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SUMMARY 

Ameliorating health disparities – avoidable differences in health outcomes between 

population groups – is both a social imperative and a pressing scientific challenge.  The 

relative importance of genetic versus environmental effects for health disparities i.e., the 

enduring question of nature versus nurture, particularly for complex common diseases that 

have multifactorial etiologies, has long been debated6,7.  Nevertheless, the reality is that 

health outcomes are influenced by a combination of genetic and environmental factors as 

well as myriad interactions among them.  This thesis aimed to study both genetic and 

environmental contributions to health disparities by leveraging population biobanks and 

large genomic datasets. 

This thesis investigates the relationship between ancestral origins, environmental 

factors, and health disparities.  The importance of social and environmental determinants 

of health disparities is well established, whereas the role of genetics is more controversial.  

Nevertheless, the two classes of effects are not mutually exclusive; genes are expressed 

and function in the context of specific environmental conditions.  Thus, it is reasonable to 

consider the influence of genetic and environmental factors on health disparities together.  

Indeed, the importance of interactions between genetic and environmental factors for 

shaping health outcomes has recently been recognized and emphasized as a promising 

avenue for health disparities research8-10.  Biobank datasets of the kind that were be 

analyzed here, which include collections of genetic data together with rich clinical, 

phenotypic, and environmental data for thousands of individuals, are ideally suited for this 

purpose.  This thesis leverages biobank data analysis to decipher how ancestral origins and 
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environmental factors jointly impact health disparities.  Few studies have investigated this 

possibility and this project aims to combine these two worldviews in health disparities 

research. 

This thesis is split into two parts: (1) population pharmacogenomics spanning 

chapters 2 and 3, and (2) complex common health disparities covered in chapters 5, 6, and 

7.  Chapters 2 and 3 investigate the partitioning of pharmacogenomic variation between 

populations in different geographic and socioeconomic locales (Colombia and the United 

States) to study differences in predicted therapeutic response among populations.  Chapters 

5, 6, and 7 illustrate the use of a large biobank – the UK Biobank – to understand health 

disparities and their complex relationship to genetic, environmental, and social factors. 

Research advance 1:  Chapter 2 explores the application of the precision public 

health paradigm for ancestrally-guided pharmacogenomics in Colombia.  This study 

focuses on two neighboring populations with distinct ancestry profiles: Antioquia (with 

primarily European genetic ancestry) and Chocó (with primarily African genetic ancestry).  

This study was a result of working with collaborators from Colombia to identify and 

prioritize pharmacogenomic variants in Antioquia and Chocó.  In addition to 

pharmacogenomic alleles related to increased toxicity risk, this investigation also identified 

evidence that alleles related to dosage and metabolism have large frequency differences 

between the two populations, which are associated with their specific majority genetic 

ancestries.  This fruitful collaboration has also led to the development of cost-effective 

PCR-based assays that avoid the prohibitively high cost of sequencing/genotyping while 

also bringing the promise of precision medicine to Colombia. 
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Research advance 2: Chapter 3 describes a study which shows that self-identified 

race/ethnicity (SIRE) information in older Americans is useful for partitioning 

pharmacogenomic variation, and that SIRE carries clinically valuable information for 

stratifying pharmacogenomic risk among US populations.  Perhaps more interesting is the 

illustration that people who identify as Black or Hispanic stand to gain more from the 

consideration of SIRE in treatment decisions compared to those belonging to the majority 

White population. 

Taken together, research advancements 1 and 2 highlight that population genomics 

can be a powerful tool for clinical decision-making especially in settings where resources 

are limited (e.g. Colombia) or where resources are unequally distributed between 

population groups (e.g. USA).  This is in support of the precision public health paradigm 

which shifts the focus from individuals to populations to identify interventions that work 

best at the population level.  This allows for uniform priors for treatment to be adjusted 

based on population membership. 

Research advance 3:  Chapter 4 explores the landscape of health disparities in the 

United Kingdom (UK) by leveraging data from the UK Biobank.  The chapter describes an 

online web browser that catalogs the prevalence of disease phenotypes in groups defined 

by the following population attributes: age, country of residence, ethnic group, 

socioeconomic deprivation, and sex.  This online browser will enable researchers to 

explore the landscape of health disparities and direct their attention to areas of research 

which might have the most impact. 
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Research advance 4:  Chapter 5 sheds light on the interaction between genetic 

ancestry and socioeconomic deprivation (SED) – a proxy for a large family of 

environmental exposures and lifestyle factors – for type 2 diabetes (T2D) in the United 

Kingdom (UK).  Leveraging multivariable logistic regression, this study finds that genetic 

ancestry and SED show significant interaction effects on T2D, with SED being a relatively 

greater T2D risk factor for individuals with South Asian and African ancestry, compared 

to those with European ancestry.  The interactions between SED and GA underscore how 

the effects of environmental risk factors can differ among ancestry groups, suggesting the 

need for group-specific interventions. 

Research advance 5:  Chapter 6 compares genetic and socioeconomic contributions 

to ethnic differences in C-reactive protein (CRP) – a routinely used inflammation blood 

biomarker – in the UK.  CRP is associated with response to infection, risk for a number of 

complex common diseases, and psychosocial stress.  Using structural equation modeling, 

the study shows that socioeconomic deprivation (SED) explains more than twice the 

variation in CRP levels than genetic ancestry, and the effect of ethnicity on CRP is 

mediated by SED but not by genetic ancestry.  Taken together, these results indicate that 

socioenvironmental factors contribute more to CRP ethnic differences than genetics.  The 

study also finds that differences in CRP are associated with ethnic disparities for a number 

of chronic diseases, including type 2 diabetes, essential hypertension, sarcoidosis, and 

lupus erythematosus.  These results indicate that ethnic differences in CRP are linked to 

both socioeconomic deprivation and numerous ethnic health disparities. 
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Together, research advancements 3, 4, and 5 demonstrate the massive potential of 

employing biobanks – large data repositories with genetic, environmental, and clinical data 

– to study and decompose health disparities. 

Beyond these specific research advances, this thesis also takes a step towards 

addressing the lack of diversity in genomics research.  Genomics research is currently 

biased towards European ancestry cohorts, and results from these studies may not transfer 

to more diverse ancestry groups.  This genomics research gap has the potential to 

exacerbate existing health disparities.  The focus on ancestrally diverse populations, both 

in developing countries and for underrepresented minority groups in the US and the UK, 

has the potential to support health equity through ancestrally-guided insights and 

interventions.   
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INTRODUCTION 

1.1 Health disparities 

Health disparities are avoidable differences in health outcomes among population 

groups, where populations can be defined in a variety of ways, such as by race and 

ethnicity, socioeconomic status, or gender11.  Health equity entails the elimination of such 

avoidable health differences, a top priority for the US Department of Health and Human 

Services12. 

The movement towards more equitable health outcomes includes both moral and 

scientific dimensions; health disparities are fundamentally unjust and their causes are 

multifactorial and complex13,14.  Unequal access to healthcare, socioeconomic factors, 

environmental exposures, diet and lifestyle, along with biological and genetic factors, all 

contribute to population health disparities9,15.  Accordingly, efforts to promote health 

equity must embrace sociologically, environmentally, and biologically informed 

interventions. 

 

1.2 Biobanks 

Biobanks have been defined as “an organized collection of human biological material 

and associated information stored for one or more research purposes”16,17, and population 

biobanks combine biological material with associated lifestyle, environmental, and clinical 

data for many thousands of participants.  As such, biobanks provide an unprecedented 



 
2 

opportunity to jointly analyze genetic and environmental contributions to health disparities 

at a high level of resolution, in support of promoting health equity for currently underserved 

populations18.  For this thesis, I aim to use population biobanks to characterize and analyze 

the effects of genetic and environmental factors on health disparities at two levels – drug 

response and disease prevalence. 

 

1.3 Pharmacogenomics 

Pharmacogenomics (PGx) refers to the link between human genetic variation and 

drug response19,20.  PGx variants are specific genetic variants that mediate how individuals 

respond to a wide variety of medications, and PGx variant effects on drug response can be 

categorized with respect to dosage, efficacy, or toxicity/adverse drug reactions.  

Information on PGx can be accessed from the Pharmacogenomics Knowledgebase 

(PharmGKB), which is an NIH-funded resource that provides a manually curated set of 

clinical annotations with information about PGx variants and their corresponding drug 

responses. 

 

1.4 Precision medicine and precision public health 

Precision medicine refers to an approach to treatment that considers the genetic 

variants harbored by an individual to tailor clinical decision making.  Despite holding great 

promise, this treatment paradigm requires genetic characterization of each individual 

patient and can thus be prohibitively expensive for the developing world and for 
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underserved patients from developed nations who do not have equitable access to 

healthcare. 

A recently articulated alternative to the precision medicine model is referred to as 

precision public health21-24.  The focus of precision public health is populations, instead of 

individuals, and the idea is to leverage modern healthcare technologies for more precise 

population-level interventions.  The mantra for precision public health is “the right 

intervention, to the right population, at the right time.”  This population-centered model of 

healthcare delivery, which moves away from the need to genetically characterize individual 

patients in favor of developing population profiles, provides one way for the technological 

innovations underlying precision medicine to realize their potential in developing countries 

and in underserved minority populations in the developed world. 

 

1.5 Ancestral origins 

1.5.1 Race and ethnicity in the US 

Race and ethnicity are treated as separate concepts in the US, as defined by the 

Office of Management and Budget (OMB).  According to the OMB, race and ethnicity data 

are collected for many Federal programs and are critical to making policy decisions 

(especially for civil rights).  These data are particularly important for assessing disparities 

in health and environmental exposures.  Individuals in the US self-identify with respect to 

both race and ethnicity, using the socially defined categories defined below. 
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1.5.1.1 Race in the US 

Race designations in the US are based on individuals self-identifying as having 

origins in population groups that correspond to broad geographic regions: “White” 

(Europe, the Middle East, or North Africa), “Black” (sub-Saharan Africa), “American 

Indian or Alaska Native” (Indigenous peoples of North and South America), “Asian” (East 

Asia, Southeast Asia, or Indian subcontinent), “Native Hawaiian or Other Pacific Islander” 

(Indigenous peoples of Hawaii, Guam, Samoa, or other Pacific Islands)25.  According to 

the OMB, racial categories on the US census “… generally reflect a social definition of 

race recognized in this country and not an attempt to define race biologically, 

anthropologically, or genetically.  In addition, it is recognized that the categories of the 

race item include racial and national origin or sociocultural groups.” 

 

1.5.1.2 Ethnicity in the US 

Ethnicity in the US census is narrowly defined as either having a Hispanic origin 

or not.  The OMB defines “Hispanic or Latino" as a person of Cuban, Mexican, Puerto 

Rican, South or Central American, or other Spanish culture or origin regardless of race26. 

 

1.5.2 Ethnic groups in the UK 

In the UK, ethnic groups are used in a way that is analogous to racial groups in the 

US.  Individuals in the UK self-identify as belonging to a single ethnic group – White, 
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Mixed (Multiple), Asian, Black, or Other – and choose a single ethnic background within 

each group. According to the Office for National Statistics in the UK, there is no consensus 

on what constitutes an ethnic group and membership is something that is self-defined and 

subjectively meaningful to the person concerned.  Elements that shape someone’s ethnicity 

include common ancestry and elements of culture, identity, religion, language, and physical 

appearance.  What seems to be generally accepted, however, is that ethnicity includes all 

these aspects, and others, in combination27. 

 

1.5.3 Genetic ancestry 

Genetic ancestry refers to genetic similarities derived from common ancestors28.  

Since genetic ancestry reflects distinct allele frequency patterns found in different 

populations, it can be indicative not only of biogeographic origins, born out of physical 

separation between populations, but also of ethno-cultural groups owing to reproductive 

isolation and endogamy. 

Genetic ancestry is a characteristic of the genome, which can be objectively defined 

with confidence and precision.  It can be represented as a categorical variable, capturing 

the discrete aspects of human genetic variation, or as a continuous variable reflecting the 

range of variation between discrete groups. 

As recent ancient DNA research has shown, the history of humanity shows repeating 

cycles of population isolation and divergence followed by interaction and mixture29.  The 

process of genetic exchange between previously diverged lineages is called admixture.  As 
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barriers to long-distance travel are reducing in the modern world, the process of admixture, 

which was historically limited to geographically proximate populations, is increasing.  

Admixture, i.e. contributions of different ancestral source populations to modern individual 

genomes, can be quantified through the construct of genetic ancestry. 

 

1.6 Using ancestral origins for health disparities research 

The relationship between race, ethnicity, and genetic ancestry is complex and 

requires nuanced understanding and analysis.  Race and ethnicity are markers of 

membership in social groups that influence, and are associated with social interactions, 

access to societal resources, and other socioenvironmental factors30.  Genetic ancestry on 

the other hand, is a characteristic of the genome and serves as a proxy for genetic diversity 

among human populations.  It serves as a marker for the likely presence of certain genetic 

variants in individuals descending from different ancestral populations31.  Given that all 

these constructs – race, ethnicity, and genetic ancestry – are related to one’s ancestral 

origins, they are correlated32-34.  Importantly, however, the specifics of the information 

carried by these related concepts differ in important ways.  Self-identified race and 

ethnicity carry information about the social experiences of an individual35 and serve as 

epidemiologic proxies, while genetic ancestry carries information about probability of 

carrying certain genetic variants.  Genetic ancestry also allows us to account for genetic 

admixture between ancestral populations – information that is not captured by categorical 

race and ethnicity labels.  Like a recent article on the use of race and genetic ancestry in 
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medicine30, I propose that all of these pieces of information – race, ethnicity, and genetic 

ancestry – be used to understand, characterize, and address health disparities. 

It should be made clear that the relevance of genetics to racial and ethnic health 

disparities remains a matter of contention36,37.  On the one hand, there are concerns that a 

focus on genetics will distract from more important socioeconomic determinants of health 

outcomes, and possibly reinforce stereotypes, which themselves contribute to disparities38-

40.  On the other hand, there is a growing sense that the insights being provided by genomics 

research on the genetic architecture of complex common diseases and cancer should be 

harnessed to enhance health equity8,41.  Bioethicists have begun to consider how genetics 

and genomics research can be used to reduce health disparities. Specific recommendations 

include expanding the focus of genomic research to underrepresented minority 

populations42-44, and an emphasis on gene-environment interactions that can be used to 

tailor population-level interventions9,10.  Given their large sample sizes and the inclusion 

of a plethora of environmental and lifestyle factors, population biobanks are ideally suited 

to support both of these recommendations.  Additionally, the inclusion of underrepresented 

populations in genetic research can support the identification of tailored diagnostics and 

interventions.  
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CHAPTER 2. POPULATION PHARMACOGENOMICS FOR 

PRECISION PUBLIC HEALTH IN COLOMBIA 

2.1 Abstract 

While genomic approaches to precision medicine hold great promise, they remain 

prohibitively expensive for developing countries.  The precision public health paradigm, 

whereby healthcare decisions are made at the level of populations as opposed to 

individuals, provides one way for the genomics revolution to directly impact health 

outcomes in the developing world.  Genomic approaches to precision public health require 

a deep understanding of local population genomics, which is still missing for many 

developing countries.  We are investigating the population genomics of genetic variants 

that mediate drug response in an effort to inform healthcare decisions in Colombia.  Our 

work focuses on two neighboring populations with distinct ancestry profiles: Antioquia 

and Chocó.  Antioquia has primarily European genetic ancestry followed by Native 

American and African components, whereas Chocó shows mainly African ancestry with 

lower levels of Native American and European admixture.  We performed a survey of the 

global distribution of pharmacogenomic variants followed by a more focused study of 

pharmacogenomic allele frequency differences between the two Colombian populations.  

Worldwide, we found pharmacogenomic variants to have both unusually high minor allele 

frequencies and high levels of population differentiation.  A number of these 

pharmacogenomic variants also show anomalous effect allele frequencies within and 

between the two Colombian populations, and these differences were found to be associated 

with their distinct genetic ancestry profiles.  For example, the C allele of the SNP 
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rs4149056 (SLCO1B1*5), which is associated with an increased risk of toxicity to a 

commonly prescribed statin, is found at relatively high frequency in Antioquia and is 

associated with European ancestry.  In addition to pharmacogenomic alleles related to 

increased toxicity risk, we also have evidence that alleles related to dosage and metabolism 

have large frequency differences between the two populations, which are associated with 

their specific ancestries.  Using these findings, we have developed and validated an 

inexpensive allele-specific PCR assay to test for the presence of such population-enriched 

pharmacogenomic SNPs in Colombia.  These results serve as an example of how 

population-centered approaches to pharmacogenomics can help to realize the promise of 

precision medicine in resource-limited settings. 

 

2.2 Introduction 

The precision medicine approach to healthcare entails a customized model whereby 

medical decisions and treatments are specifically tailored to individual patients45,46.  

Currently, precision medicine is most commonly implemented via pharmacogenomic 

methods, which account for how individuals’ genetic makeup affects their response to 

drugs47,48.  Pharmacogenomic knowledge of genetic variant-to-drug response interactions 

provides a means to optimize individual patients’ treatment regimes, simultaneously 

maximizing drug efficacy while minimizing adverse reactions.  Indeed, the essence of 

precision medicine has been described as “the right treatment, to the right patient, at the 

right time”.  While the precision medicine paradigm promises to revolutionize healthcare 

delivery, its prohibitive costs put it out of reach for the developing world.  In particular, 
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the need to characterize genomic information for each individual patient in a given 

population can place a tremendous burden on healthcare systems that may be struggling to 

provide basic services.  For the moment, precision medicine as a standard of care is still 

very much limited to the Global North. 

A recently articulated alternative to the precision medicine model is referred to as 

precision public health21-23.  The focus of precision public health is populations, instead of 

individuals, and the idea is to leverage modern healthcare technologies for more precise 

population-level interventions.  The mantra for precision public health is “the right 

intervention, to the right population, at the right time”.  This population-centered model of 

healthcare delivery provides one way for the technological innovations underlying 

precision medicine to realize their potential in developing countries.  With respect to 

pharmacogenomics, knowledge regarding population genomic distributions of the genetic 

variants that mediate drug response can be used to focus resources and efforts where they 

will be most effective49.  Under the precision public health model, population genomic 

profiles, as opposed to genomic information for each individual patient, can be employed 

to guide pharmacogenomic interventions; this is a far more cost-effective and realistic 

approach for the developing world50.  For this study, we applied the precision public health 

paradigm using a survey of the distribution of pharmacogenomic variants in diverse 

Colombian populations.  The major aim of this work was to tailor pharmacogenomic 

testing and interventions to the specific populations for which they will realize the greatest 

benefit. 
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Colombia is home to a highly diverse, multi-ethnic society.  The modern population 

of Colombia is made up of individuals with genetic ancestry contributions from ancestral 

source populations in Africa, the Americas, and Europe51-55.  Colombia is also known to 

contain a number of unique regional identities.  There are at least five distinct recognized 

regions in Colombia, each of which has its own defining demographic contours56,57.  In 

fact, owing to historical barriers to migration, Colombian populations with very different 

genetic ancestry profiles can be found in close geographic proximity.  This is very much 

the case for the two populations characterized for this study: Antioquia and Chocó58,59.  

Despite the fact that these neighboring administrative departments share a common border, 

their populations show clearly distinct genetic ancestries.  Antioquia has primarily 

European ancestry, whereas Chocó is mainly African, and both populations also show 

varying levels of Native American admixture. 

Previous studies have shown that the frequencies of pharmacogenomic variants can 

vary across populations with divergent genetic ancestries.  This includes variation in 

pharmacogenomic variant allele frequencies among distantly related populations 

worldwide60,61 as well as marked frequency differences among populations sampled from 

within the same country62,63.  We hypothesized that pharmacogenomic allele frequencies 

should differ between the Colombian populations of Antioquia and Chocó, given their 

distinct ancestry profiles.  If this was indeed the case, it would have direct implications for 

the development of pharmacogenomic approaches in the country.  In this way, we hoped 

that a survey of the population pharmacogenomic patterns for Antioquia and Chocó could 

serve as an exemplar for the implementation of precision public health in the developing 

world. 



 
12 

Colombia’s first clinical genomics laboratory – GenomaCES from Universidad CES 

in Antioquia (https://www.genomaces.com/) – is currently working to develop genomic 

diagnoses that are tailored to the local population, and members of the ChocoGen Research 

Project (https://www.chocogen.com/) are exploring the connections between genetic ancestry 

and health disparities in the understudied Colombian population of Chocó.  Here, these two 

groups have joined forces in an effort to (i) discover pharmacogenomic variants with 

special relevance for these two Colombian populations and (ii) develop cost-effective and 

rapid pharmacogenomic assays for those variants, which can be readily deployed in 

resource-limited settings. 

 

2.3 Materials and Methods 

2.3.1 Pharmacogenomic (PGx) variants 

Pharmacogenomic single nucleotide polymorphisms (PGx variants), i.e. human 

genetic variants associated with specific drug responses, were mined from the 

Pharmacogenomic Knowledgebase (PharmGKB https://www.pharmgkb.org/ accessed April 

2018)64.  PharmGKB provides a manually curated set of clinical annotations with 

information about PGx variants and their corresponding drug responses.  The PharmGKB 

clinical annotations were downloaded and filtered to extract all individual PGx variant 

clinical annotations.  Data on PGx variant clinical annotations were parsed and stored, 

including information about the direction and nature of the variant associated drug 

responses, the identity of each PGx variant effect and non-effect allele, the genes wherein 

PGx variants are located, and the drug interaction evidence levels. 
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2.3.2 PGx variant genetic variation 

Data on human genome sequence variation were taken from the phase 3 data release 

of the 1000 Genomes Project65.  For the 1000 Genomes Project, genome-wide SNPs were 

characterized via whole genome sequencing for 2,504 individuals from 26 global 

populations, including the Colombian population of Antioquia (CLM - Colombian in 

Medellín, Colombia https://www.coriell.org/0/Sections/Collections/NHGRI/1000Clm.aspx).  All of 

the PGx variants from PharmGKB were found to be present in 1000 Genomes Project 

phase 3 variant calls.  Genome sequence variation for the Colombian population of Chocó 

was characterized as part of the ChocoGen Research Project (https://www.chocogen.com/) as 

previously described58,59,66. 

Genome sequence variation data were used to calculate the average minor allele 

frequency (MAF) and fixation index (FST) for a genome-wide set of n=28,137,656 pruned 

SNPs and for the set of n=1,995 PGx variants using the program PLINK67.  Linkage 

disequilibrium pruning was performed to yield the genome-wide background SNP set with 

the PLINK indep command, using an r2 threshold of 0.5 with a sliding window of 50nt and 

a step size of 5nt.  MAF (!) values for each SNP were calculated across all populations as 

described as: 

! = 	
$%&'()	*+	,-).-$/	0./(0
/*/-1	$%&'()	*+	0./(0  (1) 

FST values for each SNP were calculated among populations as described as: 
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2!" =

3#

!̅ 	× (1 −	 !̅) 
(2) 

where !̅ is the average MAF across all 26 global populations and 3# is the observed 

MAF variation.  Pairwise genomic distances were computed as 1-identity-by-

state/Hamming distances between genomes using the PLINK distance command with the 

--distance-matrix option.  The resulting high-dimensional pairwise genomic distance 

matrix was projected in two dimensions using multi-dimensional scaling (MDS) method 

implemented in the base package of the R statistical language68.  The program 

ADMIXTURE was used to characterized genetic ancestry components based on the 

genome-wide and PGx variant sets using K=3 clusters69.   

The differences in PGx variant effect allele frequencies (f) between Antioquia 

(ANT) and Chocó (CHO) were measured as (1) the log-transformed ratio of the population-

specific allele frequencies as: 

log#( +$%"/+&'() (3) 

and (2) as the population-specific allele frequency difference as: 

 ∆	= +$%" − +&'( (4) 

These two effect allele difference metrics were plotted orthogonally and the 

Euclidean distance from the origin was calculated for each PGx variant to yield a composite 

difference. 
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2.3.3 PGx variant ancestry associations 

The influence of genetic ancestry on PGx variant genotype frequencies was 

measured via ancestry association analysis.  To do this, individuals’ genetic ancestry 

fractions – African, European, and Native American – inferred using ADMIXTURE with 

the genome-wide SNP set, were regressed against their individual PGx variant genotypes.  

The strength of the resulting ancestry × PGx variant associations were quantified using a 

linear regression model: ? = 	@A + 	C, where x C {0, 1, 2}, corresponding to the number of 

PGx variant effect alleles, y is the ancestry fraction for a given ancestral group (African, 

European, or Native American), and β quantifies the strength of the association.  The 

significance of the ancestry association is measured as the P-value obtained from a t-test, 

where / = @ DE)⁄ . 

 

2.3.4 Exome sequence analysis 

Whole exome sequence (WES) analysis was conducted on a cohort of 132 de-

identified patients characterized for the purposes of genetic testing by the GenomaCES 

laboratory70.  The study was carried out in accordance with article 11 of resolution 8430 of 

1993 of Colombian law, which states that for every investigation in which a human being 

is the study subject, respect for their dignity and the protection for their rights should 

always be present.   The study protocol was reviewed and approved by the ethics committee 

and the research committee of Universidad CES, and all subjects gave written informed 

consent authorizing use of their biological samples and genetic information obtained 

through exome sequencing for research and academic training in accordance with the 
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Declaration of Helsinki.  Patient DNA was extracted from peripheral blood using the 

salting out method71.  Exon enrichment was performed using the Integrated DNA 

Technologies xGen capture kit, and exome sequencing was performed on the Illumina 

HiSeq 4000, generating 150bp paired end reads at 100X coverage.  Read quality was 

assessed using the FastQC program with a threshold of Q≥3072.  Sequence reads were 

mapped to the hs37d5 (1000 Genomes Phase II) human genome reference sequence using 

SAMtools73, and variants were called using VarScan 274.  The resulting VCF files were 

surveyed for the presence of PGx variant alleles using the VCFtools package75.  Manual 

inspection of the mapped sequence reads in support of PGx variant variant calls was 

performed using the Integrative Genomics Viewer (IGV)76.  

 

2.3.5 Allele-specific PCR assay 

The identity of PGx variant allelic variants was assayed in the same 132 patients 

using custom-designed allele-specific PCR assays following the Web-based Allele-

Specific PCR (WASP) primer design protocol77.  Both the WASP and Primer-BLAST78 

tools were used to design pairs of allele-specific forward primers that overlap with the PGx 

variants of interest and their corresponding single reverse primers.  PCR assays were 

performed using the Thermo ScientificTM Taq DNA Polymerase kit, with 25 µL final 

reagent volume, on the Bio-Rad thermocycler (C1000 TouchTM Thermal Cycler).  PCR 

products were visualized and scored as homozygous non-effect allele, heterozygous, or 

homozygous effect allele using electrophoresis performed with 2.5% agarose gels stained 
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with ethidium bromide (10 μL) with a running time of 60 minutes at 70V in 1X TBE buffer.  

UV light was used to visualize the gel-separated PCR products. 

 

2.4 Results 

2.4.1 Pharmacogenomic SNP variation worldwide 

We operationally define pharmacogenomic single nucleotide polymorphisms (PGx 

variants) as human nucleotide variants that are known to affect how individuals respond to 

medications.  The Pharmacogenomics Knowledgebase (PharmGKB 

https://www.pharmgkb.org/) provides a catalog of PGx variants together with information 

regarding their known impacts on drug response.  PharmGKB categorizes PGx variants 

with respect to their specific effects on drug efficacy, dosage, or toxicity/adverse drug 

reactions as well as the level of evidence for their role in drug response: (1) high, (2) 

moderate, (3) low, or (4) preliminary.  We mined the PharmGKB database for PGx variants 

across all four evidence levels, yielding a total of 1,995 SNPs genome-wide. 

We evaluated the global patterns of PGx variant variation using whole genome 

sequence data for 26 populations from 5 continental (super) population groups 

characterized as part of the 1000 Genomes Project65.  Levels and patterns of variation for 

PGx variants were compared to a genome-wide background set of >28 million SNPs.  

Across all 26 global populations, PGx variants show a very high average minor allele 

frequency (avg. MAF=0.25) compared to genome-wide SNPs (avg. MAF=0.02) (Figure 

1A).  PGx variants also show significantly higher levels of the fixation index (avg. 
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FST=0.07), a measure of between-population differentiation, for global populations 

compared to genome-wide SNPs (avg. FST=0.01) (Figure 1B). 

