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SUMMARY

Arctic regions are thought to be more sensitive to climate change fluctuations,

making weather data from these regions more valuable for climate modeling. Scien-

tists have expressed an interest in deploying a robotic sensor network in these areas,

minimizing the exposure of human researchers to the harsh environment, while al-

lowing dense, targeted data collection to commence. For any such robotic system

to be successful, a certain set of base navigational functionality must be developed.

Further, these navigational algorithms must rely on the types of low-cost sensors that

would be viable for use in a multi-agent system. A set of vision-based processing

techniques have been proposed, which augment current robotic technologies for use

in glacial terrains. Specifically, algorithms for estimating terrain traversability, robot

localization, and terrain reconstruction have been developed which use data collected

exclusively from a single camera and other low-cost robotic sensors. For traversability

assessment, a custom algorithm was developed that uses local scale surface texture

to estimate the terrain slope. Additionally, a horizon line estimation system has been

proposed that is capable of coping with low-contrast, ambiguous horizons. For local-

ization, a monocular simultaneous localization and mapping (SLAM) filter has been

fused with consumer-grade GPS measurements to produce full robot pose estimates

that do not drift over long traverses. Finally, a terrain reconstruction methodology has

been proposed that uses a Gaussian process framework to incorporate sparse SLAM

landmarks with dense slope estimates to produce a single, consistent terrain model.

These algorithms have been tested within a custom glacial terrain computer simula-

tion and against multiple data sets acquired during glacial field trials. The results

xv



of these tests indicate that vision is a viable sensing modality for autonomous glacial

robotics, despite the obvious challenges presented by low-contrast glacial scenery.

The findings of this work are discussed within the context of the larger arctic sensor

network project, and a direction for future work is recommended.
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CHAPTER I

INTRODUCTION

In the last decade climate change has become a household term. Yet, scientists

still lack important data needed to accurately model and predict climate effects [38].

In particular, it is believed that arctic zones are more sensitive to the effects of

climate change, making weather-related observations from these regions of particular

importance [18, 102].

Automatic Weather Station (AWS) networks are popular tools for in situ measure-

ments. These instruments remain fixed in a single location and are usually equipped

with several weather-oriented sensors, such as pressure sensors, anemometers, and

pyranometers [111]. Given the immobility of these devices, the accuracy of measure-

ments taken becomes a function of sampling and estimation capacity relative to the

entire network. Each AWS unit spans a limited radius of coverage and scientists must

consider other units in the network, relying more heavily on extrapolation methods

to obtain a breadth of coverage in an area. For example, the Greenland Climate Net-

work (GC-Net) averages only one station per 100,000 km2 [110], while the Antarctic

Meteorological Research Center (AMRC) and Automatic Weather Station (AWS)

program provides even sparser data [65]. Any data collected from one unit represents

a single point on a map, useful only as a heuristic to indicate what changes may be

taking place [23].

Satellite-based instruments are now routinely used to monitor weather conditions.

For example, NASA’s Earth Observing System (EOS) provides a potential wealth of

information regarding the state of the environment through a variety of on-orbit sens-

ing capabilities. NASA’s Ice, Cloud, and land Elevation (ICESat) satellite [142] is
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mapping the earth’s surface using a Geoscience Laser Altimeter System (GLAS), while

Landsat is capturing high resolution imagery. Several climate-oriented instruments

onboard the Terra [84] gather such information as the Land Surface Temperature

(LST) and pollution levels. However, orbital measurements of ground-based quanti-

ties are heavily influenced by external factors, such as air moisture content or surface

emissivity [142]. Detailed atmospheric models are created to compensate for these

factors, but the satellite system must still be validated to ensure the accuracy of the

instrumentation and correction model [108, 125]. For proper on-orbit sensor valida-

tion, calibration sites should be selected to cover the expected range of global surface

properties. Further, data should be collected at a variety of scales, similar in size

to the single pixel area of the produced data product [84]. Calibrating over areas

that closely represent the measurement areas of interest enhance the accuracy of the

model. Validation and correction are particularly important for arctic environments,

as the unique surface properties of packed snow and ice are poorly modeled by any

other terrain type.

Human-led field campaigns provide the highest resolution for these types of weather

measurement data. GPS and Ground Penetrating Radar (GPR) surveys are useful

calibration techniques for validation of remote sensing equipment such as GLAS [108].

These surveys require constantly manned equipment with integrated sensing, and

carefully planned navigation paths. Though the coverage area is considerable for

in situ trials (100 km2), the duration of these field experiments is potentially more

strenuous on the scientists performing the tests. An example of this methodology

has been used to validate the LST recorded by Moderate Resolution Imaging Spec-

troradiometer (MODIS) on-board the Terra satellite [14]. A 1 km2 region of a large

rice field in Spain was selected as the validation site. The rice field offered a large,

flat area that was uniformly covered in vegetation. Hand-held temperature sensors

were stationed at several points within the test site. During the satellite overpass
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event, GPS-registered temperature readings were collected and logged several times

a minute as the sensor was moved over a 100 m traverse. Due to the satellite orbit,

only a handful of overpass events occur within the validation site during each repeat

cycle. Further, as the satellite repeat cycle is 183 days long, only one such cycle occurs

each year within the growing season, during which the site has uniform vegetation

coverage. During the three year period over which these experiments were performed,

only 11 validation events of MODIS were recorded. In order for these on-orbit sensors

to be thoroughly validated on all types of terrain, a more efficient and cost-effective

mechanism is needed to perform these in situ data collection campaigns in remote

regions.

Field robotics has a distinguished history of collecting scientific data from the

far reaches of not only this planet, but the solar system. Perhaps the most famous

example is the Mars rovers, Spirit and Opportunity [109], which have examined Mar-

tian geological history, or the recent Phoenix lander, which confirmed the existence

of water ice on Mars [105]. Closer to home, robotics systems have taken atmospheric

samples from the mouths of volcanoes [86], sifted through rubble at disaster sites [85],

and explored the deepest reaches of the ocean [139]. In all cases, robotic systems have

been deployed to gain insight into areas that are too remote or too dangerous for hu-

mans, adding to our collective scientific knowledge. Instead of relying on human-led

campaigns, a mobile robotic sensor network has been proposed that greatly mitigates

the human resource requirements [133,135].

The proposed system centers on decentralized autonomous robotic nodes outfit-

ted with a scientific sensor package for the collection of ground-based environmental

measurements. The reconfigurable network of robotic nodes can be tasked to collect

data at a location and spatial resolution that is optimal for the scientific needs. Sci-

entists would upload a target location and desired sensor resolution to the robotic

team, which would then be in charge of executing the task [135]. Due to the typical
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distances between existing weather stations, it could take tens or hundreds of hours

for the network to reach its final goal, making teleoperation an impractical solution.

Instead, each robotic node will be responsible for navigating from the base location

to the designated target autonomously, adapting navigation plans in response to the

perceived conditions of the environment. Further, as many rovers will be required to

create a usable sensor network, each unit must be inexpensive. This pushes the de-

sign away from centimeter accuracy GPS and military-grade IMU sensors and towards

consumer-grade sensing technologies.

In particular, vision is an attractive option. It is the sensing modality relied

upon most by humans, and it has been shown effective for both the Mars rovers [47]

and DARPA Grand Challenge vehicles [80]. Compared with laser scanners, even

high resolution cameras are light, low power, and inexpensive. If vision is to be

utilized as the primary sensing modality for the navigation system, it must be able to

accommodate the tasks of obstacle detection, self localization, and local area mapping.

The area of visual obstacle detection has been studied exhaustively by the robotics

community, but the solutions are generally specific to the environment. The DARPA

Grand Challenge and Mars rovers prompted development in desert processing tech-

niques, while the Urban Grand Challenge pushed research forward in structured, city

environments. However, glacial regions present unique hazards that are visually dis-

tinct from the rocky terrain of Mars or the structured environments of urban cities.

These hazards are predominantly “slope based,” consisting of inclines and gentle per-

turbations in the glacier surface caused by changes in the underlying rockbed, as well

as more dramatic slope changes in the form of surface cracks, lake basins, and pro-

truding mountain peaks. Since any deployed robotic system will have a limited range

of slopes that it is capable of traversing safely, new image processing techniques have

been developed that are capable of characterizing the terrain slope, and hence the

traversability of the terrain. The details of the slope estimate technique are described

4



in Chapter 3.2.

However, before any meaningful analysis of terrain obstacles can be performed,

the foreground region must first be segmented from the acquired image. This serves

to focus subsequent processing on a smaller, targeted region of interest. Typical im-

age segmentation algorithms use information local to the examined pixel to make

segmentation decisions. However, the properties of glacial images make local exami-

nation problematic. Overcast skies, common in glacial environments, often share the

same color range as the ground plane snow. Further complicating segmentation, the

clouds and ground plane often intersect visually, making the determination of the

horizon difficult. When analyzing these images, humans tend to scan the image for

visual cues in the form of strong horizon line segments. These line segments are then

extended into image regions where the horizon is more ambiguous. Using this type

of strategy, a ground segmentation method has been devised in Chapter 3.1 that is

capable of correct operation in these challenging situations.

To perform localization from visual input, simultaneous localization and mapping

(SLAM) algorithms are generally employed. For the proper operation of SLAM,

feature points within the image stream must be reliably extracted and matched.

However, glacial environments generally lack these types of distinctive features. To

that end, a set of image preprocessing steps have been developed to boost the feature

extraction performance, and a study of the detection performance of common feature

detection algorithms has been conducted in Chapter 4.2.

Even with a source of reliable image features, SLAM systems are incremental in

nature. Each update is based on the prior position estimate. As the system runs,

small errors accumulate resulting in significant localization error over time. In order

to remove this drift, global position information in the form of low-accuracy GPS

data has been fused with vision-based SLAM. The method of this integration, along

with additional implementation details of the visual SLAM system are presented in
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Chapter 4.3.

Finally, as the number of impassible obstacles in the environment increases, the

need for global path planning becomes acute. While the algorithms employed by

global path planners differ significantly, all planning strategies require a map on which

to plan. While the visual SLAM system produces a set of 3D point estimates that lie

on the terrain surface as a byproduct of the localization process, this type of map is

not readily utilized by common path planning algorithms. Instead, a terrain recon-

struction method is presented in Chapter 5 that creates a topographic terrain map.

This method combines the sparse landmark position estimates from the localization

system and the dense slope estimates from the terrain assessment using a statistical

construct known as a Gaussian process (GP). It is shown that the GP framework is ca-

pable of generating a reasonable terrain model using only the sparse landmark points,

outperforming the standard triangular mesh interpolation, particularly at large dis-

tances. Further, it is shown that the incorporation of slope information into the GP

significantly improves the reconstruction, something not easily integrated into simpler

interpolation schemes.

The remainder of this chapter introduces background information related to the

deployment of robotic systems in the glacial terrain. First, a general description

of glacial terrain is presented, including a discussion of the types of hazards likely

to be encountered. Next, previous efforts in deploying glacial robotic systems are

detailed, and their respective navigation systems outlined. Finally, as glacial-specific

navigation systems have not been developed, a general overview of the current state

of field robotic navigation systems is provided, with special emphasis on vision-based

methods for localization, obstacle detection, and map building.
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1.1 Environment

Glacial ice sheets, the largest glacial formations, cover much of Antarctica and Green-

land [48]. These ice sheets are dome-shaped, contained within a basin formed by

the underlying mountain range system. Ice fields, such as the Juneau Ice Field in

Alaska [57], are smaller and thinner than glacial ice sheets, typically covering several

thousand square kilometers. Due to the thinner nature of ice fields, terrain changes

of the underlying rock bed are transmitted to the ice surface, resulting in undulating

terrain. At times, the tips of mountain peaks are exposed above the ice surface, a for-

mation known as a nunatak. Induced by gravity, these massive ice sheets or ice fields

flow outward between the containing mountain peaks, forming outlet valley glaciers.

These valley glaciers are perhaps best described as “rivers of ice”. The highest

peaks of the underlying mountain range channel the larger ice flow into individual,

linear “streams.” Figure 1 shows a topological map of a small glacier section from the

Juneau Ice Field in which the linear ice flows are clearly visible. These “streams” then

flow downhill towards the ocean, thinning and picking up speed. Like conventional

rivers, the ice sheet may separate into multiple branches, or different tributary glaciers

may combine into a single, main flow.

The main area of a valley glacier is largely flat and covered with snow, defined

at the edges by a chain of mountain peaks. The boundary between the moving ice

and stationary mountain snow is often marked by vertical cracks in the ice, known

as crevasses. The ice surface is also influenced by elevation changes in the rock bed,

or changes in the glacier’s path. Both of these result is significant undulations in

the ice surface. In the extreme, an abrupt elevation change in the supporting terrain

causes the glacier ice to tumble over the cliff in what is known as an “ice fall”, before

reforming at the lower level. At the end of the glacier’s journey is an area called the

terminus. Here the ice surface is exposed and warped by the terrain below. Many

crevasses form, even in the center of flow, making traversal treacherous.
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Figure 1: Topological map of a region of the Juneau Ice Field in Alaska. Individual
“rivers of ice” are clearly seen, separated by mountain peaks.

Erosion mechanisms also shape the glacier surface. Winds create surface rip-

ples with distinctive texture patterns, ranging in size from small ripples to dune-like

sastrugi that reach over a meter high. Melt water also shapes the surface in the sum-

mer months, leaving behind erosion patterns in the snow, cutting meltwater streams

through the surface, or collecting in a glacial lake basin. Figure 2 illustrates a num-

ber of these terrain features encountered on Mendenhall and Lemon Creek Glaciers

in Juneau, Alaska.

As described, glacial environments present unique hazards that are visually dis-

tinct from those commonly found in desert or urban scenes. These hazards are pre-

dominantly “slope based,” consisting of inclines and gentle perturbations in the glacier

surface caused by changes in the rockbed, as well as more dramatic slope changes in

the form of crevasses, lake basins, and sastrugi. Because a deployed robotic system

will have a limited range of slopes that it is capable of traversing safely, any glacier-

based hazard detection system must be capable of characterizing the terrain slope to

ensure safe, autonomous operation.
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(a) (b)

(c) (d)

Figure 2: Images from the Juneau Ice Fields in Alaska showing (a) a crevasse sepa-
rating the flowing glacier from the stationary mountain ice, (b) an ice fall caused by a
sudden elevation change in the underlying terrain, (c) a basin surrounding a forming
glacial lake, and (d) the terminus of a glacier with exposed ice and many crevasses.
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(a) (b)

Figure 3: Images from the Juneau Ice Fields in Alaska showing (a) an area of un-
dulating terrain surface obscured by the low light levels of an overcast sky, and (b)
an instance of near “white out” conditions in which the mountain range in the back-
ground is barely visible through the low clouds.

Weather patterns also negatively impact any deployed robotic platform. Aside

from the obvious problems of extreme cold, high winds, and blowing snow, these

regions often experience near complete cloud cover with low cloud deck elevations.

This not only limits the available light, obscuring the few visible ground features in

the snow-covered terrain, but it can also conceal mountain peaks behind the cloud

wall. In extreme cases, a complete “white out” can occur in which the ground snow

and clouds are indistinguishable from each other. Figure 3 illustrates instances of low

surface contrast and “white out” conditions encountered in the Juneau Ice Field.

1.2 Glacial Robotics

Glacial regions present one of the harshest environments for mobile robots. Extremely

low temperatures, high winds, and possible precipitation all impose significant design

challenges. Despite this fact, there are several successful glacial robotic systems [128].

The CoolRobot effort out of Dartmouth College [68, 96] focused primarily on

overcoming the environmental challenges with the construction of a glacier-worthy

robotic platform. Thermal issues and power requirements were among the main
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Figure 4: CoolRobot deployed at Summit Camp, Greenland. [68]

concerns, prompting the use of composite materials and solar panels. Additionally,

proper wheel sizes and inflation pressures were identified for efficient traversal on the

snow. The CoolRobot has been fielded successfully in glacial conditions, where it

was able to operate autonomously for over eight hours. Figure 4 shows CoolRobot as

deployed at Summit Camp in Greenland.

The University of Kansas developed the MARVIN I and MARVIN II rovers as part

of the PRISM project [3,46], an effort to map subsurface features of the ice sheet using

ground penetrating radar. The robotic chassis was constructed from a tracked ATV,

designed by the manufacturer for high mobility in the snow and extended use in

sub-zero temperatures. The chassis was then augmented with an automated control

systems, computer hardware, and sensors contained within a ruggedized enclosure.

The MARVIN rovers have been deployed for extended periods in both Greenland and

Antarctica. Figure 5 illustrates the MARVIN I pulling a mockup radar array at the

North Greenland Ice Core Project (GRIP) Camp.

The Nomad robot, developed previously for space application testing by Carnegie

Melon, was “winterized” for deployment in Antarctica [5]. The intent of this mission

was to autonomously locate meteor fragments on the Elephant Moraine, a flat sheet of

blue ice littered with rocks ranging from pebbles to boulders. The rover was equipped
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Figure 5: MARVIN I deployed at the North Greenland Ice Core Project Camp. [46]

with two different lidar systems, stereo cameras, a steerable monocular camera, as

well as a wind-powered generator to fulfill the power requirements. The Nomad

has been deployed to Antarctica several times, during which it has autonomously

located and identified 5 meteorites. This rover has also been used in conjunction

with sampling microbes in the Antarctica ice sheet [92]. Figure 6 shows the Nomad

during a preliminary field test on Lake Mascoma, New Hampshire.

Additionally, a sensor comparison study was conducted as part of the Nomad field

work, utilizing the wide array of sensing modalities present [117]. It was found that

the lidar system produced many false readings during operation, especially during

blowing snow conditions. Ultimately, the results of the sensor were filtered to provide

confirmation of the absence of obstacles, rather than the more typical application of

map building. The stereo vision system provided consistent results across multiple

terrain types, but was negatively affected by different lighting conditions. Even under

good operating conditions, the stereo pair had difficulty finding point correspondences

due to the overall lack of contrast and features in snowy environments. The use of the

monocular camera for detecting hazards, such as sastrugi, yielded some success, but
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Figure 6: Nomad during an early field test on Lake Mascoma, New Hampshire. [92]

was again affected by lighting. An additional study was conducted using millimeter-

wave radar to detect terrain obstacles [39]. While the radar system performance is not

impacted by blowing snow, its sensing resolution is far coarser than camera images

or laser scans.

These projects showcase the ability of the mechanics of a robot to survive the

inhospitable climate of arctic environments. However, the autonomous navigation

systems implemented on these robots are simplistic in comparison. Aside from a set

of homeostasis sensors, the only other perception available on the CoolRobot is a GPS

receiver. This limits the navigation system to simple GPS waypoint following. As a

result, this robot can only be deployed in areas known to be safe and completely free

of hazards. Similarly, GPS waypoint following is the primary navigational method of

the MARVIN rovers. While this is a good fit for radar surveying tasks, it does limit

the areas of possible deployment. The navigational system of the Nomad is more

complex, consisting of a GPS waypoint system, an obstacle avoidance system based

on the lidar data, a potential meteorite targeting system based on camera images,

and a management system to gracefully switch between the different modes. However,

due to the known flatness of the testing and deployment environment, little in the

way of terrain assessment is required for successful navigation.
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One final project of interest works towards automating a convoy of snowcats for

the Association of European Research Establishments for Aeronautics (EREA) [11].

In contrast to the previously discussed projects, this effort focused on the naviga-

tional control system, and specifically vision-based terrain analysis techniques. The

presented work used a vision system to locate the tracks of the previous vehicle in

the low-contrast glacial environment, and was tested under many different lighting

conditions. This project successfully developed algorithms tailored specifically for the

difficulties inherent in visual glacial navigation.

1.3 Vision-based Robotic Navigation

As few examples of glacial-specific visual processing techniques exist [11, 117], an

overview of various vision-based terrain assessment methodologies will be presented.

This survey is meant to cover the major themes in this area of research, and highlight

potentials for use in arctic navigation, rather than to provide an exhaustive summary

of all vision-based research in the field of robotics. The scope of relevant research is

further limited by considering those technologies designed to operate in unstructured,

outdoor environments. As such, methods that rely on the detection of perpendicular

lines [10, 12, 120], or assume a flat ground plane [7, 136], have been omitted. While

these techniques perform well in indoor or urban environments, the basic assumptions

of these methods are generally violated by cross-country or glacial landscapes.

1.3.1 Obstacle Detection

A common method for obstacle detection is to employ the use of a stereo imaging

system. Once the stereo reconstruction is complete, segmenting the obstacles from

the ground plane is not a trivial task. Several approaches assume the ground plane to

be flat; anything that deviates from the planar surface must be an obstacle [7, 136].

However, in outdoor terrain, this assumption is easily violated. One solution defines

an obstacle based on local size and slope properties [74]. Areas of shallow slope
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are traversable, whereas tall regions of steep slope are likely obstacles. From this

definition an efficient mechanism for locating obstacle patches is formulated, and

connected obstacle patches are segmented into discrete obstacles.

In contrast, appearance-based methods attempt to segment images into hazardous

and safe zones using visual properties rather than metric reconstructions. For exam-

ple, rock segmentation routines have been developed for Mars applications [54]. The

coloration of rocks versus the ground plane was identified as being statistically sig-

nificant, enabling the use of a region-growing technique to separate the two in the

image plane. Similarly, a method for vegetation classification has been proposed for

cross-country autonomous vehicles [74]. Using sample data, several terrain classes are

trained using a maximum likelihood strategy with a Mixture of Gaussians classifier.

In this way, live vegetation, dry vegetation, and the ground could be separated based

solely on color properties. This information was ultimately combined with lidar-

detected obstacles to disambiguate tall grass from rocks and tree stumps. Similarly, a

two-class unsupervised classification method distinguishes between image regions that

are visually similar to the area in front of the rover and those that are different [114].

Under the assumption that the region directly in front of the rover is traversable,

anything statistically different is marked as an obstacle. The use of alternative color

spaces is mentioned explicitly, allowing the classifier to be more robust to shadowing

effects. A similar methodology exists that employs self-supervised learning [61]. In

terms of glacial terrain, such color-based methods could potentially be used to dis-

criminate nunataks from the surrounding snow, or to differentiate between exposed

ice at the terminus and soft snow. However, large regions exist that are entirely white

and snow-covered, making color-based methods problematic.

Texture represents a second type of appearance attribute that can be utilized for

terrain assessment. Texture, which is generally defined as the high frequency visual

content of an image [138], often demonstrates material-specific properties. A roadway
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segmentation system has been developed that detects anisotropic, oriented texture

patterns [140]. The system consists of an anisotropic metric calculated in a small

neighborhood around each pixel, and a clustering algorithm to segment the strongly

anisotropic regions from the rest of the image. Although not a robotics application,

an image segmentation system has been produced that is based not on color, but on

texture [138]. Several examples are shown, such as a striped sweater, in which the

texture is uniform within a single object, even though the coloration varies drastically.

In terms of glacial scenery, the opposite can be true. Despite the snow and ice being

uniformly white, differences in texture properties and orientations can be useful for

classifying the terrain.

1.3.2 Localization

Localizing a robot means either determining the robot’s pose within some a priori

global map, or simply tracking the relative pose changes of the robot using the starting

condition as a reference [9]. In either case, the robot’s path through the environment

must be tracked in a set of known units (e.g. meters and radians). This is known as

a metric path reconstruction.

Using vision for localization, although desirable, poses difficulties due to the

bearing-only nature of the sensor. Camera sensors are generally assumed to ap-

proximate the pinhole camera model, after lens distortions have been removed [51].

