 18.801 12.60 0.707

232.68 77.878 212.62 74.023 43.77 15.666 12.60 0.705

230.98 77.707 212.62 73.967 43.77 15.621 11.25 0.484

231.01 77.691 182.96 69.868 43.76 15.628 11.25 0.480

231.01 77.482 182.82 69.666 39.09 12.822 11.25 0.481

229.32 77.550 182.82 69.655 39.09 12.786 10.04 0.321

229.35 77.532 155.77 63.587 39.08 12.788 10.03 0.320

229.34 77.426 155.79 63.600 34.91 10.368 10.04 0.320

227.64 77.105 155.78 63.576 34.90 10.327 8.96 0.217

227.67 77.188 128.78 55.578 34.90 10.327 8.95 0.216

227.67 77.164 128.76 55.614 31.16 8.251 8.96 0.217

225.98 76.860 128.76 55.598 31.17 8.210 8.00 0.143

226.00 77.138 101.79 45.645 31.17 8.204 8.00 0.142

226.00 76.838 101.76 45.698 27.85 6.433 8.00 0.143

224.30 76.477 101.76 45.705 27.84 6.419 7.17 0.097

224.33 76.677 96.69 43.291 27.84 6.400 7.16 0.096

224.33 76.673 96.71 43.242 24.87 4.859 7.16 0.095

222.63 76.162 96.70 43.309 24.85 4.916 6.39 0.066

222.66 76.077 86.30 38.637 24.86 4.916 6.38 0.066

222.65 76.056 86.29 38.662 22.20 3.699 6.39 0.064

220.96 75.464 86.29 38.740 22.19 3.731

220.98 75.694 77.08 34.680 22.20 3.731
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Table C.20: Experimental heat capacity data for Sc0.75Y0.25F3, listed in order of collection.

Sample mass was 8.98 mg. Only data points that met two reliability criteria (≥90% thermal

coupling constant between sample and platform and ≥40% sample contribution to the total

heat capacity) are included.

T (K) CP (J·K−1·mol−1)

274.06 79.969

273.77 79.827

273.77 79.872

Table C.21: Experimental heat capacity data for Sc0.75Y0.25F3, listed in order of collection.

Sample mass was 9.37 mg. Only data points that met two reliability criteria (≥90% thermal

coupling constant between sample and platform and ≥40% sample contribution to the total

heat capacity) are included. Units of CP are J·K−1·mol−1.

T (K) CP T (K) CP T (K) CP

280.88 82.540 324.49 84.696 362.57 86.964

280.55 82.426 324.49 84.526 362.67 86.842

280.56 82.387 324.48 84.674 362.65 86.911

295.17 83.105 339.14 85.070 376.95 88.064

295.18 83.118 339.15 84.988 377.07 87.704

295.18 82.875 339.15 85.002 377.07 87.918

309.82 84.079 351.22 85.786 391.37 89.069

309.83 84.152 351.22 85.970 391.43 88.888

309.83 84.221 351.23 85.987
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Table C.22: Experimental heat capacity data for Sc0.75Y0.25F3, listed in order of collection.

Sample mass was 11.05 mg. Only data points that met two reliability criteria (≥90% thermal

coupling constant between sample and platform and ≥40% sample contribution to the total

heat capacity) are included. Units of CP are J·K−1·mol−1.

T (K) CP T (K) CP T (K) CP

280.05 80.991 308.86 82.449 338.11 83.367

279.67 80.727 308.86 82.436 350.70 84.133

279.67 80.813 323.49 83.258 350.69 84.193

294.27 81.446 323.47 83.258 350.69 84.216

294.26 81.517 323.48 83.279 363.28 84.858

294.26 81.469 338.14 83.382 363.28 84.778

308.88 82.492 338.11 83.360

Table C.23: Experimental heat capacity data for Sc0.75Y0.25F3, listed in order of collection.

Sample mass was 6.28 mg. Only data points that met two reliability criteria (≥90% thermal

coupling constant between sample and platform and ≥40% sample contribution to the total

heat capacity) are included. Units of CP are J·K−1·mol−1.

T (K) CP T (K) CP T (K) CP

10.09 0.319 9.27 0.236 7.85 0.130

10.07 0.317 8.55 0.176 7.85 0.130

10.07 0.317 8.53 0.175 7.23 0.097

9.29 0.236 8.53 0.175 7.22 0.097

9.27 0.236 7.87 0.130 7.22 0.096
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Table C.24: Experimental heat capacity data for Sc0.75Y0.25F3, listed in order of collection.

Sample mass was 4.44 mg. Only data points that met two reliability criteria (≥90% thermal

coupling constant between sample and platform and ≥40% sample contribution to the total

heat capacity) are included. Units of CP are J·K−1·mol−1.

T (K) CP T (K) CP T (K) CP

10.11 0.316 9.29 0.233 9.29 0.235

10.10 0.315 10.11 0.317 9.28 0.235

10.09 0.315 10.09 0.318 8.56 0.175

9.31 0.233 10.09 0.317 8.55 0.175

9.29 0.234 9.30 0.235 8.54 0.175
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Figure C.1: Stackplots of variable-temperature (furnace, >300 K) PXRD patterns collected
for Sc1−xYxF3 in which x = 0.05 (top left), 0.10 (top right), 0.20 (bottom left), and 0.25
(bottom right). Within each stackplot, the patterns are arranged in the order of collection
from bottom to top. Reproduced from ref. [247].
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Figure C.2: Stackplots of variable-temperature (Cryostream, 100-500 K) PXRD patterns
collected for Sc1−xYxF3 in which x = 0.00 (top), 0.05 (middle), and 0.10 (bottom). The
stackplots in the left column show the full 2θ range used in Rietveld analyses of the data,
while those in the right column show a portion of the full pattern. Within a stackplot,
the patterns are arranged in the order of collection from bottom to top, which followed the
temperature ramp in Figure 2.2b. Reproduced from ref. [247].
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Figure C.3: Stackplots of variable-temperature (Cryostream, 100-500 K) PXRD patterns
collected for Sc1−xYxF3 in which x = 0.20 (top) and 0.25 (bottom). The stackplots in the
left column show the full 2θ range used in Rietveld analyses of the data, while those in
the right column show a portion of the full pattern. Within a stackplot, the patterns are
arranged in the order of collection from bottom to top, which followed the temperature
ramp in Figure 2.2b. Reproduced from ref. [247].
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Figure C.4: The cubic-to-rhombohedral phase transition temperature for each of the solid
solution samples was estimated by monitoring the full width at half-maximum (FWHM) of
the cubic (4 2 2) Bragg reflection (d ≈ 0.83 Å), which splits into the primitive rhombohedral
(6 2 0) and (4 6 6) Bragg reflections at low temperatures. Its width was estimated by fitting
a pseudo-Voigt function, along with a linear background, using the program Fityk [273]. The
intersection of straight-line fits to the FWHM versus temperature curve at both high and
low temperatures was taken to be the transition temperature. As the values estimated from
the heating and cooling curves were somewhat different, their average is reported. Phase
transition temperatures estimated by examining the temperature dependence of rhombohe-
dral angle α were in good agreement with those determined using the above line-broadening
approach (Figure C.5). This figure presents the temperature dependence of the FWHM of
the cubic (4 2 2) Bragg reflection of Sc1−xYxF3, normalized by the average FWHM over
the cubic region, which was used to estimate the phase transition temperatures (indicated
by vertical dashed lines). Reproduced from ref. [247].
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Figure C.5: Temperature dependence of various unit cell parameters: (a),(b),(c) hexagonal
unit cell lengths aH and cH and their ratio cH/aH ; (d) rhombohedral unit cell angle αR; (e)
octahedral tilt angle ω. The lattice constants and angle are derived from Rietveld analysis,
while octahedral tilt angle is defined as cosω =

√
6[cH/aH ]−1. The latter three parameters

converge to similar values for all x, but this convergence is at a slightly unexpected value.
The cH/aH ratio of a cubic cell is expected to be

√
6 = 2.449, while αR and ω should be

60 and 0◦, respectively. The slight discrepancy between the observed and expected values
of these parameters is due to the inadequacy of the rhombohedral model used in Rietveld
refinement to fit cubic data; the fit is over-parameterized in such cases. Reproduced from
ref. [247].
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Figure C.6: Atomic displacement parameters for Sc1−xYxF3, determined by Rietveld anal-
yses of the variable temperature (Cryostream, 100-500 K) PXRD data using a cubic struc-
tural model: (a) Uiso of Sc and Y, constrained to be equal; (b) U11 and U22(= U33) of F; (c)
estimated value of U22 of F at 0 K, extrapolated from plot (b), for different values of x. In
(c), error bars, derived from least-squares fits, are smaller than the point size. The scatter
in Uiso in (a), especially for x = 0.25, is a result of the inadequacy of the data. Furthermore,
the scatter in (a) is prominent because of the scale on which the data are plotted. None of
the data were corrected for absorption, potentially resulting in U values that are lower than
expected, which explains the slightly negative values of Uiso and U11 in (a) and (b). While
the absolute values are in error, the trends with temperature and composition should be
valid. Reproduced from ref. [247].
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Figure C.7: Temperature dependence of V/Z for Sc1−xYxF3. These volumes were extracted
from Rietveld analyses of the variable-temperature PXRD data. However, as the complete
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cooling curves overlap quite well on this scale. Reproduced from ref. [247].
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Figure C.8: Stackplots of variable-pressure/temperature PXRD patterns collected for ScF3.
Each panel represents a particular temperature, and the patterns within each panel were
collected at different pressures, arranged in order of collection from bottom to top. Extra
peaks (not sample-related) in the patterns are from the titanium pressure vessel. Repro-
duced from ref. [247].
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Figure C.9: Stackplots of variable-pressure/temperature PXRD patterns collected for
Sc0.95Y0.05F3. Each panel represents a particular temperature, and the patterns within
each panel were collected at different pressures, arranged in order of collection from bottom
to top. Extra peaks (not sample-related) in the patterns are from the titanium pressure ves-
sel. An experimental error (improper BRIM alignment) was likely the cause of the greater
number of extra peaks for this sample relative to the others. Reproduced from ref. [247].
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Figure C.10: Stackplots of variable-pressure/temperature PXRD patterns collected for
Sc0.90Y0.10F3. Each panel represents a particular temperature, and the patterns within
each panel were collected at different pressures, arranged in order of collection from bottom
to top. Extra peaks (not sample-related) in the patterns are from the titanium pressure
vessel. Reproduced from ref. [247].
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Figure C.11: Stackplots of variable-pressure/temperature PXRD patterns collected for
Sc0.80Y0.20F3. Each panel represents a particular temperature, and the patterns within
each panel were collected at different pressures, arranged in order of collection from bottom
to top. Extra peaks (not sample-related) in the patterns are from the titanium pressure
vessel. Reproduced from ref. [247].
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Figure C.12: Stackplots of variable-pressure/temperature PXRD patterns collected for
Sc0.75Y0.25F3. Each panel represents a particular temperature, and the patterns within
each panel were collected at different pressures, arranged in order of collection from bottom
to top. Extra peaks (not sample-related) in the patterns are from the titanium pressure
vessel. Reproduced from ref. [247].
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Figure C.13: Natural logarithm of unit cell volume (lnV ; units of V are Å3) plotted with
respect to pressure at various temperatures (298, 343, 388, 433, 478, and 523 K) for (a)
Sc0.95Y0.05F3, (b) Sc0.90Y0.10F3, and (c) Sc0.80Y0.20F3. Panel (d) shows the data from the
other panels, as well as those for x = 0.00 and 0.25, plotted on the same scale. Linear fits
to the data are included in the plots. For each sample, the lowest temperature points are
in blue and have the generally highest volumes; conversely, the highest temperature points
are in red and have the generally lowest volumes. In all plots, error bars are smaller than
the point size. Reproduced from ref. [247].
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Figure C.14: Natural logarithm of unit cell volume (lnV ; units of V are Å3) plotted with
respect to temperature at various pressures (0.034, 0.069, 0.103, 0.138, 0.172, 0.207, 0.241,
and 0.276 GPa) for (a) Sc0.95Y0.05F3, (b) Sc0.90Y0.10F3, and (c) Sc0.80Y0.20F3. Panel (d)
shows the data from the other panels, as well as those for x = 0.00 and 0.25, plotted on
the same scale. The data points are connected with line segments as a guide to the eye.
For each sample, the lowest pressure points are in green and have the highest volumes;
conversely, the highest pressure points are in black and have the lowest volumes. In each
plot, the single unconnected point at 300 K was measured at P = 0. In all plots, error bars
are smaller than the point size. Reproduced from ref. [247].
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APPENDIX D

