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SUMMARY

This research deals with the second harmonic generation of Lamb waves in

nonlinear elastic, homogeneous, isotropic plates. These waves find current applica-

tions in the field of ultrasonic, nondestructive testing and evaluation of materials.

The second harmonic Lamb wave generation is investigated analytically in order to

provide information on suitable excitation modes maximizing the second harmonic

amplitude.

Using an existing solution for the problem of second harmonic generation in wave

guides, the solution is explained for the plate and examined as to the symmetry

properties of the second harmonic wave, since published results are contradictory.

It is shown that the cross-modal generation of a symmetric secondary mode by an

antisymmetric primary mode is possible.

Modes showing internal resonance, whose conditions are nonzero power flux from

the primary wave and phase velocity matching, are shown to be most useful for mea-

surements. In addition, group velocity matching is required. A material-independent

analysis of the linear Lamb mode theory provides mode types satisfying all three

requirements.

Using the example of an aluminum plate, the found internally resonant modes are

evaluated with regard to the rate of second harmonic generation and practical issues

such as excitability and ease of measurement. Pros and cons of each mode type are

presented.
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CHAPTER I

INTRODUCTION

Since its early stages in the late 19th century, the field of nondestructive evaluation

(NDE) of materials has undergone a long process of development and innovation. To

these days, most methods focus on detection of flaws and defects, which then need

to be evaluated as to the probability of a fatal failure of the structure. Bray et al. [4]

provide an extensive background on this topic. While these methods come into action

when the risk of material failure might be fairly high already – since the detection of

cracks requires their existence – recent approaches attempt to monitor the material’s

properties and draw conclusions on the material’s state of fatigue, even before visible

cracks arise. Thereby, fatigue damage can be detected at an early stage.

Previous research has shown that the nonlinear material properties are much more

sensitive to changes in the microstructure, as for example due to plastic strain [19]

or fatigue damage [20, 12], than the linear properties. Therefore, recent attention is

drawn on experiments employing the nonlinear behavior of wave motion in order to

characterize the nonlinear acoustic properties of a material. These nonlinear acous-

tic properties can then be related to the material microstructure properties such as

plasticity.

Measurement of the second harmonic amplitude is the goal of many of these meth-

ods. Second harmonics are waves that contain components at twice the frequency of

the excitation wave. These waves at the double frequency arise due to the structure’s

material nonlinearity when considering the quadratic approximation of the nonlinear

problem, as opposed to the linear approximation in linear elastic theory. The intensity

of the second harmonic amplitude is shown to be related to the nonlinear material

1



constants, so that measurement of the former is a direct measure of the degree of the

material’s nonlinearity. The use of second harmonics as opposed to higher harmonics

is justified by the fact that the higher ones have much smaller amplitudes than the

second harmonic, whose amplitude itself is already very small when compared to the

linear portion of the wave at excitation frequency.

In order to facilitate measurements of second harmonics, and to back out the mea-

sured data physically, theories on nonlinear wave motion are needed. While theoret-

ical publications on the nonlinear behavior of elastic bulk and surface waves [16, 24]

appeared early, the development of an applicable theory for Lamb waves in plates

turned out to be more difficult because of the dispersive behavior of these guided

waves. De Lima et al. [5, 6] developed an analytical solution for the second harmonic

generation in wave guides using perturbation theory and a modal expansion method.

Shortly after, Deng [8] followed, using the same approach. Both solutions employ

perturbation to obtain a primary wave, associated with the wave launched into the

plate, which causes a secondary wave, associated with the second harmonic wave, due

to body forces and surface tractions driven by nonlinearities at twice the excitation

frequency. A modal expansion expresses the secondary wave as a sum of modes at

twice the excitation frequency.

For practical applications, the excitation of certain modes is more advantageous

than others. Modes satisfying phase velocity matching, i.e. the phase velocity of

the primary mode equals the phase velocity of the secondary mode, are favorable

for measurements because the second harmonic mode shows a linear increase of the

amplitude in this case. In this context, several questions arise concerning practical

applications.

First, De Lima et al. [6] and Deng [8] contradict each other with regard to the

symmetry properties of the second harmonic wave. Specifically, De Lima’s conclusion

allows for the excitation of an antisymmetric secondary mode, while Deng’s conclusion
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does not. Moreover, Deng does not mention explicitly which type of symmetry of the

primary mode will generate a symmetric secondary mode. In short, the question is

whether the cross-modal generation from an antisymmetric primary to a symmetric

secondary mode is possible. This is crucial as to the choice of excitation frequencies

and modes.

This research will demonstrate that there are several modes which satisfy phase

velocity matching. This leads to another question: Which mode should be selected in

order to obtain a strong second harmonic amplitude, which is most easily excitable

and measurable? In addition to the rate of second harmonic generation, other practi-

cal issues include what are the displacements at the surface, or what is the symmetry

of the modes involved?

Thus, the objective of this work, is to understand the process of second harmonic

Lamb wave generation by means of the solution derived by De Lima [5]. This goal

is approached in Chapter 2, where not only De Lima’s solution is presented and

customized for this work, but also physical interpretation and explanation is provided.

This chapter also presents a proof about the symmetry properties, which shows that

both a symmetric and an antisymmetric primary mode can generate a symmetric

secondary mode, but neither a symmetric nor an antisymmetric secondary mode can

generate an antisymmetric secondary mode.

Chapter 3 presents an analytical investigation of the linear dispersion relationship

of Lamb modes with regard to phase velocity and group velocity matching. The latter

concept, that the group velocity of the primary and the secondary mode should be

equal, is introduced because finite signals, as opposed to infinite harmonic signals are

considered in practice. The analysis of this chapter yields five types of modes satisfy-

ing phase and group velocity matching, which are then evaluated further in Chapter 4

for the example of an aluminum plate. Features as to the rate of second harmonic

generation and other practical issues such as excitability and ease of measurement

3



are presented and compared, which is followed by conclusions on which modes are

favorable to practical applications.
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CHAPTER II

SECOND HARMONIC LAMB WAVE GENERATION

Early work on nonlinear Lamb wave propagation such as Deng [7] was based on the

concept of partial bulk waves comprising the effective Lamb wave. By reflection at the

surface, each partial wave produces new partial waves and so on. While this approach

appears to be complicated, the concept of modes simplifies the analysis significantly.

The mode solution to the linear problem is well known and established long ago. Yet,

there was no way to apply it to the nonlinear problem until recently. De Lima [5]

and later Deng [8] developed an analysis employing the linear mode solution for the

nonlinear problem via a modal expansion approach. Not only has the analysis of the

problem become less cumbersome, but it also provides greater physical insight into

the process of second harmonic generation.

This chapter presents a concise derivation following De Lima’s notation. First,

the nonlinear boundary value problem is derived. A pertubation method transforms

the nonlinear problem into two linear boundary value problems. The first one is

associated with the wave launched into the plate, which is called the primary wave,

while the other one represents the governing equation for the second harmonic wave

due to nonlinearities, called the secondary wave. The perturbation condition that

the secondary wave must be much smaller in amplitude than the primary wave is

crucial for the validity of this solution. Solving for the primary wave leads to the well

known linear Lamb mode solution. The secondary boundary value problem is forced

by the primary wave and is approached via a modal expansion method. Power fluxes

from the primary wave to the secondary modes in the expansion are calculated, which

determine the rate of second harmonic generation for each of the secondary modes.
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Section 2.2 then discusses features of the solution more thoroughly, beginning

with a physical interpretation. A proof follows that antisymmetric secondary modes

cannot exist and that both symmetric and antisymmetric primary modes can generate

symmetric secondary modes. Finally, two types of solutions are discussed and their

implications on methods for the characterization of materials are presented.

2.1 Derivation

The subject under consideration is an isotropic, homogeneous, nonlinear elastic, infi-

nite plate with thickness d = 2h. Nonlinearities arise due to both finite deformation

and nonlinear material behavior. The coordinate system is chosen to be Cartesian

{x, y, z} with its origin at y = 0 as shown in Figure 2.1. At the surface y = ±h, the

plate is assumed to be stress free.

For the wave motion, only time-harmonic plane waves propagating in the positive

z-direction are considered, assuming plane strain in the x-direction. Motions are

restricted to the y-z-plane, representing Lamb waves in the linear theory. That is,

shear horizontal (SH) waves are beyond the scope of this work.

2.1.1 Nonlinear Boundary Value Problem and Perturbation

In the first step, the set of equations describing nonlinear wave propagation needs to

be obtained. Details on the underlying basics of continuum mechanics can be found in

Malvern [15]. The starting point is the balance of linear momentum for a continuous

2h

y
x

z

Figure 2.1: Coordinate Sysyem of the Infinite Plate
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medium neglecting body forces

∇ · (S · F T ) = ρ0
∂2u

∂t2
, (2.1)

using the second Piola-Kirchhoff stress S, the density in the reference configuration

ρ0, and the deformation gradient

F = I + ∇u (2.2)

in terms of the displacement vector u, and the second-order identity tensor I. In order

to obtain a displacement description of Eq.(2.1), the second order elastic constitutive

law for an isotropic medium derived by Renton [21]

S = λ tr(E) I + 2µE +

(

C tr(E)2 + B tr(E2)
)

I + 2B tr(E)E + A (E2)T (2.3)

is applied, where λ is Lamé’s constant, µ the shear modulus, A, B, C the third-order

elastic constants as proposed by Landau and Lifshitz [13], and

E =
1

2
(F T · F − I) (2.4)

the Lagrangian strain tensor. Combining Eqs.(2.1) to (2.4), the equations of motion

become

(λ+ 2µ)∇(∇ · u) − µ∇ × (∇ × u) + ∇ · S̄ = ρ0
∂2u

∂t2
, (2.5)

where S̄ contains all nonlinear terms of S · F T , i.e.

S · F T = SL + S̄, (2.6)

with SL being the linear portion of the second Piola-Kirchhoff stress.

Since the plate is assumed to be stress free on its surface, the boundary condition

for Eq.(2.5) is stated as

ny · (S · F T ) = 0 at y = ±h, (2.7)

7



or using Eq.(2.6)

ny · S
L = −ny · S̄ at y = ±h, (2.8)

where ny is the outward unit normal vector to the surface in the reference configura-

tion.

In order to solve the nonlinear boundary value problem (BVP) represented by

Eqs.(2.5) and (2.8), a perturbation approach is chosen, which assumes that the total

displacement field can be written as

u = u(1) + u(2), (2.9)

where u(1) is called the primary solution associated with the linear BVP, while the

secondary solution u(2) arises due to nonlinearities. If it is assumed that

|u(2)| � |u(1)|, (2.10)

which is referred to as the perturbation condition, the nonlinear BVP can be broken

down to two linear BVPs. It is noted explicitly that the solution presented here

cannot be applied if the perturbation condition is not satisfied. Measurements have

shown, however, that second harmonic amplitudes are usually much smaller than the

primary wave’s amplitude.

As contributions from the nonlinearities are small, u(1) is the solution to the

homogeneous linear BVP

(λ+ 2µ)∇(∇ · u(1)) − µ∇ × (∇ × u(1)) = ρ0
∂2u(1)

∂t2
, (2.11a)

ny · S
L(u(1)) = 0 at y = ±h. (2.11b)

By substituting Eq.(2.9) into the nonlinear BVP from Eq.(2.5) one obtains the BVP

for the secondary solution as

(λ+ 2µ)∇(∇ · u(2)) − µ∇ × (∇ × u(2)) + ∇ · S̄
(1)

= ρ0
∂2u(2)

∂t2
(2.12a)

ny · S
L(u(2)) = −ny · S̄

(1)
at y = ±h. (2.12b)
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The term S̄
(1)

depends only on quadratic terms of the primary solution u(1). Higher

order terms of u(2) and cross terms can be neglected due to the perturbation condition

Eq.(2.10). Third and higher order terms of u(1) are not taken into account because

all displacements are still assumed to be small. With S̄
(1)

known, Eqs.(2.12) may

be regarded as a linear, forced BVP with nonzero stress boundary conditions. For

convenience, the definition

f̄ = ∇ · S̄ (2.13)

is introduced. Eqs.(2.2) to (2.4) yield the forcing terms given in index notation

f̄i =
(

µ+
A

4

)

(∂2ul

∂a2
k

∂ul

∂ai

+
∂2ul

∂a2
k

∂ui

∂al

+ 2
∂2ui

∂al∂ak

∂ul

∂ak

)

+
(

λ+ µ+
A

4
+ B

)

( ∂2ul

∂ai∂ak

∂ul

∂ak

+
∂2uk

∂al∂ak

∂ui

∂al

)

+ (λ+ B)
(∂2ui

∂a2
k

∂ul

∂al

)

+ (B + 2C)
( ∂2uk

∂ai∂ak

∂ul

∂al

)

+
(A

4
+ B

)

( ∂2uk

∂al∂ak

∂ul

∂ai

+
∂2ul

∂ai∂ak

∂uk

∂al

)

(2.14a)

and

S̄ij =
(λ

2

∂uk

∂al

∂uk

∂al

+ C
∂uk

∂ak

∂ul

∂al

)

δij + B
∂uk

∂ak

∂ui

∂aj

+
A

4

∂ui

∂ak

∂uk

∂aj

+
B

2

(∂uk

∂al

∂uk

∂al

+
∂uk

∂al

∂ul

∂ak

)

δij + (λ+ B)
∂uk

∂ak

∂uj

∂ai

+
(

µ+
A

4

)

(∂uj

∂ak

∂ui

∂ak

+
∂uk

∂aj

∂uk

∂ai

+
∂uj

∂ak

∂uk

∂ai

)

, (2.14b)

where ai represents the coordinate basis in the reference configuration, i.e.

{a1, a2, a3} = {x, y, z}. (2.15)

The following section shows the solution to the primary and secondary BVP using a

modal expansion technique.
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2.1.2 Solution of the Linear Boundary Value Problems

2.1.2.1 Primary Solution

In order to obtain the forcing terms f̄ and S̄ for the secondary BVP, the primary

solution of Eqs.(2.11) must be known, as Eqs.(2.14) need to be evaluated for the

primary wave solution. The primary BVP displays a homogeneous, linear problem

for a stress free plate, whose solution is given, for example, in Graff [10]. A review of

the established solution can be found in Appendix A. For future reference, the main

results are stated shortly.

There exist four different types of modes which are characterized by their fre-

quency relations and their displacement fields. The latter ones have the common

form

u(x, y, z, t) = ũ(x, y) ei(κz−ωt), (2.16)

where κ is the wave number and ω the angular frequency of the mode ũ(x, y). Two

types – symmetric and antisymmetric shear horizontal (SH) modes – are not consid-

ered in this research because of the plane strain assumptions, which means there can

be no dependency in the x-direction. The other two types are the symmetric and

antisymmetric Lamb modes. Symmetric Lamb modes follow the frequency equation

tan βh

tanαh
= −

4αβκ2

(κ2 − β2)2
, (2.17)

and their displacement field reads as

ũx = 0, (2.18a)

ũy = iD
(

−
(κ2 − β2) sin βh

2κ sinαh
sinαy + κ sin βy

)

, (2.18b)

ũz = −D
((κ2 − β2) sin βh

2α sinαh
cosαy + β cos βy

)

. (2.18c)

Antisymmetric Lamb modes satisfy the frequency equation

tan βh

tanαh
= −

(κ2 − β2)2

4αβκ2
(2.19)
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and show the displacement field

ũx = 0, (2.20a)

ũy = iC
(

−
(κ2 − β2) cos βh

2κ cosαh
cosαy + κ cos βy

)

, (2.20b)

ũz = C
((κ2 − β2) cos βh

2α cosαh
sinαy + β sin βy

)

. (2.20c)

The wave numbers α and β are defined as

α =
√

(ω/cL)2 − κ2, β =
√

(ω/cT)2 − κ2, (2.21)

where the material constants cL and cT are the longitudinal and shear velocities in

an infinite medium, respectively. The complex constants C and D determine the

amplitude of the respective mode and depend on the actual excitation.

The symmetry of a mode is defined by the y-symmetry of the in-plane displace-

ment component ũz(y), i.e. for symmetric modes, the in-plane component ũz(y) is

symmetric in y, while the out-of-plane component ũy(y) is antisymmetric in y. For

antisymmetric modes, the in-plane component ũz(y) is antisymmetric in y, while the

out-of-plane component ũy(y) is symmetric in y.