The pinhole model equations are listed in Equation (1) for reference. As can be seen,

the pinhole camera model converts a three dimensional input position into a two di-

mension output pixel by normalizing all inputs by their depth. As the image plane is

fixed relative to the camera focal point, each pixel may be viewed as a direction vec-

tor formed by connecting the camera focal point to the pixel location. As each pixel

represents a direction, only the bearing of an observed world point may be extracted

from an image. Metric information cannot be extracted directly from camera images.
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is the location of a point in 3D world coordinates, ( u
v ) is the location of

the same point in image pixel coordinates, f is the camera focal length, mx and my

are scale factors that convert pixel indices into metric distances on the image plane,

and ( u0
v0 ) is the principle point in pixel coordinates, ideally in the center of the image.

The general solution to localization using bearing-only observations is to incorpo-

rate metric information from an external source and use triangulation from multiple

observations to perform the localization. A direct implementation of this approach

uses distant mountain peaks as observations and a digital elevation map (DEM) as

the source of metric data [16,87,137]. Given several peak sitings, from an omnidirec-

tional camera or composite panorama, the triangulated location of the camera can be

calculated. Similar techniques track the position of the sun [121] or star fields [103].

While these solutions are appealing, especially considering the presence of mountains

in valley glacier regions, the cloud conditions of glacial environments often prevents

the observation of mountain peaks. See Chapter 1.1 for a detailed discussion and

example images.

The most prominent use of vision for localization revolves around multi-view ge-

ometry methods and the related simultaneous localization and mapping (SLAM)

methods. To employ multi-view geometry using a single camera, multiple images

are acquired at different points in time. Features in one image are then matched to

features in the other images. With a sufficient number of point correspondences, the

geometric transformation up to scale may be extracted by applying the epipolar geo-

metric constraint [89]. Given an external source of odometry, such as wheel encoders

or GPS, an estimate of the scale may be obtained as well.
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In contrast, vision-based SLAM systems seek to estimate the 3D position of ex-

tracted image features. These position estimates are then projected into the camera

image space of subsequent frames, and matched with image features in the new frame.

The image space error between the projected landmark and the new image feature

is used to update the position estimate of the landmark. Again, the camera system

alone cannot produce a metric reconstruction, so external odometry sources are used.

Two major advantages arise from this approach. First, since the landmark posi-

tions are estimated in 3D world space, the 2D projections can be calculated directly,

intrinsically satisfying the epipolar geometric constraints. Secondly, as the solution

to the SLAM problem is a probability distribution, an estimate of the error of either

the robot pose or the landmark positions may be obtained by marginalizing out the

appropriate variable. These error estimates can then be projected into the camera

frame, limiting the size of the search region for corresponding feature points. In

contrast, propagating an error estimate through the 10th order root solving method

required in the multi-view geometry approach simply is not practical [88].

Two major variants exist within the SLAM literature. The first uses a single

extended Kalman filter (EKF) to perform the estimation, where the EKF state is

a concatenation of the robot pose and the landmarks. However, by augmenting

the EKF state vector with landmark positions, the complexity of the system grows

as O(n2) in the number of landmarks, limiting the number of landmarks that can

be maintained simultaneously [24]. A commonly used alternative is to employ a

Rao-Blackwellized particle filter (PF) to estimate the robot pose [81], also known

as FastSLAM. Each pose particle assumes the state is known exactly, decoupling the

landmark distributions. In PF SLAM, each landmark consists of an independent low-

dimension EKF, allowing the system to maintain a much larger database of active

landmarks.
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The SLAM-based methods have gained the most traction in the robotics commu-

nity, and large-scale vision-based localization systems have been demonstrated [13,34].

For large-scale, outdoor environments, the PF SLAM approach had obvious advan-

tages in terms of computation time and map database size. However, implicit in these

algorithms is the ability to robustly find and match visual features between camera

frames. Glacial terrain, with its low-contrast low-light snow-covered surface, does not

offer the same kind of feature-rich scenery available in office buildings, or even in the

Martian desert. Before such visual SLAM algorithms can be implemented, methods

for extracting reliable visual features must be examined.

1.3.3 Terrain Mapping

Several aspects of terrain mapping must be considered: the source of terrain data, the

data representation, and the potential uses of the map. Unfortunately, these topics

are not necessarily independent; the type of data available will often affect the data

representation decision, while subsequent uses of the map are far easier to perform

with certain data representations. For mobile robotics, one of the main purposes of

map building is to facilitate efficient path planning. On-board sensors observe the

world around the robot, allowing paths to be planned around obstructions before

they are encountered. Aside from planning, terrain reconstructions of glacial terrain

can be useful for satellite sensor validation tasks. On-orbit sensing of quantities

such as surface solar radiation are dependent on measuring quantities reflected from

the Earth’s surface. In order to interpret the raw sensor readings, an estimate of the

terrain surface is required [124]. More accurate terrain maps will lead to better output

data products. Another possible use includes improved estimates of the glacial ice

mass balance [48]. The periodic construction of high quality glacial maps could allow

scientists to better estimate the change in ice volume between seasons or years.
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Perhaps the most common mapping representation in mobile robotics is the occu-

pancy grid. With an occupancy grid, the environment is segmented into fixed-sized

squares and the probability of an obstacle existing within each square is encoded into

the map [35,63]. For three dimensional mapping, an analogous system based on divid-

ing the environment in cubes has been used for unmanned aerial vehicles (UAVs) [55].

Ranging sensors, such as sonar and lidar, are ideal for this type of mapping, although

vision-based systems have also been used to produce similar results [104]. These

types of maps have also been used in outdoor environments when obstacles tend to

be discrete in nature (e.g. rocks, trees, and tall grass) [1]. Path planning tasks are

easily performed in occupancy grids, with such classic algorithm examples as A* [50].

However, as previously described in Chapter 1.1, obstacles in glacial environments are

slope-based rather than discrete. While some threshold slope value could be applied

to convert high slope areas into discrete obstacles, terrain slopes are a three dimen-

sional conception; formations such as ridge lines and saddle points present uniquely

different slopes based on the orientation of the observer. The situation-dependent na-

ture slope-based traversability assessment makes the use of occupancy grids in glacial

environments less than ideal.

An irregular triangular mesh (ITM) is an alternative mapping representation in

which the terrain surface is approximated with a sparse set of tessellated triangular

patches. This allows any path planning strategies to estimate the rover-experienced

terrain slope of a particular path, although these estimates are piece-wise planar

and slope discontinuities exist at the triangle boundaries. These types of maps are

generally constructed from stereo vision data [62, 71] or laser scan data [97], which

provide dense 3D estimates of the local terrain surface. In these systems, either all

data is used within the ITM, in which case the terrain representation grows linearly

with the number of samples [118], or data decimation strategies must be applied

to extract sparse triangular elements [66, 97]. As previously discussed in Section
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1.3.2, SLAM-based localization systems generate a sparse set of terrain surface points,

complete with uncertainty estimates. However, the opposite problem occurs when

using ITM with sparse data. Terrain areas with incomplete or insufficiently sampled

points will be modeled as a single plane, despite the presence of complex terrain

features. Further, the ITM does not inherently consider the sample uncertainty,

reducing the potential usefulness of this representation.

In the field of geostatistics, a modeling method known as “Kriging” is com-

mon place [17]. Kriging estimates the terrain elevation at arbitrary locations using

weighted sample information in the vicinity of the query point. The weights are de-

rived from a covariance function, which returns the estimated correlation between two

geographic points. Sample data is generally used to derive a variogram, which relates

the amount of expected terrain elevation variation with respect to the distance be-

tween samples. One of a number of functional models is then fit to the variogram and

used as the covariance function [112]. This system is a specialization of a statistical

random process, and, as such, is capable of incorporating measurement uncertainty in

a rigorous way. Additionally, the query points may be requested at an any resolution,

allowing digital elevation maps (DEM) or ITMs to be constructed at arbitrary reso-

lutions or allowing the creation of multi-resolution maps from a single representation.

In geostatistics, the sample locations are generally selected manually to improve the

reconstruction quality [123], although there is no mathematical requirement to do so.

In robotics, the related field of Gaussian processes (GP) have been utilized to perform

a terrain reconstruction using multiple 3D lidar scans of a single scene [118,119].

Finally, other vision-based reconstruction methods are available that do not re-

quire the use of 3D surface samples. Make3D [101] creates 3D reconstructions of

arbitrary scenes from a single image. The image is segmented into small, homoge-

neous “superpixels” that are then fitted to a plane. The system employs a Markov

Random Field (MRF) to estimate the plane parameters (depth and orientation) for
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each superpixel. The MRF is trained using a set of images with corresponding laser

scan data to act as ground truth. The system also incorporates human-inspired

monocular cues, such as convergent lines, texture variations, and defocus to break

the ambiguity of different possible 3D structures, and return a single, feasible scene

model. Still other methods attempt to recover scene geometry from texture varia-

tions [41, 56, 126], or shading effects [141]. The incorporation of surface texture into

the reconstruction method is of particular interest. As noted previously in Section

1.3.1, surface texture can provide visual cues as to the nature of the terrain surface.
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CHAPTER II

ROBOTIC INFRASTRUCTURE

In order to test any produced glacial navigation algorithms, a certain amount of

robotic infrastructure must first be developed. Standard wheeled robotic platforms,

such as the iCreate or the Pioneer, are not equipped to travel on ice and snow, and

any vision-based methods will require sets of sequential images from analogous glacial

environments as input. To that end, a set of snow-worthy robotic platforms have been

designed and constructed. These platforms have been fielded several times on glacial

terrain, during which data was logged for extended traverses. Finally, a visually

faithful simulation environment was developed to ease the testing requirements of

developed software, as well as to allow ground truth data collection. The following

sections describe the rover design, detail the terrain and data collected at each field

test, and discuss the creation and evaluation of the simulation system.

2.1 Robotic Platform

The previous arctic robotics projects, described in detail in Chapter 1.2 showcase

the ability of the mechanics of a robot to survive the inhospitable climate of glacial

environments. However, each of these projects involves the construction of a single,

expensive robotic agent. Such an approach is not practical for the development of

multi-agent systems, where potentially dozens of robotic agents will be utilized. As

many rovers will be required to create a usable sensor network, each unit must be

inexpensive. This pushes the design away from centimeter accuracy GPS and military-

grade IMU sensors, and towards consumer-grade sensing technologies. Further, high

terrain mobility must be emphasized in the design and construction. While much of

the rover’s time will be spent in the flat, central regions of the glacier, the project goal
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is to construct a system capable of traversing the widest range of expected terrain

possible. Typically the areas of most interest to scientists occur at the extremes of the

environment. Collecting data about a forming glacial lake requires descending into

the surrounding basin, while investigating the glacier-mountain boundary requires

ascending steep slopes while identifying and avoiding crevasses. Due to the extreme

nature of the terrain, autonomous exploration of large expanses of the terminus is

probably not possible, but deployment in the upper regions should be feasible. To

this end, three prototype mobile weather sensor nodes were constructed as part of

this research, with an emphasis on low-cost sensing and all-terrain mobility [132].

Details of the design iterations of the SnoMote rover follow.

2.1.1 SnoMote Mk1

A 1/10 scale snowmobile chassis was selected for the first prototype platform, endow-

ing the rover with an inherent all-terrain drive system. The platform was modified to

include an ARM-based processor running a specialized version of Linux. The moth-

erboard offered several serial standards for communication, in addition to wifi and

bluetooth. A daughterboard provided an ADC unit to interface with the on-board

science package, and PWM outputs for controlling servos. The inclusion of wire-

less communication protocols allows flexibility in the placement and packaging of the

various sensors in the system, reducing the need for weather-proof connections. All

control electronics were housed in a water-resistant compartment in the rear of the

platform, while the camera system and GPS receiver were placed in sensor-appropriate

locations. The drive system was modified to accept PWM motor speed commands,

leaving the manufacture-supplied motor and gearbox intact. Steering control was

provided by a weather-resistant high-torque servo motor. For ground truth position

logging, a commodity GPS unit communicates to the processor via the bluetooth in-

terface, while robot state and camera images are sent directly to an external control
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Table 1: Major system components of the SnoMote Mk1 prototype rover

Component Manufacturer Relevant Specifications

Embedded Processor Gumstix 400MHz ARM processor,
802.11g, bluetooth

Micro-controller Atmel SPI serial, 10-bit ADC, PWM,
General I/O

Drive Motor New Bright bushed DC, 50W max

Motor Controller Solarbotics H-Bridge, PWM output, 4A out-
put max

Steering Servo Hitec 45 oz-in torque

Camera Axis 640x480 image resolution, color,
wifi, MJPEG stream

GPS Globalsat 10m rated accuracy, bluetooth

Temperature Analog Devices ±1.0◦C, 3.3V output

Relative Humidity Honeywell ±2%RH, 3.9V output

Pressure Freescale ±1.5kPa, 4.8V output

Accelerometer Analog Devices ±0.01g, 2.6V output, 3 axis

computer via the wifi link. To simulate the science objectives of the mobile sensor,

a weather-oriented sensor suite was included that measured temperature, barometric

pressure, and relative humidity. Table 1 lists the major system components for the

Mk1 rover.

The Mk1 platform was deployed on Mendenhall Glacier, Alaska in June/2008,

as shown in Figure 7. The three Mk1 rovers were driven manually to assess the

mobility performance in the different snow conditions present. During these traverses

it was discovered that the platform suffered from stability issues. Due to the narrow

track footprint in the rear, the chassis would often roll sideways when attempting to

navigate perturbations in the snow surface. Additionally, the snowmobile would sink

in the fresh snow, causing the DC drive motor to stall from excess torque. Due to
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Figure 7: (a) One of the Mk1 rovers deployed at Mendenhall Glacier in Juneau,
Alaska and (b) all three rovers just before being loaded into the charter helicopter
after testing.

the chassis limitations, only short traverses were performed in selected locations. Due

to the design inadequacies of the initial, manufacturer-supplied chassis, it was clear

major mechanical revisions would be necessary before redeployment.

2.1.2 SnoMote Mk2

The stability issues of the Mk1 rover stem from the basic design. Standard snowmo-

biles operate with a motor driving a single track system located in the central rear

body of the chassis, which is guided by two runners located near the nose of the chassis

on either side. Typically this design lends itself for maneuverability when combined

with a rider who shifts their weight to restore balance. Without the physical presence

of a rider, the standard design lacks the ability to systematically redistribute weight

and is vulnerable to toppling.

A dual tread drive train system was implemented in response to these problems.

The new system improved performance over the original design in two major ways.

First, it nearly doubled the surface area in contact with the snow. By reducing the

applied surface pressure, issues of sinking and traction loss in soft snow are reduced.

Secondly, by modifying the rear sector of the chassis, the surface contact footprint

26



was converted from a nearly triangular pattern to a more rectangular shape. This

greatly improves the stability characteristics of the platform, reducing the likelihood

of roll-over.

A rear wheel drive and front wheel steering system was selected over other ideas

such as a differential system because of its level of simplicity. Installing an additional

track and harness alongside the existing one would require some external retrofits, but

ultimately required only an extension to the drive shaft, leaving the existing motor

and gear system intact. In contrast, a differential drive system would require either

a mechanical differential and clutch, or a second motor, gearbox, and drive shaft

operating in parallel.

The dual tread system required a complete redesign of the rear section to accom-

modate the two tracks. A 3D model of the proposed upgrades was created using a

computer aided design (CAD) software package. The software provided the ability

to examine individual components and test the assembly process by generating a vi-

sual preview of how each part mates with the existing platform. From these virtual

representations, necessary adjustments could be made without the cost or material

consumption associated with physical design errors. The dimensions of the treads

were taken and implemented into the CAD software to design a suitable harness.

The harness also needed to be integrated with the remaining snow mobile platform,

requiring that some reinforcements be applied at the attachment point. These recom-

mendations were all integrated in the three dimensional model and adjusted accord-

ingly. The model provided the capability to determine a new location of the motor

and drive shaft that would work properly with the new design. Once a final design

was agreed upon, fabrication of the supplemental parts was commenced. The success-

ful completion of the new tread harness design securely held the tracks in place and

the drive shaft was smoothly guided through both track systems and driving motors.

Figure 8a shows the final dual track design implemented on the prototype rover.
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Figure 8: (a) The dual tread drive train system improves the rover’s stability and
traction in soft snow. (b) The aluminum double-wishbone suspension design increases
the ski separation by 30%, introduces tunable spring-over-oil dampers, and provides
increased travel distance while maintaining the proper ski orientation.

The original platform also suffered from steering deficiencies. The stock steer-

ing linkages of the snowmobile lacked the necessary rigidity to effectively maneuver

through the depths of snow present as the test site. At the same time, the stock

suspension system was too stiff, directly translating surface changes into body roll,

instead of compensating ride height. To correct these issues, the stock single-arm

plastic linkage was replaced with an aluminum double-wishbone design. The new

parallel linkage system extended the ski separation by 30%, and provided increased

travel distance while maintaining the proper ski orientation. The corresponding tie

rod was similarly lengthened, connecting the steering servo to the steering arm at the

ski. The newly installed suspension additionally included a spring-over-oil damper

system that was easily adjustable in the field. This allowed the stiffness to be tuned

to the quality of the terrain. Figure 8b shows the new suspension system.

In January/2009, a test site near Wapakoneta, Ohio was selected to validate the

performance of the new chassis in anticipation of future glacial testing, shown in

Figure 9. The improved chassis performed well during the tests, never rolling, even

when negotiating a path between rocks up a 20◦ slope. While it was still possible

for the chassis to loose traction, especially in very soft snow or up steep inclines, the
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Figure 9: (a) Component diagram of the completed SnoMote Mk2, and (b) the plat-
form as deployed at Byron Glacier, Anchorage, Alaska.

new drive motor was never forced into a stall condition. However, one unexpected

observation from these tests was that the control computer, which consisted of a

consumer-grade laptop, ceased to operate when its temperature dropped below 20◦F.

The SnoMote electronics, however, were unaffected by the cold.

2.2 Field Trials

During the course of the preliminary research, several field trials and data gathering

missions were conducted. The following sections outline the purpose of each trip, the

terrain encountered, and the data collected.

2.2.1 Arikaree Glacier, Colorado - March/2007

Arikaree Glacier is a small cirque glacier formed in a mountain basin in the Niwot

Ridge, near Boulder, Colorado. The mass balance of Arikaree has been studied since

1963, and is currently under observation as part of the Long-Term Ecological Re-

search (LTER) program, sponsored by NSF [72]. The main research station, located

on the Niwot Saddle, is accessible via an unimproved roadway. Arikaree is located

approximately 5 km from the research station, accessible only by snowmobile.
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Figure 10: Representative terrain images from the March/2007 field visit to Arikaree
Glacier, Colorado.

The purpose of the March/2007 trip was to assess Arikaree as a potential test

site for further research, and to collect firsthand imagery of an analogous arctic en-

vironment. As a cirque glacier, the site was surrounded by relatively close mountain

peaks, visible in almost every direction. The terrain consisted of hard-packed snow

that clung to the mountain face nearly to the peaks. As such, significant terrain

inclines were present at the glacier’s edge. The central basin consisted of less than 1

km2 of flat terrain. Figure 10 illustrates typical terrain imagery from Arikaree.

Due to the travel logistics, equipment was kept to a minimum. Images of the

terrain were filmed from various angles, and under changing lighting conditions. Ad-

ditionally, close-ups of the terrain texture were captured. In total, the Arikaree Data

Set consists of over 20,000 video frames.

2.2.2 Mendenhall Glacier, Alaska - June/2008

Due to the imposing travel logistics of transporting equipment to Arikaree, a new

test site was selected for 2008. Mendenhall Glacier is part of the Juneau Ice Field,

the fifth largest glacier system in North America. As part of the Tongass National

Forest, the Mendenhall Glacier is visited by almost half a million people annually.

In addition, the Mendenhall Glacier is the subject of ongoing scientific research by
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the SEAMonster Project [15]. The surface of Mendenhall is inaccessible by roadway.

However, Juneau is home to an extensive industry of charter helicopters servicing

mining operations and tourists. These helicopters are capable of transporting six

passengers and a substantial equipment payload, reducing the total travel time to

under an hour.

However, helicopter travel to glacial areas is heavily dependent on the weather

conditions, particularly low cloud deck heights. This presents a dangerous “white

out” situation for the helicopter pilot in which the snow-covered peaks, the ground of

the landing site, and the sky are all indistinguishably white. During the June/2008

tests, this condition limited the travel options to the lower section of Mendenhall,

near the terminus.

The site surface is visually flat and covered with snow, though there are sections of

the terrain where the underlying ice sheet is exposed. Despite the flat appearance, the

snow varied in depth from a few centimeters to over a meter. This snow was deposited

recently and was quite soft. Upon arrival at the site, a test area was explored with

ice-axes to ensure it was safe. Cracks in the underlying ice, called crevasses, are

often completely concealed by surface snow. Figure 11 shows the types of terrain

encountered at Mendenhall Glacier.

Using the three Mk1 rovers, a set of short traverses were performed in selected

locations. During these traverses, the local temperature, barometric pressure, relative

humidity, GPS location, and camera images were all logged at 2 Hz and timestamped

to ensure proper off-line reconstruction and analysis.

2.2.3 Indian Creek Lake, Ohio - January/2009

A test site near Wapakoneta, Ohio was selected to verify the performance of the

new chassis in anticipation of future glacial testing. The site was blanketed with 8-12

inches of fresh snow next to the frozen Indian Creek Lake. Several long traverses were

31



(a) (b)

Figure 11: Representative terrain images from the June/2008 field trials on Menden-
hall Glacier, Alaska.

conducted that transitioned from land to lake several times. During these traverses,

the GPS location and camera image were logged at 15 Hz and timestamped. The

lake bank consisted of irregularly spaced large rocks, between which large amounts of

snow had collected, forming a drivable incline between 10◦ and 30◦.

2.2.4 Mendenhall and Lemon Creek Glaciers, Alaska - May/2009

Mendenhall Glacier was the subject of the May/2009 field tests as well. Favorable

weather conditions allowed multiple tests to be conducted. Several test sites were

selected across Mendenhall in order to test the system in a variety of glacial terrains.

Site A was located at the top of Mendenhall. Several mountain peaks were visible

above the flat glacier surface, the closest being over a kilometer away. Site C was on

the upper plateau of the terminus. Here the underlying ice is exposed and the terrain

is characterized by small, rolling hills one to two meters in height. Some crevasses are

present in this area, and melt water pools in some of the small valleys. Site D was

at the top of the northern branch. This area is completely covered with over a meter

of soft snow and is largely flat for several kilometers in any direction. Site E was

located at the lower edge of the northern branch, near a bend in the glacier. Again,

the site is completely snow covered, but is much closer to the mountains. Due to
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the proximity of the Mendenhall Tower peaks and the bend in the path, the terrain

exhibited large-scale undulations. Site F was at the top of the southern branch, on

the opposite side of the Mendenhall Tower Peaks from Site D. This area resembled

Site D, and was covered with soft snow with visible distant peaks.

The weather also permitted travel to a second glacier at a higher elevation. Site

B was located on Lemon Creek Glacier, a site monitored by Juneau Icefield Research

Program (JIRP) since 1946 [57]. The area was marked by the presence of a forming

glacial lake, and several mountain peaks an accessible distance away. Figure 12 shows

the location of each test site on the glacier, as well as images of the typical terrain.

At each test site, a set of salient still images were acquired, and video sequences

were recorded from the rover’s onboard camera. Individual maneuvers included small

closed loops on flat terrain, long linear runs up significant terrain inclines, and switch-

backs running down the side of mountain peaks. In total these recordings represent

over 50,000 individual frames, and account for over a kilometer of traversal distance.

In addition to the collected images, GPS data, weather measurements, and accelerom-

eter data were all recorded and timestamped for future analysis.