CHAPTER 8 SUPPORTING MATERIAL

Table D.1: Lattice constants and unit cell volumes of Sc0.95Al0.05F3 at various tempera-

tures and pressures. These values were determined by Rietveld analyses of high-pressure,

high-temperature PXRD data and are presented here without scaling. Italicized data were

omitted from Analysis (see Section 8.2.3). Numbers in parentheses are estimated standard

deviations from least-squares fits during Rietveld analyses.

T (K) P (GPa) Structure a (Å) αR (◦) V/Z (Å3)

298 0.000 Cubic 3.99869(7) – 63.937(4)

298 0.103 Cubic 3.99596(8) – 63.806(4)

298 0.207 Cubic 3.9928(1) – 63.655(5)

298 0.310 Cubic 3.9892(1) – 63.484(5)

298 0.413 Cubic 3.98408(7) – 63.239(3)

298 0.362 Cubic 3.98709(7) – 63.383(3)

298 0.258 Cubic 3.98704(7) – 63.380(3)

298 0.155 Cubic 3.99453(7) – 63.738(3)

298 0.052 Cubic 3.99731(7) – 63.871(3)

343 0.017 Cubic 3.99742(9) – 63.877(4)

343 0.103 Cubic 3.99490(8) – 63.756(4)

343 0.207 Cubic 3.99226(8) – 63.629(4)

343 0.310 Cubic 3.98936(8) – 63.491(4)

343 0.414 Cubic 3.98545(7) – 63.304(3)

343 0.362 Cubic 3.98741(8) – 63.398(4)

343 0.259 Cubic 3.99082(7) – 63.560(3)

Table D.1: Continued on next page
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Table D.1: Continued from previous page

T (K) P (GPa) Structure a (Å) αR (◦) V/Z (Å3)

343 0.155 Cubic 3.99362(7) – 63.695(3)

343 0.052 Cubic 3.99649(8) – 63.832(4)

388 0.017 Cubic 3.99629(9) – 63.822(4)

388 0.103 Cubic 3.9949(1) – 63.757(5)

388 0.207 Cubic 3.99191(8) – 63.613(4)

388 0.310 Cubic 3.98854(8) – 63.452(4)

388 0.413 Cubic 3.98542(7) – 63.303(4)

388 0.362 Cubic 3.98706(7) – 63.381(3)

388 0.258 Cubic 3.99027(8) – 63.534(4)

388 0.155 Cubic 3.99258(6) – 63.645(3)

388 0.052 Cubic 3.99512(8) – 63.766(4)

433 0.017 Cubic 3.99548(9) – 63.783(4)

433 0.103 Cubic 3.99362(9) – 63.694(4)

433 0.207 Cubic 3.99076(9) – 63.558(4)

433 0.310 Cubic 3.98817(8) – 63.434(4)

433 0.414 Cubic 3.98499(9) – 63.282(4)

433 0.362 Cubic 3.98720(8) – 63.388(4)

433 0.259 Cubic 3.98965(8) – 63.505(4)

433 0.155 Cubic 3.99230(8) – 63.631(4)

433 0.052 Cubic 3.99478(8) – 63.750(4)

478 0.016 Cubic 3.99496(1) – 63.758(5)

478 0.103 Cubic 3.99281(9) – 63.656(4)

478 0.207 Cubic 3.99045(9) – 63.543(4)

478 0.310 Cubic 3.98777(9) – 63.415(4)

478 0.259 Cubic 3.98894(9) – 63.471(4)

478 0.155 Cubic 3.99188(9) – 63.611(4)

Table D.1: Continued on next page
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Table D.1: Continued from previous page

T (K) P (GPa) Structure a (Å) αR (◦) V/Z (Å3)

478 0.052 Cubic 3.99405(9) – 63.715(4)

523 0.017 Cubic 3.9941(1) – 63.721(6)

523 0.103 Cubic 3.99258(9) – 63.645(4)

523 0.207 Cubic 3.9897(1) – 63.508(5)

523 0.310 Cubic 3.98728(9) – 63.392(4)

523 0.258 Cubic 3.98866(1) – 63.457(5)

523 0.155 Cubic 3.99127(9) – 63.582(4)

523 0.052 Cubic 3.9934(1) – 63.683(5)

Table D.2: Lattice constants and unit cell volumes of Sc0.90Al0.10F3 at various tempera-

tures and pressures. These values were determined by Rietveld analyses of high-pressure,

high-temperature PXRD data and are presented here without scaling. Numbers in paren-

theses are estimated standard deviations from least-squares fits during Rietveld analyses.

T (K) P (GPa) Structure a (Å) αR (◦) V/Z (Å3)

298 0.000 Cubic 3.97677(6) – 62.892(3)

298 0.103 Cubic 3.97323(5) – 62.724(2)

298 0.207 Rhombohedral 5.6134(2) 59.764(2) 62.200(5)

298 0.310 Rhombohedral 5.6066(2) 59.394(2) 61.451(5)

298 0.259 Rhombohedral 5.6096(2) 59.537(2) 61.754(3)

298 0.155 Cubic 3.96959(6) – 62.552(3)

298 0.052 Cubic 3.97498(6) – 62.806(3)

343 0.017 Cubic 3.97663(6) – 62.885(3)

343 0.104 Cubic 3.97395(5) – 62.758(2)

343 0.207 Cubic 3.96966(6) – 62.555(3)

343 0.310 Rhombohedral 5.6084(2) 59.799(3) 62.086(4)

Table D.2: Continued on next page
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Table D.2: Continued from previous page

T (K) P (GPa) Structure a (Å) αR (◦) V/Z (Å3)

343 0.259 Cubic 3.96710(5) – 62.434(2)

343 0.155 Cubic 3.97166(7) – 62.649(3)

343 0.052 Cubic 3.97544(5) – 62.828(2)

388 0.017 Cubic 3.97646(6) – 62.877(3)

388 0.103 Cubic 3.97427(0) – 62.773(3)

388 0.207 Cubic 3.97067(6) – 62.602(3)

388 0.310 Cubic 3.96649(6) – 62.405(3)

388 0.259 Cubic 3.96770(7) – 62.462(3)

388 0.155 Cubic 3.97227(5) – 62.678(3)

388 0.052 Cubic 3.97549(7) – 62.831(3)

433 0.017 Cubic 3.97618(7) – 62.864(3)

433 0.103 Cubic 3.97403(6) – 62.761(3)

433 0.207 Cubic 3.97070(7) – 62.604(3)

433 0.310 Cubic 3.96737(7) – 62.447(3)

433 0.327 Cubic 3.96682(7) – 62.421(3)

433 0.259 Cubic 3.96908(7) – 62.527(3)

433 0.155 Cubic 3.97255(7) – 62.692(3)

433 0.052 Cubic 3.97524(7) – 62.819(3)

478 0.017 Cubic 3.97510(7) – 62.855(3)

478 0.104 Cubic 3.97376(8) – 62.749(4)

478 0.207 Cubic 3.97090(8) – 62.614(4)

478 0.310 Cubic 3.96784(8) – 62.469(4)

478 0.259 Cubic 3.96945(9) – 62.545(4)

478 0.155 Cubic 3.97264(8) – 62.696(4)

478 0.052 Cubic 3.97505(8) – 62.810(4)

523 0.017 Cubic 3.9757(1) – 62.839(5)

Table D.2: Continued on next page

223



Table D.2: Continued from previous page

T (K) P (GPa) Structure a (Å) αR (◦) V/Z (Å3)

523 0.103 Cubic 3.97358(9) – 62.740(4)

523 0.207 Cubic 3.97091(9) – 62.614(4)

523 0.310 Cubic 3.9679(1) – 62.473(5)

523 0.259 Cubic 3.9694(1) – 62.545(5)

523 0.155 Cubic 3.97215(9) – 62.672(4)

523 0.052 Cubic 3.97515(9) – 62.815(4)

Table D.3: Lattice constants and unit cell volumes of Sc0.85Al0.15F3 at various tempera-

tures and pressures. These values were determined by Rietveld analyses of high-pressure,

high-temperature PXRD data and are presented here without scaling. Numbers in paren-

theses are estimated standard deviations from least-squares fits during Rietveld analyses.

