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SUMMARY 

Materials have traditionally been selected for the design of a product; however, advances 

in the understanding of material processing along with simulation and computation 

techniques are now making it possible to systematically design materials by tailoring the 

properties of the material to achieve the desired product performance.  Material design 

offers the potential to increase design freedom and enable improved product 

performance; however, this increase in design freedom brings with it significant 

complexity in predictive models used for design, as well as many new design variables to 

consider.  Material selection, on the other hand, is a well-established method for 

identifying the best materials for a product and does not require the complex models 

needed for material design.  But material selection inherently limits the design of 

products by only considering existing materials. To balance increasing design costs with 

potentially improved product performance, designers must have a method for assessing 

the value of material design in the context of product design. 

 

In this thesis, the Design Space Expansion Strategy (DSES) and the Value of Design 

Space Expansion (VDSE) metric are proposed for supporting a designer’s decision 

between material selection and material design in the context of product design.  The 

strategy consists of formulating and solving two compromise Decision Support Problems 

(cDSP).  The first cDSP is formulated and solved using a selected baseline material.  The 

second cDSP is formulated and solved in an expanded material design space defined by 

material property variables in addition to other system variables.  The two design 

solutions are then compared using the VDSE metric to quantify the value of expanding 

the material design space. This strategy is demonstrated in this thesis with an example of 

blast resistant panel design and is validated by application of the validation square, a 

framework for the validating design methods.   
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CHAPTER 1 

MOTIVATION FOR DEVELOPING THE DESIGN SPACE 

EXPANSION STRATEGY 

In this thesis, the first steps are taken towards a tool to support a designer’s decision 

between material selection and material design in the context of product design.  The 

Design Space Expansion Strategy is proposed here as a starting point to explore how to 

formulate such a tool. To elaborate on this decision, material design and material 

selection are discussed in Section 1.1.  The decision between material design and 

selection represents a compromise between design freedom and design simplicity.  These 

two concepts are defined and discussed in Section 1.2.  The research questions for this 

thesis are introduced in Section 1.3.  This chapter concludes with an overview of the 

validation strategy for this thesis in Section 1.4.  

1.1 MATERIAL DESIGN VS. MATERIAL SELECTION 

For every physically-realized system, there comes a point during the design process when 

designers must determine the material(s) that will give the product its substance while 

enabling the product to meet the design requirements.  In practice, designers select a 

material from the set of existing materials either through designer expertise or by 

following a material selection procedure (Ashby, 1999); however, the achievement of 

design requirements may be limited by the selection of a material. Material design offers 

the potential to tailor materials to product-specific requirements, enabling improvement 

in product performance that is not possible with existing materials.  To choose between 

material design and selection in product design, the potential performance benefits due to 

designing materials must be balanced by the increase in design timeline and expense of 

designing materials as compared to selecting materials. 
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To provide an analogy to explain a designer’s choice between material design and 

selection, consider the design of a sandwich.  A deli owner is interested in offering a new 

sandwich for his health-conscious customers.  The sandwich will contain several layers 

of healthy vegetables and lean meats, so the bread in the sandwich must be strong enough 

to support the load.  In addition, the bread itself must be nutritious, so it should be made 

with whole grains. And of course the sandwich must be tasty in order to be a success! 

When considering the bread for the sandwich, the deli owner has a choice to make: 

whether to purchase a ready-made loaf of bread from his baker or whether to design a 

new loaf of bread specifically for this sandwich.  In this analogy the product in question 

is the sandwich, and the material which will either be selected or designed is the bread. 

 

By designing the bread, the deli owner can achieve bread that meets the material 

requirements for the sandwich such that the sandwich as a whole meets the nutritional, 

textural, and taste requirements of his customers, but the deli owner will have to spend a 

lot of time and money working with his baker to try new recipes and ingredients and 

develop the procedure for baking the new bread.  On the other hand, the customers may 

be just as satisfied with the sandwich if the deli owner uses bread that his baker has 

already developed, and by selecting rather than designing the bread, the new sandwich 

can be ready to sell much sooner and at less cost.  How is the deli owner to decide 

between designing and selecting bread for new sandwiches? This is the same question 

that mechanical designers face when considering the selection or design of materials in 

product design.  To explore this question further, material selection and material design 

are discussed in the next sections. 

1.1.1 Material Design 

Material design refers to the tailoring of material properties to meet product performance 

goals (McDowell, 1998; Seepersad, 2004). Existing materials can be adapted to produce 
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new materials with desired properties and behavior. Olson identifies a logical structure 

for material design incorporating the four elements of material science: processing, 

structure, properties, and technological performance (Olson, 2000).  A chain is formed 

by connecting adjacent elements of this structure, shown in Figure 1.1.   

Structure

Property

PerformanceTop-Down Approach (inductive)

Bottom-Up Approach (deductive)Processing

Structure

Property

PerformanceTop-Down Approach (inductive)

Bottom-Up Approach (deductive)Processing

 

FIGURE 1.1. LOGICAL STRUCTURE FOR MATERIAL DESIGN (MODIFIED 
FROM OLSEN, 1997) 

 

Processing refers to the manufacturing processes used to create the material, such as 

casting, machining, and heat-treating and determines the structure of the material. The 

structure of a material is identified by, for example, material constituents, grain size, 

morphology, and material defects. The structure in turn determines the material’s 

properties.  Material properties characterize the behavior of a material and can be found 

in many engineering material tables.  Some examples of material properties are Young’s 

modulus, thermal conductivity, and mass density. These properties are then used to 

determine the material performance.  The performance of a material describes how a part 

constructed from the given material behaves under certain loading conditions or design 

requirements.  Material properties are an indication of the performance of the material in 

use and thus link structure to material performance. 

 

As shown in Figure 1.1, current material development processes are deductive in nature, 

i.e., a bottom-up approach.  By changing the processing of a material, the structure of the 

material is affected, which results in a new material with new properties and 
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performance.  Although the material development process may begin with a goal or 

hypotheses in mind geared at achieving an improvement in some aspect of material 

performance, it is largely an educated trial-and-error method.  From the systems 

perspective, it is preferred to take an inductive, or top-down, approach, in which the 

desired performance is the driving factor for identifying the processing path that achieves 

the structure and properties necessary for achieving the desired performance.  To realize 

this inductive approach to material design, the implications of changes in processing and 

structure must be understood and modeled, which is not a trivial task. 

 

As Smith has observed, people began using newly discovered materials long before 

understanding much about the new materials (Smith, 1988).  This ad hoc, discovery-

based tradition of material development has dominated from prehistory and continues to 

this day.  Historically speaking, material scientists have only recently developed the 

theories which account for the material structure of old world products such as quench-

hardened steel swords (Olson, 2000).  Materials have a complex, multilevel structure in 

which strong interactions among levels and the inevitable interplay of perfection and 

imperfection at all levels determine the behavior of the material.  Material designers must 

understand and model this complex multilevel structure in order to predict the behavior 

of a material before it is physically realized to achieve a top-down design process.  The 

development and validation of multilevel material models are significant tasks requiring 

expertise that most mechanical designers do not have.  In addition, these complex models 

are developed to describe the behavior of very specific material systems, so designers 

must have information about the requirements of the material before developing a 

predictive material model for design. 
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Processing

Structure

Properties

Performance

Top-down

Bottom-up

Start 
Here

Start 
Here

Deli Owner

Baker  

FIGURE 1.2. THE PROCESSING-STRUCTURE-PROPERTIES-PERFORMANCE 
CHAIN FOR SANDWICH DESIGN (MODIFIED FROM OLSEN, 1997) 

 

To summarize, recall the sandwich design analogy.  Bread, as a material, embodies the 

processing-structure-properties-performance chain introduced in Figure 1.1 and modified 

for sandwich design in Figure 1.2.  The raw ingredients such as flour, yeast, water, oil, 

and whole grains are processed by mixing into dough, kneading the dough, letting the 

dough rise, shaping the loaves, and baking.  These processing steps determine the 

structure of the bread.  For example, kneading the dough encourages gluten formation, 

which traps the carbon dioxide expelled by the yeast, allowing the dough to rise.  In the 

oven, the layers of gluten solidify, creating the spongy texture characteristic of yeast 

breads.  Once baked, the loaves of bread are sliced to the desired thickness for the 

sandwich, and may be toasted for additional strength, similar to heat-treatment of metals.  
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The resulting structure can be characterized by properties.  These properties may include 

nutritional information like the number of calories or grams of fat or structural properties. 

For example, if the deli owner is an engineer, he may wish to measure the compressive 

strength of the bread. The compressive strength of the bread can then be used to 

determine the performance of the material, such as whether or not the bread will fail 

under the load of the meats and vegetables.   

 
The baker, similarly to the materials expert, utilizes a bottom-up approach to develop 

new breads.  The baker makes changes to the ingredients and processing steps to realize 

new breads with new properties.  He uses a trial-and-error process to develop new breads 

with better strength and nutrition.  On the other hand, the deli owner, similarly to the 

product designer, prefers a top-down approach to develop new bread specifically for the 

new sandwich.  The deli owner prefers to specify the requirements for the bread and use 

bread-baking models to determine the ingredients and processing steps necessary to 

create the new bread.   

1.1.2 Material Selection 

Material selection involves using a material database to select the best material for a 

product.  By following materials selection techniques, the most appropriate material is 

selected from all known materials in order to satisfy product requirements and goals.  The 

material selection method that is most widely used in practice is the method developed by 

Ashby (1999).  This process begins with a database containing all known materials.  

Screening and ranking techniques reduce the number of feasible material based on 

product geometry and loading conditions.  The resulting subset of feasible materials is 

further reduced by conducting research on these materials.  At this stage in the material 

selection process, engineering expertise plays a role in eliminating materials that would 

be poor choices in the overall product design by including information about economics 

(cost and availability) and manufacturing needs.  After the prime candidates have been 
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selected, local load conditions combined with design requirements lead to the final 

material choice.   

Processing

Structure

Properties

Performance

Bread DesignBread Selection

Select the best bread from 
existing bread types at the 

bakery

Design a new bread following 
a top-down approach from 
Performance to Processing  

 
FIGURE 1.3. SELECTION VS. DESIGN IN THE CONTEXT OF THE SANDWICH 

EXAMPLE 
 

In order to distinguish material selection from material design, reconsider the sandwich 

design example.  A figure comparing material selection and material design in the context 

of the sandwich design example is shown in Figure 1.3. In material design, bread is 

tailor-made for the specific design problem.  The resulting bread matches the material 

requirements exactly.  In material selection, the process starts with a database of bread 

located at the bakery.  A loaf of bread is chosen that best achieves the design 

requirements and is not tailored to meet the specific design requirements.  

1.2 DESIGN FREEDOM AND DESIGN SIMPLICITY  

As discussed in the previous sections, the potential improvement in product performance 

enabled by material design is tempered by an increase in the complexity of the design 

process, because sophisticated multilevel material models must be developed and 

employed to predict the behavior of designed materials.  On the other hand, material 
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selection is a well-established procedure for identifying the best material for a product 

while considering performance, processing and economic effects. However, material 

selection inherently limits the material design space by restricting the alternatives to 

existing materials, and this restriction may limit the performance of the product. A 

designer’s choice between material selection and design involves a compromise between 

design freedom and design simplicity.  These two terms are defined and discussed in the 

following sections. 

1.2.1 Design Freedom 

Simpson and co-authors define design freedom as the extent to which a system can be 

adjusted while still meeting its design requirements (Simpson et al., 1996). That is, the 

amount a design can be changed while still meeting the constraints and bounds on the 

system.  Material design offers the potential for increased design freedom because the 

product design is no longer limited by the set of existing materials.  Specifically, by 

introducing design variables related to the design of the material, the designer gains 

additional dimensions in which the design can be adjusted. Design freedom is determined 

by the range of performance of a design, not by the range of design variables directly; 

however, an increase in the range or the number of design variables has the potential to 

increase the performance range, thereby increasing the design freedom.  Consequently, 

material design has the potential to increase design freedom relative to material selection 

but does not guarantee an increase in design freedom. 

1.2.2 Design Simplicity 

Design simplicity, or conversely, design complexity, refers to the ease or difficulty in 

identifying the best design alternative due to the number of design decisions and the 

degree of coupling between design decisions.  A design process in which the material is 

selected is simpler than a design process in which the material is designed because there 
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are fewer design decisions regarding the material, and there is less coupling between the 

decisions regarding the material.  Design decisions in this case refer to determining the 

value of design variables, including both discrete and continuous variables. This 

definition for design simplicity is distinguished from the notion of design complexity in 

the Information Axiom developed by Suh (1990).  The Information Axiom refers to the 

likelihood of a particular design to succeed given the simplicity of the design, whereas 

design simplicity in this thesis refers to the ease of designing. 

 

Bread 
Design

Bread 
Selection

Designing the bread 
enables more freedom 

in the design of the 
sandwich because the 

bread can be tailored for 
the specific needs of the 
sandwich; however, this 

process will take much 
longer and be more 

expensive than simply 
choosing a type of bread 
from the baker’s supply.

Selecting the bread is 
faster and simpler than 
designing a new type of 
bread for the sandwich, but 
the deli owner is limited by 
the types of bread that are 
available at the bakery. It is 
possible that a bread 
already exists that is perfect 
for the new sandwich, but 
the deli owner may not be 
able to determine that the 
existing bread is the best
option without comparing it 
to new bread concepts. 

 

FIGURE 1.4. SELECTION VS DESIGN AS A COMPROMISE BETWEEN DESIGN 
FREEDOM AND DESIGN SIMPLICITY 

 
The notions of design freedom and design simplicity can also be described in terms of the 

sandwich design example, shown graphically in Figure 1.4.  Selecting a loaf of bread 

from the available bread at the bakery simplifies the design of the sandwich as compared 

to designing a new loaf of bread for the sandwich; however, the deli owner may increase 

the design freedom of the sandwich by designing the bread rather than selecting the 

bread.  In making the decision between design and selection, the deli owner must make a 

compromise between design freedom and design simplicity. 



 10

1.3 REQUIREMENTS AND RESEARCH QUESTIONS 

In the previous sections it is established that a choice between material selection and 

material design involves a compromise between design freedom and design simplicity.  

In this section, the requirements are identified for a strategy for choosing between 

material selection and material design in the context of product design.  Also, 

requirements are identified for a metric that is used as a part of the strategy.  The 

requirements are identified in Section 1.3.1.  In Section 1.3.2 research questions and 

hypotheses are introduced and the mapping from requirements to research questions and 

hypotheses is established.  

1.3.1 Requirements for a Method and a Metric 

In this section, requirements are identified for a method and a metric to support a 

designer’s decision between material selection and material design.  To guide the 

identification of these requirements, recall the sandwich design example: What does the 

deli owner need in order to help him decide between bread design and bread selection 

for his new sandwich? It is apparent that the deli owner needs a systematic method or 

strategy to follow to guide his decision between selection and design, but what are the 

requirements for this method?   

 

In Table 1.1 requirements for the method are listed in the context of the sandwich design 

example on the left and generalized for product design on the right.  The first requirement 

is that the method be driven by sandwich requirements rather than bread requirements, 

following a top-down approach.  That is, the deli owner prefers to make the decision 

between bread selection and design on the basis of meeting the sandwich requirements.  

Like the deli owner, designers also prefer to follow this top-down approach from a 

systems perspective. 
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TABLE 1.1. REQUIREMENTS FOR THE METHOD 
 Requirements for the Method 
 Sandwich Design Product Design 
 Problem statement: 

Design a strategy that enables a deli 
owner to compare and choose between 
bread selection and bread design in the 
context of a sandwich design. 

Problem statement: 
Design a strategy that enables a designer 
to compare and choose between material 
selection and material design in the 
context of a product design. 

# Requirement Requirement 
1 Top-Down: Driven by sandwich 

requirements rather than bread 
requirements 

Top-Down: Driven by product-level 
requirements rather than material-level 
requirements 

2 Computationally inexpensive as 
compared to designing a new bread 

Computationally inexpensive as 
compared to designing a new material 

3 Enables a quantitative comparison of the 
options of selection and design based on 
the achievement of the sandwich design 
objectives as well as process design 
objectives 

Enables a quantitative comparison of the 
options of selection and design based on 
the achievement of the product design 
objectives as well as process design 
objectives 

4 Enables the identification of solutions 
which provide guidance for subsequent 
phases of the sandwich design 

Enables the identification of solutions 
which provide guidance for subsequent 
phases of the product design 

 

Another requirement is that the method for deciding between bread selection and design 

should be computationally inexpensive as compared to bread design.  This means that the 

strategy for choosing between the bread design and bread selection should be easier and 

faster to complete than designing a new type of bread.  If it takes more time and effort to 

decide between selection and design than it takes to design bread in the first place, then 

the strategy is of no help to the deli owner.  Again, this requirement holds true for 

designers; the strategy for choosing between material selection and material design 

should be computationally inexpensive as compared to the design of a new material.  

 

The third requirement for the method is that it must enable a quantitative comparison of 

the options of bread selection and bread design on the basis of meeting sandwich 

requirements and design process requirements.  An example of a design process 

requirement is staying within the design process timeline or budget.  The deli owner 
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wants to consider the sandwich requirements as well as the project timeline and budget 

when he decides between bread selection and design.  Likewise, a product designer also 

wants to consider both product and process requirements when making the decision 

between material design and selection.  An important part of this requirement for the 

method is that it provides a quantitative comparison of the options of selection and 

design.  Therefore, the method should make use of a metric that allows the deli owner to 

quantitatively compare the options of bread selection and bread design.  The 

requirements for the metric are shown separately in Table 1.2, again in the context of the 

sandwich design example on the left and generalized for product design on the right. 

 

The last requirement for the method is that it should enable the identification of solutions 

which provide guidance for subsequent phases of sandwich design.  Specifically, the 

method should not only help the deli owner to decide between bread selection and bread 

design, but it should also help the deli owner to determine the characteristics of the bread 

that is to be designed or selected.  Similarly, a designer needs guidance on the 

characteristics of the material that is to be selected or designed.  

TABLE 1.2. REQUIREMENTS FOR THE METRIC 
 Requirements for the Metric 
 Sandwich Design Product Design 
 Problem Statement: 

Design a metric that quantifies the 
improvement in the achievement of 
sandwich design goals by expanding the 
bread design space. 

Problem Statement: 
Design a metric that quantifies the 
improvement in the achievement of 
product design goals by expanding the 
material design space. 

# Requirement Requirement 
1 Enables comparison of an existing bread 

to an unrealized bread concept 
Enables comparison an existing material 
to an unrealized material concept 

2 Enables comparison on the basis of 
meeting sandwich and sandwich design 
process requirements 

Enables comparison on the basis of 
meeting product-level and product design 
process requirements 

 

The third requirement for the method is that it provides a quantitative comparison of the 

option of material selection and material design; therefore, a metric is needed.  The first 
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requirement of the metric is that it compares an existing type of bread to an unrealized 

bread concept.  The existing bread represents the choice of bread selection while the 

unrealized bread concept represents the choice of bread design.  Similarly, in product 

design, the metric should compare existing materials to unrealized material concepts in 

order to compare the options of material selection and material design.   

 

The second requirement for the metric is that the comparison is made on the basis of 

meeting sandwich and sandwich design process requirements.  This requirement comes 

from the method requirement on the comparison of selection and design.  As before, the 

deli owner prefers to make the choice between bread selection and design by considering 

sandwich design requirements as well as sandwich design process requirements.  The 

metric that enables this quantitative comparison must also, therefore, make the 

comparison on the basis of meeting both sandwich and sandwich design process 

requirements.  Similarly, a product designer also prefers to make the decision between 

material design and selection on the basis of meeting both product requirements and 

design process requirements.  Given these requirements for the method and metric, the 

research questions and hypotheses for this thesis are identified next. 

1.3.2 Research Questions and Hypotheses 

In this section, the research questions for this thesis are presented. The research questions 

follow from the identification of the method and metric requirements in the previous 

section. In Table 1.3 the mapping is shown between the requirements and the research 

questions and hypotheses.  The method requirements map into all three secondary 

research questions and hypotheses, while the metric requirements map only to the second 

secondary research question and hypotheses. The research questions and hypotheses are 

then discussed in detail in this section. 
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TABLE 1.3. MAPPING REQUIREMENTS TO RESEARCH QUESTIONS AND HYPOTHESES 
Requirements Research Questions Hypotheses 

 
 
 
 
 

Primary: 
How can designers choose between 
material selection and material 
design in the context of a product 
design? 

Primary: 
Designers can use a value-of-information-based 
metric as part of a design space expansion 
strategy to assess the value of material design as 
compared to material selection. 

1. How can designers evaluate 
candidate material concepts 
without the use of complex 
material models? 

 
 

1. Material properties are an abstraction of the 
structure of the material which simplifies the 
assessment of product concepts. A 
multidimensional material design space is 
created by assuming the material properties 
to be independent design variables that can 
be realized by adjusting the composition and 
processing path of existing materials. 

Method Requirements: 
1. Top-Down: Driven by product-level 

requirements rather than material-
level requirements 

2. Computationally inexpensive as 
compared to designing a new material 

3. Provides a quantitative comparison of 
the options of selection and design 
based on the achievement of the 
product design objectives as well as 
process design objectives 

4. Provides guidance for subsequent 
phases of the product design 

 

2. How can a value-of-information-
based metric compare the options 
of material selection and material 
design? 

2. A Value of Design Space Expansion metric 
can be calculated to support the designer’s 
assessment of the improvement in the 
achievement of product goals by expanding 
the material design space around a baseline 
material point. 

Metric Requirements: 
1. Compares an existing material to  
       an unrealized material concept 
2. Compares on the basis of meeting 

product-level and product design 
process requirements 

3. How can designers determine the 
material property targets for a 
product for subsequent phases of 
design? 

3. By finding a design solution in the expanded 
material design space, designers gain insight 
into the material property targets for 
subsequent phases of design.   
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The primary research question comes from the initial question used to identify the 

method and metric requirements.  In the context of the sandwich example, the question is 

“How can the deli owner decide between bread selection and bread design in the context 

of sandwich design?” To generalize this question, deli owner becomes designer, bread 

becomes material, and sandwich becomes product, as shown below. 

Primary Research Question:   

How can designers decide between material selection and material design in the 

context of a product design? 

Primary Hypothesis:  

Designers can use a value-of-information-based metric as part of a design space 

expansion strategy to assess the value of material design as compared to material 

selection. 

 

The fundamental difference between material selection and material design is an 

expansion of the material design space.  In material selection, the design space is limited 

to discrete points, whereas in material design, a multidimensional continuous design 

space is explored.  The decision between material selection and design is similar to the 

decision whether or not to incorporate more information into the decision model prior to 

making the decision.  Material design requires the use of a sophisticated material model 

to evaluate the performance of candidate designs.  In material selection, the material 

models used to evaluate the performance of candidate design are essentially the 

properties of existing materials.  By deciding to pursue material design, designers are 

implicitly making the decision to incorporate more information into the design decision 

model.  Value of information metrics have been demonstrated for making these types of 

decisions (Panchal et al., 2007).  In this thesis, a value of design space expansion metric 
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is identified to support the decision between material design and material selection.  To 

guide the development of the design space expansion strategy, three secondary research 

questions and hypotheses are identified. 

Secondary Research Question 1: 

How can designers evaluate candidate material concepts without the use of 

complex material models? 

Hypothesis 1: 

Material properties are an abstraction of the structure of the material which 

simplifies the assessment of product concepts. A multidimensional material 

design space is created by assuming the material properties to be independent 

design variables that can be realized by adjusting the composition and processing 

path of existing materials. 

 

To compare the design process options of material selection and material design, 

designers must have a way to explore a material design space.  Although complex 

material simulations provide a way to evaluate candidate material concepts, the 

generation of these models is too time consuming for efficient design space exploration 

in the early stages of design.  Rather, the material properties can be assumed to be 

independent design variables, creating an n-dimensional material design space, where n is 

the number of independent material properties.  In this material design space, existing 

materials are located at various discrete points throughout the space.  It is assumed any 

design point in this continuous material design space can be realized by adjusting the 

composition or processing path of existing materials. 
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Secondary Research Question 2: 

How can a value-of-information-based metric be used to compare the options of 

material selection and material design? 

Hypothesis 2:  

A Value of Design Space Expansion metric can be calculated to support a 

designer’s assessment of the improvement in the achievement of product goals by 

expanding the material design space around a baseline material point.  

 

Design solutions can be found for two scenarios, one in which the material design space 

is limited to an existing material, and one in which the material design space is expanded 

as described in Hypothesis 1.  By comparing the achievement of design goals of the 

solutions to these two scenarios, the value of design space expansion metric indicates the 

value of expanding the material design space.  

Secondary Research Question 3: 

How can designers determine the material property targets for a product for 

subsequent phases of design? 

Hypothesis 3:  

By finding a design solution in the expanded material design space, designers 

gain insight into the material property targets for subsequent phases of design.   

 

If material design is chosen over material selection, designers must have a means for 

identifying the material property targets for subsequent phases of design.  The material 

property targets are determined from the product requirements by finding a design 

solution in the expanded material design space. 
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The design space expansion strategy is presented in this thesis as an embodiment of the 

hypotheses to these research questions. To validate these hypotheses, a validation 

strategy based on the Validation Square construct is presented in the next section. 

 

1.4 AN OVERVIEW AND VALIDATION STRATEGY FOR THIS THESIS 

The validation and verification strategy for this thesis is based on the validation square 

construct introduced by Pedersen and coauthors (Pedersen, et al., 2000) and extended by 

Seepersad and coauthors (Seepersad, et al., 2006).  The overview of the validation square 

construct in Seepersad (2004) is presented here in Section 1.4.1 without major change.  In 

Section 1.4.2, the strategy for validation and verification of this thesis is presented as an 

overview of the thesis. 

1.4.1 The Validation Square Construct 

Validation (justification of knowledge claims, in a modeling context) of engineering 

research has typically been anchored in formal, rigorous, quantitative validation based on 

logical induction and/or deduction.  As long as engineering design is based primarily on 

mathematical modeling, this approach works well.  Engineering design methods, 

however, rely on subjective statements as well as mathematical modeling; thus, 

validation solely by means of logical induction or deduction is problematic.  Pedersen 

and coauthors and Seepersad and coauthors propose an alternative approach to validation 

of engineering design based on a relativistic notion of epistemology in which “knowledge 

validation becomes a process of building confidence in its usefulness with respect to a 

purpose” (Pedersen, et al., 2000; Seepersad, et al., 2006). 
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FIGURE 1.5. DESIGN METHOD VALIDATION: A PROCESS OF BUILDING 
CONFIDENCE IN USEFULNESS WITH RESPECT TO A PURPOSE (SEEPERSAD, 

ET. AL., 2006) 
 

The Validation Square is a framework for validating design methods in which the 

‘usefulness’ of a design method is associated with whether the method provides design 

solutions correctly (structure validity) and whether it provides correct design solutions 

(performance validity). This process of validation is represented graphically in Figure 

1.5. With respect to the square, domain-independent structure validity involves accepting 

the individual constructs constituting a method as well as the internal consistency of the 

assembly of constructs to form an overall method. Domain-specific structure validity 

includes building confidence in the appropriateness of the example problems chosen for 

illustrating and verifying the performance of the design method. Domain-specific 

performance validity includes building confidence in the usefulness of a method using 
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example problems.  Domain-independent performance validity involves building 

confidence in the generality of the method and accepting that the method is useful beyond 

the example problems.   

 

How can this validation framework be implemented in a thesis? Establishing domain-

independent structure validity involves searching and referencing the literature related to 

each of the parent constructs utilized in the design method.  In addition, flow charts are 

often useful for checking the internal consistency of the design method by verifying that 

there is adequate input for each step and that adequate output is provided for the next 

step. A list of criteria may be useful for establishing and comparing the domain-

independent structure validity of methods and constructs with respect to a set of explicit, 

favorable properties.  

 

Establishing domain-specific structure validity consists of documenting that the example 

problems are similar to the problems for which the methods/constructs are generally 

accepted, that the example problems represent actual problems for which the method is 

intended, and that the data associated with the example problems can be used to support a 

conclusion. Domain-specific performance validity can be established by using 

representative example problems to evaluate the outcome of the design method in terms 

of its usefulness. Metrics for usefulness should be related to the degree to which the 

method’s purpose has been achieved (e.g., reduced cost, reduced time, improved quality). 

It is also important to establish that the resulting usefulness is, in fact, a result of applying 

the method. For example, solutions obtained with and without the construct/method can 

be compared and/or the contribution of each element of the method can be evaluated in 

turn.  
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An important part of domain-specific performance validity is empirical verification of 

data used to support domain-specific performance validation. Empirical verification can 

be established by demonstrating the accuracy and internal consistency of the data. For 

example, in optimization exercises, multiple starting points, active constraints and goals, 

and convergence can be documented to verify that the solution is stationary and robust. 

For any engineering model it is important to verify that data obtained from the model 

represents aspects of the real world that are relevant to the hypotheses in question. The 

model should react to inputs in an expected manner or in the same way that an actual 

system would react.  

 

Finally, domain-independent performance validity can be established by showing that the 

method/construct is useful beyond the example problem(s). This may involve showing 

that the problems are representative of a general class of problems and that the method is 

useful for these problems; from this, the general usefulness of the method can be inferred.  

 

In Figure 1.6, an outline of the validation strategy for this thesis is presented. It is 

arranged according to the quadrants in the validation square, and references are included 

for chapters and sections in which the validation is documented.  A roadmap of this thesis 

is illustrated in Figure 1.7 with the purpose of implementing the validation strategy 

outlined in Figure 1.6. 

 

1.4.2 The Validation Strategy for This Thesis 

In Chapter 1, the foundations are established for the Design Space Expansion Strategy 

(DSES). The motivation and frame of reference are presented.  The principal goal of the 

DSES is introduced along with the research questions and hypotheses. The expected 

contributions are summarized and a validation strategy is established for this thesis. 
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Domain-independent Structure Validity 

•  Critical review of literature that is foundational to the Design Space Expansion 
Strategy proposed in the research hypotheses. Topics include multi-objective 
decision-making with the cDSP and information economics. 

•  What are the advantages, limitations, and accepted domains of application for 
available approaches? What are the opportunities for future work? In light of this 
critical review, do the research tasks and hypotheses represent original, 
significant contributions? 

C
h. 2 

•  Presentation and discussion of the DSES, including the intellectual and 
methodological aspects of instantiating each associated hypothesis. 

•  What are the advantages, limitations, and accepted domains of application for the 
DSES? To what extent does it serve as a foundation for choosing between material 
selection and material design from a theoretical perspective? 

C
h. 3

Domain-Specific Structure Validity 
•  Identify the significance of the example problem from the perspective of 

identifying material property requirements and the need for the design space 
expansion strategy. 

•  Discuss the appropriateness of the example problem 
o Document that the example problem is similar enough to problems for which 

the DSES is accepted theoretically. The characteristics of the proposed domain 
of application are enumerated in Ch. 3. 

o Document that the example is representative of actual problems for which the 
approach is intended. What are the key characteristics of examples? 

o Document that the data associated with the example problem can support a 
conclusion or conclusions with respect to the hypotheses 

Section
3.3.2

Domain-Specific Performance Validity 
•  Build confidence in the utility of the DSES using the example. 

o Use the example problem to evaluate the utility of the DSES. 
 Does the strategy facilitate exploration of the expanded design space? 
 Does the value of design space expansion metric support the decision 

between material selection and material design? 
 Does the strategy facilitate generation of material property targets? 
 Does the method possess the advantages claimed in Chs 2 and 3? 

o Demonstrate that the observed usefulness is linked to applying the method. For 
example, compare results to those obtained with alternative or conventional 
methods or to benchmark products. 

o Verify the empirical data obtained in the experiments (e.g., compare to detailed 
computer simulations or analytical solutions). 

•  Demonstrate material property identification significance and contributions. 

C
h. 4

Domain-independent Performance Validity 
•  Build confidence in the generality and utility of the approach beyond the specific 

example problem.  Argue that the approach is useful for the example problem and 
that the example problem is representative of general problems. 

C
h. 5

FIGURE 1.6. VALIDATION STRATEGY FOR THIS THESIS 
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FIGURE 1.7. A THESIS OVERVIEW AND ROADMAP 

 

In Chapter 2, the theoretical foundations of the DSES are introduced and discussed 

including multi-objective decision-making and information economics. For domain-

independent structure validation, relevant literature in each of these research areas is 

referenced, discussed, and critically evaluated. The purpose is to discuss the availability, 

strengths, and limitations of methods or constructs that are foundational for the DSES and 

to identify research opportunities addressed in this thesis by the DSES. 
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In Chapter 3 an overview of the DSES is presented. The elements of the strategy are 

discussed in detail from the perspective of embodying the hypotheses presented in 

Chapter 1. For domain-independent structure validation, emphasis is placed on verifying 

the internal consistency of the method as well as its originality, advantages, limitations, 

and accepted domain of application. Advantages, limitations, and originality are 

discussed in relation to methods and constructs that are available in the literature.  An 

example problem on blast resistant panel (BRP) design is introduced. For domain-

specific structure validation, the appropriateness of the example for validating specific 

aspects of the DSES is discussed.  Several BRP design scenarios are presented as an 

experimental plan to document how the example is used to generate information that can 

be used to test the hypotheses. 