An important implication of the frequency equations is dispersivity of the modes,

Antisymmetric Lamb Mode

Symmetric Lamb Mode

Figure 2.2: Deformed Plate for Symmetric and Antisymmetric Lamb Mode
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which means that the phase velocity

cph =
ω

κ
(2.22)

depends on frequency according to the frequency equations. Dispersion curves such

as the one shown in Figure 2.3 for an aluminum plate, whose material properties

are presented in Chapter 4, display the solutions to the transcendental frequency

equations graphically. It is observed that for a given excitation frequency ω, there

exist only a finite number of propagating modes for which the wave number κ and

the phase velocity cph are real. Modes showing a complex wave number are called

evanescent as they decay exponentially with propagation distance, being detectable

only in the near field.

Other field variables such as the linear strain tensor ε or the Cauchy stress tensor
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Figure 2.3: Lamb Mode Dispersion Curve for an Aluminum Plate. S – Symmetric
modes, A – Antisymmetric Modes.
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σ can be obtained from the displacement field u using Eqs.(A.14) and (A.13) in

Appendix A.

2.1.2.2 Secondary Solution

The final step is to solve the secondary problem of Eqs.(2.12), which represents a

linear BVP that is forced by the second harmonic body force term f̄ and second

harmonic tractions on the surface due to the stress tensor S̄. By substitution of the

primary solution into Eqs.(2.14), the forcing terms f̄ and S̄ for the secondary BVP are

obtained. It should be pointed out, however, that one has to use real displacements

since products of displacements are involved. Thus, substituting

u
(1)
real =

1

2
ũ(1)(y)ei(κz−ωt) + c.c. , (2.23)

– where c.c. stands for conjugate complex – in Eqs.(2.14) yields the real forcing terms

f̄
(1)
real =

1

2
f̄

2ω
(y)e2i(κz−ωt) + c.c.+ const, (2.24a)

S̄
(1)
real =

1

2
S̄

2ω
(y)e2i(κz−ωt) + c.c.+ const. (2.24b)

It is noted that the term ‘const’ signifies a real constant, which leads to a static

deformation of the plate. However, this phenomenon is not investigated in this work.

Further manipulations are carried out in the harmonic complex domain again, for

which reason the harmonic complex portions of Eqs.(2.24) are absorbed as

f̄
(1)

= f̄
2ω

(y)e2i(κz−ωt), (2.25a)

S̄
(1)

= S̄
2ω

(y)e2i(κz−ωt). (2.25b)

Note that the forcing terms are harmonic at twice the primary frequency, from which

the term second harmonic originates. This is due to the fact that in the second-order

approximation of the constitutive law, quadratic terms of displacements enter the

equations, resulting in forcing terms at twice the primary frequency.
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Having obtained the forcing terms, the secondary BVP is defined completely,

constituting a forced linear problem. Before the final solution is derived, some pre-

liminary results from linear elastic theory need to be reviewed. These results can be

applied because the secondary BVP presents a linear problem.

First, the complex reciprocity relation is derived by Auld [2] and customized by

De Lima [5]. Given two solutions m and n for the linear BVP with body forces bm

and bn, respectively,

vm = ṽm(y) ei(κmz−ωt), σm = σ̃m(y)ei(κmz−ωt) (2.26)

vn = ṽn(y) ei(κnz−ωt), σn = σ̃n(y)ei(κnz−ωt) (2.27)

where the complex particle velocity v = u̇, the linear stress tensor σ and the body

forces b are all complex variables, the complex reciprocity relation reads as

∇ · (v∗n · σm + vm · σ∗

n) = −v∗n · bm − vm · b∗n, (2.28)

where the superscript * means conjugate complex. Based on this relation, Auld [2]

concludes orthogonality of the linear plate modes, which is defined via the power flux

between two modes. The power flux per unit depth in x between two modes m and

n is defined as

Pmn =
1

4

∫ h

−h

(−ṽ∗n · σ̃m − ṽm · σ̃∗

n) · nz dy, (2.29)

with the unit normal vector nz in propagation direction z. Mode orthogonality means

that for two propagating modes at the same frequency, the power flux is nonzero only

if the two modes are equal, or

Pmn =















0 if n 6= m

−1
2
<e

∫ h

−h
ṽ∗n · σ̃n · nz dy if n = m.

(2.30)

This statement is interpreted physically in such that in linear theory, two different

modes do not interfere by transferring energy to each other, while Pnn quantifies how

14



much energy is transported by mode n over the cross section unit area per unit time

and unit depth.

Having introduced these concepts from linear elastic theory, the secondary BVP

can be approached. The pair {v(2), S(2)} is the unknown solution under body force

f̄
(1)

, where the short notation S(2) = SL(u(2)) is used. Substituting the unknown

solution and an arbitrary known mode under zero body force

vn = ṽn(y) ei(κnz−ωt), σn = σ̃n(y)ei(κnz−ωt), bn = 0 (2.31)

into the reciprocity relation Eq.(2.28), one obtains

−
∂

∂z

(

(ṽ∗n · S(2) + v(2) · σ̃∗

n) · nz e
−iκ∗

nz
)

−
∂

∂y

(

(ṽ∗n · S(2) + v(2) · σ̃∗

n) · ny e
−iκ∗

nz
)

= ṽ∗n · f̄
(1)
e−iκ∗

nz (2.32)

since ∂/∂x ≡ 0 and eiωt cancels.

The key step in the derivation of the secondary solution is the expansion of the

secondary solution to a series of secondary modes. For a fixed frequency, there exist

an infinite number of modes (propagating and evanescent), so that the unknown

secondary field variables may be expressed as modal expansions of all these modes,

i.e.

u(2) =
∞

∑

m=1

Am(z) ũ(2)
m (y) e−2iωt, (2.33a)

v(2) =
∞

∑

m=1

Am(z) ṽ(2)
m (y) e−2iωt, (2.33b)

S(2) =
∞

∑

m=1

Am(z) σ̃(2)
m (y) e−2iωt, (2.33c)

acting at frequency 2ω, since the body force and surface tractions act at the second

harmonic frequency. Each mode m in the expansion enters the secondary solution

with its own amplitude coefficient Am(z). Therefore, the amplitude coefficient Am(z)

expresses how strong the secondary mode m in the expansion is generated by the
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primary wave. The final goal consists of finding an analytical expression for the

amplitude coefficient Am(z) of each secondary mode m.

To achieve this, one substitutes Eqs.(2.33) in the first term of Eq.(2.32) and inte-

grates the result over the plate thickness to obtain

−
∂

∂z

∫ h

−h

[

∞
∑

m=1

Am(z)(ṽ∗n · σ̃(2)
m + ṽ(2)

m · σ̃∗

n) · nze
−i(κ∗

nz+2ωt)

]

dy

−(ṽ∗n · S(2) + v(2) · σ̃∗

n) · ny e
−iκ∗

nz






h

−h
=

∫ h

−h

ṽ∗n · f̄
(1)
e−iκ∗

nz dy. (2.34)

Using the definition of the power flux Eq.(2.29) and regarding the fact that the mode

n is stress free at the surface, i.e. σ̃n(±h) = 0, Eq.(2.34) is rewritten as

∂

∂z

[

∞
∑

m=1

4Am(z)Pmne
−i(κ∗

nz+2ωt)
]

− ṽ∗n · S(2) · ny e
−iκ∗

nz






h

−h

=

∫ h

−h

ṽ∗n · f̄
(1)
e−iκ∗

nz dy. (2.35)

Furthermore, the boundary condition Eq.(2.12b) for the secondary BVP and the

orthogonality condition Eq.(2.30) yield

∂

∂z

(

4An(z)Pnn e
−i(κ∗

nz+2ωt)
)

+ ny · S̄
(1)

· ṽ∗n e
−iκ∗

nz






h

−h

=

∫ h

−h

ṽ∗n · f̄
(1)
e−iκ∗

nz dy, (2.36)

since S(2) is a symmetric tensor. The power fluxes from the primary wave to the

nth mode in the expansion of the secondary wave via body forces fvol
n and surface

tractions f surf
n , respectively,

fvol
n =

∫ h

−h

ṽ∗n · f̄
2ω

dy, (2.37a)

f surf
n = −ny · S̄

2ω
· ṽ∗n







h

−h
, (2.37b)

are not only defined to make some expressions shorter, but more importantly, because

they provide much physical insight into the solution. This notation will enable the

observation that the amplitude coefficient An(z) is proportional to fvol
n and f surf

n ,
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meaning that the second harmonic generation of a mode is caused and characterized

by the magnitude of the power flux from the primary wave to the respective second

harmonic mode.

Using the definitions of Eqs.(2.37) in combination with Eqs.(2.25) and Eq.(2.36),

one arrives at the first order, linear, ordinary differential equation

4Pnn

( d

dz
− iκ∗n

)

An(z) = (f surf
n + fvol

n )e2iκz. (2.38)

for An(z). To come up with an initial condition, it is assumed that the primary wave

is excited at z = 0 where the secondary solution has to be zero due to causality, since

the secondary wave is forced by the primary wave. Thus,

u(2) = v(2) = 0 at z = 0, (2.39)

and from Eqs.(2.33)

An(z) = 0 at z = 0. (2.40)

The solution to Eq.(2.38) with the initial condition Eq.(2.40) is given by

An(z) =
fvol

n + f surf
n

4Pnn















i
κ∗

n−2κ

(

e2iκz − eiκ∗

nz
)

if κ∗n 6= 2κ

z e2iκz if κ∗n = 2κ,

(2.41)

which – in combination with Eqs.(2.33) – provides an analytical solution for the

second harmonic wave, when small secondary amplitudes compared to the primary

wave’s amplitude are assumed. Table 2.1 summarizes the essential equations that

yield the solution for the secondary wave.

Having achieved the solution for the secondary wave, subsequent sections will draw

conclusions from the results and explain the physical interpretation of the solution in

a more detailed way.
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Table 2.1: Overview – Essential Equations for the Second Harmonic Solution

Modal Expansion (Eq.(2.33))

u(2) =
∑

∞

n=1An(z) ũ(2)
n (y) e−2iωt,

with amplitude coefficient An(z) for the nth mode in the expansion (Eq.(2.41))

An(z) = fvol
n +f surf

n

4Pnn

{

i
κ∗

n−2κ

(

e2iκz − eiκ∗

nz
)

if κ∗n 6= 2κ

z e2iκz if κ∗n = 2κ,
,

where fvol
n and f surf

n are power fluxes from the primary to secondary mode n

fvol
n =

∫ h

−h
ṽ∗n · f̄

2ω
dy ... via volume body force (Eq.(2.37a)),

f surf
n = −ny · S̄

2ω
· ṽ∗n







h

−h
... via surface tractions (Eq.(2.37b)),

and Pnn is the power flux of secondary mode n (Eq.(2.29))

Pnn = −1
2
<e

∫ h

−h
ṽ∗n · σ̃n · nz dy.

Body force f̄
2ω

and stress S̄
2ω

are obtained from Eqs.(2.14) and Eqs.(2.24) ap-
plied for the real primary mode u(1). Secondary field quantities ũn, ṽn and σ̃n

are solutions of the linear plate theory as in Appendix A evaluated for frequency
2ω and wave number κn.
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2.2 Discussion

2.2.1 Physical Interpretation

The obtained solution can be understood most easily by looking at a simple, ideal

thought experiment: A transducer excites the infinte plate with the primary frequency

ω. Even though several modes can propagate at frequency ω, a single mode can be

selected by adjusting the angle between the transducer and the plate in the correct

fashion. As this primary mode ũ(1) propagates along the plate, nonlinearities in the

plate lead to body forces f̄
(1)

and surface tractions ny · S̄
(1)

that act harmonically at

twice the primary frequency, 2ω, as shown by Eqs.(2.25), and thus, excite modes at

twice the primary frequency. Figure 2.4 shows an arbitrary example of this process

in the dispersion curve: the mode S1 is excited at the primary frequency fd(1) =

3.6 MHz mm and generates all the modes at twice the primary frequency fd(2) =

7.2 MHz mm, whose sum displays the secondary wave as described by Eqs.(2.33). In

this example, only symmetric secondary modes are marked because it will be proven

in the following section that antisymmetric Lamb modes are not excited in the process

of second harmonic generation.

As mentioned before, the sum of the secondary modes is represented by Eqs.(2.33)

and constitutes the secondary wave u(2). Note that in many cases, only propagating

modes are of interest, so that the evanescent modes may be disregarded in the modal

expansion. Then, the expansion is comprised of N propagating modes

u(2) =
N

∑

n=1

An(z) ũ(2)
n (y) e−2iωt, (2.42a)

v(2) =
N

∑

n=1

An(z) ṽ(2)
n (y) e−2iωt, (2.42b)

S(2) =
N

∑

n=1

An(z) σ̃(2)
n (y) e−2iωt. (2.42c)

Each mode n enters the sum with its own amplitude coefficient An(z) making certain

second harmonic modes more or less excitable by the primary mode. Thus, the
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Figure 2.4: Lamb Mode Dispersion Curve for Aluminum with Example for Second
Harmonic Generation. S – Symmetric Modes, A – Antisymmetric Modes.

amplitude coefficients for the secondary modes provide significant information about

the secondary wave.

The amplitude coefficient An(z) for mode n depends on various factors. First,

regarding Eq.(2.41) the wave number of a respective second harmonic mode n de-

termines whether case one (κn 6= 2κ) or case two (κn = 2κ) applies for this mode.

Note that all wave numbers are real and κ∗n = κn, since only propagating modes are

considered. The second case in Eq.(2.41) is referred to as phase velocity matching –

or short, phase matching – as the condition on the wave numbers implies that the

phase velocities of the primary and the secondary mode are the same. The result

is a linear increase of the second harmonic amplitude, while the first case leads to

a sinusoidal behavior of the secondary amplitude. Both cases are discussed in more

detail in Section 2.2.3 and Section 2.2.4, respectively.
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The possiblity of a secondary mode to be excited in general, however, is indepen-

dent of the condition on the wave numbers. Eq.(2.41) shows that the quantity

an =
fvol

n + f surf
n

4Pnn

(2.43)

needs to be nonzero for a secondary mode n to enter the modal expansion. Eqs.(2.37)

for fvol
n and f surf

n may be interpreted as power fluxes from the primary mode to the

secondary mode n via body forces and surface tractions, respectively. That is, the

quantity an is zero if there is no power flux from the primary mode to the respective

secondary mode n. If the power flux is nonzero, the values of fvol
n and f surf

n indicate

the intensity of coupling between the primary and the secondary mode n due to

nonlinearities, i.e. a high absolute value indicates that the secondary mode n is

easily excited by the primary mode. With regard to practical methods measuring the

secondary amplitude, high energy coupling between the primary and the secondary

wave is desirable, since it leads to higher measurable amplitudes.

The term Pnn displays the power flux of the secondary mode n and is nonzero

for propagating modes. It serves as a normalization factor to compensate for the

degree of freedom in the choice of the secondary mode in the expansion, as Eqs.(2.18)

and (2.20) leave the value for D or C, respectively, open.

Extension of the problem to several primary modes traveling at different frequen-

cies is easily achieved by performing the discussed analysis for each primary mode and

adding the obtained secondary solution sums. This procedure is justified by the fact

that the perturbation analysis transforms the nonlinear problem into linear problems

so that the superposition principle may be applied.

2.2.2 Symmetry Properties of the Secondary Wave

Based on the modal solution presented above, both De Lima [5] and Deng [8] con-

clude symmetry properties of the secondary wave. Surprisingly, their conclusions are

contradictory. De Lima states that a primary mode can generate a secondary mode
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only of the same symmetry, e.g. an antisymmetric primary mode can excite an anti-

symmetric but not a symmetric secondary mode, and vice versa. In contrast, Deng

states that the secondary wave must be purely symmetric, thus contradicting De Lima

who allows second harmonic generation from an antisymmetric to an antisymmetric

mode. While it seems to be common sense that a symmetric primary can generate

a symmetric secondary mode, Deng does not conclude explicitly that a symmetric

secondary mode can be generated by an antisymmetric primary mode. This question

is of practical importance in experiments since antisymmetric modes are easier to

excite and therefore preferred to symmetric modes.

This section intends to clarify the issues mentioned above using the modal solution

presented in Section 2.1. As discussed in Section 2.2.1, nonzero power flux from the

primary to the secondary mode is necessary for a secondary mode to be generated.