It should be noted that the higher average minor allele frequency observed for PGx 

variants compared to genome-wide SNPs could reflect an ascertainment bias owing to a 

relative excess of rare variants in the 1000 Genomes Project sequence data.  However, no 

such bias is expected for the FST values as calculated here, which are largely unaffected by 

the presence of rare variants in the 1000 Genomes Project data79.  

Given the high levels of variation and between-population discrimination shown by 

PGx variants, we also evaluated the extent to which they carry information about genetic 

ancestry and admixture, particularly for the Colombian populations of Antioquia and 

Chocó.  Pairwise genomic distances were computed for the Colombian populations 

together with a set of global reference populations from Africa, the Americas, and Europe, 

using both PGx variants and the genome-wide SNP set.  Pairwise genomic distances 

computed using both sets of SNPs were used to reconstruct the evolutionary relationships 

among human populations worldwide.  The results for the genome-wide (Figure 1C) and 

PGx variant (Figure 1D) sets are highly similar.  The genome-wide SNP set does provide 

higher resolution and tighter groupings than the PGx variants, but the nature of the 

relationships among global populations does not change between the two SNP sets.  The 

African, European, and Native American populations occupy the three poles of the MDS 

plot, with Antioquia falling along the axis between the European and Native American 

groups and Chocó grouping more closely with the African populations.  Both Colombian 
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populations show evidence of substantial admixture compared to the global reference 

populations. 

 

Figure 1.  Patterns of variation for pharmacogenomic SNPs worldwide 

Average (A) minor allele frequency (MAF) and (B) fixation index (FST) values for all 
genome-wide SNPs (n= 28,137,656) and all PGx variants (n= 1995) across the 26 1KGP 
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populations studied here.  Multi-dimensional scaling (MDS) plots showing the inter-
individual genetic distances of admixed Colombian individuals (Antioquia and Chocó) in 
relation to global reference populations from Africa, Europe, and the Americas for (C) 
genome-wide SNPs and (D) PGx variants.  ADMIXTURE plots showing the genome-wide 
continental ancestry fractions using (E) all genome-wide SNPs and (F) only PGx variants 
for admixed Colombian populations (Antioquia and Chocó) and reference African (blue), 
European (orange), and Native American (red) populations. 

Given the high levels of variation and between-population discrimination shown by 

PGx variants, we also evaluated the extent to which they carry information about genetic 

ancestry and admixture, particularly for the Colombian populations of Antioquia and 

Chocó.  Pairwise genomic distances were computed for the Colombian populations 

together with a set of global reference populations from Africa, the Americas, and Europe, 

using both PGx variants and the genome-wide SNP set.  Pairwise genomic distances 

computed using both sets of SNPs were used to reconstruct the evolutionary relationships 

among human populations worldwide.  The results for the genome-wide (Figure 1C) and 

PGx variant (Figure 1D) sets are highly similar.  The genome-wide SNP set does provide 

higher resolution and tighter groupings than the PGx variants, but the nature of the 

relationships among global populations does not change between the two SNP sets.  The 

African, European, and Native American populations occupy the three poles of the MDS 

plot, with Antioquia falling along the axis between the European and Native American 

groups and Chocó grouping more closely with the African populations.  Both Colombian 

populations show evidence of substantial admixture compared to the global reference 

populations.  

We performed a similar comparison of the ability PGx variants to quantify patterns 

of genetic ancestry compared to genome-wide SNPs using the program ADMIXTURE.  

Using K=3 ancestry components, genome-wide SNPs clearly distinguish the reference 



 
21 

African, European, and Native American populations, and characterize the Colombian 

populations of Antioquia and Chocó as distinct mixtures of all three ancestries (Figure 1E).  

Consistent with previous results58, Antioquia shows an average of 61% European, 32% 

Native American, and 7% African ancestry, whereas Chocó shows primarily African 

ancestry (76%) followed by 13% Native American, and 11% European fractions.  PGx 

variants show qualitatively similar results albeit with lower resolution compared to the 

genome-wide SNP set (Figure 1F).  Using PGx variants, the global reference populations 

are not quite as distinct, and the European component of ancestry appears to be over-

estimated in both the Native American reference populations as well as Antioquia and 

Chocó.  Nevertheless, the clear distinction between the patterns of ancestry and admixture 

for the Colombian populations, whereby Antioquia is primarily European and Chocó is 

mostly African, is captured when only the PGx variants are used.    

 

2.4.2 Pharmacogenomic SNP variation in Colombia: Antioquia versus Chocó 

Despite the fact that the Colombian administrative departments of Antioquia and 

Chocó are located in close proximity, their populations have distinct global origins (Figure 

2A).  As discussed in the previous section and elsewhere53,58,59, the population of Antioquia 

shows mainly European genetic ancestry with substantial Native American admixture, 

whereas Chocó has primarily African ancestry with lower levels of Native American and 

European admixture.  In light of the high levels of global variation seen for PGx variants 

(Figure 1), we expected to see pronounced differences in the distributions of PGx variant 

alleles between Antioquia and Chocó.  Such differences should have implications for 
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public health strategies in the country, particularly with respect to the allocation of 

resources for pharmacogenomic testing. 

We compared the frequencies of PGx variant effect alleles between Antioquia and 

Chocó to test this hypothesis.  PGx variant effect alleles are operationally defined for this 

purpose as the allelic variants that increase the observed effect for a given drug-gene 

interaction, i.e. the alleles that increase the efficacy, dosage, or risk of toxicity/adverse drug 

responses for a drug.  To ensure maximum relevance of our results for public health in 

Colombia, we focused on PGx variants corresponding to the highest evidence levels in 

PharmGKB (levels 1 and 2; n=155 PGx variants).  PGx variant effect allele frequency 

differences between Antioquia and Chocó were measured in two ways – (1) as the log 

transformed ratio of allele frequencies Antioquia/Chocó and (2) as the allele frequency 

differences between Antioquia and Chocó – in order to capture both high relative 

differences at low allele frequencies and high absolute differences at high allele frequencies 

(Figure 2B).  When these two dimensions of PGx variant effect allele frequency differences 

are plotted orthogonally, the Euclidean distance from the origin captures the overall 

between-population difference seen for each SNP (Figure 2C).   

As expected, numerous PGx variant effect alleles show large frequency differences 

between Antioquia and Chocó (Figure 2).  We sought to quantify the role that the distinct 

genetic ancestry profiles of these two populations plays in these PGx variants effect allele 

frequency differences.  To do so, we developed and applied an ancestry association method 

whereby individuals’ genetic ancestry fractions – African, European, and Native American 

– are regressed against their genotypes for any given PGx variant.  This approach allows 
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us to visualize and quantify the influence of genetic ancestry on PGx variants genotype 

frequencies in these two diverse Colombian populations.  Figure 3 shows examples of 

ancestry associations for three PGx variants with high levels of effect allele (and genotype) 

divergence between Antioquia and Chocó; ancestry associations for nine additional PGx 

variants of interest to Colombia can be seen in Appendix A: Figure 25.  Table 1 shows the 

results of ancestry association analyses for 13 PGx variants of interest to Colombia, based 

on high levels of divergence between Antioquia and Chocó, and Appendix A: Table 9 

contains the ancestry association results for all level 1 and 2 PharmGKB SNPs showing 

PGx variant effect allele Euclidean distances >0.5 (as shown in Figure 2C). 

Tacrolimus: The T allele of the PGx variant rs776746 (CYP3A5*3) is found at 

higher frequency in Chocó and is positively correlated with African ancestry and 

negatively correlated with both European and Native American ancestry (Figure 3A).  This 

PGx variants is a splice site acceptor variant located within an intron of the CYP3A5 

(Cytochrome P450 Family 3 Subfamily A Member 5) encoding gene.  The T allele is 

associated with increased metabolism of Tacrolimus, an immunosuppressive drug often 

used to treat transplant patients, and thus individuals with T containing genotypes may 

require relatively higher dosages of this drug.  Consistent with these observations, 

physicians in Cali, Colombia have anecdotally reported that Afro-Colombian transplant 

patients do not respond well to standard doses of Tacrolimus. 

Warfarin: The C allele of the PGx variant rs9923231 (VKORC1*2) shows a similar 

pattern with higher frequency in Chocó, a positive correlation with African ancestry, and 

negative correlations with both European and Native American ancestry (Figure 3B).  This 
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PGx variant is one of several variants of the VKORC1 (Vitamin K Epoxide Reductase 

Complex Subunit 1) encoding gene that have been associated with warfarin sensitivity.  

The SNP is located in the upstream, regulatory region of the gene, and individuals with the 

C allele may require an increased dosage of warfarin. 

 

 

Figure 2.  PGx variants with population-specific effect allele frequency differences in 
Colombia. 

(A) Map of Colombia, highlighting Antioquia in green and Chocó in purple. Population-
specific mean ancestry fractions are shown as pie charts: African (blue), European 
(orange), and Native American (red).  (B) Comparison of the ratio of PGx variant effect 
allele frequency differences between Antioquia and Choco (y-axis) to the magnitude of the 
frequency differences (x-axis). Circles are scaled according to their Euclidean distance 
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(distance from the origin) and are colored to indicate the direction of their difference 
(green – higher effect allele frequency in Antioquia; purple – higher effect allele frequency 
in Chocó).  (C) Distribution of PGx variants with Euclidean distance>0.5.  Green indicates 
that the PGx variant effect allele is more frequent in Antioquia, while purple indicates that 
the effect allele is more frequent in Chocó. 

Warfarin: The C allele of the PGx variant rs9923231 (VKORC1*2) shows a similar 

pattern with higher frequency in Chocó, a positive correlation with African ancestry, and 

negative correlations with both European and Native American ancestry (Figure 3B).  This 

PGx variant is one of several variants of the VKORC1 (Vitamin K Epoxide Reductase 

Complex Subunit 1) encoding gene that have been associated with warfarin sensitivity.  

The SNP is located in the upstream, regulatory region of the gene, and individuals with the 

C allele may require an increased dosage of warfarin.   

Simvastatin: The C allele of the PGx variant rs4149056 (SLCO1B1*5) is found in 

higher frequency in Antioquia, showing a negative correlation with African ancestry and a 

positive correlation with European ancestry (Figure 3C).  The correlation with Native 

American ancestry for this SNP is not significant.  This SNP is a missense variant in the 

SLCO1B1 (Solute Carrier Organic Anion Transporter Family Member 1B1) encoding 

gene.  The C allele is associated with simvastatin toxicity, and individuals with this allele 

may be at higher risk for simvastatin-related myopathy.  These results agree very well with 

observations of physicians from the Universidad CES clinic in Antioquia, who have 

observed that ~30% of patients treated with Simvastatin show evidence of adverse drug 

reactions. 
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Figure 3.  Ancestry associations for PGx variants in Colombia. 

For each panel in the figure, PGx variant genotype frequencies are shown for Antioquia 
(green) and Chocó (purple) followed by the ancestry association plots.  For each genetic 
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ancestry component – African (blue), European (orange), and Native American (red) –
individuals’ ancestry fractions (y-axis) are regressed against their PGx variant genotypes 
(x-axis).  Ancestry associations are quantified by the slope of the regression (β) and its 
significance level (P).  Results are shown for (A) the tacrolimus metabolism-associated 
SNP rs776746 (CYP3A5∗3), (B) the warfarin dosage-associated SNP rs9923231 
(VKORC1∗2), (C) the simvastatin toxicity-associated SNP rs4149056 (SLCO1B1∗5), and 
(D) the metformin efficacy-associated SNP rs11212617. 

 

Metformin: The C allele of the PGx variant rs11212617 is found at substantially 

higher frequency in Chocó compared to Antioquia, and it is positively correlated with 

African ancestry and negatively correlated with both European and Native American 

ancestry (Figure 3D).  This PGx variant shows an interaction with the type 2 diabetes drug 

Metformin; the C effect allele was found to be associated with greater treatment success80.  

Interestingly, Metformin was subsequently proven to have higher efficacy for the reduction 

of blood glucose levels reduction in African-Americans compared to European-

Americans81,82.  Ergo, this ancestry associated PGx variant shows a direct connection 

between genetic ancestry differences and differential drug response.  
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Table 1.  Colombian ancestry-associated PGx variants of interest.  

The PGx variants marked with an asterisk (*) are shown in Figure 3.  

 

2.4.3 Cost-effective PGx variant genotyping in Colombia with allele-specific PCR 

The results from the analysis of PGx variant variation in Colombia uncovered a 

number of SNPs with specific relevance to the country, in terms of anomalous effect allele 

frequencies within specific populations, associations with different genetic ancestry 

groups, and broad relevance to public health.  We reasoned that such population genomic 

PGx variant Effect Frequency 

African 
Ancestry 

Correlation 

European 
Ancestry 

Correlation 

Native 
American 
Ancestry 

Correlation 

Antioquia Chocó β 
value 

P-
value 

β 
value 

P-
value 

β 
value 

P-
value 

rs776746 * Tacrolimus 
metabolism 

0.81 0.32 0.31 4.00e
-22 

-0.24 2.20e
-21 

-0.06 1.10e
-08 

rs1799853 Warfarin 
dosage 

0.88 0.97 -0.25 4.20e
-04 

0.21 2.50e
-04 

0.04 8.40e
-02 

rs9923231 * Warfarin 
dosage 

0.57 0.88 0.24 1.00e
-10 

-0.19 1.00e
-10 

-0.04 2.90e
-04 

rs4149056 * Simvastatin 
toxicity 

0.18 0.05 -0.22 2.80e
-04 

0.18 1.80e
-04 

0.00 6.20e
-02 

rs4244285 Clopidogrel 
efficacy 

0.90 0.84 0.09 1.36e
-01 

-0.06 1.87e
-01 

-0.02 1.67e
-01 

rs2740574 Tacrolimus 
metabolism 

0.10 0.59 0.32 1.20e
-22 

-0.24 2.20e
-21 

-0.06 1.00e
-09 

rs11615 Platin toxicity 0.48 0.07 -0.30 9.80e
-18 

0.25 2.50e
-19 

0.04 1.10e
-04 

rs11212617 Metformin 
efficacy 

0.33 0.74 0.28 5.30e
-16 

-0.21 8.30e
-15 

-0.06 2.70e
-07 

rs6977820 Antipsychotic 
drug toxicity 

0.25 0.68 0.28 5.30e
-16 

-0.19 1.70e
-12 

-0.07 1.20e
-11 

rs3812718 
Antiepileptic 

treatment 
resistance 

0.55 0.27 -0.27 2.00e
-06 

0.21 8.40e
-06 

0.05 7.74e
-04 

rs7793837 Salbutamol 
efficacy 

0.69 0.24 0.21 4.30e
-17 

0.21 2.90e
-16 

0.05 2.80e
-07 

rs1954787 Antidepressant 
efficacy 

0.62 0.21 -0.24 3.00e
-13 

0.18 6.80e
-12 

0.05 4.20e
-07 

rs1719247 Simvastatin 
adverse reaction 

0.54 0.27 -0.21 3.90e
-08 

0.17 3.50e
-08 

0.04 2.00e
-03 



 
29 

profiling can be used to focus efforts to develop precision medicine in the country and to 

maximize the return on investment for pharmacogenomic testing in resource-limited 

settings.  To this end, GenomaCES developed and validated three custom allele-specific 

PCR assays to genotype PGx variants of special relevance to these Colombian populations.   

The criteria for the selection of PGx variants that were interrogated with our custom 

allele-specific PCR assays included the PharmGKB evidence level along with a 

combination of population genomic and clinical information.  Pharmacogenomic assays 

were only developed for PGx variants from the PharmGKB evidence level 1A.  This is the 

highest evidence level and corresponds to PGx variants that are included in medical 

society-endorsed pharmacogenomics guidelines and/or implemented in major health 

systems.  The additional criteria used to prioritize PGx variants for the development of 

allele-specific PCR assays were: (i) observations of population-specific allele frequencies 

in Colombia along with related ancestry-associations, (ii) pharmacogenomic associations 

with drugs that are widely prescribed in Colombia and used to treat common conditions, 

and (iii) pharmacogenomic associations with drugs for which GenomaCES investigators 

have anecdotal information from collaborating physicians that pharmacogenomic tests 

would be of use to the local population, based on their observations of anomalous drug 

responses in their patients.  It should be noted that the population and clinical criteria are 

not mutually exclusive; indeed, physicians’ observations of anomalous drug responses in 

their patient populations are almost certainly related to the population-specific allele 

frequencies of the relevant PGx variants 



 
30 

An example of an allele-specific PCR assay developed for the simvastatin-

associated PGx variant rs4149056 (SLCO1B1*5), located with an exon of the SLCO1B1 

protein coding gene on the short arm of chromosome 12, is shown in Figure 4A.  The PGx 

variant variant detection assay relies on the use of two forward primers – one to capture 

the non-effect allele T and one to capture the effect allele C – and a single reverse primer.  

Use of these two primer-pairs results in allele-specific amplicons, depending on the 

presence of each allele in an individual patient’s genome.  PCR results are shown for four 

patients: Patient-132 homozygous TT, Patient-44 heterozygous TC, Patient-17 and Patient-

26 homozygous CC (Figure 4B).  We visualized the results of exome sequence analysis, 

with respect to the quality and coverage of mapped reads along with the counts of the 

different variant calls, to manually confirm the results of the allele-specific PCR assays 

(Figure 4C). 
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Figure 4.  Allele-specific PCR assay for PGx variants. 

(A) Schema depicting the design of the allele-specific PCR assay for the PGx variant 
rs4149056 (SLCO1B1*5) on chromosome 12.  Two allele-specific forward primers are 
designed for the PGx variant of interest and paired with a single reverse primer, yielding 
allele-specific amplicons.  (B) Allele-specific PCR results for four individuals are shown. 
PCR gel lanes are labeled with the allele used for the forward primer – T or C.  (C) Results 
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of exome sequence analysis used to confirm the results of the allele-specific PCR assays. 
Sequence reads (red – forward, blue – reverse) mapped to the genomic position for the 
SNP rs4149056, coverage levels (gray boxes above), and the identity of the called 
nucleotide variants at that same position are shown along with the reference nucleotide 
and amino acid sequences for the corresponding region of the SLCO1B1gene (protein).  
Images were taken from the Integrative Genomics Viewer (IGV). Confusion matrices 
showing comparisons between the PGx variant variant calls made via exome sequence 
analysis and the allele-specific PCR assays are shown for (D) the simvastatin toxicity SNP 
rs4149056 (SLCO1B1∗5), and the warfarin dosage SNPs (E) rs1799853 (CYP2C9∗2) and 
(F) rs1057910 (CYP2C9∗3).  Identical variant calls are shown along the diagonal, whereas 
off-diagonal calls show discrepancies between the exome and PCR variant calls; accuracy 
levels for each test are shown. 

 

Having confirmed the accuracy of the rs4149056 (SLCO1B1*5) variant detection 

assay, we then ran it on a cohort of 132 de-identified patients from the GenomaCES 

laboratory, all of whom have exome sequences available for confirmatory analysis.  The 

results of the allele-specific PCR and exome analyses are highly similar; taking the exome 

results as the ground truth against which to compare the PCR assay yields an overall 

accuracy of 97.7% for this test (Figure 4D).  Two additional allele-specific PCR assays for 

SNPs associated with warfarin dosage – rs1799853 (CYP2C9*2) and rs1057910 

(CYP2C9*3) – were tested on the same patient set and confirmed via exome sequence 

analysis.  These two allele-specific PCR genotyping assays show even higher accuracies 

of 98.5% and 100%, respectively.  We calculated a number of additional performance 

metrics for all three of these tests, breaking down each assay into its three constituent 

genotypes, the results of which are shown in Appendix A: Figure 26. 
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2.5 Discussion 

2.5.1 Caveats and limitations 

We would like to point out some of the caveats and limitations of the current study 

as they relate to the accuracy and utility of pharmacogenomic tests in understudied 

populations.  The reach of our analysis is somewhat limited by the focus on PGx variants, 

i.e. single nucleotide variants, as opposed to all possible genetic variants that may impact 

drug response.  PharmGKB contains annotations of gene-to-drug response interactions that 

are mediated by a number of different kinds of variants, including larger scale structure 

variants such as insertion/deletion events and copy number variations83,84.  Furthermore, 

there are a number of pharmacogenomic tests that rely on the characterization of 

combinations of linked SNPs, i.e. haplotypes or star-alleles.  For example, the most reliable 

warfarin sensitivity assays utilize multiple SNPs (haplotypes) across two genes in order to 

arrive at specific dosage recommendations85,86.  Our survey of PGx variant variation will 

not capture these complex classes of pharmacogenomic variants and interactions. 

Our focus on PGx variants can be primarily attributed to the availability and the 

reliability of SNP data at our disposal, as opposed to other more complex genetic variants, 

particularly for the population of Chocó, which was characterized using a genome-wide 

SNP array58,59,66.  Nevertheless, it is important to note that (i) there are numerous 

documented cases of individual SNPs that show demonstrable and reproducible effects on 

drug response87 and (ii) there are many more PGx variants available for analysis compared 

to the other variant classes64.  For example, ~93% of PharmGKB variant annotations 

correspond to individual PGx variants (1,995 out of 2,144 total variants).  Accordingly, we 
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are confident that our study design captures the majority of the pharmacogenomically 

relevant human genetic variation based on current knowledge in the field. 

Another limitation relates to the fact that we compared PGx variant allele 

frequencies among populations with distinct ancestries compared to the cohorts where they 

were originally characterized.  As with other classes of clinical genetics studies43,88, there 

remains a very strong bias whereby the majority of pharmacogenetic clinical trials have 

been conducted in developed countries on cohorts with European ancestry89,90.  Thus, it is 

formally possible that the PGx variants we analyzed may have different effects on drug 

response in our populations of interest.  Of course, the most rigorous way to assess the 

population-specific role of genetic variation in drug response would be to conduct clinical 

trials in all populations of interest.  Currently however, the high cost and complexity of 

performing clinical trials across multiple populations, particularly for variants with already 

well documented effects on drug response, renders this approach prohibitive.  In addition, 

it is important to point out that the associations between PGx variants and drug response 

that our study relies on are far more likely to be causal than associations uncovered by 

genome-wide association studies (GWAS), many of which do not replicate across 

populations with distinct ancestry profiles91.  This is because GWAS SNPs do not 

correspond to causal variants per se; rather, they are tag variants that mark haplotypes 

wherein the causal SNPs lie, and haplotype structure is known to vary widely across 

populations92.  PGx variants, on the other hand, correspond to the specific causal variants 

for which there is direct evidence of an impact on drug response.  This is particularly the 

case for the narrower set of 155 PGx variants deemed to be most confident by PharmGKB, 

which we used for our comparison of Antioquia and Chocó.  The strong clinical and 
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experimental evidence of these high confidence PGx variants effects on drug response 

gives us confidence with respect to their potential relevance for our populations of interest. 

 

2.5.2 The underlying complexity of so-called Hispanic/Latino populations 

As briefly mentioned in the previous section, a number of recent studies have 

underscored the major sampling bias that currently exists for human clinical genomic 

studies and emphasized the corollary importance of extending clinical trials to currently 

understudied populations.  These studies rely on a variety of labels related to 

“Hispanic/Latino” to describe understudied populations from Latin America, or individuals 

and communities with origins in Latin America.  For example, in a survey of the ancestry 

of study participants in GWAS cohorts, the authors used the label “Hispanic and Latin 

American ancestry”, showing that members of this group made up a mere 0.06% of GWAS 

study participants in 2009 and 0.54% in 201643.  Another study, which demonstrated the 

importance of using matched ancestry samples for clinical variant interpretation, employed 

the category “Latino ethnicity” to classify exome variants into a single control group88.  

The widely used Exome Aggregation Consortium (ExAC) database uses the term “Latino” 

as a population category for exome sequence variants93, and the 1000 Genomes Project 

uses the super population code “Ad Mixed American (AMR)” to group genetically diverse 

populations from Colombia, Mexico, Peru, and Puerto Rico65.   

It is interesting to note that the origins of the term Hispanic/Latino as a catch-all 

phrase to describe an extraordinarily diverse set of populations can be traced to decisions 

imposed by activists and bureaucrats of the US Census Bureau, motivated by the 
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opportunity to create a politically influential interest group94.  The results of our study 

highlight the artificial nature, and the lack of practical utility, of the Hispanic/Latino label 

as it pertains to clinical genetic studies.  Our two populations of interest – Antioquia and 

Chocó – would both be considered Hispanic/Latino, and in fact they are both from the same 

country within Latin America, but they have very distinct patterns of genetic ancestry and 

admixture.  Furthermore, we show here that the differences in genetic ancestry have 

specific implications for the pharmacogenomic profiles of each population.  The same thing 

will certainly hold true for many other sets of populations both within and between 

different Latin American countries.  In light of this realization, we would like to emphasize 

that the stratification of so-called Hispanic/Latino populations for clinical genetic studies 

should be performed using their distinct genetic ancestry profiles as opposed to a politically 

imposed pan-ethnic label. 

 

2.5.3 Population-guided approaches to pharmacogenomics in the developing world 

We hope that the population pharmacogenomic approach we applied to Colombian 

populations in this study can serve as model for their broader application in the developing 

world.  Currently, genomic approaches to precision medicine are prohibitively expensive 

for many developing countries owing to their reliance on deep genetic characterization of 

individual patients.  Precision public health, on the other hand, entails population-level 

interventions, and the focus on populations can provide a more cost-effective means for 

the implementation of novel genomic approaches to healthcare21-23.  Population-guided 

approaches to pharmacogenomics allow healthcare providers to allocate resources and 
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efforts where they will be most effective by uncovering pharmacogenomic variants with 

special relevance to specific populations49,50. 

Here, we report a number of examples of pharmacogenomic variants with 

anomalously high effect allele frequencies in distinct Colombian populations.  For 

example, the T allele of the PGx variant rs776746 is associated with African ancestry and 

found at a relatively high frequency in Chocó (Figure 4 and Table 1).  Since this variant is 

associated with the need for a higher dosage of the immunosuppressive drug Tacrolimus, 

Afro-Colombians may be particularly prone to organ rejection following allogeneic 

transplant.  Accordingly, the local deployment of a pharmacogenomic test for this 

particular SNP in Chocó would simultaneously focus limited resources for genetic testing 

while also ensuring an outsized impact for Afro-Colombian patients.  As another example, 

the population of Antioquia shows an elevated frequency of the C allele of the PGx variant 

rs4149056, which is associated with increased risk of simvastatin toxicity (Figure 4 and 

Table 1).  The development of a pharmacogenomic assay for this SNP, which is currently 

underway at GenomaCES in Antioquia, could help to mitigate the risk of adverse drug 

reactions to this commonly prescribed medication in the local population.     

 

2.6 Conclusion 

This is an auspicious moment for the development of pharmacogenomic approaches 

to public health in Colombia.  The Colombian biomedical community is simultaneously 

faced with a combination of great opportunities and profound challenges, both with respect 

to genomic medicine overall and for pharmacogenomics in particular95.  In all of Latin 
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America, Colombia is one of only two countries, together with Argentina, with nationalized 

healthcare systems that guarantee comprehensive coverage for all of its citizens.  In 2015, 

the terms of this guarantee were updated, via the Ministry of Health and Social Protection 

resolution 5592, to cover broadly defined molecular genetic and genomic tests.  This 

change resulted in a far more comprehensive coverage policy for these kinds of tests than 

currently exists in the United States, where many precision medicine treatments are still 

directly paid by patients96.  This resolution reflects great foresight on the part of Colombian 

policy makers and represents a tremendous opportunity for local biomedical researchers, 

clinicians, and the patients that they serve.  Furthermore, a very strong case has been made 

for how genome-enabled approaches to precision medicine should ultimately lead to 

substantial cost savings for the national healthcare system over the long term97,98. 