 

In Chapter 4 the example problem on the design of BRPs is discussed. A step-by-step 

implementation of the DSES is presented for the BRP example.  The results are 

presented, verified, and critically discussed for the purpose of domain-specific validation 

of the hypotheses introduced in Chapter 1.  

 

In Chapter 5 the thesis is summarized and critically reviewed and relevant contributions 

and avenues of future work are discussed. The advantages and domain of application are 

discussed for the DSES as presented in this thesis, and intellectual contributions are 

reviewed. For domain-independent performance validation, it is argued that the 

conclusions of this thesis are relevant beyond the example problem, and potential future 

applications are discussed. Conditions are identified under which the conclusions are 

valid, and limitations of the work are presented explicitly. Recommendations are 

proposed for future work that would make the DSES more effective for the example 

problem and extend it for a broader range of applications. 
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CHAPTER 2 

FOUNDATIONAL CONSTRUCTS FOR THE DSES AND VDSE 

METRIC 

 

In this chapter the foundational constructs of the Design Space Expansion Strategy 

(DSES) and the Value of Design Space Expansion (VDSE) metric are presented and 

critically reviewed as part of the validation strategy identified in Figure 1.6.  In Section 

1.3.1, the desirable characteristics of the DSES and the VDSE are identified and 

discussed.  These are summarized in Tables 1.1 and 1.2.  In Section 2.1 these 

characteristics are revisited in order to establish the context for a critical review of the 

literature in areas that are foundational to the DSES and the VDSE. These areas include 

multiobjective decision support and information economics, which are reviewed in 

Section 2.2 and 2.3, respectively.  Research opportunities in these areas are identified in 

Section 2.4 by comparing the requirements for the DSES and VDSE metric discussed in 

Section 2.1 to the capabilities of existing methods and metrics presented in the literature 

and reviewed in Sections 2.2 and 2.3.  The internal consistency of the parent constructs of 

the DSES is discussed in Section 2.5 to assess domain-independent structure validity.  

This chapter is concluded in Section 2.6 with a look back and a look ahead.  

 
The work presented in this thesis is intended to illustrate the extension and 

implementation of existing concepts in engineering design.  Therefore, topics such as 

multi-objective decision support and information economics are reviewed in order to 

present the foundation from which the work in this thesis begins.  Significant portions of 

the following chapter are leveraged from the work of former and current graduate 

students in the Systems Realization Laboratory, Georgia Institute of Technology. 
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2.1 REQUIREMENTS FOR THE DSES AND THE VDSE METRIC 

The requirements for the DSES and the VDSE metric are identified Tables 1.1 and 1.2 

and are repeated here in Table 2.1 and Table 2.2.  The purpose of this literature review is 

to determine how well these requirements are met by existing methods and metrics; 

therefore, it is important to review these requirements to set the context for this literature 

review.   

TABLE 2.1. REQUIREMENTS FOR THE DSES 
 Requirements for the Design Space Expansion Strategy 
 Problem statement: 

Design a strategy that enables a designer to compare and choose between 
material selection and material design in the context of a product design. 

# Requirement 
1 Top-Down: Driven by product-level requirements rather than material-

level requirements 
2 Computationally inexpensive as compared to designing a new material 
3 Enables a quantitative comparison of the options of selection and design 

based on the achievement of the product design objectives as well as 
process design objectives 

4 Enables the identification of solutions which provide guidance for 
subsequent phases of the product design 

 

The first requirement of the DSES is that it be a top-down process that is driven by 

product (system) requirements rather than material requirements.  That is, the method 

should facilitate a systems approach in which the preferred design alternatives are 

identified based on the system requirements.  Therefore, the decision between material 

selection and material design for a component of a system must be made on the basis of 

meeting system-level requirements.  To achieve this, multi-objective decision support 

tools are needed to identify whether material selection or material design is the preferred 

alternative in terms of multiple system goals.  System variables such as the length or 

width of a component are often tightly linked to the material of the component.  For 

example, the height of a cantilever beam may be calculated with knowledge of the 

material properties in order to choose a height that limits deflection or prohibits yielding 
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of the beam.  Because system variables are linked to the material properties, the decision 

between material selection and material design must be made in a manner that allows the 

system variables to vary if the material properties change.  That is, the system variables 

must be allowed to have different values when the material properties change. 

 

The second requirement of the DSES is that it must be computationally inexpensive as 

compared to designing a new material.  Designing a new material requires complex 

material models that can predict the performance of candidate material concepts.  The 

development and validation of these models is not trivial.  With this knowledge, the point 

of the DSES is to give some indication of whether or not the development and validation 

of these predictive models is worth the effort.  The DSES itself must not be nearly as 

cumbersome as the development of a new material model, or no designer will be willing 

to use the strategy to support this decision.  Multi-objective decision support tools will 

again be useful for meeting this particular requirement, specifically decision support tools 

which enable an efficient search of the design space. 

 

The third requirement of the DSES is that the options of material selection and material 

design must be compared on the basis of meeting product design objectives as well as 

process design objectives.  Product design objectives are the objectives that pertain to the 

performance of the product itself, such as reducing deflection or lowering the mass of the 

system.  The process design objective at hand in the choice between material selection 

and material design is to reduce the cost of design or the length of the design timeline.  

Because both product and process design objectives must be considered in the decision 

between material selection and material design, multiobjective decision support tools are 

needed to find solutions that simultaneously satisfy all the product and process 

objectives. 
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The last requirement of the DSES is that it must provide guidance for subsequent phases 

of design.  Guidance must be provided for two different issues:  whether to select or 

design a material, and which property values characterize the preferred material that is to 

be designed or selected.  Multiobjective decision support tools will again be useful for 

meeting this requirement in order to find families of solutions for subsequent phases of 

design.  These families of solutions indicate the properties of materials that meet the 

product and process design objectives.  Furthermore, ranged sets of solutions can be 

identified that maintain design freedom for subsequent phases of design.   

 
TABLE 2.2. REQUIREMENTS FOR THE VDSE METRIC 

 Requirements for the VDSE metric 
 Problem Statement: 

Design a metric that quantifies the improvement in the achievement of 
design goals by expanding the material design space. 

# Requirement 
1 Enables comparison of an existing material to an unrealized material 

concept 
2 Enables comparison on the basis of meeting product-level and product 

design process requirements 
 

In addition to the requirements for the method, requirements for the metric are identified 

in Section 1.3.1 and are repeated here.  The first requirement of the VDSE metric is that it 

enables the comparison of the use of an existing material to the use of an unrealized 

material concept.  This is necessary because the VDSE is intended to be used to compare 

the design process options of material selection and material design, where an existing 

material is used in the material selection option and a new material is designed in the 

material design option.  The decision between material selection and material design is 

one that involves a change in the extent of the material design space.  It is the value of the 

expansion of the design space that must be quantified to provide support for the decision 

between material selection and design.  This expansion of the material design space is 

similar to a source of new information that designers have the option of considering when 
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making a design decision.  Value of information metrics can be calculated to help a 

designer determine if gathering more information is worth the added cost and time 

needed to reduce the uncertainty in the problem.  The second requirement of the VDSE 

metric is that it compares on the basis of meeting product and process requirements.  The 

metric must therefore be compatible with multi-objective decision support tools. Value of 

information metrics exist that make use of multi-objective value or utility functions. 

 

In the following sections, the research areas which most closely relate to these 

requirements are reviewed.  These areas are multi-objective decision support and 

information economics, which are reviewed in Sections 2.2 and 2.3, respectively.  The 

requirements discussed in this section are revisited in Section 2.4, and research 

opportunities in these areas are identified. 

2.2 MULTIOBJECTIVE DECISION SUPPORT USING COMPROMISE 

DECISION SUPPORT PROBLEMS 

 

The first requirement for a method is that it should facilitate exploration and generation 

of families of multiobjective or multifunctional compromise solutions. This requirement 

is driven by the fact that designers often must balance conflicting objectives in order to 

obtain viable solutions. For example, in the sandwich design example (see Chapter 1), the 

deli owner must balance conflicting objectives of reducing the fat content of the 

sandwich and maintaining a pleasing taste and texture. The challenge is to identify values 

of design parameters—which describe the structure or form of a design and possibly its 

environment—that yield preferred compromise solutions with respect to the set of 

objectives.  The compromise Decision Support Problem has been established to identify 

values of design parameters that meet conflicting objectives. 
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In this section the compromise Decision Support Problem and its foundations in 

mathematical and goal programming are reviewed.  The review of multiobjective 

decision support and the compromise Decision Support Problem in Seepersad (2004) is 

presented here without major change. 

 

Mathematical programming is part of the foundation of the cDSP, which in turn is part of 

the foundation of the DSES proposed in this thesis; therefore, the review of 

multiobjective decision support begins with mathematical programming. In its most 

general form, a conventional mathematical programming problem is formulated as 

follows: 

 Minimize  f(x)  (2.1) 

 Subject to  g(x) < 0  (2.2) 

  h(x) = 0  (2.3) 

  xL ≤ x ≤ xU  (2.4) 

 
where f(x) is a function to be minimized, g(x) and h(x) are vectors of inequality and 

equality constraints, respectively, and xL and xU are vectors of lower and upper bounds 

for the vector of design variables, x. When multiple objectives are considered, the 

objective function effectively becomes a vector, as well, and Equation 2.1 must be 

expressed as follows: 

 Minimize f = [f1(x), f2(x), …, fn(x)]  (2.5) 

By placing different relative values or priorities on the individual objectives, it is possible 

to obtain many solutions to the multiobjective problem. The range of compromise 

solutions is often called a Pareto set, curve, or frontier. Individual solutions or members 

of the Pareto set are called Pareto solutions or points. A Pareto solution is one that is not 

dominated by any other solution in the feasible design space (defined by the set of 
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constraints and bounds). A non-dominated or Pareto solution is one for which no other 

feasible solution yields preferred values for all objectives. In other words, it is impossible 

to locate another feasible solution that improves one or more objectives without 

worsening the values of other objectives. The concept of a Pareto solution and Pareto set 

is borrowed from economics and named for the economist Vilfredo Pareto who defined 

an allocation of resources as Pareto efficient if it is impossible to identify another 

allocation that makes some people better off without making others worse off (Pareto, 

1909). 

 

Design solutions are rarely judged on the basis of a single criterion; instead, their value is 

determined by how well they balance multiple criteria associated with cost, performance, 

environmental impact, robustness, and other categories. In a designer’s choice between 

material selection and material design, both product and process design goals must be 

considered (see requirement 3 in Table 2.1). Therefore, it is reasonable to pursue a 

balance between these multiple criteria or objectives during the design process itself. 

Accordingly, many techniques have been proposed for generating Pareto sets of solutions 

and for determining the most preferable multiobjective solution. One of the most 

straightforward techniques is the weighted sum approach. A weighted sum formulation of 

an objective function, Z, is expressed as a linear, additive combination of the multiple 

objectives: 

 
1

m

i i
i

Z w f
=

=∑   (2.6) 

where wi is the weight for the ith objective, fi, and m is the number of objectives. The 

weighted sum formulation is straightforward and easy to implement. By varying the 

weights, it is possible to generate a family of Pareto solutions to the multiobjective design 

problem posed in Equations 2.2 through 2.5. However, it has been shown that many 
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Pareto solutions may be overlooked (i.e., it is not possible to identify all Pareto solutions) 

with a weighted sum formulation if the problem is non-convex (Koski, 1985). Also, if a 

single multiobjective solution is sought, it is difficult to determine a priori an appropriate 

set of weights that yield a preferable compromise solution that does not overemphasize 

one or more objectives relative to other objectives. 

 

Messac (1996; 1996) has proposed a physical programming formulation to remedy the 

latter limitation. With the physical programming approach, a designer expresses his 

preferences for each objective through various degrees of desirability from unacceptable 

to ideal. Based on these preferences, sets of weights are determined automatically for 

each objective, with each weight valid over a specified range of objective function 

values, to form a convex, piecewise linear merit function for each objective. With 

physical programming formulations, solutions that achieve tolerable or desirable values 

for all criteria are preferred over solutions that achieve ideal values of some objectives at 

the expense of extremely poor values of other objectives. However, like the simple 

weighted sum approach, the physical programming formulation still suffers from inability 

to identify a full range of Pareto solutions (because it is based on a linear weighted sum 

formulation). Furthermore, many designers object to the use of semantic preference 

levels that are central to the physical programming formulation. The weighted sum 

approach is a special case of compromise programming (Yu and Leitmann, 1974; Zeleny, 

1973) in which a multiobjective function is expressed as the distance between objective 

values, f(x), for a particular solution and a set of ideal or utopian objective values, f*, as 

follows: 

 ( )( )( )
1

*

1

pm p

i i i
i

Z w f f
=

 = − 
 
∑ x   (2.7) 
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where p is a positive integer. If p equals one and the ideal objective values have null 

values, the compromise programming formulation reduces to the weighted sum 

formulation. If p equals two, the Euclidean formulation is established. The Tchebycheff 

formulation is obtained by setting p equal to infinity: 

 ( )( ){ }*

i 1, ...,m
min max i i iZ w f f

=
= −x   (2.8) 

The Tchebycheff formulation has been shown to be much more effective for generating 

an entire Pareto set of options, even for non-convex problems, than the weighted sum 

formulation (c.f., (Bowman, 1976)) and has been used to generate a Pareto frontier for 

biobjective robust design problems that involve tradeoffs between nominal performance 

and robustness (Chen, et al., 1999b). The standard min-max formulation in engineering 

optimization is a special case of Equation 2.8 in which the ideal or utopia objective 

values are assigned null values and the weights are removed by assigning values of unity 

to all of them. Although compromise programming formulations have been shown to be 

effective for generating Pareto sets of solutions for multiobjective problems, they have 

the disadvantage of requiring ideal or utopian solutions within the problem formulation. 

In strictly keeping with the compromise programming approach, an ideal or utopian point 

must be identified separately for each objective by minimizing/maximizing the objective 

over the feasible solution space. This is an expensive requirement, and its cost grows with 

the number of objectives.  

 

There are many other multiobjective formulations. For example, utility theory has been 

shown to be a mathematically rigorous, domain independent approach for multiobjective 

decision-making (Keeney and Raiffa, 1976; von Neumann and Morgenstern, 1947). A 

decision-maker’s preferences are explicitly assessed and modeled as utility functions that 

are valid for conditions of risk and uncertainty as well as tradeoffs among multiple 

attributes. As long as a decision-maker’s preferences obey a set of axioms, it can be 
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proven mathematically that his/her preferred alternative—and therefore the rational 

choice—is the one with the highest expected utility. Although utility theory is a 

theoretically sound approach for identifying compromise solutions, especially when 

uncertainty is associated with the objectives, the associated informational demands on a 

decision-maker are very high (c.f., (Fernandez, 2002; Seepersad, 2001) for discussions). 

Among other demands, utility theory requires a decision-maker to assign probabilities to 

every possible outcome or set of objective function values and to know a priori exactly 

what his/her preferences are for combinations of multiple objectives. The latter 

requirement is particularly prohibitive in the early stages of design when a designer may 

be using multiobjective searches to discover or explore the potential range of compromise 

solutions for a specific problem; a designer may not know what he/she wants until he/she 

ascertains what is possible.  

2.2.1 The compromise Decision Support Problem 

Another mathematical construct for modeling multiple objectives in engineering design 

applications is the compromise Decision Support Problem (DSP) (c.f. (Mistree, et al., 

1993a)). The compromise DSP is a hybrid formulation based on mathematical 

programming and goal programming. The focus of goal programming is to establish 

goals for each objective and to achieve each of the goals as closely as possible (Charnes 

and Cooper, 1961). The corresponding mathematical formulation is similar to 

compromise programming, but ideal or utopian objective function values are replaced 

with goals or targets established by a designer. For each objective, an achievement 

function, Ai(x), represents the value of the objective as a function of a set of design 

variables, x, and a goal or target value, Gi, is established for each objective. Deviation 

variables, di
− and di

+ , represent the extent to which an objective underachieves or 

overachieves its target or goal, as follows: 
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 ( )i i i iA d d G− ++ − =x   (2.9) 

The overall objective function is expressed as a function of the deviation variables as 

follows: 

 ( )
i=1, ...,m

,i iZ f d d− +=   (2.10) 

As expressed in Equation 2.10, the objective function in goal programming is exclusively 

a function of the deviation variables that measure the extent to which conflicting goals 

are achieved. The objective function could take many forms, the simplest of which is the 

weighted sum formulation: 

 ( )
1

m

i i i i
i

Z w d w d+ + − −

=

= +∑   (2.11) 

Restrictions are placed on the deviation variables to limit them to positive values and 

ensure that only one deviation variable is positively valued at any specific point in the 

design space: 

 0;  0;  0i i i id d d d− + − +≥ ≥ ⋅ =   (2.12) 

Although strict formulations of goal programming do not support equality or inequality 

constraints, these constraints are supported in the compromise DSP with formulations 

borrowed from mathematical programming: 

 ( ) 0;  1, ..., ig i p≥ =x   (2.13) 

 ( ) 0;  1, ..., ih i q= =x   (2.14) 

where p and q are the numbers of inequality and equality constraints, respectively. 

Bounds are also specified on the set of design variables that describe the form of potential 

solutions: 
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 , , ;  1, ..., i L i i Ux x x i n≤ ≤ =   (2.15) 

where n is the number of design variables and xi,L and xi,U are the lower and upper 

bounds, respectively, for the ith design variable. 

 
Given 

•  An alternative to be improved through modification. 
•  Assumptions used to model the domain of interest. 
•  The system parameters (fixed variables). 
•  All other relevant information. 

n  number of system variables 
p + q  number of system constraints 
p  equality constraints 
q  inequality constraints 
m  number of system goals 
gi(X)  system constraint function 
Wi  weight for the Archimedean case 

Find 
•  The values of the independent system variables  
 X = X1, …, Xj  j = 1, …, n 
•  The values of the deviation variable  
  di

-, di
+  i = 1, …, m 

Satisfy 
•  The system constraints that must be satisfied for the solution to be 

feasible. 
 gr(X) = 0  r = 1, …, p 
 gr(X) ≥ 0  r = p+1, …, p+q 
•  The system goals that must achieve, to the extent possible, a 

specified target value. 
 Ai(X) + di

- - di
+ = Gi;  i = 1, …, m 

•  The lower and upper bounds on the system variables and bounds on 
the deviation variables. 

 Xj
min ≤ Xj ≤ Xj

max   j = 1, …, n 
 di

-, di
+ ≥ 0 and di

- · di
+ = 0 

Minimize 
The deviation function (a measure of the deviation of the system 
performance from that implied by the set of goals and their associated 
priority levels or relative weights): 

 ( )
m

i i i
i 1

Z W d d− +

=

= +∑ ;   iW 1=∑ ;   Wi ≥ 0  i = 1, …, m 

FIGURE 2.1. MATHEMATICAL FORMULATION OF THE COMPROMISE DSP 
(MISTREE, HUGHES, ET AL., 1993) 
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The objective function formulation and constraints borrowed from goal programming and 

mathematical programming, respectively, are unified with other constructs into a single 

decision support construct—the compromise DSP, as illustrated in Figure 2.1.  

 

The compromise DSP is used to determine the values of design variables that satisfy a set 

of constraints and bounds and achieve a set of conflicting, multifunctional goals as 

closely as possible. As in goal programming formulations, the deviation function is 

formulated as a function of deviation variables that measure the extent to which multiple 

goals are achieved. The compromise DSP differs from goal programming, however, 

because it is tailored to handle common engineering design situations in which physical 

limitations are manifested as system constraints (mostly inequalities) and bounds on the 

system variables. In traditional mathematical programming, the objective function 

typically represents a single goal, by which the desirability of a design solution is 

measured. All other characteristics of a design are modeled as hard constraints. On the 

other hand, the compromise DSP is more flexible than traditional mathematical 

programming because it accommodates multiple constraints and objectives, as well as 

both quantitative information and information—such as bounds and assumptions—that 

may be based on a designer’s judgment and experience (Marston, et al., 2000). In the 

compromise DSP, multiple goals have been considered conventionally by formulating the 

deviation function either with Archimedean weightings or preemptively 

(lexicographically) (Mistree, et al., 1993a). An Archimedean formulation is illustrated in 

Figure 2.1. 

 

The conceptual basis of the compromise DSP is to minimize the difference between that 

which is desired (the goal, Gi) and that which can be achieved (Ai(x)) for multiple goals. 

The underlying philosophy of the compromise DSP and its goal programming 

foundations is similar to the concept of satisficing solutions and bounded rationality 
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proposed by Simon (Simon, 1983; Simon, 1996). According to Simon’s theory of 

bounded rationality, decision-makers are not omniscient and recognize that search is 

expensive. Consequently, they establish targets or thresholds and accept solutions that 

meet or exceed these targets as ‘good enough’ or satisficing. The thresholds are similar to 

the goal values specified in goal programming and the compromise DSP. Simon 

proposed a Nobel Prize-winning perspective with which to view human decision-making 

in a variety of contexts. It has very important consequences in an engineering design 

setting. For example, if the goal target values established by a designer for the 

compromise DSP are easily achieved, solution of the compromise DSP may produce 

solutions that are dominated (in the Pareto sense) by other feasible solutions. 

 
FIGURE 2.2. PARETO SOLUTIONS AND GOAL TARGETS IN THE COMPROMISE 

DSP (SEEPERSAD, 2004) 
 
Suppose that two objectives are being balanced, as illustrated in Figure 2.2, and 

constraints limit achievement of the pair of objectives to the shaded feasible design space 

bounded by a Pareto frontier. If established goals are easily achieved (i.e., within the 

Pareto frontier) as with Solution A in Figure 2.2, then solution of the compromise DSP 

will satisfy the goals exactly, despite the fact that other feasible solutions dominate the 

targeted solution. Other solutions are feasible and offer preferred levels of all objectives. 

This is a common criticism of goal programming formulations—that they often deliver 

solutions that are inferior to other feasible Pareto solutions. However, this is not an 

inherent limitation of the compromise DSP formulation. Satisficing designs—such as 

Solution A in Figure 2.2—may actually be preferable to solutions on the Pareto frontier, 
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especially in the early stages of design. As design parameters and conditions change, 

satisficing solutions are more likely to remain acceptable than Pareto solutions because 

satisficing solutions do not reside on the frontier of the feasible space and are therefore 

less likely to violate critical constraints as soon as design parameter values change. In the 

early stages of design, it is typical for assumptions and preliminary design parameter 

values to shift. As a result, ‘optimal’ designs may no longer be optimal; in fact, they may 

be infeasible. The flexibility built into satisficing solutions is particularly important for 

coupled, distributed design problems in which collaborating designers need this 

flexibility for adjusting design parameters without rendering the design unacceptable to 

other designers. The capabilities of the compromise DSP—coupled with design 

capability indices—for the generation of ranged solutions are discussed in further detail 

in Section 2.2.2. It is argued that flexible, satisficing solutions may be regarded as 

preferable rather than inferior to optimal solutions in some contexts. However, if Pareto 

solutions are sought, they are obtainable with the compromise DSP formulation. The 

enabling strategy is to set goal target values sufficiently high as with Solution B in Figure 

2.2. In fact, it is easy to determine whether targets have been set sufficiently high because 

all of the deviation variables will have positive values. 

 

In addition to facilitating the search for either flexible, satisficing solutions or Pareto 

solutions, the compromise DSP has additional capabilities that make it the construct of 

choice in this thesis for modeling multiobjective decisions in product design. For 

example, once a compromise DSP is formulated for a particular problem, it is possible to 

generate families of related designs by changing goal target values, weights, and/or 

design variable bounds without reformulating the problem. Unlike conventional single-

objective optimization, a designer is not forced to choose a single objective and 

arbitrarily constrain other objectives. Instead, a designer can explore a range of tradeoffs 

between multiple conflicting objectives. Those objectives may include multiple measures 
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of nominal performance (e.g., mass, heat transfer rates, effective stiffness) as well as 

measures of performance variation, induced by many sources of variation or uncertainty. 

Furthermore, the compromise DSP has been successfully utilized for designing many 

types of engineering systems, and its library of overall objective function formulations 

has been expanded to include physical programming (Hernandez, et al., 2001), Bayesian 

(Vadde, et al., 1994), fuzzy (Zhou, et al., 1992), and utility theory formulations 

(Seepersad, 2001) for specific contexts. Since the compromise DSP has been previously 

developed and utilized, the contribution in this thesis is in demonstrating that it can be 

used for comparing material design and material selection in the context of product 

design. 

2.2.2 The cDSP with Design Capability Indices 

There are some cases in the early stages of design when requirements are uncertain and 

are most appropriately expressed as a range (i.e., smaller than a lower limit, larger than 

an upper limit, or between lower and upper limits) rather than a target value, as shown in 

Figure 2.3. In these cases, it may be necessary to measure the extent to which a range or 

distribution of design performance (induced by a range of design specifications) satisfies 

a ranged set of design requirements. Chen and coauthors propose the design capability 

indices (DCIs) as a set of metrics for assessing the capability of a ranged set of design 

specifications for satisfying a ranged set of design requirements (Chen, Simpson, Allen, 

and Mistree, 1999). The design capability indices are incorporated as goals in the 

compromise DSP. In further work, Chen and Yuan (1999) introduce a design preference 

index that allows a designer to specify varying degrees of desirability for ranged sets of 

performance, rather than specifying precise target values or limits for a range of 

requirements beyond which designs are considered worthless. 
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FIGURE 2.3. COMPARING TWO DESIGNS WITH RESPECT TO A RANGE OF 
REQUIREMENTS 

 
 
 

 

FIGURE 2.4. DESIGN CAPABILITY INDICES (CHEN, SIMPSON, ALLEN, AND 
MISTREE, 1999)  

 

The DCIs are mathematical constructs for efficiently determining whether a ranged 

design specification is capable of satisfying a ranged set of design requirements. When 

the index is negative, the mean of the system performance is outside of the system 

requirement range. If the index is greater than one, the design will meet the requirement 

satisfactorily.  Therefore, a designer’s objective is to force the index to unity so that a 

larger portion of performance deviation falls into the range of design requirements. 

Forcing the index to unity is achieved by reducing performance deviation and/or locating 
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the mean of performance deviation farther from requirement limits. The procedure to 

evaluate the index is illustrated in Figure 2.4.  

 

Assuming that the design variable varies ±∆x around its nominal value x0, then the 

corresponding deviation of the system response is ±∆y around its mean value µ, which is 

calculated by: 

 ( )0f xµ =  (2.16) 

Cdu, Cdl, and Cdk in Figure 2.4 are calculated as follows: 

 { }LRL URL;    ;      min ,dl du dk dl dkC C C C C
y y

µ µ− −= = =
∆ ∆

 (2.17) 

For cases in which the deviation of the input variables can be quantified by a statistical 

distribution, the amount of deviation in the system response is characterized by the 

number of standard deviations of the response distribution.  The number of standard 

deviations indicates the percentage of the distribution that conforms to the design 

requirements.  For three standard deviations, a Cdk of 1 indicates that 99.865% of the 

performance distribution conforms to the requirements (Chen, Simpson, Allen, and 

Mistree, 1999). Incorporating DCIs into the goals of the cDSP results in the 

particularized formulation of the cDSP shown in Figure 2.5.  The DCIs can be used for 

both goals and constraints in the formulation of the particularized cDSP, depending on 

whether the ranged design requirement is a wish or a demand.  Demands are 

requirements that must be met under all circumstances and are formulated as constraints 

under which the constraint DCIs must be greater than or equal to one.  Wishes are 

requirements that should be taken into consideration whenever possible and are 

formulated as goals of maximizing the goal DCIs as close as possible to one. 
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FIGURE 2.5. MATHEMATICAL FORMULATION OF THE COMPROMISE DSP 
PARTICULARIZED FOR DESIGN CAPABILITY INDICES (CHEN, SIMPSON, 

ALLEN, AND MISTREE, 1999; XIAO, 2003)  
 

The compromise DSP formulation with DCIs provides several advantages. With DCIs, a 

designer can efficiently check whether a family of designs can satisfy design 

requirements while eliminating the tedious task of evaluating large numbers of discrete or 

continuous design specifications. In addition, a designer can consider multiple aspects of 

quality improvement by adjusting the location of the mean of the performance 

distribution as well as the variation.  Finally, DCIs are easy for a designer to compute and 

understand using a simple index.  The advantages of using DCIs for finding ranged sets 

of solutions in conjunction with the compromise DSP have been approved by applying 

them to sample engineering problems, such as the design of a solar powered irrigation 

system (Chen, Simpson, Allen, and Mistree, 1999), multidisciplinary decision making in 

the design of a circuit board (Xiao, et al., 2002), and the design of a Linear Cellular Alloy 

(Seepersad and Allen, 2003).   

Given 
Functions y including those ranged design requirements which are constraints, gi(X), 
and those which are objectives, Aj(X) 
Deviations of control variables σx or ∆x 
Target ranges for the design requirements, URLi and LRLi 

Find 
The location of the mean of the control variables µx 

Satisfy 
Constraints: Cdk-constraints ≥ 1 
Goals: dk-objectives 1i iC d d− ++ − =  
Bounds: 

, 0i id d− + ≥ ; i = 1,…, m 
0i id d− +⋅ = ; i = 1,…, m 

Minimize: Deviation Function 

Archimedean:  ( )
1 1

,      where 1
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Z W d d W− +

= =

= + =∑ ∑  

Preemptive: ( ) ( )1 1 1, ,..., ,m m mZ f d d f d d− + − + =    
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In the previous section it is established that the cDSP enables the search for solutions to 

multiobjective design problems, and that once formulated, the cDSP can be easily 

adapted to provide families of solutions and explore trades between the objectives.  This 

capability is particularly important for the DSES in which it is desired to compare 

material design and selection because additional system variables can be easily added.  

Furthermore, the ranged cDSP enables the search for ranges of solutions that meet ranged 

performance specs, which is particularly useful in the early stages of design when 

requirements are uncertain. Therefore, it is argued that the cDSP with design capabilities 

is an appropriate foundation for finding ranged sets of design solutions in the DSES.  

Because DCIs are intended to be used to find ranges of design solutions that satisfy 

ranges of design requirements, DCIs are an appropriate choice for finding target ranges of 

material properties that meet ranged design requirements in the early stages of design.  In 

the next section, the area of information economics and value of information metrics are 

reviewed. 

2.3 INFORMATION ECONOMICS 

One of the requirements for the DSES is that it must provide a quantitative comparison of 

the options of material selection and material design.  This quantitative comparison is 

provided by the VDSE metric proposed in this thesis.  The requirements for the metric 

are as follows: the comparison must be made on the basis of achieving product 

performance goals, and the metric enables comparison of an existing material and an 

unrealized material concept.  Value of information metrics developed in the field of 

information economics provide the foundation for the VDSE metric and should therefore 

be reviewed. In particular, The VDSE metric is developed based on the Improvement 

Ratio developed by Panchal and coauthors (2005). In this section, a review of value of 

information for decision making is presented as background and for domain-independent 
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structure validity.  The review of Panchal (2005) is presented here without major change 

and is augmented by a review of the Improvement Ratio. 

 

At any stage in the design process, designers possess some amount of information that 

can be used for selecting the best course of action. Designers have an option of either 

making a decision using the available information or gathering more information and 

then making a decision using the updated information. In this context of decision making, 

the value of this added information refers to the improvement in designers’ decision 

making capability. The value of information metric is used by decision makers to make 

the meta-level decision involving the tradeoff between gathering more information to 

reduce uncertainty and reducing the associated cost of gather the additional information. 

The idea of using value of information for determining whether to consider additional 

information for decision making is not new. It was first introduced by Howard (1966). 

The expected value of information as defined by Howard is “the difference between the 

expected value of the objective for the option selected with the benefit of the information 

less than without”. Mathematically, the expected value of information is shown in 

Equation 2.18, where x is the state of the environment, EVIφ is the expected value of 

information, φ is the available information, and ( ) |
x
E f x ϕ   is the expected value of the 

function f(x). 

 ( )( ){ } ( )( ){ }max , | max ,i i

p pi i
EVI E E u p x E u p xϕ γ

ϕ    = −     
 (2.18) 

 

Bradley and Agogino use this value of information metric for a catalog selection 

problem, where a designer is faced with the task of choosing components from a catalog 

in order to satisfy some functional requirements (Bradley and Agogino, 1994). During the 

conceptual design phase, selection decisions are characterized by significant uncertainty 
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due to limited understanding of requirements and constraints, inability to specify part 

dimensions, uncertainty in the environmental conditions, etc. However, before making 

the decision about the right component, a designer needs to make another higher level 

decision – whether to go ahead and make the decision using available information or to 

spend resources and gather more information before making the selection decision. This 

is a meta-level decision, for which Bradley and Agogino (Bradley and Agogino, 1994) 

utilize the value of information metric to quantify the expected benefit from additional 

information. 

 

Poh and Horvitz use the value of information metric for refining decisions (Poh and 

Horvitz, 1993). The authors present three dimensions in which the decision models can 

be refined – quantitative, conceptual, and structural. Quantitative refinement of a decision 

model can be carried out by reducing the uncertainty in the decision problem or by 

refining the preference models. Conceptual refinement is carried out by refining the 

definition of alternatives and design variables, whereas structural refinement requires 

addition of dependencies in the simulation model. Poh and Horvitz use the value of 

information metric to determine which dimension is critical for refinement of the decision 

problem. 