2.2.5 Byron Glacier, Alaska - May/2010

A narrow testing opportunity in May/2010 allowed a one-day field trial on Byron

Glacier near Anchorage, Alaska. The terminus area of Byron Glacier is accessible by

foot, and exists within a narrow valley surrounded by mountain ridges. The snow

conditions differed significantly from the other testing sites, consisting of a layer of

refrozen snow. This outer layer tended to be firm and slick, more similar to ice than

the soft snow of Mendenhall and Lemon Creek. Consequently, the ribbed track system

and steering skis of SnoMote rover did not offer the same traction advantages when

used on a deformable surface. Despite this, the rover was still maneuverable and able

to traverse an upward slope approaching 20◦.
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(b) Site A (c) Site B (d) Site C

(e) Site D (f) Site E (g) Site F

Figure 12: (a) A map of the relative position of the various test sites on Mendenhall
Glacier during the May/2009 field tests (Lemon Creek Glacier Test Site B not shown).
(b)-(g) Sample images from each test site illustrate the typical terrain.
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(a) Site A (b) Site B

Figure 13: Representative terrain images from the May/2010 field trials on Byron
Glacier, Alaska.

Two different test sites were utilized during the day’s testing. Site A was located

near the center of the valley, near a saddle point in the terrain topology. Significant

terrain slopes existed within a short traverse of the base location. Site B was was

much flatter, located beside a small melt-water stream. The remains of a recent

avalanche marked the southern testing limit. Figure 13 shows images of the typical

terrain from each test site.

2.3 Simulation System

Unlike more traditional environments, preforming field tests in glacial conditions is

far more involved. Schedules must be arranged, equipment shipped, and helicopters

chartered. Field work is thus more expensive and time consuming, resulting in fewer

opportunities to test algorithms. Even during the conducted field tests, measuring

the ground truth for the environment is a challenge. The rover traversed several

hundred meters at each test site, making area laser scans of the terrain impractical

for the limited duration testing.

Simulation is often considered as a means of addressing facets of this challenge.

However, due to the generally poor rendering quality of typical robotic simulation
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environments, simulation is rarely, if ever, used to evaluate vision-based algorithms.

Despite this challenge, a simulation system has been developed specifically for testing

visual navigation algorithms. This simulation system, which uses Gazebo [44] as its

base, has been extended to provide a visually faithful environment including realistic

large scale terrain, local scale hazards, and background imagery. The following de-

scribes in detail the methods used and extensions created in the development of the

visually faithful simulation. Additionally, an approach for evaluating the efficacy of

the constructed simulation system is also presented, which makes use of algorithm-

specific performance metrics to compare the simulation to the real environment [134].

2.3.1 Large-Scale Terrain

One of the first aspects that must be handled in outdoor simulations is the creation

of the large-scale terrain. Within Gazebo, a heightmap image is used that encodes

relative elevations as pixel intensities. 3D modeling programs, such as Blender [42],

generally supply manual methods for working with heightmaps. This involves digitally

sculpting the heightmap from a flat mesh using various tools. This allows an enormous

amount of discretion in the behavior of the terrain, but requires time and skill to

produce realistic heightmaps. Once completed, the heightmap must still be “painted”

to produce the overlay texture, again requiring time and skill to produce good quality

results. Procedural creation, on the other hand, automatically generates a random

terrain based on a few user parameters. This allows relatively unskilled designers to

produce good quality results, while simultaneously generating a texture map.

Perhaps the best method is to use elevation data from the desired test site. Re-

cently released digital elevation models (DEM) from the Shuttle Radar Topology

Mission (SRTM) [36] are available for most of the globe at 90m resolution, while the

Lunar Orbiter Laser Altimeter (LOLA) instrument on-board the Lunar Reconnais-

sance Orbiter (LRO) is in the process of gathering similar data for the Moon. These
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Figure 14: Sample images from a simulation of the upper north branch of Mendenhall
Glacier generated using DEM models from the SRTM data set and satellite imagery.

data products can easily be converted into heightmaps usable by Gazebo. Similarly,

geo-registered satellite imagery can be obtained from sources such as LandSat for

terrestrial locations, Lunar Reconnaissance Orbiter Camera (LROC) on the LRO, or

HiRISE for Martian terrain. These images provide the large-scale coloration needed

to render the terrain accurately. Figure 14 illustrates a sample simulation system of

Mendenhall Glacier in Alaska using these techniques.

2.3.2 Backgrounds

The large-scale terrain must be textured using overhead-view images, such as those

obtained from satellite or aerial photography. This is appropriate for terrain on which

the robot will be traversing, using the projective camera model to render the ground

from any angle. However, much of what is visible by an in situ rover may be classified

as background images; mountains, sky, and other distant features differ significantly in

visual appearance at ground level versus an overhead view. Such details are important

to simulate for vision-based algorithms, as these aspects are often hard to separate

from the ground plane of interest. Alternatively, in the context of lunar robotics,

such things as star trackers could be implemented to aid navigation if they could be

rendered accurately within the simulation.

One effective way of generating realistic background rendering is to employ the
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Figure 15: (a) A image acquired from the on-board rover camera during a field trial
on Mendenhall Glacier, and (b) a corresponding imaged generated by the simulated
world within Gazebo.

use of a “skybox.” A skybox is simple a large box containing all of the simulation el-

ements. A texture is applied to the inside of this box, allowing background elements,

such as mountains in the distance or clouds in the sky, to be generated as a set of

static images. It is possible to render the skybox as if it were following the camera, so

the background elements are always equidistant from the camera. This is a good ap-

proximation if the background is far from the camera relative to the distance traveled

by the rover, such as stars or mountains, which are tens of kilometers away.

For the case under consideration, a skybox is used to render in photo-quality the

mountains surrounding the glacier test site, using the DEM to generate the driveable

terrain only. While at the test site, a number of high resolution images were taken

spanning the entire horizon. Using photo-stitching software, Hugin [20] in this case,

these images were transformed into a single panoramic image. This image was then

divided into four segments, one for each of the vertical skybox sides. An image of the

sky was used for the top plane of the skybox, while the bottom plane is concealed by

the DEM terrain. Figure 15 shows a visual comparison between the final simulation

rendered from the rover’s perspective with that of a real image acquired from the

onboard rover camera.
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2.3.3 Evaluation Method

When comparing the visual rendering quality of a simulation system versus images of

the real terrain, it is difficult to perform anything other than a qualitative comparison.

Further, determining how real is “real enough” is not obvious, and is generally depen-

dent on the combination of task and visual algorithms employed. Ideally, the output

of the visual algorithms in question should provide similar results when applied to

the simulation system compared to those obtained from the real environment. There-

fore, the simulation system may be deemed “sufficient” for a specific visual algorithm

and corresponding performance metric if the difference in the results from the two

environments are not statistically significant. Further, the quality of the simulation

system can be derived from the number and variety of visual algorithms that perform

properly within the simulation. This methodology is used to evaluate the simulation

quality for each visual algorithm under consideration, before results obtained from

the simulation system are considered.
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CHAPTER III

VISUAL TRAVERSABILITY ASSESSMENT

As described in Chapter 1, one requirements for an autonomous mobile arctic sen-

sor network is a hazard-avoidance strategy capable of operating in real-time on

commercially-available embedded hardware. While little research has been devoted

specifically to obstacle detection and avoidance in glacial environments, a large amount

of work does exist for desert and urban environments.

A majority of this work relies solely, or in part, on the use of laser range scanners

to detect and characterize obstacles. The H1ghlander and Sandstorm autonomous ve-

hicles from CMU fuse multiple lidar and radar systems to estimate the traversability

cost of near-by terrain [116]. Stanley, the winning entry to the DARPA Grand Chal-

lenge in 2005, uses laser range data to determine the traversable area near the current

vehicle position [19, 113]. This area is then used to train a color model, allowing the

entire image to be classified as drivable or non-drivable. In a similar manner, the

MuCAR uses laser scan data to generate a set of possible vehicle trajectories, then

incorporates visual cues to eliminate non-traversable paths [75]. Other work focuses

on finding visual road features, such as curbs and lane markers, which are also visible

in lidar data [67,107].

However, the use of laser range scanners within the context of a multi-robot de-

ployment in glacial terrain is far from ideal. Common 2D line scanners, such as

the SICK LMS 291 [28], are expensive (in excess of $5k), offer a limited sensing

range (80m), and consume significant power (20W). Further, while a single line scan

is capable of detecting discrete obstacles, it does little to characterize the terrain

slope, which, as described in Chapter 1.1, constitutes the major hazard in glacial
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terrain. 3D scanners, constructed of either a 2D scanner on a rotating base or as

self-contained units, can better map the terrain, but suffer from increased cost and

power requirements, slower scanning times, or severely limited range (30m for the

Hokuyo UTM-30LX [27]). Finally, early tests of laser range scanners in Antarctica

indicated that the reflectivity properties of snow and ice translated into significantly

increased noise in the laser scan output [117].

Based on the difficulties of active sensing techniques such as lidar or radar, the

exploration of terrain assessment methods have focused on the use of vision. Specif-

ically, a terrain traversability map has been created, inspired by techniques used for

desert or Martian terrain [54]. This traversability map incorporates color and texture

cues from the image to generate the estimated terrain traversability of each pixel loca-

tion. Using the traversability map as input, it is shown that a simple, reactive control

strategy is sufficient to avoid the terrain hazards present in glacial environments.

3.1 Region of Interest

As discussed in Chapter 1.1, the weather conditions in glacial regions can often ob-

scure the ground-sky boundary, a condition known as “white-out.” Before any mean-

ingful analysis of terrain obstacles can be performed, the foreground region must first

be segmented from the acquired image. This serves to eliminate image features, such

as background mountains or cloud features that could interfere with obstacle assess-

ment routines, as well as focus subsequent processing on a smaller, targeted region

of interest. Potential foreground segmentation methods are presented below, as well

as a novel horizon line detection process that has been tailored to work on glacial

images [130]. All methods are tested against a set of hand labeled images consisting

of samples taken from each of the ten different field trial sites.
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3.1.1 Adaptive Histogram Threshold

One project, sponsored by the Association of European Research Establishments in

Aeronautics (EREA), uses vision to extract the foreground from glacial images as part

of an automated snowcat convoy system. In order to remove the unwanted regions

from arctic imagery, the EREA project [11] proposed using an adaptive histogram

threshold to separate the foreground from the rest of the image. It is assumed that the

majority of the image is filled with the snowy region. Consequently, in the histogram

of the image, the largest peak should be associated with the grayscale values of this

region. An adaptive threshold based on the boundaries of this peak is then used to

separate the region of interest from unwanted objects and areas. Computationally,

this method is very efficient, requiring only a single pass through all of the pixels

to construct the histogram, a linear search within the histogram space, and a second

pass through all of the pixels to apply the threshold values. This technique represents

the only known prior art in the area of glacial foreground segmentation.

The adaptive histogram threshold strategy has been applied to the two sample

images shown in Figure 16. The first image is from the June/2008 data set on

Mendenhall Glacier. In this image there is a distinctive foreground-background hori-

zon. However, the rover has pitched upward, capturing a large portion of the sky.

This violates the basic majority-foreground assumption, resulting in an output mask

that includes the overcast sky and excludes the ground plane. The second sample is

from the June/2008 trial on Lemon Creek Glacier during a near “white out” condi-

tion. Here the ground and sky share similar coloration, and are difficult to distinguish

even for human observers. Under these conditions the adaptive histogram threshold

strategy completely fails to remove the background region.

The first type of error can be avoided with a small algorithm variation. One

learning-based obstacle detection method uses a heuristically-selected seed region as

training data [61]. Using the idea of a seed region, the adaptive histogram threshold
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(a) (b)

(c) (d)

Figure 16: (a) A sample image from the June/2008 data set on Mendenhall Glacier,
and (b) the mask produced by the adaptive histogram threshold method. This method
incorrectly segments the sky, labeling the ground plane as background. (c) A sample
glacial image from the June/2008 trial on Lemon Creek Glacier during a near “white
out” condition, and (d) the resulting binary mask produced using the adaptive his-
togram threshold method. Under these conditions the adaptive histogram threshold
strategy completely fails to remove the background region.
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method has been modified to generate a grayscale histogram over a trapezoidal region

directly in front of the rover. The histogram thresholds and final image mask are

then generated as before. This has the advantage of ensuring that at least part of

the ground in front of the rover will be included in the output region, eliminating the

catastrophic failures present in the original algorithm. Further, as the histogram is

calculated over a small part of the image, this method is also computationally faster

than the original method. However, the issues of cloud inclusion remain unchanged.

There is also a danger that the ground plane color variations will not be properly

characterized, as a smaller area is used to calculate the threshold values. As such,

the segmented regions tend to be smaller, improperly labeling ground plane areas as

background. Figure 17 shows the output of the modified adaptive histogram threshold

method on the same two sample images.

3.1.2 Region Growing

The MuCAR project at the University of the Bundeswehr Munich uses heuristic

criteria to separate roadway pixels from the surroundings [75]. Similar color-based

segmentation methods have been used successfully as elements of robotic ground plane

segmentation systems [45, 90, 91]. Others find the addition of texture information to

be useful in the segmentation process [100, 138, 140]. Region growing methods are

common in segmentation algorithms, as they allow a large amount of freedom in the

pixel test condition. Additionally, the output consists only of connected regions, an

advantage over thresholding and other per-pixel evaluation methods.

A region growing scheme has been applied to the glacial foreground segmentation

problem. A contextual region is defined by a trapezoid directly in front of the camera.

The area within the contextual region is considered the seed region, R, and statistics

are calculated in the form of mean and variance of the image intensity and image

gradient. Relatively simple color and texture criteria have been implemented, shown
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(a) (b)

(c) (d)

Figure 17: (a) A sample image from the June/2008 data set on Mendenhall Glacier,
and (b) the resulting binary mask produced by calculating the adaptive histogram
threshold on a seed region only. Use of a seed region allows the algorithm to correctly
identify the ground plane color range, avoiding the catastrophic failure of the standard
method. (c) A sample glacial image of a “white out” condition from the June/2008
trial on Lemon Creek Glacier, and (d) the associated foreground mask. This methods
again completely fails to segment the background under difficult conditions.
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in Equation (2). By only testing pixels adjacent to the current region, issues of cloud

inclusion can be reduced. However, in instances where the cloud boundary contacts

the ground plane, this method can still result in cloud regions being included in

the final output mask. The computational complexity of this method depends on

the calculation of the image gradient, a process known to be O(n), and the region

growing comparisons. As each pixel must be tested once, at most, the region growing

phase is also O(n).

pixel(i, j) ∈ R if and only if

µI − 2 · σI < I(i, j) < µI + 2 · σI ,

µG − 2 · σG < G(i, j) < µG + 2 · σG, (2)

where I(·) is the image intensity, and G(·) is the image gradient, µI , σI are the mean

and standard deviation of the image intensity inside the region, and µG, σG are the

mean and standard deviation of the image gradient inside the region.

Figure 18 shows the results of the region growing algorithm on the same example

images. The prominence of the background mountains in the first image provides

an unambiguous stopping boundary for the region growing phase. The connected

region requirement also eliminates the sections of the overcast sky and snow-topped

mountain peaks from the output. Further, since the algorithm was initialized with a

foreground region, the output region is guaranteed to return the correct region. The

catastrophic failures of the standard adaptive histogram threshold method cannot

occur. In the second example image, a weak boundary exists between the ground

plane and the overcast sky. As the region growing procedure examines each pixel

individually, a single misclassification at the boundary can allow the region to expand

into the cloud regions. Despite the inclusion of the clouds in the output region, this

method still outperforms both variants of the adaptive histogram threshold.
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(a) (b)

(c) (d)

Figure 18: (a) A sample image from the June/2008 data set on Mendenhall Glacier in
which a large portion of the sky is included. (b) Since this region growing algorithm
is initialized with a foreground seed region, the correct region is extracted. (c) A
sample glacial image of a “white out” condition from the June/2008 trial on Lemon
Creek Glacier, and (d) the mask produced by the region growing algorithm. Due to
the weak boundary between the clouds and ground plane, a large section of the sky
has been included in the output region.
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While the region growing technique offers improved performance by utilizing tex-

ture information and guaranteeing a single, connected output region, it still uses only

local information when evaluating each pixel. This can lead to the inclusion of unde-

sired areas, such as clouds, if the boundary between the regions is weak. Statistical

region merging (SRM), a variant of the region growing algorithm, partially solves

this issue by using global information to select which pixel to evaluate next [90]. A

function is used to rank the likelihood of neighboring pixels belonging to the same

region. The most likely pairs are evaluated first, and merged into a single region

if a certain color criterion is met. If the ranking function properly sorts the pixel

pairs, then all pixel pairs within a single region will be tested before pairs that span

regions. As a consequence, only over-merging errors can occur, when separate regions

are incorrectly merged. A single tuning parameter is available that controls the level

of inter-region merging. A simple ranking function has been implemented using the

directional derivatives of the source image, shown in Equation (3). Assuming that

true regions in the image are smooth, then large derivative boundaries only exist

between regions.

cost(pixel(i, j), pixel(i+ 1, j)) =
∂I(i, j)

∂x
,

cost(pixel(i, j), pixel(i, j + 1)) =
∂I(i, j)

∂y
(3)

where I(·) is the image intensity.

The SRM algorithm has been applied to the same set of sample images, the results

of which are shown in Figure 19. Because the SRM algorithm uses global information

to sort the pixel comparisons, separate regions for the sky, clouds, and ground are

allowed to develop. This reduces the likelihood that sky and ground regions will

be incorrectly merged. Despite this, the combination of a weak boundary, similar

color ranges, and close proximity allowed some of the lower clouds in the upper left
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of Figure 19c to be included in the ground plane region. It should be noted that

this error region is significantly smaller than that produced by the standard region

growing algorithm. Due to the prominent ground-mountain boundary, SRM performs

similarly to region merging for the first sample image.

Due to the sorting and region tree generation, this method is the most com-

putationally expensive of those examined. Given n pixels in an image, there are

approximately 2n unique pixel neighbors in a 4-connected scheme. With efficient

sorting algorithms, the computational complexity will be O(2n · log(2n)). During the

merging process, a hierarchical tree of region pixels is generated. Each of the 2n tests

requires finding the parent pixel of both pixels being tested. Assuming a balanced

tree structure, the parent look-up time will be O(2n · log(n)).

3.1.3 Machine Learning

In the case of region growing, a merging criteria must be supplied, which ultimately

determines the system performance. In the case considered, only grayscale intensity

and gradient magnitude are considered. As the number of image attributes increases,

it becomes increasing difficult to generate proper threshold values for the criteria equa-

tion. In contrast, the road segmentation method used by Stanley, the DARPA Grand

Challenge entry from Stanford, uses a learned Gaussian mixture model to classify each

image pixel by color [19], avoiding the need to set hard limits. Similarly, a water-sky

segmentation system uses color and various texture measurements to successfully la-

bel each pixel, a problem visually similar to the glacial segmentation problem under

consideration [37]. The same feature vector used by the water segmentation algorithm

has been employed here, listed in Equations (4) - (10). Two Gaussian mixture models

(GMM) [31] were trained on approximately 1% of the labeled images, consisting of

nearly four million training examples. One GMM approximates the property distri-

bution of foreground pixels, while the second was trained using background pixels.
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(a) (b)

(c) (d)

Figure 19: (a) A sample image from the June/2008 data set on Mendenhall Glacier in
which a large portion of the sky is included. (b) Similar to standard region growing,
SRM produces an accurate region mask due to the strong ground-mountain boundary.
(c) A sample glacial image from the June/2008 trial on Lemon Creek Glacier during
a near “white out” condition, and (d) the resulting mask produced by the statistical
region merging algorithm. By sorting the pixel comparison order, significant cloud
and sky regions are able to develop, reducing the size of the incorrectly labeled portion
of the image.

50



Each pixel in the test set is then classified based on the distribution with maximum

likelihood membership.

Intensity Ii,j = I(i, j) (4)

Mean µi,j =
1

L

∑

i,j∈R

I(i, j) (5)

Standard Deviation σi,j =

(

1

L

∑

i,j∈R

(

I(i, j)− µi,j

)2

) 1

2

(6)

Third Moment µ3i,j =
1

L

∑

i,j∈R

(

I(i, j)− µi,j

)3
(7)

Smoothness Si,j = 1−
1

1 + σi,j

(8)

Uniformity Ui,j =
∑

i,j∈R

2

Pr (I(i, j)) (9)

Entropy ei,j = −
∑

i,j∈R

Pr (I(i, j)) log
(

Pr
(

I(i, j)
))

(10)

where I(·) is the image intensity, L is the number of pixels in the small region, R,

centered on pixel (i, j), and Pr (I(i, j)) is approximated using the histogram generated

over region, R.

All the other methods previously discussed extracted a small number of properties

from the image, but adapted the classification parameters based on those properties

to the single image under consideration. This method, which uses a variety of image

properties such as smoothness, uniformity, and entropy, to classify each pixel using

a GMM, produces an unacceptably large classification error. This is illustrated in

Figure 20, where the GMM classifier has been applied to the same two sample images.

The issue with the GMM, or any training-based classification method, is that it must

generalize its classification model across all the types of terrain encountered and all

weather conditions. This results in a system that is typically less capable of discerning

subtle differences between the ground and sky coloration properties.
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(a) (b)

(c) (d)

Figure 20: (a) A sample image from the June/2008 data set on Mendenhall Glacier
in which a large portion of the sky is included. (b) The mask obtained from the
learning GMM. The foreground is correctly labeled, but large portions of the sky are
also included. (c) A sample glacial image from the June/2008 trial on Lemon Creek
Glacier during a near “white out” condition, and (d) the foreground classification
results from the GMM. The mask includes only a small portion of the sky, but large
portions of the ground plane have been removed.
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To compute the output, the feature vector must first be generated. Each one

of the vector components is computed from values in a small region, R, around the

current pixel. This leads to a complexity of O(L ·n), where L is the number of pixels

inside R. As L will tend to be large, this dominates the complexity of evaluating the

GMM.

3.1.4 Horizon Line Extraction

All of the previous methods mentioned use information local to the examined pixel to

make segmentation decisions. However, the properties of glacial images make local ex-

amination problematic. Overcast skies, common in glacial environments, often share

the same color range as the ground plane snow. Further complicating segmentation,

the clouds and ground plane often intersect visually, making the determination of the

horizon difficult. Figure 21 shows an example of this phenomenon in which a section

of the ground-cloud boundary has been magnified. Using only the information within

the magnified boxed, it is difficult, if not impossible, to find the true horizon line.

When analyzing these images, humans tend to scan the image for visual cues in the

form of strong horizon line segments. These line segments are then extended into

image regions where the horizon is more ambiguous. Using this type of strategy, a

ground segmentation method has been devised.

First, a set of color statistics are generated from a trapezoidal seed region, S,

directly in front of the rover. By first constructing a pixel intensity histogram of this

region, the median intensity, quartile values, and center 95% range can be efficiently

calculated.

Strong line segments are then extracted from the image. An edge detector similar

to the “Canny” operation [22] is used to find dominate image edges. Each edge is then

simplified to be piecewise linear using the Ramer-Douglas-Peucker algorithm [52]. A
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Figure 21: (a) A sample glacial image from the June/2008 data set with an enlarged
region including a section of the horizon. The horizon line is easily distinguished in
the whole image, but nearly invisible in the enlarged section.

minimum segment length constraint is enforced to remove the large number of noise-

induced edges. Each remaining line segment is considered a candidate horizon line

segment. A set of heuristic properties are then calculated for each candidate, designed

to test the likelihood that the candidate is actually part of the true horizon line. These

properties are summarized in the following.