That is to say, fvol
n + f surf

n 6= 0 means that mode n is generated by the primary wave,

while for fvol
n + f surf

n = 0, mode n is not generated by the primary mode. In general,

fvol
n and f surf

n are very complicated to compute, being comprised of many terms that

need to be multiplied, simplified and integrated. This task is approached later on in

Chapter 4 using the symbolic toolbox of Matlab. Conclusions on symmetries can be

achieved, however, by utilizing simple symmetry properties of functions.

2.2.2.1 Symmetric Primary Mode

First, let the primary mode be a symmetric Lamb mode whose displacement field is

given in Eqs.(2.18). Also recalling Figure 2.1, it is observed that the displacement field

is independent of x and its x-component is zero, which results in a two-dimensional

description in the y-z-plane. The same holds for antisymmetric Lamb modes.

In order to investigate symmetries along the y-axis, the following notation is in-

troduced: S(y) is a generic, unspecified element of the set of symmetric functions in

y, while A(y) is a generic, unspecified element of the set of antisymmetric functions in
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y. As discussed in Section 2.1.2.1 on the primary solution, uy = A(y) and uz = S(y)

hold for a symmetric mode. Further, it is seen that a derivative of ui with respect

to y changes the type symmetry in y, while a derivative with respect to z does not

change the type of symmetry in y. Moreover, the following rules are known:

1. S(y) · S(y) = S(y) and A(y) · A(y) = S(y),

2. A(y) · S(y) = A(y) and S(y) · A(y) = A(y),

3. S(y) + S(y) = S(y) and A(y) + A(y) = A(y).

Using these results, each term in Eq.(2.14b) can be investigated in the same way as

it is shown exemplarily for the first term as follows

∂uk

∂al

∂uk

∂al

=
∂uy

∂y

∂uy

∂y
+
∂uy

∂z

∂uy

∂z
+
∂uz

∂y

∂uz

∂y
+
∂uz

∂z

∂uz

∂z
=

= S2(y) + A2(y) + A2(y) + S2(y) =

= S(y) + S(y) + S(y) + S(y) = S(y). (2.44)

For completeness, Appendix B shows the calculation for all terms in Eq.(2.14b), which

yields

S̄sym =







S(y) A(y)

A(y) S(y)






. (2.45a)

Furthermore, by the definition of f̄ in Eq.(2.13),

f̄ sym =

(

∂
∂y

∂
∂z

)

·







S(y) A(y)

A(y) S(y)






=







A(y)

S(y)






, (2.45b)

where the subscript stands for the type of symmetry of the primary mode.

2.2.2.2 Antisymmetric Primary Mode

Before attention is drawn on the conclusions, the same preparatory work is perfomed

for the case of an antisymmetric primary mode. Given the displacement field for anti-

symmetric modes in Eqs.(2.20), it is seen that uy = S(y) and uz = A(y). Application
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to the same exemplary term as in the section above

∂uk

∂al

∂uk

∂al

=
∂uy

∂y

∂uy

∂y
+
∂uy

∂z

∂uy

∂z
+
∂uz

∂y

∂uz

∂y
+
∂uz

∂z

∂uz

∂z
=

= A2(y) + S2(y) + S2(y) + A2(y) =

= S(y) + S(y) + S(y) + S(y) = S(y) (2.46)

shows that – although each single term changes its symmetry – the result is the same

in terms of symmetry as for the symmetric primary mode above. This is due to

the fact that products of displacements are involved. Again, by carrying out this

manipulation for all the terms of Eq.(2.14b) in Appendix B, one obtains

S̄asym =







S(y) A(y)

A(y) S(y)






, (2.47a)

and thus,

f̄ asym =







A(y)

S(y)






, (2.47b)

as above. Hence, the forcing terms show the same symmetry properties for the cases

when the primary mode is either symmetric or antisymmetric.

2.2.2.3 Conclusion

Eqs.(2.25) show that the y-coordinate symmetry properties of f̄ and S̄ are identical

to those of f̄
2ω

and S̄
2ω

, since only the dependency on exp(2i(κz − ωt)) is removed.

Hence, the final conclusion on the power fluxes fvol
n or f surf

n in Eqs.(2.37) depends on

the symmetry of the secondary mode n considered in the expansion. Since

v(y, z, t) = −iωu(y, z, t), (2.48)

the symmetry properties of the particle velocity equal those of the displacements, i.e.

ṽsym =







A(y)

S(y)






(2.49a)
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for a symmetric mode, and

ṽasym =







S(y)

A(y)






(2.49b)

for an antisymmetric mode. Finally, with ny = (1, 0) and the secondary mode being

symmetric, Eqs.(2.37) read as

f surf
n =

(

1, 0

)

·







S(y) A(y)

A(y) S(y)






·







A(y)

S(y)













h

y=−h

= A(y)






h

y=−h
6= 0, (2.50a)

fvol
n =

∫ h

y=−h







A(y)

S(y)







T

·







A(y)

S(y)






dy

=

∫ h

y=−h

S(y) dy 6= 0. (2.50b)

It is noted that the inequality from zero holds in general, but there might be special

frequencies and pairs of primary and secondary modes, for which at least one of these

terms or their sum can be zero. Thus, if the secondary mode is symmetric, An(z) 6= 0

holds generally.

For the secondary mode being antisymmetric, one obtains

f surf
n =

(

1, 0

)

·







S(y) A(y)

A(y) S(y)






·







S(y)

A(y)













h

y=−h

= S(y)






h

y=−h
= 0, (2.51a)

fvol
n =

∫ h

y=−h







S(y)

A(y)







T

·







A(y)

S(y)






dy

=

∫ h

y=−h

A(y) dy = 0, (2.51b)

implying that An(z) = 0 according to Eq.(2.41).

Summarizing these results, it is concluded that both a symmetric and an antisym-

metric primary mode can excite a symmetric mode at twice the primary frequency.
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In contrast, neither a symmetric nor an antisymmetric primary mode can excite an

antisymmetric mode at twice the primary frequency. Figure 2.5 displays this result

graphically.

Other authors [7, 8, 25] have declared that the secondary wave is purely symmetric

at the double frequency. However, they do not prove explicitly that the cross-modal

excitation from an antisymmetric primary mode to a symmetric secondary mode is

possible.

2.2.3 Internal Resonance

Recalling the modal solution of Section 2.1.2, it was observed that the amplitude

coefficient An(z) in Eq.(2.41) shows two fundamentally different behaviors depending

on the relation between the wave numbers of the primary mode and the nth secondary

mode. The second case in Eq.(2.41) is referred to as phase velocity matching or phase

matching, since

κ(2) = 2κ and ω(2) = 2ω (2.52)

imply with Eq.(2.22) that

c
(2)
ph =

ω(2)

κ(2)
=
ω

κ
= c

(1)
ph , (2.53)

symmetricsymmetric

antisymmetric antisymmetric

Primary
Mode

Secondary
Mode

Secondary
Mode

not possible

possible

Figure 2.5: Symmetry Scheme of Second Harmonic Lamb Wave Generation
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where the superscript (1) stands for the primary and (2) for the secondary mode. That

is, the primary and the secondary mode match phase velocity. Recalling Figure 2.4,

a case of phase velocity matching is observed between the S1 mode and the S2 mode.

Further investigations on phase matching are performed in Chapter 3.

If in addition to phase matching, nonzero power flux from the primary to the

secondary wave is assumed, the mode is called to show internal resonance. In this

case, the solution for mode n in the expansion takes the form

u(2)
n = an z ũ

(2)
n (y) e2i(κz−ωt), (2.54)

where an 6= 0 is defined in Eq.(2.43). The terminology internal resonance is motivated

by the linearly growing amplitude with propagation distance z. The proportional-

ity between amplitude and propagation distance suggests that the secondary mode

can grow without any bounds. This obviously unrealistic behavior is prohibited by

the perturbation condition Eq.(2.10). Once Eq.(2.10) is violated, this perturbation

solution is no longer valid. That is, conclusions can only be drawn up to a certain

propagation distance, which must be determined in the specific application.

For material’s characterization applications in NDE, internal resonance has several

important advantages. Firstly, the growing amplitude results in large displacements

after some propagation distance, making the signal-to-noise ratio better for measure-

ments. Secondly, the proportionality between amplitude and propagation distance

makes it straightforward to calculate the power flux from the primary wave, as the

slope in an amplitude-distance-diagram. And finally, after some distance, other modes

that are not in internal resonance, as discussed in the following section, may be dis-

regarded as small when compared to the mode in resonance, so they do not disturb

measurements of the resonant mode under consideration. In the following discussion

of non-resonant modes, the advantages to require internal resonance for practical

applications become even clearer.
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2.2.4 Non-Resonant Solution

The non-resonant solution represents the usual case. If κ(2) 6= 2κ the solution for the

respective secondary mode n is written as

u(2)
n =

ani

κd

ũ(2)
n (y)

(

e2iκz − eiκ(2)z
)

e−2iωt, (2.55)

according to Eq.(2.41), where

κd = κ(2) − 2κ (2.56)

is interpreted as the deviance from phase matching. Using complex algebra, Eq.(2.55)

can be rewritten as

u(2)
n =

2an

κd

sin(1
2
κdz) ũ

(2)
n (y) ei

(

1
2
(2κ+κ(2))z−2ωt

)

. (2.57)

A few observations are noted. First, the maximum amplitude varies sinusoidally

with propagation distance. At distances z, where the sine term becomes zero, the

displacements are identically zero for all times. The distance between those points is

called the dispersion length and defined by

Ln =
2π

κd

. (2.58)

Also, the maximum amplitude is bounded by the term 2an/κd. These features reveal

the infeasibility of these modes for experimental use.

If, however, κd is small, the solution behaves approximately like internal resonance.

That is, for some propagation distance the amplitude grows almost linearly. The

valid distance of this approximation can be assessed intuitively as one fourth of the

dispersion length, i.e.

Luse
n =

1

4
Ln. (2.59)

Thus, not only phase matching modes are of interest for application methods, but also

modes that deviate only slightly from exact phase matching. Figure 2.6 shows the

qualitative behavior of the second harmonic amplitude depending on phase matching.

An example of the application of this concept is given in Chapter 4.
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Figure 2.6: Qualitative Behavior of the Second Harmonic Amplitude
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CHAPTER III

CHARACTERIZATION OF MODES WITH INTERNAL

RESONANCE

Having shown in Section 2.2 that exact or approximate internal resonance is a de-

sirable feature for practical methods, the next step is to analyze the theory of Lamb

waves with respect to modes satisfying internal resonance. Apart from phase veloc-

ity matching and nonzero powerflux, which were stated as necessary conditions for

internal resonance already, the condition of group velocity matching will be required,

meaning that the primary and the secondary mode have the same group velocity. Fur-

thermore, using the existing theory of Lamb modes as summarized in Appendix A,

conclusions on the displacements at the surface can be drawn, which are critical as

to measurements of motions in the plate.

The following section introduces the concepts of phase velocity matching and

group velocity matching mentioned above in a more detailed way and shows pre-

liminary manipulations for subsequent sections, where different categories of modes

showing internal resonance are analyzed.

The calculus of this chapter is independent of the material’s properties and, there-

fore, employs a large number of analytical relations. In Section 3.2, summaries at the

end of each subsection present the results concisely. Also, Chapter 4 presents these

results applied for the example of an aluminum plate, which might be more useful for

the more practically oriented reader.
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3.1 Preliminary

3.1.1 Phase Velocity Matching

Nonzero power flux from the primary mode and phase velocity matching are the

conditions for internal resonance. The symmetry analysis in Section 2.2.2 shows that

nonzero power flux can be satisfied in general, if and only if the secondary mode is

symmetric. The major effort in this chapter, therefore, is to find modes satisfying

phase velocity matching. For further manipulations, the normalization

ω̄ = ωh, κ̄ = κh, ᾱ = αh, β̄ = βh, (3.1)

is found to be useful. Note that ω̄ is not dimensionless but has the unit of an angular

frequency-thickness product. Then, phase velocity matching is defined as follows.

Definition. (Phase Velocity Matching) Let X and Y be Lamb modes, cph,X the phase

velocity of X at frequency ω̄ and c
(2ω)
ph,Y the phase velocity of Y at frequency 2ω̄. Phase

velocity matching from X to Y is defined as the fact that cph,X = c
(2ω)
ph,Y. By the

definition of the phase velocity in Eq.(2.22), this also implies, if X has the values κ̄,

ᾱ and β̄ at frequency ω̄, then Y has the values

ω̄(2ω) = 2ω̄, κ̄(2ω) = 2κ̄, ᾱ(2ω) = 2ᾱ, β̄(2ω) = 2β̄. (3.2)

at frequency 2ω̄. The terminology ‘phase matching’ is equivalent to ‘phase velocity

matching’ in this work.

3.1.2 Group Velocity Matching

In practical applications, where signals are neither pure harmonics nor infinitely long

in time, as assumed by the solution presented in Chapter 2, the group velocity of the

signal plays an important role. Rose [22] states that the “group velocity is associated

with the propagation velocity of a group of waves of similar frequency,” and is defined

as

cg =
dω

dκ
=

dω̄

dκ̄
. (3.3)
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Achenbach [1] shows that the velocity of energy equals group velocity, meaning that

the speed of a finite “wave packet” is given by the group velocity, not by the phase

velocity. For finite signals in the time domain, it follows that signals at different group

velocities shift relative to each other with propagation distance. If the primary and

the secondary mode have different group velocities, the secondary mode generated at

the beginning and the primary mode separate locally, making the power flux from the

primary to the initial secondary mode zero. Thus, a bounded secondary wave arises,

whose amplitude does not show linear increase. Therefore, for practical applications,

in which only finite wave packets are used, group velocity matching is required. The

definition of group velocity matching follows.

Definition. (Group Velocity Matching) Let X and Y be Lamb modes, cg,X the group

velocity of X at frequency ω̄ and c
(2ω)
g,Y the group velocity of Y at frequency 2ω̄. Group

velocity matching from X to Y is defined as the fact that cg,X = c
(2ω)
g,Y . The terminology

‘group matching’ is equivalent to ‘group velocity matching’ in this work.

While it is commonly agreed on that phase velocity matching is a necessary condi-

tion, the concept of group velocity matching is more controversial. Deng et al. [9], for

instance, deny group matching as a necessary condition, while Lee et al. [14] support

the argumentation given above. The analytical complexity to describe the influence of

the group velocity on time domain signals makes analytical arguments to prove one or

the other statement difficult. The physical interpretation given above suggests group

velocity matching at least as an adjuvant condition, if not necessary. The following

paragraphs show some preliminary analysis on group velocity.