 

Lawrence provides a comprehensive overview of metrics for value of information 

(Lawrence, 1999). He argues that the value of information for decision making can be 

measured at different stages in the decision-making process. Accordingly, the value of 

information metrics are named differently based on the stage at which they are evaluated. 

Four different options for measuring the value of information are: 

a) prior to consideration of incorporation of information, 

b) Ex-ante value: after considering a message source but prior to receiving a 

message 
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c) Conditional value: after receiving additional information and making the 

decision, but before realization of the environmental state, or 

d) Ex-post value: after addition of information and making a decision-based 

on acquired information. 

 

Determination of value of information at different stages in the decision-making process 

results in different kinds of insight for meta-level decisions. The appropriateness of a 

stage for measuring the value of information depends on the problem at hand and the 

available information. Consider an example of a designer who has a simulation model for 

predicting the system behavior and is interested in making a decision using the model. 

Before making the decision, a designer has an option of increasing the fidelity of the 

model by considering additional physical phenomena in the model. For example, a 

structural analyst may improve the fidelity of a static model by adding dynamic behavior, 

creep, etc. Description of a physical phenomenon is equivalent to an information source 

that generates information about the system behavior. The output of the simulation i.e., 

system behavior is equivalent to the added information generated by the information 

source. Now, the decision maker can evaluate the expected value of information before 

even considering the incorporation of any additional physical phenomena. The second 

option (ex-ante value) is to decide which physical phenomena to model (i.e. information 

source) and evaluating the value of information before executing the simulation code. 

The third option (conditional value) is to evaluate the value after executing the simulation 

code and making decision about the system, but before manufacturing and testing the 

system. In this scenario, there is uncertainty in the actual system behavior that would be 

achieved due to factors such as manufacturing variability and changes in environmental 

conditions. The fourth option (ex-post value) is to evaluate the value of this additional 

information after making decision and also manufacturing and testing the system. In this 

scenario, designers know exactly how the system behaves. 



 48

 

Mathematically, the ex-post and ex-ante value of information are represented as follows: 

1. Ex-post value: ( ) ( ) ( )0, , ,yv x y x a x aπ π= −  

Where a0 and ay represent the actions taken by the decision maker in the absence and 

presence of information y. π(x,a) represents the payoff achieved by selecting action a, 

when the state realized by the environment is x. 

2. Ex-ante value: ( ) ( ) ( )| 0, , ,x y y xv x y E x a E x aπ π= −  

where Exf(x) is the expected value of f(x) and Ex|yf(x) is the expected value of f(x) given y. 

It is important to realize that the key difference between ex-post and ex-ante value is that 

in ex-post value, the realization of state x is known. However, the realization of state x is 

not known in ex-ante value and the expected value of payoff is taken over the uncertain 

range of state x. 

 

Ideally, designers are interested in the ex-post value of information because it truly 

reflects the value of information for a decision-based on the actual behavior of the 

system. There the system behavior is known deterministically. However, it is not possible 

to calculate the ex-post value of a decision before making the decision itself. Due to the 

ex-ante nature of decision making, the decisions about the information have to be made 

before the state actually occurs. Hence, the ex-ante value of information is generally used 

by designers. It captures the value of information by considering uncertainties in the 

system. In order to model uncertainty for evaluating value of information, it is assumed 

that the probability distributions are available. However, if these probability distributions 

are not available, they are generally generated through an educated guess that is based on 

the designers’ prior knowledge. In order to address the problem of lack of knowledge 

about the probability distributions, Aughenbaugh and coauthors present an approach of 

measuring the value of information based on probability bounds (Aughenbaugh, Ling, et 
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al., 2005). They assume that although the exact probability distributions are unavailable, 

the lower and upper bounds on these probabilities are available in terms of p-boxes. 

Using this p-box approach, they evaluate the value of added information that reduces the 

size of the interval for probability distribution (i.e., tightens the bounds on the p-box). 

 

In most of the efforts, the value of information is based on the variability in the decision 

problem. This uncertainty is modeled using probability distributions; however, except for 

Aughenbaugh and co-authors, imprecision in the decision models which cannot be 

modeled in terms of probability distribution functions is generally not modeled 

(Aughenbaugh, Ling, et al. 2005).  Imprecision relates to epistemic uncertainty (i.e., the 

lack of knowledge), whereas variability refers to aleatory uncertainty (i.e., inherent 

randomness in the system). The key difference between imprecision and uncertainty from 

a value of information standpoint is that imprecision can be reduced by the incorporation 

of more information but uncertainty cannot be reduced via incorporation of information. 

For example, consider a scenario where a designer has an option of making a decision 

using one of the two available simulation models. One of the simulation models has a 

higher fidelity representation of physics than the other. The meta-level decision that the 

designer has to make is – “Which simulation model should be used for making the 

decision?” This scenario is extremely common in design problems.  

 

To account for imprecision in simulation models in addition to variability, Panchal and 

coauthors propose the Improvement Potential metric (Panchal et al., 2007). The 

Improvement Potential quantifies the maximum possible improvement in a designer’s 

decision that can be achieved by refining a simulation model.  This metric is measured as 

the upper-bound on the increase in expected utility through model refinement, and the 

equation for the metric is shown in Equation 2.19, where max(Umax) is the maximum 

expected payoff that can be achieved by any point in the design space, and (Umin)* is the 
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lowest expected payoff value achieved by the selected point in the design space (after 

making the decision without the added information).  

 ( ) ( )*
max minmaxIP U U= −  (2.19) 

With this metric, statistical variability is accounted for by using the expected utility and 

imprecision is accounted for by using the lower and upper bounds on expected utility. In 

addition to the metric, the authors put forth a method in which the metric is utilized for 

supporting model refinement decisions.  The method and metric are demonstrated for the 

design of a pressure vessel and the design of a multifunctional material. 

 

Pursuing the design of the material can be thought of as refining the material model that 

is used for the design of the product.  In material selection the material model is defined 

by discrete points, whereas in material design the material model is continuous.  Since the 

extension of the material design space is similar to the refinement of a decision model, it 

is argued that existing value of information metrics are a valid basis for the development 

of the VDSE metric.  Specifically, the Improvement Potential proposed by Panchal and 

coauthors provides the foundation for the VDSE metric, introduced in Section 3.2.1 

2.4 RESEARCH OPPORTUNITIES 

The primary purpose of this literature review is to identify research opportunities relevant 

to the focus of this thesis. The identified research opportunities are organized in Tables 

2.3 and 2.4 according to the requirements for the DSES and VDSE metric, where the 

requirements are listed in the second column, the support for these requirements in 

existing literature is listed in the third column and the research opportunities are listed in 

the fourth column.  In the remainder of this section, these research opportunities are 

summarized with the goal of establishing the originality and significance of the primary  
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TABLE 2.3. IDENTIFYING RESEARCH OPPORTUNITIES, PART 1 

  Requirement Support in existing literature What is needed RQ
1 Driven by product-level 

requirements rather than 
material-level requirements

cDSP enables the search for design solutions 
that meet multiple conflicting product 
requirements 
 

A way to determine how well material 
concepts meet product requirements 1 

2 Computationally 
inexpensive as compared to 
designing a new material 

cDSP enables an efficient search of the design 
space as long as the performance models are 
quick to evaluate 
 

A way to represent and evaluate the 
performance of new materials that is 
computationally efficient 1 

- cDSP allows for both product and design 
process goals to be considered 
simultaneously 

- Value of Information metrics provide 
quantitative means to compare options 
based on overall performance 

A Value of Information based metric 
that is compatible with the cDSP  

2 

3 Provides a quantitative 
comparison of the options 
of selection and design 
based on the achievement 
of the product design 
objectives as well as 
process design objectives 

cDSP once formulated can be used to find 
families of design by changing bounds, 
targets, etc. 
 

Show that the material design space 
can be expanded by adding material 
property variables to an existing cDSP 2 

D
SE

S 

4 Provides guidance for 
subsequent phases of 
design 

ranged cDSP can be used to find ranges of 
design solutions that meet ranged 
performance specs 
 

Use material property variables in 
cDSP solutions to set targets for 
material design 3 
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TABLE 2.4. IDENTIFYING RESEARCH OPPORTUNITIES, PART 2 

 

 Requirement Support in existing literature What is needed RQ

1 Compares an existing 
material to an unrealized 
material concept 

Improvement Potential measures the value of 
model refinement through the reduction of 
uncertainty 

A metric that measures the value of 
the expansion of the design space 
rather than the value of the reduction 
of uncertainty 
 

2 

V
D

SE
 2 Compares on the basis of 

meeting product-level and 
design process 
requirements 

- Existing Value of Information metrics are 
based on the improvement in overall utility, 
which can include multiple goals or 
attributes 

- the cDSP provides a combined assessment 
of the value of the design in the 
Archimedean deviation function 

A metric in which the value is 
measured by the reduction in overall 
deviation, which is compatible with 
the cDSP formulation 2 
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and secondary research questions and hypotheses.  The research opportunities are thus 

organized by research question. 

2.4.1 Research Question 1: Evaluation of Material Concepts 

To compare the design process options of material selection and material design, 

designers must have a way to explore a material design space.  Although multiscale 

material simulations provide a way to evaluate candidate material concepts, the 

generation of these models is too time consuming for efficient design space exploration 

in the early stages of design.  The ranged cDSP with DCIs enables an efficient search of 

an expanded material design space.  In this situation, multiobjective decision support is 

needed in order to determine families of compromise solutions that meet product and 

process objectives.  By setting material properties as design variables in the ranged cDSP, 

the efficient search of an expanded material design space is enabled without the need for 

expensive and complex material models. 

2.4.2 Research Question 2: A Value of Design Space Expansion Metric 

To compare the options of material selection and material design, an ex-ante or 

conditional metric is desired, because the addition of information in this case refers to the 

inclusion of a multiscale material model in the decision model. The development of this 

complex simulation model or models is a difficult and time-consuming task, which is the 

very task designers wish to avoid by identifying the material property requirements.  A 

new metric is needed that can be evaluated prior to the development of a complex 

material model.  Metrics exist for measuring the value of information that reduces the 

uncertainty in a decision problem; however, in the choice between material selection and 

design, information to reduce the uncertainty in the material properties is not available.  

What is available in this choice is an expanded material design space.  Therefore, a new 

metric is needed to quantify the value of design space expansion. 
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2.4.3 Research Question 3: Providing Guidance for Subsequent Phases of Design 

The cDSP and the ranged cDSP with DCIs have been demonstrated in the literature for 

finding families of compromise, satisficing solutions to multiobjective design problems.  

The cDSP has also been used in conjunction with value of information metrics to 

determine when additional information is valuable.  What is needed is the use of the 

ranged cDSP along with a new value of design space expansion metric to determine when 

expanding the design space is valuable.  Furthermore, once ranged solution sets have 

been found and the metric has been calculated, a method for determining material 

property targets for subsequent phases of design is needed. 

 

2.5 A LOOK BACK AND A LOOK AHEAD 

In this chapter the foundational constructs of the DSES and VDSE metric are introduced 

and critically reviewed. The cDSP with DCIs and value of information metrics provide 

the foundation for the development of the DSES and the VDSE metric. 

 

Next, in Chapter 3 the DSES and the VDSE metric are presented as embodiments of the 

research hypotheses.  The domain-independent structure validity is assessed by critically 

reviewing the internal consistency of the DSES as an assemblage of the parent constructs.  

The domain-specific structure validity and domain-specific performance validity of the 

DSES are evaluated in Chapter 4 with the presentation of an example problem on the 

design of blast resistant panels.  The thesis is concluded in Chapter 5 with a critical 

review of the thesis and the assessment of the domain-independent performance validity 

of the DSES.  Limitations are identified and opportunities for future work are presented. 
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CHAPTER 3 

AN OVERVIEW OF THE DESIGN SPACE EXPANSION 

STRATEGY AND THE VALUE OF DESIGN SPACE EXPANSION 

METRIC 

In Chapter 2, the available design tools are reviewed and critically evaluated.  In this 

chapter, the Design Space Expansion Strategy (DSES) and the Value of Design Space 

Expansion (VDSE) metric are introduced. An outline of the topics discussed in this 

chapter is shown in Table 3.1.   

TABLE 3.1. A SUMMARY OF CHAPTER 3 
Section Heading Information 
3.1 The Design Space Expansion Strategy 
3.1.1 Introducing the Design 

Space Expansion 
Strategy 

•  Stage 1: Baseline 
•  Stage 2: Expansion  
•  Stage 3: Interpretation 

3.1.2 Meeting the 
Requirements of the 
DSE Strategy 

•  Recap of the requirements for the DSE 
strategy 

•  Analysis of whether or not the 
requirements are met by the proposed 
strategy 

3.2 The Value of Design Space Expansion metric 
3.2.1 Introducing the VDSE 

metric 
•  An ex-ante metric for the value of design 

space expansion 
•  Using the VDSE to support design process 

decision making 
3.2.2 Meeting the 

Requirements of the 
VDSE metric 

•  Recap of the requirements for the VDSE 
metric 

•  Analysis of whether or not the 
requirements are met by the proposed 
metric 

3.3 Validation 
3.3.1 Domain-Independent 

Structure Validity 
Does the strategy provide an internally consistent 
answer to the research questions? 

3.3.2 Domain-Specific 
Structure Validity 

Is the BRP example appropriate for testing the 
DSES? 

3.4 A look back and a look ahead 
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In Section 3.1, the DSES is introduced.  The strategy itself is introduced in Section 3.1.1, 

and an assessment of how well the strategy meets the requirements is presented in 

Section 3.1.2.  In Section 3.2 the metric for the VDSE is introduced and described.  The 

metric is introduced in Section 3.2.1 and the requirements for the metric are discussed in 

Section 3.2.2. In Section 3.3 the structure validity of the design space expansion strategy 

is assessed.  The domain-independent structure validity, or internal consistency, of the 

strategy is discussed in Section 3.3.1, and the domain-specific structure validity is 

explored in Section 3.3.2.  In Section 3.4 the chapter is summarized in the context of the 

thesis with a look back and a look ahead.   

3.1 THE DESIGN SPACE EXPANSION STRATEGY 

In Chapter 2, the available design tools are critically reviewed, and the research gap is 

identified.  The systematic design of materials requires a top-down approach rather than 

the bottom-up approach taken by material scientists (see Figure 1.1).  Inductive mappings 

must be identified from the desired performance down to the properties, structure, and 

processing of the material components. Mapping performance to properties is the first 

step in this top-down approach to material design.  In this section, the DSES is proposed 

to identify the material properties that are needed to achieve the desired product 

performance.   

3.1.1 Introducing the Design Space Expansion Strategy  

To meet the requirements identified in previous chapters and to answer the research 

questions in this thesis, the DSES is proposed here.  The strategy consists of three stages: 

baseline, expansion, and interpretation. A graphical overview of the strategy is presented 

in Figure 3.1.  
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Stage 2 – Expansion

Find the design solution using independent material 
property design variables in place of existing 
material(s).

2.1    Expanded Material Design Space
Define upper and lower bounds for the material property variables.

2.2    The Expansion cDSP
2.2.1  The word formulation
2.2.2  The math formulation
2.2.3  Solving the expansion cDSP

Expansion 
cDSP

Expansion 
cDSP

Stage 1 – Baseline

Find the design solution using existing material(s).

1.1    Baseline Material Design Space
1.1.1  Define the baseline material
1.1.2  Determine the variation in baseline material properties

1.2    The Baseline cDSP
1.2.1  The word formulation
1.2.2  The math formulation
1.2.3  Solving the baseline cDSP

Baseline 
cDSP

Baseline 
cDSP

Stage 3 – Interpretation

Compare the achievement of design objectives at the 
baseline and expansion solutions to assess the value 
of expanding the design space.  

3.1    Calculate the VDSE metric

If the value of expanding the design space is large 
enough, identify material property targets for 
subsequent phases of design.

3.2    Identify Material Property Targets
3.2.1  Search for existing materials that meet the targets
3.2.2  Identify the material property targets on material selection  

charts

VDSEVDSE

 
FIGURE 3.1. GRAPHICAL OVERVIEW OF THE DSES 

 



   

   58

In the baseline stage, a design solution is found using existing material(s) by formulating 

and solving the baseline cDSP.  Next, in the expansion stage, the materials are defined 

using independent material property variables, and a new solution is found in this 

expanded material design space. In this stage the expansion cDSP is formulated and 

solved.  The main difference between the baseline and expansion stages is the definition 

of the material design space, which is shown in icon form at the right side of Figure 3.1. 

Lastly, in the interpretation stage the baseline and expansion design solutions are 

compared using the VDSE metric, which is introduced and discussed separately in 

Section 3.2.  Also in the interpretation stage, designers gain insight into the material 

property targets for the product by analyzing the expansion stage solutions.  All three 

stages are discussed in more detail in the following sections. 

Stage 1: Baseline 

In the baseline stage of the DSES the objective is to find a design solution using existing 

materials.  The purpose of this stage is to determine the best product design that is 

achievable without engaging in the design of a new material.  The baseline stage consists 

of two steps: defining the baseline material design space (Step 1.1) and formulating and 

solving the baseline cDSP (Step 1.2).  In the baseline stage, the material design space is a 

point represented by the material properties of the baseline material; therefore, the first 

step is to identify the baseline material (Step 1.1.1).  This is done by following a material 

selection procedure, solving a selection DSP, or, for variant or adaptive design, the 

baseline material may be the materials that have previously been used for the product.  

By assuming a baseline material, an approach is taken in which material property targets 

are sought in the vicinity of existing materials.  In the author’s opinion, this approach 

increases the likelihood that a material with the desired properties can be designed by 

adjusting the structure and processing path of an existing material. 
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σY

ρ

σY,base

ρbase

Material 
Design 
Space

Baseline 
material

Variation in 
baseline 
material

 

FIGURE 3.2. A SAMPLE BASELINE MATERIAL DESIGN SPACE 
 

It is also necessary to characterize the uncertainty in the properties of the baseline 

material in Step 1.1.2.  Due to factors such as variability in manufacturing and 

environmental conditions, the properties of the baseline material may not exactly match 

the values shown in handbooks or reported by the supplier; therefore, a designer must 

determine the amount of variation that is possible in these quantities so that the variation 

can be accounted for in design.  The material design space in the baseline stage is thus an 

uncertain point, as shown in Figure 3.2.   

 

The second step of the baseline stage is formulating and solving the baseline cDSP (Step 

1.2).  The baseline cDSP is a particularized form of the ranged cDSP in which DCIs are 

employed in the specification of system constraints and goals.  A detailed explanation of 

the ranged cDSP as an extension of the original cDSP can be found in Section 2.2.2. The 

ranged cDSP is particularized here in the baseline cDSP to include given parameters 

relating to the baseline material(s) and a goal to reduce the cost of design space 

expansion (CDSE).   
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Word Formulation
(Step 1.2.1)

Word Formulation
(Step 1.2.1)

Math Formulation
(Step 1.2.2)

Baseline Solution
(Step 1.2.3)

Baseline Solution
(Step 1.2.3)

Formalize problem statement as a 
word problem under headings 
Given, Find, Satisfy, Minimize

Convert Word to Math form 
by defining equations for 

constraints and goals

Minimize deviation 
function to find values 
for system variables 

and deviation variables

BaselinecDSP

BaselinecDSP

Word Formulation
(Step 2.2.1)

Word Formulation
(Step 2.2.1)

Math Formulation
(Step 2.2.2)

Math Formulation
(Step 2.2.2)

Expansion Solution
(Step 2.2.3)

Expansion Solution
(Step 2.2.3)

ExpansioncDSP

ExpansioncDSP

Thanks 
for visiting 
baseline 

cDSP

Thanks 
for visiting 
baseline 

cDSP

 

FIGURE 3.3. THE ROAD TO THE BASELINE SOLUTION 
 

The process of formulating and solving the baseline cDSP is shown graphically in Figure 

3.3. There are three milestones which a designer must reach to formulate and solve any 

cDSP: the word formulation (Step 1.2.1), the math formulation (Step 1.2.2), and the 

compromise solution (Step 1.2.3).  The same process holds for the baseline cDSP as well. 

To reach the word formulation (Step 1.2.1), a designer formalizes the design problem 

statement under the headings Given, Find, Satisfy, and Minimize.  The word formulation 

for the baseline cDSP is shown in Figure 3.4.  The particularizations of the baseline cDSP 

from the ranged cDSP are shown in italics in the figure.   

 

The particularizations of the baseline cDSP are located under the Given and Satisfy 

headings of the cDSP formulation.  Under the Given heading, two types of system 

parameters are identified which must be included in both the baseline and expansion 
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cDSPs.  These system parameters are the properties of the baseline materials and the 

variation in these properties.  These parameters are used in the models of system 

performance to predict the performance of the various design alternatives.  

 

Given 
•  An alternative to be improved through modification. 
•  Assumptions used to model the domain of interest. 
•  Deviation of the design variables. 
•  Target ranges of performance measures. 
•  The system parameters (fixed variables). 

o The properties of the baseline material(s). 
o The variation in the properties of the baseline material(s). 

•  The constraints and goals for the design. 
Find 

•  The values (locations) of the ranged system variables. 
•  The values of the deviation variables.  

Satisfy 
a. The system constraints that must be satisfied for the solution to be 

feasible, stated in terms of the design capability index, Cdk, which 
must be greater than or equal to one for the solution to be feasible. 

b. The system goals that must achieve, to the extent possible, a 
specified target value.  The system goals are stated in terms of the 
design capability index, Cdk, which must achieve, to the extent 
possible, the target value of one. 

c. The CDSE goal that must achieve, to the extent possible, a specified 
target value.  The CDSE goal is stated in terms of the design 
capability index, Cdk, which must achieve, to the extent possible, the 
target value of one. 

d. The lower and upper bounds on the system variables and bounds on 
the deviation variables. 

Minimize 
The deviation function that is a measure of the deviation of the system 
performance from that implied by the set of goals and their associated 
priority levels or relative weights. 
FIGURE 3.4. WORD FORMULATION OF THE BASELINE CDSP 

 
Under the Satisfy heading, a new goal specific to the DSES is included to minimize the 

CDSE as closely as possible to zero. This goal relates to the design process objective of 

reducing design process complexity.   By simultaneously seeking to minimize the CDSE 

while also achieving the system performance goals, the benefits of the design space 
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expansion (improved system performance) are balanced by the cost of expanding the 

design space (increase in cost of design space expansion as solutions diverge from the 

baseline material).  The choice of a model for CDSE and the implications of the CDSE 

model on the baseline cDSP are discussed in the next section regarding the math 

formulation of the baseline cDSP. 

 

Having reached the word formulation, the next milestone is the math formulation of the 

cDSP (Step 1.2.2).  The difference between the math and word forms of the cDSP is that 

in the math form, all the variables, constants, and equations are defined mathematically in 

order to obtain a deviation function that can be minimized. To do this, equations are 

defined or other models are identified to evaluate the constraints and goals.  This portion 

of the problem formulation is highly problem-specific, as this is when the models of the 

system behavior are identified.  The math formulation of the baseline cDSP is shown in 

Figure 3.5, with the particularizations for the DSES shown in boldface type.  

 

The specification of a model for the CDSE is one aspect of the math formulation of the 

baseline cDSP that is particular to the DSES strategy.  The CDSE quantifies the expected 

increase in product design cost due to deviations from known materials.  It is assumed 

that the product design cost will increase as the candidate solutions move farther away 

from the baseline material properties.  This assumption is based on the fact that complex 

material models will need to be developed and validated for use as predictive models to 

design a material that does not yet exist, and the cost of developing and validating these 

models must be considered when a designer is choosing between material selection and 

material design.  In the early stages of design, explicit data on this cost is not likely to be 

available; however, a designer can define a function that reflects his beliefs about how 

the product design cost will be affected by choosing material properties that differ from 

the baseline materials.   
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Given 
•  An alternative to be improved through modification. 
•  Assumptions used to model the domain of interest. 
•  Values of the baseline material properties, µMPk.  k = 1, …, s 
•  Variation in the material properties, ∆MPk. 
•  Variation of design variables, ∆Xi 
•  Target ranges of performance measures. URLi and LRLi i = 1, …, m 
•  The system parameters (fixed variables). 

n  number of system variables 
s number of baseline material properties 
p + q  number of system constraints 
p  equality constraints 
q  inequality constraints 
m  number of system goals 
gi(X)  system constraint function 
Wi  weight for the Archimedean case 

Find 
•  The values (locations) of the ranged system variables  
 µX = µX1, …, µXj  j = 1, …, n 
•  The values of the deviation variables  
  di

-, di
+  i = 1, …, m 

Satisfy 
a. The system constraints that must be satisfied for the solution to be 

feasible. 
 gr(X) = 0  r = 1, …, p 
 gr(X) ≥ 0  r = p+1, …, p+q 
 1dk-constraintsC ≥  
b. The system goals that must achieve, to the extent possible, a specified 

target value. 
 Ai(X) + di

- - di
+ = Gi;  i = 1, …, m 

 1dk-objectives i iC d d− ++ − =  

c. The CDSE goal that must achieve, to the extent possible, a specified 
target value. 

 ACDSE(X) + dCDSE
- - dCDSE

+ = GCDSE;   
 1dk-obj CDSE i iC d d− +

− + − =  

d. The lower and upper bounds on the system variables and bounds on the 
deviation variables. 

 Xj
min ≤ Xj ≤ Xj

max   j = 1, …, n 
 di

-, di
+ ≥ 0 and di

- · di
+ = 0 

Minimize 
The deviation function (a measure of the deviation of the system performance from 
that implied by the set of goals and their associated priority levels or relative 
weights): 

 ( )
m

i i i
i 1

Z W d d− +

=

= +∑ ;   iW 1=∑ ;   Wi ≥ 0  i = 1, …, m 

FIGURE 3.5. MATHEMATICAL FORMULATION OF THE BASELINE CDSP 
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A simple CDSE function is one that increases linearly with the Euclidean norm of the 

vector from the baseline material to the expansion solution, shown graphically in Figure 

3.6.  This linear model is easy to implement and reflects the assumption that it will be 

more difficult to design materials that have properties that are farther away from the 

baseline material properties, but a designer is free to choose other forms such as a 

quadratic or exponential model to represent his beliefs about how the product design cost 

will change as the expansion solutions diverge from the baseline material. 

 

Since the material property design variables remain fixed at the baseline properties, the 

CDSE is constant throughout the baseline design space. One may wonder, then, why the 

CDSE goal is included in the formulation of the baseline cDSP.  The CDSE is modeled in 

the baseline cDSP in order to reduce the changes in the formulation from the baseline to 

expansion cDSP and because the total deviation values in the baseline and expansion 

solutions must be compared in the VDSE metric.  If there are a different number of goals 

in the two cDSPs, then the deviation function values at the two solutions cannot be 

compared.  Since the CDSE is constant throughout the baseline design space, the baseline 

cDSP solution is not affected by the achievement of the CDSE goal. 
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FIGURE 3.6. A GRAPHICAL REPRESENTATION OF A LINEAR CDSE FUNCTION 
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Having reached the math formulation of the baseline cDSP, the last remaining step (step 

1.2.3) is to solve the baseline cDSP by minimizing the deviation function in order to 

reach the last milestone on the road to the baseline solution (see Figure 3.3).  An 

algorithm is selected and applied based on the characteristics of the deviation function. 

The shape and behavior of the deviation function is dependent on the models of the 

constraints and goals, and is thus highly problem-specific.  Once a baseline solution has 

been found, it must be verified, not only with respect to the correctness of the 

minimization results, but also with respect to the physical meaning of the solution and the 

resulting meaning in the context of the DSES.  Specifically, a designer must verify that 

there is additional room for improvement in the system performance in order to proceed 

with the remainder of the DSES.  A baseline solution with a corresponding deviation of 

zero, for example, indicates that the performance targets have all been met and there is no 

need to search for improved solutions in the expanded material design space.  That is, the 

target product performance can exactly be achieved using existing materials, and there is 

no need to design a new material.  If the deviation at the baseline solution has not been 

minimized to zero, then one proceeds with the next stage of the DSES: expansion. 

Stage 2: Expansion 

In the expansion stage of the DSES the objective is to find a design solution in an 

expanded design space in which the material properties are independent design variables 

(see Figure 3.1).  The purpose of this stage is to determine the best product design that is 

achievable with a new material.  Like the baseline stage, the expansion stage consists of 

two main steps: defining the expanded material design space (Step 2.1) and formulating 

and solving the expansion cDSP (Step 2.2).  

 

Having defined the baseline material(s) previously in the baseline stage, the material 

design space is expanded in this stage by identifying bounds for the material property 
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design variables (Step 2.1).  A graphical representation of a sample expanded material 

design space in two material dimensions (density, ρ, and strength, σY) is shown in Figure 

3.7.   
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FIGURE 3.7. A SAMPLE EXPANDED MATERIAL DESIGN SPACE 
 

The material property bounds are determined in the same manner as bounds for any other 

design variables; that is, upper and lower limits are selected for the design variables 

based on the limitations of performance models and designer knowledge of where the 

design solution is likely to occur.  For example, if a designer is using a deflection model 

that is valid for metals, it is appropriate to select bounds for the material properties that 

represent the ranges of properties of existing metals.  This is because materials 

represented by properties outside of these ranges are unlikely to exhibit the same stress-

strain behavior as metals, and therefore the deflection model would not be accurate 

outside these ranges.  By identifying upper and lower bounds for the material property 

design variables, the expanded material design space is fully defined.  The next step in 

the expansion stage is to formulate and solve the expansion cDSP (Step 2.2). 

 

Similar to the formulation of the baseline cDSP, there are three milestones in the 

formulation and solution of the expansion cDSP: the word formulation (Step 2.2.1), the 
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math formulation (Step 2.2.2) and the expansion solution (Step 2.2.3). However, a 

designer can travel much faster on the road to the expansion cDSP because only a few 

changes are needed in the word and math formulations of the expansion cDSP relative to 

the baseline cDSP.  This idea is shown graphically in Figure 3.8.  In the figure, the 

designer has traded his bicycle in for a race car to reflect that he can travel more quickly 

along this road since much of the work involved in the formulation of the expansion 

cDSP has already been completed in the baseline stage.   
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FIGURE 3.8. THE ROAD TO THE EXPANSION SOLUTION 
 

The changes in the expansion cDSP relative to the baseline cDSP are located under the 

Find and Satisfy headings.  Under the Find heading, the values of the material property 

variables are listed in addition to the system variables.  Also, under the Satisfy heading, it 

is specified that the design solution must satisfy the material property bounds in addition 

to the system variable bounds and the bounds on the deviation variables.  The word 

formulation for the expansion cDSP is shown in Figure 3.9, where the changes relative to 

the baseline cDSP are shown in boldface type.   
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Given 
•  An alternative to be improved through modification. 
•  Assumptions used to model the domain of interest. 
•  Deviation of the design variables. 
•  Target ranges of performance measures. 
•  The system parameters (fixed variables). 

o The properties of the baseline material(s). 
o The variation in the properties of the baseline material(s). 

•  The constraints and goals for the design. 
Find 

•  The values (locations) of the ranged system variables. 
•  The values (locations) of the material property variables. 
•  The values of the deviation variables.  

Satisfy 
a. The system constraints that must be satisfied for the solution to be 

feasible, stated in terms of the design capability index, Cdk, which 
must be greater than or equal to one for the solution to be feasible. 

b. The system goals that must achieve, to the extent possible, a 
specified target value.  The system goals are stated in terms of the 
design capability index, Cdk, which must achieve, to the extent 
possible, the target value of one. 

c. The CDSE goal that must achieve, to the extent possible, a specified 
target value.  The CDSE goal is stated in terms of the design 
capability index, Cdk, which must achieve, to the extent possible, the 
target value of one. 

d. The lower and upper bounds on the system variables and material 
property variables and bounds on the deviation variables. 

Minimize 
The deviation function that is a measure of the deviation of the system 
performance from that implied by the set of goals and their associated 
priority levels or relative weights. 

FIGURE 3.9. WORD FORMULATION OF THE EXPANSION CDSP 
 

The move to the math formulation from this word formulation in Step 2.2.2 requires the 

same additions under the Find and Satisfy headings, except that the values of the material 

property variables and the bounds for the material properties are given mathematical 

identifiers in the math form.  The math formulation of the expansion cDSP is shown in 

Figure 3.10, where the boldface type indicates a change in the expansion cDSP relative to 

the baseline cDSP. 
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Given 
•  An alternative to be improved through modification. 
•  Assumptions used to model the domain of interest. 
•  Values of the baseline material properties, µMPk.  k = 1, …, s 
•  Variation in the material properties, ∆MPk. 
•  Variation of design variables, ∆Xi 
•  Target ranges of performance measures. URLi and LRLi i = 1, …, m 
•  The system parameters (fixed variables). 

n  number of system variables 
s number of baseline material properties 
p + q  number of system constraints 
p  equality constraints 
q  inequality constraints 
m  number of system goals 
gi(X)  system constraint function 
Wi  weight for the Archimedean case 

Find 
•  The values (locations) of the ranged system variables and the material 

property variables 
o µX = µX1, …, µXj  j = 1, …, n + s 

•  The values of the deviation variables  
o di

-, di
+  i = 1, …, m 

Satisfy 
a. The system constraints that must be satisfied for the solution to be feasible. 
 gr(X) = 0  r = 1, …, p 
 gr(X) ≥ 0  r = p+1, …, p+q 
 1dk-constraintsC ≥  
b. The system goals that must achieve, to the extent possible, a specified target 

value. 
 Ai(X) + di

- - di
+ = Gi;  i = 1, …, m 

 1dk-objectives i iC d d− ++ − =  

c. The CDSE goal that must achieve, to the extent possible, a specified target 
value. 