On the other hand, the costs of many of the tests covered by this policy are so expensive 

in Colombia that the sustainability of the policy has been called into serious question.  For 

example, the molecular biology reagents needed for tests of this kind can often cost three-

times as much or more in Colombia, compared to the United States, owing to taxes and 

tariffs.  We firmly believe that key solutions to this economic challenge will be to (i) build 

the local capacity needed to perform such tests and (ii) develop genomic assays that are 

specifically tailored to the needs of Colombian populations.  To these ends, Universidad 

CES has invested substantially in the development of local capacity in genomic medicine 

via the establishment of GenomaCES, which is Colombia’s first homegrown genomic 

medicine laboratory.  As we have shown here, GenomaCES is working to develop 

inexpensive and rapid pharmacogenetic genotyping tests based on relatively simple allele-

specific PCR assays.  Developing local tests of this kind can help to ensure that variants of 
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specific relevance to the country are prioritized for testing and to avoid the prohibitively 

high costs of commercially available tests and/or kits. 
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CHAPTER 3. POPULATION STRUCTURE AND 

PHARMACOGENOMIC RISK STRATIFICATION IN THE 

UNITED STATES 

3.1 Abstract 

Pharmacogenomic (PGx) variants mediate how individuals respond to medication, 

and response differences among racial/ethnic groups have been attributed to patterns of 

PGx diversity.  We hypothesized that genetic ancestry (GA) would provide higher 

resolution for stratifying PGx risk, since it serves as a more reliable surrogate for genetic 

diversity than self-identified race/ethnicity (SIRE), which includes a substantial social 

component.  We analyzed a cohort of 8,628 individuals from the United States (US), for 

whom we had both SIRE information and whole genome genotypes, with a focus on the 

three largest SIRE groups in the US: White, Black (African-American), and Hispanic 

(Latino).  Our approach to the question of PGx risk stratification entailed the integration of 

two distinct methodologies: population genetics and evidence-based medicine.  This 

integrated approach allowed us to consider the clinical implications for the observed 

patterns of PGx variation found within and between population groups.  Whole genome 

genotypes were used to characterize individuals’ continental ancestry fractions – European, 

African, and Native American – and individuals were grouped according to their GA 

profiles.  SIRE and GA groups were found to be highly concordant.  Continental ancestry 

predicts individuals’ SIRE with >96% accuracy, and accordingly GA provides only a 

marginal increase in resolution for PGx risk stratification.  PGx variants are highly 

diverged compared to the genomic background; 82 variants show significant frequency 
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differences among SIRE groups, and genome-wide patterns of PGx variation are almost 

entirely concordant with SIRE.  The vast majority of PGx variation is found within rather 

than between groups, a well-established fact for all genetic variants, which is often taken 

to argue against the clinical utility of population stratification.  Nevertheless, analysis of 

highly differentiated PGx variants illustrates how SIRE partitions PGx variation based on 

groups’ characteristic ancestry patterns.  These cases underscore the extent to which SIRE 

carries clinically valuable information for stratifying PGx risk among populations, albeit 

with less utility for predicting individual-level PGx alleles (genotypes), supporting the 

concept of population pharmacogenomics.  Perhaps most interestingly, we show that 

individuals who identify as Black or Hispanic stand to gain far more from the consideration 

of race/ethnicity in treatment decisions than individuals from the majority White 

population. 

 

3.2 Introduction 

Pharmacogenomic (PGx) variants are associated with inter-individual differences in 

drug exposure and response, affecting medication dosage, efficacy and toxicity19,20.  A 

number of studies have shown racial and/or ethnic differences in drug response99-103, based 

in part on group-specific differences in the frequencies of PGx variants49.  A 2015 review 

found that 20% of drugs approved over the previous six years showed response differences 

among racial/ethnic groups, and these differences are often translated into group-specific 

prescription recommendations that are issued on FDA-approved drug labels103.  Examples 

of such recommendations include contraindication of Rasburicase, a medication used to 
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clear uric acid from the blood in patients undergoing chemotherapy, for individuals of 

African or Mediterranean ancestry, and a toxicity warning for the anticonvulsant 

Carbamazepine in Asian patients.  A higher dosage of the immunosuppressive drug 

Tacrolimus is indicated for African-American transplant patients, whereas a lower initial 

dose of Rosuvastatin is recommended for Asians.  Despite the inclusion group-specific 

recommendations in a number of drug labels, the utility of racial and ethnic categories in 

biomedical research, and their relevance to clinical decision making, remain a matter of 

substantial controversy104-107. 

Critiques of the use of racial and ethnic categories in biomedical research point to 

the appalling history of race science108-110 and stress the potential of such research to reify 

outmoded notions of racial difference111-113.  This school of thought holds that race is a 

primarily a social construct with little or no biological (genetic) meaning114-118.  As it relates 

to clinically relevant PGx variation across groups, the extent to which racial and ethnic 

categories serve as a reliable proxy for genetic diversity has also been called into question.  

The authors of the recent commentary ‘Taking race out of human genetics’ make a 

compelling case for eliminating the use of race as a category in genetic research, asserting 

that race and ethnicity are taxonomic (i.e. categorical) labels that by definition cannot 

capture the full complexity of individuals’ genetic ancestry119.  They suggest that genetics 

research should instead focus on biogeographically defined populations and genetic 

ancestry, as opposed to racial categories, and for this study we hypothesized that genetic 

ancestry should better partition PGx variation than SIRE.  We posit that genetic ancestry 

provides a number of advantages over racial/ethnic categories for biomedical research: (i) 

it can be characterized independent of the social and environmental dimensions of 
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race/ethnicity, (ii) it can be measured objectively and with precision, and (iii) it can be 

quantified as a continuous variable, as opposed to categorical racial/ethnic labels.  Indeed, 

a number of recent studies have focused on PGx variation among populations defined by 

genetic ancestry rather than racial and ethnic groups60-63,120-122.  

The goal of this study was to compare the relative utility of race/ethnicity versus 

genetic ancestry for partitioning PGx variation among populations in the United States 

(US).  We focused on individuals aged 50 and older, 75% of whom take prescription 

medication on a regular basis123, and restricted our study to the three largest racial/ethnic 

groups in the US: White, Black (or African-American), and Hispanic/Latino124.  Our study 

cohort is made up of 8,629 participants from the Health and Retirement Study (HRS)125, 

for whom we had both SIRE information and whole genome genotypes.  We first compared 

the relationship between self-identified race/ethnicity (SIRE) and genetic ancestry (GA), 

characterized via analysis of whole genome genotype data, and we then measured the 

extent to which PGx variation is partitioned by SIRE versus GA.  We provide a number of 

examples of PGx variants that are highly differentiated among groups and discuss the 

implications of these findings in light of population genetics and clinical decision-making. 

 

Materials and methods 

3.2.1 Study Cohort 

Self-identified race and ethnicity (SIRE) information and whole genome genotypes 

for Americans over the age of 50 and their spouses were collected as part of a nationally-

representative longitudinal panel study called the Health and Retirement Study (HRS) 125.  
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For the current study, only HRS participants with both SIRE and genotype information 

were considered (8,912 participants).  The 284 participants who did not identify with one 

of the three largest racial/ethnic categories in the HRS data – non-Hispanic White (5,927), 

non-Hispanic Black (1,527), and Hispanic/Latino of any race (1,174) – were excluded from 

this analysis.  This yielded a total of 8,628 individuals in our final analysis cohort. 

 

3.2.2 Genetic Ancestry (GA) Analysis 

HRS participants were previously genotyped at ~2,381,000 genomic sites using the 

Illumina Omni2.5 BeadChip125.  Whole genome genotype data from HRS participants were 

compared to reference populations from Europe, Africa, and the Americas in order to infer 

their continental genetic ancestry patterns as previously described126 (see Additional file 1: 

Table S1) 65,127,128.  Reference populations were taken from (i) the 1000 Genomes Project 

(648)65, (ii) the Human Genome Diversity Project (110)127, and (iii) 21 Native American 

populations from across the Americas (90)128.  A custom script that employs PLINK 

version 1.9129 was used to harmonize the HRS and reference population variant calls.  The 

variant call data were merged by identifying the set of variants common to both datasets, 

with strand flips and variant identifier inconsistencies corrected as needed.  The initial 

merged and cleaned variant data set was filtered for variants with >1% missingness and 

<1% minor allele frequency among samples.  The final harmonized genotype data contains 

228,190 genomic sites.  The harmonized genotype dataset was phased using ShapeIT 

version 2.r837130.  ShapeIT was run without reference haplotypes, and all individuals were 
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phased at the same time.  Individual chromosomes were phased separately, and the X 

chromosome was phased with the additional ‘-X’ flag. 

A modified version of the RFMix program126,131 was used to characterize the 

continental genetic ancestry patterns for the HRS participants, with European, African, and 

Native American populations used as reference populations.  RFMix was run in the 

`PopPhased` mode with a minimum node size of five, using 12 generations and the “—

use-reference-panels-in-EM” for two rounds of EM, to assign continental ancestry for 

haplotypes genome-wide.  Contiguous regions of ancestral assignment, “ancestry tracts,” 

were created where RFMix ancestral certainty was at least 95%, and genome-wide 

continental ancestry estimates for HRS participants were obtained by averaging across 

confidently assigned ancestry tracts. 

Non-overlapping genetic ancestry (GA) groups were defined from individual 

participants’ continental ancestry estimates obtained via RFMix analysis using k-means 

clustering implemented in the Python package Scikit-learn132 with k=3.  Each participant 

was represented as a point in three-dimensional (3-D) space, parameterized by their three 

continental ancestry fractions.  Formally, the position of a participant (.) in this genetic 

ancestry space was defined by (E* , H* , I*), where E*, H*, and I* are the European, African, 

and Native American ancestry fractions.  K-means clustering using Euclidean distances 

between all pairs of individual participants in this 3-D genetic ancestry space to yield three 

non-overlapping clusters.  Given that k-means clustering can be unstable, the algorithm 

was run on these data 100 times and the most probable group membership was assigned to 

each participant.  This method allowed us to define three non-overlapping groups of HRS 
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participants informed entirely by their genetic ancestry and free from the social dimensions 

of SIRE. 

The association between GA and PGx variant genotypes was measured using our 

previously described method120.  To obtain the strength of association (@) between 

continental ancestry proportions and genotypes, continental ancestry fractions were 

regressed against the observed PGx variant genotypes.  Formally, the genetic ancestry 

fraction ? = @A + 	J, where A	 ∈ {0, 1, 2} refers to the number of PGx variant effect alleles.  

The significance of these ancestry associations was quantified using a t-test. 

 

3.2.3 Measurement of PGx Variation 

Single nucleotide variants (SNVs) associated with pharmacogenomic response – 

i.e. PGx variants – were mined from the Pharmacogenomic Knowledgebase 

(PharmGKB)20.  This online database is a source of manually curated clinical variant 

annotations for PGx variants and their associated drug-response phenotypes.  Data on the 

chromosomal locations of PGx variants, the identity of PGx effect (risk) alleles, PGx 

variants’ mode of effect (additive or dominant), clinical annotations, and clinical evidence 

levels were parsed and taken for analysis.  A total of 2,351 PGx variants were accessed 

from PharmGKB, 989 of which were genotyped for the HRS cohort.  Only directly 

genotyped PGx variants were used for analysis.  PharmGKB annotates the specific effect 

alleles that are associated with inter-individual differences in drug dosage, efficacy, 

metabolism, and toxicity.  The direction of effect (higher or lower) is specific to individual 
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PGx variants for dosage, efficacy, and metabolism whereas toxicity effect alleles always 

correspond to increased toxicity.  

PGx allele frequencies for SIRE and GA groups were computed as the group-

specific counts of effect alleles normalized by the total number of typed individuals for 

each group.  Pairwise between group fixation index (2!") values for each variant were 

computed by calculating two components: (i) the mean expected heterozygosity within 

subpopulations as: 

PQ! =	
1
2	R2(!*)(1 − !*)(

S*%$/*
/*/-1	S*%$/)

*
 (5) 

where !* is the frequency of risk allele in population ., and S*%$/* 	 is the number 

of individuals in population ., and /*/-1	S*%$/ refers to the total number of individuals in 

both populations and (ii) the expected heterozygosity in the total population as: 

P" = 2(!̅)(1 − !̅) (6) 

 where !̅ is the mean effect allele frequency in both populations under 

consideration.  The fixation index was computed by combining the two computed metrics 

as described as133: 

 
2!" = 1 −	

PQ!
P"

 (7) 

PGx variants were used to calculate pairwise inter-individual distances for all HRS 

participants using PLINK, and the resulting distance matrix was projected into two 

dimensions using multi-dimensional scaling (MDS) with the mds function in R.  K-means 
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clustering of the participants in MDS space was used to generate three non-overlapping 

PGx variant groups in the same way as described for the GA groups. 

Odds ratios (TU0) were calculated for group-specific PGx effect allele counts134.  

In a contingency table for the counts of effect allele in population PA with the four values: 

PE (Effect allele count in PA), PN (Non-effect allele count in PA), QE (Effect allele count in 

non-PA individuals), QN (Non-effect allele count in non-PA individuals), this was done 

using: 

TU = 	
V+/W+
W%/W%

 (8) 

with confidence intervals calculated as: 

XY = exp]1*^(TU) ± `,/# ∗ DE./0((2)b (9) 

where c is 0.05, `,/# is 1.6, and SE per: 

DE./0((2) =	d
1
V+
+	

1
V%

+
1
W+

+
1
W%

 (10) 

Similarly, using group-specific PGx effect counts the absolute risk increase (HUY) 

was calculated as: 

HUY = 	
V+

V+ 	+ 	V$
	− 	

W+
W+ 	+ 	W$

 (11) 

with confidence intervals calculated as: 
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XY = HUY ± `,/# × DE$24 (12) 

where c is 0.05, `,/# is 1.96, and SE per135: 

DE$24 =	eV+V$ +	W+W$	 (13) 

Group-specific genotype prediction accuracy values were calculated as: 

HSS%)-S? = (fV + fI)/(fV + fI + 2V + 2I) (14) 

where fV is true positives, fI is true negatives, 2V is false positives, and 2I is 

false negatives.  fV, fI, 2V, and 2I designations are assigned based on the SIRE group 

that shows enrichment for PGx effect allele (or genotype).  The presence of the PGx effect 

allele in the implicated SIRE group is counted as a true positive, whereas its presence in 

the other groups is counted as a false positive.  Conversely, the presence of the PGx non-

effect allele in the implicated SIRE group is counted as a false negative, whereas its 

presence in the other groups is counted as a true negative.  Accuracy confidence intervals 

are calculated as: 

XY = HSS%)-S? ±	`,/# 	× 	 d
E))*)5678*9:*/;

1 − E))*)5678*9:*/;
/I

!
 (15) 

where error is calculated using: 

E))*)5678*9:*/; =	
2V + 2I

fV + fI + 2V + 2I (16) 

I = fV + fI + 2V + 2I (17) 
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As noted before, when c is 0.05, `,/# is 1.96. 

Pre- and post-test probabilities were compared in order to compute the amount of 

information gained per 100 individuals based on PGx stratification with SIRE.  For any 

given PGx variant, the pre-test probability is calculated as the overall population 

prevalence of the PGx effect allele (additive mode) or genotype (dominant mode): 

V)(,-1($S(/<76=.. = X*%$/+$/X*%$/"/:=. (18) 

where X*%$/+$ is the count of the effect allele/genotype in the cohort and 

X*%$/"/:=. is the total count of alleles/genotypes at that locus in the cohort.  The post-test 

probability is calculated as the group-specific positive predictive values (PPVs) for the PGx 

effect allele or genotype.  VVg is calculated using: 

VVg$ = X*%$/+$$ /X*%$/"/:=.$  (19) 

where	X*%$/+$$  is the count of the effect allele/genotype in population A and 

X*%$/"/:=.$  is the total count of alleles/genotypes at that locus in the population A.  

Information gain is then calculated as: 

 Y$+*h-.$$ = |VVg$ − 	V)(,-1($S(/<76=..|. (20) 

 

3.2.4 Comparison of SIRE and GA 

To test whether PGx variant allele frequencies were correlated between SIRE and 

GA, pairwise PGx variant allele frequency differences calculated for SIRE groups were 
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regressed against allele frequency differences calculated for GA groups.  Here, the null 

hypothesis is P>:	@ = 	0, while the alternate hypothesis is P$:	@ ≠ 	0.  The significance of 

this correlation was testing using a t-test where / = (@/?@ − @7A5)/DE and V = V(fBC ≤

	@7A5).  Next, we tested whether GA groups partition PGx variation more than SIRE groups 

using the same regression.  For this test, the null hypothesis is P>:	@ = 	1, while the 

alternate hypothesis is P$:	@ < 	0.  An underlying assumption for this one-tailed test is that 

GA groups should hold more information about PGx allele frequency differences when 

compared to SIRE groups.  We calculated the difference in the expected (unity line) and 

observed (SIRE versus GA) regression slopes, n = 	 (@7A5 −	@/?@)/2 to quantify the 

magnitude of the effect.  A denominator of 2 was chosen to reflect the entire range of 

possible slopes that the data may take – going from −1, where SIRE groups reflect exactly 

the opposite difference in allele frequencies, to 1, where SIRE groups faithfully and 

completely capture the allele frequency differences observed in GA groups.  The statistical 

significance was tested using a t-test as described above. 

 

Results 

3.2.5 Self-identified race/ethnicity (SIRE) and Genetic Ancestry (GA) in the US 

We compared SIRE to GA for a cohort of 8,628 individuals characterized as part 

of the Health and Retirement Study (HRS), for whom both SIRE information and whole 

genome genotypes were available (Table 2).  HRS participants self-identified according to 

racial and ethnic labels defined by the US Government Office of Management and Budget 
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(OMB).  OMB defines five racial groups and two ethnic groups to assess disparities in 

health and environmental risks136.  HRS participants were asked to select one or more race 

category and a single ethnic designation as Hispanic/Latino or not.  We considered the race 

and ethnicity selections together and focused on the three largest categories in the HRS 

cohort: non-Hispanic White (5,927; 68.7%), non-Hispanic Black (1,527; 17.7%), and 

Hispanic/Latino of any race (1,174; 13.6%).  We refer to these three groups here as White, 

Black, and Hispanic.  The percentages of each SIRE group in the HRS cohort resemble the 

demographics of the US: White=72.4%, Black=12.6%, and Hispanic=16.3%136. 

 

Table 2.  Demographic description for the cohort used in this study. 

1Number (Percentage) 

2Median age in years (Confidence intervals) 

 All participants White Black Hispanic 

All1 
8,628  

(100.0) 
5,927  
(68.7) 

1,527  
(17.7) 

1,174  
(13.6) 

Sex1 
    

          Male 3,544  
(41.1) 

2,499  
(42.2) 

568  
(37.2) 

488  
(41.6) 

       Female 5,084  
(58.9) 

3,428  
(57.8) 

959  
(62.8) 

697  
(59.4) 

Age2 
57.5  

(57.0, 58.0) 
60.0  

(60.0, 60.5) 
54.5  

(54.5, 55.0) 
54  

(53.5, 54.0) 
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Figure 5.  Race, ethnicity, and genetic ancestry in the US. 

Continental genetic ancestry patterns are shown for self-identified race/ethnicity (SIRE) 
and genetic ancestry (GA) groups: European ancestry (orange), African ancestry (blue), 
and Native American ancestry (red).  HRS cohort participants are grouped by SIRE and 
GA, as described in the text, and continental ancestry fractions are compared for each 
grouping system.  Top row: continental ancestry fractions for individuals organized into 
the three SIRE and three GA groups.  Each column represents an individual genome, and 
the three continental ancestry fractions are shown for each individual column.  Middle 
row: ternary plots showing the continental ancestry fractions for the SIRE and GA groups, 
as illustrated by the relative proximity to each of the three ancestry poles.  Bottom row: 
average continental ancestry percentages for the SIRE and GA groups. 

Continental ancestry profiles were inferred for members of the HRS cohort by 

comparing their whole genome genotypes to whole genome sequence and genotype data 

for reference populations from Europe, Africa, and the Americas as described in the 

Materials and Methods.  Each HRS participant was assigned European, African, and Native 

American ancestry proportions, and the resulting ancestry profiles were then clustered into 

three distinct (non-overlapping) GA groups using k-means clustering.  GA groups were 

defined without reference to SIRE group labels, using unsupervised clustering on 

continental ancestry fractions alone, and the choice to cluster ancestry profiles into three 
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groups was made to allow for direct comparison with the three SIRE groups and in light of 

known patterns of continental ancestry in the US137.  Permutation analysis was used to 

confirm the stability of the resulting GA groups and their robustness to changes in sample 

size (see Appendix B: Figure 27).    The distributions of continental ancestry fractions were 

compared for the three SIRE groups – White, Black, and Hispanic – and the three GA 

groups (Figure 5).   

The three objectively defined GA groups appear to correspond well to the SIRE 

groups, with respect to the distributions of individuals’ continental ancestry fractions 

(Figure 5 – top row).  GA groups 1, 2, and 3 correspond to the White, Black, and Hispanic 

SIRE groups, respectively.  The distributions of continental ancestry fractions for the SIRE 

and their corresponding GA groups are compared in Appendix B: Figure 28.  Despite the 

apparent similarity between SIRE and GA, ternary plots underscore the broader 

distribution of ancestry fractions within SIRE groups compared to the non-overlapping GA 

groups delineated by k-means clustering (Figure 5 – middle row).  This is especially true 

for the Hispanic group, consistent with the fact that it may include individuals who identify 

as any race.  Overall, SIRE and the GA groups show similar average continental ancestry 

percentages: White/Group 1 show ~99% European ancestry, Black/Group2 have ~82% 

African ancestry, and Hispanic/Group 3 show predominantly European ancestry (~60%) 

with the highest levels of Native American ancestry (~37%) and the greatest variance in 

continental ancestry for any of the three groups.   

The correspondence between the SIRE and GA groups was quantified by 

characterizing the overlap of membership assignments across the two groupings (see 
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Appendix B: Figure 29).  Overall, individuals’ membership in the three SIRE and 

corresponding GA groups show 96.2% concordance.  The highest concordance is seen for 

the White/Group 1 pair, followed by Black/Group 2, with Hispanic/Group 3 showing the 

lowest concordance.  The levels of concordance vary according to which grouping system 

is taken as the reference for comparison.  This distinction is most obvious for the 

Hispanic/Group 3 pairing: 96.6% of Group 3 members self-identify as Hispanic, while only 

77.1% of self-identified Hispanics fall into Group 3. 

 

3.2.6 Pharmacogenomic variation in the US 

PGx variants that influence drug response were mined from the PharmGKB 

database, and levels of PGx variation were compared within and between the SIRE and 

GA groups defined for the HRS cohort.  Results for SIRE group comparisons are shown in 

Figure 6, and results for the analogous comparison of GA groups are shown in Appendix 

B: Figure 30.  PGx variants show higher allele frequencies, higher allele frequency 

differences between groups, and higher levels of heterozygosity compared to non-PGx 

variants genome-wide (Figure 6A-C).  We considered group-specific differences in PGx 

variation in terms of the fixation index (2!"), a commonly employed measure of population 

differentiation, and effect allele frequency differences.  PGx	2!" and effect allele frequency 

difference values are highly correlated, as can be expected, and the largest differences are 

seen for the Black-White and Black- 



 
56 

 

Figure 6.  Pharmacogenomic variation in the US. 

Genome-wide average allele frequencies (A), group-specific allele frequency differences 
(B), and heterozygosity fractions (C) are shown for PGx variants (red) compared to non-
PGx variants (blue).  (D-F) Fixation index (FST; y-axis) and allele frequency differences 
(x-axis) for pairs of SIRE groups.  Statistically significant PGx allele frequency differences 
are highlighted in black.  (G) Heatmap showing group-specific allele frequencies for 
significantly diverged PGx variants.  (H) Multi-dimensional scaling (MDS) plot showing 
the relationship among individual genomes as measured by PGx variants alone.  Each dot 
is an individual HRS participant genome, and genomes are color-coded by participants 
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SIRE.  (I) The correspondence between SIRE groups and PGx groups defined by K-means 
clustering on the results of the MDS analysis.  Data shown here correspond to SIRE 
groups; analogous results for GA groups are shown in Appendix B: Figure 30. 

Hispanic group comparisons (Figure 6D-F).  Notably, even the most extreme values of 2!" 

fall well below 0.5, indicating the most PGx variation is found within rather than between 

SIRE groups.  Nevertheless, there are 82 PGx variants that show statistically significant 

(FDR q<0.05) values of allele frequency differentiation between any individual SIRE 

group and the other two groups, i.e. their complements (Figure 6G).  The significantly 

diverged PGx variants show an average 2!" value of 0.15 compared to 0.05 for the 

remaining variants (see Appendix B: Figure 31).  All-against-all pairwise distances for 

HRS participants were calculated using PGx variants and projected into two-dimensions 

with multi-dimensional scaling (MDS).  K-means clustering was used to create three 

groups based on the PGx MDS distances, and individuals were labeled according to their 

SIRE (Figure 6H).  Genome-wide patterns of PGx variation characterized in this way show 

96.1% correspondence to SIRE group labels (Figure 6I). 
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Figure 7.  Self-identified race/ethnicity (SIRE) versus genetic ancestry (GA) for 
partitioning pharmacogenomic (PGx) variation. 

(A-C) Regression of pairwise PGx variant effect allele frequency differences calculated 
using SIRE (y-axis) versus the corresponding GA groups (x-axis).  Results of two statistical 
tests are shown for each of three pairwise group regressions.  Test 1 evaluates whether 
SIRE and GA PGx allele frequencies are correlated, and test 2 evaluates that amount of 
additional resolution on PGx variant divergence that is provided by GA compared to SIRE.  
Details on each test are provided in the text. 

 

3.2.7 SIRE versus GA for Partitioning Pharmacogenomic Variation 

Given the overall correspondence, and group-specific differences, seen for SIRE 

and GA, we wanted to compare the utility of SIRE versus GA for partitioning 

pharmacogenomic variation in the US.  Here, we asked two questions regarding PGx 

variation between groups: (1) are PGx allele frequencies correlated between SIRE and GA 

groups, and (2) do GA groups partition PGx variation more so than SIRE groups?  The first 

question was addressed by regressing PGx frequency differences between grouping 

systems (SIRE vs. GA groups), and the second question was addressed by considering the 
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deviation of the regression from the unity line (i.e. the expected value under perfect 

correlation).  As expected given the observed similarities between SIRE and GA groups, 

PGx allele frequency differences are highly correlated when corresponding group pairs are 

compared (Figure 7).  The highest correlation is seen when the Black and White SIRE 

groups are compared to their corresponding GA groups.  Comparisons that include the 

Hispanic SIRE group show lower levels of correlation.   

With respect to the second question regarding the partitioning of PGx variation, 

allele frequency differences between the Black/White SIRE groups and their corresponding 

GA groups fall almost entirely along the unity line; in this case, genetic ancestry does not 

provide any additional information regarding PGx variation (Figure 7A).  For both 

comparisons that include the Hispanic group however, the slope of the regression is less 

than one, indicating greater PGx allele frequency differences between GA groups 

compared to their corresponding SIRE groups (Figure 7B and 7C).  Thus, GA does provide 

more information than SIRE when ethnicity is considered, but the effect size of this 

difference is small (n=2.5% for Black/Group 2 vs. Hispanic/Group 3 and n=6.5% for 

Hispanic/Group 3 vs. White/Group 1). 

Thus far, we have shown that SIRE and GA groups are highly concordant for the 

HRS cohort and that PGx allele frequency differences are similar for both classification 

systems.  Since SIRE labels are routinely collected as patient provided information, and 

are also readily available as part of electronic health records, we focused on PGx variation 

between SIRE groups to explore the potential clinical utility of race and ethnicity.   We 

wanted to know whether PGx effect allele frequency differences of the magnitude observed 
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here have any utility for guiding medication prescription decisions in light of the fact that 

the majority of PGx variation is found within rather than between SIRE groups.  We 

considered the odds ratios for the apportionment of PGx risk alleles among individual SIRE 

groups and their complements as an indicator of SIRE groups’ predictive utility, given that 

odds ratios are widely used to associate categorical risk factors with health outcomes 134.  

We also computed absolute risk increase values to account for the population frequency of 

PGx risk alleles when considering the magnitude of between group differences as well as 

the accuracy with which SIRE group membership predicts PGx alleles or genotypes. 
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Table 3.  Examples of highly differentiated PGx variants. 

This table lists some examples of highly diverged PGx variants in the three SIRE groups under consideration.  In the table, ‘Ref. Pop.’ 
refers to Reference Population, OR refers to Odds Ratios, ARI refers to the Absolute Risk Increase percentage.  Values in brackets 
specify the 95% confidence intervals for each computation. 