There are different ways to express group velocity in terms of the variables ω̄, κ̄ and

cph. Note that according to Eq.(2.22), only two of these values are independent. First,

an expression in terms of ω̄ and κ̄ is derived. By rewriting the frequency equation for

symmetric modes in Eq.(2.17) and for antisymmetric modes in Eq.(2.19), respectively,
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as

Φsym(ω̄, κ̄) = cos ᾱ sin β̄ (κ̄2 − β̄2)2 + sin ᾱ cos β̄ 4ᾱβ̄κ̄2 = 0 (3.4)

and

Φasym(ω̄, κ̄) = sin ᾱ cos β̄ (κ̄2 − β̄2)2 + cos ᾱ sin β̄ 4ᾱβ̄κ̄2 = 0, (3.5)

the frequency equations are expressed as implicit functions of ω̄ and κ̄. If ω̄ is regarded

as ω̄ = ω̄(κ̄), the group velocity reads as

cg,sym = −
∂Φsym/∂κ̄

∂Φsym/∂ω̄
=
Nsym

Dsym

(3.6)

and

cg,asym = −
∂Φasym/∂κ̄

∂Φasym/∂ω̄
=
Nasym

Dasym

, (3.7)

according to Eq.(3.3) and the rules of derivatives of implicit functions. By carrying

out these derivatives, one obtains

Nsym = cos ᾱ cos β̄
[

ᾱκ̄(κ̄2 − β̄2)2 + 4ᾱβ̄2κ̄3
]

− sin ᾱ sin β̄
[

β̄κ̄(κ̄2 − β̄2)2 + 4ᾱ2β̄κ̄3
]

+ sin ᾱ cos β̄
[

4β̄2κ̄3 + 4ᾱ2κ̄3 − 8ᾱ2β̄2κ̄
]

− cos ᾱ sin β̄ 8ᾱβ̄κ̄(κ̄2 − β̄2), (3.8a)

Dsym = cos ᾱ cos β̄
[

ᾱ(ω̄/c2T)(κ̄2 − β̄2)2 + 4ᾱβ̄2κ̄2(ω̄/c2L)
]

− sin ᾱ sin β̄
[

β̄(ω̄/c2L)(κ̄2 − β̄2)2 + 4ᾱ2β̄κ̄2(ω̄/c2T)
]

+ sin ᾱ cos β̄
[

4β̄2κ̄2(ω̄/c2L) + 4ᾱ2κ̄2(ω̄/c2T)
]

− cos ᾱ sin β̄ 4ᾱβ̄(ω̄/c2T)(κ̄2 − β̄2), (3.8b)
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for symmetric modes and

Nasym = cos ᾱ cos β̄
[

β̄κ̄(κ̄2 − β̄2)2 + 4ᾱ2β̄κ̄3
]

− sin ᾱ sin β̄
[

ᾱκ̄(κ̄2 − β̄2)2 + 4ᾱβ̄2κ̄3
]

− sin ᾱ cos β̄ 8ᾱβ̄κ̄(κ̄2 − β̄2)

+ cos ᾱ sin β̄
[

4β̄2κ̄3 + 4ᾱ2κ̄3 − 8ᾱ2β̄2κ̄
]

, (3.9a)

Dasym = cos ᾱ cos β̄
[

β̄(ω̄/c2L)(κ̄2 − β̄2)2 + 4ᾱ2β̄κ̄2(ω̄/c2T)
]

− sin ᾱ sin β̄
[

ᾱ(ω̄/c2T)(κ̄2 − β̄2)2 + 4ᾱβ̄2κ̄2(ω̄/c2L)
]

− sin ᾱ cos β̄ 4ᾱβ̄(ω̄/c2T)(κ̄2 − β̄2)

+ cos ᾱ sin β̄
[

4β̄2κ̄2(ω̄/c2L) + 4ᾱ2κ̄2(ω̄/c2T)
]

, (3.9b)

for antisymmetric modes. Keep in mind that both ᾱ and β̄ are functions of ω̄ and κ̄.

A description of the group velocity in terms of ω̄ and cph

cg = c2ph

(

cph − ω̄
dcph

dω̄

)−1

. (3.10)

is presented by Rose [22].

3.2 Matching Pairs

In this section, linear Lamb mode pairs satisfying phase matching, as the principal

condition, and group matching, as a subordinate condition, are presented and an-

alyzed. Due to the demonstrated nonexistence of antisymmetric secondary modes,

the focus is on symmetric modes at the double frequency. Each subsection about the

different types of modes provides general information and conditions, a proof of phase

velocity matching and group velocity matching, respectively, and an investigation of

the displacement field, especially at the surface.
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3.2.1 Crossing Points of Symmetric and Antisymmetric Modes

In the region cph > cL, it is possible for symmetric and antisymmetric modes to cross,

as will be shown. These distinctive points of crossing, called crossing points from now

on, have already found applications in experiments as for example in Deng et al. [9].

3.2.1.1 General Conditions

First, it is noted that both ᾱ and β̄ are real and positive in the region cph > cL. A

crossing point is characterized by the fact that both Eqs.(3.4) and (3.5) need to be

satisfied simultaneously. By subtraction of Eq.(3.4) from Eq.(3.5) one obtains

(

sin ᾱ cos β̄ − cos ᾱ sin β̄
)(

(κ̄2 − β̄2)2 − 4ᾱβ̄κ̄2
)

= 0. (3.11)

Solving for

(κ̄2 − β̄2)2 − 4ᾱβ̄κ̄2 = 0 (3.12)

reduces to the solution of the Rayleigh equation (see Graff [10] for reference), which

is not the solution sought after. Hence, from Eq.(3.11)

sin ᾱ cos β̄ − cos ᾱ sin β̄ = sin(ᾱ− β̄) = 0 (3.13)

or

ᾱ− β̄ = nπ, n ∈ N (3.14)

is inferred. Substituting this condition into Eq.(3.4)

cos(nπ + β̄) sin β̄ (κ̄2 − β̄2)2 + sin(nπ + β̄) cos β̄ 4ᾱβ̄κ̄2 = 0 (3.15)

yields

cos β̄ sin β̄ (κ̄2 − β̄2)2 + sin β̄ cos β̄ 4ᾱβ̄κ̄2 = 0, (3.16)

hence one concludes

β̄ = nπ/2, n ∈ N
+. (3.17)
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Recalling Eq.(3.14), it is proved that at a crossing point either case I

β̄ = nβπ, ᾱ = nαπ, nβ, nα ∈ N
+ (3.18)

or case II

β̄ =
(2nβ−1)π

2
, ᾱ = (2nα−1)π

2
, nβ, nα ∈ N

+ (3.19)

must hold. Eq.(3.18) is referred to as case I and Eq.(3.19) as case II. Note that

nβ > nα by the definition of ᾱ and β̄. Using Eq.(2.21), these conditions allow for the

computation of the corresponding frequencies as

ω̄ =

√

n

c2L − c2T
cLcTπ, (3.20)

where n = n2
β − n2

α for case I, and n = nβ(nβ − 1) − nα(nα − 1) for case II.

3.2.1.2 Phase Velocity Matching

Assuming that (ω̄, κ̄) is a crossing point, Eq.(3.18) or Eq.(3.19) must hold. In the

case of phase matching, it is concluded for both cases with Eq.(3.2) that

β̄(2ω) = n̄βπ, ᾱ(2ω) = n̄απ, n̄β, n̄α ∈ N
+, (3.21)

at frequency 2ω̄. For case I, n̄β, n̄α are even, and odd for case II. This fulfills Eq.(3.18)

and it follows that (ω̄(2ω), κ̄(2ω)) is a crossing point of case I, which matches phase

velocity with the point (ω̄, κ̄). By the definition of a crossing point, it is obvious that

there is phase velocity matching from the symmetric as well as from the antisymmetric

mode to both the symmetric and antisymmetric mode at the double frequency.

3.2.1.3 Group Velocity Matching

To calculate the group velocities, the results from Eqs.(3.6) to (3.9) are recalled. For

case I, using Eq.(3.18) the group velocity takes the form

cIg,sym =
κ̄(κ̄2 − β̄2)2 + 4β̄2κ̄3

(ω̄/c2T)(κ̄2 − β̄2)2 + 4β̄2κ̄2(ω̄/c2L)
, (3.22)

cIg,asym =
κ̄(κ̄2 − β̄2)2 + 4ᾱ2κ̄3

(ω̄/c2L)(κ̄2 − β̄2)2 + 4ᾱ2κ̄2(ω̄/c2T)
, (3.23)
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while for case II, using Eq.(3.19) one arrives at

cIIg,sym =
κ̄(κ̄2 − β̄2)2 + 4ᾱ2κ̄3

(ω̄/c2L)(κ̄2 − β̄2)2 + 4ᾱ2κ̄2(ω̄/c2T)
, (3.24)

cIIg,asym =
κ̄(κ̄2 − β̄2)2 + 4β̄2κ̄3

(ω̄/c2T)(κ̄2 − β̄2)2 + 4β̄2κ̄2(ω̄/c2L)
. (3.25)

Note that cIg,sym = cIIg,asym and cIIg,sym = cIg,asym hold.

Regarding the crossing point at the double frequency, it was stated already that

it can be only of case I. Further, as phase matching is shown, applying Eq.(3.2) to

the group velocities in Eqs.(3.22) and (3.23), the factors of two cancel and it is shown

that

cIg,sym = cI,(2ω)
g,sym, (3.26)

cIg,asym = cI,(2ω)
g,asym. (3.27)

From the statements above, the following conclusions are made:

• If the crossing point (ω̄, κ̄) is case I, there is group velocity matching from the

symmetric mode at (ω̄, κ̄) to the symmetric mode at (2ω̄, 2κ̄), i.e. cIg,sym = c
I,(2ω)
g,sym,

as well as from the antisymmetric mode at (ω̄, κ̄) to the antisymmetric mode

at (2ω̄, 2κ̄), i.e. cIg,asym = c
I,(2ω)
g,asym.

• If the crossing point (ω̄, κ̄) is case II, there is group velocity matching from the

symmetric mode at (ω̄, κ̄) to the antisymmetric mode at (2ω̄, 2κ̄), i.e. cIIg,sym =

c
I,(2ω)
g,asym, as well as from the antisymmetric mode at (ω̄, κ̄) to the symmetric mode

at (2ω̄, 2κ̄), i.e. cIIg,asym = c
I,(2ω)
g,sym.

Table 3.1 shows each possible combination along with the results about the displace-

ments at the surface presented in the following subsection.

3.2.1.4 Displacements at the Surface

Looking at case I crossing points, the displacements at the surface follow by substi-

tution of Eq.(3.18) into Eqs.(2.18) and (2.20), setting y = h. For symmetric modes,
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one obtains

ũI
y(h) = 0, (3.28a)

ũI
z(h) = Dhβ̄

κ̄2 + β̄2

κ̄2 − β̄2
cos β̄, (3.28b)

where the frequency equation Eq.(2.17) is applied to simplify the expression. The

displacements at the surface for the antisymmetric modes take the form

ũI
y(h) = iCh

κ̄2 + β̄2

2κ̄
cos β̄, (3.29a)

ũI
z(h) = 0, (3.29b)

where the frequency equation Eq.(2.19) is used.

Regarding case II crossing points, Eq.(3.19), and (2.17) to (2.20) yield

ũII
y (h) = iDh

κ̄2 + β̄2

2κ̄
sin β̄, (3.30a)

ũII
z (h) = 0 (3.30b)

for symmetric modes, and

ũII
y (h) = 0, (3.31a)

ũII
z (h) = −Chβ̄

κ̄2 + β̄2

κ̄2 − β̄2
sin β̄ (3.31b)

for antisymmetric modes.

3.2.1.5 Summary

Table 3.1 summarizes the results obtained in this section. Two observations deserve

special mention. First, only the first two entries in Table 3.1 satisfy all the conditions

required for practical applications. The other entries have either an antisymmet-

ric secondary mode making the power flux from the primary wave zero, or do not

match group velocity. Secondly, for all the relevant pairs, the normal displacements

at the surface are identically zero, which displays a disadvantage for experiments

where transducers excite and measure mainly out-of-plane displacements or particle

velocities at the surface.
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Table 3.1: Phase Matching Pairs at Crossing Points

from Mode at ω̄ to Mode at 2ω̄ Group-
Sym. Case ũy(h) ũz(h) Sym. Case ũy(h) ũz(h) match

sym I 0 6= 0 sym I 0 6= 0 yes
asym II 0 6= 0 sym I 0 6= 0 yes
sym II 6= 0 0 sym I 0 6= 0 no
asym I 6= 0 0 sym I 0 6= 0 no
asym I 6= 0 0 asym I 6= 0 0 yes
sym II 6= 0 0 asym I 6= 0 0 yes
asym II 0 6= 0 asym I 6= 0 0 no
sym I 0 6= 0 asym I 6= 0 0 no

3.2.2 Symmetric Modes at the Longitudinal Velocity

An investigation of symmetric Lamb modes at the longitudinal phase velocity cL with

regard to normal displacement at the free surface and group velocity was presented by

Pilarski et al. [18]. They provide frequency-thickness products, where phase velocity

equals longitudinal velocity. Then, they prove that the normal displacement at the

surface vanishes and that all modes have the same group velocity at these frequencies,

where the group velocity depends only on the linear material properties. In this

section, these results are summarized and related to the concepts of phase matching

and group matching as defined in Section 3.1.

3.2.2.1 General Conditions

From the condition cph = cL and Eq.(2.21), it is inferred that

ᾱ = 0, (3.32)

and with the frequency equation for symmetric modes Eq.(3.4)

β̄ = nπ, n ∈ N
+ (3.33)

follows. These are the two equations characterizing all the points in the dispersion

curve where the phase velocity of symmetric modes equals the longitudinal velocity.
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The corresponding frequencies

ω̄ =
nπcT

√

1 − (cT/cL)2
, n ∈ N

+ (3.34)

are obtained from Eq.(3.32), Eq.(3.33), and the basic relations between ω̄, κ̄ and β̄.

3.2.2.2 Phase Velocity Matching

Assuming phase matching, Eq.(3.2) yields

ᾱ(2ω) = 0 and β̄(2ω) = 2nπ, n ∈ N
+, (3.35)

which satisfies Eqs.(3.32) and (3.33). Thus, there is phase matching from each sym-

metric mode at frequencies described in Eq.(3.34) to another symmetric mode at

double frequency, both having longitudinal phase velocity.

3.2.2.3 Group Velocity Matching

Substitution of Eqs.(3.32) and (3.33) into the relation for the group velocity Eq.(3.6)

results in

cg =
κ̄(κ̄2 − β̄2)2 + 8β̄2κ̄3

(ω̄/c2T)(κ̄2 − β̄2)2 + 8β̄2κ̄2(ω̄/c2L)
. (3.36)

where the limit sin(ᾱ) ≈ ᾱ is used, since ᾱ is very small. This is simplified as

cg =
cLc

2
T(c4L + 4c2Lc

2
T − 4c4T)

12c2Lc
4
T − 4c4Lc

2
T + c6L − 8c6T

(3.37)

and thus, depends only on the material’s properties. Consequently, the group ve-

locity is constant for all symmetric modes at the frequencies according to Eq.(3.34).

Furthermore, for each phase matching pair, group matching is fulfilled as well. Note

that Pilarski et al. [18] obtain another value for the group velocity. Confidence in the

value presented here is gained by comparison to numerical results from the software

Disperse [17].
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3.2.2.4 Displacements at the Surface

By looking at the displacement field in Eq.(2.18) it is seen immediately that

ũy(h) = 0, (3.38)

i.e. the normal displacement is zero at the surface. Using the frequency Eq.(2.17),

the in-plane displacement at the surface becomes

ũz(h) = Dh β̄
κ̄2 + β̄2

κ̄2 − β̄2
cos β̄, (3.39)

which is nonzero.

3.2.2.5 Summary

In summary, each symmetric mode at the longitudinal phase velocity shows phase

and group matching with another symmetric mode at the double frequency. The

respective frequencies and the common group velocity are given above. As in Sec-

tion 3.2.1 for crossing points, the out-of-plane displacement at the surface is zero,

while the in-plane displacement at the surface is nonzero. The lowest pair (S1,S2)

has been used by Bermes et al. [3] and Pruell et al. [19].

3.2.3 Nonzero Order Modes at Cutoff Frequencies

Graff [10] provides a concise introduction on cutoff frequencies, which are obtained

for the low wave number limit κ̄ → 0. Besides presenting the basic conditions that

result naturally from the linear theory, this section relates the results to phase and

group matching.

3.2.3.1 General Conditions

In the low wave number limit κ̄→ 0,

ᾱ→
ω̄

cL
, β̄ →

ω̄

cT
, (3.40)
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hold, hence

ᾱcL → β̄cT (3.41)

follows. For κ̄→ 0, the frequency equations Eqs.(3.4) and (3.5) become

Φsym(ω̄, κ̄) → cos
ω̄

cL
sin

ω̄

cT

( ω̄

cT

)4

= 0, (3.42)

and

Φasym(ω̄, κ̄) → sin
ω̄

cL
cos

ω̄

cT

( ω̄

cT

)4

= 0. (3.43)

The choice ω̄ → 0 leads to the fundamental modes S0 and A0. For the nonzero modes,

however, it is required that

case SI: ᾱ→
(2n− 1)π

2
, n ∈ N

+, or (3.44)

case SII: β̄ → nπ, n ∈ N
+, (3.45)

for symmetric modes, or

case AI: ᾱ→ nπ, n ∈ N
+, or (3.46)

case AII: β̄ →
(2n− 1)π

2
, n ∈ N

+, (3.47)

for antisymmetric modes. From Eqs.(3.40) and (3.44) to (3.47), the respective cutoff

frequencies are obtained as

case SI: ω̄ →
(2n− 1)π

2
cL, n ∈ N

+, (3.48)

case SII: ω̄ → nπcT, n ∈ N
+, (3.49)

case AI: ω̄ → nπcL, n ∈ N
+, (3.50)

case AII: ω̄ →
(2n− 1)π

2
cT, n ∈ N

+. (3.51)

Depending on the ratio cL/cT, the cutoff frequencies can be similar for different modes.