T (K) P (GPa) Structure a (Å) αR (◦) V/Z (Å3)

303 0.000 Cubic 3.95390(7) – 61.813(3)

303 0.103 Rhombohedral 5.5894(2) 59.683(2) 61.293(5)

303 0.207 Rhombohedral 5.5837(2) 59.405(2) 60.717(3)

303 0.310 Rhombohedral 5.5770(2) 59.145(2) 60.131(5)

303 0.414 Rhombohedral 5.5704(2) 58.885(2) 59.556(5)

303 0.362 Rhombohedral 5.5736(2) 59.015(2) 59.840(5)

303 0.259 Rhombohedral 5.5804(2) 59.270(2) 60.416(5)

303 0.155 Rhombohedral 5.5866(2) 59.536(2) 60.994(3)

303 0.052 Cubic 3.94886(9) – 61.576(4)

343 0.017 Cubic 3.95520(6) – 61.874(3)

343 0.103 Cubic 3.95088(6) – 61.671(3)

343 0.207 Rhombohedral 5.5847(2) 59.659(2) 61.105(5)

343 0.310 Rhombohedral 5.5793(2) 59.340(2) 60.482(5)
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T (K) P (GPa) Structure a (Å) αR (◦) V/Z (Å3)

343 0.414 Rhombohedral 5.5725(2) 59.063(2) 59.874(5)

343 0.362 Rhombohedral 5.5758(2) 59.197(2) 60.167(5)

343 0.259 Rhombohedral 5.5824(2) 59.485(2) 60.786(3)

343 0.155 Cubic 3.94560(9) – 61.424(4)

343 0.052 Cubic 3.95376(5) – 61.806(3)

388 0.017 Cubic 3.95622(5) – 61.922(2)

388 0.103 Cubic 3.95297(5) – 61.769(2)

388 0.207 Cubic 3.94839(6) – 61.554(3)

388 0.310 Rhombohedral 5.5804(2) 59.674(2) 60.984(5)

388 0.414 Rhombohedral 5.5752(2) 59.300(2) 60.291(5)

388 0.362 Rhombohedral 5.5785(2) 59.465(2) 60.631(3)

388 0.259 Cubic 3.94432(7) – 61.364(3)

388 0.155 Cubic 3.95084(5) – 61.669(2)

388 0.052 Cubic 3.95507(5) – 61.867(2)

433 0.017 Cubic 3.95651(7) – 61.935(3)

433 0.104 Cubic 3.95387(5) – 61.811(2)

433 0.207 Cubic 3.95044(5) – 61.651(2)

433 0.310 Cubic 3.94581(5) – 61.434(2)

433 0.414 Rhombohedral 5.5760(2) 59.713(2) 60.894(4)

433 0.362 Cubic 3.94275(6) – 61.291(3)

433 0.259 Cubic 3.94817(5) – 61.544(2)

433 0.155 Cubic 3.95221(5) – 61.733(2)

478 0.052 Cubic 3.95553(5) – 61.889(2)

478 0.017 Cubic 3.95684(6) – 61.951(3)

478 0.104 Cubic 3.95420(5) – 61.827(2)

478 0.207 Cubic 3.95082(5) – 61.668(2)
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T (K) P (GPa) Structure a (Å) αR (◦) V/Z (Å3)

478 0.310 Cubic 3.94730(5) – 61.503(3)

478 0.259 Cubic 3.94926(5) – 61.595(2)

478 0.155 Cubic 3.95279(5) – 61.761(2)

478 0.052 Cubic 3.95591(5) – 61.907(2)

523 0.017 Cubic 3.95682(6) – 61.950(3)

523 0.103 Cubic 3.95439(6) – 61.835(3)

523 0.207 Cubic 3.95136(5) – 61.693(2)

523 0.310 Cubic 3.94824(6) – 61.547(3)

523 0.259 Cubic 3.94974(5) – 61.618(2)

523 0.155 Cubic 3.95304(5) – 61.772(2)

523 0.052 Cubic 3.95589(6) – 61.906(3)

Table D.4: Lattice constants and unit cell volumes of Sc0.80Al0.20F3 at various tempera-

tures and pressures. These values were determined by Rietveld analyses of high-pressure,

high-temperature PXRD data and are presented here without scaling. Italicized data were

omitted from Analysis (see Section 8.2.3). Numbers in parentheses are estimated standard

deviations from least-squares fits during Rietveld analyses.

T (K) P (GPa) Structure a (Å) αR (◦) V/Z (Å3)

298 0.000 Rhombohedral 5.5541(2) 59.501(2) 59.889(3)

298 0.103 Rhombohedral 5.5484(2) 59.287(2) 59.409(5)

298 0.207 Rhombohedral 5.5425(2) 59.081(3) 58.939(5)

298 0.310 Rhombohedral 5.5361(3) 58.869(4) 58.441(5)

298 0.413 Rhombohedral 5.5313(3) 58.631(4) 57.963(5)

298 0.362 Rhombohedral 5.5335(3) 58.725(4) 58.161(5)

298 0.259 Rhombohedral 5.5334(4) 58.733(5) 58.170(5)
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T (K) P (GPa) Structure a (Å) αR (◦) V/Z (Å3)

298 0.155 Rhombohedral 5.5459(3) 59.146(4) 59.135(5)

298 0.052 Rhombohedral 5.5512(4) 59.363(5) 59.605(5)

343 0.017 Rhombohedral 5.5539(2) 59.675(2) 60.123(4)

343 0.103 Rhombohedral 5.5501(2) 59.474(2) 59.723(3)

343 0.207 Rhombohedral 5.5448(2) 59.241(2) 59.233(5)

343 0.310 Rhombohedral 5.5389(2) 59.028(2) 58.751(3)

343 0.414 Rhombohedral 5.5331(2) 58.793(3) 58.243(3)

343 0.362 Rhombohedral 5.5359(2) 58.911(3) 58.494(3)

343 0.259 Rhombohedral 5.5420(2) 59.133(2) 58.992(3)

343 0.155 Rhombohedral 5.5478(2) 59.352(3) 59.480(5)

343 0.052 Rhombohedral 5.5527(2) 59.591(3) 59.968(4)

388 0.017 Cubic 3.9254(1) – 60.487(4)

388 0.103 Rhombohedral 5.5499(3) 59.769(3) 60.124(5)

388 0.207 Rhombohedral 5.5467(3) 59.467(3) 59.604(5)

388 0.310 Rhombohedral 5.5414(2) 59.210(2) 59.078(3)

388 0.412 Rhombohedral 5.5355(3) 58.998(3) 58.599(4)

388 0.362 Rhombohedral 5.5386(2) 59.111(3) 58.856(4)

388 0.259 Rhombohedral 5.5442(3) 59.317(4) 59.318(5)

388 0.155 Rhombohedral 5.5485(3) 59.607(3) 59.856(5)

388 0.052 Cubic 3.9229(1) – 60.370(5)

433 0.017 Cubic 3.9279(1) – 60.603(5)

433 0.103 Cubic 3.9242(1) – 60.432(5)

433 0.207 Rhombohedral 5.5455(5) 59.833(6) 60.066(7)

433 0.310 Rhombohedral 5.5430(4) 59.453(4) 59.465(5)

433 0.413 Rhombohedral 5.5385(3) 59.202(3) 58.977(5)

433 0.362 Rhombohedral 5.5408(3) 59.291(4) 59.171(5)
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T (K) P (GPa) Structure a (Å) αR (◦) V/Z (Å3)

433 0.258 Rhombohedral 5.5450(4) 59.628(5) 59.770(7)

433 0.155 Cubic 3.9211(1) – 60.291(5)

433 0.052 Cubic 3.9267(1) – 60.547(5)

478 0.017 Cubic 3.9289(1) – 60.651(6)

478 0.103 Cubic 3.9260(1) – 60.513(4)

478 0.207 Cubic 3.9218(1) – 60.322(3)

478 0.310 Rhombohedral 5.538(1) 59.973(8) 60.010(0)

478 0.259 Cubic 3.9192(1) – 60.204(4)

478 0.155 Cubic 3.9240(1) – 60.421(4)

478 0.052 Cubic 3.9278(1) – 60.598(4)

523 0.017 Cubic 3.9295(1) – 60.676(6)

523 0.103 Cubic 3.9270(1) – 60.563(4)

523 0.207 Cubic 3.9235(1) – 60.398(4)

523 0.310 Cubic 3.9194(1) – 60.212(5)

523 0.259 Cubic 3.9217(1) – 60.316(5)

523 0.155 Cubic 3.9253(1) – 60.481(5)

523 0.052 Cubic 3.9285(1) – 60.633(5)

Table D.5: Lattice constants and unit cell volumes of Sc0.60Al0.40F3 at various tempera-

tures and pressures. These values were determined by Rietveld analyses of high-pressure,

high-temperature PXRD data and are presented here without scaling. Italicized data were

omitted from Analysis (see Section 8.2.3). Numbers in parentheses are estimated standard

deviations from least-squares fits during Rietveld analyses.

T (K) P (GPa) Structure a (Å) αR (◦) V/Z (Å3)

298 0.017 Rhombohedral 5.4339(2) 59.078(2) 55.538(3)
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T (K) P (GPa) Structure a (Å) αR (◦) V/Z (Å3)

298 0.104 Rhombohedral 5.4294(2) 58.948(3) 55.230(3)

298 0.207 Rhombohedral 5.4249(2) 58.774(3) 54.866(3)

298 0.310 Rhombohedral 5.4205(2) 58.607(3) 54.516(3)

298 0.413 Rhombohedral 5.4161(3) 58.464(3) 54.200(5)

298 0.362 Rhombohedral 5.4183(2) 58.531(3) 54.351(3)

298 0.259 Rhombohedral 5.4206(2) 58.609(3) 54.523(3)

298 0.155 Rhombohedral 5.4272(2) 58.863(3) 55.052(3)

298 0.052 Rhombohedral 5.4320(2) 59.028(3) 55.414(5)

343 0.017 Rhombohedral 5.4360(2) 59.211(3) 55.773(3)

343 0.104 Rhombohedral 5.4318(2) 59.088(3) 55.484(3)

343 0.207 Rhombohedral 5.4270(2) 58.913(3) 55.112(3)

343 0.310 Rhombohedral 5.4226(2) 58.737(3) 55.748(3)

343 0.410 Rhombohedral 5.4187(2) 58.576(3) 55.422(3)

343 0.362 Rhombohedral 5.4208(2) 58.648(3) 54.579(3)

343 0.259 Rhombohedral 5.4251(2) 58.820(3) 54.932(3)

343 0.155 Rhombohedral 5.4296(2) 59.000(3) 55.303(3)