Segment Length

Longer line segments are more likely to be part of larger structures, such as the

horizon or mountain boundaries, and less likely to come from localized surface texture.

Therefore longer line segments produce a larger weight, Wlen, than shorter segments.

Wlen = Lengthsegment/Widthimage (11)

where Lengthsegment is the euclidean length of the candidate segment, and Widthimage

is the image width in pixels.

Color Below Segment

If a segment is part of the horizon line, then the region below the line segment

should be statistically similar to the foreground seed region. A pixel intensity his-

togram is constructed from an area, B, immediately below each candidate. Using
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this histogram, the quartile intensity values are calculated and compared to the seed

region statistics. The normalized euclidean distance between the quartile values of

the seed region and the quartile values of the area below the line segment is used to

create the segment weight, Wbelow.

Wbelow = 1− α · ‖QB −QS‖ (12)

where Qi represents the vector of quartile boundary intensities, α is a normalization

constant, S is the seed region area, and B is a small area below the current candidate

segment.

Color Above Segment

If the segment is part of the horizon line, then the area above the line should

be statistically different from the foreground seed region. In a similar fashion to the

‘Color Below Segment’ property, the euclidean distance between the quartile values

of the seed region and the quartile values of the region, U , above the line segment is

calculated. The property weight, Wabove, is given by Equation (13).

Wabove = α · ‖QU −QS‖ (13)

where Qi represents the vector of quartile boundary intensities, α is a normalization

constant, S is the seed region area, and U is a small area above the current candidate

segment.

Color Column

Line segments are often generated at the upper edge of snow-covered mountain

peaks, or at cloud-sky boundaries. This results in snow-colored pixels directly below

a line segment, even though a section of non-white pixels exists between the line

segment and the ground. By weighting each line segment by the percent of white

pixels between the segment and the bottom of the image, these types of segments

may be removed. Equation (15) gives the calculation method for weight Wcolumn.
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A(i, j) =











1 if QS(1) < I(i, j) < QS(3)

0 otherwise
(14)

Wcolumn =
1

L

x2
∑

i=x1

Heightimage
∑

j=yseg(i)

A(i, j) (15)

where L is the total number of pixels below the candidate line segment, (x1, y1) and

(x2, y2) are the end points of the current candidate line segment, the function yseg(x)

returns the y-value of the candidate segment at a specific x-value, QS represents the

vector of quartile boundary intensities of seed region, S, and I(x, y) is the image

intensity.

Distance From Predicted Horizon

The position of the horizon location can be estimated using the current pose

estimate of the camera from the odometry system, assuming a flat ground plane if

additional topographic information is unknown. The distance from this estimate to a

candidate line segment can be used as a measure of the likelihood the given candidate

is part of the horizon. A Gaussian kernel centered on the horizon estimate is used as

the weight Wdist, shown in Equation (16). The variance of the Gaussian kernel can

be tailored to the expected uncertainty of the robot pose estimate and the expected

variability of the terrain.

Wdist =
1

L

x2
∑

i=x1

Gσ(yest(i)− yseg(i)) (16)

where the function yseg(x) returns the y-value of the candidate line segment at a

specific x-value, yest(x) returns the y-value of the horizon estimate at a specific x-

value, Gσ(x) is the evaluation of a Gaussian kernel function with zero mean and

variance, σ2.
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A combined weight is calculated for each candidate segment as the product of

the individual weights described above. The top scoring candidate is selected as a

seed segment for the horizon line. A greedy search is then conducted starting at each

endpoint of the seed segment. The cost of connecting the seed segment to another

candidate segment minus the weight of that line segment is compared to the cost of

simply extending the seed segment along its current trajectory to the endpoint of

the candidate segment. The lowest cost solution is then executed, and the process

repeats until the edge of the image is reached. In this way, candidate line segments

that exhibit weak visual cues serve to reinforce the path of stronger segments, while

segments with strong visual cues have the ability to redirect the path of the horizon.

Figure 22 illustrates the major steps in constructing the horizon.

Figure 23 shows examples of the produced horizon line under different conditions.

Figures 23a and 23b show the results of the horizon line extraction process on the

same two sample images used in the discussion of the other masking algorithms.

In both cases the correct horizon was found, despite the presence of “white out”

conditions in Figure 23b. Figures 23c and 23d illustrates a similar situation under

different weather conditions. Figure 23d is from the June/2008 data set acquired at

Lemon Creek Glacier under low lighting conditions, while Figure 23c is part of the

May/2009 data set, which occurred under favorable weather at Site A on Mendenhall

Glacier. In both images, a weak horizon line exists with snow-covered mountains

immediately behind. This causes the horizon to visually blend with the background,

which makes finding the correct horizon line difficult, even for human observers.

Despite this, the horizon line extraction process is able to identify a reasonable horizon

in both images. Figures 23e and 23f are images from the same data set, acquired

several seconds apart. As the camera pans to the right, the horizon weakens to the

point of becoming invisible. Figure 23f illustrates the point at which the desired

horizon becomes too weak for successful detection. Despite the failure, the extraction
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(a) (b)

(c) (d)

Figure 22: (a) The sample image of Lemon Creek Glacier during overcast weather
in June 2008. (b) The major edges extracted from the image using a “Canny” edge
detection operator. (c) The extracted edges are approximated by piecewise linear
segments, and weighted according to several heuristic cues. The intensity of the line
segment color is proportional to the segment weight. (d) The highest weighted line
has been used as a seed segment for the horizon line, connecting to other nearby line
segments when possible. Original lines segments are shown in green, inferred sections
are blue.

58



(a) (b) (c)

(d) (e) (f)

Figure 23: Typical results of the horizon line extraction process on images acquired
on Mendenhall Glacier and Lemon Creek Glacier near Juneau, Alaska. Top graphic
shows the original image, while the bottom shows a truncated section with the horizon
line drawn. The desired horizon is indicated on the original image.

performance degraded gracefully, reverting to the next, stronger boundary line.

From a computation standpoint, most of the operations are applied per-segment,

not per-pixel. This means the computation time is proportional to the number of

candidate line segments, not the image size. Further, most of the operations require

only a histogram of a small area, which is an inexpensive calculation. The resulting

algorithm is capable of running in real time, with computation times of less than

30ms on a 640x480 image.

59



3.1.5 Results

To evaluate the effectiveness of the proposed region extraction algorithm, continuous

segments of recorded video from each of the field trials were selected. The horizon

line extraction algorithm (HL) was applied to each video segment, and the resulting

region mask was recorded. To compare the results, images from each video segment

were hand labeled, indicating the area of traversable foreground. It should be noted

that in some images the line between traversable foreground and background is some-

what arbitrary. An effort was made to choose a consistent line between sequential

images. Ultimately, this ambiguity exists only over a small vertical range of pixels in

the image, and should not unduly affect the measured performance. Due to the man-

power required to hand label images, only 100 frames were selected from each video

segment, uniformly spaced through time. The algorithm results are then compared

to the hand labeled images, with the number of incorrectly labeled pixels counted

for each frame. For comparison, the methods of adaptive histogram thresholding

(AHT), the AHT calculated on only a seed region (AHT-S), region growing (RG),

Gaussian mixture model (GMM), and statistical region merging (SRM), were also

evaluated in the same manner. The SRM algorithm is a more advanced region grow-

ing operation that employs global information to produce more accurate boundary

locations [90]. However, the use of global information entails performing a per-pixel

sort, a numerically expensive operation. The results of each test location are sum-

marized in Figure 24 in the form of boxplots. Boxplots are a convenient graphical

method of comparing statistical results that may not be normally distributed [77].

The box center-line indicates the median score, while the upper and lower border

indicate the first and third quartile boundaries.

As illustrated in Figure 24, AHT and GMM consistently score the worst of all the

methods investigated. These methods analyze each pixel without any consideration

for the pixel location. Consequently, large portions of the sky tend to be misclassified.
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Figure 24: Classification performance results for adaptive histogram thresholding
(AHT), modified histogram thresholding operating on a seed region (AHT-S), region
growing (RG), statistical region merging (SRM), machine learning using a support
vector machine classifier (ML), and the proposed horizon line extraction process (HL).
Each algorithm was tested against 100 hand-labeled images from each of 8 different
field test locations.
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Figure 24: (continued)

In contrast, RG and SRM only consider pixels neighboring the current region. Since

these algorithms were initialized with a foreground region, they are more likely to

stay confined to the foreground, resulting in better segmentation performance. Ad-

ditionally, SRM uses global information when selecting the next candidate pixel to

merge, explaining the improved performance over the standard RG algorithm.

To test the real world performance of each algorithm as implemented, a single

640x480 test image was loaded into memory. Each algorithm then processed the test

image 1000 times, and the elapsed time of the processing was recorded. For reference,

these time trials were performed on an Intel Core DuoTMT2500 running at 2.0 GHz.

The execution times of each algorithm are summarized in Table 2. The adaptive

histogram threshold method was the fastest, followed by region growing. The sta-

tistical region merging method, which consistently exhibited high accuracy, was only

capable of operating at 3 to 4 Hz. Such low frame rate operation is unacceptable as

a component of a real-time obstacle avoidance system. The Gaussian mixture model

was also incapable of real-time operation. While the classification stage itself was suf-

ficiently fast, the generation of the required feature vector was too computationally

intensive. Finally, the horizon line extraction procedure was capable of greater than

20 Hz operation, making it an acceptable choice.
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Table 2: Region Of Interest Algorithm Execution Times

Algorithm Execution Performance
(Average Time Per Frame)

Adaptive Histogram Threshold 0.0074 s

Adaptive Histogram Threshold (Seed Region Only) 0.0043 s

Region Growing 0.0229 s

Gaussian Mixture Model 0.2677 s

Statistical Region Merging 0.2803 s

Horizon Line Extraction 0.0296 s

3.1.6 Conclusions

A custom horizon line extraction algorithm based on visual cues was proposed. Due

to the real-time, low processing requirements of field mobile robotics, special emphasis

has been given to the time complexity of each algorithm. The performance of each

algorithm is evaluated numerically, both in terms of time and accuracy, on samples

from each of ten different field trials on glaciers in Alaska.

From a classification performance standpoint, the proposed horizon line extraction

procedure (HL) and statistical region merging (SRM) are the clear winners. In all

conducted trials, the median classification error of the HL algorithm was less than

2.5% of image pixels. This result marginally outperformed statistical region merging

(SRM) in every data set, but does not require the computational expense of a full

pixel sort. In terms of execution speed, the HL algorithm is an order of magnitude

faster than SRM, enabling real-time operation.

Further, this method has been formulated to avoid the use of as many thresholds

and tuning parameters as possible. Each visual cue is evaluated for each candidate

line segment; it is not until the end of the process that candidates get culled. If

the properties to which a specific visual cue responds are not present in the image,
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(a) (b)

Figure 25: (a) A sample glacial image from the March/2007 data set on Arikaree
Glacier, Colorado. (b) Subtle surface texture gives visual cues as to the terrain slope,
as indicated.

then all candidate segments get penalized a similar amount. In contrast, a threshold-

based system would likely cull all of the candidates, resulting in failure. This endows

the system with a certain robustness to image variation, and mitigates the effects of

applying visual cues that are not optimal for a specific image.

3.2 Visual Slope Estimation

A human can quickly and accurately estimate the slope of the environment, such as

that shown in Figure 25. From this single image, without any depth information, one

can successfully estimate slope and loosely define distances from the camera. Our

ability to estimate the slope comes from visual cues in the form of directional texture

features that align with the perceived slope. We exploit these features to create a

terrain slope estimation process using only single camera imagery [127,128].

3.2.1 Preprocessing

The image foreground is isolated using the horizon line extraction process described in

Section 3.1. This limits the processing to the ground plane, the area of consequence

for ground-based mobile robots. In order to extract reliable information from the
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directional texture cues, the surface texture must first be enhanced. The adaptive

contrast enhancement method described in the following is applied for this purpose.

To enhance the contrast, a mapping, f(i), is defined between the input image

intensity and the output intensity. The contrast of a specific intensity level, C(i), is

then defined as the rate of change of output intensity level, as shown in Equation (17).

C(i) =
∂f

∂τ
|τ=i ≈ f(i)− f(i− 1) (17)

Since the output image range is usually defined to be the same as the input

intensity range, the contrast of a specific intensity value can only be enhanced at the

expense of others. Adaptive histogram equalization (AHE) is a standard nonlinear

contrast enhancement method that uses the histogram of the image to define the

mapping function, as shown in Equation (18). This interesting choice of mapping

function applies the greatest amount of enhancement to the most common intensity

values. In terms of arctic images, the most common intensity values will be near-

white, which is exactly the range in which increased contrast is desired.

fahe(i) = α

∫ i

0

histogram(τ)dτ (18)

where α is a normalization factor generally set to the image pixel count, and the

function histogram(τ) returns the number of pixels in the image with intensity τ .

A variant of adaptive histogram equalization has been formulated to enhance

x-ray images and CT scans [98], which imposes a contrast limit on the mapping

function. Contrast limited adaptive histogram equalization (CLAHE) separates the

image into different contextual regions. Within each region, a histogram equalization

procedure is calculated. To prevent over-enhancement of local areas, a contrast limit

is imposed. This applies an upper bound to the slope of the mapping function,

resulting in smoothly varying contrast. The resulting mapping functions are shown

in Equations (19) and (20).
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(a) (b)

Figure 26: (a) A sample glacial image from the March/2007 image set, and (b) the
results of the CLAHE image enhancement. After processing, the underlying scene
structure is clearly visible.

Cclahe(i) =











histogram(i), histogram(i) < Cmax

Cmax, histogram(i) ≥ Cmax

(19)

fclahe(i) = α

∫ i

0

Cclahe(τ)dτ (20)

where the function histogram(i) returns the number of pixels in the image with

intensity i, Cmax is the clip limit, alpha is a normalization constant generally set

to the image pixel count, and fclahe is the resulting mapping from input to output

intensity values.

Additionally, this method has a single tuning parameter, the contrast limit Cmax.

A good setting for this value was determined experimentally once, and used in all

subsequent images and field tests. Figure 26 shows the results of this contrast en-

hancement on an example image from the March/2007 data set. After processing,

the underlying scene structure is clearly visible.

3.2.2 Sparse Slope Estimates

A set of sparse terrain slopes can be estimated using a Hough transform [128]. The

Hough transform calculates every possible line to which a specific edge pixel could
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belong [30]. These lines are generally represented by a (ρ, θ) pair, where ρ is defined

as the shortest distance between the origin and the line, and θ is the angle between

the line and the X-axis. Using these definitions, the functional relationship between

ρ and θ shown in Equations (21) and (22) can be derived for a specific image pixel,

(u, v). The relationship between the ρ-θ representation and the more common slope-

intercept form can be seen in Equation (21).

v =

(

−
cos θ

sin θ

)

u+
( ρ

sin θ

)

(21)

ρ(θ) = u cos θ + v sin θ (22)

Dominant texture edges are extracted using a Canny edge detector [21]. The

Hough transform then converts each edge pixel in the image space, (u, v), into a si-

nusoidal line in the ρ-θ parameter space. As each image pixel is transformed, the

sinusoids in the parameter domain will tend to intersect if the image pixels are in

a straight line. The number of sinusoids that intersect in a particular location is

an indication of the strength or confidence of the line. Thus, the (ρ, θ) pair corre-

sponding to the maximum confidence values in the parameter space may be selected

as being representative of that region. Figure 27 shows the resulting Hough-space

representation of the preprocessed image, which shows specific areas of high intensity

corresponding to common directionality of surface texture.

When a pixel is transformed into the parameter space, it loses any sense of its

location in the original image. It is therefore common for many local maxima to occur

in a very small neighborhood. This results in having slope data only for a small area

in the total region of interest. To overcome this problem, the image is divided into

smaller subimages, and the Hough transform is applied separately to each subimage.

In this way, the extracted slope can be applied to a specific area of the original image,

and slope data will exist for all areas in the image. In each subarea, only one slope
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Figure 27: (a) A sample glacial image from the March/2007 image set after masking
and contrast enhancement preprocessing steps. (b) The sample image after applying
the Canny edge detector. Dominant texture elements have been preserved in the
edge image. (c) The resulting ρ-θ image after applying the Hough transformation.
(d) Several local maxima of the Hough transform have been extracted and overlaid
on the original image. The Hough lines approximate the directionality of the surface
texture.
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is desired, lending itself to the Fast Hough Transform algorithm [69], which employs

integer shifts instead of floating point operations to reduce the processing time.

Figure 28 shows the sparse slope estimate results on a representative sample from

the March/2007 data set. The images in Figures 28a and 28d exhibit the most

prominent slope characteristics. In both cases, the sparse estimates generally align

with the expected direction, slanting down and right in the case of Figure 28a and

more aggressively down and left in the case of Figure 28d. Because this method

estimates a single slope for an entire image block, image structures that were not

removed by the horizon mask can interfere with the slope estimate. This is most

clearly seen in the grassy areas in the upper left of Figure 28b. Additionally, the

bottom-center areas of Figures 28a and 28b have areas of disturbed snow. This was

caused by snowmobile vehicles used to travel to the test site. This disruption in the

natural surface texture leads to incorrectly steep slope estimates. However, due to

the remote deployment locations, the rovers would rarely encounter such a disrupted

snow surface in practice.

The slope estimates obtained for the previous glacial images could only be evalu-

ated qualitatively, as the ground truth information could not be obtained. To obtain

numerical results, an early version of the simulation system described in Chapter 2.3

was utilized. Because the slope estimates generated by this method are two dimen-

sional in nature, special care has been taken when exacting comparable data from

the simulation system. When the rover’s camera views the landscape, the three di-

mensional terrain is projected onto a two dimensional plane perpendicular to the

camera’s line of sight. In order to generate ground truth for the simulation that

would be comparable, a similar approach was followed. For each slope estimate, a ray

was projected from the camera to a terrain patch at the center of the slope estimate

line. Once the intersection of this ray and the terrain is determined, the elevation

of the terrain on either side of the intersection point is measured. The ground truth
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Figure 28: Sparse slope estimates performed on a variety of images from the
March/2007 data set.
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Figure 29: Visual slope estimates ver-
sus the ground truth data obtained
from the simulation environment.

Figure 30: Sparse visual slope esti-
mates versus the ground truth data
obtained from the simulation environ-
ment.

slope is then calculated from the two measured elevations. Figure 29 illustrates this

process.

With the data collection method in place, the rover was driven manually through a

section of the simulated terrain while the generated visual slope estimates and ground

truth data were logged approximately once per second. Figure 30 shows a comparison

between the ground truth data and the visual slope estimates obtained during a 60

second traverse. As can be seen, the visual slope estimates are highly correlated with

the ground truth data, with a correlation factor above 0.9. The best fit line has a

slope of 0.86, indicating this method tends to mildly underestimate the larger slopes.

Over the data set presented, the error between the estimate and ground truth value

exhibits a near-zero mean, with a standard deviation of less than 3.0 degrees. The

estimates therefore provide a good indication of the terrain slope.

3.2.3 Dense Slope Estimates

While the numerical accuracy of the slope estimate system presented in the previous

section is promising for use as input into a control system, the sparse nature of

these estimates is problematic. The sparse slope estimate method relies on detecting
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medium scale surface features within the image. However, these visual features are

not evenly distributed through the entire image, leading to large areas without good

estimates. Further, a single feature measurement was used to represent a large image

region, allowing an outlier image structure to unduly impact the result. The following

method attempts to remedy these shortcomings, while additionally providing dense

slope estimates [129].

The contrast-enhanced surface texture exhibits a desirable slope-alignment prop-

erty, but alignment noise is a larger issue when dealing with small-scale texture fea-

tures. Similar to the area of fingerprint enhancement [53, 60] where it is desired to

find and follow the small ridge details of a print, a ridge orientation can be defined

not by the direction of a single texture element, but rather by the common direction

shared by a small region around each pixel. The slope estimate is produced by finding

the least square estimate of the dominant Fourier spectrum direction within a small

neighborhood.

To calculate the orientation of a given pixel, (u, v), the image gradient within a

neighborhood of that pixel is first calculated. Then the two component vectors, ~νx

and ~νy , are generated, as described in Equations (23) and (24). The orientation,

θ, is then defined as the least squares solution to Equation (25). The entire slope

calculation process can be calculated in real-time.

~νx(u, v) =
∑

neighborhood

2∂x(u
′, v′)∂y(u

′, v′) (23)

~νy(u, v) =
∑

neighborhood

∂2
x(u

′, v′)− ∂2
y(u

′, v′) (24)

θ(u, v) =
1

2
tan−1

(

~νy(u, v)

~νx(u, v)

)

(25)

where (u′, v′) are pixel coordinates within the neighborhood of (u, v).

For comparison, the dense slope estimation algorithm has been applied to the
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Figure 31: Dense slope estimates extracted from a variety of images from the
March/2007 data set.

same images from the March/2007 data set used in Section 3.2.2, with the resulting

images shown in Figure 31. As before Figures 31a and 31d, which have strong texture

properties, produce visually consistent results across the entire image. The dense

method is also better able to characterize the foreground section of disrupted snow

in Figure 31b. While the sparse method is only able to provide a single data point

in this area, the dense slope information indicates boundaries of the disturbed snow

with downward slanting slope values.

Additional examples of processed glacial terrain are provided in Figure 32. In the

first image set from Lemon Creek Glacier, the terrain grade in the original image

is virtually invisible. Yet, the dense estimate process is able to provide reasonable
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results, even in the areas that originally seemed uniformly white. The second pair

of images illustrates a large crevasse on Mendenhall Glacier. The slope estimation

process is able to handle both the snow and exposed ice textures without modification,

as well as handle the quickly varying terrain grade. The estimates provided clearly

show the snow and ice sloping into the mouth of the crevasse, while a relatively safe

area exists in the far left. Since the sparse method operates on large image blocks, it

would be unable to handle the complexity of this terrain.

As before, the dense slope estimates can only be evaluated qualitatively on images

collected from the field campaigns, as no source of ground truth terrain data on an

appropriate scale is available. Instead, the simulation system presented in Chapter 2.3

has been utilized for numerical evaluation. Before using the simulation to validate

a specific visual algorithm, the rendering quality of the simulation system must be

investigated. For the dense slope estimation system, the main visual property of

interest is related to the directionality and strength of small-scale texture elements.

A sequence of 300 frames from Site D have been compared to 300 frames of the

simulation, rendered using the same control commands provided to the real rover. The

image gradient has been calculated for each frame, and the distribution of gradient

magnitudes and gradient directions have been collected for each set. Figure 33 shows

the comparison of the gradient scores of the real image sequence and the corresponding

simulation image sequence. While the medians of the two data sets are similar, the

range of the data sets differs significantly. Within the simulation system, the major

terrain coloration is derived from a single texture image. As outdoor simulations tend

to be large, a single pixel from this texture could span several meters. To compensate

for this, a second detail texture is tiled across the surface and blended with the main

texture. It is the detail texture that is responsible for the local-scale details present

in the simulation. However, due to this tiling procedure, the camera tends to see the

same detail repeatedly, lowering the structural variance of the simulation over a large

74



(a) (b)

(c)

(d)

Figure 32: Images (a) and (c) show an image from Lemon Creek glacier with nearly
invisible surface texture, and the processed slope estimates, respectively. Images (b)
and (d) show a large crevasse at Mendenhall glacier and the resulting slope estimates.
The slope profiles in (d) clearly show the elevation changes at the edge of the crevasse.
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Figure 33: Comparison of performance metric statistics for the dense slope estimate
algorithm. As the main visual property of interest is related to the directionality and
strength of small-scale texture elements, image gradient metrics of average magnitude
and direction.

number of frames. Additionally, factors such as lighting changes and camera noise

are present in the real data, further increasing the variance of the results over time.