 ACDSE(X) + dCDSE
- - dCDSE

+ = GCDSE;   
 1dk-obj CDSE i iC d d− +

− + − =  

d. The lower and upper bounds on the system variables and material 
property variables and bounds on the deviation variables. 

 Xj
min ≤ Xj ≤ Xj

max   j = 1, …, n + s 
 di

-, di
+ ≥ 0 and di

- · di
+ = 0 

Minimize 
The deviation function (a measure of the deviation of the system performance from that 
implied by the set of goals and their associated priority levels or relative weights): 

 ( )
m

i i i
i 1

Z W d d− +

=

= +∑ ;   iW 1=∑ ;   Wi ≥ 0  i = 1, …, m 

FIGURE 3.10. MATHEMATICAL FORMULATION OF THE EXPANSION CDSP 
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Having reached the second milestone on the road to the expansion solution, the next task 

(Step 2.2.3) is to find the expansion solution by minimizing the deviation function.  It is 

possible that the same minimization algorithm may be used to find the expansion solution 

as was used to find the baseline solution; however, the addition of design variables may 

necessitate a change in solution strategy.  For example, it may be possible to perform an 

exhaustive search of the baseline design space to find the baseline solution, but when 

additional variables are added in the expansion cDSP, the design space may be too large 

for an exhaustive search to be feasible.  Once the expansion solution has been found, it 

must be verified as before in the baseline stage.  That is, the solution must be verified 

with respect to the correctness of the minimization results as well as the physical meaning 

of the solution.  After verifying the expansion solution, the next step is to proceed to the 

third stage of the DSES: Interpretation. 

Stage 3: Interpretation 

A designer has two objectives in the interpretation stage of the DSES (see Figure 3.1): to 

compare the baseline and expansion solutions using the VDSE (Step 3.1), and to gain 

insight into the material property targets of the product by analyzing the expansion 

solution (Step 3.2).  The VDSE metric and the use of the metric are discussed in Section 

3.2.1.  The identification of material property targets is discussed here. 

 

The material property targets of a product are the ranges of material properties exhibited 

in the expansion solution.  Since DCIs are used in the formulation of the expansion 

cDSP, the values of the material property variables represent the location of the middle of 

the range of possible material properties and not a fixed point.  Any value within this 

range is a feasible value for that particular property.  These ranged targets can then be 

used to search material databases (in Step 3.2.1) to determine if there are existing 

materials that meet the targets, negating the need to design a new material.  If an existing 
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material is not found that meets the target range, then a new material must be designed 

that meets the target range.    

 

FIGURE 3.11. MATERIAL SELECTION CHART OF STRENGTH VERSUS 
DENSITY (ASHBY, 1999) 

 

Designers can gain further insight into the targets (in Step 3.2.2) by locating the ranges 

on a material selection chart, such as the strength versus density chart shown in Figure 

3.11.  By locating the material property target ranges on a material selection chart, 

designers can determine what classes of materials meet the material property targets of 

the product.  This knowledge of the classes of materials that meet the material property 

targets may help designers to identify materials to investigate and consider in subsequent 

phases of design.  A designer may also determine that the material property targets that 
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are identified fall outside of the accepted range of accuracy of the performance models of 

the product.  In this case, the material property targets should not be used for subsequent 

phases of design unless they are verified using performance models that are accurate in 

that range.  For example, if a designer is using a performance model that is accurate for 

metals but finds material property targets that fall in the range of ceramics, then the 

performance of the expansion solution must be verified using a model that is appropriate 

for ceramics before the material property targets can be used for design or selection.  To 

summarize, material property targets are only valid if the performance model 

assumptions hold true for the classes of materials that the targets represent. 

 

The calculation of the VDSE metric (Step 3.1) and the identification of material property 

targets (Step 3.2) are the last steps of the DSES.  By calculating the VDSE, a designer is 

able to determine if the performance improvement realizable by expanding the material 

design space justifies the additional design cost of designing a material.  Furthermore, by 

identifying material property targets, a designer is able to gain insight into the preferred 

material properties for the selection or design of a material in subsequent phases of the 

product design.  In the next section, the requirements of the DSES are recalled and an 

assessment is made of whether or not the proposed strategy meets the requirements. 

3.1.2 Meeting the Requirements of the DSES 

In Section 1.3.1, requirements are identified for a strategy for choosing between material 

selection and material design.  In the preceding section, the DSES is proposed to meet 

those requirements.  Having proposed the strategy, it must now be determined if the 

DSES in fact meets the requirements.   

 

The identification of the requirements for the DSES is a necessary step in determining the 

domain of application of the DSES for validation purposes.  The requirements for the 
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DSES are identified in Section 1.3.1 in Table 1.1. A discussion of the strengths and 

limitations of the DSES in meeting these requirements follows. 

 

The first requirement of the DSES is that it be a top-down process that is driven by 

product (system) requirements rather than material requirements.   This requirement is 

met in the DSES because the baseline and expansion cDSPs are formulated based on the 

product requirements.  The material property targets that are identified in the third stage 

of the DSES can be thought of as the material “requirements” for subsequent phases of 

design, and these targets are an output of this strategy rather than an input.  Thus, the 

product requirements are the inputs to the DSES and the material requirements are the 

output of the strategy, which meets the top-down, product-driven nature of the first 

requirement.   

 

The second requirement of the DSES is that it must be computationally inexpensive as 

compared to designing a new material.  The requirement is met by expanding the material 

design space and treating the material properties as design variables.  The material 

properties are viewed as quantities that a designer can control, rather than an output of a 

complex material model or simulation.  By viewing the material properties as design 

variables, an efficient search of the material design space is enabled. This allows 

designers to determine if there is the potential for enough product performance 

improvement to justify the cost of developing, validating, and running the complex 

material models needed for design. Since the material is defined by independent material 

properties, no complex multiscale material models are needed for the comparison of 

material selection and design. This assumption undoubtedly ignores many complex 

material phenomena that may impact the design solution; however, this strategy is 

intended for use in the early stages of design and is not expected to reveal a “final 

answer”.  The complex multiscale material models necessary for material design as well 



   

   74

as additional material behavior which are important in both material selection and design 

must be considered in subsequent stages of design, as more design knowledge is created. 

 

The third requirement of the DSES is that the options of material selection and material 

design must be compared on the basis of meeting product design objectives as well as 

process design objectives.  Product design objectives are the objectives that pertain to the 

performance of the product design, such as reducing deflection or lowering the mass of 

the system.  The process design objective at hand in the choice between material 

selection and material design is to reduce the cost of design or the length of the design 

timeline.  From the process design point of view, material selection is the preferred 

choice because it is much cheaper to select the best existing material than it is to develop 

predictive models and run complex simulations in order to design a new material.  

However, from the product design point of view, material design is the preferred choice 

because the material properties can be tailored such that the performance of the product is 

greatly improved.  The DSES enables the consideration of both of these viewpoints by 

including the CDSE goal in addition to the system goals in the formulation of the 

baseline and expansion cDSPs.  The baseline solution then represents the option of 

material selection, where the CDSE is at a minimum but the system goals may not be 

met, and the expansion solution represents the option of material design, where the CDSE 

is larger but the system goals are closer to being met.  The deviation function values at 

the baseline and expansion solutions are thus representative of how well each option 

(material selection or material design) meets the combination of system and process 

objectives. 

 

The last requirement of the DSES is that it must enable the identification of solutions 

which provide guidance for subsequent phases of design.  This requirement is met by the 

calculation of the VDSE metric and the identification of material property targets in the 
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interpretation stage of the DSES.  Here guidance is provided for two different issues:  

whether to select or design a material, and which property values characterize the 

preferred material that is to be designed or selected.  The VDSE metric indicates if there 

is an improvement in the achievement of product and process design goals that justifies 

the expense of designing a material.  The value of the metric is used to decide whether to 

select or design.  The identification of material property targets refers to the second issue.  

That is, by identifying material property targets, designers get a feel for the property 

values that the preferred material should exhibit.  If a material does not already exist that 

meets the targets, then this information can be used as the targets or requirements to 

design a new material. 

 

Having reviewed the requirements of the DSES, it is determined that the proposed 

strategy does in fact meet the requirements listed in Table 3.2; however, the strategy itself 

hinges upon the definition and application of the VDSE metric.  In the next section, the 

VDSE metric is introduced and discussed. 

3.2 THE VALUE OF DESIGN SPACE EXPANSION METRIC 

As a critical part of the DSES, the VDSE metric is used to provide a quantitative 

comparison between material selection and material design.  The metric is introduced and 

its use is discussed in Section 3.2.1.  In Section 3.2.2 an assessment is made of how well 

the VDSE metric proposed here meets the requirements identified in Chapter 2.   

3.2.1 Introducing the Value of Design Space Expansion Metric  

The value of design space expansion (VDSE) is defined in words as the improvement in 

the achievement of design goals at the expansion solution relative to the achievement of 

design goals at the baseline solution.  The mathematical definition of the VDSE metric is 

presented in equation 3.1 where Z(xbase) is the value of the deviation function at the 
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baseline solution and Z(xexp) is the value of the deviation function at the expansion 

solution.   

 ( ) ( )base expVDSE Z Z= −x x  (3.1) 

Since smaller values of deviation are preferred, the deviation at the expansion solution is 

subtracted from the deviation at the baseline solution so that a positive VDSE indicates 

an improvement in the achievement of design goals in the expanded design space.  

Specifically, a positive value for VDSE indicates that the total deviation at the expansion 

solution is smaller than the total deviation at the baseline solution.  This occurs when the 

improvement in the achievement of the system goals outweighs the deterioration in the 

achievement of the CDSE goal.  Conversely, if the deterioration in the achievement of the 

CDSE goal outweighs the improvement in the achievement of the system goals, the total 

deviation at the expansion solution is larger than the total deviation at the baseline 

solution resulting in a negative VDSE.   

 

The VDSE is implemented in the DSES in the interpretation stage (Step 3.1 in Figure 

3.1).  Having found both the baseline and expansion solutions in the first two stages, a 

designer can calculate the VDSE in the interpretation stage to quantify the improvement 

in the achievement of design goals by expanding the design space. A positive VDSE 

indicates that expanding the design space shows promise for improving the performance 

of the product with an acceptable increase in CDSE; hence, material design should be 

pursued.  In this case material property targets should be identified to guide the material 

design and verify that a material does not already exist that meets the targets.  A negative 

VDSE indicates that expanding the design space is too costly and material selection 

should be performed instead.   In this case the baseline solution is used to determine the 

values of the system variables for subsequent phases of design. 

 



   

   77

A designer need not make the decision between selection and design solely on the value 

of the dimensionless VDSE metric.  A designer may link the value of the dimensionless 

VDSE metric to the achievement of design goals by connecting the baseline and 

expansion solutions in the performance space.  Based on the length and direction of the 

line connecting the baseline and expansion solutions, a designer can gain insight into the 

meaning of the VDSE metric in terms of the achievement of design goals.  The length of 

the connecting line indicates the magnitude of the change in the achievement of design 

goals that is realized by expanding the design space.  The direction of the connecting line 

indicates whether the change in achievement is an improvement or deterioration.  A large 

magnitude change in which the expansion solution is closer to the targets than the 

baseline solution indicates that expanding the material design space enables significant 

improvements in the achievement of design goals.  On the other hand, a small magnitude 

change or a change in the wrong direction indicates that expanding the material design 

space does not enable significant improvements in the achievement of design goals.  

Thus, by mapping the VDSE metric into the performance space, designers can gain 

insight into the meaning of the metric in practical terms. 

3.2.2 Meeting the Requirements for the Value of Design Space Expansion Metric 

Given the expanded material design space, and materials defined by independent material 

property variables, designers must have a metric with which to quantify the improvement 

in the achievement of design goals by expanding the design space.  The value of design 

space expansion metric is proposed to meet this need.  The requirements for the value of 

design space expansion metric are identified in Section 1.3.1 in Table 1.2.  An assessment 

of how the proposed metric meets these needs is presented next. 

 

The first requirement of the VDSE metric is that it enables the comparison of the use of 

an existing material to the use of an unrealized material concept.  The VDSE metric 
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meets this need by comparing the deviation at the baseline solution to the deviation at the 

expansion solution.  The baseline solution represents the use of an existing material in the 

design of the product, while the expansion solution represents the use of an unrealized 

material concept.  The second requirement of the VDSE metric is that it compares on the 

basis of meeting product-level requirements.  The proposed metric meets this need 

because the total deviation represents how well the baseline and expansion solutions meet 

the overall product and process requirements and the VDSE metric provides a 

comparison of these two solutions on the basis of their total deviation values.  Thus, the 

proposed metric does in fact meet the requirements identified in Section 1.3.1. 

 

3.3 VALIDATION 

This chapter fits into the validation strategy for this thesis in the assessment of structure 

validity.  In Section 3.3.1, the domain-independent structure validity of the DSES and 

VDSE is discussed.   The domain-specific structure validity of the DSES and the VDSE 

is then discussed in Section 3.3.2 

3.3.1 Domain-Independent Structure Validity 

Domain-independent structure validity refers to the internal consistency of the method 

and is determined by demonstrating the internal consistency of the parent constructs as 

well as the internal consistency of the integrated method as an assemblage of the parent 

constructs.  This quadrant of the Validation Square is addressed partially in Chapter 2 via 

a critical review of the available literature to establish the internal consistency of the 

parent construct, the ranged cDSP.  Given the internal consistency of the ranged cDSP 

(established in Section 2.2.2), the internal consistency of the DSES as an assemblage of 

two cDSPs is discussed in this section. 
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Is the integrated method internally consistent?   

The DSES consists of two cDSPs and an interpretation stage which makes use of a value-

of-information based metric.  With the ranged cDSP as a parent construct, a design 

process objective and some given parameters are included in the baseline cDSP to 

particularize the formulation for the DSES.  These two additions do not affect the internal 

consistency of the cDSP.  With the ranged cDSP as a parent construct again, the number 

of design variables is increased in the expansion cDSP and the given parameters and 

design process objective are again included.  An increase in the number of design 

variables also does not affect the internal consistency of the cDSP.  Given two internally 

consistent cDSPs, the solutions are compared using the VDSE metric, which is based on 

the Improvement Potential, a value of information metric.  Like the improvement 

potential metric, the VDSE compares design solutions from two design problem with 

slightly different formulations.  In the case of the improvement potential the difference in 

the two problem formulations is the amount of uncertainty in some of the design 

parameters, whereas the difference in the two problem formulations in the VDSE metric 

is the number of design variables.  This difference in the two metrics, although 

necessitating a new name for the type of metric (value of design space expansion rather 

than value of information), does not affect the structural validity of the metric.  

 

Furthermore, the organization of the DSES into the three stages of baseline, expansion, 

and interpretation ensures that the information needed for each step of the strategy is 

available when needed.  Specifically, the two cDSPs are solved prior to the calculation of 

the VDSE metric, which is a function of the total deviation at the baseline and expansion 

solutions. Also, the formulation of the expansion cDSP is built on the formulation of the 

baseline cDSP, requiring only minor changes; therefore, it is important to solve the 

baseline cDSP prior to solving the expansion cDSP. Considering its basis in the 

structurally valid cDSP and value of information metrics and the appropriate information 
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flow through the strategy, it is argued that the DSES is internally consistent and 

structurally valid for the intended domain of application, which is for the support of 

decisions between material selection and material design in the context of product design. 

3.3.2 Domain-Specific Structure Validity 

Domain-specific structure validity refers to the appropriateness of the example problem 

for testing the proposed method.  The example problems used to test the method must test 

the validity of the method in achieving all of the method requirements.  In this section, 

Blast Resistant Panel (BRP) design scenarios are identified to test all aspects of the 

DSES.   

Introduction to BRPs 

BRPs are designed to absorb large amounts of energy per unit mass compared to solid 

plates.  In one application of this design, BRPs can be attached on the outside of military 

vehicles to protect them from explosions.  The BRPs considered in this example are 

sandwich structures that consist of two outer face sheets bonded to a square honeycomb 

core structure.  Examples of blast resistant panels are shown in Figure 3.12.   

 
 

 
FIGURE 3.12. SAMPLE BLAST RESISTANT PANELS (FLECK AND DESHPANDE, 

2004)  
 



   

   81

What are the requirements or expected capabilities of the DSES? 

The DSES is intended to enable the comparison of material selection and material design 

as design process options in the context of a product design.  The DSES is expected to be 

capable of handling the consideration of design alternatives incorporating multiple 

independent materials in addition to other system variables such as the geometry. The key 

assertion is that it is possible to simultaneously explore material solutions to the design 

problem along with solutions from another domain such as the structural solutions 

presented in the BRP example.  The design decisions that are supported by the use of the 

DSES are ones that are made early in the design process, when the constraints and 

requirements of the design are likely to be uncertain and there is need to maintain design 

freedom in the solutions.  Hence, the DSES must be capable of simultaneous exploration 

of solutions from multiple domains while generating ranged sets of solutions that are 

robust to variation in operating conditions, design variables and material properties.   

 

Why is BRP design an appropriate example for testing these capabilities? 

The design of BRPs is an appropriate example for the DSES because the BRP designer is 

not sure if the added cost of designing new materials is justified by the potential 

performance improvements.  Specifically, design solutions may be possible with existing 

materials that meet the design objectives to some extent, but by designing new materials 

it may be possible to improve the achievement of the design objectives.  To determine if 

material selection or material design is preferred in the design of BRPs, designers need a 

strategy for comparing the two design process options on the basis of how each option 

enables the achievement of design objectives.  Furthermore, the conditions of early-stage 

BRP design conform closely to the intended domain of application of the DSES; i.e., 

simplified analysis models are available to predict BRP behavior, but the requirements of 

the BRP are uncertain and designers are unable to quantify the value of the design 

process options of material selection and material design.   In addition, there are multiple 
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objectives in the BRP example, and the trades between the achievements of these 

objectives are not immediately apparent. 

 

What BRP design scenarios are necessary to test these capabilities? 

The relationship between the BRP design scenarios and the design method capabilities 

they are intended to demonstrate is summarized in Table 3.2 along with a summary of the 

contributions of the examples to verification of the research hypotheses.  

 

TABLE 3.2 BRP DESIGN SCENARIOS 
Hyp.  Point Ranged 

 Comparison of material selection and design 
1 Expanding the material design space x x 
2 Calculating the VDSE metric x x 
3 Identifying material property targets x x 

Finding ranged sets of design solutions using DCIs 
Uncertainty in constraints and goals  x 
Uncertainty in material properties  x 

1,2,3 

Uncertainty in noise factors  x 
 

A Point Scenario and a Ranged Scenario are identified.  In the Point Scenario, the 

constraints and goals in the cDSP are not formulated in terms of DCIs, and the variations 

in the material property variables and noise factors are ignored. In the Ranged Scenario 

the DSES is implemented precisely as described in this chapter, where the goals and 

constraints are formulated in terms of DCIs and ranged sets of solutions are sought to 

ranged specifications. The Point Scenario is not a precise application of the DSES, since 

the variations are ignored, but this scenario is investigated in order to gauge the impact of 

DCIs on the quantification of the value of design space expansion.  Since all of the 

intended capabilities of the DSES are addressed by at least one of the design scenarios, 

the BRP example is appropriate for assessing the domain-specific performance validity of 

the DSES. 
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3.4 A LOOK BACK AND A LOOK AHEAD 

In this chapter, the DSES and the VDSE metric are presented.  The DSES and the VDSE 

metric are proposed to answer the research questions identified in Section 1.3.2.  The 

DSES consists of three stages: baseline, expansion, and interpretation.  In the baseline 

and expansion stages, cDSPs are formulated to find design solutions in two different 

design spaces.  In the baseline cDSP a design solution is sought in the baseline design 

space in which the material properties are fixed.  In the expansion cDSP a design solution 

is sought in the expanded design space in which the material properties are treated as 

variables.  In the interpretation stage, the two design solutions are compared using the 

VDSE metric in order to gauge the value of the design space expansion.  Material 

property targets are identified based on the expansion solution for guidance in subsequent 

phases of design. Because the DSES strategy is based on the cDSP and the VDSE metric 

is based on value of information metrics, both of which are internally consistent parent 

constructs, and because the augmentations to these constructs do not affect the internal 

consistency of the constructs, the DSES strategy is an internally consistent and thus 

structurally valid strategy. In Chapter 4, the DSES is implemented for the design of a 

blast resistant panel in order to assess the domain-specific validity of the strategy and to 

demonstrate the implementation of the method. Two scenarios are presented and the 

results are critically evaluated to test the capabilities of the DSES and the validity of the 

research hypotheses.   
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CHAPTER 4 

BLAST RESISTANT PANEL DESIGN 

 

In this chapter, the Design Space Expansion Strategy (DSES) is applied to an example 

problem on the design of blast resistant panels (BRPs) as part of the validation strategy 

for this thesis.  The appropriateness of the BRP example for testing the design space 

expansion strategy is discussed in Section 3.3.2.  The DSES consists of three stages: 

baseline, expansion, and interpretation.  In the baseline stage a cDSP is formulated and 

solved to identify the best product design that is achievable with an existing material. In 

the baseline cDSP, the material design space is fixed at a point, and the system variables 

are allowed to vary between upper and lower bounds.  In the expansion stage a cDSP is 

again formulated and solved; however, in this stage the aim is to determine the best 

product design that is achievable by designing a new material. In the interpretation stage, 

the value of design space expansion (VDSE) metric is calculated to determine the 

improvement of the expansion solution relative to the baseline solution.  Depending on 

the value of the VDSE metric, a designer chooses either to pursue material design or 

material selection in the design of the product.  Also in the interpretation stage, the values 

of material property design variables are studied to gain insight into the material property 

targets for subsequent phases of the product design. 

 

A summary of this chapter is shown in Table 4.1.  In Section 4.1, the baseline cDSP is 

discussed, including the formulation of the problem, the method of finding the solution, 

and the interpretation of the results. In Section 4.2, the expansion cDSP is discussed, also 

including the formulation of the problem, the method of finding the solution, and the 

interpretation of the results.  In the discussion of the formulation of the expansion cDSP, 

an emphasis is placed on the differences between the baseline and expansion cDSPs. 
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TABLE 4.1. A SUMMARY OF CHAPTER 4 
Section Heading Information 
4.1  The Baseline cDSP 
4.1.1  Formulating the design 

problem 
Baseline cDSP formulation 

•  Defining the design space (Step 1.1) 
•  Word formulation (Step 1.2.1) 
•  Math formulation (Step 1.2.2) 

4.1.2  Solving the design 
problem 

Baseline cDSP solution (Step 1.2.3) 
•  Solution method: exhaustive search 
•  Presentation of solutions 

4.1.3  Interpreting the design 
solution 

Baseline cDSP interpretation 
•  Verification of the optimization results 
•  Discussion of the physical meaning of the 

solutions 
4.2 The Expansion cDSP 
4.2.1 Formulating the design 

problem  
Expansion cDSP formulation 

•  Defining the design space (Step 2.1) 
•  Word formulation (Step 2.2.1)  
•  Math formulation (Step 2.2.2) 

4.2.2  Solving the design 
problem 

Expansion cDSP solution (Step 2.2.3) 
•  Solution method: genetic algorithm 
•  Conversion to classical unconstrained 

optimization problem 
•  Application of the GA 
•  Presentation of solutions 

4.2.3  Interpreting the design 
solution 

Expansion cDSP interpretation 
•  Verification of the optimization results 
•  Discussion of the physical meaning of the 

solutions 
4.3 The VDSE metric and material property targets 
4.3.1 VDSE metric Calculating and interpreting the VDSE metric 

(Step 3.1) 
•  Calculation of the VDSE metric 
•  Decision-making with the VDSE metric 

4.3.2 Material property 
targets 

Identifying material property targets for subsequent 
phases of design (Step 3.2) 

4.4 Validation: domain-specific performance validity 
4.4.1 BRP Model Validity Verification of the BRP analysis models 
4.4.2 Assessing the 

usefulness of the DSES 
The implications of the solutions to the BRP design 
example on the domain-specific performance 
validity of the DSES 

4.5 A look back and a look ahead 
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In Section 4.3, the VDSE metric and material property targets are discussed, including 

the calculation of the VDSE metric, the use of the VDSE metric in decision-making, and 

the identification of material property targets for subsequent phases of design. The 

implications of the results on the validity of the DSES are presented in Section 4.4.  The 

chapter is then concluded in Section 4.5 with a look back and a look ahead. 

 

4.1 THE BASELINE CDSP FOR BRP DESIGN 

Formulating, solving, and interpreting the baseline cDSP is the first stage in the design 

space expansion strategy.  The aim in solving the baseline cDSP is to identify the best 

possible performance of the system with no change in material properties.  The 

formulation of the baseline cDSP is discussed in Section 4.1.1, including the BRP 

problem statement, the word formulation of the baseline cDSP, the derivation of the 

relevant equations, and the math formulation of the baseline cDSP.  In Section 4.1.2, the 

method for finding the solution to the baseline cDSP is discussed, and the solution is 

presented.  The solutions are analyzed in Section 4.1.3 and the physical meaning of the 

results is discussed. 

4.1.1 Formulating the Baseline BRP Design Problem 

The baseline cDSP is solved to determine the best design possible with an existing 

baseline material.  In the following sections, the BRP problem statement is introduced 

and the word formulation of the cDSP is discussed.  Then, the necessary equations are 

derived, and the mathematical formulation of the cDSP is presented.   

BRP baseline problem statement 

The goal in this design example is to design a BRP for minimum mass and deflection 

under an uncertain blast load and with uncertain material properties.  The design 

variables include the thickness of each layer and the geometric parameters relating to the 
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topology of the square honeycomb core.  The panel must not exceed a maximum 

deflection and a maximum mass per unit area, and must not rupture or collapse under the 

blast loading.  The panel is assumed to be clamped on all edges.  There are two uncertain 

noise factors pertaining to the air blast received by the panel.  These factors are the peak 

pressure of the incoming pulse and the characteristic time of the pulse.   

 

The BRP consists of a front face sheet, cellular core, and back face sheet as shown in 

Figure 4.1.  The front face sheet receives the pressure load from the blast.  The topology 

of the core is designed to dissipate a majority of the impulse energy in crushing. The back 

face sheet provides additional protection from the blast as well as a means to confine the 

core collapse and absorb energy in stretching.  

 

FIGURE 4.1. SCHEMATIC OF BRP STRUCTURE 
 
Because blasts of different impulse amplitudes and duration can be expected, the design 

of the BRP should be robust to this uncertainty.  In addition, due to variation in the 

materials of the BRP, the BRP should be robust to uncertainty in the material properties.  

The directionality of the blast, which may give rise to spatial gradients of pressure along 

the BRP surface, is not considered here. 
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In Section 3.3.2, two design scenarios are identified to test all aspects of the DSES.  The 

two design scenarios differ in the consideration of the uncertainty in the design problem.  

In the Ranged Scenario, the uncertainty in the blast parameters and the material 

properties is considered, and the constraints and goals are formulated in terms of DCIs to 

find ranged sets of solutions that meet ranged performance requirements.  In the Point 

Scenario, the uncertainty in blast parameters and material properties is ignored.   

Defining the baseline material design space (Step 1.1 in Figure 3.1) 

The first step of the baseline stage of the DSES is to define the baseline material design 

space. The first step in defining this design space is to identify baseline materials for each 

layer of the panel (Step 1.1.1).  The baseline material is selected either through 

application of a material selection procedure or based on the expertise of the designer.  

The baseline materials for each layer of the panel are identified in Table 4.2. It is 

assumed that these materials are identified through application of material selection 

procedure; however, that process is not demonstrated here.  These two materials are 

chosen for this example because steel is typically used in armor and magnesium has been 

applied in automotive applications to reduce weight.  

 

TABLE 4.2. BASELINE MATERIALS FOR EACH LAYER OF THE BRP 
Layer Baseline Material 

Front face 
sheet 

Magnesium 
AZ31B-H24 

Core Steel 
AISI 1040 

Back Face 
Sheet 

Magnesium 
AZ31B-H24 

 

The next step in defining the baseline material design space is to determine the amount of 

variability in the properties of the baseline materials due to differences in processing 

(Step 1.1.2).  In the Point Scenario, all the uncertainty in the problem is ignored, and this 
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step is omitted. A survey of the properties of available materials with similar material 

composition is conducted by consulting material databases and engineering handbooks 

(Avallone and Baumeister, 1996).  A scatter plot of the variation in yield strength of the 

two baseline materials due to material processing is shown for each baseline material in  

(Shearouse, 1996; Paxton, 1996).  From this plot, the amount of variation in yield 

strength is determined.   
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FIGURE 4.2. VARIATION IN DENSITY AND YIELD STRENGTH DUE TO 
MATERIAL PROCESSING (SHEAROUSE, 1996; PAXTON, 1996) 

 

In Figure 4.3, a material selection chart of yield strength versus density is presented 

(Ashby, 1999). The amount of variation in density is estimated for both baseline 

materials by observing the variation in mass densities available in the magnesium and 

steel alloys on the strength versus density plot.  The nominal values of density and yield 
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strength and the amount of variation in density and yield strength for both baseline 

materials are summarized in Table 4.3. 

 

 

FIGURE 4.3. MATERIAL SELECTION CHART OF STRENGTH VERSUS DENSITY 
(ASHBY, 1999)  

 

 
TABLE 4.3. SUMMARY OF MATERIAL PROPERTIES OF BASELINE 

MATERIALS (SHEAROUSE, 1996; PAXTON, 1996; ASHBY, 1999) 
 Baseline 

Material 
Property 

Material 
Grade 

Nominal 
Value Variation 

Steel 
AISI 1040 7845 ±100 Density 

(kg/m3) Magnesium 
AZ31B-H24 1770 ±170 

Steel 
AISI 1040 538 ±150 Yield 

Strength 
(MPa) Magnesium 

AZ31B-H24 200 ±20 
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Word formulation of the baseline cDSP 

The BRP problem statement is formalized as a word problem in the word formulation of 

the baseline cDSP (Step 1.2.1).  Recall from Section 2.2.1 that the cDSP is formulated 

under the headings: given, find, satisfy, and minimize.  Given a feasible alternative, find 

the values of the design variables and deviation variables which satisfy the constraints 

and bounds on the system and minimize the deviation from the system goals. The 

complete word formulation of the baseline cDSP is shown in the following tables.  The 

formulation for the Ranged Scenario is shown in Table 4.4, and the formulation for the 

Point Scenario is shown in Table 4.5.  An explanation of these word formulations is 

presented in the following sections. 

 

The feasible alternative under the given heading is represented by the constant parameters 

and the models used to predict the performance of the design alternatives.  The constant 

parameters include the properties of the baseline material, the peak pressure and 

characteristic time of the blast load, the variation of the uncertain load parameters, and 

the variation in the material properties.  There are three objectives in the BRP example:  

minimize mass per area, minimize deflection and minimize the cost of design space 

expansion (CDSE).  The first two objectives, relating to the mass and deflection of the 

panel, are the performance objectives in BRP design.  The third objective, minimizing the 

CDSE, is included in this formulation as part of the DSES and relates to the design 

process objective of reducing design process complexity.   By simultaneously seeking to 

minimize the CDSE while also achieving the system objectives of minimizing mass and 

deflection, the benefits of the design space expansion (smaller mass and deflection) are 

balanced by the cost of expanding the design space (increase in cost of design space 

expansion as solutions diverge from the baseline material).   
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TABLE 4.4. WORD FORMULATION OF THE BASELINE CDSP, RANGED 
SCENARIO 

Given: 
Baseline material properties 
An impulse load defined by peak pressure, p0, and characteristic time, t0  
Mean and variation of loading parameters (t0, p0)  
Variation of material property design variables (ρ,σY)  
Model for the deflection of the panel 
Model for the mass per area of the panel 
Model for the cost of design space expansion 
 
Find: 
Core geometry: hc, B 
Height of each layer: hf, hb, H 
Deviation variables di

+, di
- (i = 1,2, 3) 

 
Satisfy: 
Constraints 
a) Mass/area of BRP must not exceed 150 kg/m2 
b) Deflection must not exceed 15 cm for specified boundary conditions 
c) Relative density must be greater than 0.07 to avoid buckling 
d) Front face shear-off parameter, µ , must not exceed 4/sqrt(3) 
e) Front face shear-off parameter, Γ, must not exceed 0.6 
 
Goals 
a) The Cdk of mass per area is equal to or greater than the target value.  
b) The  Cdk of deflection is equal to or greater than the target value.   
c) The  Cdk of CDSE is equal to or greater than the target value.   
 
Bounds 

Upper and lower bounds for design variables 
 
Minimize: 

Archimedean deviation function 
 

The objectives are converted into goals by specifying a target value.  In the Point 

Scenario, the target values are all zero because the mass per area, deflection, and CDSE 

should all be minimized as close to zero as possible since none of these attributes can be 

negative.  In the Ranged Scenario, the objectives are specified in terms of the design 

capability index Cdk, and the target for each of these objectives is one because a Cdk value 

of one indicates that the ranged goal is met by all of the designs represented by the 
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ranged specification. A model is developed to predict the achievement of each of these 

goals.   