343 0.052 Rhombohedral 5.4348(2) 59.155(3) 55.665(3)

388 0.017 Rhombohedral 5.4381(2) 59.359(3) 56.030(5)

388 0.103 Rhombohedral 5.4344(2) 59.222(3) 55.740(3)

388 0.207 Rhombohedral 5.4295(2) 59.057(3) 55.375(5)

388 0.310 Rhombohedral 5.4249(2) 58.877(3) 55.001(3)

388 0.405 Rhombohedral 5.4214(2) 58.709(3) 54.677(3)

388 0.362 Rhombohedral 5.4235(2) 58.793(3) 54.847(3)

388 0.259 Rhombohedral 5.4242(2) 58.821(3) 54.906(3)

388 0.155 Rhombohedral 5.4321(2) 59.138(3) 55.557(3)

388 0.052 Rhombohedral 5.4370(2) 59.286(3) 55.904(3)
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T (K) P (GPa) Structure a (Å) αR (◦) V/Z (Å3)

433 0.017 Rhombohedral 5.4392(3) 59.563(3) 56.329(5)

433 0.103 Rhombohedral 5.4361(3) 59.386(3) 55.005(4)

433 0.207 Rhombohedral 5.4321(2) 59.207(3) 55.648(5)

433 0.310 Rhombohedral 5.4276(2) 59.027(3) 55.277(5)

433 0.404 Rhombohedral 5.4243(3) 58.871(3) 55.975(5)

433 0.362 Rhombohedral 5.4257(3) 58.957(3) 55.129(5)

433 0.259 Rhombohedral 5.4266(2) 58.977(3) 55.181(5)

433 0.155 Rhombohedral 5.4341(2) 59.292(3) 55.822(5)

433 0.052 Rhombohedral 5.4381(3) 59.479(3) 56.188(5)

478 0.017 Cubic 3.8411(1) – 56.672(5)

478 0.103 Rhombohedral 5.4365(3) 59.639(4) 56.346(5)

478 0.207 Rhombohedral 5.4336(3) 59.389(3) 55.930(4)

478 0.310 Rhombohedral 5.4298(2) 59.196(3) 55.564(5)

478 0.259 Rhombohedral 5.4320(2) 59.288(3) 55.749(5)

478 0.155 Rhombohedral 5.4353(3) 59.494(3) 56.120(5)

478 0.052 Cubic 3.8377(2) – 56.525(7)

523 0.016 Cubic 3.8457(1) – 56.879(3)

523 0.103 Cubic 3.8420(1) – 56.712(4)

523 0.207 Rhombohedral 5.4323(4) 59.705(4) 56.300(6)

523 0.310 Rhombohedral 5.4310(2) 59.399(3) 55.862(4)

523 0.259 Rhombohedral 5.4324(3) 59.513(3) 56.055(5)

523 0.155 Cubic 3.8375(1) – 56.517(5)

523 0.052 Cubic 3.8444(1) – 56.819(3)
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Figure D.1: Variable-temperature (Cryostream, 100-500 K) PXRD data for Sc0.95Al0.05F3

(top) and Sc0.90Al0.10F3 (bottom). The plots in the left column show the full angular range
used for Rietveld analysis, while those on the right show a portion of the data. Within each
panel, patterns are arranged in order of collection from bottom to top, which followed the
temperature ramp in Figure 2.2b. Reproduced from ref. [248].
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Figure D.2: Variable-temperature (Cryostream, 100-500 K) PXRD data for Sc0.85Al0.15F3

(top), Sc0.80Al0.20F3 (middle), and Sc0.75Al0.25F3 (bottom). The plots in the left column
show the full angular range used for Rietveld analysis, while those on the right show a
portion of the data. Within each panel, patterns are arranged in order of collection from
bottom to top, which followed the temperature ramp in Figure 2.2b. Reproduced from
ref. [248].
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Figure D.3: Variable-temperature (Cryostream, 100-500 K) PXRD data for Sc0.70Al0.30F3

(top), Sc0.60Al0.40F3 (middle), and Sc0.50Al0.50F3 (bottom). The plots in the left column
show the full angular range used for Rietveld analysis, while those on the right show a
portion of the data. Within each panel, patterns are arranged in order of collection from
bottom to top, which followed the temperature ramp in Figure 2.2b. Reproduced from
ref. [248].
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Figure D.4: Variable-temperature (furnace, 300-1200 K) PXRD data for ScF3 (top) and
Sc0.90Al0.10F3 (bottom). The plots in the left column show the full angular range used for
Rietveld analysis, while those on the right show a portion of the data. Within each panel,
patterns are arranged in order of collection from bottom to top. Reproduced from ref. [248].
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Figure D.5: Variable-temperature (furnace, 300-1200 K) PXRD data for Sc0.85Al0.15F3

(top) and Sc0.75Al0.25F3 (bottom). The plots in the left column show the full angular range
used for Rietveld analysis, while those on the right show a portion of the data. Within each
panel, patterns are arranged in order of collection from bottom to top. Reproduced from
ref. [248].
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Figure D.6: Variable-temperature (furnace, 300-1200 K) PXRD data for Sc0.70Al0.30F3

(top), Sc0.60Al0.40F3 (middle), and Sc0.50Al0.50F3 (bottom). The plots in the left column
show the full angular range used for Rietveld analysis, while those on the right show a
portion of the data. Within each panel, patterns are arranged in order of collection from
bottom to top. Reproduced from ref. [248].
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Figure D.7: Temperature dependence of rhombohedral (2 1 0) peak intensity in variable-
temperature powder X-ray diffraction patterns for Sc1−xAlxF3, used for estimation of phase
transition temperature. The intensity in panel (g) does not drop to zero at the transition
temperature, indicating the presence of residual scattering, perhaps from an impurity. Re-
produced from ref. [248].
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Figure D.8: Temperature dependence of various unit cell parameters for Sc1−xAlxF3:
hexagonal unit cell lengths (a) aH and (b) cH , (c) rhombohedral unit cell angle αR, (d)
fractional x-coordinate of F in the rhombohedral cell, (e) octahedral tilt angle ω, and (f)
M–F–M bond angle (M = Sc, Al). Data from both furnace and Cryostream measurements
are shown. The reported values come from refinements using a rhombohedral model, even
at temperatures where the samples were cubic. It is unclear why the values for the x =
0.50 sample deviate significantly at high temperatures from what would be expected for a
cubic structure. The non-ideal values of xF for samples that are cubic (xF = 0.75 is the
ideal value) presumably contain a contribution from the static disorder. Reproduced from
ref. [248].
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Figure D.9: Atomic displacement parameters for Sc1−xAlxF3, determined by Rietveld anal-
yses of variable-temperature PXRD data using a cubic structural model. Values are only
shown for the temperature ranges where the samples are cubic. In cases where no values
are shown above 500 K, the reported results come from the analysis of Cryostream data; in
cases where values are shown above 500 K, the reported results come from furnace experi-
ments. Panel (a) shows Uiso of Sc and Al, which were constrained to be equal, while panel
(b) shows Uij of F. The estimated value of U22 at 0 K for each sample was extrapolated
from (b) and plotted in (c). The values from the Cryostream and furnace measurements are
affected by absorption to differing extents, complicating a comparison of the values from
these two sources. However, increasing the amount of Al3+ in the solid solutions leads to an
initial increase in the 0 K extrapolated values of U22, suggesting the presence of increasing
amounts of static disorder. Reproduced from ref. [248].
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Figure D.10: Composition dependence of volume CTE for Sc1−xAlxF3 at 300, 400, 500,
600, 700, and 800 K. The CTEs for pure ScF3 (x = 0.00) for temperatures ≤500 K are also
found in Figure 6.8. Reproduced from ref. [248].

2.44

2.45

2.46

2.47

2.48

2.49

2.50

2.51

2.52

2.53

 100  200  300  400  500  600  700  800  900

c
H

/a
H

Temperature (K)

x = 0.05
x = 0.10
x = 0.15
x = 0.20
x = 0.25
x = 0.30
x = 0.40
x = 0.50

Figure D.11: Temperature dependence of the ratio of hexagonal lattice parameters cH and
aH for each Sc1−xAlxF3 sample, each of which was extracted from Rietveld analyses of
variable-temperature PXRD data. The expected value of cH/aH above the rhombohedral-
to-cubic phase transition is

√
6 = 2.449. Reproduced from ref. [248].

240



0.000

0.103

0.207
0.310
0.413
0.362
0.258
0.155
0.052

 8  9  10  11  12  13  14  15  16

P
re

ss
ur

e 
(G

P
a)

2θ (°)

(a)298 K

0.017

0.103

0.207
0.310
0.414
0.362
0.259
0.155
0.052

 8  9  10  11  12  13  14  15  16

P
re

ss
ur

e 
(G

P
a)

2θ (°)

(b)343 K

0.017

0.103

0.207
0.310
0.413
0.362
0.258
0.155
0.052

 8  9  10  11  12  13  14  15  16

P
re

ss
ur

e 
(G

P
a)

2θ (°)

(c)388 K

0.017

0.103

0.207
0.310
0.414
0.362
0.259
0.155
0.052

 8  9  10  11  12  13  14  15  16

P
re

ss
ur

e 
(G

P
a)

2θ (°)

(d)433 K

0.016

0.103

0.207
0.310
0.259
0.155
0.052

 8  9  10  11  12  13  14  15  16

P
re

ss
ur

e 
(G

P
a)

2θ (°)

(e)478 K

0.017

0.103

0.207
0.310
0.259
0.155
0.052

 8  9  10  11  12  13  14  15  16

P
re

ss
ur

e 
(G

P
a)

2θ (°)