With an understanding of the simulation quality, the accuracy of the dense slope

estimates can be investigated. 100 frames were rendered at random locations and

yaw orientations within the simulation system. The dense slope estimate algorithm

was applied to each frame, and the resulting slopes stored. The true terrain slope

was extracted from the simulation at the center of each pixel. The visual slope

estimates were then fit to a linear model of the form y = a · x + b. A scatter plot

comparing the estimated slopes to the ground truth slopes is provided in Figure 34.

From the regression analysis, almost 80% of the variability can be explained by the

linear model. The correlation coefficient for the dense slope estimate system is only

marginally lower than that of the sparse estimates, while providing significantly more

terrain information. Additionally, the dense estimate system generates lower average

errors, with an error standard deviation of 2.3◦ versus 2.9◦ for the sparse system.
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Figure 34: Dense visual slope estimates versus the ground truth data obtained from
the simulation environment.

3.2.4 Conclusions

Due to the nature of glacial terrain, estimating the terrain slope is a key aspect in

determining the traversability of the environment and the detection of navigation

obstacles. Although direct measurement of the terrain via a ranging sensor may be

ideal for these purposes, these types of sensors tend to be expensive, have high power

requirements, and can be confused by the specularity of the environment. Instead,

two vision-based methods have been developed that exploit the presence of natural

erosion texture of the surface to perform a terrain slope estimate.

Both methods have been tested qualitatively against images from glacial field

trials, and quantitatively inside a 3D glacial simulation system. While both methods

perform well inside the simulation system, with linear correlation coefficients above

0.9, the dense slope estimate method provides significantly more information to the

control system, and is able to capture smaller scale terrain features. As both methods

are also capable of running in real-time, the dense slope estimate system has been

selected for use in subsequent control schemes and terrain modeling data needs.
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3.3 Slope-based Control

In the previous section, it was shown in simulation that the generated visual slope

estimates are highly correlated to the true terrain slope. However, real terrain exists

in three dimensions; formations such as ridge lines and saddle points present uniquely

different slopes based on the orientation of the observer. However, the visual slope

estimate system only approximates the terrain slope in a single plane. To demonstrate

that these single-plane slope estimates are still useful as input to a controller of

a ground-based mobile robot, a behavior-based reactive control scheme has been

implemented with the goal of minimizing the chassis roll experienced by the rover.

A version of the distributed architecture for mobile navigation (DAMN) [99] has

been implemented as the robot control scheme. This system is an example of the more

general class of voting-based control techniques in which different, and possibly com-

peting, objectives each vote for potential control outputs. This allows the seamless

integration of multiple behaviors, the combination of reactive and deliberative behav-

iors, as well as behaviors that update at different time intervals, without requiring

each behavior to even be aware that other behaviors exist within the system.

The DAMN architecture focuses more heavily on the steering control, placing

a supporting role on velocity control. Each behavior in the system weights each

possible steering control based on its own situational assessment. For example, an

obstacle control strategy might weight “turn left” and “turn right” controls highly

when approaching an obstacle, while a path planner might weight the steering controls

that direct the robot away from the goal progressively lower. The DAMN arbiter

combines each behavior’s vote, possibly weighted by a higher level supervisory system.

A final smoothing and interpolation step are performed to reduce control switching

artifacts caused by discretization within the system. An example of a DAMN system

integrating two behaviors’ votes is shown in Figure 35.
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Figure 35: An illustration of the DAMN control scheme integrating two competing
behaviors into a single control output.

Xworld

Yworld

Goal

Xrobot

Yrobot

θerror

Figure 36: An illustration of the error angle used in the calculation of the angular
velocity vote from the goal pursuit behavior module.

3.3.1 Goal Pursuit Behavior

A goal location approximately 100m from the rover’s position will be provided during

simulation trials. A simple goal pursuit behavior has been implemented to convey

this information to the DAMN control scheme. An error angle is calculated as the

angle between the forward direction in the robot coordinate frame and the vector

between the robot and the goal in the world coordinate frame. The calculation of the

error angle is illustrated in Figure 36. An experimentally determined gain factor is

then applied to convert the error angle into a desired rotation velocity. This step is

similar to a simple proportional feedback controller.

To construct the DAMN behavior vote, a Dirac delta function located at the

desired rotation velocity is convolved with a Gaussian kernel of unity height. This
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places the highest weighted vote on the desired rotational velocity, with neighboring

control values having progressively smaller weights. The falloff rate of the weights

is controlled by the variance of the Gaussian kernel. A value of σ2 = 1.5 has been

used in all trials. Equation (26) shows the functional implementation of the weight

calculation.

weight(ω) = δ(ω − γ · θerror) ∗ e
−ω2

σ2 (26)

where γ is the control gain, θerror is the error angle, δ is the Dirac delta function, and

σ is the standard deviation of the Gaussian kernel.

3.3.2 Slope Avoidance Behavior

Due to the three dimensional nature of terrain slopes, devising a control behavior

that minimizes the robot’s chassis roll is not as straightforward as a goal pursuit

behavior. n discrete angular velocity controls are selected at regular intervals that

span the range of angular velocities supported by the robotic platform. Each of the

n potential control laws are simulated forward in time, assuming the rover is on a

planar surface and no wheel slip occurs. Since all of the slope information is in image-

space, the calculated trajectories are projected into the image. In order to treat each

possible trajectory equally, all trajectories are simulated for the same amount of time.

As the trajectories for the extreme right and extreme left angular velocities will tend

to reach the image edge at an earlier time than the other trajectories, these times are

used as the final time for each trajectory. The actual distance each pixel spans on a

given trajectory is calculated and stored, as is the yaw angle of the rover at the center

of each trajectory pixel. At this point none of the calculations are dependent on the

actual environment, and only need to be recalculated if the number of trajectories,

n, is changed.

As dense slope estimates are received by the slope avoidance behavior, the slopes
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(a) (b)

Figure 37: An illustration of a locally planar patch used to predict the robot’s ori-
entation if located at the test pixel. The local plane is aligned with both the terrain
slope and the camera ray.

associated with each trajectory pixel, along with the pre-computed trajectory infor-

mation, are used to calculate the average rover chassis roll over each trajectory. To

estimate the chassis roll of a given trajectory pixel, the terrain at a given pixel is

assumed to be a plane rotated by the slope angle about an axis extending from the

camera focal point to the terrain patch. Figure 37 illustrates this method for a single

pixel. The robot normal, Zrobot in Figure 36, is aligned with the normal vector of the

local terrain plane. By incorporating the projected robot yaw angle with the assumed

terrain orientation, an estimate of the full 3-DOF robot orientation is obtained.

To convert the average roll of each trajectory into a DAMN behavior vote, each

average roll value is normalized by a predefined maximum acceptable roll value, deter-

mined by the capabilities of the robotic platform. The actual weight for each angular

velocity is given by Equation (27).

weight(ω) = 1−
rollavg(ω)

rollmax

(27)

where rollavg(ω) is the average roll experienced with angular velocity ω, and rollmax

is the maximum acceptable roll value, determined by the capabilities of the robotic

platform.
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3.3.3 Simulation Results

To study the effectiveness of the slope information in constructing navigational control

laws, the simulation system described in Chapter 2.3 is utilized. Several initial and

goal positions were randomly selected across the environment. Traversal distances of

at least 100m were required to reach the goal in each case. As the focus of these trials

is the slope estimation system, ground truth rover poses were extracted from the

simulation system and used in place of an on-board localization system. To compare

the performance of the slope estimates, each trial has been performed three times.

During the first run, no slope information is used and the rover is allowed to drive

straight towards the goal. This provides a characterization of the terrain between the

start and goal positions. During the second run, ground truth terrain slopes were

extracted from the simulation system and provided to the slope avoidance behavior.

This demonstrates the best performance possible of the navigation scheme, as the

terrain slopes are known exactly. During the third run, the visual slope estimates

described in Section 3.2 were used.

Table 3 lists the average chassis roll experienced by the robot during each trial.

Using slope information inside the control scheme allowed the average chassis roll to

be significantly reduced. Reductions in average roll range from almost 20% in Trial 3,

to over 70% in Trial 1. Further, the performance of the slope-aware systems remain

largely constant over all trials, with average roll values between 2◦ and 4◦, regardless

of the average slope directly between the start and goal positions. The aggregate

performance achieved with the slope estimates is similar in all cases to that achieved

with the ground truth slopes, further indicating the viability of the estimation system.

Figure 38 illustrates the paths taken by each of the three systems during Trial

1, superimposed on a terrain contour map. As is evident in this figure, the rover

trajectories when incorporating slope information tend to be nearly perpendicular to

the terrain contour lines. In this configuration, the rover chassis roll is minimized.
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Table 3: Average Chassis Roll During Simulation Trials

Trial Chassis Roll Driving Chassis Roll Using Chassis Roll Using
Number Directly To The Goal Ground Truth Slopes Visual Slope Estimates

1 11.07◦ 2.43◦ 2.55◦

2 6.05◦ 3.58◦ 3.64◦

3 3.99◦ 3.25◦ 3.30◦

4 11.81◦ 5.32◦ 6.04◦

5 8.93◦ 4.18◦ 4.51◦

However, it is impossible to reach the goal and simultaneously maintain an optimal

roll orientation. Consequently, the rover periodically changes direction, experiencing

an increase in chassis roll only briefly. This is similar to performing “switch-backs”

when driving up a mountain side. It should be noted that no penalty for total distance

traveled has been imposed in this system.

3.3.4 Conclusions

In glacial environments, one of the major hazards for autonomous robots is the terrain

slope. In Section 3.2, a method for visually estimating the terrain slope in front of

the rover is presented. However, these estimates only provide the slope in a single

plane, instead of a full 3D slope characterization. Despite this limitation, a simple

reactive controller has been implemented that makes use of the 2D slope estimates

to avoid terrain that would induce large amounts of chassis roll. This controller has

been tested within the simulation system described in Chapter 2.3, and shown to

be visually similar to real glacial environments in Section 3.2. During these tests,

the control scheme was able to significantly reduce the average chassis experienced

during a traverse to a goal location, by over 70% in some cases. Additionally, it has

been demonstrated that the paths resulting from use of the visual slope estimates are

similar to those resulting from ground truth slope information, indicating the viability
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Figure 38: An illustrates the differences in the rover paths based on using no slope
information (red), ground truth slope information (blue), and visual slope estimates
(green).
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of the slope estimate technique as a valuable input to a glacial hazard avoidance

system. However, this system merely demonstrates one possible control scheme, in

which a single aspect of the rover’s situation is considered. Further development of the

control scheme in future is expected to include more aspects of the rover’s state in the

decision process as well as incorporate a path planner that is capable of maintaining

a map of slope data over time.

85



CHAPTER IV

VISION-AUGMENTED LOCALIZATION

When high-accuracy localization is needed, robotic systems typically rely on aug-

mented GPS systems, such as differential GPS (D-GPS) or real-time kinematic GPS

(RTK-GPS), which are capable of centimeter-range accuracy. If the system also re-

quires orientation information, high quality inertial measurement units (IMUs) are in-

tegrated into the localization subsystem. For example, the autonomous driving agents

developed for competition in the various DARPA Grand Challenge races include lo-

calization systems based on the fusion of many high-accuracy sensors [67, 113, 115].

However, popular high-accuracy sensing equipment, such as the Applanix GPS and

IMU, typically costs in excess of $50k [26]. For a multi-agent robotic network, such

sensing equipment is prohibitively expensive. Instead, the localization subsystem

must make due with consumer-grade GPS receivers, which have a typical accuracy

of 10m. If a more precise positional fix is needed for mapping or satellite validation

applications, or if the robot orientation is desired, additional sensor data must be

incorporated.

One possible source of additional localization data is the robot’s vision system.

Recent work in the area of vision-based odometry [89], and visual SLAM (simulta-

neous localization and mapping) [24] have shown even single-camera vision systems

capable of generating reliable localization estimates. At their core, these systems

match distinctive image features between sequential video frames, and use the cam-

era geometry to estimate the camera’s motion. Consequently, one of the prerequisites

for vision-based localization is the ability to extract and match image features be-

tween frames. This is generally done by using one of a number of keypoint detectors,
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such as Harris [49] or SIFT [73]. These detectors rely on finding pixels with strong di-

rectional gradients. In an office environment, sharp corners in furniture and shelving

provide ideal candidates, while the irregular edges in rocks and outcropping in desert

environments also serve as viable choices. However, glacial environments generally

lack these types of distinctive features (see Chapter 1.1 for example images). To that

end, a set of image preprocessing steps have been developed to boost the feature

extraction performance, and a study of the detection performance of common feature

detection algorithms has been conducted. Section 4.2 describes the results of naively

applying standard feature detectors to glacial images, presents the developed prepro-

cessing procedure that dramatically improves both the feature extraction and feature

matching performance in this domain, and compares the performance of five common

features detectors on the preprocessed image set. Final feature detector selection is

based both on extraction performance and execution time.

Despite the performance gains over standard wheel odometry [89], visual odom-

etry and visual SLAM systems are still incremental; the current position estimate

is updated based on a change in observations. One of the fundamental issues when

using any incremental system is localization drift. As the system runs, small errors

accumulate, resulting in significant localization error over time. If the robot path

contains loops, a procedure known as loop closure can update the localization infor-

mation of past positions, significantly reducing the total experienced drift. Even with

these additions, as the traversed path becomes longer, the localization performance

degrades. Further, as a camera converts three dimensional world points into two di-

mensional image pixels, each pixel represents a direction only. The general solution

to localization using bearing-only observations is to incorporate metric information

from an external source. In order to build a drift-free localization subsystem, the

low-accuracy GPS data has been fused with the incremental localization of vision-

based SLAM. Section 4.1 introduces the basic probabilistic framework used in SLAM
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systems, as well as discusses some of the modifications necessary to implement SLAM

with bearing-only measurements provided by vision sensors. Section 4.3 presents the

details of the GPS-fused system, based on a FastSLAM [81] infrastructure. The re-

sults of this system applied to both simulated and real terrain are then presented in

Section 4.4.

4.1 Visual Odometry Techniques

The use of vision for localization has gained traction recently, and revolves mainly

around the use of multi-view geometry techniques and the related simultaneous lo-

calization and mapping (SLAM) methods. To employ multi-view geometry using a

single camera, multiple images are acquired at different points in time. Image fea-

tures in one image are then matched to features in the other images. With a sufficient

number of point correspondences, the geometric transformation between the two im-

ages may be extracted. In contrast, vision-based SLAM systems seek to estimate the

3D position of extracted image features. These position estimates are then projected

into the camera image space of subsequent frames, and matched with image features

in the new frame. The image space error between the projected landmark and the

new image feature is used to update the position estimate of the landmark. Implicit

in both systems is the ability to reliably extract and match image features between

frames.

Once distinctive features have been extracted and matched between frames, the

point correspondences are sent to a visual localization system. The most prominent

use of vision for localization revolves around multi-view geometry methods and the

related simultaneous localization and mapping (SLAM) methods. To employ multi-

view geometry for localization [51,89], multiple images are captured at different points

in time. Assuming the rover is actively moving during this period, the images will be

of the same scene, but from slightly different viewpoints. If features can be extracted
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and matched between the images, then a triangulation system can be constructed

using the visual features as landmarks instead of stars or mountains. The main

difference in this system is that the landmark positions are also unknown.

If we assume that the intrinsic camera parameters (focal length, principle point,

etc.), K, are known and fixed, then all point correspondences in the image can be

converted into normalized image coordinates, x̂, by pre-multiplying the inverse camera

matrix, K, as in Equation (28).

x̂ = K−1 · x (28)

All normalized point correspondences must satisfy the epipolar constraint in Equa-

tion (29), where E is known as the essential matrix. The essential matrix encodes the

rigid body transformation (rotation and translation) of the camera from the initial

pose to the new pose.

x̂T
2Ex̂1 = 0 (29)

E = [t]×R (30)

where [t]× is the skew symmetric matrix that represents a vector cross-product with

the translation vector, t, and R is the rotation matrix.

This constraint is phrased in terms of the image plane quantities, x̂1 and x̂2. When

the 3D point, X, is projected into the two image planes, then the image point, x̂2,

must lie on the ray Ex̂1 in image 2 (the distance or dot product is zero). In essence

this means that since the 3D point, X, creates a unique set of point correspondences

in the two image planes, the actual 3D location of X is not needed to recover the

rigid body transformation. If E is known, the rotation and translation, up to scale,

may be extracted using methods such as Singular Value Decomposition (SVD) [51].

With careful calculation, all results can be represented in the same scale, although
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the exact metric value of this scale is still unknown. External information, such as

wheel odometry, may be applied to estimate the true metric scale value.

In contrast, vision-based SLAM attempts to solve the same problem, but does

so in a probabilistic framework [6, 32]. The system attempts to maximize the joint

probability of the robot pose, xt, and the map of 3D landmarks, m, given the entire

set of robot control inputs, u0:t, and observations, z0:t, shown in Equation (31).

argmax
xt,m

(p(xt,m|z0:t,u0:t)) (31)

Two major advantages arise from this approach. First, since the landmark posi-

tions are estimated in 3D world space, the 2D projections can be calculated directly,

intrinsically satisfying the epipolar geometric constraints. Secondly, as the solution

to the SLAM problem is a probability distribution, an estimate of the error of either

the robot pose or the landmark positions may be obtained by marginalizing out the

appropriate variables. These error estimates can then be projected into the cam-

era frame, limiting the size of the search region for corresponding feature points. In

contrast, propagating an error estimate through the 10th order root solving method

required in the multi-view geometry approach is simply not practical.

Unfortunately, Equation (31) does not suggest a solution; additional assumptions

must be made. Generally, two mathematical models are introduced, one that propa-

gates the robot pose forward in time, and one that predicts observation values based

on the current information. These are shown in Equations (32) and (33) respectively.

p(xt,m|z0:t−1,u0:t) =

∫

p(xt|xt−1, ut) · p(xt−1,m|z0:t−1,u0:t−1) · dxt−1 (32)

p(xt,m|z0:t,u0:t) ∝ p(zt|xt,m) · p(xt,m|z0:t−1,u0:t) (33)

With this factorization, the robot pose distribution is predicted at time t by Equa-

tion (32), incorporating the new control input, ut. This prediction is then corrected
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using the information from the new observations, zt, by Equation (33). This recursion

is easily implemented as an extended Kalman filter (EKF), where the EKF state is a

concatenation of the robot pose, x, and the landmarks, m. However, by augmenting

the EKF state vector with landmark positions, the complexity of the system grows

as O(n2) in the number of landmarks. This is due to EKF keeping a full covariance

matrix of the state. This is only feasible for systems that need a small number of

landmarks. For example, systems that only operate within a single room will see the

same set of landmarks repeatedly, and, with careful selection, a relatively small set

can cover the entire workspace. The most notable implementation of this approach

is the MonoSLAM algorithm [24].

A commonly used alternative is to employ a Rao-Blackwellized particle filter (PF)

to estimate the robot pose [81], also known as FastSLAM. The PF samples many

pose “particles” from the pose distribution, and assumes each pose particle is the

true robot pose. Since the error in the robot pose is now assumed to be zero, the

landmark distribution estimates become decoupled, as shown in the factorization in

Equation (34).

p(xt,m|z0:t,u0:t) = p(xt|z0:t,u0:t) ·
M
∏

i=1

p(mi|x0:t, z0:t) (34)

where M is the current number of landmarks in map, m.

Similar to the EKF-SLAM system, the landmark states are estimated using an

EKF. Only, in this formulation, adding a landmark consists of adding an independent,

low-dimension EKF to the system, instead of augmenting a single, large EKF. As each

low-dimension EKF may be seen as a constant time operation, the FastSLAM system

time complexity is only O(n) in the number of landmarks. However, implicit in this

method is the assumption that the space of all possible camera trajectories can be

properly sampled, leading to issues of sample impoverishment. Certain refinements

can be made to reduce these issues, but successful loop closures in FastSLAM remain
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an issue. Also, the FastSLAM system was not originally derived for use with vision,

though vision-based implementations have recently been presented [33,93].

4.2 Glacial Image Feature Extraction

As discussed in the previous section, the ability to extract and match distinctive

image features between frames is crucial for the proper operation of a vision-based

localization system. One of a number of common keypoint detectors are generally

used to meet the data needs of real-time visual odometry systems, such as Harris [49]

or SIFT [73]. These detectors rely on finding pixels with strong directional gradients.

In an office environment, sharp corners in furniture and shelving provide ideal can-

didates, while the irregular edges in rocks and outcropping in desert environments

also serve as viable choices. However, glacial environments generally lack these types

of distinctive features. As seen in the sample glacial photograph in Figure 39, if we

focus only on the traversable foreground section, the image consists of predominantly

white, dune-like snow structures. Some subtle color variations are visible, caused by

the surface texture and shadows, but large color gradients in the foreground are not

present [131]. For illustrative purposes, the Harris detector and SIFT algorithm have

been applied to this sample image acquired from field tests on Mendenhall Glacier in

Alaska. While the mountains in the background produce an ample number of features

from both methods, almost no features have been detected in the snowy foreground.

4.2.1 Preprocessing

Since standard feature detectors search for pixels exhibiting strong directional gradi-

ents, the foreground image gradient must be boosted for these detectors to perform

properly. Ideally, the image enhancement should be non-uniform, adaptively en-

hancing the foreground regions while leaving areas of sufficient contrast alone. The

contrast-limited adaptive histogram equalization (CLAHE) stage utilized in the slope
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(a) (b)

Figure 39: The results of applying (a) the Harris corner detector and (b) the SIFT al-
gorithm to a sample glacial image from the May/2009 dataset on Mendenhall Glacier.
While the mountains in the background produce a significant feature volume, the fore-
ground is largely devoid of features.

estimation system of Chapter 3.2 possesses such properties. Additionally, a local en-

hancement limit is present, which reduces issues of over-enhancement of noise. The

results of CLAHE enhancement of the sample glacial image is shown in Figure 40.

As the CLAHE-enhanced image is computed as part of the slope estimation system,

it may be used within the feature extraction subsystem at no computational cost.

To test the performance of this preprocessing step, a set of sequential images

were selected from five of the test sites on Mendenhall Glacier. SIFT features and

descriptors were extracted for each image, one set from the original image and a

second set from the enhanced image. The feature descriptors are used as input to a

least-euclidean-distance matching algorithm to find correspondences. As a check for

matching consistency, a least-squares method [88] was used to estimate the essential

matrix, E, which describes the motion of the camera between consecutive frames.

The set of inliers from the best essential matrix estimate are considered consistent

matches. An example of point matches between two consecutive frames is shown in

Figure 41. Extracted features are marked on each image, correct feature matches are

drawn between features in green, while incorrect matches are drawn in red.
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(a) (b)

Figure 40: (a) A sample glacial image from the May/2009 dataset on Mendenhall
Glacier, and (b) the results of applying CLAHE adaptively enhances the foreground
regions while leaving areas of sufficient contrast alone.

Figure 41: An example of feature extraction and matching between two consecutive
frames. Extracted features from frame 1 and frame 2 are marked on frame 1 with
an ‘x’ and ‘o’ respectively. Correct feature matches, as determined by estimating the
essential matrix, are drawn between features in green, while incorrect matches are
drawn in red.
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Table 4: Image Preprocessing Performance Based On SIFT Feature Matching, Aver-
aged Per-Frame Results

Feature Match Inlier
Site Count Count Count

A raw 75.5 37.2 10.3

enhanced 4736.9 1972.8 396.1

B raw 362.2 119.2 18.5

enhanced 2410.5 850.6 129.5

C raw 509.2 399.0 303.9

enhanced 4007.6 2497.6 1357.2

D raw 79.2 39.6 16.9

enhanced 3243.5 1330.9 257.0

E raw 128.9 59.4 28.2

enhanced 3445.6 1664.8 575.4

As the central regions of glacial ice sheets are devoid of mountain peaks and other

structures (see Chapter 1.1 for details), it is desirable to test the system performance

utilizing only the foreground features. To facilitate this, the background structures

have been masked out using the horizon line detection scheme presented in Chap-

ter 3.1, and only features within the masked region are considered.