 

   Effect allele frequency   

rsID Drug Effect White Black Hispanic Ref. 
Pop. OR ARI Accuracy 

rs1045642 Fentanyl Dosage 0.78 0.37 0.70 White 
3.26 

(2.96, 3.60) 

26.1 

(24, 28) 

68.5 

(67.0, 69.9) 

rs9934438 Warfarin Dosage 0.38 0.83 0.33 Black 
8.27  

(7.18, 9.54) 

45.93 

(44, 48) 

66.53 

(65.03, 68.03) 

rs2884737 Warfarin Dosage 0.27 0.04 0.18 Black 
8.99  

(7.43, 10.87) 

36.0  

(34, 38) 

52.5  

(50.5, 54.5) 

rs2500535 Nortriptyline Efficacy 0.05 0.06 0.26 Hispanic 
6.1  

(5.40, 6.82) 

20.3  

(18, 22) 

85.2  

(84.6, 85.9) 

rs11615 
Platinum 

compounds 
Efficacy 0.37 0.88 0.64 Black 

9.90  

(8.85, 11.09) 

45.95  

(45, 47) 

63.5  

(62.4, 64.6) 

rs20455 Atorvastatin Efficacy 0.36 0.79 0.40 Black 
14.2  

(11.11, 18.17) 

35.71  

(34, 37) 

50.01  

(47.9, 52.1) 

rs1048943 
Capecitabine, 

Docetaxel 
Efficacy 0.04 0.02 0.27 Hispanic 

12.74  

(11.14, 14.79) 

39.4  

(37, 42) 

87.3  

(86.5, 88.1) 

rs4646450 Tacrolimus Metabolism 0.16 0.84 0.33 Black 
66.80  

(49.17, 90.88) 

63.15  

(62, 65) 

71.5  

(70.2, 7.2) 

rs6977820 Antipsychotics Toxicity 0.04 0.28 0.05 Black 
14.8  

(12.13, 18.14) 

45.96  

(44, 48) 

60.09  

(58.4, 6.1) 

rs1801394 Methotrexate Toxicity 0.46 0.72 0.67 White 
2.82  

(2.63, 3.02) 

24.68  

(23, 26) 

59.40  

(58.2, 60.1) 

rs16969968 Nicotine Toxicity 0.66 0.95 0.80 Black 
8.17  

(6.97, 9.59) 

26.6  

(26, 28) 

43.17  

(41.4, 44.9) 
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Examples of highly differentiated PGx variants are shown in Table 3 and Figure 8.  

These examples were chosen as variants that had relatively high odds ratio values across 

different PGx effect types (dosage, efficacy, metabolism, and toxicity), highlighting 

instances for each of the three SIRE groups.   The relative percentages of PGx effect 

(above) and non-effect (below) alleles across SIRE groups reveal the extent of 

differentiation for these variants (Figure 8A), and the observed allele frequency differences 

are associated with SIRE group-specific continental ancestry fractions (Figure 8B-D).  

Nevertheless, as described above and shown in Figure 6, even highly differentiated PGx 

variants show levels of !!" that indicate substantially more within than between group 

variation (see pie charts in Figure 6B-D).  Despite the relatively high levels of within group 

PGx variation, these variants show high group-specific odds ratios and substantial absolute 

risk increase values.  In other words, HRS cohort members’ racial and ethnic self-identities 

carry substantial information that can be used to stratify pharmacogenomic risk at the 

population level.  However, the accuracy levels with which group affiliations predict 

specific risk alleles or genotypes are only marginally high, indicating that SIRE has 

relatively less utility for individual-level risk prediction compared to risk stratification. 

For example, the A allele of the PGx variant (rs1045642) in the ATP Binding 

Cassette Subfamily B Member 1 (ABCB1) gene is associated with a decreased fentanyl 

opioid dose requirement 138 (Figure 8B).  This PGx variant has a dominant mode of effect, 

such that patients with either the AA or GA genotype tend to metabolize fentanyl slower 

than patients with the GG genotype and will therefore require a lower dosage.  96.0% of 

variation for this PGx variant is partitioned within SIRE groups compared to 4.0% variation 

between groups.  However, the dosage-associated genotypes are far more common in 
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individuals who identify as White ("#=3.3, CI=3.0-3.6; $#%=26.1%, &%=24.0%-28.3%), 

and from the ancestry association plot, it can be seen that the effect allele (A) is highly 

correlated with European genetic ancestry (β=0.20, P=1.95e-35).  Self-identification as 

White predicts dosage-associated genotypes with 68.5% accuracy. 

Similarly, a PGx variant (rs2500535) in the Uronyl 2-Sulphotransferase (UST) gene 

has been found to be associated with the efficacy of nortriptyline – an antidepressant – in 

patients with major depressive disorder 139 (Figure 8C).  This PGx variant has a dominant 

mode of effect; patients with the A allele are associated with a decreased improvement of 

depression symptoms when prescribed nortriptyline.  These lower efficacy genotypes are 

more common in individuals who identify as Hispanic.  Even though the variation at this 

genomic site is far higher within (93.5%) compared to between (6.5%) groups, the odds 

ratio for having risk-associated genotypes is high for the Hispanic population ("#=6.07, 

&%=5.44-6.82) along with a high absolute risk increase ($#%=20.3%, &%=18.5%-22.2%).  

Hispanic ethnicity predicts nortriptyline efficacy-associated genotypes with 85.2% 

accuracy.  

Another PGx variant (rs6977820) found in the Dipeptidyl Peptidase Like 6 (DPP) 

gene has been associated with adverse response to antipsychotic drugs (Figure 8D).  This 

PGx variant has an additive effect mode, whereby the T allele is positively correlated with 

African ancestry and associated with tardive dyskinesia among Schizophrenia patients 

treated with antipsychotics 140.  When individuals that self-identify as Black are compared 

to the other two SIRE groups, most variation at this variant is found within (85.9%) rather 

than between (14.1%) groups.  However, the odds ratio for the presence of the risk allele 
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for adverse reaction to antipsychotics is high ("#=7.7, 95% &%=7.1-8.49), as is the absolute 

risk increase ($#%=47.2%, 95% &%=45.4%-48.9%), consistent with a substantially elevated 

risk of adverse drug reaction for the Black SIRE group compared to the others.  Individuals 

who self-identify as Black can be predicted to have the effect-associated allele with 73.0% 

accuracy. 

 

3.2.8 Clinical Value of Pharmacogenomic Stratification by SIRE 

We quantified the clinical utility of SIRE for partitioning PGx variation by 

comparing the ability to predict PGx effect alleles/genotypes before (pre) and after (post) 

stratification of the population by SIRE.  The approach we used is equivalent to the 

comparison of pre- and post-test probabilities for diagnostic tests, where the test in this 

case is patient stratification by SIRE.  For any given PGx variant, the pre-test probability 

is the overall population prevalence of the PGx effect allele/genotype, and the post-test 

probabilities are the group-specific positive predictive values (PPVs) for the PGx effect 

allele or genotype.  Allele counts were used to compute these probabilities for PGx variants 

that show an additive effect mode, and genotype counts were used for the dominant effect 

mode.  The absolute difference of the pre- and post-test probabilities calculated in this way 

was taken as a measure of the amount of information that is gained, with respect to PGx 

variant prediction for each specific group, when SIRE is used for patient stratification.   

When highly differentiated PGx variants (Figure 6G and Figure 8) are analyzed in 

this way, the SIRE groups that show the highest effect allele frequencies for any given 

variant provide substantial additional information for PGx prediction.  Considering the 
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PGx variant (rs2500535) that is associated with Nortriptyline efficacy (Figure 8C), 

stratification by Hispanic identity yields an additional 14 individuals, for every 100 patients 

to be treated, who are predicted to show decreased improvement of symptoms related to 

depressive disorder.  The information gain is even more extreme for the PGx variant 

(rs6977820) that is associated with antipsychotic toxicity (Figure 8D).  For this variant, 

stratification of individuals that self-identify as Black will yield an additional 39 out of 

every 100 patients that are counter-indicated for the antipsychotic medications owing to 

toxic side effects.  The overall levels of information gained via stratification by SIRE differ 

widely by group.  Individuals that self-identify as Black show the highest levels of 

information gain for PGx variant prediction followed the Hispanic and White groups, 

respectively (Figure 9).  This pattern can be attributed to the relative numbers of individuals 

in each SIRE group together with the extent of genetic diversification seen between groups.  

The relatively high frequency of PGx effect alleles (Figure 6A) also contributes to the 

amount information gain observed here, given the fact that PPVs depend on the prevalence 

of the condition that is being tested (i.e. the presence of PGx effect alleles/genotypes). 
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Figure 8.  Examples of highly differentiated pharmacogenomic (PGx) variants. 
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(A) SIRE group percentages of effect (above axis) versus non-effect (below axis) 
alleles/genotypes are shown for six highly differentiated PGx variants.  Allele counts are 
used for the additive PGx effect mode, and genotype counts are used for the dominant effect 
mode.  (B-C) The extent of within versus between group variation, ancestry associations, 
and PGx stratification/risk by SIRE groups are shown for three examples.  Ancestry 
associations relate the ancestry fractions for individuals that bear distinct PGx genotypes: 
European (orange), African (blue), and Native American (red).  Effect (blue) versus non-
effect (gray) allele/genotype counts are compared for the group enriched for a specific 
PGx variant compared to the other two groups.  Allele counts are shown for the additive 
PGx effect mode, and genotype counts are shown for the dominant mode.  Group-specific 
allele/genotype counts were used to compute odds ratios and absolute risk increase values 
(risk stratification) along with group-specific prediction accuracy values (risk prediction) 
as shown. 

 

Figure 9.  Information gained when SIRE is used for PGx stratification. 

The amount of information gained per 100 individuals is the number additional correct 
PGx variant predictions made when SIRE is used to stratify the population.  Information 
gain is calculated for all PGx variants in each SIRE group, as described in the text, and 
the group-specific distributions are shown as density distributions and box-plots (inset): 
White (orange), Black (blue), and Hispanic (red). 
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3.3 Discussion 

3.3.1 Concordance Between SIRE and GA in the US 

The SIRE and GA groups from the US analyzed here show >96% overall 

concordance (Figure 5, also see Appendix B: Figures 28 and 29).  It must be stressed that 

these results only apply to the three major racial/ethnic groups covered by the ~8,600 

individual HRS cohort; nevertheless, the concordance between SIRE and GA seen for the 

HRS cohort is very much consistent with a number of previous studies of the US 

population.  In 2005, investigators showed a 99.9% concordance between SIRE and 

genetically derived clusters for 3,636 individuals from four racial/ethnic groups141, and a 

2007 study reported 100% classification accuracy of individuals from geographically 

separated population groups when thousands of genetic variants were used for clustering34.  

More recently, a study of >11,000 cancer patients from The Cancer Genome Atlas found 

an 95.6% concordance between self-reported race (not ethnicity) and GA33, and a study of 

>200,000 individuals from the Million Veterans Program found >99.4% concordance 

between SIRE and GA32.  The latter two studies relied on machine learning classifiers 

powered by vectors of 7 and 30 ancestry principal components, respectively, whereas our 

clustering algorithm uses vectors of only three continental ancestry components to classify 

individual genomes.  Additionally, the distribution of GA fractions observed here for the 

HRS cohort SIRE groups is consistent with previous studies51,126,137,142,143.  Taken together, 

our results and others underscore the extent to which continental ancestry patterns can 

distinguish SIRE groups in the US. 
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Genetic differences accumulate among populations when they are reproductively 

isolated, and isolation by distance144 best accounts for the apportionment of human genetic 

diversity among global populations145.  Populations that are physically distant, or separated 

by major geographic barriers, are more genetically diverged than nearby populations146.  It 

follows that the appearance of population structure, i.e. distinct clusters of genetically 

related individuals, can represent an artifact of uneven sampling of human populations at 

extremes of distance147.  For instance, isolation by distance can explain much of the 

apparent genetic structure observed for major genome sequencing projects such as the 1000 

Genomes Project65,148 and the Human Genome Diversity Project127,149.  Conversely, when 

human populations are sampled more evenly across a range of distances, and in the absence 

of major geographical barriers, genetic diversity appears to be continuously distributed as 

a cline of variation150,151. 

Isolation by distance can be taken to explain the concordance of the SIRE and GA 

groups observed for the HRS cohort, since the three major US SIRE groups are made up 

of individuals with ancestry from continental population groups – European, African, and 

Native American – that were isolated at great distances for tens-of-thousands of years 

before coming back together over the last 500 years126,137.  Since each SIRE group contains 

distinct patterns of continental ancestry, they correspond well to objectively defined 

clusters formed based on the partitioning of GA (Figure 5, also see Appendix B: Figure 28 

and 29).  In addition, despite the fact that these population groups are currently co-located 

within the US, assortative mating based on culture stands as an ongoing reproductive 

barrier among groups152,153 (but see below for an important caveat regarding this fact).  It 

is nevertheless important to note that most of the SIRE and GA groups analyzed here are 



 
70 

not composed of individuals with highly coherent ancestry patterns.  Only the 

White/Cluster 1 groups show coherent ancestry patterns, whereas the Black/Cluster 2 and 

Hispanic/Cluster 3 groups are made of up of individuals that vary along a range of 

continental ancestry fractions (Figure 5 and see Appendix B: Figure 28).  This is especially 

true for the Hispanic group, consistent with the fact Hispanic is an intentionally broad label 

that covers individuals from different races and with very distinct ancestry patterns94. 

An important caveat with respect to the high concordance between SIRE and GA 

observed here relates to the age of the individuals in the HRS cohort (Table 2).  We chose 

to focus on older Americans given their disproportionate use of prescription 

medications123, and HRS recruited participants aged 50 and over starting in 1992.  The 

average age of the HRS cohort analyzed here is 57.5 years (CI: 57.0-58.0), and all of the 

study participants were born before 1965, when there were still “anti-miscegenation” laws 

in nineteen states154.  Rates of intermarriage among SIRE groups have increased 

substantially since that era155, and as admixture continues to increase over time, the 

ancestral coherence of SIRE groups is expected to fall precipitously.  Increased rates of 

immigration, coupled with the arrival of more globally diverse immigrant groups, will also 

blur boundaries between SIRE groups, potentially rendering the current labels clinically 

uninformative.  Indeed, the most widely used SIRE labels in the US are mandated by the 

OMB, and they will likely be revised in the near future to better capture the increasing 

diversity of the US population.  As such, the clinical relevance of SIRE will almost 

certainly decrease over time. 

3.3.2 Within versus between group genetic divergence 
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It has long been appreciated that the vast majority of human genetic variation is 

found within rather than between populations.  This fundamental result was first reported 

for worldwide racial groups, based on analysis of a handful of (surrogate) genetic 

markers156, and has since been confirmed by numerous studies of populations defined by 

GA using larger-scale analyses149,157-161.  The distinction between this fundamental result 

and the high concordance seen for SIRE and GA, as well as the ability to cluster human 

population groups at various levels of relatedness, can be explained by the difference 

between univariate methods for variance partitioning versus multivariate classification 

methods162,163.  The analysis of PGx variation reported here is univariate, since we focus 

on the apportionment of variation for individual PGx variants, and we confirm that the 

majority of PGx variation is found within the HRS cohort groups (Figure 6 and 8). 

We used a standard evidence based medicine analytical framework134,135 in an effort 

to understand the clinical relevance of PGx variation that is partitioned among SIRE groups 

in this way.  In particular, we asked how the observed PGx differences between groups 

could be clinically relevant when the majority of variation falls within population groups, 

even for the most divergent variants found here.  Despite the observed pattern of within 

versus between group PGx variation, we found numerous cases of high odds ratios and 

high absolute risk increases for the group-specific prevalence of PGx variants (Table 3 and 

Figure 8).  In other words, membership in any given SIRE group can entail substantially 

greater odds, and far higher risk, of carrying clinically relevant PGx variants compared to 

members of other groups.  Information of this kind should be an important consideration 

for clinicians charged with making treatment decisions and could also be of value for well-

informed patients.   
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Finally, it should be emphasized that humans are far more similar than they are 

different at the genomic level, both within and between population groups.  As of August 

2019, there were 674 million annotated single nucleotide variants among the ~3 billion 

sites in the human genome164.  Thus, more than 75% of genomic positions are conserved 

among all human population groups, and for those positions that do vary, the majority are 

rare variants that segregate at <1% frequency worldwide65.  Nevertheless, the results 

reported here underscore the potential clinical relevance for those genetic variants that do 

show relatively high levels of between-group divergence. 

 

3.3.3 Caveats and limitations 

It is important to note that in this study we measure the frequency of PGx variants 

across different SIRE and GA groups, rather than drug response differences per se.  Even 

though the penetrance of PGx variants is generally high20, clinical interpretations of variant 

frequency differences should be considered in light of variable penetrance levels as well.  

In cases of low penetrance, the magnitude of drug response differences between groups 

will be dampened.  Furthermore, if PGx variants have different magnitudes of effect for 

different groups, i.e. group-specific effect sizes, then differences in drug response cannot 

be directly inferred from PGx variant frequency differences alone.  However, since the 

majority of PGx variants are causative protein coding variants20, the likelihood of group-

specific effect sizes is far lower than would be expected for non-coding variants discovered 

by genome-wide association studies, which are typically tag markers that are linked to 

nearby causative variants.  Finally, the focus on single nucleotide variants (SNVs) is 
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another limitation of the study, given the fact structural variants and multi-variant 

haplotypes have also been associated with inter-individual drug response differences.  

Nevertheless, the vast majority of PGx variants annotated in the PharmGKB database are 

SNVs20, suggesting that our analytical approach captures most of the known variant-drug 

associations. 

 

3.4 Conclusions 

As previously noted, demographic trends in the US suggest that the clinical 

relevance of SIRE, including its predictive utility for PGx variation, is expected to 

continuously decrease over time.  The increasing adoption of routine genetic testing for 

precision medicine could also render SIRE obsolete for stratifying PGx variation165.  This 

is because genotyping of specific PGx variants will obviously provide far more accurate 

risk prediction than SIRE.  For example, even a highly divergent PGx variant, like the 

antipsychotic toxicity associated variant rs6977820 (Figure 8D), will yield a mis-prediction 

of the PGx risk allele 27% of the time if SIRE alone were used as a predictor.  In this sense, 

the high group-specific PGx odds ratios and absolute risk increases observed in this study 

are best considered as surrogate guides to inform the optimal choice of prescribed 

medication, rather than precise diagnostic tools.  In other words, SIRE categories provide 

valuable information for stratifying PGx risk at the population level but not for predicting 

individual-level PGx variants.  Having said that, and despite the promise of population 

scale genomic screening initiatives and biobanks18, such as the NIH All of Us project166, 

the day when all Americans will have ready access to their genetic profiles remains far in 
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the future.  Unfortunately, this is likely to be even more so for minority communities that 

are vastly underrepresented among clinical genetic cohorts43,88.  Until that time, SIRE will 

remain an important feature for clinicians to consider when making treatment decisions.  

Perhaps most importantly, the current utility of SIRE is most apparent for groups who 

are underrepresented in biomedical research.  Individuals who self-identify as Black or 

Hispanic stand to gain far more information with respect to precision treatment decisions 

than those who identify as White (Figure 9).  This finding can be attributed to the relative 

frequencies of individuals in each of the three SIRE groups analyzed here, which closely 

mirror the current demography of the US, and the extent of genetic divergence among 

groups.  If a ‘one size fits all’ approach to drug prescription is used, patients who identify 

as White are more likely to receive the most appropriate treatment, since their PGx variant 

frequencies will be closest to the overall population mean.  Conversely, individuals who 

identify as Black or Hispanic have the most to lose if SIRE is not considered when making 

treatment decisions. 
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CHAPTER 4. THE LANDSCAPE OF HEALTH DISPARITIES IN 

THE UK BIOBANK 

4.1 Abstract 

Publicly accessible resources that catalog health disparities in the UK Biobank do 

not exist.  Such resources can enable researchers to explore the landscape of health 

disparities and direct their attention to areas of research which might have the most impact.  

Here, we developed the UK Biobank Health Disparities Browser for groups defined by 

age, country of residence, ethnic group, sex, and socioeconomic deprivation.  We defined 

disease cohorts by mapping ICD-10 diagnosis codes from the UK Biobank to phenotype 

codes (phecodes).  Phecodes aggregate one or more related ICD-10 codes into distinct 

diseases, and they use both inclusion and exclusion criteria to define disease case and 

control cohorts.  For each of the population attributes used to define groups, disease percent 

prevalence values were computed for all groups, and the magnitude of the disparities were 

calculated by both the difference and ratio of the range of disease prevalence values among 

groups in an attempt to identify high and low prevalence disparities, respectively. 

We identify several disease phenotypes with disparate prevalence values across 

population attributes and have deployed an interactive web browser accessible at 

https://ukbatlas.health-disparities.org.  The interactive browser includes prevalence data 

for 1,513 diseases based on a cohort of >500,000 participants from the UK Biobank.  

Researchers can browse and sort by disease prevalence and differences to visualize health 
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disparities for each of these five population attributes, and users can search for diseases of 

interest by disease names or codes. 

 

4.2 Introduction 

Health disparities can be defined as differences in health outcomes between groups 

of people, where the groups can be delineated in a variety of ways.  These differences in 

outcomes are often multifactorial and can be attributed to a combination of biological, 

social, and environmental factors14.  Easy availability of information on health disparities 

can allow researchers and policy makers in identifying areas of research and/or 

interventions where possible.   

Biobanks, being repositories of large amounts of demographic and clinical data16,17, 

are ideally suited for characterizing health disparities.  The UK Biobank is arguably the 

largest and most mature biobank that is available to researchers.  Accordingly, the UK 

Biobank167,168 offers an unprecedented opportunity to characterize the landscape of health 

disparities in the United Kingdom.  It should be noted that participants of the UK Biobank 

are generally healthier and wealthier than the general population169, and this “healthy 

volunteer” bias might dampen the extent of some of the disparities identified here.  

Additionally, given the diverse, cosmopolitan nature of the population of the UK170, 

characterizing disparities using the UK Biobank can support of health equity for 

underserved minority populations. 
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We developed the UK Biobank Health Disparities Browser as a means for 

researchers to explore the landscape of health disparities in the United Kingdom, for groups 

defined by age, country of residence, ethnicity, sex, and socioeconomic deprivation.  The 

browser includes prevalence data for 1,513 diseases based on a cohort of >500,000 

participants from the UK Biobank.  Users can browse and sort by disease prevalence and 

differences to visualize health disparities for each of these four groups, and users can search 

for diseases of interest by disease names or codes. 

 

4.3 Methods 

4.3.1 Study cohort 

We used participant data from the UK Biobank, a prospective cohort study set up 

to investigate the lifestyle, environmental, and genetic determinants of a wide variety of 

diseases of adulthood.  The study recruited over 500,000 participants aged between 40 and 

70 years between 2006 and 2010167.  Participant data includes completed questionnaires, 

nurse-led interviews, medical assessments, and biological samples. 

 

4.3.2 Population attributes and comparison groups 

We used the following fields from UK Biobank data: (1) age (Field 21003: Age 

when attended assessment center)171, (2) assessment center (Field 54: UK Biobank 

assessment center)172, (3) ethnic group and background (Field 21000: Ethnic 
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background)173, (4) ICD-10 codes (Field 41270: Diagnoses – ICD10)174, (5) sex (Field 31: 

Sex)175, and (6) Townsend deprivation index (Field 189: Townsend deprivation index at 

recruitment)176.   

Investigators from the UK Biobank invited participants who lived within 25 miles 

of one of the 22 recruitment centers located across England. Scotland, and Wales.  

Accordingly, we used the location of a participant’s assessment center to determine their 

country of residence. 

We used the Townsend index of deprivation as a measure of socioeconomic 

deprivation.  The Townsend index is a composite metric the incorporates (1) 

unemployment, (2) non-car ownership, (3) non-home ownership, and (4) household 

overcrowding in a given area177.  A higher value of the Townsend index indicated higher 

material deprivation while lower values indicate relative affluence.   

Comparison groups were defined for each of the five population attributes studied 

here: age, country of residence, ethnic group, sex, and socioeconomic deprivation.  

Participants were partitioned into four groups based on their age at recruitment (35-44, 45-

54, 55-64, and 65-74 years old).  Three groups were created for country of residence 

(England, Scotland, and Wales; The UK Biobank did not have recruitment centers in 

Northern Ireland).  The initial questionnaire for recruitment asked participants to identify 

as one of six ethic groups (Asian, Black, Chinese, Mixed, White, or Other), and a distinct 

ethnic background within each group.  Participants’ self-identified ethnic groups were used 

to create groups for comparison.  For socioeconomic deprivation, the participants were 
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divided into five equal groups using the Townsend index of deprivation (as quintiles).  For 

sex, males and females were compared. 

 

4.3.3 Phenotype case/control cohorts 

We used the UK Biobank participants’ ICD-10 diagnosis codes to define 

case/control cohorts using the phecode scheme defined be the PheWAS consortium178,179.  

The phecode scheme provides phenotype-specific inclusion and exclusion criteria ICD-10 

codes for generating case/control cohorts from electronic health records.  These phecodes 

are manually curated and validated by physicians and experts.  This approach allows 

investigators to define clearly distinct case and control cohorts that can be compared 

confidently.  Phecode case/control cohorts were curated for a total of 1,513 diseases or 

health-related conditions. 

 

4.3.4 Disease prevalence and quantifying disparities 

The prevalence for each of the 1,513 disease was calculated for the overall cohort 

and each individual group defined by the population attributes under consideration.  The 

prevalence was calculated as: 

 '()*+,)-.) =
0#$%&%

0#$%&% + 0#'()*'+%
 (21) 

where 0#$%&% refers to number of cases and 0#'()*'+% refers to number of controls. 
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For each population attribute under consideration, we calculated the range of 

prevalence values for each of the constituent groups as: 

#+-2)	4566)()-.) = 7+8('()*,-%&$%&) − 75-('()*,-%&$%&) (22) 

where	'()*,-%&$%& = <'()*,-%&$%&
.*'/01 , '()*,-%&$%&

.*'/02 , '()*,-%&$%&
.*'/03 , … ? along with 

calculating the ratio of the range of prevalence values as: 

#+-2)	(+@5A = ,A22(
7+8('()*,-%&$%&)
75-('()*,-%&$%&)

) (23) 

Taken together, these two metrics enable the identification of health disparities for 

high prevalence diseases (using the #+-2)	4566)()-.)) and for those diseases with low 

overall prevalence values (using #+-2)	(+@5A).  On plotting these two metrics 

orthogonally, we computed a unified disparity score defined as the Euclidean distance from 

the origin as: 

B5CD+(5@E	C.A() = 	F(#+-2)	4566)()-.))2 + (#+-2)	(+@5A)2 (24) 

Within a population attribute, a relative disease burden was calculated for each 

group as: 

#BG.*'/0 = 1 −
07+8.*'/0
0I,,$*2  (25) 
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where, #BG.*'/0 refers to group-specific relative disease burden, 07+8.*'/0 

refers to the number of phenotypes where J(AID has the highest prevalence, and 

0I,,$*2 refers to the null expectation calculated as 
1,513

6!"#$%&
 (0.*'/0% is the number 

of groups for that population attribute).  An #BG.*'/0 value of 0 would mean that 

the J(AID in question has the highest prevalence for exactly 0I,,$*2 diseases.  A 

high positive value would represent a disproportionately high burden of disease for 

the sub-population J(AID, while a negative value would indicate a 

disproportionately low burden of disease. 

 

4.3.5 Interactive web server 

Data processing and analysis were done using the Pandas library in Python180.  Plots 

were made using the ggplot2 library181 in the R statistical language v3.6.168.  The 

interactive webserver was developed using the Plotly Dash framework182. 

 

4.4 Results 

4.4.1 Health disparities across population attributes 

Overall, we had information on the following population attributes for 500,428 

participants from the UK Biobank: age, country of residence, ethnic group, sex, and 

socioeconomic deprivation (SED) (Table 4).  Most of our analysis cohort falls primarily 

between the ages of 55 and 64 (42.3%), resides in England (88.7%), identify as belonging 
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to the White ethnic group (94.3%), and is Female (54.4%) (Table 4).  Leveraging the 

phecode schema179, which specifies ICD-10 diagnosis codes inclusion and exclusion 

criteria for phenotypes, we generated 1,513 case/control cohorts.  For each of these 

case/control cohorts, we calculated the prevalence of disease in groups defined by the five 

population attributes under consideration.  Next, health disparities were quantified as the 

difference and ratio of the range of disease prevalence among groups defined by population 

attributes under consideration (Figure 10; Appendix C: Figures 32-35).  The two metrics 

employed – range difference and range ratio – were combined into a single, comparable 

metric by computing the Euclidean distance from the origin in a space parametrized by 

these two parameters.  On comparing different population attributes, we find that ethnic 

groups show that most disparity (median disparity score: 2.00), followed by age (median 

disparity score: 1.32), country of residence (median disparity score: 0.70), SED (median 

disparity score: 0.68), and sex (median disparity score: 0.58) (Figure 11). 