TABLE 4.5. WORD FORMULATION OF THE BASELINE CDSP, POINT 
SCENARIO 

Given: 
Baseline material properties 
An impulse load defined by peak pressure, p0, and characteristic time, t0  
Model for the deflection of the panel 
Model for the mass per area of the panel 
Model for the cost of design space expansion 
 
Find: 
Core geometry: hc, B 
Height of each layer: hf, hb, H 
Deviation variables di

+, di
- (i = 1,2, 3) 

 
Satisfy: 
Constraints 
a) Mass/area of BRP must not exceed 150 kg/m2 
b) Deflection must not exceed 15 cm for specified boundary conditions 
c) Relative density must be greater than 0.07 to avoid buckling 
d) Front face shear-off parameter, µ , must not exceed 4/sqrt(3) 
e) Front face shear-off parameter, Γ, must not exceed 0.6 
 
Goals 
a) The mass per area is equal to or less than the target value.   
b) The deflection is equal to or less than the target value.   
c) The CDSE is equal to or less than the target value.   
 
Bounds 

Upper and lower bounds for design variables 
 
Minimize: 

Archimedean deviation function 
 

In the baseline cDSP, the material properties are fixed at the baseline material.  The 

CDSE is determined by the distance of the material property variables away from the 

baseline material properties.  Since the material properties are fixed in the baseline cDSP, 

the CDSE is also fixed.  The objective of minimizing the cost of design space expansion 

is included in the baseline cDSP so that the design objectives will remain the same in 
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both the baseline and expansion cDSP.  It is necessary for the design objectives to remain 

the same in both cDSPs of the DSES so that the VDSE metric can be calculated, and by 

including the CDSE goal in the baseline cDSP, the changes in the formulation between 

the baseline and expansion cDSP are reduced.  Also, the CDSE goal is included in the 

baseline cDSP for verification of the CDSE model. See Section 3.1.1 for more detail on 

the CDSE goal and its inclusion in the baseline cDSP. 

 

The find heading of the cDSP refers to system variables and deviation variables.  The 

design space of the BRP is defined by eleven variables which consist of six material 

property variables and five geometric variables.  The five geometric system variables are 

used to define the height of each of the layers as well as the cell spacing and cell wall 

width of the square honeycomb core.  Although these geometric variables may have 

associated uncertainty due to manufacturing variations, in this example these design 

variables are assumed to have no associated uncertainty, as this type of uncertainty is not 

pertinent to the demonstration and testing of the DSES. The material design space of the 

BRP is defined by the six material property variables consisting of independent yield 

strength and mass density variables for each of the three layers of the panel.  The 

materials for each layer of the panel are assumed to have an elastic, perfectly-plastic 

stress-strain relationship.  In the baseline cDSP, the properties for the material property 

variables are held constant, leaving only five independent system variables.  

 

In addition to the five system variables in the baseline cDSP, there are six deviation 

variables, including two deviation variables for each goal, denoted by d- and d+, 

respectively. Depending on the goal, one or both of these deviation variables may 

represent unwanted deviation from the target value.  For example, if the objective is to 

maximize a quantity to the target value, the underachievement variable, d-, is the 

unwanted deviation, while the overachievement variable, d+, is acceptable deviation. The 
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unwanted deviation variables are used in the deviation function under the minimize 

heading, which is discussed later.   

 

The design solution to the BRP problem must satisfy constraints, bounds, and goals. 

Constraints are imposed on the BRP design to limit mass and deflection, and prohibit 

failure. The maximum mass per unit area of the BRP is limited to 150 kg/m2.  In addition, 

the maximum allowable deflection of the back face sheet of the BRP is limited to 15 cm.  

A minimum relative density constraint is imposed to ensure crushing of the honeycomb 

core rather than buckling, which would not dissipate as much energy.  Two constraints 

are imposed to avoid shear failure of the front face sheet (Hutchinson and Xue, 2005).  

The first criterion, denoted by Γ, prohibits shearing of the face sheet at the clamped ends 

of the plate, and the second criterion, denoted by µ, prohibits shearing of the face sheet at 

the core webs.   In addition to the constraints, the design solution must satisfy the bounds 

on the design variables.   

 

Although there are constraints on the mass and deflection of the BRP, it is desirable to 

achieve a panel that is as light as possible and as resistant to deflection as possible; 

therefore the objectives of minimizing the mass and deflection are included in the 

formulation of the design problem in addition to the constraints on these values.  

Constraints are demands, or design requirements that must be met at all costs, while goals 

are wishes, or design requirements that should be considered whenever possible.  

Accordingly, the maximum mass of 150 kg/m2 and maximum deflection of 15 cm are 

demands, and are modeled as constraints, while the wishes of minimizing the mass and 

the deflection to zero are modeled as goals.   

 

The final heading in the formulation of the cDSP is minimize, relating to the 

minimization of the deviation function.  The deviation function is modeled in the 
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Archimedean form as a weighted sum of the unwanted deviation from each of the three 

goals.  Next, the word formulation of the baseline cDSP is converted to the mathematical 

formulation of the baseline cDSP by deriving the equations for constraints and goals in 

the following sections. 

Deriving the equations for the constraints and goals in the baseline BRP problem 

To convert the word formulation of the baseline cDSP into the math formulation, 

equations must be derived for the constraints and goals.  Also, the bounds on the system 

variables must be specified.  In this section the equations for the constraints and goals are 

introduced. First, equations are derived for the BRP goals, including the deflection and 

mass per area of the panel, and the CDSE.  Then, additional equations are derived for the 

BRP constraints, including equations for the relative density of the core and for the front 

face shear parameters µ and Γ. 

 

Equations for the deflection of the BRP are developed based on the analysis by 

Hutchinson and Xue (2005).  Their analysis considered sandwich plates with square 

honeycomb cores and blast loads in both water and air.  For this example, only impulses 

in air are considered. Following the work of Taylor, the impulse load is considered to be 

exponential in form with a time dependence where p0 is the peak pressure and t0 is the 

characteristic pulse time (Taylor, 1963).  The impulse load acts perpendicular to the 

surface of the BRP and is uniformly distributed over the area of the plate.  For deflection 

calculations, the plate is assumed to be fully clamped at both ends, of width L/2, and of 

infinite extent in the y-direction (Hutchinson and Xue, 2005).   

 

The equations for deflection of the back face sheet developed by Hutchinson and Xue are 

extended here to allow for independent adjustment of heights and material properties in 



  97

each layer. Following the three stage deformation theory, the impulse of the blast is 

received by the front face sheet and momentum is transferred in stage one (Fleck and 

Deshpande, 2004).  The equation for kinetic energy per unit area at the end of stage one 

is shown in Equation 4.1.  In stage two, some of the kinetic energy is dissipated through 

crushing of the core layer.  The equation for the amount of kinetic energy per unit area at 

the end of stage two is shown in Equation 4.2.  The crushing strain is used to determine 

the crushed height of the core layer and is derived by equating the plastic dissipation per 

unit area in the core to the loss of kinetic energy per unit area in stage two (Hutchinson 

and Xue, 2005).  The crushing strain is shown in Equation 4.3.  The variables in these 

equations are defined in the Nomenclature section in the introductory pages of this thesis. 

 ( )
2 2
0 02

I
f f

p tKE
hρ

=  (4.1) 

 ( )
2 2
0 02

II
f f c c b b

p tKE
h R H hρ ρ ρ

=
+ +

 (4.2) 
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( )

2 2
0 0

,

2 b b c c
c

c c Y c f f f f b b c c

p t h R H
R H h h h R H

ρ ρ
ε

λ σ ρ ρ ρ ρ
+

=
+ +

  (4.3) 

In stage three, the remaining kinetic energy must be dissipated through bending and 

stretching of the back face sheet.  The equation for deflection is derived by equating the 

remaining kinetic energy per unit area to the plastic work per unit area dissipated through 

bending and stretching.  The average plastic work per unit area dissipated in stage three is 

estimated by summing the dissipation from bending and stretching, following the work of 

Hutchinson and Xue (2005).  The equation for this estimate is shown in Equation 4.4. 

The equation for deflection is shown in Equation 4.5. 
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 (4.5) 

Equations for the variation in deflection are also needed in order to determine the 

sensitivity of the panel to variation in noise factors and uncertain design variables.  The 

equation for the variation in deflection is derived as a first-order Taylor series expansion 

and is shown in Equation 4.6. 
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∂ ∂ ∂

∂ ∂ ∂ ∂ ∂∆ + ∆ + ∆ + ∆ + ∆
∂ ∂ ∂ ∂ ∂

 (4.6) 

 

In addition to minimizing the panel deflection, it is desired to minimize mass per area of 

the panel.  Hence, a model is needed for the mass per area of the panel as a function of 

the system variables. The mass per area of the panel is a function of only the geometry 

and the mass density of the materials, shown in Equation 4.7.  The variation in mass per 

area as a function of the variation in material properties is shown in Equation 4.8. 

 f f c c b bM h HR hρ ρ ρ= + +  (4.7) 

 f f c c b bM h HR hρ ρ ρ∆ = ∆ + ∆ + ∆  (4.8) 

 
A model for the CDSE is needed to quantify the expected increase in design cost due to 

deviations from the baseline materials.  It is assumed that the design cost will increase as 

the candidate solutions move farther away from the baseline solutions due to the 

increased complexity in the models of the candidate material behavior.  In the early 
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stages of design, explicit data on the cost of expected design process options is not likely 

to be available; however, a CDSE function can be defined that reflects the beliefs of the 

designer about how the design cost will be affected by choosing material properties that 

differ from the baseline materials.  Here, the cost function is defined to increase linearly 

with the Euclidean norm of the vector from the baseline material to the expansion 

solution, shown graphically in Figure 4.4.  The CDSE is chosen to increase linearly here 

for simplicity, but a designer is free to choose other forms such as a quadratic or 

exponential model to represent his beliefs about how the CDSE will change as the 

expansion solutions diverge from the baseline material. 

 

σY

ρ

σY,base

ρbase

Material 
Design 
Space σY, UσY,L

ρU

ρL

Baseline 
material

Expansion 
Solution

CDSE increases 
linearly with the 

Euclidean norm of 
this vector

 

FIGURE 4.4. A GRAPHICAL REPRESENTATION OF THE CDSE FUNCTION 
 

In addition, weighting coefficients are applied to certain material dimensions to represent 

the relative ease or difficulty in adjusting those properties, where a large coefficient 

indicates that it is difficult to achieve large variations in that material dimension.  For 

instance, it is possible to achieve large variations in the yield strength of steel alloys 

through various heat treatments; however, it is not possible to achieve large variations in 

the density of steels because the constituent materials remain nearly the same for all steel 
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alloys. Equation 4.9 is used to calculate a weighting coefficient for each material 

dimension as a function of the variation in each material dimension, where wi is the 

weighting coefficient on material property design variable i, ∆xi is the variation in 

material property design variable i, and xbi is the value of material property design 

variable i at the baseline material.  

 
,

1 i
i

b i

xw
x
∆= −  (4.9) 

The equation for the weighting coefficient gives a value near one when the variation in 

the material dimension is a small fraction of the baseline material property, indicating 

that it is difficult to achieve large variations in that material dimension. Conversely, when 

the variation in the material dimension is a large fraction of the baseline value, the 

weighting coefficient approaches zero.  This indicates that it is possible to achieve large 

variations in the material dimension.  

 

An equation for the CDSE is shown in Equation 4.10 where xbase is the vector of material 

property design variables at the baseline solution, xnew is the vector of material property 

variables at the design point, and w is the vector of weighting factors (defined in Equation 

4.9).  In this example problem, CDSE is a dimensionless quantity intended to quantify the 

designer’s expectation of the change in design costs as a result of diverging from the 

baseline materials.  The change in CDSE due to variation in the uncertain factors is 

approximated with a 1st order Taylor series expansion, shown in equation 4.11.  When the 

material property variables are equal to the baseline material properties, the CDSE is zero 

which represents no change in the cost of design because a new material does not need to 

be designed.  The Taylor expansion of the CDSE is undefined when the CDSE is zero, so 

the change in CDSE at the baseline material properties is defined separately in equation 

4.11. 



  101

 ( ) , ,

1 ,

, ,
n

i base i new
base new i

i i base

x x
CDSE w

x=

−
= ∑x x w  (4.10) 

 

( ),

1 , ,

1 ,

1 CDSE 0
CDSE

CDSE 0

n
i i b i i

i b i b i

n
i i

i b i

w x x x
x xdCDSE

dx w x
x

=

=

 −
 ⋅∆ ≠
 =  

∆ = 
 

∑

∑
 (4.11) 

 

Having established equations for the BRP objectives, the equations for the BRP 

constraints are presented next, including equations for the relative density of the core and 

for the front face shear parameters µ and Γ.  

 

The equation for the calculation of the relative density constraint is shown in Equation 

4.12.  The relative density of the core is not a function of uncertain factors, so no 

equation for the variation in this quantity due to variation in uncertain factors is needed.  

 ( )2 22

0.07
c c c

c

R Bh h B

R

= −

≥
 (4.12) 

The equations for Γ and µ are shown in Equations 4.13 and 4.15, respectively.  The 

quantities are functions of uncertain factors, so equations are needed for the variation in 

these quantities due to the variation in the uncertain factors. The equations for the 

variations in Γ and µ are shown in Equations 4.14 and 4.16, respectively. 

 ( )0 0 ,2 0.6f Y f fp t h σ ρΓ = ≤  (4.13) 
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2
c c c

f c
f f f f

HR HR
h h

ρµ ρ ρ
ρ ρ

−∆ = ∆ + ∆  (4.16) 

 

For the Point Scenario of the BRP problem, the constraints are stated such that each of 

the constraints is expressed as a quantity which must be less than or equal to zero.  The 

constraint equations for mass, deflection, relative density, Γ, and µ are shown in 

Equations 4.17-21, respectively. 

 2150 kg / m 0f f c c b bh HR hρ ρ ρ+ + − ≤  (4.17) 

 0.15 m 0δ − ≤  (4.18) 

 0.07 0cR− ≤  (4.19) 

 ( )0 0 ,2 0.6 0f Y f fp t h σ ρ − ≤  (4.20) 

 4 0
3

c c

f f

HR
h

ρ
ρ

− ≤  (4.21) 

 

For the Ranged Scenario of the BRP problem, the goals and constraints are expressed in 

terms of design capability indices (DCIs). A DCI value of one indicates that all the 

possible designs in the uncertain range of design variables meet the goal or constraint. 

The use of DCIs is reviewed in Section 2.3.3. The relative density of the core is a 

function of the geometric design variables B and hc.  Because there is assumed to be no 

uncertainty in these variables, the relative density is also deterministic.  Therefore, it is 

not necessary or possible to convert the relative density constraint into DCI form.   

 

With the exception of the relative density constraint, each of the constraints are specified 

as less than or equal to some maximum allowable value.  The DCI for a less-than-or-

equal-to constraint is calculated by the difference of the upper requirement limit (URL) 
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and the mean value divided by the variation.  Equations for the DCIs of the mass, 

deflection, Γ, and µ constraints are given in Equations 4.22, 4.23, 4.24, and 4.25. 

 dk-mass-constraint
150 massC

M
µ− =  ∆ 

  (4.22) 

 dk-deflection-constraint

0.15 deflectionC
µ
δ

− 
=  ∆ 

 (4.23) 

 dk-gamma-constraint

0.6 gammaC
µ− 

=  ∆Γ 
 (4.24) 

 dk-mu-constraint
4 3 muC µ

µ
 −=   ∆ 

 (4.25) 

The constraints for the ranged scenario are summarized in Table 4.6 along with the 

transformation into Cdk.  The design capability index for each of the constraints must be 

greater than or equal to one to satisfy the design requirements.  

 

TABLE 4.6. CONSTRAINTS ON THE BRP SYSTEM, RANGED SCENARIO 

Constraint ≤, 
≥ Value Cdk Eq# 

Mass ≤ 150 kg/m2
dk-mass-constraint

150 massC
M
µ− =  ∆ 

 (4.22)

Deflection ≤ 15 cm dk-deflection-constraint

0.15 deflectionC
µ
δ

− 
=  ∆ 

 (4.23)

Relative Density ≥ 0.07 0.07 0cR− ≤  (4.19)

Front Face Shear - Γ ≤ 0.6 dk-gamma-constraint

0.6 gammaC
µ− 

=  ∆Γ 
 (4.24)

Front Face Shear – µ ≤ 
4
3

 dk-mu-constraint
4 3 muC µ

µ
 −=   ∆ 

 (4.25)

 



  104

There are three objectives for the BRP system: minimize mass per area, minimize 

deflection and minimize the CDSE.  These objectives are converted into goals by 

specifying target values and deviation variables.  The specification of goal equations in 

the cDSP is reviewed in detail in Section 2.2.1. For the Point Scenario, the target value 

for each of the goals is zero.  For non-zero minimization targets, the achievement of the 

objective is normalized by the target value in the goal equation.  For a target of zero, this 

normalization procedure results in a division by zero.  Instead of normalizing by the 

target value, the achievement of the objective is normalized by the estimated maximum 

possible value of the objective, resulting in deviation variables that vary between zero 

and one.  These maximum values are estimated by discretizing the design space into a 

grid with three points for each design variable, and evaluating the objective at each point.  

These values are only estimates of the true maximum value of the objectives because the 

actual maximum value may occur at a point in the design space that is not captured by the 

coarse grid. The goals for the point scenario are shown in Equations 4.26-4.28.  The 

estimates of the maximum values for each objective are shown in Table 4.7.  Since the 

CDSE is constant at zero throughout the baseline design space, which would result in 

division by zero, the CDSE goal is normalized by one rather than the maximum value. 

The unwanted deviation for each of these goals is di
+, the overachievement of the 

objective. 

 0
568.4 mass mass

M d d− ++ − =  (4.26) 

 0
7.6 defl defld dδ − ++ − =  (4.27) 

 0
1 CDSE CDSE

CDSE d d− ++ − =  (4.28) 
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TABLE 4.7. ESTIMATED MAXIMUM VALUES OF OBJECTIVES IN THE 
BASELINE CDSP 
 Max Units 

Mass 568.4 kg/m2 
Deflection 7.6 m 

CDSE 0 none 
 

In the Ranged Scenario, the design objectives are specified in terms of the DCIs for each 

objective.  The objectives for the Ranged Scenario are converted to DCI form in a similar 

manner to the constraints and are shown in Equations 4.29-4.31. To meet the target 

values specified in the table, the Cdk for each of the objectives must be maximized to be 

as close as possible to one.  The goal equations for the ranged scenario are shown in 

Equations 4.32-4.34. The unwanted deviation for each of these goals is di
-, the 

underachievement of the objective. The objectives for the Ranged Scenario are 

summarized in Table 4.8 along with the transformation into Cdk and the formulation of 

the goal equation.   

 dk-mass-objective
0 massC

M
µ− =  ∆ 

  (4.29) 

 dk-deflection-objective

0 deflectionC
µ

δ
− 

=  ∆ 
  (4.30) 

 CDSE
dk-CDSE-objective

0
CDSE

C µ− =  ∆ 
 (4.31) 

 dk-mass-objective mass mass 1C d d− ++ − =   (4.32) 

 dk-deflection-objective deflection deflection 1C d d− ++ − =  (4.33) 

 dk-CDSE-objective CDSE CDSE 1C d d− ++ − =  (4.34) 
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TABLE 4.8. OBJECTIVES CONVERTED TO GOALS IN TERMS OF DESIGN 
CAPABILITY INDICES 

Objective Maximize Cdk of mass as close as possible to 1  

Cdk dk-mass-objective
0 massC

M
µ− =  ∆ 

 (4.29) 
R

an
ge

d 

Goal dk-mass-objective mass mass 1C d d− ++ − =  (4.32) 

Objective Maximize Cdk of deflection as close as possible to 1  

Cdk dk-deflection-objective

0 deflectionC
µ

δ
− 

=  ∆ 
 (4.30) 

R
an

ge
d 

Goal dk-deflection-objective deflection deflection 1C d d− ++ − =  (4.33) 

Objective Maximize Cdk of CDSE as close as possible to 1  

Cdk CDSE
dk-CDSE-objective

0
CDSE

C µ− =  ∆ 
 (4.31) 

R
an

ge
d 

Goal dk-CDSE-objective CDSE CDSE 1C d d− ++ − =  (4.34) 

 

The final task in formulating the baseline cDSP is to model the preferences of the 

designer by the specification of a deviation function.  The deviation function is specified 

in terms of a weighted sum of the deviation variables, which is termed an Archimedean 

formulation.  Eleven Archimedean weighting schemes are identified in order to create 

plots of Pareto curves to assess the trades between goals.  The Archimedean weightings 

are shown in Table 4.9.  The Archimedean deviation function ZA is shown for the point 

and ranged scenarios in Equations 4.35 and 4.36, respectively, where Wm, Wd and Wc are 

the weighting factors for the mass, deflection, and CDSE goals. 

 ( ) ( ) ( ) ( ), m mass d defl c CDSEA pointZ W d W d W d+ + += + +x  (4.35) 

 ( ) ( ) ( ) ( ), m mass d defl c CDSEA rangedZ W d W d W d− − −= + +x  (4.36) 
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TABLE 4.9. ELEVEN ARCHIMEDEAN WEIGHTING SCHEMES 
Scheme Mass Deflection CDSE

1 1.00 0.00 0.00
2 0.00 1.00 0.00
3 0.00 0.00 1.00
4 0.60 0.20 0.20
5 0.20 0.60 0.20
6 0.20 0.20 0.60
7 0.20 0.40 0.40
8 0.40 0.20 0.40
9 0.40 0.40 0.20

10 0.33 0.33 0.33
11 0.50 0.50 0.00  

 

Mathematical formulation of the baseline cDSP 

The word formulation of the cDSP is converted into the mathematical formulation of the 

cDSP by the inclusion of the parameters, bounds, and equations specified in the 

preceding sections.  The math formulation of the baseline cDSP for the Ranged Scenario 

is shown in Table 4.10, while the math formulation of the baseline cDSP for the Point 

Scenario is shown in Table 4.11. The next step is to minimize the deviation function to 

solve the baseline cDSP.  This procedure is discussed in the following section. 
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TABLE 4.10. MATH FORMULATION OF THE BASELINE CDSP FOR THE 
RANGED SCENARIO 

Given:  Eq# 
A impulse load defined by peak 
pressure, p0, and characteristic 
time, t0  

µt = 10-4 seconds, ∆t = 0.15· µt 
µp = 25 MPa, ∆p = 0.15· µp 

 

Faces: ρmg = 1770 kg/m3, σY,mg = 200 MPa  Material properties of the baseline 
materials Core: ρsteel = 7845 kg/m3, σY,steel = 538 MPa  

Faces: ∆ρmg = 170 kg/m3, ∆σY,mg = 20 MPa  Variation in material properties 
(ρ,σY)  Core: ∆ρsteel = 100 kg/m3, ∆σY,steel = 150 MPa  
   

BRP Deflection Model   

[ ] ( ), , , 0 0, , , , , , , , , , , , , , , ,Y b Y c Y f b c f c f bM M f p t B H h h h Lδ δ σ σ σ ρ ρ ρ∆ ∆ =  (4.5) 

Find:   
Core geometry:  hc, B  
Height of each layer:  hf, hb, H  
Value of deviation variables  di

+, di
- (i = mass, defl, CDSE)  

Satisfy:   
Constraints Cdk’s defined in Tables 4.6 and 4.8  
a) Mass/area of BRP must not exceed 

150 kg/m3 dk-mass-constraint 1C ≥  (4.22)

b) Deflection must not exceed 15% of 
span for specified boundary 
conditions 

dk-deflection-constraint 1C ≥  (4.23)

c) Relative Density must be greater 
than 0.07 to avoid buckling 

0.07 0cR − ≥  (4.19) 

Front face shear-off constraints   
d) Gamma must not exceed 0.6 

dk-gamma-constraint 1C ≥  (4.24)

e) Mu must not exceed 4/sqrt(3) 
dk-mu-constraint 1C ≥  (4.25)

Deviation variables must be greater 
than or equal to zero and multiply 
to zero ( )

0,  , 0 
mass, defl, CDSE

i i i id d d d
i

+ − + −⋅ = ≥
=

 
 

   
Goals   
a) The Cdk of mass per area is greater 

than or equal to the target of 1. dk-mass-objective mass mass 1C d d− ++ − =  (4.32)

b) The Cdk of deflection is greater 
than or equal to the target of 1. dk-deflection-objective defl defl 1C d d− ++ − =  (4.33)

c) The Cdk of CDSE is greater than or 
equal to the target of 1. dk-CDSE-objective CDSE CDSE 1C d d− ++ − =  (4.34)

   
Bounds   

(0.1 mm ≤ hc ≤ 1 cm)    
(5 mm ≤ H ≤ 5 cm)    
(1 mm ≤ B ≤ 2 cm)    
(1 mm ≤ hf ≤ 5 cm)    
(1 mm ≤ hb ≤ 5 cm)    

Minimize:   
Deviation Function:    
Archimedean ( ) ( ) ( ) ( ), m mass d defl c CDSEA rangedZ W d W d W d− − −= + +x ; 1iW =∑  (4.36)
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TABLE 4.11. MATH FORMULATION OF THE BASELINE CDSP FOR THE POINT 
SCENARIO

Given:  Eq# 
A impulse load defined by peak 
pressure, p0, and characteristic 
time, t0  

t0 = 10-4 seconds, p0 = 25 MPa  

Faces: ρmg = 1770 kg/m3, σY,mg = 200 MPa  Material properties of the baseline 
materials Core: ρsteel = 7845 kg/m3, σY,steel = 538 MPa  
   

BRP Deflection Model   

[ ] ( ), , , 0 0, , , , , , , , , , , , , , , ,Y b Y c Y f b c f c f bM M f p t B H h h h Lδ δ σ σ σ ρ ρ ρ∆ ∆ =  (4.5) 

Find:   
Core geometry:  hc, B  
Height of each layer:  hf, hb, H  
Value of deviation variables  di

+, di
- (i = mass, defl, CDSE)  

Satisfy:   
Constraints   
a) Mass/area of BRP must not 

exceed 150 kg/m3 
2150 kg / m 0f f c c b bh HR hρ ρ ρ+ + − ≤  (4.17)

b) Deflection must not exceed 15% 
of span for specified boundary 
conditions 

0.15 mδ ≤  (4.18) 

c) Relative Density must be greater 
than 0.07 to avoid buckling 

0.07 0cR− ≤  (4.19) 

Front face shear-off constraints   
d) Gamma must not exceed 0.6 ( )0 0 ,2 0.6 0f Y f fp t h σ ρ − ≤  (4.20)

e) Mu must not exceed 4/sqrt(3) 4 0
3

c c

f f

HR
h

ρ
ρ

− ≤  (4.21)

Deviation variables must be greater 
than or equal to zero and multiply 
to zero ( )

0,  , 0 
mass, defl, CDSE

i i i id d d d
i

+ − + −⋅ = ≥
=

 
 

   
Goals   
a) The mass per area is less than or 

equal to the target value of zero. 0
568.4 mass mass

M d d− ++ − =  (4.26)

b) The deflection is less than or 
equal to the target value of zero. 0

7.6 defl defld dδ − ++ − =  (4.27)

c) The CDSE is less than or equal to 
the target value of zero. 0

1 CDSE CDSE
CDSE d d− ++ − =  (4.28)

   
Bounds   

(0.1 mm ≤ hc ≤ 1 cm)    
(5 mm ≤ H ≤ 5 cm)    
(1 mm ≤ B ≤ 2 cm)    
(1 mm ≤ hf ≤ 5 cm)    
(1 mm ≤ hb ≤ 5 cm)    

Minimize:   
Deviation Function:    
Archimedean ( ) ( ) ( ) ( ), m mass d defl c CDSEA pointZ W d W d W d+ + += + +x ; 1iW =∑  (4.35)
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4.1.2 Solving the Baseline cDSP 

With the problems formulated, the baseline solutions can now be found by minimizing 

the deviation function.  Since there are only five system variables for the baseline cDSPs, 

an exhaustive search is performed.  A grid of design points is created with sixteen points 

in each dimension, yielding 165 or 1,048,576 points to evaluate.  The feasible points are 

first gleaned from the group by evaluating the constraints and eliminating the points 

which violate any of the constraints.  Then the deviation variables are found for each 

point.  This process is detailed in Appendix A. The deviation variables for the three goals 

are combined using the weighting factors for each scheme identified in Table 4.9 to 

obtain the Archimedean deviation function value. The design point with the lowest 

deviation function value is the solution.  The system variables for the baseline solutions 

are shown in Table 4.12 and Table 4.13.  The bold entries indicate that the particular 

design variable is at one of the bounds of that variable.  The deviation variables for the 

baseline solutions are presented in Table 4.14 and Table 4.15.  The solutions for 

weighting Scheme 10 are shown on the BRP schematic in Figure 4.5 and Figure 4.6. 

These solutions are discussed in the following section. 

 

TABLE 4.12. BASELINE SYSTEM VARIABLES, POINT SCENARIO 
Scheme B H hc hf hb 

1 0.0187 0.0350 0.00076 0.0141 0.0173 
2 0.0200 0.0500 0.00076 0.0173 0.0500 
3 0.0010 0.0050 0.00010 0.0141 0.0337 
4 0.0200 0.0470 0.00076 0.0141 0.0141 
5 0.0200 0.0470 0.00076 0.0141 0.0141 
6 0.0200 0.0470 0.00076 0.0141 0.0141 
7 0.0200 0.0470 0.00076 0.0141 0.0141 
8 0.0200 0.0470 0.00076 0.0141 0.0141 
9 0.0200 0.0470 0.00076 0.0141 0.0141 
10 0.0200 0.0470 0.00076 0.0141 0.0141 
11 0.0200 0.0470 0.00076 0.0141 0.0141 
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TABLE 4.13. BASELINE SYSTEM VARIABLES, RANGED SCENARIO 
Scheme B H hc hf hb 

1 0.0023 0.0050 0.00010 0.0239 0.0500 
2 0.0200 0.0500 0.00076 0.0206 0.0402 
3 0.0010 0.0050 0.00010 0.0206 0.0467 
4 0.0200 0.0050 0.00076 0.0239 0.0500 
5 0.0200 0.0200 0.00076 0.0206 0.0500 
6 0.0200 0.0080 0.00076 0.0206 0.0500 
7 0.0200 0.0200 0.00076 0.0206 0.0500 
8 0.0200 0.0050 0.00076 0.0239 0.0500 
9 0.0200 0.0080 0.00076 0.0206 0.0500 
10 0.0200 0.0080 0.00076 0.0206 0.0500 
11 0.0200 0.0080 0.00076 0.0206 0.0500 

 

 

 

 

TABLE 4.14. BASELINE DEVIATION VARIABLES, POINT SCENARIO 
Scheme d-

mass  d+
mass d-

deflection  d+
deflection d-

CDSE  d+
CDSE ZA 

1 0 0.136 0 0.020 0 0 0.136 
2 0 0.261 0 0.005 0 0 0.005 
3 0 0.162 0 0.019 0 0 0.000 
4 0 0.136 0 0.020 0 0 0.086 
5 0 0.136 0 0.020 0 0 0.039 
6 0 0.136 0 0.020 0 0 0.031 
7 0 0.136 0 0.020 0 0 0.035 
8 0 0.136 0 0.020 0 0 0.058 
9 0 0.136 0 0.020 0 0 0.062 
10 0 0.136 0 0.020 0 0 0.052 
11 0 0.136 0 0.020 0 0 0.078 
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TABLE 4.15. BASELINE DEVIATION VARIABLES, RANGED SCENARIO 
Scheme d-

mass  d+
mass d-

deflection  d+
deflection d-

CDSE  d+
CDSE ZA 

1 11.6 0 3.03 0 1 0 11.60 
2 13.8 0 2.39 0 1 0 2.39 
3 12.0 0 3.16 0 1 0 1.00 
4 11.6 0 3.00 0 1 0 7.76 
5 12.2 0 2.58 0 1 0 4.19 
6 11.7 0 2.86 0 1 0 3.51 
7 12.2 0 2.58 0 1 0 3.87 
8 11.6 0 3.00 0 1 0 5.64 
9 11.7 0 2.86 0 1 0 6.02 
10 11.7 0 2.86 0 1 0 5.19 
11 11.7 0 2.86 0 1 0 7.28 
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FIGURE 4.5. BRP SCHEMATIC OF THE SOLUTION TO THE POINT SCENARIO 
OF THE BASELINE CDSP, SCHEME 10 
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Front Face Sheet

Back Face Sheet

Core Layer

Honeycomb Walls

 
FIGURE 4.6. BRP SCHEMATIC OF THE SOLUTION TO THE RANGED SCENARIO 

OF THE BASELINE CDSP, SCHEME 10 
 

 

4.1.3 Interpreting the Baseline Solution 

The baseline cDSP is solved to identify the best design possible with the existing baseline 

material.  A designer must consider the validity of the minimization results and the 

physical meaning of the results when interpreting the solutions.  These two topics are 

discussed in the next two sections. 