(f)523 K

Figure D.12: Variable-pressure/temperature PXRD data for Sc0.95Al0.05F3. Each panel
represents a particular temperature, and the patterns within each panel were collected at
different pressures, arranged in order of collection from bottom to top. A cubic model was
fit to all patterns. Peaks from the tungsten BRIM body and rhenium blade are marked by
black and magenta arrows, respectively. Reproduced from ref. [248].
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Figure D.13: Variable-pressure/temperature PXRD data for Sc0.90Al0.10F3. Each panel
represents a particular temperature, and the patterns within each panel were collected at
different pressures, arranged in order of collection from bottom to top. A cubic model was fit
to blue patterns, while a rhombohedral model was fit to red ones. Peaks from the tungsten
BRIM body and rhenium blade are marked by black and magenta arrows, respectively.
Reproduced from ref. [248].
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Figure D.14: Variable-pressure/temperature PXRD data for Sc0.85Al0.15F3. Each panel
represents a particular temperature, and the patterns within each panel were collected at
different pressures, arranged in order of collection from bottom to top. A cubic model was fit
to blue patterns, while a rhombohedral model was fit to red ones. Peaks from the tungsten
BRIM body and rhenium blade are marked by black and magenta arrows, respectively.
Reproduced from ref. [248].
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Figure D.15: Variable-pressure/temperature PXRD data for Sc0.80Al0.20F3. Each panel
represents a particular temperature, and the patterns within each panel were collected at
different pressures, arranged in order of collection from bottom to top. A cubic model was fit
to blue patterns, while a rhombohedral model was fit to red ones. Peaks from the tungsten
BRIM body and rhenium blade are marked by black and magenta arrows, respectively.
Reproduced from ref. [248].
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Figure D.16: Variable-pressure/temperature PXRD data for Sc0.60Al0.40F3. Each panel
represents a particular temperature, and the patterns within each panel were collected at
different pressures, arranged in order of collection from bottom to top. A cubic model was fit
to blue patterns, while a rhombohedral model was fit to red ones. Peaks from the tungsten
BRIM body and rhenium blade are marked by black and magenta arrows, respectively.
Reproduced from ref. [248].
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Figure D.17: Pressure-composition phase diagrams at constant temperature for
Sc1−xAlxF3. Blue squares (red diamonds) indicate that the structure of the material is
cubic (rhombohedral) at the specified conditions. Reproduced from ref. [248].
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Figure D.18: Pressure-temperature phase diagrams for various Sc1−xAlxF3 compositions.
Blue squares (red diamonds) indicate that the structure of the material is cubic (rhom-
bohedral) at the specified conditions. Dashed lines indicate estimated phase boundaries.
Reproduced from ref. [248].
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APPENDIX E

CHAPTER 9 SUPPORTING MATERIAL
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Figure E.1: Pair distribution functions G(r) of TaO2F, calculated from X-ray total scatter-
ing data collected at selected temperatures. The high-r portion changes little with temper-
ature due to the very high level of static disorder that is present even at low temperatures.
Reproduced from ref. [218].

E.1 Peak fitting to variable-temperature pair distribution functions

Peak fitting to the variable-temperature pair distribution functions (PDFs) was accom-

plished using Fityk [273]. A linear background and a total of seven Gaussian functions were

fit to each PDF; these fits used a fixed r range of 1.5 to 4.6 Å. The eight functions below

were used in the fit, which first refined functions 1, 2, and 3; the other functions were refined

subsequently:

1. Linear background with negative slope and y-intercept of zero;

2. Ta–O correlation peak = Gaussian centered ∼1.856 Å, constrained to have the same

width as Peak 3 but twice its height;

3. Ta–F correlation peak = Gaussian centered ∼2.056 Å, constrained to have the same

width as Peak 2 but half its height;
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4. Ta–(O)–Ta correlation peak = Gaussian centered ∼3.766 Å, constrained to have the

same width as Peak 5 but twice its height;

5. Ta–(F)–Ta correlation peak = Gaussian centered ∼4.112 Å, constrained to have the

same width as Peak 4 but half its height;

6. Shoulder from next-nearest-neighbor Ta–(O/F) correlations = Gaussian centered ∼4.303

Å, constrained to have the same width as Peak 7;

7. Shoulder from next-nearest-neighbor Ta–(O/F) correlations = Gaussian centered ∼4.503

Å, constrained to have the same width as Peak 6;

8. Broad peak to model ripples between Peaks 3 and 4 = Gaussian of fixed center (2.7

Å) and width (FWHM = 0.8 Å) but refined height.

E.2 Supercell model for the local structure of TaO2F

The necessary parameters for constructing the supercell model are summarized in Table

E.1. The lattice constant of the average structure for TaO2F was determined as a function

of temperature using PDFgui [272], and the temperature-averaged lattice constant a (80-

487 K) was used for supercell construction. The unit cell dimension for the supercell is

simply 3a. As described above, peak fitting with Fityk [273] to the variable-temperature

PDFs yielded temperature-averaged values for Ta–X and Ta–(X)–Ta separations (80-487

K), and from those values, the average displacements δO and δF of the anions perpendicular

to the Ta· · ·Ta bond axis were calculated using geometry. The displacements of atoms

along one-dimensional chains were calculated using the displacement factor σ, equal to the

difference between a and the Ta–(O)–Ta separation. For construction of the supercell, the

displacement factors were converted to fractions of 3a, as summarized in Table E.1. The

fractional coordinates of the atoms in the final supercell model are given in Table E.2, and

a view of the structure is given in Figure E.2.

As PDFgui does not allow for partial occupancies, the 25% site-occupied O/F were

modeled as 100% site-occupied helium atoms. Also, Ta and He were assigned separate Uxx

parameters for the refinement, with the helium atoms representing oxygen having a different
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U parameter than those representing fluorine. This model was used for the fits shown in

parts c and d of Figure 9.1.

During the fits of the supercell model to the PDF, the unit cell constant, scale factor,

low-r peak sharpening factor (sratio), resolution damping factor (Qdamp), and isotropic

atomic displacement parameters (Uxx) for each atom type (Ta, He representing O, and He

representing F) were refined.

Table E.1: Parameters used to construct the supercell model for the local structure of
TaO2F (derived from variable-temperature PDFs).

Parameter Length (Å) Fraction of supercell lattice constant (3a)

a 3.884 —
3a 11.65 —

Ta–O–Ta 3.773 —
σ = a− (Ta–O–Ta) 0.111 0.01

δF 0.45 0.039
δO 0.13 0.011

Table E.2: Fractional coordinates and site occupancies of the atoms in the TaO2F

supercell model.

Atom # Atom type x y z Site occupancy

1 Ta 0 0 0 1

2 Ta 0 0 0.32381 1

3 Ta 0 0 0.64761 1

4 Ta 0 0.32381 0 1

5 Ta 0 0.35239 0.32381 1

6 Ta 0 0.32381 0.67619 1

7 Ta 0 0.67619 0 1

8 Ta 0 0.67619 0.35239 1

9 Ta 0 0.64761 0.67619 1

10 Ta 0.35239 0 0 1

Table E.2: Continued on next page

250



Table E.2: Continued from previous page

Atom # Atom type x y z Site occupancy

11 Ta 0.32381 0 0.32381 1

12 Ta 0.32381 0 0.64761 1

13 Ta 0.35239 0.32381 0 1

14 Ta 0.32381 0.35239 0.32381 1

15 Ta 0.32381 0.32381 0.67619 1

16 Ta 0.35239 0.67619 0 1

17 Ta 0.32381 0.67619 0.35239 1

18 Ta 0.32381 0.64761 0.67619 1

19 Ta 0.67619 0 0 1

20 Ta 0.64761 0 0.32381 1

21 Ta 0.67619 0 0.64761 1

22 Ta 0.67619 0.32381 0 1

23 Ta 0.64761 0.35239 0.32381 1

24 Ta 0.67619 0.32381 0.67619 1

25 Ta 0.67619 0.67619 0 1

26 Ta 0.64761 0.67619 0.35239 1

27 Ta 0.67619 0.64761 0.67619 1

28 O 0.01116 0 0.1619 0.25

29 O 0 0.01116 0.1619 0.25

30 O -0.0112 0 0.1619 0.25

31 O 0 -0.0112 0.1619 0.25

32 O 0.01116 0 0.48571 0.25

33 O 0 0.01116 0.48571 0.25

34 O -0.0112 0 0.48571 0.25

35 O 0 -0.0112 0.48571 0.25

36 F 0.03862 0 0.82381 0.25
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Atom # Atom type x y z Site occupancy

37 F 0 0.03862 0.82381 0.25

38 F -0.0386 0 0.82381 0.25

39 F 0 -0.0386 0.82381 0.25

40 O 0.01116 0.3381 0.1619 0.25

41 O 0 0.34925 0.1619 0.25

42 O -0.0112 0.3381 0.1619 0.25

43 O 0 0.32694 0.1619 0.25

44 F 0.03862 0.3381 0.5 0.25

45 F 0 0.37672 0.5 0.25

46 F -0.0386 0.3381 0.5 0.25

47 F 0 0.29948 0.5 0.25

48 O 0.01116 0.32381 0.8381 0.25

49 O 0 0.33496 0.8381 0.25

50 O -0.0112 0.32381 0.8381 0.25

51 O 0 0.31265 0.8381 0.25

52 F 0.03862 0.67619 0.17619 0.25

53 F 0 0.71481 0.17619 0.25

54 F -0.0386 0.67619 0.17619 0.25

55 F 0 0.63757 0.17619 0.25

56 O 0.01116 0.6619 0.51429 0.25

57 O 0 0.67306 0.51429 0.25

58 O -0.0112 0.6619 0.51429 0.25

59 O 0 0.65075 0.51429 0.25

60 O 0.01116 0.6619 0.8381 0.25

61 O 0 0.67306 0.8381 0.25

62 O -0.0112 0.6619 0.8381 0.25
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Atom # Atom type x y z Site occupancy

63 O 0 0.65075 0.8381 0.25

64 O 0.34925 0 0.1619 0.25

65 O 0.3381 0.01116 0.1619 0.25

66 O 0.32694 0 0.1619 0.25

67 O 0.3381 -0.0112 0.1619 0.25

68 O 0.33496 0 0.48571 0.25

69 O 0.32381 0.01116 0.48571 0.25

70 O 0.31265 0 0.48571 0.25

71 O 0.32381 -0.0112 0.48571 0.25

72 F 0.37672 0 0.82381 0.25

73 F 0.3381 0.03862 0.82381 0.25

74 F 0.29948 0 0.82381 0.25

75 F 0.3381 -0.0386 0.82381 0.25

76 O 0.34925 0.3381 0.1619 0.25

77 O 0.3381 0.34925 0.1619 0.25

78 O 0.32694 0.3381 0.1619 0.25

79 O 0.3381 0.32694 0.1619 0.25

80 F 0.36243 0.3381 0.5 0.25

81 F 0.32381 0.37672 0.5 0.25

82 F 0.28519 0.3381 0.5 0.25

83 F 0.32381 0.29948 0.5 0.25

84 O 0.34925 0.32381 0.8381 0.25

85 O 0.3381 0.33496 0.8381 0.25

86 O 0.32694 0.32381 0.8381 0.25

87 O 0.3381 0.31265 0.8381 0.25

88 F 0.37672 0.67619 0.17619 0.25
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Atom # Atom type x y z Site occupancy