 

Table 4.  Cohort table. 

Characteristic Number (%) 
Complete cohort 500,428 
Age 

35-44 
45-54 
55-64 
65-74 

  
51,473 (10.3) 
141,781 (28.3) 
211,518 (42.3) 
95,656 (19.1) 

Country of residence 
England 
Scotland 
Wales 

  
444,061 (88.7) 
35,655 (7.1) 
20,712 (4.1) 

Ethnic group 
Asian 
Black 
Chinese 
Mixed 

  
9,823 (2.0) 
8,019 (1.6) 
1,569 (0.3) 
2,908 (0.6) 
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Other 
White 

6,422 (1.3) 
471,687 (94.3) 

Sex 
Female 
Male 

  
272,368 (54.4) 
228,060 (45.5) 
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Figure 10.  Disease phenotype disparities for ethnic groups. 

Each point is a disease phenotype and is colored to indicate the ethnic groups with the 
highest prevalence for that phenotype.  The size and opacity of each point is scaled by the 
distance from origin. 
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Figure 11.  Distribution of disease-level disparity score per population attribute.   

Each point is a disease phenotype plotted with its disparity score among the groups defined 
by each population attribute under consideration. 

We evaluated pairwise correlations between the different disease phenotype 

disparity scores for each population attribute and found that country of residence and SED 

had the highest correlation (Spearman r = 0.95) and ethnic group and sex had the lowest 

correlation (Spearman r = 0.27). (Appendix C: Figure 36). 
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4.4.2 Health disparities among groups defined by population attributes 

To identify groups with disproportionately high disease prevalence across 

phenotypes, we quantified the relative disease burden for groups defined by each 

population attribute (Figure 12).  This was done by calculating the deviation from the 

number of times a group had the highest prevalence of disease phenotypes compared to the 

null hypothesis of equally distributed disease prevalence.  Among the groups defined by 

age, we find that participants aged between 65 and 74 years of age had the highest relative 

burden of disease (1.27) while those aged between 45 and 54 seemed to have the lowest 

burden of disease (-0.71) in our analysis cohort.  For groups defined by country of 

residence, those residing in England had the highest relative burden of disease (0.91) and 

those residing in Scotland had the lowest (-0.51).  Those identifying as belonging to the 

Asian ethnic group had the highest relative burden of disease (0.52) while those identifying 

as Chinese had the lowest (-0.47).  We see that the most socioeconomically deprived 

quintile of participants (Q5) has the highest relative burden of disease (2.00) while those 

in the third quintile seem to have the lowest (-0.69).  We also find that females have a 

higher relative burden of disease (0.05) compared to males (-0.05). 
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Figure 12.  Relative disease burden across groups defined by population attributes.   

Each bar shows the relative burden of disease among all groups defined by a population 
attribute. 

 

We identified the most disparate disease for groups defined by each population 

attribute under consideration (Table 5).  We find that Essential hypertension is a large 

health disparity across four out of the five population attributes studied here.  Prevalence 
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values for each group defined by the different population attributes under consideration, 

along with the disparity metric can be accessed using the interactive browser. 

 

Table 5.  Most disparate diseases for groups defined by each population attribute. 

No. Phenotype Range 
difference 

Log2(range 
ratio) 

Overall 
prevalence 

Group with 
maximum prevalence 

Age 
1 Essential hypertension 33.67 2.72 22.51 65-74 
2 Hypercholesterolemia 16.60 3.14 9.98 65-74 
3 Diverticulosis 14.89 3.11 9.40 65-74 
4 Obstetrical/birth trauma 9.17 9.84 1.39 35-44 
5 Cataract 12.70 4.36 5.45 65-74 

Country 
1 Essential hypertension 12.61 1.11 22.51 England 
2 Other mental disorder 9.54 3.82 9.40 England 
3 Hypercholesterolemia 7.91 1.94 9.98 Wales 
4 Arthropathy NOS 6.44 2.19 7.70 England 

5 Allergy/adverse effect 
of penicillin 5.39 2.37 4.90 Wales 

Ethnic group 
1 Essential hypertension 14.16 0.96 22.51 Asian 
2 Type 2 diabetes 12.90 1.83 5.95 Asian 
3 Hypercholesterolemia 11.87 1.51 9.98 Asian 
4 Sickle cell anemia 5.05 8.98 0.10 Black 
5 Diverticulosis 8.81 3.49 9.40 White 

SED 
1 Tobacco use disorder 7.88 1.80 5.78 Q5 
2 Essential hypertension 6.12 0.38 22.51 Q5 
3 Type 2 diabetes 5.08 1.15 9.24 Q5 
4 Other mental disorder 5.08 0.76 12.41 Q5 
5 Hypercholesterolemia 4.63 0.64 12.87 Q5 

Sex 
1 Hyperplasia of prostate 7.55 9.56 3.36 Male 
2 Uterine leiomyoma 5.21 9.02 2.81 Female 

3 Postmenopausal 
bleeding 4.74 8.89 2.47 Female 

4 Excessive or frequent 
menstruation 4.57 8.84 2.37 Female 

5 Cancer of prostate 4.22 8.72 1.84 Male 
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4.4.3 Interactive health disparities browser 

The interactive browser was developed using the Model-View-Controller software 

design paradigm183, which divides the program logic into three interconnected elements: 

the Model, the View, and the Controller.  This separation allows for easier management of 

front and backend components of the browser.  In the Model-View-Controller framework, 

the Model represents the data structures and databases which are queried, the View 

represents the user interface, and the Controller represents the mediator between these two 

components (Figure 13). 

 

Figure 13.  Model-View-Controller software design pattern used for the UK Biobank 
Health Disparities browser. 

Schematic showing the Model-View-Controller (MVC) software design pattern used to 
develop the interactive webserver.  Parts of the pattern that are not applicable to the 
current browser are greyed out. 
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The browser allows researchers to identify health disparities among groups based 

on the population attribute of their choosing.  The browser displays disease prevalence 

values for each group defined using the chosen population attribute, sorted by the disparity 

score (Figure 14A).  There is another table that will help users select disease phenotypes 

by prevalence in groups (Figure 14B).  The tables with information on disease prevalence 

can be sorted using any of its columns and also allows for keyword searches. 

 

Figure 14.  Screenshot of the UK Biobank Health Disparity Browser. 

Screenshots of the UK Biobank Health Disparity Browser showing (A) disease 
phenotype prevalence for different ethnic groups sorted by disparity score and (B) 
table of disease prevalence for each ethnic group. 
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4.5 Conclusion 

For this study of the UK Biobank, we describe the landscape of health disparities in the 

analysis cohort.  We find that there are several disease phenotypes which exhibit high levels 

of disparity among the groups defined by the population attributes studied here.  An 

interactive browser documenting the prevalence of disease phenotypes and disparity 

metrics is accessible at https://ukbatlas.health-disparities.org. 
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CHAPTER 5. SOCIOECONOMIC DEPRIVATION AND 

GENETIC ANCESTRY INTERACT TO MODIFY TYPE 2 

DIABETES ETHNIC DISPARITIES IN THE UNITED KINGDOM 

5.1 Abstract 

Type 2 diabetes (T2D) is a complex common disease that disproportionately impacts 

minority ethnic groups in the United Kingdom (UK).  Socioeconomic deprivation (SED) 

is widely considered as a potential explanation for T2D ethnic disparities in the UK, 

whereas the effect of genetic ancestry (GA) on such disparities has yet to be studied.  We 

leveraged data from the UK Biobank prospective cohort study, with participants enrolled 

between 2006 to 2010, to model the relationship between SED (Townsend index), GA 

(clustering principal components of whole genome genotype data), and T2D status (ICD-

10 codes) across the three largest ethnic groups in the UK – Asian, Black, and White – 

using multivariable logistic regression.  The Asian group shows the highest T2D 

prevalence (17.9%), followed by the Black (11.7%) and White (5.5%) ethnic groups.  We 

find that both SED (OR: 1.11, 95% CI: 1.10-1.11) and non-European GA (OR South Asian 

versus European: 4.37, 95% CI: 4.10-4.66; OR African versus European: 2.52, 95% CI: 

2.23-2.85) are significantly associated with the observed T2D disparities.  GA and SED 

show significant interaction effects on T2D, with SED being a relatively greater risk factor 

for T2D for individuals with South Asian and African ancestry, compared to those with 

European ancestry.  The significant interactions between SED and GA underscore how the 

effects of environmental risk factors can differ among ancestry groups, suggesting the need 

for group-specific interventions. 
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5.2 Introduction 

Diabetes is rapidly becoming a global pandemic, largely due to increasing rates of 

obesity184.  It is estimated that by 2030, diabetes will impact ~5.5 million individuals in the 

United Kingdom (UK), with type 2 diabetes (T2D) accounting for ~90% of all cases185.  

T2D is a health disparity that disproportionately impacts minority ethnic groups186.  Asian 

and Black ethnic groups in the UK have approximately two to four times the T2D 

prevalence compared to White and other ethnic groups185.  Efforts to mitigate health 

disparities of this kind are both a social imperative and a pressing scientific challenge. 

It should be noted that studies of health disparities in the UK often rely on the 

ethnicity categories used by the National Health Service (NHS)187.  NHS ethnic categories 

include six ethnic groups – Asian, Black, Chinese, Mixed, White, and Other – and a distinct 

ethnic background within each group.  UK ethnic group classifications make no distinction 

between the related concepts of race and ethnicity188.  Accordingly, the ethnic group labels 

used in the UK may correspond to racial group labels used in other countries, such as the 

United States. 

T2D is a complex common disease caused by a multifactorial interplay between 

social, environmental, and genetic factors, all of which contribute to T2D health 

disparities189,190.  Accordingly, efforts to elucidate the risk factors associated with T2D 

ethnic disparities require an integrated approach that considers social, environmental, and 

genetic components together.  An integrated approach of this kind is further distinguished 

by its potential to characterize how interactions between genetic and environmental factors 
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contribute to disparate health outcomes.  Indeed, gene-by-environment interactions have 

been prioritized for health disparities research9,10. 

Socioeconomic deprivation (SED) is widely considered an important risk factor for 

T2D ethnic health disparities191-193.  Lifestyle conditions associated with higher SED – 

psychosocial stress, restricted autonomy, and limited access to healthy food, exercise 

facilities, and health services – have been shown to modify risk for T2D194-196.   In the UK, 

SED has been associated with a greater T2D prevalence among minority Asian and Black 

populations than among those identifying as White197,198.  Genetic differences between 

ethnic groups, owing to their different ancestral origins, have also been associated with 

T2D disparities192.  In the US and Latin America, both African and Native American 

genetic ancestry (GA) have been associated with T2D disparities in Black and Hispanic 

populations66,199-201.  However, the inclusion of SED has been shown to attenuate the effect 

of GA on T2D status in these populations192,200,201.  To our knowledge, there have been no 

studies that simultaneously consider the impact of GA and SED on T2D ethnic disparities 

in the UK. 

GA provides a number of advantages for health disparities research.  Ethnic groups 

are socially constructed and co-vary with both socioenvironmental and genetic factors. GA 

inference can be used to stratify populations based on evolutionary genetic diversity alone.  

A focus on GA can thereby allow for the disambiguation of the genetic and 

socioenvironmental dimensions of ethnic health disparities. Joint consideration of GA, 

SED, and their interactions can be used to tailor population-level interventions aimed at 

mitigating health disparities9,10. 
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The objective of this study was to investigate the joint effects of SED and GA on 

T2D ethnic disparities in the UK.  Leveraging the UK Biobank, a large prospective cohort 

study with genetic and environmental data from more than 500,000 participants, we 

modeled the relationship between SED, GA and T2D across the three largest ethnic groups 

in the UK – Asian, Black, and White – using multivariable logistic regression167.  GA 

groups were delineated by clustering genetic principal components analysis data, yielding 

discrete and coherent groups that capture the genetic diversity of the study cohort, thereby 

isolating genetic from socioenvironmental effects on T2D. 

 

5.3 Materials and methods 

5.3.1 Study cohort 

The cohort for this study was obtained from the UK Biobank, a prospective cohort 

study set up to investigate the lifestyle, environmental, and genetic determinants of a range 

of important diseases of adulthood for participants aged between 40 and 70 years collected 

between 2006 and 2010167.  The UK Biobank database contains phenotypic and genotypic 

information on more than 500,000 participants over multiple waves of collection.  

Participants provided information in the form of completed questionnaires, nurse-led 

interviews, medical assessments, and biological samples. Participant DNA was extracted 

from 850 μL buffy coat aliquots, derived from 10 ml of whole blood, and participant whole 

genome genotypes were characterized using the UK Biobank Axiom Array or UK BiLEVE 

Array as previously described202.  The study adheres to RECORD reporting guidelines. 
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5.3.2 Population attributes and data filtering 

We extracted the following information for UK Biobank participants: (1) age (Field 

21003: Age when attended assessment center)171, (2) sex (Field 31: Sex)175, (3) Townsend 

deprivation index (Field 189: Townsend deprivation index at recruitment)176, (4) ethnic 

group and background (Field 21000: Ethnic background)173, (5) ICD-10 codes (Fields 

41270: Diagnoses – ICD10)174, and (6) genetic principal components (Field 22009: Genetic 

principal components)203.  As not all of these data fields were available for all participants, 

the final analysis cohort was constructed by merging these datasets (Appendix D: Figure 

37). 

UK Biobank participants self-identified as belonging to one of six ethnic groups 

(Asian, Black, Chinese, Mixed, White, or Other), and a distinct ethnic background within 

each group, at the time of enrollment.  We consider the three largest ethnic groups for 

analysis: Asian, Black, and White.  The corresponding ethnic backgrounds for the ethnic 

groups considered for our analyses were: Asian (Indian, Pakistani, Bangladeshi, Any other 

Asian background), Black (Caribbean, African, Any other Black background), and White 

(British, Irish, Any other white background). 

To study levels of SED, we use the Townsend index of deprivation, a widely used 

measure of SED that is known to be associated with worse health outcomes204.  The 

Townsend index is a composite metric that incorporates (1) unemployment, (2) non-car 

ownership, (3) non-home ownership, and (4) household overcrowding in a given area177.  

Higher (positive) values of the index indicate high material deprivation, whereas lower 
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(negative) values indicate relative affluence. The cutoff values for the SED quintiles were 

-3.95, -2.80, -1.37, and 1.23, while those for the SED terciles were -3.17 and -0.68. 

 

5.3.3 Type 2 diabetes prevalence 

UK Biobank participants’ case or control status for type 2 diabetes (T2D) was 

determined using ICD-10 diagnosis codes curated following the phecode scheme defined 

by the PheWAS consortium179.  The phecode scheme provides disease-specific inclusion 

and exclusion criteria ICD-10 codes for generating case/control cohorts from electronic 

health records.  This approach allows investigators to define clearly distinct case and 

control cohorts that can be compared confidently.  For example, when studying participants 

with T2D, participants with type 1 diabetes are removed from the control cohort to avoid 

any overlapping environmental/genetic signals that might be common to both.  This 

improves power to detect any signals for a condition of interest.  The phecode scheme to 

define case and control cohorts using ICD-10 codes was validated by investigating 

phenotype reproducibility with the gold standard ICD-9-CM phecode map and by 

conducting a PheWAS to replicate older, well-known results179.  Here, inclusion ICD-10 

codes were first used to generate the T2D case cohort, and exclusion codes were 

subsequently used to remove individuals with related conditions from the remaining 

control cohort.  The T2D phecode (250.2) inclusion and exclusion ICD-10 codes can be 

found at https://phewascatalog.org/phecodes_icd10.  Participants T2D case and control 

status were used to calculate crude T2D prevalence values for ethnic groups and 
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backgrounds as the percent of cases in each group.  Crude prevalence values were used 

owing to the fact that age and sex were included as covariates in all T2D models. 

 

5.3.4 Genetic ancestry inference 

UK Biobank participants self-identify as belonging to ethnic groups based on 

shared culture and heritage.  In other words, ethnic groups are socially constructed and thus 

may not serve as reliable proxies for genetic diversity119.  Patterns of genetic diversity 

among UK Biobank participants were characterized by principal components analysis 

(PCA) of whole genome genotypes as previously described167.  Genetic ancestry groups 

were defined by clustering the first three principal component values from the genetic PCA 

data.  Two different clustering approaches were used to generate (1) continuous genetic 

ancestry groups and (2) coherent genetic ancestry groups. Continuous genetic ancestry 

groups were characterized using the k-means clustering algorithm, implemented in the 

function `kmeans` in R v3.6.168, using k = 3.  The value of k was set to three (k = 3) to 

identify three clusters in the PCA data to match the three self-identified ethnic groups under 

consideration.  The resulting groups included all individuals (and are therefore dubbed 

‘continuous genetic ancestry groups’).  Coherent genetic ancestry groups were 

characterized using the density-based clustering algorithm HDBSCAN205 implemented in 

the python module ‘hdbscan’.  The clustering function was run with a minimum cluster 

size (`min_cluster_size`) set to 1,000 individuals to extract large, coherent clusters from 

the data.  Density-based clustering only categorizes a subset of participants into ancestry 

clusters, while marking the rest as uncategorized.  In excluding participants that are not 
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tightly clustered, we were able to obtain coherent and highly distinct genetic ancestry 

clusters.  The resulting GA groups are distinguished by systematic (correlated) allele 

frequency differences arising from ancestral source populations with distinct 

biogeographical origins. 

 

5.3.5 Statistical analyses 

All statistical analyses were performed using the R statistical language v3.6.168. 

T2D odds of prevalence were modeled using multivariable logistic regression computed 

using the ‘glm’ function in R.  Age was standard normalized when included in logistic 

models.  Two logistic regression models were used for analysis – Model 1: T2D ~ GA + 

SED + Age + Sex + GA*SED and Model 2: T2D ~ GA-SED + Age + Sex.  It should be 

noted that Model 1 includes SED as a continuous variable and its interaction with GA, 

while Model 2 includes a categorical variable whose levels are given by the combination 

of GA categories and SED tercile categories, yielding a total of 9 categories with European 

Low SED as the reference.  Odds ratios (ORs) and 95% confidence intervals were 

calculated for each term in the models by exponentiating the estimated coefficients.  Forest 

plots were generated using the forestmodel R package206.  The importance of predictors in 

the multivariable logistic regression was determined using dominance analysis207 

implemented in the R ‘dominanceanalysis’ v2.0.0 package.  Dominance analysis estimates 

R2 values for all possible values of predictors and is used to measure the relative importance 

of predictors by running pairwise comparisons of all predictors in the model as they relate 

to the outcome variable.  Linear regression equations and plots were generated using the R 
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‘ggplot’ v3.3.3 library.  Slopes of linear regression models were compared by calculating 

a z statistic as described here208. 

 

5.3.6 Ethics approval 

Ethics approval for the UK Biobank was obtained from the North West Multi-

centre Research Ethics Committee (MREC) for the United Kingdom, the Patient 

Information Advisory Group (PIAG) for England and Wales, and the Community Health 

Index Advisory Group (CHIAG) for Scotland (see https://www.ukbiobank.ac.uk/learn-more-

about-uk-biobank/about-us/ethics). 

 

5.4 Results 

5.4.1 Type 2 diabetes ethnic disparities and socioeconomic deprivation 

We generated type 2 diabetes (T2D) case/control cohorts from the UK Biobank using 

participants’ ICD-10 diagnosis codes, with the phecode scheme inclusion and exclusion 

criteria179.  Our final analysis cohort had 27,748 T2D cases and 446,436 controls (Table 

6).  Participant case/control status was used to calculate T2D prevalence for the three 

largest ethnic groups in the UK – Asian, Black, and White – and for different levels of 

socioeconomic deprivation (SED).  SED is measured using the Townsend index of 

deprivation, where lower values indicate less deprivation and higher values indicate more 

deprivation.  It can be seen that T2D prevalence varies greatly among different ethnic 
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groups and backgrounds in the UK (Figure 15A).  The Asian group shows the highest 

prevalence (17.86%) followed by the Black (11.71%) and White (5.51%) groups, 

respectively.  The Asian group also shows the greatest variance of T2D prevalence among 

constituent ethnic backgrounds.  Within the Asian group, the Bangladeshi ethnic 

background shows the highest T2D prevalence by far (31.65%), with the Indian (16.51%) 

and Other (14.04%) backgrounds showing prevalence values approximately half as high. 

Along with the ethnic disparity in the prevalence of T2D, we also see a marked disparity 

in SED among the three groups under consideration (Figure 15B).  The Black group shows 

the highest level of median SED (2.93) followed by the Asian (0.25) and White (-2.27) 

groups, respectively.  Consistent with what is known about the relationship between SED 

and T2D, we also find that T2D prevalence increases monotonically with an increase in 

social deprivation (Figure 15C)209,210. 
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Table 6.  Characteristics of the T2D analysis cohort. 

†SED = Socioeconomic deprivation as measured with the Townsend index.  Higher 
(positive) values of the index indicate high material deprivation, whereas lower (negative) 
values indicate relative affluence. 

Characteristic 
Full cohort 

(n = 474,184) 

Asian cohort 

(n = 9,361) 

Black cohort 

(n = 7,541) 

White cohort 

(n = 457,282) 

Age – no. (Cohort share %)     

<45 47,697 (10.06) 1,810 (19.34) 1,611 (21.36) 44,276 (9.68) 

45-54 133,102 (28.07) 3,434 (36.68) 3,359 (44.54) 126,309 (27.62) 

55-64 201,760 (42.55) 2,920 (31.19) 1,807 (23.96) 197,033 (43.09) 

>65 91,625 (19.32) 1,197 (12.79) 764 (10.13) 89,664 (19.61) 

Mean age – yr 56.62 53.32 51.90 56.77 

Sex – no. (%)     

Female 257,015 (54.20) 4,306 (46.00) 4,309 (57.14) 248,400 (54.32) 

Male 217,169 (45.80) 5,055 (54.00) 3,323 (42.86) 208,882 (45.68) 

Median SED † -2.19 0.25 2.93 -2.27 

T2D cases – no. (%) 27.748 (6.22) 1.672 (17.86) 883 (11.71) 25,193 (5.51) 

 

To further interrogate the relationship between SED and T2D ethnic disparities, we 

compared the T2D prevalence with the mean SED for each ethnic group and background 

(Figure 15D).  We see that a strong relationship does exist between group specific T2D 

prevalence and SED, but the disparity is not completely explained by SED.  Participants 

who identify as Black have higher average SED but a much lower T2D prevalence 
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compared to participants who identify as Asian, who have lower average SED compared 

to Black participants but far higher T2D prevalence.  Furthermore, on plotting T2D 

prevalence per ethnic group for each SED quintile, we find that the ethnic disparities 

remain within each strata of SED, indicating that other factors also contribute to the T2D 

ethnic disparities (Figure 15E). 

 

5.4.2 Genetic ancestry groups 

Principal components analysis (PCA) of participants’ whole genome genotypes 

were used to generate discrete and coherent genetic ancestry (GA) groups.  Overall, 

participants’ self-identified ethnicity co-varies with GA groups defined using PCA 

(Appendix D: Figure 38).  Nevertheless, there are numerous cases where participants’ self-

identified ethnicity does not align with GA groups.  Accordingly, we rely on GA group 

analysis to more precisely measure genetic differences that may be associated with T2D 

ethnic disparities. 

GA groups were delineated by performing density-based clustering of participant 

genetic PCA data, yielding three coherent groups: African (n = 5,176), European (n = 

448,446), and South Asian (n = 6,969) (Figure 16).  The ancestral origins for these groups 

are based on the majority self-identification of member participants.  These GA groups 

represent non-overlapping, discrete, and genetically diverse cohorts. 
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Figure 15. T2D ethnic health disparities and SED. 

(A) T2D prevalence for ethnic groups and backgrounds. (B) SED distributions for ethnic 
groups. (C) T2D for SED quintiles, 1-least deprivation to 5-highest deprivation. (D) 
Relationship between T2D prevalence (y-axis) and mean SED (x-axis) for ethnic groups 
and backgrounds. (E) T2D ethnic prevalence disparities across SED quintiles.  
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Figure 16.  GA groups. 

Clustering of genetic PCA data was used to generate continuous and coherent GA groups: 
African (blue), European (orange), and South Asian (red). Participants that fall into 
coherent ancestry groups are prominently colored, and participants that fall into the 
continuous groups are shown as faded points.  

 

5.4.3 Genetic ancestry, socioeconomic deprivation, and type 2 diabetes 

We modeled T2D case/control status using GA and SED along with the covariates 

age and sex using multivariable logistic regression (Model 1; Appendix D: Table 12).  

Model 1 includes SED as a continuous variable and its interaction with GA.  This analysis 

shows that being part of the South Asian GA group compared to being in the European GA 

group had the highest impact on modifying T2D risk (OR: 4.37, 95% CI: 4.10 - 4.66), 
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followed by being in the African GA group (OR: 2.52, 95% CI: 2.23 - 2.85).  As would be 

expected, age (OR: 1.78, 95% CI: 1.75 - 1.80), being male (OR: 1.86, 95% CI: 1.81 - 1.90), 

and SED (OR: 1.11, 95% CI: 1.10 - 1.11) are all significantly associated with T2D risk.  

Dominance analysis shows that the most important predictors to explain T2D status in this 

model are age, sex, GA group, and SED.  However, we found the GA-SED interaction 

terms – South Asian-SED and African-SED – to be statistically significant (p-values of 

0.001 and 0.016, respectively), suggesting that the impact of SED on T2D varies among 

GA groups.  The full model that includes the interaction term has a significantly higher log 

likelihood than a reduced model with no interaction term, further supporting the presence 

of GA-SED interactions (likelihood ratio !2=15.96 P=3.4 x 10-4; Appendix D: Table 13).  

Given the observed GA-SED interactions, it is not possible to make any firm conclusions 

regarding the relative importance GA versus SED on T2D outcomes. 

Next, we used another logistic regression model (Model 2; Appendix D: Table 14), 

which includes a categorical variable whose levels are given by the combination of GA 

categories and SED tercile categories, yielding a total of 9 categories with European Low 

SED as the reference.  As seen for Model 1, age, sex, GA and SED all show significant 

associations with T2D status with Model 2 (Figure 17).  The relative impact of GA groups 

on T2D status is the same: European has the lowest effect sizes, followed by African, and 

South Asian showing the highest effect sizes. For each GA group, increasing SED is 

consistently associated with greater effect sizes, thereby confirming the GA-SED 

interactions detected in Model 1. 
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Figure 17.  T2D multivariable logistic regression model with GA-SED tercile 
combinations (Model 2). 

Model 2 includes terms for GA groups combined with low, medium, and high SED terciles, 
age, and sex. The forest plot shows odds ratios and 95% confidence intervals along with 
the statistical significance for each variable used to model T2D status. Details of the 
estimated coefficients, their standard errors, and p-values are shown in Appendix C:  Table 
14. 

To further characterize the impact of GA-SED interactions on T2D status, we 

modeled T2D case/control status using SED, along with the covariates age and sex, using 

multivariable logistic regression and then stratified the results by GA groups.  For each 

individual GA group, the logistic model was used to calculate the probability of predicted 

T2D per participant.  T2D observed prevalence values increase monotonically for each GA 
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group across T2D model prediction quintiles, and the relative T2D prevalence values for 

each GA group stay the same within each quintile (Figure 18A).  On regressing T2D 

observed prevalence against T2D model predictions per GA group and fitting a linear trend 

for each group separately, we found that the slopes for each GA group differed substantially 

(Figure 18B).  The magnitude of association between SED and T2D for the South Asian 

group is ~2.5 times higher than the European group, and the African group association is 

~1.5 times higher than the European group.  Differences in the slopes are all statistically 

significant – confirming the interaction effects between GA and SED (African – European 

slope p-value=7.28 x 10-07, African – South Asian slope p-value=1.39 x 10-05, and 

European – South Asian slope p-value=7.33 x 10-25).  Furthermore, the intercept of this 

fitted line is higher for the South Asian group implying that even at the lowest possible 

SED level recorded in these data, the risk for T2D is relatively high in this group. 
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Figure 18.  Interaction between genetic ancestry and socioeconomic deprivation. 

T2D was predicted using a multivariable logistic regression model using SED, age, and 
sex as terms. T2D prevalence per GA group partitioned by quintiles (A) and percentiles 
(B) of SED model predictions. Linear equations and model fits are shown for each ancestry 
group in panel B. Ancestry groups are color coded as shown. 

 

5.5 Discussion 

We make a crucial distinction between GA and self-identified ethnicity in this study.  