The minimization results for the baseline solution 

A valid solution to the baseline cDSP is the global minimum of the design space.  With 

an exhaustive search of the design space, the global minimum is guaranteed to be found, 

because each possible design is evaluated. There is the possibility that a better solution 

could be found by using a finer grid of points, but for the purpose of this example, it is 

assumed that these solutions are adequate.  To build confidence in the solutions, the 

active constraints of each solution are investigated. 
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There are two types of constraints that can be active on the design solution: the design 

space bounds and the system constraints.  In Table 4.12 and Table 4.13, the active bounds 

are denoted by the bold entries in the design variable tables.  The constraints are shown 

for each solution to the Ranged Scenario of the baseline cDSP in Table 4.16.  In Table 

4.17 the constraints are shown for each solution to the Point Scenario of the baseline 

cDSP.  Values less than or equal to zero indicate that the constraints are satisfied and the 

solutions are feasible.  A value of zero for the constraint indicates that the particular 

constraint is active. 

 

 

 

 

 

TABLE 4.16. CONSTRAINTS FOR THE BASELINE SOLUTION TO THE RANGED 
SCENARIO  

Scheme mass deflection Rc Γ µ 
1 -0.27 -0.157 -0.0163 -0.775 -255.085 
2 -0.21 -1.812 -0.0046 -0.183 -16.259 
3 -1.00 -0.123 -0.1200 -0.183 -93.663 
4 -0.27 -0.086 -0.0046 -0.775 -296.690 
5 -0.07 -0.676 -0.0046 -0.183 -55.935 
6 -0.65 -0.021 -0.0046 -0.183 -155.126 
7 -0.07 -0.676 -0.0046 -0.183 -55.935 
8 -0.27 -0.086 -0.0046 -0.775 -296.690 
9 -0.65 -0.021 -0.0046 -0.183 -155.126 
10 -0.65 -0.021 -0.0046 -0.183 -155.126 
11 -0.65 -0.021 -0.0046 -0.183 -155.126 
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TABLE 4.17. CONSTRAINTS FOR THE BASELINE SOLUTION OF THE POINT 
SCENARIO 

Scheme mass deflection Rc Γ µ 
1 -72.60 0.000 -0.0095 -0.004 -1.435 
2 -2.00 -0.109 -0.0046 -0.114 -1.354 
3 -58.10 -0.009 -0.1200 -0.004 -2.011 
4 -72.70 -0.001 -0.0046 -0.004 -1.207 
5 -72.70 -0.001 -0.0046 -0.004 -1.207 
6 -72.70 -0.001 -0.0046 -0.004 -1.207 
7 -72.70 -0.001 -0.0046 -0.004 -1.207 
8 -72.70 -0.001 -0.0046 -0.004 -1.207 
9 -72.70 -0.001 -0.0046 -0.004 -1.207 
10 -72.70 -0.001 -0.0046 -0.004 -1.207 
11 -72.70 -0.001 -0.0046 -0.004 -1.207 

 

 

 It can be seen that the constraints are in fact less than or equal to zero for all solutions; 

however, the relative density, deflection, mass and gamma constraints approach zero for 

many of the solutions.  Also, the deflection constraint is equal to zero, and therefore 

active, in the solution to Scheme 1 in the Point Scenario.  In both scenarios, the µ 

constraint has little effect on the solutions and does not approach zero. In the Ranged 

Scenario, the relative density constraint approaches zero for all schemes except Scheme 

3.  In Scheme 3 all the weight is placed on the CDSE goal, the achievement of which is 

the same for all feasible solutions to the baseline cDSP.  The baseline solution to Scheme 

3 is thus arbitrary, but is included here for the comparison to the expansion solution and 

to verify that the CDSE function is behaving as expected. In the Point Scenario, the 

relative density constraint again approaches zero for all schemes except Scheme 3.  The 

magnitude of the mass constraint is very large for all schemes in the Point Scenario 

except Scheme 2, in which all the weight is placed on the minimizing deflection 

objective.  This makes sense because a BRP with thicker face sheets would be more 

massive and more resistant to deflection, meaning that the deflection constraint should 
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have a large magnitude and the mass constraint should have a small magnitude for 

Scheme 2, which is in fact the case.   

The physical meaning of the baseline solution 

 
To analyze the baseline design solutions, hypotheses are identified for each of the 

preference schemes and each scenario.  These hypotheses and the corresponding results 

are displayed in Tables 4.18 through 4.22.  By analyzing the results, it is confirmed that 

the CDSE goal has no effect on the baseline cDSP as is expected, since the CDSE is 

constant throughout the baseline design space.  It is seen that the solutions for Schemes 4-

11 of the Point Scenario are identical.  This means that the baseline solution is insensitive 

to small changes in the weighting factors on the mass and deflection goals.  Thus, the 

achievement of either the mass or deflection goal is dominating the deviation function.  

Referring to the values of the constraints in Table 4.17, it is seen that in Schemes 4-11 the 

deflection, Γ, and relative density constraints are nearly active, while the mass is more 

than 72 kg from the limit.  Therefore, it can be concluded that the achievement of the 

minimum mass goal is dominating the deviation function in the Point Scenario.   

 

In the solutions to the Ranged Scenario, there are distinct solutions for the three possible 

mass-deflection weighting combinations: mass weight greater than deflection weight, 

mass weight less than deflection weight, and mass weight equal to deflection weight.  

Thus, in the Ranged Scenario, neither the mass goal nor the deflection goal consistently 

dominates the deviation function. 



 

  

117

 
TABLE 4.18. BASELINE SOLUTION ANALYSIS, SCHEMES 1-2 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis 

  

Result 

Po
in

t The front and back face sheet and cell wall thicknesses tend 
towards the lower bounds.  The core layer height is closer to the 
upper bound, but is lower in this scheme than in the solutions to 
the other schemes. The deflection constraint is active. 

1 1.
00

 

0.
00

 

0.
00

 

In this scheme the only objective 
is to minimize mass; therefore 
the layer heights and cell wall 
thicknesses are likely to be 
small, the cell spacing is likely to 
be large, and the deflection 
constraint is likely to be active. 

R
an

ge
d The cell wall thickness and the core layer are at the lower bounds, 

but the front face sheet thickness is closer to the upper bound and 
the back face sheet thickness is at the upper bound. The deflection 
constraint is not active as it is expected to be.   

Po
in

t The cell spacing, core layer height, and back face sheet thickness 
are at their upper bounds; however, the front face sheet thickness 
and the cell wall thickness tend toward the lower bounds.  The 
mass constraint is not active, but is within 2 kg of the constraint. 

2 0.
00

 

1.
00

 

0.
00

 

In this scheme the only objective 
is to minimize deflection; 
therefore the layer and cell wall 
thicknesses are likely to be large 
and the mass constraint is likely 
to be active. 

R
an

ge
d 

The cell spacing and core layer height are at the upper bounds, and 
the back face sheet thickness is near the upper bound.  The cell 
wall thickness is very near the lower bound, while the front face 
sheet thickness is just less than the midpoint.  The mass constraint 
is not active. 
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TABLE 4.19. BASELINE SOLUTION ANALYSIS, SCHEMES 3-4 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis 

  

Result 

Po
in

t 

No constraints are active, but the cell spacing and cell wall 
thickness variables are at their lower bounds while the core height 
variable is at its upper bound.  This point is chosen because it is 
the first feasible point in the design space of the Point Scenario, 
according to the solution-finding method used in the baseline 
cDSP. 

3 0.
00

 

0.
00

 

1.
00

 

In this scheme the only objective 
is to minimize the CDSE.  In the 
baseline cDSP, the CDSE goal is 
mathematically independent of 
the system variables; therefore 
the baseline solution for this 
scheme is arbitrary.  This 
scheme is included for 
demonstration purposes in the 
expansion cDSP. R

an
ge

d 

No constraints are active, but the cell spacing and cell wall 
thickness variables are at their lower bounds while the core height 
variable is at its upper bound.  This point is chosen because it is 
the first feasible point in the design space of the Ranged Scenario, 
according to the solution-finding method used in the baseline 
cDSP. 

Po
in

t The solutions for Schemes 4 and 8 are indeed the same; however 
the solutions for Schemes 4-11 are identical in the Point Scenario.

4 0.
60

 

0.
20

 

0.
20

 

In the baseline cDSP, the CDSE 
goal is mathematically 
independent of the system 
variables; therefore the solution 
is the same in this scheme as for 
Scheme 8 in which more weight 
is placed on the mass goal. R

an
ge

d 

The solutions for Schemes 4 and 8 are indeed the same. 
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TABLE 4.20. BASELINE SOLUTION ANALYSIS, SCHEMES 5-7 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis 

  

Result 

Po
in

t The solutions for Scheme 5 and 7 are indeed the same; however 
the solutions for Schemes 4-11 are identical in the Point Scenario.

5 0.
20

 

0.
60

 

0.
20

 

In the baseline cDSP, the CDSE 
goal is mathematically 
independent of the system 
variables; therefore the solution 
is the same as for Scheme 7 in 
which more weight is placed on 
the deflection goal. R

an
ge

d 

The solutions for Schemes 5 and 7 are indeed the same. 

Po
in

t The solutions for Schemes 6, 9, 10, and 11 are indeed the same; 
however the solutions for Schemes 4-11 are identical in the Point 
Scenario. 

6 0.
20

 

0.
20

 

0.
60

 

In the baseline cDSP, the CDSE 
goal is mathematically 
independent of the system 
variables; therefore the solution 
is the same as for Schemes 9, 10, 
and 11 in which equal weight is 
placed on the mass and 
deflection goals. R

an
ge

d 
The solutions for Schemes 6, 9, 10, and 11 are indeed the same. 

Po
in

t The solutions for Schemes 5 and 7 are indeed the same; however 
the solutions for Schemes 4-11 are identical in the Point Scenario.

7 0.
20

 

0.
40

 

0.
40

 

In the baseline cDSP, the CDSE 
goal is mathematically 
independent of the system 
variables; therefore the solution 
is the same as for Scheme 5 in 
which more weight is placed on 
the deflection goal. R

an
ge

d 

The solutions for Schemes 5 and 7 are indeed the same. 
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TABLE 4.21. BASELINE SOLUTION ANALYSIS, SCHEMES 8-10 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis 
  

Result 

Po
in

t The solutions for Schemes 4 and 8 are indeed the same; however 
the solutions for Schemes 4-11 are identical in the Point Scenario.

8 0.
40

 

0.
20

 

0.
40

 

In the baseline cDSP, the CDSE 
goal is mathematically 
independent of the system 
variables; therefore the solution 
is the same as for Scheme 4 in 
which more weight is placed on 
the mass goal. R

an
ge

d 

The solutions for Schemes 4 and 8 are indeed the same. 

Po
in

t The solutions for Schemes 6, 9, 10, and 11 are indeed the same; 
however the solutions for Schemes 4-11 are identical in the Point 
Scenario. 

9 0.
40

 

0.
40

 

0.
20

 

In the baseline cDSP, the CDSE 
goal is mathematically 
independent of the system 
variables; therefore the solution 
is the same as for Schemes 6, 10, 
and 11 in which equal weight is 
placed on the mass and 
deflection goals. R

an
ge

d 
The solutions for Schemes 6, 9, 10, and 11 are indeed the same. 

Po
in

t The solutions for Schemes 6, 9, 10, and 11 are indeed the same; 
however the solutions for Schemes 4-11 are identical in the Point 
Scenario. 

10
 

0.
33

 

0.
33

 

0.
33

 

In the baseline cDSP, the CDSE 
goal is mathematically 
independent of the system 
variables; therefore the solution 
is the same as for Schemes 6, 9, 
and 11 in which equal weight is 
placed on the mass and 
deflection goals. R

an
ge

d 

The solutions for Schemes 6, 9, 10, and 11 are indeed the same. 
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TABLE 4.22. BASELINE SOLUTION ANALYSIS, SCHEME 11 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis 
  

Result 

Po
in

t The solutions for Schemes 6, 9, 10, and 11 are indeed the same; 
however the solutions for Schemes 4-11 are identical in the Point 
Scenario. 

11
 

0.
50

 

0.
50

 

0.
00

 

In the baseline cDSP, the CDSE 
goal is mathematically 
independent of the system 
variables; therefore the solution 
is the same as for Schemes 6, 9, 
and 10 in which equal weight is 
placed on the mass and 
deflection goals. R

an
ge

d 
The solutions for Schemes 6, 9, 10, and 11 are indeed the same. 
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In the plot of a Pareto surface the achievements of the design objectives are plotted 

against each other in the criterion space to assess trade-offs between the objectives.  

Approximations of the Pareto surface can be created using a weighted sum approach by 

varying the Archimedean weights on the three design objectives and plotting 

achievement of each objective versus each other.  Eleven weighting schemes are 

identified in Table 4.9 to generate multiple points along this surface.  Pareto plots for the 

two BRP design scenarios are presented in Figure 4.7 and Figure 4.8.  These plots are 

created by plotting the deviation variable of one goal in one weighting scheme versus the 

deviation variable for another goal in the same weighting scheme.  Thus, the ideal 

solution is represented by the origin of these plots, which represents a deviation of zero 

from all goals. Alternatively, the values of mass, deflection, and CDSE can be plotted 

directly instead of the deviation variables for these objectives.   

 

After plotting the deviation variables versus each other for all the solutions, conclusions 

can be made about the effects of the achievement of one goal versus another.  It is 

expected that for the baseline solutions, the CDSE goal will have no effect on the 

achievement of the other goals, because the CDSE function is constant throughout the 

baseline cDSP.  The CDSE is modeled in the baseline cDSP in order to reduce the 

amount of changes in the formulation from the baseline to expansion cDSP, to verify the 

proper behavior of the CDSE function, and because the total deviation values in the 

baseline and expansion solutions must be compared in the VDSE metric.  If there are 

only two goals in the baseline cDSP and three goals in the expansion cDSP, then it is not 

valid to compare the deviation values at the two solutions. For both the Point and Ranged 

Scenarios, this expectation holds true because there is no correlation between the 

deviation variables for the mass or deflection goals and the deviation variables for the 

CDSE goal.  There does appear to be a correlation between the achievements of the 

deflection goal and mass goal, as evidenced by the declining trend in the deviation from 
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the deflection goal as the deviation from the mass goal increases.  This trend is evident in 

both the point and ranged scenario; however, the effect is stronger in the point scenario 

due to the steeper slope in the trendline.  The negative correlation in the deviation 

variables for deflection and mass indicate that there is a conflict between the achievement 

of these two goals, i.e., an improvement in the achievement of the deflection goal is only 

possible with an accompanying deterioration in the achievement of the mass goal and 

vice versa.  Physically, this conflict in the mass and deflection goals is expected, because 

it is known that the BRP can be made stronger by increasing the thickness of the face 

sheets, which will increase the mass of the panel.  Conversely, if the mass is decreased by 

taking material away from the face sheets, it is expected that the panel is less resistant to 

deflection. 
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FIGURE 4.7. PARETO PLOTS FOR THE POINT SCENARIO 
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FIGURE 4.8. PARETO PLOTS FOR THE RANGED SCENARIO 

 

A designer must consider two issues when interpreting the solutions to the baseline cDSP 

as part of the design space expansion strategy.  The CDSE function should behave as 

expected, and there must be room for improvement in the achievement of design goals in 

order to proceed with the design space expansion strategy.  Both of these issues can be 

assessed by looking at the deviation variables for the design solutions.   

 

As stated previously in Section 4.1.2, the CDSE represents the belief of the designer 

about the increase in the design cost as a result of moving away from the baseline 

material.  The value of the CDSE at the baseline solution is the minimum value in the 

design space because the least costly design process option is to select an existing 

material.  It is expected that the achievement of the CDSE goal will not affect the search 

for design solutions to the baseline cDSP because the material property design variables 

are all fixed at the minimum point of the CDSE. For example, in Scheme 4 the mass is 
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preferred to deflection and CDSE equally.  If the CDSE has no effect on the solutions, the 

solution should be the same for all scenarios in which mass is preferred to deflection, 

regardless of the weight on the CDSE goal.  In fact, this effect is seen in the results.  In 

Scheme 8 also mass is preferred to deflection, and the solutions are the same for both of 

those schemes in both the Ranged and Point Scenarios.  Similarly, deflection is preferred 

to mass in both Schemes 5 and 7, with different weights on the CDSE goal.  Again, the 

solutions for the two schemes are the same in both the Ranged and Point Scenarios.  

Finally, in Schemes 6, 9, and 10 an equal weight is placed on mass and deflection. Once 

again, the solutions are the same for all three schemes in both the Ranged and Point 

Scenarios.  These results support the conclusion that the CDSE goal has no effect on the 

solutions to the baseline cDSP as expected. 

 

A designer must also examine the deviation function values for each solution to make 

sure that the design targets have not already been met in the baseline cDSP.  If the targets 

are met in the baseline solution, there is not room for additional improvement by 

expanding the material design space.  It is also possible that the deviation function may 

be at the absolute minimum in the design space at the baseline solution without meeting 

the design targets. In the case that the targets are met in the baseline solution, a deviation 

function value greater than zero indicates that there is room for improvement in the 

achievement of design goals.  It can be seen that the solution to Scheme 3 in the point 

scenario has a deviation function value of zero, indicating no further improvement is 

possible.  This is because all the weight in Scheme 3 is placed on the CDSE goal, and the 

CDSE goal is at its minimum value of zero in the baseline cDSP. The solution to Scheme 

3 in the Ranged Scenario has a deviation function value of one rather than zero.  This is 

because the Cdk of the CDSE goal is equal to zero when the CDSE is equal to zero, and 

the goal in the ranged scenario is to maximize the Cdk to one.  Since zero is the minimum 

of the CDSE function, zero is the maximum value of Cdk for the CDSE function, and one 
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is the minimum possible value of the deviation function for Scheme 3 in the Ranged 

Scenario.  Therefore, there is no room for improvement in the minimization of the 

deviation function in Scheme 3 by expanding the material design space. If Scheme 3 

were the only weighting scheme under consideration, the DSES would end here. 

 

A designer must critically evaluate the baseline solutions to verify that a valid solution 

has been found, and that there is still room for improvement in the achievement of design 

goals beyond the achievement of the baseline solution. Although it is known that the 

deviation variable for the CDSE goal is at its minimum point for all scenarios, the mass 

per area and deflection goals have room for improvement, indicated by the nonzero 

deviation function values for the solution to each scheme except Scheme 3.  Since there is 

additional room for improvement, the next step is to revise the formulation of the cDSP 

by expanding the material design space in the expansion stage of the DSES. 

4.2 THE EXPANSION CDSP 

In the expansion cDSP, the design space is expanded from a point to a multidimensional 

material design space.  The intention in the expansion cDSP is to identify the design that 

represents the best goal achievement in the expanded design space.  After solving the 

expansion cDSP, the VDSE metric is calculated to support the decision between material 

design and material selection.  Also, the material property targets for subsequent phases 

of design are identified by analyzing the values of the material property variables in the 

solution to the expansion cDSP. The revision of the cDSP formulation and the solution of 

the expansion cDSP are discussed in the following sections. 

4.2.1 Formulating the Expansion BRP Design Problem 

In the following sections, the word and math formulations of the expansion cDSP are 

presented.  Rather than starting from scratch, the baseline cDSP is revised to reflect the 
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changes in the problem formulation.  These changes are highlighted in the following 

sections. 

Defining the expanded design space 

The material design space is expanded in Step 2.1 of the DSES to allow for adjustment of 

the material properties of the layers of the BRP.   In the expansion stage, the expanded 

material design space is defined by identifying upper and lower bounds for the material 

property variables.  The upper and lower bounds for the BRP material property variables 

are selected based on the region of engineering alloys on the material selection chart 

shown in Figure 4.3, giving a rectangular design space that encompasses the properties of 

most engineering metals. The bounds on the material property design variables are 

summarized in Table 4.23. 

TABLE 4.23. BOUNDS ON MATERIAL PROPERTY DESIGN VARIABLES 
(ASHBY, 1999) 

 Design Variable 
Material 
Property 

Lower 
Bound 

Upper 
Bound 

Density 
(kg/m3) 1600 20000 

Yield 
Strength 
(MPa) 

20 1200 

 

The primary changes in the expansion cDSP relate to the material design space and the 

goals.  The first change from the baseline formulation involves the material design space.  

In the expansion cDSP, the material design space is expanded from the single design 

point of the baseline cDSP to a multidimensional design space by allowing the material 

properties to vary between upper and lower bounds.  The material properties are included 

in the design variables listed under the find heading of the cDSP formulation.  In the BRP 



 

 128 

design problem there are six material property variables, because there is both a mass 

density and a yield strength variable for each layer of the panel. 

 

The second change from the baseline cDSP to the expansion cDSP is the formulation of 

the goals.  Because the design space has expanded, the normalization factors in the point 

scenario may have changed.  The estimates of the maximum values of the objectives 

must be reevaluated to find the new estimate in the expanded design space. 

Word formulation of the expansion cDSP (Step 2.2.1 of Figure 3.1) 

Having identified the changes from the baseline cDSP to the expansion cDSP, the word 

formulations of the expansion cDSP are presented in the following tables.  The 

formulation for the Point Scenario is shown in Table 4.25 and the formulation for the 

Ranged Scenario is shown in Table 4.26.  The underlined items indicate the new 

information that is added or changed to convert from the baseline to the expansion cDSP. 

Deriving the equations for the expansion cDSP 

The BRP analysis and constraint equations derived in Section 4.1.1 remain the same for 

the expansion cDSP.  The goals for the Ranged Scenario also remain the same.  The goal 

equations for the Point Scenario are revised to reflect the new estimates of the maximum 

values of each of the objectives.  These maximum value estimates are found by 

discretizing the expanded design space into a grid with three points for each geometric 

design variable and two points for each material property variable.  The revised goal 

equations reflecting the new maximum value estimates are shown in Equations 4.37-4.39. 

The new estimates of the maximum objective values in the expanded design space are 

listed in Table 4.24. 

 0
2997.7 mass mass

M d d− ++ − =  (4.37) 



 

 129 

 0
234.5 defl defld dδ − ++ − =  (4.38) 

 0
5.35 CDSE CDSE

CDSE d d− ++ − =  (4.39) 

TABLE 4.24. ESTIMATED MAXIMUM VALUES OF OBJECTIVES IN THE 
EXPANSION CDSP 
 Max Units 

Mass 2997.7 kg/m2 
Deflection 234.5 m 

CDSE 5.35 none 
 

TABLE 4.25. WORD FORMULATION OF THE EXPANSION CDSP, POINT 
SCENARIO 

Given: 
Baseline material properties 
An impulse load defined by peak pressure, p0, and characteristic time, t0  
Model for the deflection of the panel 
Model for the mass per area of the panel 
Model for the cost of design space expansion 
 
Find: 
Material properties: σY,f, ρf, σY,b, ρb, σY,c, ρc 
Core geometry: hc, B 
Height of each layer: hf, hb, H 
Deviation variables di

+, di
- (i = 1, 2, 3) 

 
Satisfy: 
Constraints 
a) Mass/area of BRP must not exceed 150 kg/m3 
b) Deflection must not exceed 15 cm for specified boundary conditions 
c) Relative density must be greater than 0.07 to avoid buckling 
d) Front face shear-off parameter, µ , must not exceed 4/sqrt(3) 
e) Front face shear-off parameter, Γ, must not exceed 0.6 
 
Goals 
a) The mass per area is equal to or less than the target value.  
b) The deflection is equal to or less than the target value. 
c) The CDSE is equal to or less than the target value. 
 
Bounds 

Upper and lower bounds for system variables 
 
Minimize: 

Archimedean deviation function 
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TABLE 4.26. WORD FORMULATION OF THE EXPANSION CDSP, RANGED 
SCENARIO 

Given: 
Baseline material properties 
An impulse load defined by peak pressure, p0, and characteristic time, t0  
Mean and variance of loading parameters (t0, p0)  
Variance of material property design variables (ρ,σY)  
Model for the deflection of the panel 
Model for the mass per area of the panel 
Model for the cost of design space expansion 
 
Find: 
Material properties: σY,f, ρf, σY,b, ρb, σY,c, ρc 
Core geometry: hc, B 
Height of each layer: hf, hb, H 
Deviation variables di

+, di
- (i = 1, 2, 3) 

 
Satisfy: 
Constraints 
a) Mass/area of BRP must not exceed 150 kg/m3 
b) Deflection must not exceed 15 cm for specified boundary conditions 
c) Relative density must be greater than 0.07 to avoid buckling 
d) Front face shear-off parameter, µ , must not exceed 4/sqrt(3) 
e) Front face shear-off parameter, Γ, must not exceed 0.6 
 
Goals 
a) The Cdk of mass per area is equal to or greater than the target value.  
b) The Cdk of deflection is equal to or greater than the target value. 
c) The Cdk of CDSE is equal to or greater than the target value. 
 
Bounds 

Upper and lower bounds for system variables 
 
Minimize: 

Archimedean deviation function 

Mathematical formulation of the expansion cDSP (Step 2.2.2) 

The word form of the expansion cDSP is converted into the math form of the expansion 

cDSP by the inclusion of the information specified in the preceding section.  The math 

formulation of the expansion cDSP for the Ranged Scenario is shown in Table 4.27, 
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while the math form of the expansion cDSP for the Point Scenario is shown in Table 

4.28.  The next step is to apply an algorithm to minimize the deviation function.   

TABLE 4.27. MATH FORM OF THE EXPANSION CDSP, RANGED SCENARIO 
Given:  Eq# 

A impulse load defined by peak 
pressure, p0, and characteristic time, t0  

µt = 10-4 seconds, ∆t = 0.15· µt 
µp = 25 MPa, ∆p = 0.15· µp 

 

Faces: ρmg = 1770 kg/m3, σY,mg = 200 MPa  Material properties of the baseline 
materials Core: ρsteel = 7845 kg/m3, σY,steel = 538 MPa  

Faces: ∆ρmg = 170 kg/m3, ∆σY,mg = 20 MPa  Variation in material properties (ρ,σY)  
Core: ∆ρsteel = 100 kg/m3, ∆σY,steel = 150 MPa  

BRP Deflection Model   

[ ] ( ), , , 0 0, , , , , , , , , , , , , , , ,Y b Y c Y f b c f c f bM M f p t B H h h h Lδ δ σ σ σ ρ ρ ρ∆ ∆ =  (4.5) 

Find:   
Material properties:  σY,f, ρf, σY,b, ρb, σY,c, ρc  
Core geometry:  hc, B  
Height of each layer:  hf, hb, H  
Value of deviation variables  di

+, di
- (i = mass, defl, CDSE)  

Satisfy:   
Constraints Cdk’s defined in Tables 4.6 and 4.8  
a) Mass/area of BRP must not exceed 

150 kg/m3 dk-mass-constraint 1C ≥  (4.22)

b) Deflection must not exceed 15% of 
span for specified boundary conditions dk-deflection-constraint 1C ≥  (4.23)

c) Relative Density must be greater than 
0.07 to avoid buckling 

0.07 0cR − ≥  (4.19) 

Front face shear-off constraints   
d) Gamma must not exceed 0.6 

dk-gamma-constraint 1C ≥  (4.24)

e) Mu must not exceed 4/sqrt(3) 
dk-mu-constraint 1C ≥  (4.25)

Deviation variables must be greater 
than or equal to zero and multiply to 
zero ( )

0,  , 0 
mass, defl, CDSE

i i i id d d d
i

+ − + −⋅ = ≥
=

 
 

   
Goals   
a) The Cdk of mass per area is greater 

than or equal to the target of one. dk-mass-objective mass mass 1C d d− ++ − =  (4.32)

b) The Cdk of deflection is greater than or 
equal to the target of one.  dk-deflection-objective defl defl 1C d d− ++ − =  (4.33)

c) The Cdk of CDSE is greater than or 
equal to the target of one.  dk-CDSE-objective CDSE CDSE 1C d d− ++ − =  (4.34)

Bounds   
(0.1 mm ≤ hc ≤ 1 cm) (20 MPa ≤ σY,b ≤ 1200 MPa) (1600  ≤ ρb ≤ 20,000 kg/m3)  
(5 mm ≤ H ≤ 5 cm) (20 MPa ≤ σY.f ≤ 1200 MPa) (1600  ≤ ρc ≤ 20,000 kg/m3)  
(1 mm ≤ B ≤ 2 cm) (20 MPa ≤ σY,c ≤ 1200 MPa) (1600  ≤ ρf ≤ 20,000 kg/m3)  
(1 mm ≤ hf ≤ 5 cm)    
(1 mm ≤ hb ≤ 5 cm)    

Minimize:   
Deviation Function:    
Archimedean ( ) ( ) ( ) ( ), m mass d defl c CDSEA rangedZ W d W d W d− − −= + +x ; 1iW =∑  (4.36)
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TABLE 4.28. MATH FORM OF THE EXPANSION CDSP, POINT SCENARIO 
Given:  Eq# 

A impulse load defined by peak 
pressure, p0, and characteristic time, t0  

t0 = 10-4 seconds, p0 = 25 MPa  

Material properties of the baseline 
materials 

Faces: ρmg = 1770 kg/m3, σY,mg = 200 MPa  

 Core: ρsteel = 7845 kg/m3, σY,steel = 538 MPa  
BRP Deflection Model   

[ ] ( ), , , 0 0, , , , , , , , , , , , , , , ,Y b Y c Y f b c f c f bM M f p t B H h h h Lδ δ σ σ σ ρ ρ ρ∆ ∆ =  (4.5) 

Find:   
Material properties:  σY,f, ρf, σY,b, ρb, σY,c, ρc  
Core geometry:  hc, B  
Height of each layer:  hf, hb, H  
Value of deviation variables  di

+, di
- (i = mass, defl, CDSE, VDSE)  

Satisfy:   
Constraints   
a) Mass/area of BRP must not exceed 

150 kg/m3 
2150 kg / m 0f f c c b bh HR hρ ρ ρ+ + − ≤  (4.17)

b) Deflection must not exceed 15% of 
span for specified boundary conditions 

0.15 mδ ≤  (4.18) 

c) Relative Density must be greater than 
0.07 to avoid buckling 

0.07 0cR− ≤  (4.19) 

Front face shear-off constraints   
d) Gamma must not exceed 0.6 ( )0 0 ,2 0.6 0f Y f fp t h σ ρ − ≤  (4.20)

e) Mu must not exceed 4/sqrt(3) 4 0
3

c c

f f

HR
h

ρ
ρ

− ≤  
(4.21)

Deviation variables must be greater 
than or equal to zero and multiply to 
zero ( )

0,  , 0 
mass, defl, CDSE

i i i id d d d
i

+ − + −⋅ = ≥
=

 
 

   
Goals   

The mass per area is less than or equal 
to the target value of zero. 0

2997.7 mass mass
M d d− ++ − =  

(4.37)

The deflection is less than or equal to 
the target value of zero. 0

234.5 defl defld dδ − ++ − =  
(4.38)

The CDSE is less than or equal to the 
target value of zero. 0

5.35 CDSE CDSE
CDSE d d− ++ − =  

(4.39)

Bounds   
(0.1 mm ≤ hc ≤ 1 cm) (20 MPa ≤ σY,b ≤ 1200 MPa) (1600  ≤ ρb ≤ 20,000 kg/m3)  
(5 mm ≤ H ≤ 5 cm) (20 MPa ≤ σY.f ≤ 1200 MPa) (1600  ≤ ρc ≤ 20,000 kg/m3)  
(1 mm ≤ B ≤ 2 cm) (20 MPa ≤ σY,c ≤ 1200 MPa) (1600  ≤ ρf ≤ 20,000 kg/m3)  
(1 mm ≤ hf ≤ 5 cm)    
(1 mm ≤ hb ≤ 5 cm)    

Minimize:   
Deviation Function:    
Archimedean ( ) ( ) ( ) ( ), m mass d defl c CDSEA pointZ W d W d W d+ + += + +x ; 1iW =∑  (4.35)
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4.2.2 Solving the Expanded BRP Design Problem 

With the problems formulated, the solutions to the expansion cDSP can now be found by 

minimizing the deviation function (Step 2.2.3).  An exhaustive search of the expanded 

design space using the same resolution as the baseline cDSP would require evaluating 

1611 or 17,592,186,044,416 design points. This is 16,777,216 times the number of design 

points evaluated for the baseline solution.  The evaluation of feasibility for the design 

points in the baseline cDSP takes approximately 15 hours of computation on a computer 

with dual 3.1 GHz processors and 2 GB of RAM.  Assuming that the amount of 

computational time for the expanded design space is 16,777,216 times the amount of 

computation time for the baseline design space, the evaluation of feasibility for the 

expanded design space would take approximately 215,658,240 hours or 10,485,760 days 

to complete (roughly 29,000 years). Since an exhaustive search of the design space is not 

feasible, a genetic algorithm (GA) and a pattern search are applied to solve the expansion 

cDSP in this work.   