However, it is assumed in this work that the cutoff frequencies of all modes are distinct.
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3.2.3.2 Phase Velocity Matching

To show phase matching for a case SI mode in the limit κ̄→ 0, the conditions Eq.(3.2)

are applied to Eq.(3.44). One obtains

ᾱ
(2ω)
SI = (2n− 1)π ∈ case AI, (3.52)

where the subindex indicates the type of the mode at frequency ω̄. This means that

there is phase matching from every case SI mode to the case AI mode at double

frequency. Similarly, the phase matching conditions for the other cases

β̄
(2ω)
SII = 2nπ ∈ case SII, (3.53)

ᾱ
(2ω)
AI = 2nπ ∈ case AI, (3.54)

β̄
(2ω)
AII = (2n− 1)π ∈ case SII (3.55)

are obtained. In other words, in the limit κ̄→ 0 there is phase velocity matching

• from every case SI symmetric mode to a case AI antisymmetric mode,

• from every case SII symmetric mode to a case SII symmetric mode,

• from every case AI antisymmetric mode to a case AI antisymmetric mode,

• from every case AII antisymmetric mode to a case SII symmetric mode.

Note that

cph → ∞ (3.56)

as κ̄→ 0, and thus, phase matching in this limit case means that both phase velocities

of the mode pair approach infinity.

3.2.3.3 Group Velocity Matching

The group velocities for all the modes described above converge to zero, i.e.

cig → 0, i = SI, SII,AI,AII (3.57)
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as κ̄→ 0, which can be seen by Eqs.(3.6) and (3.7): Using the relations above, all the

terms in the nominator tend to zero, while there is always a term in the denominator

that does not vanish. Hence, each phase matching pair shows group matching with

group velocity tending to zero.

3.2.3.4 Displacements at the Surface

For the discussion on the displacements at the surface, it is noted that both ᾱ and β̄

have finite values, as is concluded by Eq.(3.41) and Eqs.(3.44) to (3.47).

As κ̄→ 0, Eqs.(A.27) yield

ũy(y) → −A
h
ᾱ sin ᾱ y

h
, (3.58a)

ũz(y) → −D
h
β̄ cos β̄ y

h
, (3.58b)

for the displacements of symmetric modes. For case SI according to Eq.(3.44), the

boundary condition Eq.(A.17b) requires D = 0, and thus,

ũSI
y (h) → −A

h
ᾱ sin ᾱ, (3.59a)

ũSI
z (h) → 0, (3.59b)

with ᾱ→ (2n−1)π/2. For case SII on the other hand, Eqs.(3.45) and (A.17c) require

A = 0, resulting in

ũSII
y (h) → 0, (3.60a)

ũSII
z (h) → −D

h
β̄ cos β̄, (3.60b)

with β̄ → nπ.

Using Eqs.(A.30), the displacement field for antisymmetric modes reduces to

ũy(y) →
B
h
ᾱ cos ᾱ y

h
, (3.61a)

ũz(y) →
C
h
β̄ sin β̄ y

h
. (3.61b)
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Specifically, Eq.(3.46) for case AI and Eq.(A.17b) yield C = 0, or

ũAI
y (h) → B

h
ᾱ cos ᾱ, (3.62a)

ũAI
z (h) → 0. (3.62b)

with ᾱ→ nπ, while Eqs.(3.47) and (A.17c) require B = 0, and thus,

ũAII
y (h) → 0 (3.63a)

ũAII
z (h) → C

h
β̄ sin β̄, (3.63b)

for case AII modes, where β̄ → (2n− 1)π/2.

3.2.3.5 Summary

Table 3.2 shows all possible combinations with their displacements at the surface.

Again, only symmetric modes at double frequencies are useful for second harmonic

generation, i.e. the first two entries in the table. One observes that the out-of-plane

displacement at the surface for these modes is zero, while the in-plane component is

nonzero.

For κ̄ = 0, the group velocity is zero, meaning that no energy is carried and the

wave does not propagate. For that reason, these modes are practically relevant only

in the approximation where κ̄ is small but nonzero. Then, phase matching holds

approximately, and the group velocity and the normal displacement at the surface

are small but nonzero.

Table 3.2: Phase Matching Pairs at Cutoff Frequencies

from Mode at ω̄ to Mode at 2ω̄
Case ᾱ, β̄ ũy(h) ũz(h) Case ᾱ, β̄ ũy(h) ũz(h)

SII β̄ = nπ 0 6= 0 SII β̄ = 2nπ 0 6= 0
AII β̄ = (2n− 1)π/2 0 6= 0 SII β̄ = (2n− 1)π 0 6= 0
SI ᾱ = (2n− 1)π/2 6= 0 0 AI ᾱ = (2n− 1)π 6= 0 0
AI ᾱ = nπ 6= 0 0 AI ᾱ = 2nπ 6= 0 0
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3.2.4 Nonzero Order Modes with High Wave Number

For high wave numbers, i.e. κ̄ → ∞, nonzero order modes show nondispersive be-

havior. It will be shown that both the phase and the group velocity converge to the

shear wave speed cT for all nonzero order modes, and thus satisfy approximately the

matching conditions when both wave number and frequency become large.

3.2.4.1 General Conditions

In this section, the region cT < cph < cL is considered. It follows that ᾱ = ᾱ′i, where

ᾱ′ =

√

κ̄2 −
( ω̄

cL

)2

, (3.64)

and thus, the frequency equations read as

Φsym(ω̄, κ̄) = sin β̄

[

1 −
( β̄

κ̄

)2
]2

− 4 tanh ᾱ′ cos β̄
ᾱ′β̄

κ̄2
= 0 (3.65)

and

Φasym(ω̄, κ̄) = cos β̄

[

1 −
( β̄

κ̄

)2
]2

+ 4 coth ᾱ′ sin β̄
ᾱ′β̄

κ̄2
= 0. (3.66)

In the high wave number limit κ̄→ ∞, requiring

β̄ → nπ, n ∈ N
+ (3.67)

satisfies Eq.(3.65) for symmetric modes. Similarly, Eq.(3.66) for antisymmetric modes

holds for

β̄ →
(2n− 1)π

2
, n ∈ N

+. (3.68)

In these cases, since

β̄

κ̄
=

√

(cph

cT

)2

− 1 → 0, (3.69)

one concludes

cph → cT, (3.70)

and

ᾱ′ = κ̄

√

1 −
(cph

cL

)2

→ κ̄γ → ∞, (3.71)
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where

γ =

√

1 −
(cT
cL

)2

. (3.72)

That is, the phase velocity of all the nonzero order modes converges to the shear

velocity for κ̄→ ∞. Furthermore, since

ω̄ → cTκ̄→ ∞, (3.73)

frequency increases with wave number. As to the fundamental modes, it will be shown

in Section 3.2.5 that they converge to the Rayleigh wave speed for high frequencies

and wave numbers.

3.2.4.2 Phase Velocity Matching

Since all the nonzero order modes converge to the same phase velocity, there is phase

matching from each to every nonzero order mode in the high wave number limit κ̄→

∞. For a large but finite wave number, there are mode pairs satisfying approximate

phase matching. The number of matching pairs depends on the wave number and

the approximation tolerance that is applied.

3.2.4.3 Group Velocity Matching

Application of the limits obtained in Section 3.2.4.1 on the expressions for the group

velocities Eqs.(3.6) and (3.7) yields

cg,sym →
cosh ᾱ′ γκ̄2

(

κ̄2 − (nπ)2
)2

cosh ᾱ′ γ κ̄2

cT

(

κ̄2 − (nπ)2
)2 → cT (3.74)

for symmetric modes, and

cg,asym →
sinh ᾱ′ γκ̄2

(

κ̄2 −
(

(2n−1)π
2

)2
)2

sinh ᾱ′ γ κ̄2

cT

(

κ̄2 −
(

(2n−1)π
2

)2
)2 → cT (3.75)

for antisymmetric modes, i.e. the group velocities of all the nonzero order modes

converge to the shear velocity. Thus, group matching from each to every nonzero
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order mode is concluded for the limit κ̄ → ∞. Again, for a large and finite wave

number, group matching holds approximately.

3.2.4.4 Displacements at the Surface

For the subsequent investigation of the displacements, the limits

(κ̄2 − β̄2)

κ̄
= κ̄

[

1 −
( β̄

κ̄

)2
]

→ κ̄ (3.76)

and

(κ̄2 − β̄2)

ᾱ
=

1

γ
κ̄
[

1 −
( β̄

κ̄

)2
]

→
κ̄

γ
(3.77)

will be helpful. Another limit for symmetric modes is obtained using the frequency

equation Eq.(3.65) and the limits presented in Section 3.2.4.1,

κ̄ sin β̄ → 4 tanh ᾱ′ cos β̄
ᾱ′β̄

κ̄

→ 4γβ̄ cos β̄ <∞, (3.78)

which is used to calculate the displacements at the surface from Eqs.(2.18) as follows:

ũsym
y (h) → iDh(−1

2
κ̄ sin β̄ + κ̄ sin β̄)

= 1
2
iDhκ̄ sin β̄

→ 2iDhγβ̄ cos β̄ <∞, (3.79a)

ũsym
z (h) → −Dh(− 1

2γ
coth ᾱ′ κ̄ sin β̄ + β̄ cos β̄)

→ −Dh(−2β̄ coth ᾱ′ + β̄) cos β̄

→ Dhβ̄ cos β̄ <∞. (3.79b)

Note that tanh(.) and coth(.) converge to 1 as the argument becomes large.

Eqs.(3.79) indicate that the displacements at the surface are nonzero. Yet, if for

example the depth y∗ = h/(2n) is considered, one term in the normal displacement

of Eqs.(2.18) approaches infinity, since

κ̄ sin(β̄y∗/h) → κ̄ sin(π/2) = κ̄→ ∞. (3.80)
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In order to interprete this correctly, it is noted that the displacements in Eqs.(2.18)

and (2.20) are of a relative nature. This means that as long as D and C are not

specified, these terms express only the shape of the displacement field. The absolute

magnitude is defined by D or C, respectively, which is determined physically by the

external excitation of the mode. In the case above, this means that D has to approach

zero in order to obtain a physically reasonable, finite displacement field. Thus, the

out-of-plane displacement at the surface uy(h) becomes infinitesimally small compared

to the displacement uy(h/(2n)), and

ũsym
y (h) → 0. (3.81)

For the in-plane displacement uz(y), there is no depth y to make any term unbounded,

so that

ũsym
z (y) → 0, for all y (3.82)

follows, i.e. the wave tends to become a pure shear wave as κ̄→ ∞, propagating with

shear wave speed.

Regarding antisymmetric modes, Eqs.(3.66) and (3.68) yield the limit

κ̄ cos β̄ → −4 coth ᾱ′ sin β̄
ᾱ′β̄

κ̄

→ −4γβ̄ sin β̄ <∞, (3.83)

which is used to calculate the displacements of Eqs.(2.20) at the surface

ũasym
y (h) → iCh(−1

2
κ̄ cos β̄ + κ̄ cos β̄)

= 1
2
iChκ̄ cos β̄

→ −2iChγβ̄ sin β̄ <∞, (3.84a)

ũasym
z (h) → Ch( 1

2γ
tanh ᾱ′ κ̄ cos β̄ + β̄ sin β̄)

→ Ch(−2β̄ tanh ᾱ′ + β̄) sin β̄

→ −Chβ̄ sin β̄ <∞. (3.84b)
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If the middle layer y∗ = 0 is considered in Eqs.(2.20), the normal displacement tends

to infinity, because

κ̄ cos(β̄y∗/h) → κ̄ cos(0) = κ̄→ ∞, (3.85)

while there is no y that makes the in-plane displacement unbounded. Hence, with

the same argumentation as above,

ũasym
y (h) → 0. (3.86)

and

ũasym
z (y) → 0, for all y. (3.87)

Thus, as κ̄ → ∞, both symmetric and antisymmetric modes tend to become pure

shear waves at the shear velocity with zero normal displacement at the surface.

3.2.4.5 Summary

As κ̄ → ∞ in the region cT < cph < cL, it is shown that all nonzero order modes

approach the shear velocity cT in both phase and group velocity, whence phase and

group matching is concluded from each to every mode in the high wave number

limit. Furthermore, the out-of-plane displacement at the surface and the in-plane

displacement over the whole cross section converge to zero, so that motion becomes

pure shear.

In a practical view, the results may be applied approximately, i.e. as κ̄ being

large but not infinity. Then, dependent on the wave number and the approximation

tolerance applied, the results hold up to a certain number of modes.

3.2.5 Fundamental Modes with High Wave Number
(Quasi-Rayleigh Surface Wave)

In the region cph < cT < cL for κ̄→ ∞, the wave length becomes very small compared

to the thickness of the plate, so that the fundamental modes take the form of a

Rayleigh surface wave, whose characteristics are presented for example in Graff [10].
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3.2.5.1 General Conditions

The condition cph < cT implies that ᾱ and β̄ are complex and written as ᾱ = iᾱ′ and

β̄ = iβ̄′, where ᾱ′ as in Eq.(3.64) and

β̄′ =

√

κ̄2 −
( ω̄

cT

)2

. (3.88)

The frequency Eqs.(3.4) and (3.5) then reduce to the Rayleigh wave equation

(κ̄2 + β̄′2)2 − 4ᾱ′β̄′κ̄2 = 0, (3.89)

whose solution is the Rayleigh wave speed cR with the property cR < cT. Hence, the

limits

ᾱ′ = κ̄

√

1 −
(cR
cL

)2

→ κ̄γα → ∞, (3.90)

β̄′ = κ̄

√

1 −
(cR
cT

)2

→ κ̄γβ → ∞ (3.91)

are concluded, where

γα =

√

1 −
(cR
cL

)2

, (3.92)

γβ =

√

1 −
(cR
cT

)2

. (3.93)

The term quasi-Rayleigh wave is used for these kind of modes because in the high

wave number and frequency limit, these Lamb modes behave approximately like a

Rayleigh wave. As the wave length becomes much smaller than the plate thickness,

the plate appears to be an infinite half space for the propagating wave as in the

Rayleigh surface wave problem. The additional term quasi indicates that not the

original Rayleigh wave – as defined for an infinite half space – is meant, but the

Lamb modes that behave like a Rayleigh wave in the high frequency domain.

3.2.5.2 Phase Velocity Matching

Since the fundamental modes S0 and A0 converge to the Rayleigh wave speed in the

high wave number limit κ̄→ ∞, there is phase matching from each fundamental mode
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to itself and to the other one. For a large but finite wave number, phase matching

holds approximately.

3.2.5.3 Group Velocity Matching

Due to the nondispersive behavior, group velocity equals phase velocity, i.e.

cg → cph → cR (3.94)

as can be inferred from Eq.(3.10). Hence, group matching for the fundamental modes

is concluded.

3.2.5.4 Displacements at the Surface

Substituting the limits obtained in Section 3.2.5.1 in the displacement fields Eqs.(2.18)

and (2.20) results in

ũS0
y (y) = Dκ̄

h

((1 + γ2
β) sinh β̄′

2 sinh ᾱ′
sinh ᾱ′ y

h
− sinh β̄′ y

h

)

(3.95a)

ũS0
z (y) = iDκ̄

h

((1 + γ2
β) sinh β̄′

2γα sinh ᾱ′
cosh ᾱ′ y

h
− γβ cosh β̄′ y

h

)

(3.95b)

for the symmetric fundamental mode S0, and

ũA0
y (y) = iCκ̄

h

(

−
(1 + γ2

β) cosh β̄′

2 cosh ᾱ′
cosh ᾱ′ y

h
+ cosh β̄′ y

h

)

(3.96a)

ũA0
z (y) = Cκ̄

h

((1 + γ2
β) cosh β̄′

2γα cosh ᾱ′
sinh ᾱ′ y

h
− γβ sinh β̄′ y

h

)

(3.96b)

for the antisymmetric fundamental mode A0. These equations show – according to

the theory of Rayleigh waves – that the energy is concentrated at the surface and that

displacements vanish exponentially with depth: As ᾱ′ and β̄′ become large, the sinh(.)

and cosh(.) terms grow with a faster exponential rate as y approaches h. In the very

limit ᾱ′, β̄′ → ∞, the displacement is concentrated entirely in an infinitesimally small

layer beneath the surface. At the surface, Eqs.(3.95) and (3.96) take the form

ũS0
y (h) = Dκ̄

h

γ2
β

2
cosh β̄′ (3.97a)

ũS0
z (h) = iDκ̄

h

1−2γαγβ+γ2
β

2γα
cosh β̄′ (3.97b)
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and

ũA0
y (h) = − iCκ̄

h

γ2
β

2
cosh β̄′ (3.98a)

ũA0
z (h) = Cκ̄

h

1−2γαγβ+γ2
β

2γα
cosh β̄′ (3.98b)

as cosh(.) → sinh(.) for large arguments.