As part of the UK Biobank enrollment survey, participants are asked to identify their ethnic 

group followed by their ethnic background (i.e., subgroup).  For example, participants that 

identify with the Asian ethnic group are then prompted to choose from Bangladeshi, Indian, 

Pakistani, or Other Asian backgrounds.  These self-identified ethnic group and background 

identities are social constructs based on shared heritage and culture, whereas GA reflects 

genetic differences among populations with distinct biogeographic origins.  The approach 
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of forming coherent clusters from genetic PCA data allowed us to generate discrete, non-

overlapping GA groups, which can be used to help us disambiguate socioenvironmental 

factors from genetic factors that might contribute to T2D ethnic disparities.  It should be 

noted that the GA groups delineated here and the participant self-identified ethnic groups 

assess different constructs and are not entirely concordant (Appendix D: Figure 38).  There 

are a number of cases where participants’ self-identified ethnicity does not coincide with 

their GA, but the majority of participants’ ethnic identities correspond to their GA.  This 

reflects the fact that social determinants of ethnicity are strongly informed by notions of 

ancestral origins and may correlate with phenotypic characteristics.  

SED is used here as a proxy for lifestyle factors and environmental exposures that 

might exacerbate or ameliorate risk for T2D.  The implications of a significant interaction 

between SED and GA groups can be attributed to a number of different factors.  Lifestyle 

and exposures that co-vary with higher SED may have a disproportionately higher impact 

on T2D risk in certain populations owing to their genetics, and/or higher SED may lead to 

different lifestyle and exposures among different populations.  The latter possibility could 

include influences on SED-related experiences of structural oppression that differ among 

GA groups.  In any case, targeted group-specific interventions that are informed by such 

differences can help to decrease T2D health disparities. 

There are several potential limitations to our observational study of T2D health 

disparities.  Some cultural attributes like diet and lifestyle factors might co-vary with GA, 

SED and self-reported ethnicity, especially for recent immigrants.  Thus, the observed GA 

effects on T2D could be attributed to unmeasured confounders.  Co-variation between GA 
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and environmental factors might change over time, with second and third generation 

immigrants becoming acculturated and changing their dietary habits.  It has been shown 

that second generation Asians in England are more likely to be obese compared to the first 

generation of immigrants 211.  It is also known that the risk for T2D in South Asians 

increases for a BMI >23 compared to a BMI of >25 in Europeans212.  We did not account 

for generation of immigration in our GA analyses. 

SED was measured here using the Townsend Index, which is a composite metric of 

four different variables, each of which may reflect different kinds of adverse exposures.  

This measure of SED may miss important indicators such as household income and 

education level.  As this is an observational study, albeit with a large sample size, it is hard 

to completely disentangle the effects of different contributing factors on the observed 

health disparity.  In addition, the UK Biobank recruited participants who are healthier, on 

average, compared to the general population and live in less socioeconomically deprived 

areas compared to non-participants (also referred to as a ‘healthy volunteer bias).  

Regardless, disease-exposure relationships in the UK Biobank are thought to be 

generalizable, irrespective of the healthy volunteer bias169. 

Finally, it should be noted that the PCA clustering approach used for GA inference 

yields groups that are largely concordant with continental ancestry.  Accordingly, there is 

a substantial overlap between the GA groups analyzed here and participants’ ethnic self-

identification (Appendix D: Figure 38).  A more nuanced approach that includes 

quantitative GA estimates, i.e. percent ancestry contributions from ancestral source 

populations, could help to further disambiguate genetic from socioenvironmental effects 
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on T2D.  Furthermore, the use of GA poses operational difficulties in targeting the 

impacted communities since this information is not readily available to policymakers and 

physicians.  However, once a gene-by-environmental interaction is identified, as is the case 

here for the interaction between GA and SED, population-specific interventions and 

policies can be targeted at the closest corresponding ethnic groups where there exists a high 

concordance between GA and ethnic groups (Appendix D: Figure 38). 

 

5.6 Conclusion 

For this study on the UK Biobank, we confirmed previously observed T2D ethnic 

disparities and found that SED is indeed a significant risk factor for T2D.  We report for 

the first time that T2D is associated with significant interactions between GA and SED.  In 

particular, SED is a relatively greater risk factor for T2D for individuals with South Asian 

and African ancestry, compared to those with European ancestry.  This finding suggests 

that more ancestry-specific interventions need to be taken at the policy level to ameliorate 

health disparities, channeling resources to communities which are at highest risk. 
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CHAPTER 6. COMPARING GENETIC AND 

SOCIOENVIRONMENTAL CONTRIBUTIONS TO ETHNIC 

DIFFERENCES IN C-REACTIVE PROTEIN 

6.1 Abstract 

C-reactive protein (CRP) is a routinely measured blood biomarker for inflammation.  

Elevated levels of circulating CRP are associated with response to infection, risk for a 

number of complex common diseases, and psychosocial stress.  The objective of this study 

was to compare genetic and socioenvironmental contributions to ethnic differences in C-

reactive protein levels.  We modeled the effects of demography, genetics, and 

socioeconomic status on CRP blood serum levels using the UK Biobank (UKBB) 

prospective cohort study.  CRP serum levels are significantly associated with ethnicity, 

age, and sex in the UKBB cohort.  Study participants who identify as Black have higher 

average CRP than those who identify as White, CRP increases with age, and females have 

higher average CRP than males.  Ethnicity and sex show a significant interaction effect on 

CRP.  Black females have higher average CRP levels than White females, whereas White 

males have higher average CRP than Black males.  Socioeconomic deprivation explains 

more than twice the variation in CRP levels than genetic ancestry, and the effect of ethnicity 

on CRP is mediated by socioeconomic deprivation but not by genetic ancestry.  Taken 

together, these results indicate that socioenvironmental factors contribute more to CRP 

ethnic differences than genetics.  Differences in CRP are associated with ethnic disparities 

for a number of chronic diseases, including type 2 diabetes, essential hypertension, 
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sarcoidosis, and lupus erythematosus.  Our results indicate that ethnic differences in CRP 

are linked to both socioeconomic deprivation and numerous ethnic health disparities. 

 

6.2 Introduction 

C-reactive protein (CRP) is synthesized by hepatocytes and secreted to the 

bloodstream in response to inflammation.  CRP is employed as a serum biomarker for both 

acute and chronic inflammation, with important implications for immune response and 

overall health213,214.  Elevated levels of CRP have been shown to be associated with an 

increased risk of diabetes215, cardiovascular disease216, psychological stress217, and all-

cause mortality218.  

CRP blood serum levels vary across ethnic groups219, with a number of studies 

showing that Black patients have higher average levels of circulating CRP than White 

patients220-227.  Ethnic differences of this kind are likely to have multifactorial causes, 

including contributions from genetic, socioeconomic, and environmental factors.  Given 

the fact that ethnicity co-varies with all of these classes of risk factors, it is difficult to tease 

apart the genetic and socioenvironmental contributions to ethnic health disparities.  This is 

further complicated by the fact that socially defined ethnicity is an imprecise proxy for 

genetic diversity. 

We use genetic ancestry inference as a means to disambiguate genetic and 

socioenvironmental effects on ethnic health disparities.  Genetic ancestry refers to patterns 

of genetic diversity that are linked to the geographical origins of human populations28.  
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Individuals who share common ancestors have genetic similarities, and distinct ancestry 

groups show correlated allele frequency differences31,65.  Genetic ancestry can be defined 

objectively, using comparative genomic analysis, without relying on socially defined 

ethnic groups 119.  Patterns of genetic ancestry can be compared to self-identified ethnicity 

to understand the extent to which they overlap and how they may differ32,141,228.  Modelling 

of health outcomes with genetic ancestry and socioenvironmental factors as independent 

(predictor) variables can be used to assess how each contribute to health disparities and 

how they may interact229,230.  

The objective of this study was to characterize the effects of genetic ancestry and 

socioeconomic deprivation on ethnic differences in CRP serum levels.  Participants from 

the UK Biobank (UKBB) prospective cohort study who self-identified as belonging to 

Black or White ethnic groups were characterized with respect to CRP levels, genome-wide 

genotypes, and socioeconomic deprivation.  Multivariable modeling of study participants’ 

CRP levels was conducted using genetic ancestry and socioeconomic deprivation as 

independent (predictor) variables, and structural equation models were used to quantify the 

mediating effects of each on CRP ethnic differences.  Age and sex were considered as 

covariates in all models given their known associations with CRP serum levels. 
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6.3 Materials and methods 

6.3.1 Study cohort 

Study participants and data were taken from the UK Biobank (UKBB), a 

prospective cohort study on the effects of demography, environment, and genetics on 

health and disease167.  The UKBB database contains phenotypic, clinical, and genetic 

information on more than 500,000 participants between the ages of 40 and 70, enrolled 

from 2006 to 2010.  Ethics approval for the UKBB was obtained from the North West 

Multi-centre Research Ethics Committee (MREC) for the United Kingdom, the Patient 

Information Advisory Group (PIAG) for England and Wales, and the Community Health 

Index Advisory Group (CHIAG) for Scotlanda.  UKBB participants self-identified as 

belonging to a single ethnic group upon enrollmentb, and we included participants who 

identified as Black or White for this study.  It should be noted that the UKBB ethnic group 

labels used here correspond directly to racial group labels from the United States. 

 

6.3.2 Participant data 

UKBB participants completed questionnaires, nurse-led interviews, and medical 

assessments upon enrollment and provided access to their electronic health records.  We 

accessed participant information on ethnicity (Field 21000: Ethnic background), age (Field 

21003: Age when attended assessment center), sex (Field 31: Sex), Townsend deprivation 

 

a https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics 
b https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21000 
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index (Field 189: Townsend deprivation index at recruitment), and ICD-10 disease 

diagnosis codes (Fields 41270: Diagnoses – ICD10) from the UKBB data portal. 

UKBB participants provided whole blood samples for characterization of protein 

biomarkers and DNA as previously described168.  C-reactive protein (CRP) blood serum 

levels were measured as mg/L units using the immuno-turbidimetric method with the 

Beckman Coulter AU5800 clinical chemistry analyzerc.  This procedure corresponds to the 

high-sensitivity (hs) CRP test.  DNA was extracted from 850μL buffy coat blood aliquotsd, 

and participant genome-wide genotypes were characterized using the UKBB Axiom Array 

or UK BiLEVE Array202. 

 

6.3.3 Disease case/control cohorts 

Disease (or health condition) diagnoses for study participants were taken from 

UKBB ICD-10 diagnosis codes, which were then converted into disease-specific 

phenotype codes (phecodes) using the scheme developed by the PheWAS consortium178.  

Phecodes have been manually curated and validated by disease experts, and they are widely 

used for the analysis of electronic health record data179.  The phecode scheme provides 

ICD-10 code inclusion and exclusion criteria for each individual disease in order to define 

disease-specific case/control cohorts that can be confidently compared.  For example, when 

studying participants with type 2 diabetes, participants with type 1 diabetes are removed 

 

c https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/serum_biochemistry.pdf 

d https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/ukb_dna_processing.pdf 
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from the control cohort to avoid any overlapping genetic or environmental signals that 

might be common to both.  This approach improves power for the detection of disease-

specific association signals when modelling case/control status.  Phecode case/control 

cohorts were curated for a total of 1,537 diseases or health-related conditions. 

 

6.3.4 Genetic ancestry inference 

UKBB participant genome-wide genotypes were merged and harmonized with 

whole genome sequence data from global reference populations characterized as part of 

the 1000 Genomes Project (1KGP) and the Human Genome Diversity Project (HGDP)31,65.  

Global reference populations were grouped into six regional ancestry groups based on their 

genetic and geographic affinity, including African (sub-Saharan) and European reference 

population groups (Appendix E: Table 15).  

UKBB, 1KGP, and HGDP genomic variant data were merged to include variants 

present in all three data sets.  Minor allele frequency >1% and variant sample missingness 

<5% filters were used for merging, with variant strand flips and identifier inconsistencies 

corrected as needed.  The merged genome variant data set was pruned for linkage 

disequilibrium using the program PLINK v2129. 

Principal component analysis (PCA) of the harmonized UKBB, 1KGP, and HGDP 

genome variant dataset was performed using the FastPCA program implemented in PLINK 

v2231.  PCA data were used to infer UKBB participant genetic ancestry fractions for 

African, European, and other regional ancestry groups.  Our PCA-based genetic ancestry 
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inference approach compares PCA data from UKBB participants to PCA data from 

reference population individuals using non-negative least squares to assign genetic 

ancestry fractions for regional ancestry groups as previously described58,126.  Participants 

showing >5% non-African or non-European ancestry fractions were excluded from the 

study cohort. 

 

6.3.5 Statistical modelling 

All statistical analyses were performed using the R statistical language v3.6.168. 

Forest plots were generated using the forestmodel R package232.  Other plots were 

generated using the ggplot R package181.   

Linear regression: CRP blood serum levels, measured in mg/L units, were modeled 

as the dependent (outcome) variable with multivariable linear regression models using the 

‘lm’ function in R.  Independent (predictor) variables included ethnicity, age, sex, genetic 

ancestry, and socioeconomic deprivation.  Ethnicity was modeled as a binary variable 

(Black or White), age was modeled as increments of ten years, and sex was modeled as a 

binary variable (female or male).  Socioeconomic deprivation was modeled using the 

Townsend deprivation index, a widely used measure of socioeconomic deprivation known 

to be associated with poor health outcomes204.  It combines four variables – unemployment, 

non-car ownership, non-home ownership, and household overcrowding – to generate a 

numerical score177, which ranges from -6.26 to 11.0 in the UKBB study cohort.  Negative 

values indicate less socioeconomic deprivation, and relative affluence, whereas higher 
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scores indicate greater socioeconomic deprivation.  African ancestry was modeled as 

increments of ten percent African genetic ancestry.   

Logistic regression: The odds of prevalence of specific diseases or health conditions 

were modeled as the dependent (outcome) variable with multivariable logistic regression 

computed using the ‘glm’ function in R.  Independent (predictor) variables for disease 

models included ethnicity, age, sex, and CRP levels. 

Details of all statistical models are provided in the Appendix E.  For each model, we 

provide the regression equation and model coefficients, along with effect size estimates, 

standard errors, z-values, and P-values for each model coefficient. 

 

6.4 Results 

6.4.1 C-reactive protein, ethnicity, age, and sex 

The study cohort is made up of 433,298 UK Biobank participants who self-identify 

as Black (n=6,456) or White (n=426,842) (Table 7).  Males make up 45.7% of the cohort 

compared to 54.3% females, and the mean age of cohort participants is 57.  C-reactive 

protein (CRP) blood serum levels vary by ethnicity, age, and sex.  Black participants show 

a mean CRP level of 2.75 mg/L, and White participants show mean CRP level of 2.59 

mg/L (Table 7 and Figure 19A).  Participant CRP levels increase with increasing age 

(Figure 19B), and females show higher mean CRP levels than males (Figure 19C).  When 

CRP levels are modeled by ethnicity, age, and sex, Black ethnicity and age show significant 
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positive associations with CRP, whereas male sex shows a significant negative association 

with CRP (Figure 19D; Appendix E: Table 16). 

Table 7.  Characteristics of the UK Biobank participant cohort 

Characteristic Full cohort Black White 

N 433,298 6,456 426,842 

Mean age (yrs) 56.71 
(56.69 – 56.73) 

52.08 
(51.88 – 52.28) 

56.78 
(56.58 – 56.98) 

Sex – no. (%)    

        Female 235,318 (54.31) 3,721 (57.64) 231,597 (54.26) 

        Male 197,980 (45.69) 2,735 (42.36) 195,245 (45.74) 

Mean C-reactive protein (mg/L) 2.60 (2.59 – 2.61) 2.75 (2.64 – 2.86) 2.59 (2.48 – 2.70) 

Mean European ancestry (%) 98.45  
(98.42 – 98.48) 

11.71 
(11.45 – 11.97) 

99.76 
(99.74 – 99.78) 

Mean African ancestry (%) 1.33 
(1.30 – 1.36) 

87.81 
(87.55 – 88.07) 

0.03 
(0.02 – 0.04) 

Mean Townsend index -1.42 
(-1.43 – -1.41) 

2.63 
(2.55 – 2.71) 

-1.48 
(-1.55 – -1.41) 

 

Inclusion of interaction terms in the CRP linear regression model revealed a 

significant interaction between ethnicity and sex (P<2×10-16; Appendix E: Table 17).  A 

likelihood ratio test showed a significantly better fit for a model with the ethnicity-sex 

interaction term compared to the model with no interaction term, providing additional 

support for the interaction (P=1.82×10-16 ; Appendix E: Table 18).  The observed ethnicity-

sex interaction results from higher CRP for Black female participants compared to White 

female participants and lower CRP for Black male participants compared to White male 

participants (Figure 20). 
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Figure 19.  C-reactive protein (CRP), ethnicity, age, and sex. 

Average CRP serum levels (±95% CI) are shown for (A) Black and White participants (B) 
age ranges, and (C) female and male participants.  (D) Forest plot showing the results of 
the multivariable linear regression model of participant CRP serum levels.  Effect sizes, 
95% CIs, and P-values are shown for ethnicity, age, and sex. 
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Figure 20.  C-reactive protein (CRP) interaction effect of sex and ethnicity. 

Average CRP serum levels (±95% CI) are shown for Black and White, female and male 
participants. 

 

6.4.2 Ethnicity, genetic ancestry, and socioeconomic deprivation 

Black and White participants differ with respect to mean levels of genetic ancestry 

and socioeconomic deprivation (Table 7).  Black participants show averages of 87.8% 

African ancestry and 11.7% European ancestry compared to averages of 99.8% European 

and 0.03% African ancestry for White participants.  Black participants have an average 

Townsend deprivation index of 2.63 compared to -1.48 for White participants, where 

higher (positive) values indicate greater socioeconomic deprivation. 

The relationship between ethnicity and genetic diversity for Black and White 

participants is shown via principal components analysis of genome-wide genotype data 
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(Figure 21A).  Principal components one and two separate participants by ethnicity along 

a continuum of genetic diversity, whereas principal component two alone shows more 

within ethnic group differences among participants.  Black participants show a range of 

admixture between African and European genetic ancestry fractions, whereas White 

participants show almost entirely European ancestry (Figure 21B).  The probability of 

participant self-identification as Black or White shifts in the range of 23-44% African 

ancestry (Figure 21C).  Participants are more likely to identify as Black, and less likely to 

identify as White, if they have ≥29% African ancestry. 

Structural equation modelling was used to evaluate the mediating effect of genetic 

ancestry and socioeconomic deprivation on ethnic differences in CRP serum levels.  When 

African genetic ancestry is modelled as a potential mediator, the total effect of ethnicity on 

CRP is significant but the indirect mediating effect of African ancestry is non-significant 

(Figure 22A).  When socioeconomic deprivation, as measured by the Townsend 

deprivation index, is modeled as a potential mediator, both the indirect effect of 

socioeconomic deprivation and the total effect of ethnicity on CRP levels are significant 

(Figure 22B).  Socioeconomic deprivation explains 87.9% of the total effect of ethnicity 

on CRP levels.  Details of the structural equation models are shown in Appendix E: Tables 

19 and 20. 

When the effect of genetic ancestry and socioeconomic deprivation on CRP serum 

levels are modeled separately, socioeconomic deprivation explains more than twice as 

much of the variation in CRP levels (R2=9.32×10-3) compared to genetic ancestry 

(R2=4.58×10-3) (Appendix E: Table 21). 
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Figure 21.  Ethnicity and genetic ancestry. 

(A) Principal components analysis showing the relationship between participant ethnicity 
and genetic diversity.  (B) Participant ethnicity (left) compared to participant genetic 
ancestry fractions (right).  (C) Probability of participant ethnic self-identity (y-axis) 
compared to African genetic ancestry (x-axis).  Dots are color-coded by participant 
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ethnicity and each dot shows the probability of self-identification as Black or White across 
one hundred bins of African ancestry.  Black and White self-identification probability trend 
lines were fit using loess regression. 

 

 

Figure 22.  Mediating effects of genetic ancestry and socioeconomic deprivation on C-
reactive protein ethnic differences 

Structural equation path models are shown for (A) African ancestry and (B) socioeconomic 
deprivation (SED).  Effects of ethnicity, age, and sex on CRP serum levels are shown with 
solid arrows, and indirect effects of ethnicity mediated by African ancestry and SED are 
shown with dashed arrows.  Effect sizes (β-values) and significance levels (*** = P<0.01 
and n.s. = P>0.05) are shown for each modelled relationship.  The indirect effects of 
African ancestry and SED are shown for each model along with the total effect of ethnicity 
and the ratio between the two. 

 

6.4.3 C-reactive protein and ethnic health disparities 

The relationship between CRP serum levels and ethnic health disparities was 

evaluated by independently modeling the effect of CRP and the effect of ethnicity on 

disease outcomes and comparing the results.  There are 109 out of 1,537 diseases analyzed 
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where both CRP and ethnicity showed significant associations with disease status, after 

correcting for multiple tests using the Bonferroni correction (Figure 23).  The effect size 

estimates for all diseases with significant CRP and ethnicity associations were evaluated 

to identify diseases where differences in CRP serum levels are implicated in ethnic health 

disparities (Figure 24).  The combined effects of CRP and ethnicity on disease outcomes 

were quantified by summing the ranks of the individual effect sizes.  The top 20 diseases 

ordered via descending effect size rank sums are shown in Table 8.  The top ranked diseases 

include examples of infectious disease (tuberculosis and HIV), metabolic diseases (type 2 

diabetes and hypoglycemia), circulatory system diseases (hypertensive chronic kidney 

disease, hypertensive heart disease, and essential hypertension), mental disorders 

(schizophrenia and substance addiction), genitourinary diseases (nephrotic syndrome and 

chronic kidney disease), and dermatologic diseases (lupus erythematosus and sarcoidosis). 
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Figure 23.  C-reactive protein (CRP) and ethnic health disparities. 

Manhattan plots showing the statistical significance levels (-log10P-value) for associations 
of ethnicity and disease outcomes (left, blue circles) and associations of CRP and disease 
(right, red circles).  Diseases are categorized as shown using the phecode scheme.  
Bonferroni corrected P-value thresholds are shown with red lines.  Significant associations 
are indicated with larger circles and select disease examples are annotated as shown. 
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Figure 24.  Effects of C-reactive protein (CRP) and ethnicity on disease. 

Effect sizes for statistically significant CRP-disease associations (βCRP, y-axis) and 
significant ethnicity-disease associations (βEthnicity, x-axis) associations.  βEthnicity>0 shows 
diseases that are positively associated with Black ethnicity, and βEthnicity<0 shows diseases 
that are positively associated with White ethnicity.  Select disease examples are annotated 
as shown. 
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Table 8.  Top 20 diseases implicated for CRP-associated ethnic health disparities. 

Phecode Phenotype βCRP βEthnicity P-valueCRP P-valueEthnicity 
Disease 

Category 

10.0 Tuberculosis 0.0529 2.4087 3.01E-19 2.38E-26 Infectious 
diseases 

250.22 
Type 2 diabetes with 
renal manifestations 

0.0505 2.2211 2.17E-24 1.35E-23 Endocrine / 
metabolic 

71.0 
Human 

immunodeficiency 
virus (HIV) disease 

0.0487 2.1939 1.05E-06 4.17E-12 
Infectious 
diseases 

401.21 
Hypertensive heart 

disease 
0.0473 2.3056 1.16E-13 3.66E-19 

Circulatory 
system 

401.22 
Hypertensive chronic 

kidney disease 
0.0547 1.3395 1.76E-129 2.69E-20 

Circulatory 
system 

583.31 Renal dialysis 0.0507 1.4168 1.06E-49 1.12E-14 Genitourinary 

295.1 Schizophrenia 0.0459 1.5011 2.05E-33 1.15E-25 Mental 
disorders 

316.0 
Substance addiction 

and disorders 
0.0496 1.1132 2.00E-26 4.72E-08 Mental 

disorders 

580.2 
Nephrotic syndrome 
without mention of 
glomerulonephritis 

0.0449 1.413 4.23E-29 2.15E-13 Genitourinary 

695.41 
Cutaneous lupus 
erythematosus 

0.0417 1.9174 3.55E-07 1.27E-13 Dermatologic 

250.21 
Type 2 diabetes with 

ketoacidosis 
0.0405 2.2118 7.31E-07 4.97E-19 

Endocrine / 
Metabolic 

697.0 Sarcoidosis 0.0411 1.6206 1.31E-23 1.15E-26 Dermatologic 

250.2 Type 2 diabetes 0.0438 1.1764 ~0 3.16E-185 Endocrine / 
metabolic 

695.42 
Systemic lupus 
erythematosus 

0.0405 1.6996 5.28E-14 5.43E-22 Dermatologic 

585.3 
Chronic renal failure 

(CKD) 
0.0461 0.9958 2.01E-162 1.48E-22 Genitourinary 

580.14 
Chronic 

glomerulonephritis 
0.0466 0.9437 2.02E-48 2.22E-05 Genitourinary 

250.42 
Other abnormal 

glucose 
0.0396 1.4808 2.59E-16 3.74E-13 

Endocrine / 
Metabolic 

401.1 
Essential 

hypertension 
0.046 0.8543 ~0 7.15E-186 

Circulatory 
system 

251.1 Hypoglycemia 0.0419 1.0895 8.47E-48 3.80E-12 
Endocrine / 
metabolic 

585.2 Renal failure 0.0462 0.8071 5.08E-83 5.85E-07 Genitourinary 
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6.5 Discussion 

6.5.1 Interaction between ethnicity and sex 

UKBB participant CRP blood serum levels vary by ethnicity, age, and sex.  

Modeling CRP levels with all of these factors reveled a highly significant interaction effect 

between ethnicity and sex.  Black females show higher CRP levels than White females, 

whereas Black males have lower CRP than White males.  Thus, Black females are at the 

highest risk of chronic inflammation, suggesting the possibility of exposure to particularly 

high levels of stress for this group.  This finding is consistent with previous studies showing 

that Black women can experience worse health outcomes than Black men, White women, 

or White men owing to their relatively subordinate position in both ethnic and gender 

hierarchies233,234.  This perspective underscores the importance of an ethnic health 

disparities analysis framework that includes multiple, interacting demographic, genetic, 

and socioenvironmental factors235-238. 

 

6.5.2 Inflammation and ethnic health disparities  

We related inflammation and ethnic health disparities by independently modeling 

the effect of CRP and ethnicity on disease status and then looking for diseases that showed 

significant associations with both factors.  There were 109 out of 1,537 diseases that 

showed significant associations with both CRP and ethnicity, and we explored the diseases 

that showed the strongest effects for both.  This approach uncovered a number of diseases 

linked to immune response and inflammation, including infectious diseases and complex, 
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common diseases.  This suggests the possibility that ethnic differences in inflammation, 

related to environmental exposures and psychosocial stress, could be broadly related to 

ethnic health disparities. 

 

6.5.3 Caveats and limitations 

It is important to note, however, that our observational study design and statistical 

modelling do not allow for unambiguous causal inference regarding the relationship 

between CRP and disease239,240.  For infectious diseases, CRP levels are expected to be 

elevated after infection, which would entail a kind of reverse causality with respect to how 

our regression models are specified.  For chronic diseases, systemic inflammation could 

precede disease or contribute to disease progression, but it could also reflect the presence 

of disease.  Our models cannot distinguish between these possibilities, and it is not known 

whether participant CRP levels measured at recruitment precede or follow the diagnosis 

and course of disease.  Thus, it is possible that the observed ethnic differences in CRP 

reflect a higher overall burden of disease for ethnic minorities in the UKBB, linked to 

higher levels of socioeconomic deprivation, rather than a causal risk factor for ethnic health 

disparities. 