Averages for the raw and enhanced images of each data set have been generated

concerning the number of feature points extracted, the number of feature points

matched, and the number of correctly matched features as determined by the essential

matrix estimate. For the purposes of this comparison, the SIFT detector has been

used with the default parameters. The results are presented in Table 4.

In order for visual odometry methods to operate correctly, many visual features

are required that cover the whole image area. If all of the points used to calculate

the essential matrix, E, are drawn from the same image region, the algorithm de-

generates, resulting in a near-singular condition. Although SLAM systems have no
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absolute minimum number of required features, as the number of observations de-

creases, the resulting state estimate reverts to a dead-reckoning system. In such a

scenario, divergence from the true state values is likely. For a robust estimate of the

robot state, it is important to have a reasonably large pool of extracted features.

When extracting features from the unprocessed images, a relatively small number

were captured from the foreground region at most sites. After the matching process

and outlier rejection, only Site C consistently produced more than 30 correct matches.

Site C was located on the glacier’s terminus. Here, the terrain consisted largely of

exposed blue ice, which provides far greater texture and color variation than the snow

covered areas of the other sites. Consequently, the feature detection phase performs

well on the raw images, though the image enhancement still provides substantial

improvement. The other regions were located towards the center of the different

glacier branches, or in the large expanse before the glacier divides into branches in

the case of Site A. These areas are marked by slowly varying elevations and unbroken

surface snow, which produce few high-quality features. By employing the proposed

enhancement procedure, the density of features increased by a factor of five to ten,

with the number of between-frame matches improved by a similar amount. In all

cases, the enhanced images produced over 100 feature matches, which should be

sufficient to ensure feature coverage over viewable foreground.

4.2.2 Feature Detector Selection

Feature detectors are often evaluated based on a set of invariance properties. Rota-

tional invariance implies that a feature will be detected regardless of the camera’s roll.

Harris features use an eigenvalue decomposition to ensure rotational invariance [49].

Rotation invariance is achieved in a similar fashion in both the Scale-Invariant Feature

Transform (SIFT) [73] and the Speeded Up Robust Features (SURF) [8] algorithms.

The Maximally Stable Extremal Regions (MSER) detector [76] searches for image
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regions with well-defined boundaries instead of single pixel features. By utilizing the

shape of the region, it achieves full affine transformation invariance, which includes

simple rotations. Finally, scale invariance means that a feature will be detected re-

gardless of underlying landmark’s distance from the camera. SIFT and SURF achieve

scale invariance by searching for features in downsampled versions of the source image.

Since an MSER feature can be any size within the image, a simple size normalization

produces a scale-invariant feature. An exhaustive treatment of the level of invariance

of the different feature detectors in real images may be found in [78].

However, the importance of the various invariance properties is dependent on

the application. For object recognition from a prototype image, affine-invariance is

important as the object’s orientation in the environment will not be known. However,

for matching sequential images acquired from a mobile robot, affine-invariance is

of little importance, as the view change between frames will be minimal. In fact,

rotational invariance may not even be required as the robot will be basically upright

during operation. Scale invariance, on the other hand, is important. As the robot

drives forward, the visual landmarks will get closer to the robot, increasing their

size in the image. A scale-invariant feature would be able to find and match these

landmarks over the traverse. Additionally, larger scale surface features, such as the

alternating dark and light linear streaks on the sample image in Figure 40b can act

as features if extracted at an appropriate scale.

While the theoretical analysis indicates that either SIFT or SURF features are

good candidates for a ground-based visual localization system, the ultimate detector

selection should be based on field test results. The four common feature detectors

described previously have been selected for comparison. These detectors span the

gamut of current keypoint extraction techniques. The Harris corner detector is the

least complex detector tested, resulting in the shortest execution time. SIFT is per-

haps the most widely used feature detector, which has the advantageous property of
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scale-invariance. The SURF feature detector purports similar extraction performance

to the SIFT algorithm while reducing the computation time. Finally, the MSER de-

tector has been tested, which searches for well-defined regions as opposed to single

points.

Each feature detector has been applied to the enhanced version of the sequential

images from the five different test sites on Mendenhall Glacier. The SIFT descriptor

was generated for each extracted point to aid in appearance-based matching. These

descriptors were used as input to a least-euclidean-distance matching algorithm. As

before, the matched points have been used to estimate the essential matrix. Any

matching pair that deviates significantly from the essential matrix estimate is marked

as an outlier. Averages for each algorithm and data set concerning the number of

feature points extracted, the number of feature points matched, and the number of

correctly matched features as determined by the essential matrix are presented in

Table 5.

From Table 5 it is clear that the SIFT and SURF detectors outperform both the

Harris and MSER detectors across all test sites. The lack of scale-space extraction

for the Harris operator hinders its performance as few of the SIFT features extracted

were at a scale of 1.0. The MSER detector is simply a poor fit for this domain

of images. While the alternating texture components of the enhanced image seem

likely feature candidates, the smooth edge gradient of these regions do not produce a

stable region size over different intensity thresholds, and are eliminated by the MSER

algorithm. Although the SURF detector generally produced significantly fewer single-

frame features than the SIFT algorithm, the matching performance was generally

similar to SIFT. This gives SURF a computation advantage in two ways. First,

the SURF detector requires approximately half the computation time of the SIFT

algorithm on a per-feature basis. Second, the total feature computation time and

feature matching time are proportional to the number of extracted features. By
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Table 5: Feature Detector Performance, Averaged Per-Frame Results

Feature Match Inlier
Site Count Count Count

A harris 888.0 306.2 46.6

mser 466.2 171.4 24.0

sift 4736.9 1972.8 396.1

surf 1995.3 1063.8 281.6

B harris 1000.0 308.9 50.1

mser 293.1 90.9 11.2

sift 2410.5 850.6 129.5

surf 2111.6 816.4 147.6

C harris 350.3 214.7 126.9

mser 349.4 189.5 68.4

sift 4007.6 2497.6 1357.2

surf 2014.5 1541.5 1053.1

D harris 216.6 83.5 12.0

mser 390.8 139.5 17.3

sift 3243.5 1330.9 257.0

surf 1767.0 831.3 237.7

E harris 297.2 139.5 31.8

mser 401.4 171.6 37.3

sift 3445.6 1664.8 575.4

surf 2012.0 1117.0 480.0
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reducing the per-frame feature count, a significant speed improvement is possible

without sacrificing matching performance. This makes SURF the clear choice for this

application.

4.3 Localization System Implementation

Despite the seemingly simple mathematical description of SLAM presented Equa-

tion (31), there are many implementation issues that must be resolved before the

system will operate successfully. For example, the map, expressed solely as m in

the equation, requires mechanisms for representing, adding, removing, and searching

landmarks. Details of various aspects of the implemented SLAM system, including

the sensor fusion method for incorporating the low-accuracy GPS data, are described

in the following.

4.3.1 Filter Selection

The advantages of EKF SLAM or PF SLAM over the other is specific to the situation.

In this application, each rover is expected to navigate from a known location (base

camp), to its desired goal position defined by the scientist. The distance from base

camp to goal position is likely to be several kilometers. Under these conditions, a large

number of landmarks will be required to localize the rover over very long traverses,

even if only a small subset of landmarks are visible at any instance. The PF SLAM

implementation allows a large amount of flexibility in this situation. Large databases

of landmarks are possible using the PF approach, with one lidar implementation able

to operate in real-time with a database of 50,000 landmarks [82]. Different sorting

and indexing strategies can be implemented to tailor the database system to the

application. In contrast, the EKF SLAM approach maintains all the landmarks in a

single covariance matrix. This limits the number of landmarks to the order of 100 if

real-time performance is required [24].

Further, the expected path of the rover from start to goal is likely to be straight,

100



or at least piecewise straight under the presence of obstacles or untraversable terrain.

Figure 38 in Chapter 3.3 shows an example of a piecewise straight path implemented

in response to ground slope conditions. Few, if any, loops will be executed during

these traverses, mitigating the issues related to loop closures in PF SLAM systems.

For these reasons, the PF SLAM approach has been selected for the localization

subsystem of the SnoMote project.

Since each particle used to approximate the robot state distribution will interpret

the image with respect to its assumed state, each pose particle will create different

landmarks and make different data associations. Consequently, at time t, the nth

particle contains a current robot state, xn
t , its own map, mn, and a particle weight,

wn. In this context, a map consists of a series of i landmark position estimates, µi
t,

and corresponding error covariances, Σi
t. When a new image is captured from the

camera system, the feature extraction subsystem described in Section 4.2 produces a

set of J observations in image-space. This only needs to be done once, not on a per-

particle basis. Then, for each particle, a new robot state is sampled from the proposal

distribution, conditioned on the particle’s previous state, xn
t−1, and the current robot

control commands, ut. Within Rao-Blackwellized particle filters, this pose is assumed

to be correct for that particle. Using the new robot state, the image-space coordinates

of each landmark within the map, ẑit, are obtained using the measurement function,

h(·), and a linear uncertainty estimate in image-space, Zi
t , is obtained using the

Jacobian of the measurement function with respect to the landmark. It should be

noted that the choice of landmark representation does not affect the sequence of steps,

but rather the specifics of the measurement function, h(·). Data association is then

performed, matching extracted image features with the predicted landmark positions.

Each of the i landmarks are then updated using the standard EKF equations [4], and

the probability of that association, pit, is calculated. For features converted into

new landmarks and landmarks that were unobserved, a fixed probability estimate is
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used. Finally, the weight for the current particle is calculated as the product of the

individual data association probabilities, and the particles are resampled according

to the Sequential Importance Resampling (SIR) algorithm [70]. The basic steps for a

PF SLAM iteration are shown in Algorithm 1.

4.3.2 Robot Parametrization

As the robot is moving on a three dimensional surface, the state of the robot consists

of at least a three dimensional position, ~x = (x, y, z)T , and a three dimensional orien-

tation, q. A quaternion orientation representation has been selected, as it provides a

more numerically stable method of handling incremental rotations than a roll-pitch-

yaw representation [2], and requires fewer state variables than a full rotation matrix

representation. A quaternion that expresses a pure rotation must be unit length, but

numerical errors in the rotation propagation can cause the quaternion length to drift.

For these reasons, the quaternion value is normalized after each update. The final

state vector is xn
t = (~xt, qt)

T . The control commands, ut, provided to the robot are

in the form of a linear velocity, v, and a yaw angular velocity, ω.

During each update step, a state particle samples a new state from the proposal

distribution, p(xn
t |x

n
t−1, ut). The proposal distribution is approximated by a multi-

variate Gaussian distribution, as shown in Equation (35). The values σ2
x, σ

2
y , and

σ2
z are the uncertainty variances for the robot position, potentially caused by track

slippage and uneven terrain. The uncertainty variance for the robot’s orientation are

represented by σ2
q1, σ

2
q2, σ

2
q3, and σ2

q4. This accounts for changes in roll and pitch

induced by the uneven terrain. Uncertainties in the execution of the commanded

linear and angular velocities caused by slippage in the track and steering linkage are

accounted for in σ2
v and σ2

ω.
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Algorithm 1 Particle Filter SLAM Update Loop [79]

Require: X t−1 =
{(

xn
t−1,m

n, wn
)

| ∀n ∈ 1 . . . N
}

* The set of particles at t-1
Require: m

n =
{(

µi
t−1,Σ

i
t−1

)

| i = 1 . . . I
}

* The map at time t-1
(

z1t , · · · , z
J
t

)

= ExtractFeatures(image) * Extract features from the new image
for n = 1 to N do * Loop over particles
xn
t ∼ p(xt|x

n
t−1, ut) * Sample the new robot pose

ẑit = h
(

xn
t , µ

i
t−1

)

∀i ∈ 1 . . . I * Predict the landmark measurements
H i

m,t =
∂
∂m

h (xn
t ,m)|m=µi

t−1

∀i ∈ 1 . . . I

Zi
t = H i

m,tΣ
i
t−1H

i
m,t

T +Rt

DA = DataAssociation(ẑ1...It , z1...Jt ) * Associate predictions with observations
for

(

ẑit, z
j
t

)

∈ DA do
K = Σi

t−1H
i
m,t

TZi
t
−1 * Update landmark EKF

µi
t = µi

t−1 +K(zjt − ẑit)
Σi

t =
(

I −KH i
m,t

)

Σi,t−1

pit = |2πZi
t |
− 1

2 exp
(

−1
2
(zjt − ẑit)

TZi
t
−1(zjt − ẑit)

)

* The association probability
end for
for ẑit /∈ DA do
µi
t = µi

t−1 * Unobserved landmarks remain unchanged
Σi

t = Σi
t−1

pit = pmissing * Use a fixed ‘missing’ probability
end for
k = 0
for zjt /∈ DA do
k = k + 1
µI+k
t = h−1(xt, z

j
t ) * Create landmarks from new observations

HI+k
m,t = ∂

∂m
h (x̂t,m)|m=µI+k

t

ΣI+k,t =
(

H i
m,t

TR−1H i
m,t

)−1

m = m ∪ (µI+k,t,ΣI+k,t) * Insert new landmark into the map
pI+k
t = pnew * Use a fixed ‘insertion’ probability

end for
wn =

∏

1≤i≤I

pit �
∏

I+1≤j≤I+k

pjt * Calculate particle weight

end for
X t = Resample(X t−1) * Resample particles proportional to the particle weight
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p(xn
t |x

n
t−1, ut) ∼ N (µt(x

n
t−1, ut),Σt(x

n
t−1, ut)) (35)

µt(x
n
t−1, ut) =









~xt−1 + qt−1

(

∆t·v
0
0

)

q−1
t−1

qt−1

(

cos(∆t·ω/2)
0
0

sin(∆t·ω/2)

)









(36)

Σt(x
n
t−1, ut) = Λ + Ju

[

σ2
v 0

0 σ2
ω

]

JT
u (37)

Ju =
∂

∂ut

µt(x
n
t−1, ut) (38)

where Λ = diag(σ2
x, σ

2
y , σ

2
z , σ

2
q1, σ

2
q2, σ

2
q3, σ

2
q4).

4.3.3 Landmark Parametrization

In a PF SLAM implementation, each landmark is represented as an independent EKF.

The measurement function, h(·), predicts the observation that will be generated from

a given landmark. For camera-based SLAM, this measurement function implements

the pinhole camera model equation, shown in Equation (39) to convert the 3D world

coordinates of a landmark into the 2D pixel coordinates of the camera image. The

landmark position is then updated using the error between the landmark projection

and the current observation in image-space.







u

v






= h

(

X
Y
Z

)

=
f

Z







mx ·X

my · Y






+







u0

v0






(39)

where
(

X
Y
Z

)

is the location of a point in 3D world coordinates, ( u
v ) is the location of

the same point in image pixel coordinates, f is the camera focal length, mx and my

are scale factors that convert pixel indices into metric distances on the image plane,

and ( u0
v0 ) is the principle point in pixel coordinates, ideally in the center of the image.

During the update phase, the nonlinear measurement model must be linearized

around the current landmark position, with the accuracy of the linear approximation

dependent on how nonlinear the measurement function is at that point. Using the
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Figure 42: (a) A simple 2D example showing a landmark observed from two different
camera locations. The bearing observation of each camera is corrupted with a small
amount of Gaussian noise. (b) The estimated landmark position plotted in the X-Z
plane with a 2-σ ellipse. (c) The estimated landmark position plotted in the ρ-θ plane
with a 2-σ ellipse. [83]

natural landmark parametrization of (X, Y,X)T , the measurement function can ex-

hibit pronounced nonlinearities, particularly when the parallax between consecutive

camera frames is small. Using an inverse depth parametrization, the nonlinearities of

the measurement function are greatly reduced [83]. A simple 2D example is shown in

Figure 42 in which a landmark is observed from two different camera positions with

Gaussian noise corrupting the bearing measurement from each camera. The result-

ing landmark position estimates are then plotted using the (X,Z) parametrization

and a (ρ, θ) parametrization. The distribution of landmark positions with the (ρ, θ)

parametrization is much better characterized with a Gaussian model than the (X,Z)

parametrization distribution.

Additionally, if the inverse depth, ρ, spans a range [0, 1], then the corresponding

depth spans the range [1,∞). This facilitates applying large uncertainty regions to

the initial landmark position within the landmark state covariance matrix. However,
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the azimuth-elevation-inverse depth parametrization for a landmark can only be in-

terpreted if the original observation position is known. Since there is no uncertainty

in the robot state in the PF implementation, the observer position is simply stored as

a parameter of each landmark, and not as an EKF state variable. The final landmark

state representation is (θ, φ, ρ ; x, y, z)T , where (x, y, z)T is the camera location at

which the landmark was originally observed, and (θ, φ, ρ)T is the elevation, azimuth,

and inverse depth of the observation respectively. The measurement function for this

parametrization is shown in Equation (40).







u

v






= h (θ, φ, ρ ; x, y, z) =

f

Z







mx ·X

my · Y






+







u0

v0






(40)













X

Y

Z













= qC













1
ρ
cos(θ) cos(φ) + x− xC

1
ρ
cos(θ) sin(φ) + y − yC

1
ρ
sin(θ) + z − zC













q−1
C (41)

where ~xC = (xC , yC , zC)
T is the current position of the camera, and qC is the current

orientation of the camera as a quaternion.

4.3.4 Landmark Initialization

When first creating a landmark from an observation, the initial landmark state must

be calculated. For lidar-based systems, it is simply a matter of inverting the mea-

surement function to produce an initial estimate for the 3D world position of the

landmark. In bearing-only systems, however, the inverse measurement function does

not exist. This is due to the lack of depth information from the image.

In order to initialize the landmark in the system, an external source of depth

information is needed. Once ρ is known, the measurement inverse may be calculated

as in Equation (42).
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











θ

φ

ρ













= h−1 (u, v) =







arcsin
(

rz,
√

r2x + r2y + r2z
)

arctan (ry, rx)






(42)

~r = qC













1
mx

(u− u0)

1
my

(v − v0)

f













q−1
C (43)

where ~xC is the current position of the camera to be stored as a parameter to the

landmark, qC is the current orientation of the camera as a quaternion, f is the cam-

era focal length, mx and my are scale factors that convert pixel indices into metric

distances on the image plane, ( u0
v0 ) is the principle point in pixel coordinates, and ( u

v )

is the image pixel coordinates of the visual feature.

One solution is to initialize all landmarks at a fixed distance from the camera,

and set the depth uncertainty large enough to cover the region of expected landmark

depths. In outdoor environments, however, background features such as mountains

or clouds can be hundreds of kilometers away, while near-field ground features can be

as close as a few centimeters. The inverse depth parametrization described previously

enables a large uncertainty region to be applied to the landmark, but the ultimate

performance of the system will be enhanced if a good initial estimate is provided.

To estimate the depth of a new landmark, the terrain is modeled as a single plane

using the robot’s current state as reference. The intersection of the new landmark

with this plane is used for the initial landmark depth. If the landmark observation

does not intersect with the planar approximation in front of the camera (i.e. the

observation is above the horizon line), the landmark is initialized at infinity (ρ = 0

with the inverse depth parametrization). Equation (44) shows the calculation for the

inverse depth given a feature point.
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ρ =
~n · ~r

−‖~r‖ (~n · ~xC − ~n · ~xt)
(44)

~r = qC













1
mx

(u− u0)

1
my

(v − v0)

f













q−1
C (45)

~n = qt

[

0
0
1

]

q−1
t (46)

where ~xC is the current position of the camera, qC is the current orientation of the

camera as a quaternion, qt is the current orientation of the robot as a quaternion, f is

the camera focal length, mx and my are the camera scale factors, ( u0
v0 ) is the camera

principle point, ( u
v ) is the visual feature point.

4.3.5 Landmark Database

During each SLAM iteration, features detected in the new frame must be matched

with existing landmarks. As the size of the landmark database grows over time,

real-time operation of the SLAM algorithm depends on efficient execution of nearest-

neighbor queries. As a first pass, techniques for culling 3D points from consideration,

such as viewable camera frustum culling, can quickly eliminate a large portion of the

database from consideration [2]. In this application, where the expected rover path

is piecewise straight, the landmarks that are behind the rover are unlikely to ever be

viewable again. Using this insight, the database is periodically culled of landmarks

that are significantly behind the camera’s image plane. A plane is generated several

meters behind the rover along the camera’s line-of-sight. Algorithm 2 is used to

determine if a given landmark is behind this plane. If so, that landmark is removed

from the active set. In practice, this limits the number of landmarks that must be

actively maintained, while allowing the total number of landmarks used during the

traverse to increase without bound. The active database size during field trials was

on the order of 500 landmarks.
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Algorithm 2 Cull Landmarks Behind Camera

pC = CameraPosition(xn
t ) * Calculate camera position from the robot state

~vC = CameraDirection(xn
t ) * Calculate camera direction from the robot state

p′C = pC − α~vC * Offset the camera position backwards by α meters
for i = 1 to I do * Loop over all landmarks
pL = LandmarkPosition(µi

t) * Calculate the landmark position
~vL = pL − p′C
d = pL · p′C * Dot product between vectors
if d < 0 then
DeleteLandmark(µi

t) * Landmark is behind the camera; delete it
end if

end for

4.3.6 Data Association

Within the PF SLAM framework, the error between an observed feature, zjt , and

the associated predicted observation, ẑit, is used to correct the landmark state and

to weight the plausibility of the parent particle. In the presence of multiple observa-

tions and landmarks, this assumes a method of matching the observations with the

predictions, or performing data association.

In Section 4.2 data association was performed using only the visual characteristics

of the extracted features, as captured by the feature descriptor. Inside the SLAM

system, additional information is known in the form of the expected image-space lo-

cation of each landmark. To perform data association in this context, each active

landmark is projected into image-space coordinates using the measurement function

in Equation (39). An image-space uncertainty covariance, Si
t , for the landmark is also

produced using the standard extended Kalman filter equations. Any new observa-

tions that fall within the 3-σ ellipse of a predicted feature location are considered for

potential association. The final selection is then based on a visual feature descriptor,

such as the SIFT descriptor [73]. The probability of the selected association is cal-

culated using Equation (47). If no association is made for a specific landmark, then

the landmark state remains unchanged and a fixed value of pmissing is used for the
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association probability. If an observation is not associated with an existing landmark,

then a new landmark is created using Equation (42) and (44) and a fixed value of

pnew is assigned to the association probability. This system uses values of pnew = 0.05

and pmissing = 0.05.

pit =
∣

∣2πZi
t

∣

∣

− 1

2 exp

(

−
1

2
(zjt − ẑit)

TZi
t
−1(zjt − ẑit)

)

(47)

4.3.7 GPS Fusion

SLAM systems are incremental, with the current position estimate updated based on

a change in observations. One of the fundamental issues when using any incremental

localization system is drift. As the system runs, small errors accumulate, resulting in

significant localization error over time. In order to remove this drift, global position

information, in the form of low-accuracy GPS data has been fused with vision-based

SLAM.

The robot state distribution is approximated using a particle filter, which uses

sequential importance resampling (SIR) to approximate the true robot state distri-

bution from a set of weighted samples. To incorporate additional measurements into

the system, an additional weighting step is applied to each robot state particle.