3.2.5.5 Summary

In summary, for large wave numbers and frequencies, both the phase and the group

velocity of the fundamental modes S0 and A0 converge to the Rayleigh surface wave

speed cR < cT. Due to the nondispersive behavior phase and group matching is

concluded. The displacements at the surface are large compared to the ones in the

inner part of the plate, since energy is concentrated in a thin layer beneath the surface.

Herrmann et al. [11] and Shui et al. [23] use this mode in their experiments.
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CHAPTER IV

EVALUATION OF MATCHING PAIRS FOR AN

ALUMINUM PLATE

The statements concerning frequencies where phase and group matching can occur

– as provided in Chapter 3 – are general and can be applied to any homogeneous,

isotropic, elastic plate. The objective of this work, however, is not only to give pos-

sible excitation frequencies, but also to evaluate them with regard to practical issues

related to excitation and measurement. With the investigation of the displacements

at the surface in Chapter 3, a first step in this direction is made already. However,

other factors, most importantly the rate of second harmonic generation, have not

been addressed yet. Also, for some modes in Chapter 3, the wave number is assumed

to converge to zero or infinity, respectively, which is practically impossible. There-

fore, how to determine deviation tolerances from exact phase matching and how the

approximation influences the second harmonic wave, are questions of importance.

One of the most important factors, the rate of second harmonic generation, among

others, cannot be analyzed conveniently in a general framework. In order to obtain

comparable numbers and ratios, and descriptive plots of dispersion curves, the ma-

terial properties must be known. For this reason, the calculations in this chapter are

performed for an aluminum plate, whose material properties are given in Table 4.1.

The same procedure can be carried out easily for other materials as well. Even though

the absolute numbers may be different for different materials, a similar qualitative

behavior is expected.

The following section summarizes previously mentioned and newly introduced

factors that are critical as to the evaluation and comparison of modes and excitation
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Table 4.1: Material Properties of Aluminum. 1) Disperse [17]. 2) Landau and
Lifshitz [13].

ρ0
1) cL

1) cT
1) µ 1) λ 1) A 2) B 2) C 2)

2700 kg/m3 6320 m/s 3130 m/s 26.5 GPa 54.9 GPa -320 GPa -200 GPa -190 GPa

frequencies. Section 4.2 then evaluates the matching pairs found for the aluminum

plate up to a frequency-thickness-product of fdmax = 20 MHz mm with regard to

these influencing factors. Pros and cons for each type of matching pair are given and

then compared to other types.

4.1 Influencing Factors

Displacements at the Surface. Measurements using wedge transducers mainly detect

the out-of-plane displacement at the surface since they are mostly liquid-coupled to

the structure. A large normal displacement at the surface is therefore advantageous.

For the investigation of displacements in this chapter, the normalization

ū =
u

h
(4.1)

is introduced so that further calculations will be independent of the plate’s thickness.

As to crossing points and symmetric modes at the longitudinal phase velocity, it is

shown in Sections 3.2.1 and 3.2.2 that only the in-plane displacement at the surface is

nonzero. For the other three types, however, there is a nonzero normal displacement at

the surface since only approximations are considered. That is, while the derivations

in Chapter 3 are carried out for the wave number converging to zero or infinity,

this chapter deals with high finite or low nonzero wave numbers, which results in

small deviations from the theory presented before. In order to quantify the normal

displacement of a mode, the ratio

ry =
˜̄uy(h)
˜̄uy,max

(4.2)
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is introduced, where

˜̄uy,max = max
y∈[−h,h]

|˜̄uy(y)|. (4.3)

is the maximum normal displacement in the cross section of the plate. A high value

for ry indicates a high out-of-plane displacement at the surface, making excitation

and measurement of this mode easier.

Rate of Second Harmonic Generation. While the discussion above deals only with

the mode shape of the modes involved in second harmonic generation – either as

primary mode or as one of the secondary modes – the actual rate of second harmonic

generation is important with regard to the measurement of the second harmonic

mode: The stronger the secondary mode gets excited, the bigger are its amplitude

and signal-to-noise ratio. The amplitude ratio

rs =

∣

∣

∣

∣

∣

Ā(2)

Ā2
(1)

∣

∣

∣

∣

∣

(4.4)

quantifies the rate of second harmonic generation. Ā(1) and Ā(2) represent the ampli-

tude of the primary and secondary mode, respectively. Further explanations on how

the amplitude of a Lamb mode is defined, are given in Section 4.2. It is noted here

that rs normalizes the secondary amplitude by the squared amplitude of the primary

mode. This is due to the fact that the primary mode enters the calculation of the

secondary mode quadratically, as one can see in Eqs.(2.14) and Eqs.(2.37). Moreover,

in the theory of second harmonic bulk waves in an infinite medium, as for example

presented by Norris [16], rs is proportional to the nonlinear parameter β̃ and the prop-

agation distance. While it is true for Lamb waves according to Eq.(2.41) that rs is

proportinal to the propagation distance if phase matching is satisfied, the dependency

on the nonlinear parameter has not been shown yet. Nevertheless, experiments such

as those by Bermes et al. [3] and Pruell et al. [19, 20] employ rs to show a correlation

between the material’s nonlinearity and the second harmonic amplitude.

Dispersion Length. For approximate phase matching pairs, the dispersion length
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L as defined in Eq.(2.58) determines those values of propagation distance for which

measurements are reasonable. As stated in Section 2.2.4, the useful propagation

distance is one fourth of the dispersion length where a linear increase of the amplitude

holds approximately. If the dispersion length is normalized as

L̄ =
L

h
, (4.5)

the normalized useful propagation length is obtained by

L̄use =
L̄

4
=

π

2|κ̄d|
. (4.6)

In the following section, L̄use is required to be at least

L̄use > 400, (4.7)

which means that measurements can be performed along a propagation distance that

is at least 200 times the plate thickness. Using this requirement and Eq.(4.6) yields

|κ̄d| <
π

800
≈ 4 · 10−3 (4.8)

for the allowed deviance from exact phase matching.

Symmetry of the Excitation Mode. A practical issue is proposed by the symmetry

of the excitation mode. As shown in Chapter 2, the secondary mode can only be

symmetric, so that only the symmetry of the primary mode can be selected by the

experimenter. By experience, the excitation of an antisymmetric mode turns out to

be easier than that of a symmetric mode. The reason for that is the y-symmetric

normal displacement field of antisymmetric modes as discussed in Section 2.1.2.1 on

the primary solution.

Isolated Excitation Mode. Also, for the excitation of a primary mode, the mode

should be isolated in the dispersion curve. That is, no other mode should have a

similar wave number at a similar frequency . Otherwise, that other mode is likely to

be excited as well, and thus, complicates the signals measured.
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Frequency. The excitation frequency should not be too high due to attenua-

tion and high requirements on measurements and signal processing. The maxi-

mum frequency-thickness-product fd for the primary mode assumed in this work

is fdmax = 20 MHz mm based on experience. Also, modes with higher frequency are

more difficult to excite.

Group Velocity. Depending on the situation, a high value for the group velocity

might be helpful. Signals with high group velocity will separate from signals with

lower group velocity and arrive earlier at the point of measurement, so that slower

waves cannot disturb the signal being measured. However, it is noted that this

requirement does not apply to all practical applications.

4.2 Evaluation

In order to evaluate the mode types presented in Section 3.2 with regard to the factors

proposed above, two software tools are used. The program Disperse [17] provides

numerical dispersion curves for various wave propagation problems. The numerical

data for a stress free aluminum plate are exported from Disperse to Matlab and

analyzed there with regard to frequencies, phase velocity, group velocity, etc. Also, the

search for approximate matching pairs according to condition Eq.(4.8) is performed

with numerical results from Disperse.

Concerning the computation of the second harmonic amplitude, the term an for

the secondary mode n as in Eq.(2.43) needs to be obtained. Referring to the deriva-

tions in Section 2.1, it is observed that the computation requires derivatives as well

as integrations. In this work, the symbolic toolbox of Matlab is employed to per-

form these calculations analytically. Matlab offers a variety of symbolic operations

and possibilities to create new functions, which makes the computer-based symbolic

calculation convenient and comprehensible. Also, as opposed to numerical methods,

convergence issues need not to be addressed.
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The following sections present the results obtained for the five mode types from

Section 3.2. The dispersion curves in Figure 4.1 overview the points of phase velocity

and group velocity matching that are investigated in the following.

4.2.1 Crossing Points of Symmetric and Antisymmetric Modes

The investigation of matching pairs at crossing points, which are listed as ‘C’ in

Figure 4.1, for the frequency range up to fdmax = 20 MHz mm of the primary mode

results in the mode pairs that are presented in Table 4.2. The table itemizes the

reference tag, the mode pairs involved, the frequency-thickness product of the primary

mode, and the conditions on ᾱ and β̄ for the primary mode. The phase velocity

cph and the group velocity cg, respectively, are the same for both the primary and

the secondary mode as shown in Chapter 3. The group velocity cug of the mode at

the primary crossing point, which does not satisfy group velocity matching to the

secondary symmetric mode, is given as well. The latter mode is referred to as non-

matching mode.

Regarding the rate of second harmonic generation rs for exact phase matching,

Eq.(2.41) yields
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ū
(1)
z (h)

)2

∣

∣

∣

∣

∣

(z) =

∣

∣

∣

∣

∣

an ˜̄u
(2)
z (h) z

(

˜̄u
(1)
z (h)

)2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

an ũ
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where

rs =

∣

∣

∣

∣

∣

an ũ
(2)
z (h)

(

˜̄u
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z (h)

)2

∣
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. (4.10)

In words, the rate of second harmonic generation rs represents the slope of the ampli-

tude of the secondary in-plane displacement at the surface normalized by the primary

mode squared. The in-plane component at the surface is chosen for this definition

because the normal component vanishes at the surface as shown in Chapter 3, so that

the in-plane component displays the only measurable quantity.
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Figure 4.1: Dispersion Curves for an Aluminum Plate with Matching Pairs: C -
Crossing, L - Sym. Modes at Long. Velocity, O - Cutoff Frequency, T - Nonzero
Order Modes at Transversal/Shear Velocity, R - Fundamental Modes at Rayleigh
Wave Speed
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Table 4.2: Evaluation of Matching Pairs at Crossing Points. fd in Mhz · mm.

Ref. Modes fd ᾱ, β̄ cph [m/s] cg [m/s] cu
g [m/s] rs

C1 A2→S4 5.095 π/2, 3π/2 8057 2000 3752 2.49
C2 A3→S6 8.825 π/2, 5π/2 6769 2943 4779 6.98
C3 S4→S8 10.190 π, 3π 8057 2000 3749 9.97
C4 A5→S10 11.390 3π/2, 7π/2 11394 1086 2913 4.83
C5 A4→S8 12.480 π/2, 7π/2 6533 3220 5368 14.68
C6 S5→S10 13.950 π, 4π 7089 2622 4355 16.29
C7 A6→S12 15.290 3π/2, 9π/2 8057 1992 3750 22.43
C8 A5→S10 16.113 π/2, 9π/2 6554 3337 5660 24.93
C9 S7→S14 16.510 2π, 5π 9824 1360 3230 13.25
C10 S6→S12 17.650 π, 5π 6769 2940 4784 27.91
C11 A8→S16 17.650 5π/2, 11π/2 14179 802 2475 7.70
C12 A7→S14 19.065 3π/2, 11π/2 7284 2462 4180 29.16
C13 A6→S12 19.734 π/2, 11π/2 6403 3398 5848 37.74

Analyzing the results of Table 4.2 with regard to the factors mentioned in Sec-

tion 4.1 reveals the following features of modes at crossing points. The major advan-

tage of crossing points is marked by the fact that a variety of antisymmetric primary

modes can be selected, first of all C1 with the lowest frequency. Even though the

rate of second harmonic generation appears to be smaller for antisymmetric modes

compared to symmetric primary modes, the benefit from choosing an antisymmetric

primary mode might outweigh this factor. Furthermore, the fact that exact phase

matching occurs at crossing points, removes any concerns about approximation tol-

erances on phase matching.

As will be seen later on, the absolute value of the rate of second harmonic gen-

eration is rather small compared to the other mode types, except the nonzero order

modes at high wave number. Also, zero out-of-plane displacement at the surface

presents a disadvantage as to measurements and excitation.

For low frequencies, crossing points are isolated very well as is seen in Figure 4.1.

Even though second harmonic generation seems to be higher for high frequencies, the

disadvantages of high frequencies stated in section 4.1 are likely to favor the choice of

low frequencies. As crossing points are distributed all over the frequency range, they
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offer the opportunity to investigate the dependency on frequency experimentally.

By the definition of a crossing point, both a symmetric and an antisymmetric

primary mode simultaneously get excited, only one of which matches group velocity

with the secondary mode. As seen in Table 4.2, the group velocity of the non-matching

mode is much bigger than that of the matching mode. This means that the undesired

non-matching mode propagates ahead of the matching mode pair. Since the non-

matching mode generates secondary components as well, the measured signal can be

disturbed by these waves. This problem might be moderated by exciting the mode

shape of the matching primary mode as precisely as possible, so that the amplitude

of the non-matching mode becomes small. This is complicated by the fact that the

non-matching mode has nonzero normal displacement at the surface. An in-plane

excitation approach might be needed, therefore, to excite only the matching primary

mode.

4.2.2 Symmetric Modes at the Longitudinal Velocity

Table 4.3 presents the quantitative results for symmetric modes at the longitudinal

phase velocity abbreviated with ‘L’ in Figure 4.1. The rate of second harmonic

generation is defined as in Eq.(4.10) because the normal displacement at the surface

is shown to be zero in this case as well.

Compared to crossing points at similar frequencies, these mode pairs allow a

Table 4.3: Evaluation of Matching Pairs at the Longitudinal Phase Velocity. fd in
Mhz · mm.

Ref. Modes fd cph [m/s] cg [m/s] rs

L1 S1→S2 3.603 6320 4326 3.76
L2 S2→S4 7.206 6320 4326 15.05
L3 S3→S6 10.809 6320 4326 33.87
L4 S4→S8 14.412 6320 4326 60.22
L5 S5→S10 18.015 6320 4326 94.09
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higher rate of second harmonic generation. Figure 4.2 compares the second harmonic

amplitude for the first two mode pairs of each type. It is pointed out that this

figure only expresses the rate of second harmonic generation, and does not allow for

any conclusions on the excitability of the primary wave. That is, for Figure 4.2,

it is assumed that all primary modes of the mode pairs C1, C2, L1, and L2 are

excited with the same in-plane displacement at the surface. Since modes at higher

frequencies are usually more difficult to excite, modes with lower frequencies might

be preferred, even though mode pairs with higher frequencies show larger second

harmonic generation. Or in other words, a high rate of second harmonic generation

is useless if the primary mode cannot be excited strongly enough, since the secondary

amplitude is proportional to the primary amplitude squared.

Regarding the other factors, the primary mode is well isolated in the dispersion

curve for lower frequencies. Moreover, L1 represents the matching pair with the lowest

frequency. A last advantage is presented by the comparably high group velocity of
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Figure 4.2: Second Harmonic Amplitude (s.h.a.) for Crossing Points and Symmetric
Modes at Longitudinal Velocity
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the modes involved.

Yet, two disadvantages stand out. First, only symmetric modes can be excited,

which might speak in favor for crossing points with an antisymmetric primary mode,

and secondly, the normal displacement at the surface vanishes as for crossing points.

Again, an in-plane excitation method might help to excite a strong primary mode.