89 F 0.3381 0.71481 0.17619 0.25

90 F 0.29948 0.67619 0.17619 0.25

91 F 0.3381 0.63757 0.17619 0.25

92 O 0.33496 0.6619 0.51429 0.25

93 O 0.32381 0.67306 0.51429 0.25

94 O 0.31265 0.6619 0.51429 0.25

95 O 0.32381 0.65075 0.51429 0.25

96 O 0.34925 0.6619 0.8381 0.25

97 O 0.3381 0.67306 0.8381 0.25

98 O 0.32694 0.6619 0.8381 0.25

99 O 0.3381 0.65075 0.8381 0.25

100 O 0.67306 0 0.1619 0.25

101 O 0.6619 0.01116 0.1619 0.25

102 O 0.65075 0 0.1619 0.25

103 O 0.6619 -0.0112 0.1619 0.25

104 O 0.67306 0 0.48571 0.25

105 O 0.6619 0.01116 0.48571 0.25

106 O 0.65075 0 0.48571 0.25

107 O 0.6619 -0.0112 0.48571 0.25

108 F 0.71481 0 0.82381 0.25

109 F 0.67619 0.03862 0.82381 0.25

110 F 0.63757 0 0.82381 0.25

111 F 0.67619 -0.0386 0.82381 0.25

112 O 0.67306 0.3381 0.1619 0.25

113 O 0.6619 0.34925 0.1619 0.25

114 O 0.65075 0.3381 0.1619 0.25

Table E.2: Continued on next page

254



Table E.2: Continued from previous page
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115 O 0.6619 0.32694 0.1619 0.25

116 F 0.70052 0.3381 0.5 0.25

117 F 0.6619 0.37672 0.5 0.25

118 F 0.62328 0.3381 0.5 0.25

119 F 0.6619 0.29948 0.5 0.25

120 O 0.68735 0.32381 0.8381 0.25

121 O 0.67619 0.33496 0.8381 0.25

122 O 0.66504 0.32381 0.8381 0.25

123 O 0.67619 0.31265 0.8381 0.25

124 F 0.70052 0.67619 0.17619 0.25

125 F 0.6619 0.71481 0.17619 0.25

126 F 0.62328 0.67619 0.17619 0.25

127 F 0.6619 0.63757 0.17619 0.25

128 O 0.67306 0.6619 0.51429 0.25

129 O 0.6619 0.67306 0.51429 0.25

130 O 0.65075 0.6619 0.51429 0.25

131 O 0.6619 0.65075 0.51429 0.25

132 O 0.68735 0.6619 0.8381 0.25

133 O 0.67619 0.67306 0.8381 0.25

134 O 0.66504 0.6619 0.8381 0.25

135 O 0.67619 0.65075 0.8381 0.25

136 O 0.01116 0.1619 0 0.25

137 O 0 0.1619 0.01116 0.25

138 O -0.0112 0.1619 0 0.25

139 O 0 0.1619 -0.0112 0.25

140 F 0.03862 0.5 0 0.25
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Atom # Atom type x y z Site occupancy

141 F 0 0.5 0.03862 0.25

142 F -0.0386 0.5 0 0.25

143 F 0 0.5 -0.0386 0.25

144 O 0.01116 0.8381 0 0.25

145 O 0 0.8381 0.01116 0.25

146 O -0.0112 0.8381 0 0.25

147 O 0 0.8381 -0.0112 0.25

148 F 0.03862 0.17619 0.32381 0.25

149 F 0 0.17619 0.36243 0.25

150 F -0.0386 0.17619 0.32381 0.25

151 F 0 0.17619 0.28519 0.25

152 O 0.01116 0.51429 0.3381 0.25

153 O 0 0.51429 0.34925 0.25

154 O -0.0112 0.51429 0.3381 0.25

155 O 0 0.51429 0.32694 0.25

156 O 0.01116 0.8381 0.3381 0.25

157 O 0 0.8381 0.34925 0.25

158 O -0.0112 0.8381 0.3381 0.25

159 O 0 0.8381 0.32694 0.25

160 O 0.01116 0.1619 0.6619 0.25

161 O 0 0.1619 0.67306 0.25

162 O -0.0112 0.1619 0.6619 0.25

163 O 0 0.1619 0.65075 0.25

164 O 0.01116 0.48571 0.67619 0.25

165 O 0 0.48571 0.68735 0.25

166 O -0.0112 0.48571 0.67619 0.25
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167 O 0 0.48571 0.66504 0.25

168 F 0.01116 0.82381 0.6619 0.25

169 F 0 0.82381 0.70052 0.25

170 F -0.0112 0.82381 0.6619 0.25

171 F 0 0.82381 0.62328 0.25

172 O 0.36354 0.1619 0 0.25

173 O 0.35239 0.1619 0.01116 0.25

174 O 0.34123 0.1619 0 0.25

175 O 0.35239 0.1619 -0.0112 0.25

176 F 0.39101 0.5 0 0.25

177 F 0.35239 0.5 0.03862 0.25

178 F 0.31377 0.5 0 0.25

179 F 0.35239 0.5 -0.0386 0.25

180 O 0.36354 0.8381 0 0.25

181 O 0.35239 0.8381 0.01116 0.25

182 O 0.34123 0.8381 0 0.25

183 O 0.35239 0.8381 -0.0112 0.25

184 F 0.36243 0.17619 0.32381 0.25

185 F 0.32381 0.17619 0.36243 0.25

186 F 0.28519 0.17619 0.32381 0.25

187 F 0.32381 0.17619 0.28519 0.25

188 O 0.33496 0.51429 0.3381 0.25

189 O 0.32381 0.51429 0.34925 0.25

190 O 0.31265 0.51429 0.3381 0.25

191 O 0.32381 0.51429 0.32694 0.25

192 O 0.33496 0.8381 0.3381 0.25
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Atom # Atom type x y z Site occupancy

193 O 0.32381 0.8381 0.34925 0.25

194 O 0.31265 0.8381 0.3381 0.25

195 O 0.32381 0.8381 0.32694 0.25

196 O 0.33496 0.1619 0.6619 0.25

197 O 0.32381 0.1619 0.67306 0.25

198 O 0.31265 0.1619 0.6619 0.25

199 O 0.32381 0.1619 0.65075 0.25

200 O 0.33496 0.48571 0.67619 0.25

201 O 0.32381 0.48571 0.68735 0.25

202 O 0.31265 0.48571 0.67619 0.25

203 O 0.32381 0.48571 0.66504 0.25

204 F 0.36243 0.82381 0.6619 0.25

205 F 0.32381 0.82381 0.70052 0.25

206 F 0.28519 0.82381 0.6619 0.25

207 F 0.32381 0.82381 0.62328 0.25

208 O 0.68735 0.1619 0 0.25

209 O 0.67619 0.1619 0.01116 0.25

210 O 0.66504 0.1619 0 0.25

211 O 0.67619 0.1619 -0.0112 0.25

212 F 0.71481 0.5 0 0.25

213 F 0.67619 0.5 0.03862 0.25

214 F 0.63757 0.5 0 0.25

215 F 0.67619 0.5 -0.0386 0.25

216 O 0.68735 0.8381 0 0.25

217 O 0.67619 0.8381 0.01116 0.25

218 O 0.66504 0.8381 0 0.25
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Atom # Atom type x y z Site occupancy

219 O 0.67619 0.8381 -0.0112 0.25

220 F 0.68623 0.17619 0.32381 0.25

221 F 0.64761 0.17619 0.36243 0.25

222 F 0.60899 0.17619 0.32381 0.25

223 F 0.64761 0.17619 0.28519 0.25

224 O 0.65877 0.51429 0.3381 0.25

225 O 0.64761 0.51429 0.34925 0.25

226 O 0.63646 0.51429 0.3381 0.25

227 O 0.64761 0.51429 0.32694 0.25

228 O 0.65877 0.8381 0.3381 0.25

229 O 0.64761 0.8381 0.34925 0.25

230 O 0.63646 0.8381 0.3381 0.25

231 O 0.64761 0.8381 0.32694 0.25

232 O 0.68735 0.1619 0.6619 0.25

233 O 0.67619 0.1619 0.67306 0.25

234 O 0.66504 0.1619 0.6619 0.25

235 O 0.67619 0.1619 0.65075 0.25

236 O 0.68735 0.48571 0.67619 0.25

237 O 0.67619 0.48571 0.68735 0.25

238 O 0.66504 0.48571 0.67619 0.25

239 O 0.67619 0.48571 0.66504 0.25

240 F 0.71481 0.82381 0.6619 0.25

241 F 0.67619 0.82381 0.70052 0.25

242 F 0.63757 0.82381 0.6619 0.25

243 F 0.67619 0.82381 0.62328 0.25

244 F 0.17619 0.03862 0 0.25
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Atom # Atom type x y z Site occupancy

245 F 0.17619 0 0.03862 0.25

246 F 0.17619 -0.0386 0 0.25

247 F 0.17619 0 -0.0386 0.25

248 O 0.51429 0.01116 0 0.25

249 O 0.51429 0 0.01116 0.25

250 O 0.51429 -0.0112 0 0.25

251 O 0.51429 0 -0.0112 0.25

252 O 0.8381 0.01116 0 0.25

253 O 0.8381 0 0.01116 0.25

254 O 0.8381 -0.0112 0 0.25

255 O 0.8381 0 -0.0112 0.25

256 O 0.1619 0.01116 0.32381 0.25

257 O 0.1619 0 0.33496 0.25

258 O 0.1619 -0.0112 0.32381 0.25

259 O 0.1619 0 0.31265 0.25

260 O 0.48571 0.01116 0.32381 0.25

261 O 0.48571 0 0.33496 0.25

262 O 0.48571 -0.0112 0.32381 0.25

263 O 0.48571 0 0.31265 0.25

264 F 0.82381 0.03862 0.32381 0.25

265 F 0.82381 0 0.36243 0.25

266 F 0.82381 -0.0386 0.32381 0.25

267 F 0.82381 0 0.28519 0.25

268 O 0.1619 0.01116 0.64761 0.25

269 O 0.1619 0 0.65877 0.25

270 O 0.1619 -0.0112 0.64761 0.25

Table E.2: Continued on next page

260



Table E.2: Continued from previous page

Atom # Atom type x y z Site occupancy

271 O 0.1619 0 0.63646 0.25

272 F 0.5 0.03862 0.64761 0.25

273 F 0.5 0 0.68623 0.25

274 F 0.5 -0.0386 0.64761 0.25

275 F 0.5 0 0.60899 0.25

276 O 0.8381 0.01116 0.64761 0.25

277 O 0.8381 0 0.65877 0.25

278 O 0.8381 -0.0112 0.64761 0.25

279 O 0.8381 0 0.63646 0.25

280 F 0.17619 0.36243 0 0.25

281 F 0.17619 0.32381 0.03862 0.25

282 F 0.17619 0.28519 0 0.25

283 F 0.17619 0.32381 -0.0386 0.25

284 O 0.51429 0.33496 0 0.25

285 O 0.51429 0.32381 0.01116 0.25

286 O 0.51429 0.31265 0 0.25

287 O 0.51429 0.32381 -0.0112 0.25

288 O 0.8381 0.33496 0 0.25

289 O 0.8381 0.32381 0.01116 0.25

290 O 0.8381 0.31265 0 0.25

291 O 0.8381 0.32381 -0.0112 0.25

292 O 0.1619 0.36354 0.32381 0.25

293 O 0.1619 0.35239 0.33496 0.25

294 O 0.1619 0.34123 0.32381 0.25

295 O 0.1619 0.35239 0.31265 0.25

296 O 0.48571 0.36354 0.32381 0.25
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297 O 0.48571 0.35239 0.33496 0.25