 

6.6 Conclusion 

C-reactive protein (CRP) is a widely used clinical marker of inflammation.  Our 

study of the UKBB found that CRP blood serum levels differ according to participants’ 
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self-identification as belonging to Black or White ethnic groups, and ethnicity is highly 

correlated with genetic ancestry.  Given these results, it could be expected that genetic 

ancestry would mediate ethnic differences in CRP levels, thereby pointing to a potential 

role for genetic factors in the observed disparity.  However, we found that socioeconomic 

deprivation, and not genetic ancestry, mediates the observed ethnic differences in CRP 

levels.  This indicates that the environment plays a more important role than genetics in 

shaping ethnic disparities in inflammation for this cohort.  Possible environmental factors 

leading to higher levels of CRP observed for Black participants could include psychosocial 

stress linked to racial discrimination and poverty241-244.  Aspects of diet and lifestyle 

associated with socioeconomic deprivation could also be linked to ethnic differences in 

inflammation245-247. 
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CHAPTER 7. CONCLUSIONS AND NEXT STEPS 

Despite the fact that genes and environmental factors work together to affect health 

outcomes, health disparity research programs tend to be siloed with a narrow focus on 

either genetic or environmental contributions to health differences among groups.  There 

exists a tremendous and unmet opportunity to overcome these biases via a more inclusive 

research design that is focused on the diverse genomic cohorts, many of which are 

overlooked in existing biobanks, and addresses the role of genetic and the environment 

together in shaping health outcomes.  Utilizing any and all approaches to understand health 

disparities is the first step towards health equity. 

 This thesis first focuses on disparities in drug response, which are more directly 

explained by genetics, and then moves to more complex disparities that result from the 

interplay of genetics and the environment.  In chapters 2 and 3, the thesis illustrates the 

role that genetic ancestry can play in improving therapeutic outcomes for diverse 

populations in two very different countries in the New World (Colombia and the US).  The 

inclusion of information on ancestral origins can improve outcomes for different 

population groups, especially those who are underrepresented in research.  Starting with 

chapter 4, the focus becomes broader and shifts to more complex traits.  In chapters 5 and 

6, the thesis demonstrates that using information on ancestral origins in addition to 

environmental factors helps us derive insights about different health disparities. 

The thesis also documents the development of a free and interactive online resource for 

identifying health disparities in the UK Biobank, a routinely used dataset for genomics and 
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epidemiology research.  This will allow researchers to identify areas of research which 

might have the most impact in alleviating health disparities. 

An underlying theme of this thesis is that we can learn more about disparities and health 

outcomes if genomics research is more diverse.  The thesis presents different studies which 

involve participants who are diverse in different ways – genetic ancestry, racial/ethnic self-

identification, and socioeconomic context.  The studies discussed in chapter 2 and 3 

highlight how genomic insights derived from one population group may not always be 

transferable to other populations; chapters 5 and 6 illustrate how genetics and the 

environment seem to interact to cause dissimilar outcomes in different groups.  It should 

be noted that for chapters 4, 5, and 6, the thesis leveraged data from diverse participants 

characterized as part of populations biobanks, which were already available to researchers 

but often overlooked. 

 Future research that leverages information about ancestral origins – race, ethnicity, and 

genetic ancestry – while incorporating more detailed, “deep phenotyping” data on 

environment and lifestyle from diverse populations will be key in a societal move towards 

health equity.  New biobank initiatives like the All of Us Research Program are already 

incorporating data from fitness trackers, but other more granular data like macronutrient 

intake can be extremely useful in understanding the complex disease burden on minority 

populations and then in devising alleviation strategies. 

Until we reach a point where everyone in society has equitable access to basic resources 

like healthcare, healthy food, and safe open spaces for exercise, such research that tries to 

understand specific risk factors – lifestyle, environmental, and biological features – that 
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have a disproportionate impact on health outcomes can help alleviate some of the burden 

of health disparities we observe today.  
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APPENDIX A.  

SUPPLEMENTARY INFORMATION FOR CHAPTER 2 

 

Figure 25.  Ancestry associations for PGx variants in Colombia. 

[Continued on next page]  For each panel in the figure, PGx variant genotype percentages 
are shown for Antioquia (green) and Chocó (purple) followed by the ancestry association 
plots.  For each genetic ancestry component – African (blue), European (orange), and 
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Native American (red) – individuals’ ancestry fractions (y-axis) are regressed against their 
PGx variant genotypes (x-axis).  Ancestry associations are quantified by the slope of the 
regression (β) and its significance level (P). 
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rs4149056 (SLCO1B1*5) 

Homozygous Non-effect Allele TT 

  
 

Exome 
      

  

  
 

YES NO 
  

Sensitivity 96.5 
 

95% CI (93.4, 99.6) 

PC
R

 YES 83 0 83 
 

Specificity 100 
 

95% CI (100, 100) 

NO 3 46 49 
 

PPV 100 
 

95% CI (100, 100) 

  
 

86 46 132 
 

NPV 93.9 
 

95% CI (89.8, 98.0) 

  
         

  

  
         

  

Heterozygous TC 
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YES NO 
  

Sensitivity 100 
 

95% CI (100, 100) 

PC
R

 YES 44 1 45 
 

Specificity 98.9 
 

95% CI (97.1, 100) 

NO 0 87 87 
 

PPV 97.8 
 

95% CI (95.3, 100) 

  
 

44 88 132 
 

NPV 100 
 

95% CI (100, 100) 

  
         

  

  
         

  

Homozygous Effect Allele CC 

  
 

Exome 
      

  

  
 

YES NO 
  

Sensitivity 100 
 

95% CI (100, 100) 

PC
R

 YES 2 2 4 
 

Specificity 98.5 
 

95% CI (96.4, 100) 

NO 0 128 128 
 

PPV 50 
 

95% CI (41.5, 58.5) 

  
 

2 130 132 
 

NPV 100 
 

95% CI (100, 100) 
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rs1799583 (CYP2C9*2) 

Homozygous Non-effect Allele CC 

  
 

Exome 
      

  

  
 

YES NO 
  

Sensitivity 99.1 
 

95% CI (97.5, 100) 

PC
R

 YES 113 1 114 
 

Specificity 94.4 
 

95% CI (90.5, 98.4) 

NO 1 17 18 
 

PPV 99.1 
 

95% CI (97.5, 100) 

  
 

114 18 132 
 

NPV 94.4 
 

95% CI (90.5, 98.4) 

  
         

  

  
         

  

Heterozygous CT 
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YES NO 
  

Sensitivity 94.4 
 

95% CI (90.5, 98.4) 

PC
R

 YES 17 1 18 
 

Specificity 99.1 
 

95% CI (97.5, 100) 

NO 1 113 114 
 

PPV 94.4 
 

95% CI (90.5, 98.4) 

  
 

18 114 132 
 

NPV 99.1 
 

95% CI (97.5, 100) 

                      

           
rs1057910 (CYP2C9*3) 

Homozygous Non-Effect Allele AA 

  
 

Exome 
      

  

  
 

YES NO 
  

Sensitivity 100 
 

95% CI (100, 100) 

PC
R

 YES 115 0 115 
 

Specificity 100 
 

95% CI (100, 100) 

NO 0 17 17 
 

PPV 100 
 

95% CI (100, 100) 

  
 

115 17 132 
 

NPV 100 
 

95% CI (100, 100) 
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Heterozygous AC 

  
 

Exome 
      

  

  
 

YES NO 
  

Sensitivity 100 
 

95% CI (100, 100) 

PC
R

 YES 17 0 17 
 

Specificity 100 
 

95% CI (100, 100) 

NO 0 115 115 
 

PPV 100 
 

95% CI (100, 100) 

  
 

17 115 132 
 

NPV 100 
 

95% CI (100, 100) 

                      

Figure 26.  Comparison of the allele-specific PCR PGx variant genotyping assay 
results and the exome sequencing results. 

Three PGx variants were genotyped in a 132 patient cohort from the GenomaCES 
laboratory in Medellín, Colombia using the custom allele-specific PCR assay described in 
the manuscript.  Each individual PCR assay was validated via comparison with the exome 
sequence analysis results for these same patients.  Taking the exome sequences as the 
ground truth for the presence of the PGx variant alleles in these patients, PCR results were 
scored as true positives (TP), false positives (FP), false negatives (FN), and true negatives 
(TN), and the following metrics were computed to validate the PCR genotyping assays for 
each individual genotype assayed: 

K)-C5@5*5@E =
L'

L' + !0	
KD).565.5@E = L0/(L0 + !') 

'AC5@5*)	D()45.@5*)	*+,I)	(''N) =
L'

L' + !'	
0)2+@5*)	D()45.@5*)	*+,I)	(0'N) = L0/(L0 + !0) 

The 95% confidence intervals for these metrics were computed as: 
8 ± 1.96 ∗ 	F(8 ∗ (1 − 8))/- 

where x is the value of the metric and n is the total number of genotype assays conducted.
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Table 9.  PGx variant effect allele frequencies and ancestry associations for Colombian populations. 

   
African Ancestry 

Associations 

European 
Ancestry 

Associations 

Native 
American 
Ancestry 

Associations 
Effect allele 
frequencies 

rsID Effect 
Level of 
evidence 

β 
Value P Value β 

Value P Value β 
Value P Value Antioquia Chocó 

rs776746 Tacrolimus Dosage 1A 0.31 2.7E-24 -0.24 2.9E-23 -0.06 1.2E-09 0.19 0.68 
rs1057910 Warfarin Toxicity/ADR 1A -0.32 1.3E-03 0.30 1.3E-04 0.01 6.7E-01 0.07 0.01 
rs9923231 Warfarin Dosage 1A 0.25 8.0E-12 -0.19 7.3E-12 -0.04 9.6E-05 0.57 0.88 
rs4149056 Simvastatin Toxicity/ADR 1A -0.22 9.0E-05 0.18 5.5E-05 0.03 4.3E-02 0.18 0.05 
rs3892097 Antidepressant Dosage 1A 0.23 7.7E-05 -0.19 3.1E-05 -0.03 5.4E-02 0.84 0.96 
rs1799853 Warfarin Dosage 1A 0.25 4.2E-04 -0.21 2.5E-04 -0.04 8.4E-02 0.88 0.97 
rs887829 Atazanavir Toxicity/ADR 1A 0.07 8.1E-02 -0.05 7.8E-02 -0.01 3.0E-01 0.34 0.41 
rs4244285 Clopidogrel Toxicity/ADR 1A 0.09 1.4E-01 -0.06 1.9E-01 -0.02 1.7E-01 0.10 0.16 
rs9923231 Anticoagulant Dosage 1B 0.25 8.0E-12 -0.19 7.3E-12 -0.04 9.6E-05 0.57 0.88 
rs9934438 Warfarin Dosage 1B 0.25 8.0E-12 -0.19 7.3E-12 -0.04 9.6E-05 0.57 0.88 
rs2108622 Warfarin Dosage 1B -0.23 5.6E-07 0.18 5.0E-07 0.04 4.0E-03 0.27 0.07 
rs8099917 Antiviral Efficacy 1B 0.17 1.1E-04 -0.13 1.2E-04 -0.03 2.5E-02 0.73 0.91 
rs1800497 Bupropion Efficacy 1B 0.12 2.9E-03 -0.11 7.9E-04 -0.01 4.0E-01 0.20 0.33 

rs116855232 
Azathioprine, 
Mercaptopurine 
Toxicity/ADR 

1B -0.14 3.5E-01 0.08 4.9E-01 0.05 3.1E-01 0.02 0.01 

rs7294 Warfarin Dosage 1B 0.06 9.7E-02 -0.05 1.1E-01 -0.01 2.2E-01 0.36 0.43 
rs3745274 Efavirenz Dosage 1B -0.03 4.2E-01 0.01 6.2E-01 0.01 2.2E-01 0.64 0.57 
rs2740574 Tacrolimus Dosage 2A 0.32 4.1E-25 -0.24 2.8E-23 -0.06 9.2E-11 0.10 0.60 
rs7900194 Warfarin Toxicity/ADR 2A 0.44 8.0E-04 -0.32 2.0E-03 -0.10 8.2E-03 0.00 0.05 
rs776746 Sirolimus Dosage 2A 0.31 2.7E-24 -0.24 2.9E-23 -0.06 1.2E-09 0.19 0.68 
rs1801133 Cyclophosphamide Efficacy 2A -0.27 9.5E-16 0.21 5.1E-16 0.05 7.5E-06 0.54 0.15 

rs1057910 
Acenocoumarol 
Toxicity/ADR 

2A -0.32 1.3E-03 0.30 1.3E-04 0.01 6.7E-01 0.07 0.01 
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rs9934438 
Acenocoumarol, 
phenprocoumon Dosage 

2A 0.25 8.0E-12 -0.19 7.3E-12 -0.04 9.6E-05 0.57 0.88 

rs2108622 Phenprocoumon Dosage 2A -0.23 5.6E-07 0.18 5.0E-07 0.04 4.0E-03 0.27 0.07 

rs2228570 
Peginterferon alfa-2B, 
Ribavirin Efficacy 

2A -0.17 9.3E-06 0.12 1.0E-04 0.05 9.2E-05 0.42 0.21 

rs2359612 Warfarin Dosage 2A 0.18 6.2E-07 -0.14 6.6E-07 -0.03 3.5E-03 0.56 0.78 
rs4149056 Cerivastatin Toxicity/ADR 2A -0.22 9.0E-05 0.18 5.5E-05 0.03 4.3E-02 0.18 0.05 
rs1045642 Methotrexate Toxicity/ADR 2A -0.16 1.8E-05 0.12 6.9E-05 0.04 5.7E-04 0.45 0.26 
rs4148323 Irinotecan Toxicity/ADR 2A -0.23 1.3E-01 0.17 1.5E-01 0.04 3.4E-01 0.03 0.01 

rs10509681 
Rosiglitazone 
Metabolism/PK 

2A -0.21 2.3E-03 0.18 8.8E-04 0.02 2.6E-01 0.12 0.03 

rs8050894 Warfarin Dosage 2A 0.16 3.4E-05 -0.12 2.3E-05 -0.03 2.3E-02 0.55 0.75 

rs1041983 
Ethambutol, Isoniazid, 
Pyrazinamide, Rifampin 
Toxicity/ADR 

2A 0.13 4.9E-04 -0.10 5.4E-04 -0.02 3.6E-02 0.32 0.50 

rs17708472 Warfarin Dosage 2A -0.20 4.6E-04 0.13 3.6E-03 0.06 2.7E-04 0.18 0.07 
rs2884737 Warfarin Dosage 2A 0.24 6.6E-06 -0.19 4.3E-06 -0.04 1.4E-02 0.81 0.96 
rs1799978 Risperidone Efficacy 2A -0.20 3.1E-04 0.14 1.3E-03 0.05 2.2E-03 0.94 0.82 

rs1695 
Cyclophosphamide, 
Epirubicin Toxicity/ADR 

2A 0.10 8.4E-03 -0.08 1.3E-02 -0.02 6.2E-02 0.36 0.48 

rs3892097 Tamoxifen Dosage 2A 0.23 7.7E-05 -0.19 3.1E-05 -0.03 5.4E-02 0.84 0.96 

rs7294 
Acenocoumarol, 
Phenprocoumon Dosage 

2A 0.06 9.7E-02 -0.05 1.1E-01 -0.01 2.2E-01 0.36 0.43 

rs1800566 

Alkylatingagents, 
Anthracyclines and related 
substances, Fluorouracil, 
Platinum compounds 
Efficacy 

2A 0.10 3.3E-02 -0.07 4.2E-02 -0.02 1.3E-01 0.72 0.80 

rs28399499 Efavirenz Metabolism/PK 2A -0.26 2.3E-03 0.21 1.5E-03 0.04 1.4E-01 0.99 0.92 
rs3745274 Methadone Dosage 2A -0.03 4.2E-01 0.01 6.2E-01 0.01 2.2E-01 0.64 0.57 
rs7412 Atorvastatin Efficacy 2A 0.06 3.7E-01 -0.05 3.5E-01 -0.01 6.7E-01 0.09 0.13 
rs4680 Nicotine Efficacy 2A -0.06 1.5E-01 0.06 4.5E-02 -0.01 5.9E-01 0.37 0.31 



 
142 

rs17244841 
HMG-CoA reductase 
inhibitors, Pravastatin, 
Simvastatin Efficacy 

2A -0.16 2.0E-02 0.11 4.3E-02 0.05 3.0E-02 0.95 0.90 

rs2279345 Efavirenz Metabolism/PK 2A 0.06 2.4E-01 -0.05 2.0E-01 -0.01 6.3E-01 0.80 0.85 
rs4149015 Pravastatin Efficacy 2A 0.23 1.7E-02 -0.21 5.5E-03 -0.02 5.9E-01 0.93 0.98 
rs776746 Cyclosporine Dosage 2B 0.31 2.7E-24 -0.24 2.9E-23 -0.06 1.2E-09 0.19 0.68 

rs11615 

Carboplatin, Cisplatin, 
Oxaliplatin, Platinum, 
Platinum compounds 
Toxicity/ADR 

2B -0.30 2.3E-19 0.25 4.1E-21 0.05 3.0E-05 0.49 0.07 

rs7793837 
Salbutamol, selectivebeta-2-
adrenoreceptoragonists 
Efficacy 

2B -0.27 1.1E-18 0.21 8.5E-18 0.05 4.0E-08 0.69 0.25 

rs20455 Atorvastatin Efficacy 2B 0.29 7.7E-20 -0.21 3.6E-17 -0.07 3.6E-11 0.37 0.80 
rs1954787 Antidepressants Efficacy 2B -0.24 1.6E-14 0.18 4.0E-13 0.05 6.3E-08 0.62 0.21 
rs11212617 Metformin Efficacy 2B 0.28 1.9E-17 -0.21 3.5E-16 -0.06 3.8E-08 0.33 0.74 

rs7997012 
Antidepressants, citalopram, 
selective serotonin reuptake 
inhibitors Efficacy 

2B -0.27 3.2E-11 0.20 2.0E-09 0.07 1.6E-07 0.35 0.07 

rs489693 

Amisulpride, Aripiprazole, 
Clozapine, Haloperidol, 
Olanzapine, Paliperidone, 
Quetiapine, Risperidone, 
Ziprasidone Toxicity/ADR 

2B 0.24 1.8E-11 -0.18 5.2E-10 -0.06 6.4E-07 0.18 0.50 

rs339097 Warfarin Dosage 2B 0.33 2.0E-06 -0.26 3.2E-06 -0.06 3.0E-03 0.02 0.14 
rs6988229 Salbutamol Efficacy 2B 0.22 5.7E-10 -0.17 6.0E-09 -0.05 3.4E-06 0.19 0.49 

rs1042522 

Antineoplastic agents, 
Cisplatin, 
Cyclophosphamide, 
Fluorouracil, Paclitaxel 
Toxicity/ADR 

2B 0.23 2.9E-10 -0.16 9.0E-09 -0.05 7.8E-07 0.28 0.59 

rs4713916 
Antidepressants, 
Citalopram, Fluoxetine, 

2B -0.29 2.9E-09 0.23 1.3E-09 0.05 1.3E-03 0.27 0.06 
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Mirtazapine, Paroxetine, 
Selective serotonin reuptake 
inhibitors, Venlafaxine 
Efficacy 

rs3812718 Carbamazepine Dosage 2B -0.18 3.8E-07 0.13 1.8E-06 0.04 2.9E-04 0.55 0.27 
rs1051730 Nicotine Toxicity/ADR 2B -0.20 7.4E-07 0.17 6.4E-08 0.02 7.0E-02 0.36 0.12 

rs1719247 
HMG-CoA reductase 
inhibitors, Simvastatin 
Toxicity/ADR 

2B -0.21 4.9E-09 0.17 4.2E-09 0.04 8.9E-04 0.54 0.27 

rs924607 Vincristine Toxicity/ADR 2B -0.24 7.5E-08 0.18 2.5E-07 0.05 2.1E-04 0.33 0.10 
rs2108622 Acenocoumarol Dosage 2B -0.23 5.6E-07 0.18 5.0E-07 0.04 4.0E-03 0.27 0.07 
rs4444903 Cetuximab Efficacy 2B 0.18 3.3E-07 -0.14 2.2E-07 -0.03 3.8E-03 0.50 0.76 

rs25487 

Carboplatin, Cisplatin, 
Oxaliplatin, Platinum, 
Platinum compounds 
Efficacy 

2B 0.25 5.2E-09 -0.19 1.9E-08 -0.05 9.9E-05 0.63 0.87 

rs2232228 
Anthracyclines 
Toxicity/ADR 

2B 0.20 2.8E-07 -0.16 1.5E-07 -0.03 4.9E-03 0.64 0.88 

rs7779029 Irinotecan Toxicity/ADR 2B 0.24 2.4E-06 -0.17 2.0E-05 -0.06 9.6E-05 0.09 0.26 
rs1933437 Sunitinib Toxicity/ADR 2B -0.14 1.2E-04 0.12 2.0E-05 0.01 2.1E-01 0.57 0.36 
rs3753380 Latanoprost Efficacy 2B 0.25 8.5E-08 -0.18 6.2E-07 -0.06 5.1E-05 0.73 0.94 
rs2231142 Allopurinol Dosage 2B -0.25 2.9E-04 0.15 4.9E-03 0.08 3.9E-05 0.14 0.04 

rs17782313 
Antipsychotics 
Toxicity/ADR 

2B 0.20 2.1E-05 -0.15 6.9E-05 -0.05 1.4E-03 0.11 0.27 

rs2298383 Caffeine Toxicity/ADR 2B 0.16 6.5E-06 -0.11 7.2E-05 -0.04 5.7E-05 0.50 0.69 

rs16960228 
Hydrochlorothiazide 
Efficacy 

2B 0.17 1.2E-04 -0.13 3.7E-04 -0.04 2.2E-03 0.14 0.31 

rs738409 

Asparaginase, 
Cyclophosphamide, 
Daunorubicin, 
Prednisolone, Vincristine 
Toxicity/ADR 

2B -0.17 3.7E-05 0.13 7.5E-05 0.03 6.9E-03 0.40 0.22 

rs1799971 Ethanol Metabolism/PK 2B -0.22 2.3E-04 0.17 2.5E-04 0.04 2.3E-02 0.16 0.05 
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rs1532624 HMG-CoA Efficacy 2B 0.19 8.4E-06 -0.15 1.3E-05 -0.04 3.5E-03 0.69 0.87 
rs2234922 Carbamazepine Dosage 2B 0.14 5.0E-04 -0.10 2.0E-03 -0.04 3.0E-03 0.18 0.33 

rs1876828 

Budesonide, 
Corticosteroids, 
Fluticasonepropionate, 
Fluticasone/Salmeterol, 
Triamcinolone Efficacy 

2B 0.38 5.4E-10 -0.32 1.8E-11 -0.05 1.6E-02 0.82 0.99 

rs578776 Nicotine Toxicity/ADR 2B -0.11 3.4E-03 0.10 3.2E-04 0.00 1.0E+00 0.52 0.36 
rs730012 Aspirin Toxicity/ADR 2B -0.16 9.4E-04 0.11 2.5E-03 0.04 6.7E-03 0.24 0.11 

rs11598702 
Gemcitabine 
Metabolism/PK 

2B -0.11 4.8E-03 0.09 4.8E-03 0.02 8.6E-02 0.36 0.21 

rs4803419 Efavirenz Metabolism/PK 2B 0.11 8.8E-03 -0.07 2.7E-02 -0.03 1.1E-02 0.67 0.82 

rs7297610 
Hydrochlorothiazide 
Efficacy 

2B -0.20 3.3E-05 0.14 1.1E-04 0.05 1.7E-03 0.91 0.76 

rs746647 Nevirapine Toxicity/ADR 2B -0.15 9.6E-04 0.11 2.0E-03 0.03 1.3E-02 0.30 0.17 
rs1800497 Ethanol Efficacy 2B 0.12 2.9E-03 -0.11 7.9E-04 -0.01 4.0E-01 0.20 0.33 

rs1800497 
Antipsychotics, Clozapine, 
Olanzapine, Risperidone 
Efficacy 

2B 0.12 2.9E-03 -0.11 7.9E-04 -0.01 4.0E-01 0.20 0.33 

rs264588 Radiotherapy Toxicity/ADR 2B 0.12 4.7E-03 -0.10 2.4E-03 -0.02 2.3E-01 0.19 0.31 
rs7582141 Radiotherapy Toxicity/ADR 2B 0.10 4.0E-02 -0.09 2.6E-02 -0.01 4.1E-01 0.19 0.30 

rs1056892 
Anthracyclines 
Toxicity/ADR 

2B -0.08 2.5E-02 0.07 2.4E-02 0.01 2.1E-01 0.72 0.60 

rs10306114 Aspirin Efficacy 2B 0.15 3.3E-02 -0.14 1.2E-02 -0.01 7.8E-01 0.05 0.11 
rs1695 Cisplatin Toxicity/ADR 2B 0.10 8.4E-03 -0.08 1.3E-02 -0.02 6.2E-02 0.36 0.48 
rs6432512 Radiotherapy Toxicity/ADR 2B 0.12 5.1E-03 -0.10 2.8E-03 -0.02 2.1E-01 0.20 0.30 
rs12777823 Warfarin Dosage 2B -0.17 1.1E-03 0.12 3.3E-03 0.04 5.6E-03 0.90 0.78 
rs1051740 Carbamazepine Dosage 2B -0.11 1.3E-02 0.07 4.4E-02 0.04 6.7E-03 0.31 0.20 
rs13306278 Selective Efficacy 2B 0.38 1.8E-06 -0.33 1.1E-07 -0.04 1.1E-01 0.89 1.00 
rs1801274 Trastuzumab Efficacy 2B -0.06 1.0E-01 0.05 1.0E-01 0.01 2.8E-01 0.60 0.50 

rs4961 
Furosemide, Spironolactone 
Efficacy 

2B 0.19 1.9E-03 -0.15 1.4E-03 -0.03 9.7E-02 0.83 0.93 
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rs7853758 
Anthracyclinesandrelatedsu
bstances Toxicity/ADR 

2B -0.11 1.1E-02 0.08 1.4E-02 0.02 9.5E-02 0.78 0.68 

rs2072661 Nicotine Toxicity/ADR 2B 0.08 8.4E-02 -0.08 3.8E-02 0.00 9.1E-01 0.18 0.26 

rs716274 
Etoposide, Platinum 
compounds Toxicity/ADR 

2B -0.05 1.7E-01 0.07 3.0E-02 -0.01 2.9E-01 0.46 0.37 

rs2952768 

Buprenorphine, Fentanyl, 
Meperidine, Morphine, 
Opioids, Pentazocine 
Dosage 

2B -0.08 5.9E-02 0.05 1.3E-01 0.03 3.8E-02 0.35 0.27 

rs885004 
Anthracyclines and related 
substances Toxicity/ADR 

2B 0.13 2.3E-02 -0.09 4.2E-02 -0.03 4.1E-02 0.83 0.91 

rs7270101 
Peginterferon alfa-2B, 
Ribavirin Toxicity/ADR 

2B -0.13 9.9E-02 0.12 6.1E-02 0.01 6.7E-01 0.08 0.05 

rs1517114 Irinotecan Toxicity/ADR 2B 0.06 9.3E-02 -0.05 6.3E-02 -0.01 5.4E-01 0.36 0.44 
rs1076560 Cocaine Toxicity/ADR 2B -0.06 2.5E-01 0.03 4.5E-01 0.03 8.7E-02 0.15 0.10 
rs1801394 Methotrexate Toxicity/ADR 2B -0.06 1.7E-01 0.06 6.2E-02 -0.01 6.4E-01 0.28 0.22 

rs1801019 
Capecitabine, Fluorouracil, 
Leucovorin, Tegafur 
Toxicity/ADR 

2B 0.06 1.5E-01 -0.06 7.4E-02 0.00 9.6E-01 0.21 0.28 

rs4693075 
Atorvastatin, HMG-CoA 
reductase inhibitors, 
Rosuvastatin Toxicity/ADR 

2B 0.06 1.4E-01 -0.04 2.3E-01 -0.02 1.2E-01 0.36 0.43 

rs4880 Cyclophosphamide Efficacy 2B 0.05 1.8E-01 -0.04 1.6E-01 -0.01 5.5E-01 0.52 0.58 
rs6065 Aspirin Efficacy 2B 0.06 2.6E-01 -0.04 3.1E-01 -0.01 3.4E-01 0.15 0.20 

rs4149601 
Diuretics, 
Hydrochlorothiazide 
Efficacy 

2B -0.08 5.1E-02 0.05 1.5E-01 0.03 1.2E-02 0.73 0.67 

rs1346268 
HMG-CoA reductase 
inhibitors, Simvastatin 
Toxicity/ADR 

2B 0.05 2.4E-01 -0.02 5.3E-01 -0.03 2.7E-02 0.58 0.63 

rs10455872 HMG-CoA Efficacy 2B 0.28 5.3E-03 -0.23 3.1E-03 -0.04 2.2E-01 0.94 1.00 
rs61750900 Nicotine Metabolism/PK 2B 0.16 6.6E-02 -0.16 1.9E-02 0.00 8.6E-01 0.93 0.98 
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Table 10.  PGx variant effect allele frequencies and ancestry associations for Colombian populations. 