4.2.3 Nonzero Order Modes at Cutoff Frequencies

For nonzero order modes at cutoff frequencies, which are tagged ‘O’ in Figure 4.1,

phase and group matching hold only approximately. For this reason, Table 4.4 shows

not only the phase and group velocity for the primary but also for the secondary

mode. The frequency of evaluation is chosen to be at one percent deviation from the

exact cutoff frequency, i.e.

fd = 1.01 fdcutoff. (4.11)

By analyzing all the modes at these frequencies, it is found that only three mode pairs

are close to condition Eq.(4.8), while only one mode pair, O1, satisfies the condition.

Due to the high rate of second harmonic generation, however, a smaller value for L̄

than required above might still be sufficient.

As the approximation for low but nonzero wave numbers is considered, the normal

displacement at the surface does not vanish identically as suggested by Chapter 3.

The rate of the normal displacements ry is given in Table 4.4 for the primary and the

secondary mode, respectively.

Also, the rate of second harmonic generation is derived in a slightly different way

than before. Since approximate phase matching holds, Eqs.(2.41) and (2.57) yield
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rs =

∣

∣

∣

∣

∣

an ũ
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Note that the rate of second harmonic generation reads in terms of the normal dis-

placement at the surface as opposed to the in-plane component above. Furthermore,

one observes that for small κ̄d z/h
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which shows that approximate phase matching results in an approximately linear

increase of the second harmonic amplitude over a long distance, if the deviation κ̄d

from exact phase matching is small enough.

The critical observation in Table 4.4 is the big rate of second harmonic generation

for these modes. This is explained by the wave propagation of the partial waves com-

prising the Lamb mode. Since the wave number κ̄ of the mode is small, the partial

waves propagate at an angle almost perpendicular to the plate’s surface, bouncing

back and forth between the surfaces at a sharp angle. In this way, the partial waves

pass a long distance in the material while proceeding only little in the propagation di-

rection. The long travel distance in the material leads then to a high second harmonic

generation due to nonlinearities.

Besides this big advantage, there are a couple of issues that need to be addressed.

Since the phase velocity and the wave number are very sensitive to changes in fre-

quency, the modes are highly dispersive, meaning that it will be hard to excite a mode

Table 4.4: Evaluation of Matching Pairs at Cutoff Frequencies. fd in Mhz · mm.
Velocities in m/s.

Ref. Modes fd c
(1)
ph c

(2)
ph c

(1)
g c

(2)
g rs L̄ r

(1)
y r

(2)
y

O1 S3→S6 6.323 23125 23135 480 482 261.10 1960 0.07 0.14
O2 S6→S12 12.645 23136 23182 482 478 568.27 228 0.14 0.26
O3 S9→S18 18.969 23154 23272 475 499 989.99 60 0.20 0.38
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with specific frequency and wave number. Also, only symmetric primary modes show

sufficient approximation precision, and the ratios of normal displacements at the sur-

face r
(1)
y and r

(2)
y tend to be small, especially for the mode pair O1 with the lowest

frequency.

Low group velocity displays another remarkable feature of these modes. Depend-

ing on the application this might lead to problems as reflexions from the boundaries

of faster modes might influence measurements. On the other hand, this feature might

be used to obtain a signal that is well separated from other modes in the time domain.

4.2.4 Nonzero Order Modes with High Wave Number

Table 4.5 shows the evalution of nonzero order modes for high wave numbers, which

are abbreviated with ‘T’ in Figure 4.1. It is found that no mode pair can satisfy

Eq.(4.8) for a primary frequency smaller than fd = 20 MHz mm. The two best

mode pairs in terms of a long dispersion length at frequency fd = 20 MHz mm are

presented, nevertheless, in order to evaluate them with regard to other factors. The

items in Table 4.5 are defined in the same way as those of Table 4.4 in Section 4.2.3.

In short, the only positive feature of these modes turns out to be the antisymmetry

of the primary mode of mode pair T1, which offers an advantage in the excitation

of the primary mode. For most of the other factors, however, these modes perform

worse than other mode pairs.

First, even at very high frequencies, the dispersion length is fairly small. For the

mode pair T1 and a plate of thickness 1 mm, measurements are useful along a distance

Table 4.5: Evaluation of Matching Pairs for Nonzero Order Modes with High Wave
Number. fd in Mhz · mm. Velocities in m/s.

Ref. Modes fd c
(1)
ph c

(2)
ph c

(1)
g c

(2)
g rs L̄ r

(1)
y r

(2)
y

T1 A1 → S1 20.000 3144.0 3141.5 3111 3116 0.6684 49.4 0.16 0.14
T2 S1 → S2 20.000 3186.3 3176.6 3056 3077 2.3354 13.0 0.29 0.28
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of about 5 cm from the source, for example. Besides the small normal displacement at

the surface, the rate of second harmonic generation remains small as well. Also, the

nonzero order modes are barely isolated from each other for high frequencies, which

makes the excitation of a single mode difficult. The group velocity at the shear wave

speed is neither particularly high nor low.

4.2.5 Quasi-Rayleigh Surface Wave

The quasi-Rayleigh wave, which is marked as ‘R’ in Figure 4.1, is evaluated at the

lowest frequency where the condition on |κ̄d| in Eq.(4.8) is satisfied. All items of

Table 4.6 are defined in the same way as in the two sections on approximate matching

pairs above.

Table 4.6 reveals several advantages for quasi-Rayleigh waves. While all other

mode pairs have zero or near zero normal displacement at the surface, the quasi-

Rayleigh wave shows by far the largest normal displacement component at the sur-

face, making it much easier to excite and detect. Also, the rate of second harmonic

generation is exceeded only by modes at cutoff frequencies. Figure 4.3 compares

the rates of second harmonic generation for the approximate matching pairs O1, T1,

and R1 according to Eq.(4.12). Returning to the quasi-Rayleigh wave, the fact that

the quasi-Rayleigh wave is approximately nondispersive displays another advantage,

making the excitation less sensitive to shifts of the excitation frequency. Thus, there

is much freedom in the choice of the excitation frequency.

The major disadvantage is presented by the fact that quasi-Rayleigh waves are

Table 4.6: Evaluation of Matching Pairs for the Quasi-Rayleigh Wave. fd in Mhz ·
mm. Velocities in m/s.

Ref. Modes fd c
(1)
ph c

(2)
ph c

(1)
g c

(2)
g rs L̄ r

(1)
y r

(2)
y

R1 S0 → S0 10.288 2921.3 2920.8 2917 2921 54.4327 400 0.91 0.91
R2 A0 → S0 10.264 2920.2 2920.8 2924 2921 54.2234 400 0.91 0.91
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Figure 4.3: Second Harmonic Amplitude (s.h.a.) for Approximate Matching Pairs
(O1, T1, and R1)

basically surface waves, meaning that the energy is concentrated within a thin layer

with the thickness of one wavelength beneath the surface. Thus, with regard to

material’s characterization methods that are intended to evaluate properties of the

whole volume of a plate, the quasi-Rayleigh wave is useless. Applications of quasi-

Rayleigh waves are common, however, where the surface of the plate is of interest, as

for example in Herrmann et al. [11].

Rather low group velocity and the proximity to nonzero order modes in the disper-

sion curve are minor disadvantages. The discussion on the symmetry of the primary

mode is unessential as the symmetric and the antisymmetric primary mode com-

prise the quasi-Rayleigh wave together. In this context, it is noted that the theory
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presented here suggests that the secondary wave will differ in shape from the pri-

mary wave, since only symmetric second harmonic modes are generated according

to Chapter 2. This means that both surfaces of the plate have to show the same

normal displacement for the second harmonic wave, while for the primary wave, the

superposition of the symmetric and the antisymmetric fundamental mode can cancel

out the displacement at one surface.

4.2.6 Summary

The pros and cons for the different types of matching pairs, as presented above, are

listed in Table 4.7 for quick reference. It remains to summarize the most important

observations from the above evaluation.

First, all modes satisfying phase and group velocity matching show zero or small

normal displacement at the surface except the quasi-Rayleigh wave. The latter has

the crucial disadavantage of not being an actual Lamb mode since the quasi-Rayleigh

wave does not penetrate the whole plate but only the region beneath the surface.

As to the other modes, an in-plane excitation approach is suggested to increase the

excitation of the primary wave.

In terms of second harmonic generation, the modes at cutoff frequencies domi-

nate the other mode pair types. However, due to several disadvantages mentioned in

Table 4.7, the practicability of these modes needs to be investigated experimentally.

Besides quasi-Rayleigh waves, which could be useless for some material’s characteriza-

tion methods because of their surface wave character, crossing points and symmetric

waves at longitudinal velocity represent the set of modes to choose from. Crossing

points offer the advantage of allowing an antisymmetric mode as a primary mode,

while the excitation of the other, non-matching primary mode at the crossing point

might cause problems as discussed in Section 4.2.1. The nonzero order modes with

69



high wave number appear to have no crucial advantage over other mode pairs, prob-

ably making them useless for practical applications.
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Table 4.7: Pros and Cons of Matching Pairs

Crossing Points – C

+ antisymmetric primary wave pos-
sible

– zero normal displacement at sur-
face

+ exact phase and group velocity
matching

– rather low rate of second harmonic
generation

+ low excitation frequency possible – excitation of non-matching primary
mode

Symmetric Modes at Longitudinal Velocity – L

+ exact phase and group velocity
matching

– zero normal displacement at sur-
face

+ high group velocity – no antisymmetric primary mode
+ low excitation frequency possible

Modes at Cutoff Frequencies – O

+ very high rate of second harmonic
generation

– approximate phase and group ve-
locity matching
– highly dispersive
– low normal displacement at the sur-
face
– very low group velocity

Nonzero Order Modes with High Wave Number – T

+ antisymmetric primary wave pos-
sible

– very low rate of second harmonic
generation

+ approximately non-dispersive – low normal displacement at the sur-
face
– fairly short dispersion length even
for very high frequencies
– modes not well isolated

Quasi-Rayleigh Surface Wave – R

+ high normal displacement at the
surface

– energy of the mode concentrated at
the surface

+ Good rate of second harmonic gen-
eration

– high frequencies

+ approximately non-dispersive
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CHAPTER V

CONCLUSION

Recalling the objectives in Chapter 1, the solution of second harmonic Lamb wave

generation is derived in Section 2.1 following De Lima [5]. The major result is the

amplitude coefficient An(z) for each secondary mode n in the modal expansion of

the secondary wave. It is concluded that a secondary mode shows internal resonance

if the power flux from the primary to the secondary mode is nonzero, and exact or

approximate phase velocity matching occurs. While internal resonance is favorable to

measurements due to the linear increase in the secondary amplitude, the nonresonant

solution proves to be unfeasible for applications in material’s characterization, because

the amplitudes of the second harmonic wave remain small in this case.

With regard to the symmetry properties it is shown in Section 2.2.2 that both

a symmetric and an antisymmetric primary mode have nonzero power flux to a sec-

ondary mode, but zero power flux to an antisymmetric secondary mode. This confirms

Deng’s statement [8] that the secondary wave is purely symmetric, and extends it to

the conclusion that the cross-modal generation from an antisymmetric primary to a

symmetric secondary mode is possible.

The above result is necessary as to the search for phase velocity matching pairs in

the dispersion curve of Lamb modes, as performed in Chapter 3. The analysis shows

that there are five types of modes that satisfy phase and group velocity matching:

1. Modes at crossing points

2. Symmetric modes at the longitudinal phase velocity

3. Nonzero order modes at cutoff frequencies
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4. Nonzero order modes with high wave number

5. Fundamental modes with high wave number (quasi-Rayleigh Wave).

Each of these mode types is evaluated in Chapter 4 with regard to a strong measurable

second harmonic amplitude as summarized in Table 4.7. The investigation shows that

modes at cutoff frequencies display a very high second harmonic generation. Yet,

they suffer from several disadavantages, whose impact on real experiments needs to

be investigated in practice. Quasi-Rayleigh waves turn out to be most useful when

the plate’s surface is of interest. While nonzero order modes with high wave numbers

appear to be unfavorable in some respects, the pros and cons of modes at crossing

points and symmetric modes at the longitudinal velocity do not clearly allow for a

general conclusion as to which of these two mode types should be preferred. Instead,

the information provided in this work can be used to decide the answer to this choice

for a specific application.

As to limitations of the results presented in this work, it is pointed out that the

solution in Section 2.1 employs a perturbation method which requires the secondary

mode to be much smaller than the primary mode. If this condition is violated, the

perturbation solution does not hold. Moreover, the results presented in Chapter 4 are

evaluated for the example of an aluminum plate, so that only qualitative conclusions

for other materials are possible. Finally, it should be noted that the analysis applies

only to elastic, isotropic, and homogeneous plates. Most metals meet these conditions,

while composites, concrete or rock, for instance, do not.

“Knowing is not enough; we must apply.

Willing is not enough; we must do.”

J. W. von Goethe
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... describes in the most appropriate way which future work is needed and sug-

gested. As a first step, the results presented in this thesis should be confirmed ex-

perimentally. Especially, the modes at cutoff frequencies present a good opportunity

to achieve high second harmonic amplitudes. Also, results from crossing points and

symmetric modes at longitudinal velocity should be compared experimentally, since

the pros and cons cannot identify without doubt, which mode is to be preferred.

As a second step, the information provided should be used to improve existing

methods for material’s characterization and NDE by obtaining stronger signals for

the second harmonic amplitude.

Further theoretical work might be needed as to the influence of damage and fatigue

on the material’s properties, and consequently on the second harmonic amplitude.

Also, the extension to materials that do not satisfy homogeneity or isotropy might

be of interest for future applications. Concerning different geometries, De Lima’s

work [5] provides tools for cylindrical rods and shells, which could be investigated for

practical issues in a similar way. Also, a theory for plates with varying thickness or

for wave guides with surrounding materials could be of interest in the future.
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APPENDIX A

LINEAR PLATE THEORY

In this appendix, the solution for a linear plate is presented following Graff’s [10]

derivation. Waves propagate in the positive z-direction. Furthermore, plane strain is

assumed in x and the surface of the plate is stress free.

The linear, homogeneous equations of motion in displacement formulation

(λ+ 2µ)∇(∇ · u) − µ∇ × (∇ × u) = ρ
∂2u

∂t2
(A.1)

in combination with the stress free boundary conditions

σyx = 0 (A.2a)

σyy = 0 (A.2b)

σyz = 0 (A.2c)

at the surface y = ±h, is the linear boundary value problem to be solved. Lamé’s

constant λ, the shear modulus µ and the density ρ are constant material properties.