298 O 0.48571 0.34123 0.32381 0.25

299 O 0.48571 0.35239 0.31265 0.25

300 F 0.82381 0.39101 0.32381 0.25

301 F 0.82381 0.35239 0.36243 0.25

302 F 0.82381 0.31377 0.32381 0.25

303 F 0.82381 0.35239 0.28519 0.25

304 O 0.1619 0.33496 0.67619 0.25

305 O 0.1619 0.32381 0.68735 0.25

306 O 0.1619 0.31265 0.67619 0.25

307 O 0.1619 0.32381 0.66504 0.25

308 F 0.5 0.36243 0.67619 0.25

309 F 0.5 0.32381 0.71481 0.25

310 F 0.5 0.28519 0.67619 0.25

311 F 0.5 0.32381 0.63757 0.25

312 O 0.8381 0.33496 0.67619 0.25

313 O 0.8381 0.32381 0.68735 0.25

314 O 0.8381 0.31265 0.67619 0.25

315 O 0.8381 0.32381 0.66504 0.25

316 F 0.17619 0.71481 0 0.25

317 F 0.17619 0.67619 0.03862 0.25

318 F 0.17619 0.63757 0 0.25

319 F 0.17619 0.67619 -0.0386 0.25

320 O 0.51429 0.68735 0 0.25

321 O 0.51429 0.67619 0.01116 0.25

322 O 0.51429 0.66504 0 0.25
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323 O 0.51429 0.67619 -0.0112 0.25

324 O 0.8381 0.68735 0 0.25

325 O 0.8381 0.67619 0.01116 0.25

326 O 0.8381 0.66504 0 0.25

327 O 0.8381 0.67619 -0.0112 0.25

328 O 0.1619 0.68735 0.35239 0.25

329 O 0.1619 0.67619 0.36354 0.25

330 O 0.1619 0.66504 0.35239 0.25

331 O 0.1619 0.67619 0.34123 0.25

332 O 0.48571 0.68735 0.35239 0.25

333 O 0.48571 0.67619 0.36354 0.25

334 O 0.48571 0.66504 0.35239 0.25

335 O 0.48571 0.67619 0.34123 0.25

336 F 0.82381 0.71481 0.35239 0.25

337 F 0.82381 0.67619 0.39101 0.25

338 F 0.82381 0.63757 0.35239 0.25

339 F 0.82381 0.67619 0.31377 0.25

340 O 0.1619 0.65877 0.67619 0.25

341 O 0.1619 0.64761 0.68735 0.25

342 O 0.1619 0.63646 0.67619 0.25

343 O 0.1619 0.64761 0.66504 0.25

344 F 0.5 0.68623 0.67619 0.25

345 F 0.5 0.64761 0.71481 0.25

346 F 0.5 0.60899 0.67619 0.25

347 F 0.5 0.64761 0.63757 0.25

348 O 0.8381 0.65877 0.67619 0.25
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349 O 0.8381 0.64761 0.68735 0.25

350 O 0.8381 0.63646 0.67619 0.25

351 O 0.8381 0.64761 0.66504 0.25
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Figure E.2: TaO2F supercell model, viewed down the crystallographic a–axis. This figure
emphasizes the magnitude of the displacements of the F atoms relative to those of the O
atoms. Reproduced from ref. [218].
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Table E.3: Cubic lattice constant a, Ta–X and Ta–(X)–Ta (X = O, F; denoted NNX

in the table) separations, Ta–X–Ta bond angles (denoted BAX), and anion off-axis dis-

placement δX in TaO2F at various temperatures T (80-487 K). Lattice constants were

determined by fitting the simple cubic structural model to variable-temperature PDFs with

PDFgui [272]. Interatomic separations were determined by fitting Gaussian peaks to the

PDFs with Fityk [273], as described above. Bond angles and displacements were calculated

by geometry from the interatomic separations. Estimated standard deviations (ESDs) from

the least-squares fits for the interatomic separations are generally on the order of 0.001,

except for those for the Ta–F separations, which are on the order of 0.01. ESDs for the

lattice constant are all ∼0.0006.

T (K) a (Å) Ta–O (Å) Ta–F (Å) NNO (Å) NNF (Å) BAO (◦) BAF (◦) δO (Å) δF (Å)

80 3.8839 1.89035 2.09973 3.77244 4.12003 172.4238 157.6771 0.124889 0.406453

84.2 3.88361 1.88849 2.09442 3.77273 4.11825 174.5634 158.9329 0.089563 0.382883

88.3 3.88354 1.88903 2.10296 3.77273 4.12492 173.9124 157.4743 0.100307 0.41073

92.5 3.88359 1.88788 2.09438 3.77287 4.11797 175.5162 158.9028 0.07385 0.383417

96.6 3.8836 1.88694 2.09692 3.77302 4.11793 177.5536 158.1642 0.040281 0.397161

100.8 3.88361 1.88839 2.09841 3.77296 4.11897 174.8456 157.894 0.084912 0.402301
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T (K) a (Å) Ta—O (Å) Ta—F (Å) NNO (Å) NNF (Å) BAO (◦) BAF (◦) δO (Å) δF (Å)

104.9 3.88363 1.88985 2.09955 3.7728 4.1179 173.0748 157.428 0.114141 0.410895

107.9 3.88363 1.89186 2.09699 3.77293 4.11795 171.3439 158.1473 0.142773 0.397478

111 3.88364 1.89171 2.10354 3.77285 4.11801 171.4323 156.3782 0.141306 0.430557

114 3.88365 1.89233 2.10716 3.7728 4.11827 170.9258 155.4879 0.149693 0.44731

117.1 3.88367 1.89291 2.1073 3.77289 4.11887 170.5265 155.5297 0.156312 0.446588

120.1 3.8838 1.89344 2.11157 3.77299 4.1185 170.1823 154.4377 0.162024 0.467137

123.1 3.88384 1.89369 2.1074 3.77293 4.11922 169.9869 155.5496 0.165262 0.446253

126.2 3.88393 1.89342 2.11188 3.77318 4.11915 170.2639 154.4433 0.160678 0.467106

129.2 3.88396 1.89257 2.11212 3.77305 4.11929 170.8387 154.4031 0.151144 0.467882

133.3 3.88401 1.89362 2.10911 3.77318 4.11928 170.1228 155.132 0.163018 0.454123

137.5 3.88402 1.89367 2.10878 3.77312 4.11996 170.0669 155.2997 0.163943 0.451038

141.6 3.88404 1.89309 2.10866 3.77323 4.1192 170.5196 155.233 0.15644 0.452211

145.8 3.88403 1.89306 2.10932 3.7732 4.11914 170.5305 155.0627 0.156258 0.455414

149.9 3.88404 1.89326 2.10893 3.77326 4.1201 170.4072 155.2802 0.158306 0.45142

154.1 3.88389 1.89287 2.10862 3.77321 4.11944 170.6742 155.2733 0.153878 0.451477

158.2 3.88383 1.89286 2.10531 3.77307 4.11948 170.6296 156.1144 0.154611 0.435662

Table E.3: Continued on next page
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Table E.3: Continued from previous page

T (K) a (Å) Ta—O (Å) Ta—F (Å) NNO (Å) NNF (Å) BAO (◦) BAF (◦) δO (Å) δF (Å)

162.4 3.8838 1.89177 2.10732 3.77306 4.11788 171.469 155.398 0.140706 0.448958

166.5 3.88376 1.89212 2.10627 3.77306 4.11873 171.1894 155.7713 0.145336 0.442028

170.7 3.88375 1.89242 2.10495 3.77281 4.11923 170.8611 156.1743 0.150763 0.434512

174.8 3.88374 1.89238 2.1046 3.77293 4.11887 170.9374 156.2172 0.149505 0.433669

178.9 3.88376 1.89256 2.10602 3.77287 4.1186 170.7783 155.8179 0.152139 0.441139

183.1 3.88377 1.89229 2.1095 3.77275 4.11884 170.9372 154.9808 0.149502 0.456924

187.2 3.88378 1.89393 2.1058 3.77279 4.11815 169.7748 155.8153 0.168774 0.441139

191.4 3.88379 1.89186 2.10747 3.77283 4.11911 171.3039 155.5179 0.143432 0.446837

195.5 3.8838 1.89142 2.10184 3.77288 4.11777 171.6827 156.7931 0.137163 0.422758

199.7 3.8838 1.89096 2.10532 3.77299 4.11816 172.1237 155.9389 0.12987 0.438819

203.8 3.88379 1.89149 2.10588 3.77295 4.11814 171.6536 155.7937 0.137646 0.441544

208 3.88379 1.89215 2.10497 3.77311 4.11806 171.1855 156.0154 0.145402 0.437372

212.1 3.8838 1.89053 2.10706 3.77294 4.11756 172.4887 155.4221 0.123833 0.448472

216.3 3.88381 1.89052 2.10531 3.77302 4.11701 172.5351 155.7917 0.123069 0.44146

220.4 3.88383 1.8905 2.10406 3.77304 4.11763 172.563 156.193 0.122607 0.433992

224.6 3.88383 1.89042 2.10593 3.77321 4.1171 172.7187 155.6465 0.120039 0.444199
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Table E.3: Continued from previous page