  Frequency Differences  

rsID Effect log2(Antioquia/
Chocó) Δ(Antioquia-Chocó) 

Euclidean 
Distance 

from Origin 
Effect 
Allele 

rs776746 Tacrolimus Dosage -1.86 -0.49 5.26 T 
rs1057910 Warfarin Toxicity/ADR 3.37 0.06 3.43 C 
rs9923231 Warfarin Dosage -0.62 -0.31 3.12 C 

rs4149056 
Simvastatin 
Toxicity/ADR 

1.79 0.13 2.18 C 

rs3892097 Antidepressant Dosage -0.19 -0.12 1.22 C 
rs1799853 Warfarin Dosage -0.15 -0.10 0.97 C 
rs887829 Atazanavir Toxicity/ADR -0.29 -0.08 0.82 T 

rs4244285 
Clopidogrel 
Toxicity/ADR 

-0.59 -0.05 0.79 A 

rs9923231 Anticoagulant Dosage -0.62 -0.31 3.12 C 
rs9934438 Warfarin Dosage -0.62 -0.31 3.12 G 
rs2108622 Warfarin Dosage 1.90 0.20 2.77 T 
rs8099917 Antiviral Efficacy -0.31 -0.17 1.76 T 
rs1800497 Bupropion Efficacy -0.70 -0.13 1.45 A 

rs116855232 
Azathioprine, 
Mercaptopurine 
Toxicity/ADR 

0.84 0.01 0.84 T 

rs7294 Warfarin Dosage -0.27 -0.07 0.77 T 
rs3745274 Efavirenz Dosage 0.15 0.06 0.65 G 
rs2740574 Tacrolimus Dosage -2.59 -0.50 5.60 C 
rs7900194 Warfarin Toxicity/ADR -5.51 -0.04 5.52 A 
rs776746 Sirolimus Dosage -1.86 -0.49 5.26 T 

rs1801133 
Cyclophosphamide 
Efficacy 

1.88 0.39 4.35 A 
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rs1057910 
Acenocoumarol 
Toxicity/ADR 

3.37 0.06 3.43 C 

rs9934438 
Acenocoumarol, 
phenprocoumon Dosage 

-0.62 -0.31 3.12 G 

rs2108622 Phenprocoumon Dosage 1.90 0.20 2.77 T 

rs2228570 
Peginterferon alfa-2B, 
Ribavirin Efficacy 

1.02 0.21 2.35 A 

rs2359612 Warfarin Dosage -0.48 -0.22 2.26 G 

rs4149056 
Cerivastatin 
Toxicity/ADR 

1.79 0.13 2.18 C 

rs1045642 
Methotrexate 
Toxicity/ADR 

0.83 0.20 2.15 A 

rs4148323 Irinotecan Toxicity/ADR 2.03 0.02 2.04 A 

rs10509681 
Rosiglitazone 
Metabolism/PK 

1.80 0.09 1.99 C 

rs8050894 Warfarin Dosage -0.43 -0.19 1.98 C 

rs1041983 
Ethambutol, Isoniazid, 
Pyrazinamide, Rifampin 
Toxicity/ADR 

-0.63 -0.17 1.86 T 

rs17708472 Warfarin Dosage 1.38 0.11 1.76 A 
rs2884737 Warfarin Dosage -0.25 -0.15 1.54 A 
rs1799978 Risperidone Efficacy 0.21 0.13 1.28 T 

rs1695 
Cyclophosphamide, 
Epirubicin Toxicity/ADR 

-0.40 -0.12 1.24 G 

rs3892097 Tamoxifen Dosage -0.19 -0.12 1.22 C 

rs7294 
Acenocoumarol, 
Phenprocoumon Dosage 

-0.27 -0.07 0.77 T 

rs1800566 

Alkylatingagents, 
Anthracyclines and 
related substances, 
Fluorouracil, Platinum 
compounds Efficacy 

-0.14 -0.07 0.74 G 

rs28399499 Efavirenz Metabolism/PK 0.11 0.07 0.74 T 



 
148 

rs3745274 Methadone Dosage 0.15 0.06 0.65 G 
rs7412 Atorvastatin Efficacy -0.51 -0.04 0.63 T 
rs4680 Nicotine Efficacy 0.23 0.05 0.60 A 

rs17244841 
HMG-CoA reductase 
inhibitors, Pravastatin, 
Simvastatin Efficacy 

0.08 0.05 0.54 A 

rs2279345 Efavirenz Metabolism/PK -0.09 -0.05 0.52 C 
rs4149015 Pravastatin Efficacy -0.08 -0.05 0.51 G 
rs776746 Cyclosporine Dosage -1.86 -0.49 5.26 T 

rs11615 

Carboplatin, Cisplatin, 
Oxaliplatin, Platinum, 
Platinum compounds 
Toxicity/ADR 

2.70 0.41 4.91 A 

rs7793837 
Salbutamol, selectivebeta-
2-adrenoreceptoragonists 
Efficacy 

1.49 0.45 4.71 A 

rs20455 Atorvastatin Efficacy -1.12 -0.43 4.43 G 
rs1954787 Antidepressants Efficacy 1.55 0.41 4.36 C 
rs11212617 Metformin Efficacy -1.16 -0.41 4.25 C 

rs7997012 

Antidepressants, 
citalopram, selective 
serotonin reuptake 
inhibitors Efficacy 

2.38 0.28 3.70 A 

rs489693 

Amisulpride, 
Aripiprazole, Clozapine, 
Haloperidol, Olanzapine, 
Paliperidone, Quetiapine, 
Risperidone, Ziprasidone 
Toxicity/ADR 

-1.51 -0.32 3.58 A 

rs339097 Warfarin Dosage -3.09 -0.12 3.32 G 
rs6988229 Salbutamol Efficacy -1.35 -0.30 3.27 T 

rs1042522 
Antineoplastic agents, 
Cisplatin, 

-1.05 -0.31 3.23 G 
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Cyclophosphamide, 
Fluorouracil, Paclitaxel 
Toxicity/ADR 

rs4713916 

Antidepressants, 
Citalopram, Fluoxetine, 
Mirtazapine, Paroxetine, 
Selective serotonin 
reuptake inhibitors, 
Venlafaxine Efficacy 

2.14 0.21 3.01 A 

rs3812718 Carbamazepine Dosage 1.02 0.28 2.97 T 
rs1051730 Nicotine Toxicity/ADR 1.60 0.24 2.88 A 

rs1719247 
HMG-CoA reductase 
inhibitors, Simvastatin 
Toxicity/ADR 

1.00 0.27 2.88 C 

rs924607 Vincristine Toxicity/ADR 1.72 0.23 2.85 T 
rs2108622 Acenocoumarol Dosage 1.90 0.20 2.77 T 
rs4444903 Cetuximab Efficacy -0.59 -0.26 2.62 G 

rs25487 

Carboplatin, Cisplatin, 
Oxaliplatin, Platinum, 
Platinum compounds 
Efficacy 

-0.47 -0.24 2.48 C 

rs2232228 
Anthracyclines 
Toxicity/ADR 

-0.46 -0.24 2.43 A 

rs7779029 Irinotecan Toxicity/ADR -1.53 -0.17 2.27 C 
rs1933437 Sunitinib Toxicity/ADR 0.65 0.21 2.16 A 
rs3753380 Latanoprost Efficacy -0.37 -0.21 2.15 C 
rs2231142 Allopurinol Dosage 1.81 0.10 2.07 T 

rs17782313 
Antipsychotics 
Toxicity/ADR 

-1.29 -0.16 2.04 C 

rs2298383 Caffeine Toxicity/ADR -0.49 -0.20 2.04 C 

rs16960228 
Hydrochlorothiazide 
Efficacy 

-1.13 -0.17 2.01 A 



 
150 

rs738409 

Asparaginase, 
Cyclophosphamide, 
Daunorubicin, 
Prednisolone, Vincristine 
Toxicity/ADR 

0.87 0.18 2.00 G 

rs1799971 Ethanol Metabolism/PK 1.66 0.11 1.99 G 
rs1532624 HMG-CoA Efficacy -0.34 -0.18 1.84 C 
rs2234922 Carbamazepine Dosage -0.92 -0.16 1.83 G 

rs1876828 

Budesonide, 
Corticosteroids, 
Fluticasonepropionate, 
Fluticasone/Salmeterol, 
Triamcinolone Efficacy 

-0.27 -0.17 1.71 C 

rs578776 Nicotine Toxicity/ADR 0.53 0.16 1.68 G 
rs730012 Aspirin Toxicity/ADR 1.08 0.13 1.65 C 

rs11598702 
Gemcitabine 
Metabolism/PK 

0.76 0.15 1.65 C 

rs4803419 Efavirenz Metabolism/PK -0.31 -0.16 1.61 C 

rs7297610 
Hydrochlorothiazide 
Efficacy 

0.27 0.16 1.59 C 

rs746647 Nevirapine Toxicity/ADR 0.79 0.13 1.49 G 
rs1800497 Ethanol Efficacy -0.70 -0.13 1.45 A 

rs1800497 
Antipsychotics, 
Clozapine, Olanzapine, 
Risperidone Efficacy 

-0.70 -0.13 1.45 A 

rs264588 
Radiotherapy 
Toxicity/ADR 

-0.67 -0.11 1.32 A 

rs7582141 
Radiotherapy 
Toxicity/ADR 

-0.65 -0.11 1.26 T 

rs1056892 
Anthracyclines 
Toxicity/ADR 

0.27 0.12 1.25 G 

rs10306114 Aspirin Efficacy -1.09 -0.06 1.25 G 
rs1695 Cisplatin Toxicity/ADR -0.40 -0.12 1.24 G 
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rs6432512 
Radiotherapy 
Toxicity/ADR 

-0.62 -0.11 1.23 T 

rs12777823 Warfarin Dosage 0.21 0.12 1.21 G 
rs1051740 Carbamazepine Dosage 0.60 0.10 1.20 C 
rs13306278 Selective Efficacy -0.17 -0.11 1.09 C 
rs1801274 Trastuzumab Efficacy 0.27 0.10 1.07 A 

rs4961 
Furosemide, 
Spironolactone Efficacy 

-0.17 -0.10 1.05 G 

rs7853758 
Anthracyclinesandrelated
substances Toxicity/ADR 

0.20 0.10 1.02 G 

rs2072661 Nicotine Toxicity/ADR -0.53 -0.08 0.95 A 

rs716274 
Etoposide, Platinum 
compounds 
Toxicity/ADR 

0.31 0.09 0.93 G 

rs2952768 

Buprenorphine, Fentanyl, 
Meperidine, Morphine, 
Opioids, Pentazocine 
Dosage 

0.39 0.08 0.93 C 

rs885004 
Anthracyclines and 
related substances 
Toxicity/ADR 

-0.14 -0.09 0.88 G 

rs7270101 
Peginterferon alfa-2B, 
Ribavirin Toxicity/ADR 

0.79 0.03 0.85 C 

rs1517114 Irinotecan Toxicity/ADR -0.27 -0.08 0.81 C 
rs1076560 Cocaine Toxicity/ADR 0.61 0.05 0.79 A 

rs1801394 
Methotrexate 
Toxicity/ADR 

0.39 0.07 0.77 G 

rs1801019 
Capecitabine, 
Fluorouracil, Leucovorin, 
Tegafur Toxicity/ADR 

-0.39 -0.07 0.77 C 

rs4693075 
Atorvastatin, HMG-CoA 
reductase inhibitors, 

-0.24 -0.07 0.71 G 
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Rosuvastatin 
Toxicity/ADR 

rs4880 
Cyclophosphamide 
Efficacy 

-0.18 -0.07 0.70 A 

rs6065 Aspirin Efficacy -0.42 -0.05 0.66 T 

rs4149601 
Diuretics, 
Hydrochlorothiazide 
Efficacy 

0.12 0.06 0.61 G 

rs1346268 
HMG-CoA reductase 
inhibitors, Simvastatin 
Toxicity/ADR 

-0.12 -0.05 0.52 T 

rs10455872 HMG-CoA Efficacy -0.08 -0.05 0.52 A 
rs61750900 Nicotine Metabolism/PK -0.08 -0.05 0.50 G 
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APPENDIX B.  

SUPPLEMENTARY INFORMATION FOR CHAPTER 3 

Table 11.  Global reference populations used for genetic ancestry inference. 

1Population name 

2Number of samples 

3Population continental ancestry 

4Data source: 1000 Genomes Project (1KGP) 65, Human Genome Diversity Project 
(HGDP) 127, Collection of Native American Samples (Reich et al.)128. 

Population
1
 N

2
 Continental ancestry

3
 Source

4
 

African Caribbean in Barbados 94 African 1KGP 
Algonquin 5 Native American Reich et al. 

Americans of African ancestry 

from SW USA 
51 African 1KGP 

Utah Residents with Northern 

and Western European Ancestry 
99 European 1KGP 

Chipewyan 13 Native American Reich et al. 
Cree 4 Native American Reich et al. 

Finnish in Finland 99 European 1KGP 
French 28 European HGDP 

British in England and Scotland 91 European 1KGP 
Iberian Population in Spain 107 European 1KGP 

Mixe 17 Native American Reich et al. 
Mixtec 5 Native American Reich et al. 
Ojibwa 5 Native American Reich et al. 

Orcadian 15 European HGDP 
Piapoco 7 Native American Reich et al. 

Pima 14 Native American HGDP 
Russian 25 European HGDP 

Sardinian 28 European HGDP 
Tepehuano 25 Native American Reich et al. 

Teribe 3 Native American Reich et al. 
Ticuna 6 Native American Reich et al. 

Toscani in Italia 107 European 1KGP 
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Figure 27.  Permutation analysis to evaluate the stability of k-means genetic ancestry 
(GA) clusters. 

The HRS cohort was randomly sampled at different proportions, where the proportion of 
the cohort sampled = the number of participants in the random sample / the total number 
of participants in the cohort.  For each random sample, k-means clustering was run 50 
times and an inconsistency ratio was calculated for each independent run, where the 
inconsistency ratio is the number of mismatches between the random sample group 
assignments / the number of participants in the random sample.  In other words, the 
inconsistency ratio measures the error in k-means cluster assignments due to sampling 
bias.  As can be expected, error is higher for smaller random cohort proportions and 
decreases monotonically as the proportion of the random cohorts increases.  Nevertheless, 
the error level, even at the smallest sampling proportions, is extremely low. The mean error 
at a sampling proportion of 0.1 is 0.4%, and when the entire cohort is sampled (i.e. cohort 
proportion=1) k-means clustering is 100% consistent.  
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Figure 28.  Comparison of self-identified race/ethnicity (SIRE) versus genetic 
ancestry (GA) groups in the US. 

Ternary plots showing the relative continental ancestry fractions for HRS participants are 
shown with individuals color coded by SIRE (A) or genetic ancestry (B).  SIRE and their 
corresponding GA groups are coded as White/Group 1 (orange), Black/Group 2 (blue), 
and Hispanic/Group 3 (red).  (C) Distributions of continental ancestry fractions – 
European, African, and Native American – for HRS participants are shown corresponding 
SIRE and GA groups. 
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Figure 29.  Correspondence between self-identified race/ethnicity (SIRE) versus 
genetic ancestry (GA) groups in the US. 

Numbers of HRS participants that fall into each combination of SIRE and GA groups is 
shown along with the percentage correspondence.  Individual percent correspondence 
values are calculated as the number of individuals along the diagonal, i.e. that fall into the 
corresponding SIRE and GA groups, divided by the total number of individuals in each 
SIRE group (right) or each GA group (bottom), times 100.  The overall percent 
correspondence is calculated as the number of individuals along the diagonal divided by 
the total number of individuals in the HRS cohort, times 100. 
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Figure 30.  Pharmacogenomic variation in the US: genetic ancestry (GA). 

Data shown here correspond to GA groups; analogous results for SIRE groups shown in 
Figure 2.  Genome-wide average allele frequencies (A), group-specific allele frequency 
differences (B), and heterozygosity fractions (C) are shown for PGx variants (red) 
compared to non-PGx variants (blue).  (D-F) Fixation index (FST; y-axis) and allele 
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frequency differences (x-axis) for pairs of GA groups.  Statistically significant PGx allele 
frequency differences are highlighted in black.  (G) Heatmap showing group-specific allele 
frequencies for significantly diverged PGx variants.  (H) Multi-dimensional scaling (MDS) 
plot showing the relationship among individual genomes as measured by PGx variants 
alone.  Each dot is an individual HRS participant genome, and genomes are color-coded 
by participants GA groups.  (I) The correspondence between GA groups and PGx groups 
defined by K-means clustering on the results of the MDS analysis.    

 

 

Figure 31.  FST distribution of divergent PGx variants. 

Data shown here correspond to the FST distribution of the diverged variants shown in 
Figure 2G.  The inset shows mean values plotted as barplots and standard error plotted as 
error bars. 



 
159 

APPENDIX C. SUPPLEMENTARY INFORMATION FOR CHAPTER 

4 

 

 

Figure 32 Disease phenotype disparities for groups defined by age. 

Each point is a disease phenotype and is colored to indicate the groups defined by age with 
the highest prevalence for that phenotype.  The size and opacity of each point is scaled by 
the distance from origin. 
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Figure 33. Disease phenotype disparities for groups defined by country of residence. 

Each point is a disease phenotype and is colored to indicate the groups defined by country 
of residence with the highest prevalence for that phenotype.  The size and opacity of each 
point is scaled by the distance from origin. 
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Figure 34 Disease phenotype disparities for groups defined by socioeconomic 
deprivation. 

Each point is a disease phenotype and is colored to indicate the groups defined by 
socioeconomic deprivation with the highest prevalence for that phenotype.  The size and 
opacity of each point is scaled by the distance from origin. 
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Figure 35. Disease phenotype disparities for groups defined by sex. 

Each point is a disease phenotype and is colored to indicate the groups defined by sex with 
the highest prevalence for that phenotype.  The size and opacity of each point is scaled by 
the distance from origin. 
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Figure 36.  Pairwise correlation between disease disparity scores across population 
attributes. 

Heatmap showing pairwise correlations between population attributes.  Each bix shows 
the Spearman r value for the correlation.  Darker red indicates higher correlation. 
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SUPPLEMENTARY INFORMATION FOR CHAPTER 5 

 

Figure 37.  Generation of study cohort. 

Overview of data inclusion/exclusion criteria from UK Biobank to final analysis cohort. 
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Figure 38.  Ethnic group and genetic ancestry. 

Individuals in a space defined by the first two genetic principal components colored by 
ethnic group – Asian (red), Black (blue), and White (orange).  (A)  All individuals shown 
prominently. (B) Individuals part of genetic ancestry groups highlighted.  (C)  Individuals 
part of genetic ancestry groups and outliers highlighted.  (D) Concordance between self-
identified ethnic group and continuous genetic ancestry groups defined using genetic data.  
(E)  Concordance table between discrete genetic ancestry groups defined using genetic 
data. 
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Table 12. T2D multivariable logistic regression model with interaction terms (Model 
1). 

Details of the model used are shown below along with model coefficient estimates, 
standard errors, z values, p-values, and dominance analysis R2 values and ranks. 

logit(p) = b0 + b1*Age + b2*Sex + b3*African + b4*SouthAsian + b5*SED + 
b6*African*SED + b7*SouthAsian*SED 

 Name Estimate 
Std. 

Error 
z value P-value 

Dominance 

analysis 

b0 Intercept -3.198359 0.01082 -295.61 ~0  
b1 Age 0.576009 0.007392 77.925 ~0 3.21 (1) 
b2 Sex (Male) 0.618593 0.013116 47.162 ~0 1.20 (2) 
b3 African 0.925661 0.062244 14.871 5.06 x 10-50 

0.81 (3) 
b4 SouthAsian 1.475287 0.033195 44.443 ~0 
b5 SED 0.102774 0.002018 50.925 ~0 0.62 (4) 
b6 African*SED  -0.043717 0.013307 -3.285 1.02 x 10-2  
b7 SouthAsian*SED -0.025288 0.01048 -2.413 1.58  x 10-2  
 

 

Table 13.  Likelihood ratio test for T2D multivariable logistic regression model with 
and without interaction terms. 

The models and the test statistic are shown below. 

Model A:  T2D ~ Age + Sex + GA + SED 

Model B:  T2D ~ Age + Sex + GA + SED + GA*SED 

Models 
compared !2 P-value Δdf 

B vs. A 15.96 3.418 x 10-4 2 

 

 



 
167 

Table 14.  T2D multivariable logistic regression model with GA combined with SED 
terciles (Model 2). 

Details of the model used are shown below along with model coefficient estimates, 
standard errors, z values, and p-values. 

logit(p) = b0 + b1*Age + b2*Sex + b3*EuropeanMediumSED + b4*EuropeanHighSED 
+ b5*AfricanLowSED + b6*AfricanMediumSED + b7*AfricanHighSED + 
b8*SouthAsianLowSED + b9*SouthAsianMediumSED + b10*SouthAsianHighSED 

 

 Name Estimate 
Std. 
Error 

z value P-value 

b0 Intercept -
3.636372 0.015566 -

233.617 ~0 

b1 Age 0.571606 0.007382 77.43 ~0 
b2 Sex (Male) 0.6246 0.013104 47.664 ~0 
b3 EuropeanMediumSED  0.21993 0.017502 12.566 3.25 x 10-36 
b4 EuropeanHighSED  0.675504 0.01646 41.039 ~0 
b5 AfricanLowSED  1.06971 0.238512 4.485 7.29 x 10-06 
b6 AfricanMediumSED  1.292777 0.132121 9.785 1.31 x 10-22 
b7 AfricanHighSED  1.598551 0.049888 32.043 2.77 x 10-225 
b8 SouthAsianLowSED  1.517856 0.09115 16.652 2.92 x 10-62 
b9 SouthAsianMediumSED  1.834989 0.066043 27.785 6.61 x 10-170 
b10 SouthAsianHighSED 2.073268 0.042197 49.133 ~0 

 

  



 
168 

APPENDIX E.  

SUPPLEMENTARY INFORMATION FOR CHAPTER 5 

Table 15.  Global reference populations used for genetic ancestry inference of UK 
Biobank participants. 

Geographic 
region 

Population Name (Abbreviation) Source1 

African 

Yoruba in Ibadan, Nigeria (YRI) 1KGP 
Esan in Nigeria (ESN) 1KGP 
Luhya in Webuye, Kenya (LWK) 1KGP 
Gambian in Western Divisions in the Gambia 
(GWD) 1KGP 

Mbuti in Democratic Republic of Congo (MBU) HGDP 
Biaka in Central African Republic (BIA) HGDP 

European 

Finnish in Finland (FIN) 1KGP 
British in England and Scotland (GBR) 1KGP 
Iberian Population in Spain (IBS) 1KGP 
Toscani in Italia (TSI) 1KGP 
French in France (FRE) HGDP 
Basque in France (BAS) HGDP 
Bergamo Italian in Bergamo, Italy (BER) HGDP 
Tuscan in Italy (TUS) HGDP 

 

11KGP – 1000 Genomes Project, HGDP – Human Genome Diversity Project 
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Table 16.  CRP multivariable linear regression (Model 1). 

Model equation, coefficient estimates, standard errors, z values, and P-values are shown. 

CRP = b0 + b1*Ethnicity + b2*Age + b3*Sex 

Coefficient Name Estimate Std. Error z value P-value 
b0 Intercept 0.7768 0.0476 16.314 < 2 x 10-16 

b1 Ethnicity 
(Black)  0.3049    0.0548    5.562 2.67 x 10-16 

b2 Age  0.3396    0.0083   41.124   < 2 x 10-16 
b3 Sex (Male)  -0.2423    0.0133 -18.214   < 2 x 10-16 

 

Table 17.  CRP multivariable linear regression with interaction term (Model 2). 

Model equation, coefficient estimates, standard errors, z values, and P-values are shown. 

CRP = b0 + b1*Ethnicity + b2*Age + b3*Sex + b4*(Ethnicity * Sex) 

Coefficient Name Estimate Std. Error z value P-value 
b0 Intercept 0.7729    0.0476 16.234 < 2 x 10-16 
b1 Ethnicity (Black)  0.6912    0.0722 5.579 2.67 x 10-16 
b2 Age  0.3392    0.0083 41.078   < 2 x 10-16 
b3 Sex (Male)  -0.2290    0.0134 -17.083   < 2 x 10-16 
b4 Ethnicity * Sex -0.9111    0.1106 -8.233    < 2 x 10-16 
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Table 18.  Likelihood ratio test for CRP multivariable linear regression models with 
and without ethnicity-sex interaction term. 

The model equations and the likelihood test statistic values are shown below. 

Model 1:  CRP = b0 + b1*Ethnicity + b2*Age + b3*Sex 

Model 2:  CRP = b0 + b1*Ethnicity + b2*Age + b3*Sex + b4*(Ethnicity * Sex) 

Models 
compared 

!2 P-value Δdf 

1 vs. 2 67.78 1.822 x 10-16 1 
 

 

Table 19.  CRP structural equation modeling with African ancestry mediation (Model 
3).  Path diagram for the model is shown in Figure 4A. 

The top table shows all models evaluated along with each effect size estimate, standard 
error, z value, and P-value.  The bottom table shows effect size estimates, standard errors, 
z values, and P-values for the indirect effect and total effect ethnicity on CRP levels.   

Models evaluated 
(Dependent ~ 
Independent 

variables) 

Path 
Branch 
Label 

Effect size 
estimate 

Standard 
error 

z value P-value 

CRP ~      
    Ethnicity c 0.5542 0.4316 1.2842 0.1991 
    Age 

 
0.3396 0.0082 41.1193 ~0 

    Sex  
 

-0.2423 0.0133 -18.2107 ~0 
African ancestry ~      
    Ethnicity a 8.7786 0.0017 5152.4389 ~0 
CRP ~      
    African ancestry b -0.0284 0.0488 -0.5823 0.5603 

 

   Effect size 
estimate 

Standard 
error 

z value P-value 

Indirect 
effect 

:= a*b -0.2493 0.4281 -0.5823 0.5603 

Total effect := c + (a*b) 0.3049 0.0548 5.5618 2.67 x 10-08 
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Table 20.  CRP structural equation modeling with socioeconomic deprivation (SED) 
mediation (Model 4).  

Path diagram for the model is shown in Figure 4B.  The top table shows all models 
evaluated along with each effect size estimate, standard error, z value, and P-value.  The 
bottom table shows effect size estimates, standard errors, z values, and P-values for the 
indirect effect and total effect ethnicity on CRP levels. 

Models evaluated 
(Dependent ~ 
Independent 
variables) 

Path 
Branch 
Label 

Effect size 
estimate 

Standard 
error 

z value P-value 

CRP ~      
    Ethnicity c 0.0382 0.0552 0.6929 0.4884 
    Age 

 
0.3607 0.0082 43.7560 ~0 

    Sex  
 

-0.2452 0.0133 -18.4653 ~0 
SED ~      
    Ethnicity a 1.4516 0.0175 83.0066 ~0 
CRP ~      
    SED b 0.1905 0.0047 40.1743 ~0 

 

   Effect size 
estimate 

Standard 
error 

z value P-value 

Indirect 
effect 

:= a*b 0.2765 0.0076 36.1616 ~0 

Total effect := c + (a*b) 0.3148 0.0548 5.7410 9.41 x 10-09 
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Table 21.  CRP multivariable linear regression models with (1) ethnicity, (2) African 
ancestry, and (3) socioeconomic deprivation as independent (predictor) variables.   

Model equations, coefficient estimates, standard errors, z values, and P-values are shown. 

CRP ~ Age + Sex + African ancestry | Adjusted R2 = 0.004576 

Coefficient Name Estimate Std. 
Error z value P-value 

b0 Intercept 0.7771 0.0476 16.321 < 2 x 10-16 
      

b1 Age  0.3396    0.0083  41.116   < 2 x 10-16 
b2 Sex (Male)  -0.2424 0.0133 -18.218    < 2 x 10-16 

b3 
African 
ancestry  0.0337      0.0062   5.443 5.24 x 10-08 

CRP ~ Age + Sex + SED | Adjusted R2 = 0.009315 

Coefficient Name Estimate Std. 
Error z value P-value 

b0 Intercept 0.7837 0.0473  16.56    < 2 x 10-16 
b1 Age  0.3649   0.0082 44.28 < 2 x 10-16 
b2 Sex (Male)  -0.2504   0.0133 -18.86   < 2 x 10-16 
b3 SED  0.1004   0.0022 45.85 < 2 x 10-16 
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