 

A GA is a Monte-Carlo-type method in which solutions are found by the “survival of the 

fittest” concept of evolution.  Rules are specified for selection of mating pairs, crossover 

of genetic material, and mutation of genetic material.  The genetic material is a bit string 

which represents a vector of design variables.  Based on the selection, crossover, and 

mutation rules, the population evolves and converges to a solution. Due to the large size 

of the design space in this example and the complexity of the deflection model, it is 

unlikely that unimodality is an appropriate assumption, meaning that it is probable that 

there are local minima in the design space. The solution finding method presented here is 

for the general case where unimodality is not an appropriate assumption.  If the goals are 

unimodal, then the solution finding method can be simpler. For this solution finding 

method genetic algorithm is selected because although it is not guaranteed that the global 

minimum will be found, a genetic algorithm is less likely to settle in a local minimum 
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than gradient-based search methods such as Newton’s method or the method of steepest 

descent.  In this work, the MATLAB built-in genetic algorithm is used to find the 

solutions.   

 

The MATLAB GA is an unconstrained optimization algorithm, meaning that the 

algorithm searches for the minimum of the fitness function without regard to any 

constraints on the system.  However, there are constraints on the BRP system, and these 

constraints must be taken into account in the search for the design solutions.  To apply an 

unconstrained optimization algorithm to a problem with constraints, penalty functions are 

employed. A penalty function is a function that is added to the fitness function to apply a 

penalty to the fitness when a constraint is violated.  When all the constraints are met, the 

penalty function is inactive. To apply an unconstrained genetic algorithm to solve the 

cDSPs formulated above, the problems are converted in two steps.  This process is 

discussed in the following sections.  

 

The first step towards applying the unconstrained genetic algorithm is to convert the 

cDSP formulation into a constrained minimization formulation.  This is accomplished by 

stating the Archimedean deviation function, ZA, as an objective function which must be 

minimized subject to constraints. The two constrained minimization problems for the 

Ranged and Point Scenarios are shown in Figure 4.9 and Figure 4.10. In the objective 

function ZA, Wm, Wd, and Wc are the Archimedean weighting factors for the mass, 

deflection, and CDSE goals specified in the eleven weighting schemes (Table 4.9), and 

dVDSE,mass, dVDSE,defl, and dVDSE,CDSE are the deviation variables of the VDSE goals for 

mass, deflection and CDSE, respectively.  The constraint functions are shown as 

functions g1, g2, g3, g4, and g5, and correspond to the constraints on mass, deflection, 

relative density, Γ, and µ.  Prior to solving with an unconstrained minimization algorithm, 

the problem formulations must again be adapted.  In this step the constrained 
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minimization problems are converted into unconstrained minimization problems using 

penalty functions. The unconstrained objective functions are shown in Equations 4.38 

and 4.39 where P is a constant penalty coefficient acting on the summation of all five 

constraint functions.  The Ranged Scenario is shown in Equation 4.40 using DCIs for the 

constraint functions, and the Point Scenario is shown in Equation 4.41. 

( ) ( ) ( ) ( ), m mass d defl c CDSE

1

2

3

4

5

min

150. . 1 0

0.151 0

0.07 0
0.61 0

4 31 0

A ranged

c

Z W d W d W d

Ms t g
M

g

g R

g

g

δ
δ

µ
µ

− − −= + +

−= − ≤
∆

−= − ≤
∆

= − ≤
− Γ= − ≤

∆Γ
−= − ≤

∆

x

 

FIGURE 4.9. CONSTRAINED MINIMIZATION, RANGED SCENARIO 
 
 

( ) ( ) ( ) ( ), m mass d defl c CDSE

1

2

3

4

5

min

. . 150 0
0.15 0

0.07 0
0.6 0

4 3 0

A point

c

Z W d W d W d

s t g M
g
g R
g

g

δ

µ

+ + += + +

= − ≤
= − ≤
= − ≤
= Γ − ≤

= − ≤

x

 

FIGURE 4.10. CONSTRAINED MINIMIZATION, POINT SCENARIO 
 

 

( ) ( ) ( ) ( )

( )

, m mass d defl c CDSEmin

1501

0.15max 0, 1 0.07

0.6 4 31 1

A ranged

c

Z W d W d W d

M
M

P Rδ
δ

µ
µ

− − −= + + +

   −    − +   ∆  
   −    − + − +    ∆       − Γ −   − + −      ∆Γ ∆       

x

 (4.40) 
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( ) ( ) ( ) ( )

( )
( ) ( )
( ) ( )

, m mass d defl c CDSEmin

150

max 0, 0.15 0.07

0.6 4 3

A point

c

Z W d W d W d

M

P Rδ

µ

+ + += + + +

   − +      − + − +      Γ − + −     

x

 (4.41) 

 
Prior to running the GA, fitness and constraint functions are defined in MATLAB for 

each problem formulation. The fitness functions are the same as the objective functions 

specified in the unconstrained problem formulations above; however, the fitness function 

must convert a binary bit string into the numerical values of the design variables.  Each 

design variable is represented by five bits, which enables the discretization of the design 

space into thirty-two points for each design variable between the upper and lower bounds 

for the variables.  The default settings of the MATLAB GA are used to find the solutions, 

with the exception of the settings for the population.  The individuals are defined using a 

bit string and the population size is set at three times the length of the bit string. The 

MATLAB code for each of the fitness functions and constraint functions is included in 

Appendix A. 

 

The GA can get close to the global optimum, but since the design space is discretized 

rather than continuous, the GA is not guaranteed to reach the true minimum of the 

deviation function.  To remedy this problem, a pattern search is used to find the minimum 

using the GA solution as the starting point.  On its own, a pattern search is likely to fall 

into a local minimum, but by starting from the GA solution, which is close to the global 

minimum, the pattern search is much less likely to fall into a minimum other than the 

global minimum.  The patternsearch function in MATLAB is used to implement the 

pattern search in this example. 
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Presentation of the expansion solutions 

The design variables for the expansion cDSP solutions are shown in Tables 4.29 through 

4.32.  The bold entries indicate that the particular design variable is at one of the bounds 

of that variable.  The deviation variables for the expansion solutions are presented in 

Tables 4.33 and 4.34.  The solutions for weighting Scheme 10 are shown on the BRP 

schematic in Figures 4.11 and 4.12.  The interpretation of these solutions is discussed in 

the following section. 

TABLE 4.29. EXPANSION SYSTEM VARIABLES, POINT SCENARIO 
Scheme B H hc hf hb 

1 0.0200 0.0056 0.0007 0.0194 0.0010 
2 0.0187 0.0500 0.0049 0.0121 0.0500 
3 0.0188 0.0253 0.0027 0.0247 0.0121 
4 0.0200 0.0390 0.0007 0.0228 0.0106 
5 0.0118 0.0270 0.0004 0.0212 0.0152 
6 0.0200 0.0119 0.0007 0.0264 0.0168 
7 0.0200 0.0251 0.0012 0.0184 0.0152 
8 0.0200 0.0050 0.0050 0.0186 0.0219 
9 0.0118 0.0160 0.0004 0.0262 0.0152 
10 0.0200 0.0254 0.0011 0.0168 0.0168 
11 0.0111 0.0093 0.0011 0.0184 0.0010 

 

TABLE 4.30. EXPANSION MATERIAL PROPERTY VARIABLES, POINT 
SCENARIO 

Yield Strength Density 
Scheme Back Core Front Back Core Front 

1 1200.0 1200.0 1200.0 1600.0 1600.0 1600.0 
2 1200.0 1200.0 1200.0 1600.0 1600.0 2787.1 
3 200.0 538.0 200.0 1770.0 7845.0 1770.0 
4 200.0 538.1 200.1 1770.7 7844.8 1770.7 
5 200.0 538.0 200.0 1770.1 7844.9 1770.1 
6 200.0 538.0 200.0 1770.1 7844.9 1770.1 
7 200.0 538.0 200.0 1770.1 7845.4 1770.1 
8 200.0 538.0 200.0 1770.7 7846.1 1770.7 
9 200.0 538.1 200.0 1770.7 7845.4 1770.7 
10 200.1 538.1 200.0 1770.7 7845.4 1770.7 
11 1200.0 1200.0 1200.0 1600.0 1600.0 1600.0 
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TABLE 4.31. EXPANSION SYSTEM VARIABLES, RANGED SCENARIO 
Scheme B H hc hf hb 

1 0.0200 0.0050 0.0007 0.0500 0.0270 
2 0.0200 0.0294 0.0011 0.0121 0.0468 
3 0.0126 0.0322 0.0011 0.0437 0.0057 
4 0.0200 0.0050 0.0007 0.0230 0.0500 
5 0.0200 0.0182 0.0007 0.0291 0.0433 
6 0.0200 0.0050 0.0008 0.0218 0.0500 
7 0.0118 0.0107 0.0004 0.0495 0.0247 
8 0.0200 0.0050 0.0007 0.0434 0.0325 
9 0.0200 0.0050 0.0007 0.0230 0.0500 
10 0.0200 0.0050 0.0007 0.0230 0.0500 
11 0.0200 0.0383 0.0007 0.0121 0.0500 

  

 

TABLE 4.32. MATERIAL PROPERTY VARIABLES IN THE SOLUTION TO THE 
EXPANSION CDSP, RANGED SCENARIO 

Yield Strength Density 
Scheme Back Core Front Back Core Front 

1 738.7 879.7 701.9 1770.0 1700.0 1770.0 
2 1180.0 170.0 504.3 2352.6 2509.5 1770.0 
3 200.0 538.0 200.0 1770.0 7845.0 1770.0 
4 200.0 538.0 200.0 1770.0 7845.0 1770.0 
5 257.0 170.0 175.3 1770.0 7150.9 1770.0 
6 200.0 538.0 200.0 1770.0 7845.1 1770.0 
7 200.0 538.0 200.0 1770.0 7845.0 1770.0 
8 200.0 538.2 200.0 1770.0 7845.3 1770.0 
9 200.0 538.0 200.0 1770.0 7844.7 1770.0 
10 200.0 538.0 200.0 1770.0 7844.9 1770.0 
11 1180.0 198.4 504.3 1770.0 1700.0 1770.0 
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TABLE 4.33. EXPANSION DEVIATION VARIABLES, POINT SCENARIO 
Scheme d-

mass  d+
mass d-

deflection  d+
deflection d-

CDSE  d+
CDSE ZA 

1 0 0.0111 0 0.0006 0 1.2102 0.0111 
2 0 0.0500 0 0.0000 0 1.2140 0.0000 
3 0 0.0391 0 0.0005 0 0.0000 0.0000 
4 0 0.0268 0 0.0006 0 0.0001 0.0163 
5 0 0.0264 0 0.0006 0 0.0000 0.0057 
6 0 0.0277 0 0.0006 0 0.0000 0.0057 
7 0 0.0275 0 0.0006 0 0.0000 0.0058 
8 0 0.0296 0 0.0006 0 0.0001 0.0120 
9 0 0.0274 0 0.0006 0 0.0001 0.0112 
10 0 0.0271 0 0.0006 0 0.0001 0.0093 
11 0 0.0112 0 0.0006 0 1.2102 0.0059 

 

 

 

 

TABLE 4.34. EXPANSION DEVIATION VARIABLES, RANGED SCENARIO 
Scheme d-

mass  d+
mass d-

deflection  d+
deflection d-

CDSE  d+
CDSE ZA 

1 11.4293 0.0000 3.4384 0.0000 11.4995 0.0000 11.4293 
2 14.5109 0.0000 1.3581 0.0000 14.546 0.0000 1.3581 
3 15.3505 0.0000 3.3295 0.0000 1.0132 0.0000 1.0132 
4 11.603 0.0000 2.9743 0.0000 1.0094 0.0000 7.7585 
5 12.0614 0.0000 2.1445 0.0000 3.4773 0.0000 4.3944 
6 11.6413 0.0000 2.9975 0.0000 1.0226 0.0000 3.5414 
7 11.8114 0.0000 3.227 0.0000 1.0116 0.0000 4.0577 
8 11.5959 0.0000 3.276 0.0000 1.0587 0.0000 5.7170 
9 11.6049 0.0000 2.975 0.0000 1.0296 0.0000 6.0379 
10 11.6049 0.0000 2.9721 0.0000 1.0194 0.0000 5.1988 
11 11.5808 0.0000 1.3379 0.0000 15.275 0.0000 6.4594 
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FIGURE 4.11. BRP SCHEMATIC OF THE SOLUTION TO THE POINT SCENARIO 
OF THE EXPANSION CDSP, SCHEME 10 
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FIGURE 4.12. BRP SCHEMATIC OF THE SOLUTION TO THE RANGED 

SCENARIO OF THE EXPANSION CDSP, SCHEME 10 
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4.2.3 Interpreting the Expansion Solution 

As before with the baseline cDSP solution, the minimization results must be evaluated for 

validity in addition to the solutions themselves. These two topics are addressed in the 

next sections. 

The minimization results for the expansion solutions 

To build confidence in the validity of the design solution, convergence plots of the 

genetic algorithm and pattern search are consulted along with an analysis of the active 

constraints.  As shown in the sample convergence plots in Figures 4.13 and 4.14, the 

algorithm converges smoothly to a solution.  This behavior is observed for all solutions, 

and the convergence plots for each solution are included in Appendix B.  The active 

constraints are also investigated.  Identifying the active constraints helps to determine if 

the solutions make sense theoretically.  The active constraints for the solutions are shown 

by the bold entries in Tables 4.35 and 4.36.  Design variable bounds also act as 

constraints and can be active for a particular solution.  These active bounds are denoted 

by the bold entries in Tables 4.29 through 4.32. When the bounds on the design variables 

are acting as active constraints, this indicates that it may be beneficial to expand these 

bounds if possible. The active constraints identified in the solution tables build 

confidence in the solutions to the expansion cDSPs.  In particular, it is noted that there 

are no active constraints for Scheme 3 in both scenarios.  This is expected because it is 

known that the minimum of the CDSE function is in the interior of the design space, 

therefore the solution to that particular scheme should not have any active constraints 

because it is an interior solution.   



 

 142 

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4
x 108

Generation

Fi
tn

es
s 

va
lu

e

Best: 0.0439 Mean: 116000

Best fitness
Mean fitness

 
FIGURE 4.13. SAMPLE CONVERGENCE PLOT FROM THE GENETIC 

ALGORITHM–POINT SCENARIO, SCHEME 10 
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FIGURE 4.14. SAMPLE CONVERGENCE PLOT FROM THE PATTERN SEARCH - 
POINT SCENARIO, SCHEME 10 
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TABLE 4.35. CONSTRAINTS FOR THE SOLUTIONS TO THE RANGED 
SCENARIO OF THE EXPANSION CDSP 

Scheme mass deflection Rc Γ µ 
1 0.0000 -4.588 0.000 -14.701 -2210.545 
2 0.0000 0.000 -0.040 -0.707 -50.686 
3 -1.4703 -0.004 -0.090 -12.375 -123.990 
4 -0.4435 0.000 0.000 -4.732 -1012.824 
5 0.0000 -0.001 -0.002 -6.984 -334.951 
6 -0.6052 0.000 -0.013 -4.289 -812.076 
7 0.0000 -0.632 0.000 -14.516 -1018.628 
8 -0.0008 -0.484 0.000 -12.264 -1917.769 
9 -0.4519 0.000 0.000 -4.732 -1005.588 

10 -0.4473 0.000 0.000 -4.732 -1012.824 
11 -2.2712 0.000 -0.003 -0.707 -60.199 

 
 
 
 
 
 
 

TABLE 4.36. CONSTRAINTS FOR THE SOLUTIONS TO THE POINT SCENARIO 
OF THE EXPANSION CDSP 

Scheme mass deflection Rc Γ µ 
1 -116.69 0.000 0.000 -0.414 -2.289 
2 0.000 -0.143 -0.385 -0.302 -0.430 
3 -32.699 -0.036 -0.193 -0.454 -2.040 
4 -69.554 0.000 0.000 -0.442 -2.190 
5 -70.718 0.000 0.000 -0.430 -2.220 
6 -67.036 0.000 0.000 -0.463 -2.278 
7 -67.628 0.000 -0.046 -0.404 -2.151 
8 -61.230 0.000 -0.365 -0.406 -2.193 
9 -67.913 0.000 0.000 -0.462 -2.267 

10 -68.895 0.000 -0.038 -0.385 -2.146 
11 -116.28 0.000 -0.112 -0.404 -2.217 
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The physical meaning of the solution 

To analyze the expansion design solutions, hypotheses are again identified for each of the 

preference schemes and each scenario.  These hypotheses and the corresponding results 

are displayed in Tables 37 through 47.  For each of the schemes in which a non-zero 

weight is placed on the CDSE goal, the material property variables are nearly identical to 

the baseline material properties, which indicate that the minimization of the CDSE goal is 

a significant factor in the expansion solutions. The only exception is the solution to 

Scheme 5 in the Ranged Scenario, in which the strength and density variables are distinct 

from the baseline material properties.  The weight on the CDSE goal in Scheme 5 is the 

smallest non-zero weight placed on the CDSE in any scheme.  Also, the solutions to 

many of the schemes in the Point Scenario indicate that the achievement of the mass goal 

continues to dominate the achievement of the deflection goal in the expansion CDSP. 
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TABLE 4.37. EXPANSION SOLUTION ANALYSIS, SCHEME 1 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis  Result 

Po
in

t 

The cell spacing is at the upper bound, the back face sheet 
thickness is at the lower bound and the core layer height and cell 
wall thickness each tend towards the lower bounds. The front face 
sheet thickness tends slightly toward the lower bound.  All three 
density variables are at the lower bound and all three yield 
strength variables are at the upper bound.  Thus, all of the 
variables behave as expected in this solution.  The deflection 
constraint and the relative density constraint are both active. 

1 1.
00

 

0.
00

 

0.
00

 

In this scheme the only objective 
is to minimize mass; therefore 
the layer and cell wall 
thicknesses are likely to be small, 
the cell spacing is likely to be 
large, the strength variables are 
likely to be large, the density 
variables are likely to be small, 
and the deflection constraint is 
likely to be active. 

R
an

ge
d 

All three density variables are at the lower bound, while the 
strength variables tend slightly toward the upper bound.  The cell 
spacing is at the upper bound, the core height is at the lower 
bound, the cell wall thickness is nearly at the lower bound, the 
front face sheet thickness is at the upper bound, and the back face 
sheet thickness is near the midpoint.  Unexpectedly, the mass 
constraint is active, along with the relative density constraint. 
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TABLE 4.38. EXPANSION SOLUTION ANALYSIS, SCHEME 2 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis  Result 

Po
in

t 

The core layer height and back face sheet are at their upper 
bounds as expected, and the cell spacing tends toward its upper 
bound.  The cell wall thickness is near the midpoint of its range, 
and the front face sheet tends towards the lower bound.  All three 
yield strength variables are at the upper bound as expected, and 
the core and back face sheet densities are at the lower bound as 
expected.  The front face sheet density tends toward the lower 
bound.  The mass constraint is active as expected. 

2 0.
00

 

1.
00

 

0.
00

 

In this scheme the only objective 
is to minimize deflection; 
therefore the layer and cell wall 
thicknesses are likely to be large, 
the strength variables are likely 
to be large, the density variables 
are likely to be small, and the 
mass constraint is likely to be 
active.  

R
an

ge
d 

The strength variable for the back face sheet is at the upper bound, 
while the strength variable for the core is at the lower bound, and 
the strength variable for the front face sheet is near the midpoint.  
The density variables for the back face sheet and core are near the 
lower bound, and the density of the front face sheet is at the lower 
bound.  The cell spacing is at the upper bound, the core height is 
near the midpoint, the cell wall thickness tends toward the lower 
bound, the front face sheet thickness is less than the midpoint, and 
the back face sheet thickness is near the upper bound.  The mass is 
active as expected; however the deflection constraint is also 
active, which is not expected.. 
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TABLE 4.39. EXPANSION SOLUTION ANALYSIS, SCHEME 3 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis  Result 

Po
in

t No geometric variables are at their bounds, and the material 
property variables are identical to the baseline material properties 
as expected.  No constraints are active, but the deflection is within 
4mm of the limit. 

3 0.
00

 

0.
00

 

1.
00

 

In this scheme, the only objective 
is to minimize CDSE; therefore, 
the material property variables 
are expected to be the same as 
the baseline material properties.  
The remaining system variables 
are arbitrary other than for 
constraint satisfaction. 

R
an

ge
d The material property variables are identical to the baseline 

material properties as expected, but the face sheet densities are at 
their lower bounds at the baseline properties.  No constraints are 
active, but the deflection constraint is nearly active. 
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TABLE 4.40. EXPANSION SOLUTION ANALYSIS, SCHEME 4 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis  Result 

Po
in

t 

The material property variables are nearly identical to the baseline 
material properties, differing at most by one tenth of one MPa in 
the case of the yield strength variables and seven tenths of one 
kg/m3 in the case of the density variables.  The cell spacing is at 
the upper bound, the core height tends toward the upper bound, 
the cell wall thickness is nearly at the lower bound, the front face 
sheet thickness is near the midpoint, and the back face sheet 
thickness tends toward the lower bound. These dimensions are 
consistent with minimizing the mass of the panel.  Both the 
deflection and relative density constraints are active, similarly to 
the solution for Scheme 1 in which minimizing the mass is the 
only goal. 

4 0.
60

 

0.
20

 

0.
20

 

The majority of the weight is 
placed on the mass goal with 
equal weight placed on the 
deflection and CDSE goals; 
therefore the material property 
variables are likely to be similar 
to the baseline material 
properties but tending towards 
lower densities. 

R
an

ge
d 

The material property variables are identical to the baseline 
properties. The cell spacing is at the upper bound, the core height 
is at the lower bound, the cell wall thickness is near the lower 
bound, the front face sheet thickness is near the midpoint, and the 
back face sheet thickness is at the upper bound. The deflection and 
relative density constraints are active. 
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TABLE 4.41. EXPANSION SOLUTION ANALYSIS, SCHEME 5 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis  Result 

Po
in

t 

The material property variables are nearly identical to the baseline 
material properties, differing at most by one tenth of one kg/m3 in 
the case of the density variables and not at all in the case of the 
strength variables.  The cell spacing tends toward the upper 
bound, the core height is near the midpoint, the cell wall thickness 
is nearly at the lower bound, the front face sheet thickness is 
slightly less than the midpoint, and the back face sheet thickness 
tends toward the lower bound.  The deflection and relative density 
constraints are both active, and the mass is more than 70 kg away 
from the limit.  On the contrary, the mass constraint is expected to 
be active, not the deflection constraint.  This indicates that the 
mass goal is dominating the solution. 5 0.

20
 

0.
60

 

0.
20

 

The majority of the weight is 
placed on the deflection goal 
with equal weight placed on the 
mass and CDSE goals; therefore 
the material property variables 
are likely to be similar to the 
baseline materials but tending 
towards higher strengths and 
lower densities.  The deflection 
constraint is not likely to be 
active but the mass constraint is 
likely to be active. 

R
an

ge
d 

The yield strength variables all tend toward the lower bounds, 
while the core strength is at the lower bound.  The face sheet 
densities are at the lower bound, which is the density of the face 
sheet baseline material.  The density of the core layer is less than 
the density of the core baseline material by about 700 kg/m3.  The 
cell spacing is at the upper bound, the core height is less than the 
midpoint, the cell wall thickness is near the lower bound, the front 
face sheet thickness is somewhat larger than the midpoint, and the 
back face sheet thickness tends toward the upper bound.  The 
mass constraint is active as expected, and the deflection and 
relative density constraints are nearly active. 



 

  

150

 
 
 

TABLE 4.42. EXPANSION SOLUTION ANALYSIS, SCHEME 6 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis  Result 

Po
in

t 

The material property variables are nearly identical to the baseline 
material properties, differing at most by one tenth of one kg/m3 in 
the case of the density variables and not at all in the case of the 
strength variables.  The cell spacing is at the upper bound, the core 
height is near the lower bound, the cell wall thickness is nearly at 
the lower bound, the front face sheet thickness is near the 
midpoint, and the back face sheet thickness tends toward the lower 
bound.  The deflection and relative density constraints are both 
active. 6 0.

20
 

0.
20

 

0.
60

 

The majority of the weight is 
placed on the CDSE goal with 
equal weight placed on the mass 
and deflection goals; therefore, 
the material property variables 
are likely to be the same as the 
baseline material properties. 

R
an

ge
d 

The material property variables are all identical to the baseline 
material properties, except for the core density which differs by 
one tenth of one kg/m3.  The cell spacing is at the upper bound, 
the core height is at the lower bound, the cell wall thickness is 
near the lower bound, the front face sheet thickness is near the 
midpoint, and the back face sheet thickness is at the upper bound.  
The deflection constraint is active. 
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TABLE 4.43. EXPANSION SOLUTION ANALYSIS, SCHEME 7 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis  Result 

Po
in

t 

The material property variables are nearly identical to the baseline 
material properties, differing at most by four tenths of one kg/m3 
in the case of the density variables and not at all in the case of the 
strength variables.  The cell spacing is at the upper bound, the core 
height is near the midpoint, the cell wall thickness tends toward 
the lower bound, and the face sheet thicknesses are somewhat less 
than the midpoint.  The deflection constraint is active, but the 
mass constraint is not active as expected.  This indicates that the 
mass goal is dominating the solution.. 7 0.

20
 

0.
40

 

0.
40

 

The majority of the weight is 
split equally between the CDSE 
and deflection goals, with a 
smaller weight placed on the 
mass goal; therefore, the mass 
constraint is likely to be active, 
and the material properties 
variables are likely to be similar 
to the baseline properties but 
tending towards higher strength 
and lower density. 

R
an

ge
d 

The material property variables are identical to the baseline 
material properties. The cell spacing is near the upper bound, the 
core height is near the lower bound, the cell wall thickness is near 
the lower bound, the front face sheet thickness is near the upper 
bound, and the back face sheet thickness is near the midpoint.  
The mass and relative density constraints are active. 
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TABLE 4.44. EXPANSION SOLUTION ANALYSIS, SCHEME 8 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis  Result 

Po
in

t 

The material property variables are nearly identical to the baseline 
material properties, differing at most by 1.1 kg/m3 in the case of 
the density variables and not at all in the case of the strength 
variables.  The cell spacing is at the upper bound, the core height 
is at the lower bound, the cell wall thickness is near the midpoint, 
and the face sheet thicknesses are somewhat less than the 
midpoint.  The deflection constraint is active as expected. 

8 0.
40

 

0.
20

 

0.
40

 

The majority of the weight is 
split equally between the mass 
and CDSE goals, with a smaller 
weight placed on the deflection 
goal; therefore the material 
property variables are likely to be 
similar to the baseline material 
properties but tending towards 
smaller densities.  Also, the layer 
and wall thicknesses are likely to 
be smaller and the deflection 
constraint is likely to be active. R

an
ge

d 
The material property variables are all identical to the baseline 
material properties, except for the core density which differs by 
three tenths of one kg/m3 and the strength of the core layer which 
differs by two tenths of one MPa.  The cell spacing is at the upper 
bound, the core height is at the lower bound, the cell wall 
thickness is near the lower bound, the front face sheet thickness is 
near the upper bound and the back face sheet thickness is slightly 
larger than the midpoint.  The relative density constraint is active 
and the mass constraint is nearly active.  The deflection constraint 
is not active. 
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TABLE 4.45. EXPANSION SOLUTION ANALYSIS, SCHEME 9 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis  Result 

Po
in

t 

The material property variables are nearly identical to the baseline 
material properties, differing at most by one tenth of one MPa in 
the case of the yield strength variables and seven tenths of one 
kg/m3 in the case of the density variables.  The cell spacing is near 
the upper bound, the core height is less than the midpoint, the cell 
wall thickness is nearly at the lower bound, the front face sheet 
thickness is near the midpoint, and the back face sheet thickness 
tends toward the lower bound.  Both the deflection and relative 
density constraints are active, similarly to the solution for Scheme 
1 in which minimizing the mass is the only goal.  This again 
indicates that the mass goal dominates the solution. 

9 0.
40

 

0.
40

 

0.
20

 

The majority of the weight is 
equally divided between the mass 
and deflection goals with the 
remaining weight placed on the 
CDSE goal; therefore, the mass 
and deflection constraints are not 
likely to be active, but the 
material property variables are 
likely to tend towards the 
baseline material properties. 

R
an

ge
d 

The material property variables are all identical to the baseline 
material properties, except for the core density which differs by 
three tenths of one kg/m3.  The cell spacing is at the upper bound, 
the core height is at the lower bound, the cell wall thickness is 
near the lower bound, the front face sheet thickness is near the 
midpoint, and the back face sheet thickness is at the upper bound.  
The deflection and relative density constraints are active. 
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TABLE 4.46. EXPANSION SOLUTION ANALYSIS, SCHEME 10 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis  Result 

Po
in

t 

The material property variables are nearly identical to the baseline 
material properties, differing at most by one tenth of one MPa in 
the case of the yield strength variables and seven tenths of one 
kg/m3 in the case of the density variables.  The cell spacing is at 
the upper bound, the core height is near the midpoint, the cell wall 
thickness tends toward the lower bound, and the face sheet 
thicknesses are equal at a value slightly less than the midpoint.  
The deflection constraint is active, which is not expected. 

10
 

0.
33

 

0.
33

 

0.
33

 

In this scheme an equal weight is 
placed on all three goals; 
therefore, it is likely that the 
material properties will tend 
towards the baseline material 
properties and the mass and 
deflection constraints will not be 
active. 

R
an

ge
d 

The material property variables are all identical to the baseline 
material properties, except for the core density which differs by 
one tenth of one kg/m3.  The cell spacing is at the upper bound, 
the core height is at the lower bound, the cell wall thickness is 
near the lower bound, the front face sheet thickness is near the 
midpoint, and the back face sheet thickness is at the upper bound.  
The geometric variables in this solution are identical to the 
solution to Scheme 9, which also has equal weights on the mass 
and deflection goals. The deflection and relative density 
constraints are active, which is also the same as in the solution to 
Scheme 9. 
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TABLE 4.47. EXPANSION SOLUTION ANALYSIS, SCHEME 11 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis  Result 

Po
in

t 

As expected, all density variables are at their lower bounds and 
the strength variables are at their upper bounds.  The cell spacing 
is near the midpoint, the core layer height is near the lower bound, 
the cell wall thickness tends toward the lower bound, the front 
face sheet thickness is slightly less than the midpoint, and the back 
face sheet thickness is at the lower bound.  The deflection 
constraint is active, which is not expected.. 

11
 

0.
50

 

0.
50

 

0.
00

 

In this scheme an equal weight is 
placed on the mass and 
deflection goals with no weight 
placed on the CDSE goal; 
therefore, it is expected that the 
density variables will tend 
towards the lower bound and the 
strength variables will tend 
toward the upper bound.  Also, it 
is unlikely for the mass and 
deflection constraints to be 
active. R

an
ge

d 
The back face sheet strength is at the upper bound, while the core 
layer and front face sheet strength variables tend toward the lower 
bounds. All three density variables are at their lower bounds.  The 
cell spacing is at the upper bound, the core height is greater than 
the midpoint, the cell wall thickness is near the lower bound, the 
front face sheet thickness is near the lower bound, and the back 
face sheet thickness is at the upper bound.  The deflection 
constraint is active and the relative density constraint is nearly 
active, which is not expected. 
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To investigate the trades between the three objectives of minimizing mass, deflection and 

CDSE, the solutions for each problem are summarized by the Pareto front of the three 

design goals, shown in Figures 4.15 and 4.16.  As shown in the Pareto front for the Point 

Scenario, there appears to be a conflict between minimizing mass and minimizing cost, 

indicated by the convex relationship between the mass and deflection deviation variables.  

There does not appear to be a strong relationship between mass and CDSE or deflection 

and CDSE.  In the Pareto front for the Ranged Scenario, there are weak relationships 

between mass and deflection and between CDSE and deflection, but no apparent 

relationship between mass and CDSE.    
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FIGURE 4.15. PARETO FRONT FOR THE POINT SCENARIO 
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FIGURE 4.16. PARETO FRONT FOR THE RANGED SCENARIO 

 

4.3 THE VDSE METRIC AND MATERIAL PROPERTY TARGETS 

With the solutions to the expansion cDSP found, the VDSE metric can be calculated, and 

the material property targets can be specified for subsequent phases of design.  In Section 

4.3.1 the calculation of the VDSE metric is discussed and the impact of the values of the 

VDSE metric on the decision between material design and material selection is discussed.  

In Section 4.3.2, the material property targets are identified for a sample solution. 

4.3.1 The VDSE Metric 

Recall from Section 3.2.1 the equation for the VDSE metric, repeated here in Equation 

4.32. 