T (K) a (Å) Ta—O (Å) Ta—F (Å) NNO (Å) NNF (Å) BAO (◦) BAF (◦) δO (Å) δF (Å)

228.7 3.88383 1.89134 2.10701 3.77312 4.11788 171.8513 155.4755 0.134381 0.447501

232.8 3.88383 1.8914 2.1034 3.77308 4.1176 171.7835 156.3602 0.135502 0.430853

237 3.88384 1.89071 2.10551 3.77298 4.11701 172.3424 155.741 0.126253 0.442413

241.1 3.88384 1.88969 2.10431 3.77301 4.11784 173.3459 156.1561 0.109669 0.434706

245.3 3.88385 1.89045 2.10428 3.77307 4.11803 172.6239 156.1889 0.121601 0.43411

249.4 3.88385 1.88953 2.10388 3.77303 4.11778 173.5257 156.2594 0.106699 0.432762

253.6 3.88386 1.88948 2.10254 3.77288 4.11724 173.4988 156.5369 0.107139 0.427502

257.7 3.88386 1.88908 2.10498 3.77316 4.11792 174.104 155.9945 0.097155 0.437749

261.9 3.88386 1.88885 2.10542 3.7732 4.1178 174.4062 155.8665 0.092167 0.440141

266 3.88387 1.88969 2.10287 3.77329 4.11796 173.4938 156.5468 0.107233 0.427392

270.2 3.88388 1.8901 2.10492 3.77317 4.11833 173.0104 156.0636 0.115217 0.436495

274.3 3.88388 1.88967 2.10515 3.77311 4.1184 173.4194 156.0138 0.108457 0.437438

278.6 3.88391 1.88922 2.1064 3.77315 4.1179 173.9356 155.6312 0.099935 0.444574

282.9 3.884 1.88941 2.10473 3.77331 4.11776 173.811 156.0376 0.101995 0.436923

287.2 3.88408 1.88953 2.10519 3.77337 4.11682 173.7109 155.7975 0.10365 0.441331

291.6 3.88414 1.89083 2.10424 3.77333 4.11847 172.3927 156.2574 0.125432 0.432871

Table E.3: Continued on next page
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Table E.3: Continued from previous page

T (K) a (Å) Ta—O (Å) Ta—F (Å) NNO (Å) NNF (Å) BAO (◦) BAF (◦) δO (Å) δF (Å)

295.9 3.88421 1.89051 2.10612 3.77341 4.11749 172.7284 155.6489 0.119885 0.444196

300.2 3.88426 1.89083 2.10611 3.7732 4.11763 172.3336 155.6695 0.126406 0.443824

304.5 3.88429 1.88988 2.10428 3.77341 4.11792 173.3567 156.1744 0.109502 0.434371

308.8 3.8843 1.89024 2.10452 3.77356 4.11886 173.0655 156.2365 0.114317 0.433304

313.1 3.88432 1.88943 2.10778 3.77349 4.11797 173.8902 155.295 0.100693 0.450907

317.5 3.88431 1.89069 2.11011 3.77341 4.1177 172.5587 154.6903 0.12269 0.462278

321.8 3.88418 1.89075 2.10887 3.77358 4.11744 172.5822 154.9595 0.122307 0.45717

326.1 3.88411 1.89077 2.10999 3.77356 4.11755 172.5542 154.7007 0.12277 0.462064

330.4 3.88405 1.89086 2.1111 3.77337 4.1173 172.3837 154.403 0.125584 0.467657

334.7 3.88402 1.89086 2.11204 3.77332 4.11757 172.3609 154.2122 0.125959 0.471293

339.1 3.88399 1.89072 2.11044 3.77337 4.11814 172.5122 154.665 0.123458 0.462804

343.4 3.88398 1.88927 2.11084 3.77318 4.11733 173.8957 154.4689 0.100595 0.466416

347.7 3.88397 1.89022 2.11056 3.77332 4.11804 172.966 154.6237 0.115956 0.463573

352 3.88398 1.88988 2.11315 3.77333 4.11752 173.315 153.9446 0.110189 0.476351

356.3 3.88397 1.89004 2.11057 3.77334 4.11738 173.156 154.5398 0.112816 0.465082

360.6 3.88399 1.88989 2.11138 3.77332 4.11704 173.2994 154.3044 0.110446 0.46949
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Table E.3: Continued from previous page

T (K) a (Å) Ta—O (Å) Ta—F (Å) NNO (Å) NNF (Å) BAO (◦) BAF (◦) δO (Å) δF (Å)

365 3.88399 1.89007 2.11286 3.77329 4.11768 173.1004 154.032 0.113733 0.474716

369.3 3.884 1.89071 2.1108 3.77348 4.1184 172.5728 154.6103 0.12246 0.463866

373.6 3.88401 1.88957 2.10982 3.77331 4.11828 173.6341 154.8327 0.104918 0.459655

377.9 3.88403 1.88919 2.11109 3.77328 4.11802 174.0455 154.4937 0.098124 0.466024

382.1 3.88404 1.88917 2.10724 3.77343 4.11759 174.1574 155.381 0.09628 0.449248

386.3 3.88406 1.88893 2.11091 3.7733 4.11791 174.3692 154.5234 0.092781 0.465452

390.5 3.88406 1.88927 2.11099 3.77331 4.1181 173.9701 154.5276 0.099368 0.465394

394.7 3.88409 1.88968 2.11184 3.77314 4.11756 173.4247 154.2585 0.10837 0.470418

398.9 3.8841 1.89029 2.11192 3.77338 4.11718 172.9267 154.1933 0.116607 0.471607

403.1 3.88412 1.89025 2.11064 3.77323 4.11829 172.8923 154.6353 0.11717 0.463382

407.3 3.88412 1.89053 2.11448 3.77319 4.11723 172.6052 153.6004 0.121914 0.482835

411.4 3.88414 1.89135 2.11733 3.77315 4.11738 171.8556 152.968 0.134312 0.494855

415.6 3.88414 1.89396 2.11568 3.77299 4.11731 169.8225 153.3341 0.167991 0.487895

419.8 3.88417 1.89379 2.11669 3.77312 4.11653 169.9837 153.0138 0.165324 0.493884

424 3.8842 1.89392 2.11683 3.77299 4.11762 169.8497 153.1088 0.16754 0.49221

428.2 3.88425 1.89354 2.1213 3.77297 4.1181 170.105 152.1706 0.163304 0.510124

Table E.3: Continued on next page
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Table E.3: Continued from previous page

T (K) a (Å) Ta—O (Å) Ta—F (Å) NNO (Å) NNF (Å) BAO (◦) BAF (◦) δO (Å) δF (Å)

432.4 3.88428 1.89337 2.11765 3.77315 4.11804 170.2888 152.9724 0.160265 0.494852

436.6 3.88431 1.89208 2.11634 3.77311 4.11717 171.2407 153.1674 0.144489 0.491043

440.8 3.88434 1.89169 2.1152 3.77312 4.11602 171.5589 153.2924 0.139221 0.488534

445 3.8844 1.89095 2.11419 3.77305 4.11692 172.159 153.6307 0.129288 0.482226

449.2 3.88444 1.891 2.11576 3.77305 4.11745 172.115 153.3323 0.130017 0.487946

453.4 3.88447 1.89095 2.11617 3.77316 4.11847 172.2079 153.3584 0.128483 0.487572

457.6 3.88451 1.89062 2.114 3.77317 4.11726 172.512 153.7152 0.123455 0.480665

461.8 3.88457 1.89036 2.11282 3.77301 4.1171 172.6805 153.9714 0.120664 0.475794

466 3.88473 1.89149 2.12002 3.77318 4.11738 171.7499 152.3696 0.136061 0.506241

470.2 3.88485 1.89176 2.11766 3.77348 4.11912 171.6501 153.0955 0.137725 0.492642

474.3 3.88487 1.89257 2.12218 3.77321 4.11805 170.8996 151.9739 0.150143 0.513872

478.5 3.88497 1.89252 2.11848 3.77358 4.11988 171.0806 152.9986 0.147158 0.494575

482.7 3.88507 1.89262 2.11694 3.77347 4.11841 170.961 153.1759 0.149136 0.491029

486.9 3.88508 1.89245 2.12042 3.77353 4.1188 171.1156 152.4425 0.146577 0.505027
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Figure E.3: Temperature dependence of the lattice constant, estimated by fits to the PDFs,
and the interatomic separations Ta–(X)–Ta (X = O, F) in TaO2F, normalized to 84 K.
The anomalous “waves” in the lattice constant values are due to X-ray wavelength insta-
bility. Similar anomalies were also observed in the lattice constants extracted by Rietveld
analysis. The straight lines, which serve as guides to the eye, were fit to the data over the
same temperature range used to calculate coefficients of thermal expansion in Table E.4;
the regions showing fluctuations in lattice constant due to wavelength instability were not
included in these fits. The error bars shown for the Ta–O–Ta and Ta–F–Ta separations
are the standard deviations of the estimated Ta–(X)–Ta values from the least-squares fits.
Error bars are only shown for the temperature intervals used in the linear fits. While the
slopes of these lines appear dramatically different due to the scaling of this plot, they corre-
spond to differences in linear CTE of only ∼1 ppm·K−1. The quite large fluctuations in the
best estimates for the Ta–(F)–Ta separation are believed to be due to correlations amongst
model-fitting parameters, as the peak in G(r) corresponding to the Ta–(F)–Ta separation,
unlike that for the Ta–(O)–Ta separation, significantly overlaps with other peaks (see Figure
9.1). Reproduced from ref. [218].
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Table E.4: Average linear coefficients of thermal expansion for the Ta–(X)–Ta (X = O, F)
linkages and lattice constant of TaO2F. These average coefficients were calculated over the
temperature range 101-382 K by fitting a line to bond length versus T data, excluding the
two anomalous “wave” regions at 120-167 K and 279-339 K (see Figure E.3), and dividing
by the average bond length over that temperature range. Numbers in parentheses are
estimated standard deviations from these least-squares fits.

Linear CTE, ppm·K−1

Lattice constant, a +0.353(7)
Ta–O–Ta +0.54(5)
Ta–F–Ta -0.7(2)
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[209] F. J. Berry, F. C. Coomer, C. Hancock, Ö. Helgason, E. A. Moore, P. R. Slater, A. J.
Wright, and M. F. Thomas. Structure and magnetic properties of the cubic oxide
fluoride BaFeO2F. J. Solid State Chem., 184(6):1361–1366, 2011.
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