A common solution approach is the use of Helmholtz potentials. In terms of the

scalar potential φ and the vector potential ψ, the displacement field reads as

u = ∇φ+ ∇ ×ψ, (A.3)

where the divergence condition

∇ ·ψ = 0 (A.4)

on ψ is required. The equation of motion Eq.(A.1) is then rewritten as two wave
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equations

∇
2φ =

1

c2L

∂2φ

∂t2
, (A.5a)

∇
2ψ =

1

c2T

∂2ψ

∂t2
(A.5b)

for the potentials, where

cL =

√

λ+ 2µ

ρ
(A.6)

is the longitudinal velocity and

cT =

√

µ

ρ
(A.7)

the shear velocity in an unbounded medium. If the potentials are assumed to have

the form

φ(y, z, t) = φ̃(y) ei(κz−ωt), (A.8a)

ψ(y, z, t) = ψ̃(y) ei(κz−ωt), (A.8b)

where κ is the wave number and ω the angular frequency, solving for Eqs.(A.5) yields

φ(y, z) = (A cosαy +B sinαy) ei(κz−ωt), (A.9a)

ψx(y, z) = (C cos βy +D sin βy) ei(κz−ωt), (A.9b)

ψy(y, z) = (E cos βy + F sin βy) ei(κz−ωt), (A.9c)

ψz(y, z) = (G cos βy +H sin βy) ei(κz−ωt), (A.9d)

where

α =
√

(ω/cL)2 − κ2, β =
√

(ω/cT)2 − κ2. (A.10)

Writing the displacement field as

u(y, z, t) = ũ(y) ei(κz−ωt), (A.11)
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one obtains

ũx = −Eiκ cos βy − Fiκ sin βy −Gβ sin βy +Hβ cos βy, (A.12a)

ũy = −Aα sinαy +Bα cosαy + Ciκ cos βy +Diκ sin βy, (A.12b)

ũz = Aiκ cosαy +Biκ sinαy + Cβ sin βy −Dβ cos βy (A.12c)

by the use of Eq.(A.3). In order to get the stress field from the displacement field,

the constitutive relation

σij = λεkkδij + 2µεij (A.13)

in index notation is employed, where the linear strain is defined by

εij = 1
2
(ui,j + uj,i) . (A.14)

In this case, Eqs.(A.12) yield

εxx = 0 (A.15a)

εyy =
(

α2(−A cosαy −B sinαy)+

+ iκβ(−C sin βy +D cos βy)
)

ei(κz−ωt) (A.15b)

εzz =
(

κ2(−A cosαy −B sinαy)+

+ iκβ(C sin βy −D cos βy)
)

ei(κz−ωt) (A.15c)

εyx =
1

2

(

iκβ(E sin βy − F cos βy)+

+ β2(−G cos βy −H sin βy)
)

ei(κz−ωt) (A.15d)

εyz =
1

2

(

2iκα(−A sinαy +B cosαy)+

+ (β2 − κ2)(C cos βy +D sin βy)
)

ei(κz−ωt) (A.15e)

for the strain components needed in the boundary conditions. The convergence con-

dition Eq.(A.4)

(−Eβ sin βy + Fβ cos βy +Giκ cos βy +Hiκ sin βy) ei(κz−ωt) = 0 (A.16)
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and the boundary conditions Eqs.(A.2)

σyx = 2µεyx = 0 (A.17a)

σyy = (λ+ 2µ)εyy + λ(εxx + εzz) = 0 (A.17b)

σyz = 2µεyz = 0 (A.17c)

evaluated at the surface, yield eight independent equations for the unknown variables

A to G in Eqs.(A.9). These equations can be simplified as













iκ cos βh β cos βh 0 0 0 0 0 0
β2 cos βh h cos βh 0 0 0 0 0 0

0 0 −β sin βh iκ sin βh 0 0 0 0
0 0 −h sin βh β2 sin βh 0 0 0 0
0 0 0 0 −c cos αh f cos βh 0 0
0 0 0 0 d sin αh g sin βh 0 0
0 0 0 0 0 0 −g cos βh d cos αh
0 0 0 0 0 0 f sin βh c sin αh

























G

F

E

H

A

D

C

B













=0, (A.18)

where

c = (λ+ 2µ)α2 + λκ2, d = 2iκα

f = 2iµκβ, g = κ2 − β2, h = iκβ. (A.19)

For a non-trivial solution, the determinant of the matrix has to be zero. Note that

every two unknowns are decoupled by a two-by-two submatrix. Thus, setting to

zero the determinant of one submatrix and the unknwons which are not associated

with this submatrix, results in four different types of solutions, called mode types.

The condition on the respective submatrix will yield a frequency condition, also called

dispersion relation, for each mode type, while the ratio of the two associated unknowns

is given by Eq.(A.18). The results for the mode types are presented below.

• Symmetric SH modes (E,H 6= 0)

Frequency Equation

(ωh

cT

)2

= (nπ)2 + (κh)2, n = 0, 1, 2, 3, ... (A.20)
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Displacement Field

ũx = −Eiκ cos βy +Hβ cos βy (A.21a)

ũy = ũz = 0 (A.21b)

Simplified Displacement Field

ũx = H
κ2 + β2

β
cos βy (A.22a)

ũy = ũz = 0 (A.22b)

• Antisymmetric SH modes (G,F 6= 0)

Frequency Equation

(ωh

cT

)2

=
((2n+ 1)π

2

)2

+ (κh)2, n = 0, 1, 2, 3, ... (A.23)

Displacement Field

ũx = −Fiκ sin βy −Gβ sin βy (A.24a)

ũy = ũz = 0 (A.24b)

Simplified Displacement Field

ũx = −G
κ2 + β2

β
sin βy (A.25a)

ũy = ũz = 0 (A.25b)

• Symmetric Rayleigh-Lamb modes (A,D 6= 0)

Frequency Equation

tan βh

tanαh
= −

4αβκ2

(κ2 − β2)2
(A.26)

Displacement Field

ũx = 0 (A.27a)

ũy = −Aα sinαy +Diκ sin βy (A.27b)

ũz = Aiκ cosαy −Dβ cos βy (A.27c)
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Simplified Displacement Field

ũx = 0 (A.28a)

ũy = iD
(

−
(κ2 − β2) sin βh

2κ sinαh
sinαy + κ sin βy

)

(A.28b)

ũz = −D
((κ2 − β2) sin βh

2α sinαh
cosαy + β cos βy

)

(A.28c)

• Antisymmetric Rayleigh-Lamb modes (B,C 6= 0)

Frequency Equation

tan βh

tanαh
= −

(κ2 − β2)2

4αβκ2
(A.29)

Displacement Field

ũx = 0 (A.30a)

ũy = Bα cosαy + Ciκ cos βy (A.30b)

ũz = Biκ sinαy + Cβ sin βy (A.30c)

Simplified Displacement Field

ũx = 0 (A.31a)

ũy = iC
(

−
(κ2 − β2) cos βh

2κ cosαh
cosαy + κ cos βy

)

(A.31b)

ũz = C
((κ2 − β2) cos βh

2α cosαh
sinαy + β sin βy

)

(A.31c)
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APPENDIX B

SYMMETRY PROPERTIES OF FORCING TERMS

In order to investigate the symmetry properties of S̄ in Eq.(2.14b), all terms are

analyzed as shown exemplarily in Section 2.2.2.

B.1 Symmetric Primary Wave

For a symmetric primary mode, one obtains the following terms in S̄:

• Entry i=j=2

∂uk

∂al

∂uk

∂al

=
∂uy

∂y

∂uy

∂y
+
∂uy

∂z

∂uy

∂z
+
∂uz

∂y

∂uz

∂y
+
∂uz

∂z

∂uz

∂z
=

= S2(y) + A2(y) + A2(y) + S2(y) =

= S(y) + S(y) + S(y) + S(y) = S(y), (B.1a)

∂uk

∂ak

∂ul

∂al

=
∂uy

∂y

∂uy

∂y
+
∂uy

∂y

∂uz

∂z
+
∂uz

∂z

∂uy

∂y
+
∂uz

∂z

∂uz

∂z
=

= S2(y) + S2(y) + S2(y) + S2(y) =

= S(y) + S(y) + S(y) + S(y) = S(y), (B.1b)

∂uk

∂al

∂ul

∂ak

=
∂uy

∂y

∂uy

∂y
+
∂uy

∂z

∂uz

∂y
+
∂uz

∂y

∂uy

∂z
+
∂uz

∂z

∂uz

∂z
=

= S2(y) + A2(y) + A2(y) + S2(y) =

= S(y) + S(y) + S(y) + S(y) = S(y), (B.1c)
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∂uk

∂ak

∂u2

∂a2

=
∂uy

∂y

∂uy

∂y
+
∂uz

∂z

∂uy

∂y
=

= S2(y) + S2(y) = S(y) + S(y) = S(y), (B.1d)

∂u2

∂ak

∂uk

∂a2

=
∂uy

∂y

∂uy

∂y
+
∂uy

∂z

∂uz

∂y
=

= S2(y) + A2(y) = S(y) + S(y) = S(y), (B.1e)

∂u2

∂ak

∂u2

∂ak

=
∂uy

∂y

∂uy

∂y
+
∂uy

∂z

∂uy

∂z
=

= S2(y) + A2(y) = S(y) + S(y) = S(y), (B.1f)

∂uk

∂a2

∂uk

∂a2

=
∂uy

∂y

∂uy

∂y
+
∂uz

∂y

∂uz

∂y
=

= S2(y) + A2(y) = S(y) + S(y) = S(y). (B.1g)

• Entry i=j=3

∂uk

∂ak

∂u3

∂a3

=
∂uy

∂y

∂uz

∂z
+
∂uz

∂z

∂uz

∂z
=

= S2(y) + S2(y) = S(y) + S(y) = S(y), (B.2a)

∂u3

∂ak

∂uk

∂a3

=
∂uz

∂y

∂uy

∂z
+
∂uz

∂z

∂uz

∂z
=

= A2(y) + S2(y) = S(y) + S(y) = S(y), (B.2b)

∂u3

∂ak

∂u3

∂ak

=
∂uz

∂y

∂uz

∂y
+
∂uz

∂z

∂uz

∂z
=

= A2(y) + S2(y) = S(y) + S(y) = S(y), (B.2c)

∂uk

∂a3

∂uk

∂a3

=
∂uy

∂z

∂uy

∂z
+
∂uz

∂z

∂uz

∂z
=

= A2(y) + S2(y) = S(y) + S(y) = S(y), (B.2d)

plus Eqs.(B.1a) to (B.1c) shown above.
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• Entry i=2, j=3

∂uk

∂ak

∂u2

∂a3

=
∂uy

∂y

∂uy

∂z
+
∂uz

∂z

∂uy

∂z
=

= S(y) · A(y) + S(y) · A(y) = A(y) + A(y) = A(y), (B.3a)

∂u2

∂ak

∂uk

∂a3

=
∂uy

∂y

∂uy

∂z
+
∂uy

∂z

∂uz

∂z
=

= S(y) · A(y) + A(y) · S(y) = A(y) + A(y) = A(y), (B.3b)

∂uk

∂ak

∂u3

∂a2

=
∂uy

∂y

∂uz

∂y
+
∂uz

∂z

∂uz

∂y
=

= S(y) · A(y) + S(y) · A(y) = A(y) + A(y) = A(y), (B.3c)

∂u3

∂ak

∂u2

∂ak

=
∂uz

∂y

∂uy

∂y
+
∂uz

∂z

∂uy

∂z
=

= A(y) · S(y) + S(y) · A(y) = A(y) + A(y) = A(y), (B.3d)

∂uk

∂a3

∂uk

∂a2

=
∂uy

∂z

∂uy

∂y
+
∂uz

∂z

∂uz

∂y
=

= A(y) · S(y) + S(y) · A(y) = A(y) + A(y) = A(y), (B.3e)

∂u3

∂ak

∂uk

∂a2

=
∂uz

∂y

∂uy

∂y
+
∂uz

∂z

∂uz

∂y
=

= A(y) · S(y) + S(y) · A(y) = A(y) + A(y) = A(y). (B.3f)

• Entry i=3, j=2

∂u2

∂ak

∂u3

∂ak

=
∂uy

∂y

∂uz

∂y
+
∂uy

∂z

∂uz

∂z
=

= S(y) · A(y) + A(y) · S(y) = A(y) + A(y) = A(y), (B.4a)

∂uk

∂a2

∂uk

∂a3

=
∂uy

∂y

∂uy

∂z
+
∂uz

∂y

∂uz

∂z
=

= S(y) · A(y) + A(y) · S(y) = A(y) + A(y) = A(y), (B.4b)

plus, Eqs.(B.3a) to (B.3c) and Eq.(B.3f) shown above.
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B.2 Antisymmetric Primary Wave

For an antisymmetric primary mode, one obtains the following terms in S̄:

• Entry i=j=2

∂uk

∂al

∂uk

∂al

=
∂uy

∂y

∂uy

∂y
+
∂uy

∂z

∂uy

∂z
+
∂uz

∂y

∂uz

∂y
+
∂uz

∂z

∂uz

∂z
=

= A2(y) + S2(y) + S2(y) + A2(y) =

= S(y) + S(y) + S(y) + S(y) = S(y), (B.5a)

∂uk

∂ak

∂ul

∂al

=
∂uy

∂y

∂uy

∂y
+
∂uy

∂y

∂uz

∂z
+
∂uz

∂z

∂uy

∂y
+
∂uz

∂z

∂uz

∂z
=

= A2(y) + A2(y) + A2(y) + A2(y) =

= S(y) + S(y) + S(y) + S(y) = S(y), (B.5b)

∂uk

∂al

∂ul

∂ak

=
∂uy

∂y

∂uy

∂y
+
∂uy

∂z

∂uz

∂y
+
∂uz

∂y

∂uy

∂z
+
∂uz

∂z

∂uz

∂z
=

= A2(y) + S2(y) + S2(y) + A2(y) =

= S(y) + S(y) + S(y) + S(y) = S(y), (B.5c)

∂uk

∂ak

∂u2

∂a2

=
∂uy

∂y

∂uy

∂y
+
∂uz

∂z

∂uy

∂y
=

= A2(y) + A2(y) = S(y) + S(y) = S(y), (B.5d)

∂u2

∂ak

∂uk

∂a2

=
∂uy

∂y

∂uy

∂y
+
∂uy

∂z

∂uz

∂y
=

= A2(y) + S2(y) = S(y) + S(y) = S(y), (B.5e)

∂u2

∂ak

∂u2

∂ak

=
∂uy

∂y

∂uy

∂y
+
∂uy

∂z

∂uy

∂z
=

= A2(y) + S2(y) = S(y) + S(y) = S(y), (B.5f)

∂uk

∂a2

∂uk

∂a2

=
∂uy

∂y

∂uy

∂y
+
∂uz

∂y

∂uz

∂y
=

= A2(y) + S2(y) = S(y) + S(y) = S(y). (B.5g)
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• Entry i=j=3

∂uk

∂ak

∂u3

∂a3

=
∂uy

∂y

∂uz

∂z
+
∂uz

∂z

∂uz

∂z
=

= A2(y) + A2(y) = S(y) + S(y) = S(y), (B.6a)

∂u3

∂ak

∂uk

∂a3

=
∂uz

∂y

∂uy

∂z
+
∂uz

∂z

∂uz

∂z
=

= S2(y) + A2(y) = S(y) + S(y) = S(y), (B.6b)

∂u3

∂ak

∂u3

∂ak

=
∂uz

∂y

∂uz

∂y
+
∂uz

∂z

∂uz

∂z
=

= S2(y) + A2(y) = S(y) + S(y) = S(y), (B.6c)

∂uk

∂a3

∂uk

∂a3

=
∂uy

∂z

∂uy

∂z
+
∂uz

∂z

∂uz

∂z
=

= S2(y) + A2(y) = S(y) + S(y) = S(y), (B.6d)

plus Eqs.(B.5a) to (B.5c) shown above.

• Entry i=2, j=3

∂uk

∂ak

∂u2

∂a3

=
∂uy

∂y

∂uy

∂z
+
∂uz

∂z

∂uy

∂z
=

= A(y) · S(y) + A(y) · S(y) = A(y) + A(y) = A(y), (B.7a)

∂u2

∂ak

∂uk

∂a3

=
∂uy

∂y

∂uy

∂z
+
∂uy

∂z

∂uz

∂z
=

= A(y) · S(y) + S(y) · A(y) = A(y) + A(y) = A(y), (B.7b)

∂uk

∂ak

∂u3

∂a2

=
∂uy

∂y

∂uz

∂y
+
∂uz

∂z

∂uz

∂y
=

= A(y) · S(y) + A(y) · S(y) = A(y) + A(y) = A(y), (B.7c)

∂u3

∂ak

∂u2

∂ak

=
∂uz

∂y

∂uy

∂y
+
∂uz

∂z

∂uy

∂z
=

= S(y) · A(y) + A(y) · S(y) = A(y) + A(y) = A(y), (B.7d)
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∂uk

∂a3

∂uk

∂a2

=
∂uy

∂z

∂uy

∂y
+
∂uz

∂z

∂uz

∂y
=

= S(y) · A(y) + A(y) · S(y) = A(y) + A(y) = A(y), (B.7e)

∂u3

∂ak

∂uk

∂a2

=
∂uz

∂y

∂uy

∂y
+
∂uz

∂z

∂uz

∂y
=

= S(y) · A(y) + A(y) · S(y) = A(y) + A(y) = A(y). (B.7f)

• Entry i=3, j=2

∂u2

∂ak

∂u3

∂ak

=
∂uy

∂y

∂uz

∂y
+
∂uy

∂z

∂uz

∂z
=

= A(y) · S(y) + S(y) · A(y) = A(y) + A(y) = A(y), (B.8a)

∂uk

∂a2

∂uk

∂a3

=
∂uy

∂y

∂uy

∂z
+
∂uz

∂y

∂uz

∂z
=

= A(y) · S(y) + S(y) · A(y) = A(y) + A(y) = A(y), (B.8b)

plus, Eqs.(B.7a) to (B.7c) and Eq.(B.7f) shown above.
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