The consumer-grade GPS units utilized in this system publish a position fix at

1Hz, as well as an error estimate in the form of horizontal and vertical dilution of

position (DOP) values. The DOP values are scale factors applied to the inherent error

characteristics of the GPS unit, derived from the current satellite geometry. A Gaus-

sian weight function is constructed from the reported GPS position and covariance

using Equation (48). This system allows particles that naturally traverse near the

GPS measurement to propagate forward. Since the particle trajectory is unchanged

by the weighting process, no correction to the landmark positions is needed.
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wn
GPS = |2πΣGPS|

− 1

2 exp

(

−
1

2
~dx

T
ΣGPS

−1 ~dx

)

(48)

~dx = ~xR − ~xGPS (49)

ΣGPS =

[

(hDOP ·σGPS)
2 0
(hDOP ·σGPS)

2

0 (vDOP ·σGPS)
2

]

(50)

where ~xt is the current robot position, ~xGPS consists of the eastings, northings, and

elevation from the GPS position fix, hDOP and vDOP are the horizontal and vertical

dilution of position values from the GPS fix quality, and σGPS is the rated accuracy

of the GPS unit.

4.4 Results

Data from five of the May/2009 fields trials were selected in order to test the system in

a variety of glacial terrains [133]. The captured camera images, recorded robot control

values, and GPS sensor readings were used as input to the described visual SLAM

system. The visual SLAM systems produces a maximally likely position estimate,

as well as predicts the current position error covariance based on a linearized system

model. Figure 43 shows a typical example of the localization output recorded at Site

F, compared with the recorded GPS values and corresponding GPS uncertainty. As

seen, the calculated localization variance is significantly smaller than the GPS un-

certainty. Figure 44 shows the localization results at Site C, the most challenging of

the test sites due to the large terrain variability. Again, the proposed localization

method significantly outperforms GPS alone in terms of measured uncertainty. Ta-

ble 6 presents a summary of the traverse experiments performed, including the GPS

coordinates of each site, total distance traveled, and the average 95% confidence un-

certainty for the traverse, as calculated by the localization system. As expected, the

calculated positional uncertainty generally increases with the total distance traveled,

but stays well below the rated 10 m accuracy obtained using only the GPS sensor.
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Figure 43: The localization results using GPS alone and in combination with Visual
SLAM at Site F. The calculated uncertainty value has been reduced considerably
through the use of vision-based techniques.
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Figure 44: The localization results using GPS alone and in combination with Vi-
sual SLAM at Site C, the most challenging of the test sites due to the large terrain
variability.
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Table 6: Test Site Summary

Date Distance 95%
Site Reference Location Collected Traveled Confidence

A 58.56◦N, 134.41◦W 5/31/2009 10:18 38.4 m 0.59 m

C 58.47◦N, 134.54◦W 6/04/2009 12:34 194.2 m 1.22 m

D 58.55◦N, 134.45◦W 6/04/2009 14:35 180.1 m 0.97 m

E 58.55◦N, 134.51◦W 6/04/2009 15:24 167.0 m 0.86 m

F 58.53◦N, 134.39◦W 6/04/2009 17:27 100.1 m 1.64 m

The data from the field trials show the visual SLAM system is capable of operating

on images of real terrain, the use of GPS data within the estimation cycle is able

to reduce the drift typical of incremental localization schemes, and the uncertainty

of the state estimate is significantly smaller than using GPS alone, even on long

traverses. However, the data recorded from the field trials does not include a high-

accuracy position or orientation measurement, and thus cannot be used to assess

the absolute performance of the state estimates. Instead, the simulation system

described in Chapter 2.3 has been utilized to perform a numerical evaluation of the

state predictions.

Before using the simulation to validate the visual SLAM system, specific render-

ing quality aspects of the simulation pertinent to the localization algorithm must be

investigated. The main image processing steps specific to the visual SLAM system

relate to feature extraction and feature matching. To that end, two different metrics

are considered in the feature extraction phase: the average number of features ex-

tracted per frame, and the average number of feature matches between frames [134].

In Figure 45 the performance of the feature extraction algorithm in the simulated

environment is comparable to the performance on real images. The median of the
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Figure 45: Comparison of metric statistics for the visual SLAM localization algorithm
calculated on images from the real environment and the simulation system. The
general agreement of median and data span between the two environments indicates
the simulation system is providing a good approximation of the real world.

feature matching performance tends slightly higher in simulation. Since the simula-

tion system is uncorrupted by image noise and camera lens distortion, it is reasonable

that instances of image features are more correlated between frames within the sim-

ulation system.

With an understanding of the simulation quality, the accuracy of the visual SLAM

state estimates system can be investigated. The data acquired during the behavior-

based control tests in Chapter 3.3 have been reused to test the performance of the

visual SLAM localization system. The path executed by simulated rover performed

“switchbacks” during the traverse, lengthening the total distance traveled to over 500

m. The path executed by the rover is illustrated in Figure 46. During the traverse, the

simulated images, control values, and ground truth rover poses were recorded. GPS

data was simulated by publishing the rover pose corrupted with zero-mean Gaussian

noise at a rate of 1Hz. The 6-DOF localization state produced by the GPS-fused PF

SLAM system is compared with the ground truth values in Figure 47.
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Figure 46: The path executed by the rover using a roll-minimizing control scheme,
for a total path length of 537m.
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Over the entire traverse, the localization system attained average absolute errors

in the position terms of less than than 1.0 m, which is significantly better than the

10 m uncertainty of the GPS unit alone. This demonstrates the effectiveness of

the combined system system, where the GPS prevents localization drift over large

distances, while the visual SLAM component produces accurate state estimates over

short distances. Also, by weighting the state particles by the GPS measurements,

only those particles traveling in the proper direction will be propagated. This tends

to reduce errors in pitch and roll. However, the pose estimates produced by the

system are more susceptible to drift, as no source of global data is available to weight

the correct orientations.

4.5 Conclusions

When developing a visual odometry system for glacial images, feature extraction is

possibly the biggest challenge. Section 4.2.1 described a procedure for extracting fea-

tures from these low-contrast environments. To validate this procedure, the quantity

and consistency of extracted features in the raw image and enhanced image are com-

pared. To force the comparison to concentrate on foreground, only those features that

lie within the unmasked region described in Chapter 3.1 are kept for evaluation. The

resulting feature sets are then matched between consecutive frames. These matches

are checked against an estimate of the essential matrix to test for matching consis-

tency. The preprocessing steps resulted in a five to ten fold increase in the number of

detected features and the number of matched features when applied to three different

image sequences acquired on Mendenhall Glacier in 2009. Perhaps most importantly,

every enhanced image produced a minimum of ten matched features, whereas the

unenhanced images often resulted in zero correctly matched features. Further, be-

cause the proposed preprocessing steps are also a requirement for the slope estimation

system described in Chapter 3.2.1, no additional computation time is incurred.
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0 200 400 600 800
−40

−30

−20

−10

0

10

20

30

time (s)

P
itc

h 
E

rr
or

 (
de

gr
ee

s)

 

 

Ground Truth Localization

(e) Robot Pitch Error

0 200 400 600 800
−100

0

100

200

300

time (s)

Y
aw

 E
rr

or
 (

de
gr

ee
s)

 

 

Ground Truth Localization

(f) Robot Yaw Error

Figure 47: Localization values compared with the ground truth values over a 537m
traverse in the simulation system.
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Additionally, four common feature detector algorithms were applied to the glacial

image sequences, Harris, SIFT, SURF, and MSER. Again, the total number of fea-

tures and total number of correct matches were compared with the enhanced image

sequences as the source. The SIFT and SURF algorithms provided the best matching

performance, as different image scales are employed in the extraction process. The

SURF algorithm provides both the best matching performance, and has a significant

computational time advantage of the SIFT detector. In practice, the SURF detector

averages less than 50 ms per frame, making near real-time operation possible.

With the source of visual measurements handled, the implementation details of a

vision-based PF SLAM were presented in Section 4.3, including robot state and land-

mark representation and GPS data fusion. The particle filter approach allowed for

simple and efficient inclusion of external GPS measurements, and was able to handle

large sets of active features in near real-time. This system was then tested against

recorded data from field trials on Mendenhall Glacier, as well as within the simulation

system. Although high-accuracy state measurements of the robot were unavailable

from the field trial logs, the reconstructed paths were consistent with the GPS tracks,

and provided pose estimate uncertainties on less than 1.0m in most cases. Utilizing

the simulation system, numerical analysis of the state estimates was possible. Results

showed the positional errors of the state estimate remained bounded, due to the inclu-

sion of the GPS data, while errors in the orientation remained largely consistent with

the true robot orientation. However, it is clear the addition of external orientation

data, such as a consumer-grade IMU or simple inclinometer, could be beneficial to the

long-term stability of the state estimates. While vision alone may be insufficient for

long distance localization, the inclusion of vision data in the localization subsystem

greatly enhances the accuracy, even in low-contrast glacial conditions. This allows

even low-cost sensors to produce sub-meter localization results.
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CHAPTER V

TERRAIN RECONSTRUCTION

Methods for terrain assessment and vision-based localization have been explored in

Chapters 3 and 4. The terrain assessment has been utilized as part of a reactive

control scheme, ensuring self preservation, while the localization system allows sensor

measurements acquired in a local robot coordinate frame to be properly registered in

a global frame for purposes of mapping or scientific data collection.

However, as the number of impassible obstacles increases, the performance of the

reactive system declines. In these situations, a path planner with knowledge of all

past encountered terrain is essential. While the algorithms employed by global path

planners differ significantly, from the dynamic programming methods of Dijkstra’s al-

gorithm [29] to the random sampling methods of rapidly-exploring random trees [64],

all planning strategies require a map on which to plan. As discussed in Chapter 3,

the major obstacles in glacial environments are slope based, and asymmetries in the

rover’s design make knowledge of the rover’s orientation in the environment impor-

tant when determining traversability. Hence, a topographic map is a natural choice,

allowing the planning algorithm to predict the rover orientation over the entire path.

A terrain reconstruction method is presented in the following sections that creates

a topographic terrain map. This method uses the sparse landmark position estimates

from the localization system, and combines it with the dense slope estimates from the

terrain assessment using a statistical construct known as a Gaussian process (GP). A

GP intrinsically handles measurement uncertainty, allowing the calculation of both

the maximally likely terrain surface, and the terrain uncertainty at any point. It is

shown that the GP framework is capable of generating a reasonable terrain model
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using only the sparse landmark points, outperforming the standard triangular mesh

interpolation, particularly at large distances. Further, it is shown that the incor-

poration of slope information into the GP significantly improves the reconstruction,

something not easily integrated into simpler interpolation schemes.

5.1 Gaussian Processes

A Gaussian process (GP) is a collection of an infinite number of random variables

with a jointly Gaussian distribution [95]. This may be interpreted as a distribution

over continuous functions, similar to how a Gaussian variable defines a distribution

over real values. Instead of sampling a value in R
N from the Gaussian variable, a

continuous function, f(~x), is drawn from the GP that maps an input vector, ~x ∈ R
N ,

to an output value, y ∈ R. A GP is defined by a mean function, µ(~x), which describes

the mean output value of all possible sample functions evaluated at the input, ~x, and

a covariance function, k(f(~xi), f(~xj)), which describes the correlation between any

pair of output values. The choice of the mean and covariance functions allows prior

knowledge of the function’s behavior to be encoded in the GP framework. While

many covariance functions are possible, a common and natural choice is the squared

exponential function listed in Equation (51). This covariance function is derived

from a Gaussian kernel, exhibits rotation and translation invariance to the inputs,

and is infinitely differentiable or infinitely smooth. The exact spatial behavior of the

covariance function can be tuned with a function-dependent set of parameters, known

as hyperparameters in GP literature [95].

k (f(~xi), f(~xj)) = α exp

(

−
1

2
(~xi − ~xj)

T Γ (~xi − ~xj)

)

(51)

where Γ is a diagonal matrix of elements 1
γ1
, . . . , 1

γN
, and α is a scaling factor. The

variables in the N+1 dimensional set α, γ1, . . . , γN are known as the hyperparameters

for the squared exponential Gaussian process.
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To draw a sample, the GP must be evaluated at each input value, ~x. However,

as stated previously, a GP is an infinite dimensional object. Despite the infinite

dimensional nature of GPs, sampling is still computationally tractable due to the

marginalization property. If a GP is defined over a set, S, by GP(µ,Σ), then the

GP is also defined over any subset of S by the relevant submatrices of µ and Σ, as

shown in Equation (52). Thus, as long as the number points at which f(~x) is to be

evaluated is finite, then sampling from the GP is also finite. Equivalently, any finite

set of variables from a GP have a jointly Gaussian distribution [95]. An example of

several functions drawn from a GP prior with zero mean and squared exponential

covariance function are shown in Figure 48a.

p(yi, yj) ∼ N













µi

µj






,







Σi,i Σi,j

Σj,i Σj,j












⇒ p(yi) ∼ N (µi,Σi,i) (52)

A GP can also be conditioned on a set of known measurements [95]. The result-

ing GP posterior describes only the subset of sample functions that pass through the

measurement points. This allows the GP to be used as a regression or interpola-

tion technique, in which samples may be queried at an arbitrarily small resolution.

However, unlike conventional regression or interpolation techniques, no data model

(linear, quadratic, etc.) is required. For interpolation, a set of unknown output

values, Y ∗ =
{

y∗j |j = 1, . . . , Q
}

, is desired, corresponding to a set of known inputs

values, X∗ =
{

~x∗
j

}

. The output values are to be conditioned on a set of known

measurements, Y = {yi|i = 1, . . . , P}, corresponding to a second set of known input

values, X = {~xi}. The GP posterior mean and covariance satisfying these conditions

are shown in Equation (54) and (55) (with a full derivation available in [122]). An

illustration of the resulting posterior is shown in Figure 48b.
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Figure 48: (a) An example of three functions sampled from a zero mean, unit variance
Gaussian process, prior to applying any conditions. The mean is shown in black, and
the 95% confidence area is shaded in gray. (b) An example of three functions sampled
from a Gaussian process after conditioning on five measurement values. Again, the
mean function is shown in black, and the 95% region has been shaded in gray.

p(Y ∗|X, Y,X∗) ∼ N (µ∗,Σ∗) (53)

µ∗ = µX + ΣY,Y
∗ · Σ−1

Y
∗

,Y
∗ · (Y − µX) (54)

Σ∗ = ΣY,Y − ΣY,Y
∗ · Σ−1

Y
∗

,Y
∗ · ΣT

Y,Y
∗ (55)

where µS is a vector of values produced by evaluating the mean function, µ(·), over

the set, S, and ΣS1,S2
is a covariance matrix constructed by evaluating the covariance

function, k(·, ·), with each pair-wise combination of values from sets S1 and S2.

The GP framework also allows the incorporation of derivative information, either

as query points to be returned, or as measurements to be used as conditions [106].

An output value, ωm
j , is defined to be the partial derivative of the output function,

f(·), with respect to the mth dimension of the input, evaluated at the input value,

~xj, as shown in Equation (56).

ωm
j =

∂f(~x)

∂xm
|~x=~xj

(56)
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The joint probability of the mixed vector containing yi and ωm
j involves evaluating

the mean function, µ(·), and covariance function, k(·, ·). If the mixed vector is used to

condition the GP, then the mean values will come directly from the measured values.

If the mixed vector contains query points, then the mean values will be derived from

Equation (53). The covariance function, on the other hand, must be evaluated for

all possible pairs contained inside the mixed vector for both cases. Equations (57)

and (58) show how first derivative information may be incorporated into the existing

problem structure, assuming the covariance function is differentiable [106].

k (ωm
i , yj) =

∂

∂xm
k (f(~xi), f(~xj)) (57)

k
(

ωm
i , ω

n
j

)

=
∂2

∂xm∂xn
k (f(~xi), f(~xj)) (58)

Specifically, for the squared exponential covariance function in Equation (51), the

possible modified covariance functions are listed in Equations (59) - (61).

k (ωm
i , yj) = −

1

γi

(

xm
i − xm

j

)

α exp

(

−
1

2
(~xi − ~xj)

T Γ (~xi − ~xj)

)

(59)

k
(

yi, ω
m
j

)

=
1

γi

(

xm
i − xm

j

)

α exp

(

−
1

2
(~xi − ~xj)

T Γ (~xi − ~xj)

)

(60)

k
(

ωm
i , ω

n
j

)

= −
1

γi

1

γj

(

xm
i − xm

j

) (

xn
i − xn

j

)

α exp

(

−
1

2
(~xi − ~xj)

T Γ (~xi − ~xj)

)

+δm,n
1

γi
α exp

(

−
1

2
(~xi − ~xj)

T Γ (~xi − ~xj)

)

(61)

where δm,n is the Kronecker delta function, which is one when m = n and zero

otherwise.

A 1D example is shown in Figure 49. In this example, five evenly spaced posi-

tion constraints were selected at random, along with four derivative constraints at a

different spacing. The x-position of each measurement are stacked into the column

vector, X, of length 9. The measurement values are similarly stacked into the column

vector, Y . Y consists of both direct measurements, yi, and derivative measurements,
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Figure 49: An example of three functions sampled from a Gaussian process after con-
ditioning on five measurement values and four derivative values. The mean function is
shown in black, and the 95% region has been shaded in gray. Both the function output
(a) and the function derivative (b) are shown. Derivative constraints are indicated in
the position plot as short, orange lines aligned in the direction of the derivative.

ω1
i . Interpolated values for the function and the first derivative are requested at a

resolution of 0.1 over the range [0, 10]. The 101 x-positions for the function output are

stacked with the 101 x-positions for the derivative output to form the vector, X∗. The

mean and covariance for the GP posterior are calculated using Equations (54) and

(55), where the individual entries in the covariance matrices ΣY,Y , ΣY,Y
∗ , and ΣY

∗

,Y
∗

are calculated using Equations (51) and (59) - (61) as appropriate to the type of in-

put. Functions can then be drawn from the GP by sampling from the 202-dimension

multivariate Gaussian variable, N (µ∗,Σ∗) defined in Equations (54) - (55).

5.2 Vision-based Terrain Reconstruction

One of many applications of Gaussian processes is in the field of geostatistical terrain

modeling. A common procedure, known as “Kriging”, involves using a Gaussian

process with a special covariance function [112]. Existing terrain survey data is used

to generate a variogram, which describes the terrain variation as a function of spatial

distance. One of several common models is then fitted to the variogram plot, and this
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model is used as the covariance function in a 2D GP interpolation. More recently,

efforts at the University of Sydney have shown improved terrain modeling performance

with GPs that use neural network-inspired covariance functions [118,119]. The neural

network covariance function is nonstationary, allowing it to better adapt to terrains

with significant discontinuities. This work successfully combined data from a sparse

GPS survey with two high resolution 3D laser scans into a single terrain model,

illustrating the ability of GPs to be applied to large-scale problems.

The geostatistical modeling example uses data collected specifically for the pur-

poses of reconstructing the terrain in an off-line process. GPS survey points were

distributed across the entire target region, while the laser scan locations were delib-

erately positioned. While this is desirable in the domain of terrain modeling, the

needs of mobile field robotics dictate the topographic map be generated using only

the limited data acquired at a given point in time. The following sections describe the

implementation of a 2D GP terrain model that incorporates only the limited terrain

data acquired during the robot’s normal traverse.

5.2.1 Visual Landmarks

A Gaussian Process terrain model is capable of combining multiple measurements of

the terrain elevation into a single, cohesive representation. The GP model also incor-

porates any measurement uncertainty into the reconstruction, if that uncertainty may

be modeled by additive independent Gaussian noise. In that case, the measurement

covariance matrix, ΣY,Y , is simply augmented by the elevation uncertainty of each

measurement, as in Equation (62). Geostatistical models often use GPS survey data

collected in a uniform grid or other sampling technique designed to capture the ob-

served terrain variation. The positional errors associated with GPS survey data tend

to be small and relatively uncorrelated, making this a good fit for GP interpolation.
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Σ′
Y,Y = ΣY,Y +













σ2
1

. . .

σ2
N













(62)

where σ2
i is the elevation variance of the ith measurement.

The visual SLAM system described in Chapter 4 produces a set of 3D point

estimates that lie on the terrain surface as a byproduct of the localization process,

superficially analogous to GPS data. However, unlike GPS surveys, this data is

collected opportunistically while the robot performed a traverse, rather than with

the explicit goal of capturing terrain variations. These visual landmarks also cover

the terrain only sparsely, with landmarks near the rover’s path occurring far more

frequently than landmarks at significant distances. While this may be suboptimal

from a terrain sampling standpoint, no additional travel is incurred by the rover to

collect this data.

Further, the uncertainty of each SLAM landmark is a jointly Gaussian distribution

in both the dependent variables, (x, y), and the independent variable, z. Inclusion of

uncertainty in the dependent variables is known as the “error-in-variables” problem

in statistics, and few solutions exist for the multi-variate case [43]. Rather than at-

tempting to modify the GP structure to incorporate “error-in-variables” uncertainty,

each landmark covariance is converted into independent additive noise by marginal-

izing out the dependent variables, (x, y), from the joint distribution, as shown in

Equation (63). Due to the highly directional nature of visual SLAM landmark esti-

mates, removing the dependency of x and y, even from covariances with even a small

volume, results in a large elevation uncertainty. Figure 50 illustrates this behavior

with a simple 2D example. For this reason, only those landmark estimates whose

depth uncertainty have collapsed to a small region are considered for inclusion in the

GP terrain reconstruction.
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Figure 50: A simple 2D example of the uncertainty ellipse of a visual SLAM landmark,
and the elevation uncertainty obtained through marginalization.

p(z) =

∫

x

∫

y

p(x, y, z) dx dy

=

∫

x

∫

y

N

(

[

µx
µy
µz

]

,

[

σ2
x ασxσy βσxσz

ασyσx σ2
y γσyσz

βσzσx γσzσy σ2
z

])

dx dy

= N
(

µz, σ
2
z

)

(63)

5.2.2 Visual Slope Estimates

As previously mentioned, the visual SLAM landmark data provides only sparse terrain

information, sampled at suboptimal points from a terrain reconstruction standpoint.

Augmenting these sparse elevation estimates with dense estimates of the elevation

derivative improves the overall reconstruction quality. The slope estimate subsystem,

presented in Chapter 3.2, provides the terrain slope, or elevation derivative, within

the camera coordinate frame. To include the slope estimates in the GP model, the
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slopes must be projected into the world coordinate system. A planar patch is derived

from each slope estimate by rotating a plane aligned with the camera orientation by

the estimated slope. This coordinate transformation is shown in Equations (64) -

(66). Once the plane equation is created, the world coordinate derivatives may be

calculated, as in Equations (68) and (69). The uncertainty of the slope measurements

may also be incorporated into the GP model. The results presented in Chapter 3.2

provide an estimate of the slope measurement variance. This variance is projected

into global coordinates using the Jacobian of the projection equations.

nxx+ nyy + nzz + (~n · ~p) = 0 (64)

~n = qC qslope

[

0
−1
0

]

q−1
slope q

−1
C (65)

qslope =

[

cos( θ
2)

0
0

sin( θ
2)

]

(66)

where θ is the estimate slope angle, qC is the camera orientation as a quaternion, ~p

is any point on the planar patch, ~n is the normal to the planar patch, and the vector
[

0
−1
0

]

is the world up vector in camera coordinates.

z =
1

nz

(−nxx− nyy + ~n · ~p) (67)

∂z

∂x
=

−nx

nz

(68)

∂z

∂y
=

−ny

nz

(69)

Finally, the GP requires the derivative measurements be applied at known values

of the dependent variables, (x, y), just like the elevation measurements. However,

unlike the landmark position estimates, the visual slope estimates do not provide any

source of global localization. If a terrain model is available from a previous terrain

reconstruction, it is possible to calculate the intersection point of the slope estimate
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Figure 51: An illustration of the relevant SnoMote geometry used in the image pixel
projection equations.

pixel with this terrain model. However, this ray-casting procedure is a numerically

expensive operation, which is often approximated even inside the computer graphics

community [40]. A courser approximation can be implemented at little computational

cost by assuming the area in the vicinity of the robot is planar. Given the geometry of

the rover and the current pose estimate from the localization system, each image pixel

can be projected onto the assumed ground plane. The projection based on the robot

geometry can actually be precomputed, requiring only the transformation from the

local robot frame into the global frame at run-time. Figure 51 shows the construction

geometry of the SnoMote, with the relevant projection shown in Equation (70).
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~n = qt

[

0
0
1

]

q−1
t (70)

~r = qC
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q−1
C (71)

d =
−‖~r‖ (~n · ~xC − ~n · ~xt)

~n · ~r
(72)

~xP = ~xC + d ~r (73)

where ~xP is the world coordinate position estimate of the pixel ( u
v ), ~xC is the current

position of the camera, qC is the current orientation of the camera as a quaternion, qt

is the current orientation of the robot as a quaternion, f is the camera focal length,

mx and my are the camera scale factors, and ( u0
v0 ) is the camera principle point.

5.2.3 Hyperparameter Optimization

The GP framework is considered a model-free regression technique in that no func-

tional model, such as a linear or logarithmic function, is used during the data fit.

However, the behavior of the GP can be tuned to a specific problem through the use

of the covariance function hyperparameters. In Equation (51), the terms α, γ1, . . . , γN

are known as the hyperparameters for the squared exponential Gaussian process. The

values γi are often referred to as the length scales. The distance between the input

variables in each dimension is divided by the corresponding length scale value during

the covariance calculation. This allows the GP to vary how quickly the output can

change in response to the inputs. In terrain modeling, length scales in the tens to

hundreds of meters are common. The α parameter is a gain value placed on the entire

covariance function. This allows the GP model to be more or less sensitive to the

input values as a whole.

The hyperparameters for a GP model are ideally trained on a subset of data to
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maximize the posterior probability shown in Equation (74). However, if no prior

probability information is known for the hyperparameter distribution, p(θ), then the

common practice of maximizing the log marginal likelihood, log (p(Y |X, θ)), is equiv-

alent. The log marginal likelihood for a GP is shown in Equation (75) [94].

p (θ|X, Y ) =
p (Y |X, θ) p (θ)

p (Y |X)
(74)

log (p (Y |X, θ)) = −
1

2
Y T Σ−1

Y,Y Y −
1

2
log |ΣY,Y | −

n

2
log 2π (75)

To train the hyperparameters, the locations, X, and elevations, Y , of a small

segment of the simulation environment was provided to the GP. The values of the

hyperparameters α and γ were varied over a large range, and the corresponding terrain

reconstruction error was calculated from the ground truth elevation data provided by

the simulation. Since the orientation of the world coordinate system should not

effect the GP results, the length scales in the two dependent variables are set equal,

γx = γy = γ. The resulting average prediction error of the GP versus the two

hyperparameters is shown as a contour plot in Figure 52. The maximum point of

α = 10.0 and γ = 315.0 was selected for use in the GP regression in all following

results.

5.3 Results

The data acquired during the visual SLAM simulation tests in Chapter 4.4 have been

reused to test the performance of the GP terrain reconstruction system. While the

visual SLAM filter estimates the position of surface landmarks as a byproduct of

robot localization, each visual SLAM particle inside the filter maintains its own map

of landmarks. For the purposes of terrain reconstruction, only the landmarks from the

highest-weighted particle are considered. Also, the SLAM system periodically purges

landmarks from the map after they are no longer visible. During the purge process,
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Figure 52: The contour plot of the GP reconstruction error versus the hyperparame-
ters α and γ.
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any landmark whose 1-σ covariance ellipse was no larger than 5m was copied to an

external array. During the simulation trial, approximately 150,000 surface landmarks

were sufficiently localized, a vast majority of which occurred very near the rover’s

path. Because of the proximity of these landmarks, the information they provide is

largely redundant. To reduce the number of measurements that must be processed by

the GP, only those landmarks that were initialized more than 20m from the rover’s

position are used within the reconstruction. This reduces the set to approximately

5,000 landmarks over the 600m x 600m simulation site.

Additionally, the terrain slope estimates described in Chapter 3.2 were calculated

on the incoming camera stream at a rate of 1Hz. These slope estimates have been

projected into world coordinates using Equations (64) - (69) based on the camera

pose of the highest-weighted particle. As the dense slope estimate system provides

slope information for every terrain pixel in the image, this equates to approximately 95

million individual slope estimates. To reduce the amount of slope data to be processed

by the GP, the slope estimates have been resampled on a 5m grid. All slope estimates

that exist within a 2.5m radius of each grid point are averaged together into a single

value. This reduces the total number of slope estimates to, at worst, 14, 600 slope

measurements in each of the X and Y directions.

To compare the performance of the terrain reconstruction system, three different

methods are tested. The first uses a simple linear triangular mesh interpolation

method. The Delaunay triangulation [25] is first formed from the input positions.

Each query point that falls within the triangulation is estimated using the plane

formed by the triangle’s vertices. Because query points must fall within a Delaunay

triangle to be estimated, this method only produces terrain estimates within the

convex hull of the input measurements. Also, there is no obvious mechanism for

incorporating measurement uncertainty or terrain derivatives into a triangular mesh

model.
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The second reconstruction incorporates the sparse visual SLAM landmark data

into a Gaussian Process model. Unlike the triangular mesh interpolation scheme, the

GP model is valid over all of R2. The final reconstruction uses a GP model that

incorporates both the sparse visual SLAM landmark data and the dense terrain slope

estimates. As the goal of the terrain reconstruction is to provide a path planner with a

topographical map as early as possible, the performance of each system is compared

with different levels of input data. In each of the four reconstruction tests, only

the data collected during the first 25%, 50%, 75%, and 100% of the rover path are

provided to the reconstruction models. The resulting terrain reconstructions of the

600m x 600m simulation environment are shown in Figures 53-56, with the ground

truth elevation map shown in Figure 57 for reference.

Perhaps the most striking aspect of the three reconstructions is the limited data

provided by the triangular mesh. During the first 25% of the traverse, only 6.1%

of terrain could be reconstructed, while only 25.8% could be reconstructed after the

traverse was completed. In contrast, both GP reconstructions are able to predict the

elevation of the entire terrain based on the local observations, even terrain sections

located in the northeast, which were behind the rover over the entire traverse. Using

just the visual SLAM landmarks, the terrain model is able to predict the existence

of a large hill in southeast as early as half way through the traverse. By the end

of the traverse, the general S-shape of the terrain has been successfully recovered.

Once the terrain slope information is introduced, the GP reconstruction error reduces

considerably. With only 25% of the traverse complete, significant reconstruction

errors exist only at the far edges of terrain. The root mean squared (RMS) elevation

errors of each reconstruction are summarized in Table 7. Because of the limitations of

the triangular mesh method, two sets of errors are calculated for each reconstruction:

the first considers just the terrain within the convex hull of the input points, the

second considers the entire 600m x 600m simulation environment. Within the convex
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Figure 53: Terrain reconstructions using data from the first 25% of the traverse. The
rover’s path is shown as a solid black line, while the convex hull of landmark points
is indicated by a dashed line.
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Figure 54: Terrain reconstructions using data from the first 50% of the traverse. The
rover’s path is shown as a solid black line, while the convex hull of landmark points
is indicated by a dashed line.

136



−300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300

Eastings (m)

N
o

rt
h

in
g

s
 (

m
)

 

 

20

40

60

80

100

120

(a) Triangular Mesh Reconstructed

−300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300

Eastings (m)

N
o
rt

h
in

g
s
 (

m
)

 

 

5

10

15

20

25

(b) Triangular Mesh Error

−300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300

Eastings (m)

N
o

rt
h

in
g

s
 (

m
)

 

 

20

40

60

80

100

120

(c) GP Landmark Reconstructed

−300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300

Eastings (m)

N
o
rt

h
in

g
s
 (

m
)

 

 

5

10

15

20

25

(d) GP Landmark Error

−300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300

Eastings (m)

N
o

rt
h

in
g

s
 (

m
)

 

 

20

40

60

80

100

120

(e) GP Landmark and Slope Reconstructed
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(f) GP Landmark and Slope Error

Figure 55: Terrain reconstructions using data from the first 75% of the traverse. The
rover’s path is shown as a solid black line, while the convex hull of landmark points
is indicated by a dashed line.
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(f) GP Landmark and Slope Error

Figure 56: Terrain reconstructions using data from the complete traverse. The rover’s
path is shown as a solid black line, while the convex hull of landmark points is
indicated by a dashed line.
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Figure 57: The ground truth terrain elevation from the simulated glacial environment.

hull of input points, all methods return similar RMS reconstruction errors in the

range of 3m to 5m. While the triangular mesh method generally returns the lowest

error within the convex hull region, the reconstructed terrain is not smooth. This is

particularly noticeable in the elevation error plot in Figure 56b where hard edges and

error peaks are present. As the triangular mesh reconstruction is not valid outside

the convex hull region, comparison is impossible. However, the GP methods are

able to achieve RMS reconstruction errors below 10.0m, with absolute errors below

25.0m in terrain reconstructed over 300m from the rover’s traverse. The inclusion of

the slope information reduces the reconstruction error, both in the local convex hull

region, and at large distances. This improvement is most notable when the number of

landmarks is small. At 25% of the data, the reconstruction using landmarks and slope

reduces the RMS error by over 20% compared to the landmark-only reconstruction.

However, as the number of landmarks increases, and the reconstruction approaches

the true terrain, this benefit diminishes.

5.4 Conclusions

A method for performing a terrain reconstruction has been presented that leverages

the previous work in terrain characterization and visual localization. This method

uses a statistical construct known as a Gaussian Process, popular in the geostatistics
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Table 7: Reconstruction Accuracy

Reconstruction Percent RMS Error RMS Error
Type Data (Convex Hull) (Entire Terrain)

Trimesh 25% 4.0 m N/A
50% 3.3 m N/A
75% 4.3 m N/A
100% 4.7 m N/A

Landmarks Only 25% 3.3 m 17.5 m
50% 3.1 m 14.2 m
75% 7.6 m 13.6 m
100% 6.1 m 9.8 m

Landmarks and Slope 25% 2.8 m 13.5 m
50% 3.0 m 12.5 m
75% 5.9 m 11.3 m
100% 5.4 m 9.4 m

community for elevation modeling, that incorporates measurements and measurement

error in a statistically sound way. However, unlike in geostatistical modeling, the in-

put measurements utilized in this work have not been collected in an ordered manner

designed to properly characterize terrain variations, but has rather been collected

opportunistically, as a byproduct of the vision-based SLAM localization system. De-

spite this limitation, it has been shown that a high quality terrain model can still

be generated, and that the behavior of terrain hundreds of meters from the robots

path may be predicted accurately. When compared with standard triangular mesh

interpolation of the same visual landmarks, the Gaussian Process produces similar

average errors in a local region. Unlike the triangular mesh method though, the GP

interpolation is not limited to a local region, and terrain elevation estimates for any

location may be generated. Additionally, it has been shown that the inclusion of

terrain slope information in the interpolation process yields terrain models that esti-

mate distant terrain structure much sooner in the robot’s traverse. If the purpose of

creating the terrain model is to provide a map to a planning algorithm, the ability
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to properly characterize the terrain earlier in the traverse is a distinct advantage.

While the Gaussian Process is capable of handling these derivative measurements in

a natural way, most other interpretation schemes cannot.

Additionally, as the Gaussian Process is a statistical construct, not only is the

maximally likely terrain surface available, but an estimate of the reconstruction un-

certainty is also produced. For planning purposes, a path could be generated that not

only minimizes the threat of known hazards in the well-characterized local region, but

also minimizes potential hazards by preferentially selecting paths that stay within a

bounded uncertainty range. Conversely, if the goal of the mission is to construct a

terrain model of some minimum quality, then knowledge of the current reconstruction

uncertainty can actually drive the path planning decisions.

However, from a computational standpoint, the GP methods are at a disadvan-

tage. Because a full measure covariance matrix must be generated, this method has

a time and space complexity that is quadratic in the number of measurements used.

This can be mitigated in two ways. First, only a subset of the measurements can be

used, or multiple measurements can be aggregated to limit the number of measure-

ments used. Both of these strategies have been employed in this work, where only

distant landmarks are used in the reconstruction, and the large volume of slope infor-

mation is averaged around an evenly distributed grid. Secondly, instead of using all of

the measurements to reconstruct each query point, only the subset of measurements

local to the query point need to be considered. Since the magnitude of the entries

in the covariance matrix are affected only by distance between them, an effective ap-

proximation radius can be formed. However, this was found to be of marginal benefit

in this example due to the large length scale used to model the glacial terrain. In this

case, the entire simulated terrain fell within a reasonable approximation radius.
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CHAPTER VI

CONCLUSIONS

A multi-agent robotic network has been proposed to collect weather-related sensor

data from glacial regions in Greenland and Antarctica. Data collected from these

remote regions will assist climate scientists in the development of more accurate

climate-change models. For such a network to be successful in harsh arctic conditions,

the system must exhibit high levels of fault tolerance. For multi-agent networks,

fault tolerance is generally guaranteed through the use of redundant robotic nodes.

Given the expendable nature of a robotic agent in this context, each node must be

inexpensive, making due with low-accuracy consumer-grade sensing equipment, rather

than the bleeding-edge technology a single-unit system may incorporate. Thus, GPS

data alone provides insufficient accuracy when performing satellite validation tasks or

collecting survey data for a terrain reconstruction; additional sources of information

must be used to augment the natural capabilities of the on-board sensors.

Vision has been selected as the secondary sensing modality for both internal state

estimation and terrain-awareness for the robotic agents. It is among the cheapest of

available sensors, uses very little power compared to active lidar sensors, and offers

a large amount of information about the environment, both of the near-field and

distant regions. However, due to the snow-covered surface and low-light atmospheric

conditions of arctic environments, camera images often suffer from poor contrast and

lack distinctive features. Special care must be exercised when processing these types

of images to preserve the limited information available.

This work has explored processes and techniques for utilizing a standard monoc-

ular camera stream to aid the navigational system of an arctic robotic sensor node.
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The problem of autonomous glacial navigation has been attacked on three different

fronts: hazard detection, localization, and map building or terrain reconstruction.

The key results and conclusions are summarized in the following.

6.1 Key Results

6.1.1 Hazard Detection

In the area of hazard detection, a large body of research revolves around applications

for Mars or military desert navigation. As such, this work focuses on the detection

of discrete hazards, such as rocks or small brush. In glacial environments however,

hazards tend to be local regions with a large terrain slope. Whether the rover is

approaching the mouth of a crevasse, nearing a glacial lake basin, or advancing up

the mountain edge, at some point the terrain incline will exceed the capabilities of

the robotic platform. Hence, assessing the terrain slope is key to determining terrain

traversability with glacial regions. Two related methods were presented in Chapter 3,

as well as in [128, 129], that estimate the terrain slope using only a single camera

image as input. These methods, inspired by heuristic knowledge used by human

observers, exploit small scale surface texture that visually aligns with the perceived

terrain grade. However, due to the low-contrast nature of glacial scenery, nonlinear

contrast enhancement techniques must be applied before the surface texture may be

extracted. These methods have been evaluated qualitatively on image sets acquired

during during field trials to three different glacier systems in Alaska. Additionally,

these methods were tested within a visually faithful 3D robot simulation system of one

Mendenhall Glacier test site. Analysis showed a strong correlation between the visual

slope estimates and the true slopes extracted from the simulation. Up to 80% of the

simulated terrain slope variance could be predicted from the visual slope estimates,

even though the simulated surface texture contained no directional features.

To demonstrate the effectiveness of the terrain slope data as an input to a robotic
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system, a reactive control behavior was developed with the purpose of minimizing

the roll experienced by the rover. A distributed behavior-based architecture was used

to combine the disparate desires to drive towards the goal location and to minimize

the chassis roll. This relatively simple control scheme reduced the average roll ex-

perience by the rover by over 30 percent, with the results obtained using the slope

estimates nearly identical to those obtained using true slope information extracted

from the simulation. However, the total rover path increased significantly with the

roll-avoidance controller enabled, with no intuitive way of trading roll performance

for a shorter path.

Before any meaningful analysis of terrain obstacles can be performed, the fore-

ground region must first be segmented from the acquired image. This serves to focus

subsequent processing on a smaller, targeted region of interest, as well as to remove

unwanted dynamic features, such as clouds, from the image. However, in glacial im-

ages, the boundary between the traversable foreground and background elements is

often subtle or ambiguous. Distant snow-covered mountains visually blend with the

snow-covered foreground terrain, while low clouds and overcast skies blur the bound-

ary between ground and sky. Several typical segmentation algorithms were applied

to these images, all of which resulted in a large amount of misclassified terrain be-

cause only information local to each pixel was used during the classification. Instead,

a novel horizon line detection process had been proposed in Chapter 3.1 and [130]

that has been tailored to work on glacial images containing ambiguous horizons. This

method searches for strong horizon segments globally, then weights each candidate us-

ing a set of heuristics to identify the best horizon segments. These segments are then

connected to form the final horizon estimate. To test the classification performance,

the proposed method and several common segmentation algorithms were applied to

hand-labeled images from ten different field trial locations. The proposed horizon

line extraction procedure consistently performed the best of all methods tested, while

144



requiring an order of magnitude less processing time than the second best method.

The proposed image processing techniques produce terrain slope estimates using

only the current frame as input. Consequently these estimates tend to be noisy, even

for a stationary camera. As there will be a high amount of visual correlation between

consecutive camera frames, it should be possible to achieve better, more stable slope

estimates by incorporating past measurements into an iterative estimation scheme.

Additionally, while the example reactive controller demonstrated the efficacy of the

slope estimates as a navigational control input, tuning the behavior weights to af-

fect the system’s slope avoidance threshold was not straightforward. Instead, the

slope estimates could be projected into a global frame and converted into a stan-

dard traversability map. This would allow the application of existing traversability

planning and control to be directly applied to the glacial navigation problem.

6.1.2 Localization

For the localization system, a custom vision-based SLAM system was implemented.

When developing a visual odometry system for glacial images, feature extraction is

possibly the biggest challenge. A procedure for extracting reliable features from these

low-contrast environments has been described in Chapter 4.2 and in [131]. To validate

this procedure, the quantity and consistency of extracted features in the raw image

and enhanced image are compared. The preprocessing steps resulted in a five to ten

fold increase in the number of detected features and the number of matched features

when applied to sample image sequences from the glacial field trials. Perhaps most

importantly, every enhanced image produced a minimum of ten matched features,

whereas the unenhanced images often resulted in zero correctly matched features.

Further, because the proposed preprocessing steps are also a requirement for the

hazard detection, no additional computation time is incurred.

Although visual SLAM systems perform better than standard wheel odometry,
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particularly in conditions where wheel slippage is likely, SLAM is still an incremental

localization procedure. Errors accumulate over time, causing the final state estimate

to drift. As the length of the expected traverse increases, the viability of using a vision-

only solution diminishes. In this work, an external source of global information in the

form of low-accuracy GPS was fused with the incremental localization of visual SLAM.

This produced a system that is capable of both consistent local-scale localization and

drift-free global-scale positioning. The full implementation details of this system are

described in Chapter 4.3, with some early results published in [133]. In particular,

the one-way nature to the proposed robotic mission allowed for aggressive pruning

of the active landmark database, resulting in a nearly-constant active database size

regardless of the total length of the traverse. This results in a nearly constant-time

SLAM update that is capable of running at multiple frames per second over very long

traverses.

The most problematic aspect of the visual SLAM system as implemented revolves

around weighting each robot pose particle and subsequent pose sampling. The ul-

timate weight of each particle in the filter is the product of all of the observation

probabilities. As each particle maintains an active database of on the order of 500

landmarks, even a small perturbation in pose between particles can lead to huge

weighting difference. One solution is to add additional sensing capabilities to the

rover platform. Such things as track odometry and even low-quality IMU measure-

ments should result in a large improvement in the open-loop pose estimate of the

rover. That would reduce the space of poses over which the particle filter would have

to sample. Alternatively, different solution approaches exist. Recently introduced

incremental smoothing and mapping algorithms [58, 59] are able to find the optimal

solution given all of the available data. If such systems are capable of operating in

near real-time, an improvement in localization quality should be possible.
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6.1.3 Terrain Reconstruction

While the visual SLAM system produces a set of 3D point estimates that lie on the

terrain surface as a byproduct of the localization process, this type of map is not read-

ily utilized by common path planning algorithms. A procedure has been proposed

that leverages common terrain modeling techniques from the geostatistics commu-

nity. A Gaussian process (GP) terrain model has been constructed that combines

information from both the sparse visual landmarks produced by the localization sys-

tem and the dense slope estimates from the hazard detection algorithm. The GP

framework has many advantages over simple triangular mesh interpolation. First, it

is able to naturally incorporate the available dense slope information into the terrain

model, improving the reconstruction accuracy at great distances. Second, it is able

to predict the terrain elevation at any desired location, even in areas well beyond the

currently observed data. During simulation trials, the GP terrain reconstruction was

accurate within 20m of the true elevation at query points 300m from the camera, even

though the visual landmark estimates do not extend beyond 75m from the camera.

In contrast, triangular mesh interpolation simply cannot predict values outside the

convex hull of landmark points. From a path planning perspective, the GP recon-

struction allows hazardous slopes and obstacles to be accounted for much earlier in

the traverse.

Unfortunately, the GP calculation is O(n3) in the number of measurements. This

creates a large computational load as the length of the traverse increases, and thus

the number of localized visual landmarks increases. If the dense visual slope estimates

are included as well, the number of measurements increases very quickly. The current

implementation takes tens of minutes to perform the final reconstruction, though the

codebase has not been optimized in any way. Methods for performing approximate

GP interpolation exist, often using only those measurements within a certain radius
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of the current query point. Since the magnitude of the GP covariance function de-

creases with increasing distance between query points, a distance threshold can be

created that only ignores the covariance values below a user-definable level. With

coding optimizations and approximation schemes implemented, a terrain reconstruc-

tion should be possible on low-power computing hardware, but real-time operation is

not to be expected.

6.2 Future Work

This research was performed as part of a larger project to produce a multi-agent re-

configurable mobile glacial weather station network. The autonomous navigation al-

gorithms described herein are simply a small part of the overall project goal. The next

logical step in the progression of this research is to design and field a larger prototype

platform capable of a multiple day deployment. The current prototype platforms were

designed with a three day field trial cycle in mind. For use in extended operations,

several key mechanical and electrical systems need to be redesigned. Specifically,

the power subsystem needs dramatic improvements, both in power management and

absolute power capacity. Further, the on-board computing must upgraded if the pro-

posed algorithms are to be tested autonomously. All time trials within this document

were performed on a 2Ghz laptop, which has a significant computational advantage

over the current embedded microprocessor.

Finally, the algorithms developed in this thesis have been implemented indepen-

dently of each other. At a minimum, the goal-pursuit behavior used in Chapter 3.3

should be replaced by a global path planner operating on the terrain reconstruction

of Chapter 5. More realistically, a supervisory system should be constructed that

is responsible for switching between obstacle avoidance strategies and advanced goal

pursuit strategies, as well as determining when the current map is stale and should

be reconstructed from new data.
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