 , ,A base A expandedVDSE Z Z= −  (4.32) 

The VDSE metric is calculated for each preference scheme of both the Point and Ranged 

Scenarios (Step 3.1 of the DSES).  These values are shown in Tables 4.48 and 4.49.   
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TABLE 4.48. VDSE METRIC FOR EACH SOLUTION TO THE POINT SCENARIO 

Scheme 
Baseline 
Deviation 

Expansion 
Deviation VDSE 

1 0.136 0.0111 0.125 
2 0.005 0.0000 0.005 
3 0.000 0.0000 0.000 
4 0.086 0.0163 0.069 
5 0.039 0.0057 0.033 
6 0.031 0.0057 0.025 
7 0.035 0.0058 0.029 
8 0.058 0.0120 0.046 
9 0.062 0.0112 0.051 
10 0.052 0.0093 0.043 
11 0.078 0.0059 0.072 

 

 

TABLE 4.49. VDSE METRIC FOR EACH SOLUTION TO THE RANGED 
SCENARIO 

Scheme 
Baseline 
Deviation 

Expansion 
Deviation VDSE 

1 11.60 11.429 0.015 
2 2.39 1.358 0.432 
3 1.00 1.013 -0.013 
4 7.76 7.759 0.000 
5 4.19 4.394 -0.049 
6 3.51 3.541 -0.009 
7 3.87 4.058 -0.049 
8 5.64 5.717 -0.014 
9 6.02 6.038 -0.003 
10 5.19 5.199 -0.002 
11 7.280 6.459 0.821 

 
To analyze the VDSE values, hypotheses are again identified for each of the preference 

schemes and each scenario.  These hypotheses and the corresponding results are 

displayed in Tables 50 through 55.  For each of the schemes in which no weight is placed 

on the CDSE goal, it is expected that the VDSE is positive, because there is no penalty 

for drastic changes in the material property variables.  It is seen that this is indeed the 
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case for both the Point and Ranged Scenarios (see Schemes 1, 2, and 11).  It is also seen 

that increasing the weight on the CDSE goal, while keeping the weights on the mass and 

deflection goals equal to each other results in a lower VDSE value.  This is the expected 

result. 

 

A positive value for the VDSE indicates that the expanded material design space enabled 

an improvement in performance relative to the baseline solution without too much of an 

increase in CDSE.  Conversely, a negative value for the VDSE indicates that the 

improvement in performance in the solution in the expanded material design space is 

outweighed by the increase in the cost of expanding the design space.  Excluding Scheme 

3, in which no improvement is possible by expanding the material design space, the 

solutions to all schemes of the Point Scenario in the expansion cDSP represent an 

improvement in the achievement of design goals as compared to the baseline solution.  

Furthermore, in Scheme 2 of the Point Scenario, the VDSE metric is equal to the 

deviation at the baseline solution, indicating that expanding the material design space 

enabled the deviation to be minimized to zero in that scheme.  For the Ranged Scenario, 

only Schemes 1, 2, and 11 show an improvement due to expanding the design space, and 

in each of these schemes no weight is placed on the CDSE goal.  In Scheme 4 of the 

Ranged Scenario there is no change in the achievement of design goals, but in the 

remaining schemes, the performance improvements in the expansion solutions are 

outweighed by the cost of expanding the design space.   
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TABLE 4.50. VDSE ANALYSIS, SCHEMES 1-3 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis  Result 

Po
in

t 

The VDSE is positive and equal to 0.125. 

1 1.
00

 

0.
00

 

0.
00

 

In this scheme the only objective is to minimize 
mass with no weight on the CDSE goal; 
therefore the VDSE is likely to be positive 
because there is no penalty for large changes in 
the material property variables. 

R
an

ge
d 

The VDSE is positive and equal to 0.015. 

Po
in

t 

The VDSE is positive and equal to 0.005. 

2 0.
00

 

1.
00

 

0.
00

 

In this scheme the only objective is to minimize 
deflection with no weight placed on the CDSE 
goal; therefore the VDSE is likely to be positive 
because there is no penalty for large changes in 
the material property variables. R

an
ge

d 

The VDSE is positive and equal to 0.432. 

Po
in

t 
The VDSE is indeed equal to zero. 

3 0.
00

 

0.
00

 

1.
00

 

In this scheme the only objective is to minimize 
CDSE; therefore, the VDSE is expected to be 
equal to zero because the it is not possible to 
improve in the achievement of the CDSE goal in 
the expanded design space. R

an
ge

d The VDSE is slightly less than zero due to small 
variations in the material properties in the 
expansion solution. 
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TABLE 4.51. VDSE ANALYSIS, SCHEMES 4-5 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis  Result 

Po
in

t The VDSE is equal to 0.069, which is indeed 
smaller than the VDSE for Scheme 1. 

4 0.
60

 

0.
20

 

0.
20

 

The majority of the weight is placed on the mass 
goal with equal but less weight placed on the 
deflection and CDSE goals; therefore, due to the 
non-zero weight on the CDSE goal the VDSE is 
likely to be smaller than the VDSE for Scheme 1, 
but the VDSE may or may not be positive. 

R
an

ge
d The VDSE is equal to zero because there is no 

change in the deviation from the baseline to the 
expansion solution.  This value is indeed smaller 
than the VDSE for Scheme 1. 

Po
in

t 

The VDSE is equal to 0.033, which is larger than 
the VDSE in Scheme 2, but smaller than the 
VDSE in Scheme 1.  This is consistent with the 
finding that the mass goal dominates the 
deflection goal in the Point Scenario. 5 0.

20
 

0.
60

 

0.
20

 

The majority of the weight is placed on the 
defleciton goal with equal but smaller weight 
placed on the mass and CDSE goals; therefore, 
due to the non-zero weight placed on the CDSE 
goal, the VDSE is likely to be smaller than the 
VDSE for Scheme 2, but the VDSE may or may 
not be positive. 

R
an

ge
d 

The VDSE is equal to -0.049, which is indeed 
smaller than the VDSE in Scheme 2. 
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TABLE 4.52. VSDE ANALYSIS, SCHEMES 6-7 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis  Result 

Po
in

t The VDSE is equal to 0.025, which is indeed 
smaller than the VDSE for Schemes 9, 10, and 11.

6 0.
20

 

0.
20

 

0.
60

 

The majority of the weight is placed on the 
CDSE goal with equal weight placed on the mass 
and deflection goals.  Compared to other 
schemes in which an equal weight is placed on 
the mass and deflection goals (Schemes 6, 9, 10, 
and 11), this scheme has a larger weight placed 
on the CDSE goal than in Schemes 9, 10, and 11. 
Therefore, the VDSE for this scheme is expected 
to be smaller than the VDSEs for Schemes 9, 10, 
and 11. R

an
ge

d 

The VDSE is equal to -0.009, which is indeed 
smaller than the VDSE for Schemes 9, 10, and 11.

Po
in

t 
The VDSE is equal to 0.029. 

7 0.
20

 

0.
40

 

0.
40

 

The majority of the weight is split equally 
between the CDSE and deflection goals, with a 
smaller weight placed on the mass goal; 
therefore, due to the large weight placed on the 
CDSE goal the VDSE for this scheme is likely to 
be small. 

R
an

ge
d 

The VDSE is equal to -0.049. 
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TABLE 4.53. VDSE ANALYSIS, SCHEMES 8-9 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis  Result 

Po
in

t 

The VDSE is equal to 0.046. 

8 0.
40

 

0.
20

 

0.
40

 

The majority of the weight is split equally 
between the mass and CDSE goals, with a 
smaller weight placed on the deflection goal; 
therefore due to the large weight placed on the 
CDSE goal the VDSE is likely to be small. 

R
an

ge
d 

The VDSE is equal to -0.014. 

Po
in

t The VDSE is equal to 0.051, which is indeed 
smaller than the VDSE for Scheme 11 but larger 
than the VDSE's for Schemes 6 and 10. 

9 0.
40

 

0.
40

 

0.
20

 

The majority of the weight is equally divided 
between the mass and deflection goals with the 
remaining weight placed on the CDSE goal.  
Compared to other schemes in which an equal 
weight is placed on the mass and deflection goals 
(Schemes 6, 9, 10, and 11), this scheme has a 
smaller weight placed on the CDSE goal than in 
Schemes 6 and 10 and a larger weight placed on 
the CDSE goal than in Scheme 11.  Therefore, 
the VDSE for this scheme is expected to be 
smaller than the VDSE for Scheme 11 but larger 
than the VDSE's for Schemes 6 and 10. 

R
an

ge
d 

The VDSE is equal to -0.003, which is indeed 
smaller than the VDSE for Scheme 11 and larger 
than the VDSE for Scheme 6; however the VDSE 
in this scheme is not larger than the VDSE in 
Scheme 10, as expected, but is within one one-
thousandth of the VDSE for Scheme 10. 
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TABLE 4.54. VDSE ANALYSIS, SCHEME 10 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis  Result 

Po
in

t The VDSE is equal to 0.043, which is indeed 
smaller than the VDSEs for Schemes 9 and 11 but 
larger than the VDSE for Scheme 6. 

10
 

0.
33

 

0.
33

 

0.
33

 

In this scheme an equal weight is placed on all 
three goals. Compared to other schemes in which 
an equal weight is placed on the mass and 
deflection goals (Schemes 6, 9, 10, and 11), this 
scheme has a smaller weight placed on the CDSE 
goal than in Scheme 6 and a larger weight placed 
on the CDSE goal than in Schemes 9 and 11.  
Therefore, the VDSE for this scheme is expected 
to be smaller than the VDSEs for Schemes 9 and 
11 but larger than the VDSE for Scheme 6. R

an
ge

d 

The VDSE is equal to -0.002, which is indeed 
smaller than the VDSE for Scheme 11 and larger 
than the VDSE for Scheme 6; however the VDSE 
in this scheme is not smaller than the VDSE in 
Scheme 9, as expected, but is within one one-
thousandth of the VDSE for Scheme 9. 
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TABLE 4.55. VDSE ANALYSIS, SCHEME 11 

Sc
he

m
e 

M
as

s 

D
ef

le
ct

io
n 

C
D

SE
 

Hypothesis  Result 

Po
in

t The VDSE is positive and equal to 0.072, which is 
indeed larger than the VDSE for Schemes 6, 9, 
and 10. 

11
 

0.
50

 

0.
50

 

0.
00

 

In this scheme an equal weight is placed on the 
mass and deflection goals with no weight placed 
on the CDSE goal.  Compared to other schemes 
in which an equal weight is placed on the mass 
and deflection goals (Schemes 6, 9, 10, and 11), 
this scheme has a smaller weight placed on the 
CDSE goal than in Schemes 6, 9, and 10.  
Therefore, the VDSE for this scheme is expected 
to be larger than the VDSEs for Schemes 6, 9, 
and 10. Also, since there is zero weight placed 
on the CDSE goal, the VDSE is expected to be 
positive. 

R
an

ge
d The VDSE is positive and equal to 0.821, which is 

indeed larger than the VDSE in Schemes 6, 9, and 
10, as expected. 
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Depending on the targets for each objective and the weighting coefficients on each of the 

deviation variables, it is possible to achieve a deviation function value of zero at the 

baseline solution, indicating that the targets have been met.  Another possibility is that the 

absolute minimum of the goal may be realized at the baseline solution.  In those 

situations, no improvement is possible in the deviation function by expanding into the 

material design space.  Accordingly, the VDSE metric will be negative for all design 

points in the expanded design space except at the baseline solution.  This is the case in 

Scheme 3 of both scenarios. If the deviation function is at a minimum in the baseline 

solution, the VDSE will be negative, indicating that moving away from the baseline 

solution results in a worse design.   
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FIGURE 4.17. MAPPING THE VDSE METRIC IN THE PERFORMANCE SPACE, 

POINT SCENARIO 
 



   

   167

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11
0.12
0.13
0.14
0.15

0 50 100 150

Mass/Area (kg/m3)

D
ef

le
ct

io
n 

(m
)

Baseline
Expansion
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11

 
FIGURE 4.18. MAPPING THE VDSE IN THE PERFORMANCE SPACE, RANGED 

SCENARIO 
 
To understand the meaning of the VDSE in terms of the achievement of design goals, the 

baseline and expansion solutions for each scenario are compared in the performance 

space.  In Figures 4.17 and 4.18 the VDSE is indicated by lines connecting the baseline 

and expansion solutions in the performance space (i.e. on a plot of deflection versus mass 

per area).  The lengths of the connecting lines indicate the magnitude of the change in the 

achievement of the design goals.  The solutions for the Point Scenario are shown in 

Figure 4.17.  Recall that the VDSE metric is positive for all preference schemes in the 

Point Scenario; however, the length of the lines connecting the baseline solutions to the 

expansion solutions indicates that the amount of improvement in the achievement of the 

deflection and mass goals is very small.  Therefore, a designer may choose not to pursue 

material design when the VDSE metric is positive if the improvement in the achievement 

in the design goals is small. The schemes which show large improvements (Schemes 1, 2, 
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3, and 11) have at least one goal with zero weight, meaning that at least one of the three 

goals is ignored in these schemes.  Similarly, the lengths of the connecting lines in the 

Ranged Scenario (shown in Figure 4.18) show large changes for Schemes 1 and 11, both 

of which have zero weight placed on the CDSE goal.   

 

The directions of the connecting lines are also important.  An overall improvement in the 

achievement of design goals occurs when the expansion solution (shown as a square 

point) is closer to the origin than the baseline solution (shown as a triangular point).  This 

can be seen in the connecting line for Scheme 11 in the Ranged Scenario (Figure 4.18).   

 

4.3.2 Material Property Targets 

If the VDSE metric is positive and the magnitude of the improvement in design goals is 

large enough, a designer may decide to pursue material design. In that case, material 

property targets can be identified based on the values of material property variables in the 

solution to the expansion cDSP.  To demonstrate the identification of material property 

targets, the process is discussed for three schemes in the BRP example.  For the Point 

Scenario, the material property targets are identified for Scheme 10.  For the Ranged 

Scenario, the material property targets are identified for Scheme 11, which had the largest 

value of VDSE in the previous section, and for Scheme 2, which also has a positive value 

of VDSE. For the Point Scenario, the targets are a single point; however, for the Ranged 

Scenario, the material property targets are a range of values.  The material property 

targets for all three schemes are shown in Table 4.56.  These targets are compared to 

databases of material properties to determine if an existing material meets the targets 

(Step 3.2.1).  If an existing material does not meet the targets, then the targets are used to 

guide the design of the material. 

 



   

   169

 
TABLE 4.56. MATERIAL PROPERTY TARGETS FOR THREE SCHEMES 

 Units Mean Value +/- Targets  
Point Scenario, Scheme 10 
 Yield Strength, Back MPa 200.06 n/a 200.06  
 Yield Strength, Core MPa 538.06 n/a 538.06  
 Yield Strength, Front MPa 200.02 n/a 200.02  
 Density, Back kg/m3 1770.70 n/a 1770.70  
 Density, Core kg/m3 7845.43 n/a 7845.43  
 Density, Front kg/m3 1770.70 n/a 1770.70  
Ranged Scenario, Scheme 2  lower upper 
 Yield Strength, Back MPa 1180.00 20 1160.00 1200.00 
 Yield Strength, Core MPa 170.00 150 20.00 320.00 
 Yield Strength, Front MPa 504.32 20 484.32 524.32 
 Density, Back kg/m3 2352.58 170 2182.58 2522.58 
 Density, Core kg/m3 2509.47 100 2409.47 2609.47 
 Density, Front kg/m3 1770.00 170 1600.00 1940.00 
Ranged Scenario, Scheme 11  lower upper 
 Yield Strength, Back MPa 1180.00 20 1160.00 1200.00 
 Yield Strength, Core MPa 198.39 150 48.39 348.39 
 Yield Strength, Front MPa 504.32 20 484.32 524.32 
 Density, Back kg/m3 1770.00 170 1600.00 1940.00 
 Density, Core kg/m3 1700.00 100 1600.00 1800.00 
 Density, Front kg/m3 1770.00 170 1600.00 1940.00 

 

 

To determine if an existing material meets the material property targets, material 

databases are consulted (Step 3.2.1).  In this example the online database maintained by 

Automation Creations is used for a quick search of available materials (Automation 

Creations, 2007).  For the Point Scenario, the targets are single numbers rather than a 

range of acceptable properties, and as such, it is unlikely that an exact match will be 

found in a search of existing materials. However, the targets that are identified for this 

particular scheme are very similar to the properties of the baseline materials.  Therefore, 

the baseline materials could be selected for this scheme. 
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In the case of the Ranged Scenario, it is much more likely to find an existing material that 

meets the targets, because the targets are a range of material properties rather than a point 

solution.  For the front face sheet in Scheme 2, a carbon composite material is found that 

meets the range of material properties (Industrial Laminates/Norplex NP545 Carbon 

Fiber).  For the core layer, several aluminum alloys are found that meet the property 

targets.  For the back face sheet, no materials are found in the database that meet the 

property targets.  For Scheme 11, no materials are found in the database that meet the 

property targets for the back face sheet.  Many magnesium alloys are found that meet the 

property targets for the core layer. And for the front face sheet, the material property 

targets are the same for Scheme 11 as for Scheme 2, so the carbon composite material 

found for Scheme 2 also meets the targets for Scheme 11. 

 

To gain further insight, the targets are highlighted on the material selection chart shown 

in Figure 4.19 in Step 3.2.2 of the DSES.  For the Point Scenario, the targets are actually 

points, and the points fall into the expected points on the plot for steel and magnesium.  

In the Ranged Scenario, the targets for the back face sheet fall into a range common to 

glasses.  The front face sheet, on the other hand, falls into material property ranges that 

are common to engineered composites.  The targets for the core cover an area in the plot 

populated by aluminum alloys.  Composites and glasses have very different material 

behavior as compared to metals, and the analysis models used in the BRP design assume 

a stress-strain behavior of metals.  Therefore, the differences in the behavior of these 

types of materials must be investigated before using them in the BRP design. For the 

cases in which no material is found that meets the targets, a material must be designed to 

meet these targets.  For Scheme 2 of the Ranged Scenario, a designer could select 

materials that meet the front face sheet and core layer material property targets, but a 

material must be designed to meet the material property targets for the back face sheet. 
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 FIGURE 4.19. MATERIAL SELECTION CHART WITH TARGETS HIGHLIGHTED 

(ASHBY, 1999) 

4.4 VALIDATION: DOMAIN-SPECIFIC PERFORMANCE VALIDITY 

Domain-specific performance validity refers to the usefulness of the proposed method in 

achieving the intended purpose of the method, as introduced in Section 1.4.  The 

usefulness must be attributed to the application of the proposed method.  In addition, the 

accuracy and internal consistency of the empirical data used in the example must be 

verified. The intended purpose of the design space expansion strategy is to identify the 

value of expanding the material design space in the context of a product design.  The 

empirical validity of the models is discussed in Section 4.4.1. The domain-specific 

performance validity of the DSES is discussed as well as the implications of the design 

solutions on the usefulness of the method in Section 4.4.2. 
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4.4.1 BRP Model Validity 

In the following section, a look at the validity of the models used in the BRP design 

example is presented.  The BRP analysis models are discussed in addition to the models 

for the expected cost of design space expansion.  The following two sections were 

developed in collaboration with Hannah Muchnick and also appear in her thesis 

(Muchnick, 2007).  The finite element analysis reported here was conducted by Jin Song. 

BRP Analysis Models 

The equations used in generating BRP computational models are based on the work of 

Hutchinson and Xue (2005) and are detailed in Section 4.1.3.  A cost function is also 

defined in that section to reflect the designer’s beliefs about how the cost of the design 

process will be affected by diverging from the baseline material.   The validation of the 

cost model is addressed later in this section. 

 

 Confidence is built in the validity of the BRP models due to the fact that they are based 

on existing performance calculations of BRPs found in the literature (Hutchinson and 

Xue, 2005).  Although the equations for BRP deflection are taken directly from the work 

of Hutchinson and Xue, BRP deflection solutions calculated as part of the research in this 

thesis do not match the deflection results published by Hutchinson and Xue (2005).  

Deflection calculations based on the work in this thesis disagree with published 

deflection calculations by approximately an order of 2.  After rigorous examination for 

possible errors, researchers in the Systems Realization Lab (SRL) at Georgia Tech are 

confident that the BRP performance equations have been implemented correctly.  Due to 

this inconsistency, researchers in the SRL at Georgia Tech have contacted Hutchinson 

and Xue in an effort to resolve this in consistency.  Since this issue is not yet resolved, it 

is left as future work in the BRP design project. 
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Finite Element Analysis 

To provide further validation to the computational design tools used to predict BRP 

performance, finite element analysis (FEA) of BRP performance is currently being 

conducted.  Once BRP a design solution is obtained, a 3D model of the designed BRP is 

imported to the commercial FEA software, ABAQUS for further deformation analysis.  

An example of a BRP analyzed in ABAQUS is shown in Figure 4.20. 

 

 

FIGURE 4.20. BRP DEFLECTION ANALYZED IN ABAQUS 
 

 

Current efforts to validate the mathematical models used to predict BRP performance 

using FEA are in progress.  Due to the complexity of parametrizing FEA simulations and 

the time required to simulate the plastic behavior of the panel, collecting enough data to 

validate the models via FEA simulations is very time-consuming.  As such, the number of 
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FEA simulations needed to validate these empirical models are currently unavailable, and 

this portion of model validation will be addressed in the future work of BRP design. 

 

Analyzing BRP performance using FEA will become extremely valuable in the future 

when BRP design continues to increase in complexity.  For example, there is a research 

interest in filling various cells in the BRP core layer with a ceramic particle powder.  It is 

assumed that this will further decrease BRP deflection without significantly increasing 

panel mass.  Analyzing complex phenomena such as energy dissipation in ceramic 

particles will most likely be completed using FEA software.   

Cost of Design Space Expansion 

To verify that the CDSE function performs as desired, contour plots are generated for the 

two baseline materials identified in Section 4.3.1.  Plots are generated for two sets of 

weighting coefficients to see the effect of the weighting coefficients on the CDSE.  The 

contour plots are shown in Figures 4.21 through 4.24.  As expected, the minimum of the 

CDSE lies at the point in the material design space embodied by the corresponding 

baseline material.  In addition, the CDSE monotonically increases as the solutions 

diverge from the baseline material.  By comparing the plots with the nominal weights to 

the plots with the doubled weights, it is evident that increasing the weighting factor 

indeed results in an increase in the slope of the CDSE.  Furthermore, by the shape of the 

contour lines, it can be seen that the weights chosen for the yield strength and density 

dimensions result in a CDSE that reflects the beliefs that it is easier (i.e., less costly) to 

vary in the yield strength dimension than it is to vary in the density dimension.  This is 

the expected behavior because the yield strength of alloys can be varied through heat 

treatment, but the density is difficult to change because it is dependent on the constituent 

materials of the particular alloy.   
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FIGURE 4.21. MAGNESIUM BASED CDSE FUNCTION WITH NOMINAL 
WEIGHTS 
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FIGURE 4.22. MAGNESIUM BASED CDSE FUNCTION WITH DOUBLED 
DENSITY WEIGHT 
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FIGURE 4.23. STEEL BASED CDSE FUNCTION WITH NOMINAL WEIGHTS 
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FIGURE 4.24. STEEL BASED CDSE FUNCTION WITH DOUBLED DENSITY 
WEIGHT 
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4.4.2 Assessing the Usefulness of the DSES 

An assessment must be made of the usefulness of the design space expansion strategy 

with respect to its intended purpose: assessing the value of expanding the material design 

space for supporting the decision between material selection and material design. In 

demonstrating the strategy for the design of BRPs, it is shown that useful results can be 

found.  By using DCIs in the ranged BRP scenario, ranged sets of design solutions are 

found that include values for material property variables as well as values for system 

variables important for BRP design. These ranged sets of solutions meet ranged 

constraints and goals and thus preserve design freedom for subsequent phases of design.  

By defining the material properties as independent design variables, the freedom of 

material design is embodied without the development of a complex material model, 

which is a difficult task in itself.   

 

How do the VDSE metric values calculated in this example support the decision between 

material design and selection?  

 

For every scenario in which the VDSE is positive, the solutions that are presented 

represent an improvement in the achievement of system goals that outweighs the increase 

in the CDSE.  By comparing the expansion solutions to the baseline solutions, it is 

apparent that improvement in design goals is facilitated by tailoring the material 

properties to meet the identified material property requirements. The actual choice 

between material design and selection is inherently linked to the expected cost of design 

space expansion and the expression of preferences in the deviation function.  Designers 

must have confidence in these preference models in order to use this strategy to make the 

decision between design and selection.  With confidence in the models and preferences, 

the designer can use the VDSE metric to determine when to choose design over selection. 

 



   

   178

The conclusion in this example is that material selection is the preferred course of action 

in BRP design; however, the validity of this conclusion rests on the assumptions made in 

the BRP performance models, the target values for the design goals, the CDSE function, 

and the weights in the deviation function.  A change in any of these assumptions will 

likely change the results.  Specifically, if a different designer formulates this same BRP 

problem, she is likely to have different preferences and beliefs, and these preferences and 

beliefs are manifested in the formulation of the baseline and expansion cDSPs.  As such, 

the baseline and expansion solutions are likely to change and the VDSE metric and 

resulting decision between material selection and design are also likely to change 

 

4.5 A LOOK BACK AND A LOOK AHEAD 

In this chapter, the DSES is demonstrated in a BRP design example.  This demonstration 

is provided both as an explanation of the implementation of the strategy and for the 

assessment of domain-specific structure and performance validity of the strategy.  In 

Chapter 5, the thesis is summarized and critically reviewed.  The validation of the 

research hypotheses is concluded with the assessment of domain-independent 

performance validity.  In addition, opportunities for future work are identified. 
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CHAPTER 5 

CLOSING REMARKS 

 

In this chapter, the thesis is summarized and critically reviewed.  The intention in this 

thesis is to develop a strategy for supporting a designer’s choice between material 

selection and material design in the context of product design. The motivation for 

establishing the Design Space Expansion Strategy and the VDSE metric, the details of the 

strategy itself, and the results obtained by applying the strategy to a blast resistant panel 

design problem are summarized in Section 5.1. In Section 5.2, the research questions and 

hypotheses posed in Section 1.3.2 are revisited and critically evaluated with emphasis on 

the validity of the research hypotheses beyond the example problem described in this 

thesis. Based on the summary and critical review, the achievements and contributions 

reported in this thesis are presented in Section 5.3, followed in Section 5.4 by 

opportunities for future work. 

 

5.1 A SUMMARY OF THIS THESIS 

A paradigm shift is underway in engineering design in which the classical approach of 

material selection is being replaced by the systematic design of materials in the context of 

product designs. In this thesis, the focus is on developing a strategy for supporting a 

designer’s decision between material selection and material design in the context of 

product design. Material property targets are determined from the product requirements 

and detail a range of acceptable material properties to most closely achieve the product 

requirements. A range of material property targets is preferred to a deterministic set of 

requirements to maintain design freedom for subsequent phases of design. 
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In this thesis, the Design Space Expansion Strategy (DSES) is presented as a strategy for 

assessing the value of expanding the material design space by designing relative to 

material selection. A material design space is defined by assuming the material properties 

to be independent design variables which vary continuously between an upper and lower 

bound. It is assumed that points in this material design space can be realized by 

modifying existing materials in a multiscale material design process. This material design 

space is expanded relative to the point design space of a baseline material. The expanded 

design space embodies an increase in the design freedom because it allows more freedom 

for the designer to tailor the material properties to the product.  This expansion of the 

material design space also has the potential to significantly increase the complexity of the 

product design process by the inclusion of material design; therefore, a cost function is 

defined by the designer to quantify the designer’s beliefs about the design process impact 

of diverging from the existing baseline material. This function is called the Cost of 

Design Space Expansion (CDSE). By including a designer-specified cost or penalty 

function in the multi-objective formulation of the DSES, a designer is able to weigh the 

trade-off between the design freedom and complexity of material design with the 

simplicity and possible design limitations of material selection. 

 

A key component of the DSES is the Value of Design Space Expansion (VDSE) metric.  

Based on existing value of information metrics, the VDSE metric quantifies the 

improvement in the achievement of design goals by expanding the material design space. 

By calculating the VDSE metric, designers are able to measure the value of expanding 

the material design space in terms of how an expansion of the design space enables an 

improvement in the achievement of product and design process goals.  Positive values of 

the VDSE metric indicate that the solution is an improvement in the achievement of 

product goals over the baseline solution and that this improvement outweighs the increase 

in design complexity associated with expanding the material design space. Conversely, 
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the VDSE metric is negative when the increase in the design complexity due to 

expanding the material design space outweighs the improvement in product goals in the 

expansion solution relative to the baseline solution.  

 

The DSES is demonstrated in Chapter 4 for the design of blast resistant panels. The 

design of blast resistant panels is an appropriate example problem because there is a 

trade-off between material and structural solutions. At the outset of BRP design it is 

unclear if the freedom of material design is necessary for achieving product goals, given 

that material design increases the complexity of the design process.  Two BRP design 

scenarios are presented, and several preference schemes are considered. The results from 

this example problem are used to build confidence in the validity of the DSES. 

 

5.2 ANSWERING THE RESEARCH QUESTIONS AND VALIDATING THE 

HYPOTHESES 

The DSES and VDSE metric are established to answer the research questions posed in 

Section 1.3.2.  The DSES and the VDSE metric are an embodiment of the three 

hypotheses proposed in Section 1.3.2 for answering the research questions.  In this 

section, each hypothesis is revisited and the validation of each hypothesis according to 

the validation plan identified in Figure 1.6 is discussed. In Sections 5.2.1 through 5.2.3 

summaries are provided of the arguments made throughout the thesis regarding the 

domain-independent and domain-specific validity of each hypothesis.  In Section 5.2.4, 

attention is focused on the domain-independent performance validity of the DSES, which 

involves building confidence that the strategy is valid in a general sense beyond the scope 

of the example problem presented in this thesis. 
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5.2.1 Question 1: Evaluating Material Concepts 

In Hypothesis 1, an expansion of the material design space is proposed by assuming that 

material properties are independent design variables rather than fixed, discrete solutions. 

A designer models the material by assuming that the material property variables vary 

continuously between upper and lower bounds, and that a material defined by any point 

in the material design space can be realized by modifying the composition and processing 

path of existing materials using a systematic material design process. The material model 

is then embedded in the performance models commonly used by mechanical designers 

which use tabulated material properties to represent an abstraction of the actual material. 

Agile material design space exploration is enabled by the formulation of the expansion 

cDSP and the simplicity of the performance models. By adjusting the weighting factors 

of an Archimedean deviation function, designers are able to explore the trade-offs 

between several goals while leaving the doors open to material design or material 

selection. 

 

The domain-independent structure validity of the cDSP is established in Chapter 2 with a 

review of the literature and a critical discussion of the domain of application of the 

construct.  The validity of the cDSP for multi-objective decision making in engineering 

design has been well established in the literature.  Archimedean formulations of the 

deviation function allow designers to specify preferences on the achievement of multiple 

goals using simple weights.  The cDSP has also been extended in the utility-based cDSP 

to model non-linear designer preferences in the form of utility functions.  This widely 

applicable multi-objective decision support construct is appropriate for a foundation of 

the DSES. 

 

By using the cDSP as the multi-objective decision support foundation of the DSES, 

multiple product and design process goals can be included. Moreover, by defining the 
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material design space using independent material property variables, the models used to 

predict product performance embody the freedom of material design without an increase 

in complexity which would negatively impact the ease of design space exploration.  

 

A ranged form of the cDSP using design capability indices (DCIs) is used to find ranged 

sets of material property targets which meet ranged design requirements. Design 

capability indices are used for both constraints and goals in the formulation of the ranged 

cDSP, where constraints represent requirements that must be met and goals represent 

requirements that should be taken into consideration whenever possible.  

 

The structure validity of the ranged form of the cDSP with design capability indices is 

established in Chapters 2 and 3 with a review of the literature in Section 2.2.2 and a 

discussion of the internal consistency of the DSES in Section 3.3.1.  DCIs are appropriate 

for finding ranged sets of design solutions which meet ranged sets of design requirements 

and have been demonstrated by several authors (see Section 2.2.2). In the DSES, the 

DCIs are used to find ranged sets of material property targets that satisfy ranged goals 

and constraints. To apply DCIs, the designer must have a way to quantify the sensitivity 

of the product performance as a result of variation in some uncertain input factors.  In the 

DSES, the uncertain input factors are the material property variables.  The amount of 

uncertainty in the material property variables is defined by the designer by surveying the 

variability in the material properties of the baseline material due to differences in 

processing.  This gives an indication of the degree to which the material properties can be 

tailored to product-specific requirements.  The sensitivity of the product performance due 

to variations in the material properties is approximated by a 1st order Taylor series 

expansion, which has been shown to be an appropriate method for quantifying the 

sensitivity of the response when an analytical expression for the response is available.   
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In Chapter 4, the DSES is demonstrated for the design of blast resistant panels, and the 

domain-specific structure and performance validity of the DSES are discussed. Two 

scenarios are identified for testing all aspects of the DSES with respect to the domain-

specific validity.  Variation in the material property variables as well as uncertainty in 

noise factors is considered in a Ranged Scenario. By applying constraints and goals in the 

DSES in the form of DCIs, ranges of material property targets are found which are robust 

to both sources of uncertainty and meet the ranges of design requirements modeled by the 

constraints and goals.   

 

5.2.2 Question 2: The Value of Design Space Expansion Metric 

In Section 3.2, the VDSE metric is proposed as the metric for supporting the decision 

between material selection and material design. The VDSE quantifies the improvement in 

the achievement of design goals in the expanded design space relative to the achievement 

of design goals at a baseline solution. The VDSE is based on the Improvement Potential 

metric which has been used in engineering design to make the meta-level of decision of 

when to stop gathering information for simulation model refinement.  In this thesis, the 

meta-level decision is whether or not to gather more information by developing a 

complex multiscale material model.  Since the cost of development of this model is the 

very cost that designers are hoping to avoid, the ex-post value of information metrics 

used previously in engineering design are not appropriate, and an ex-ante or conditional 

value of information metric is desired. Rather than directly quantifying the value of the 

additional information of the material model, the VDSE metric quantifies the value of the 

additional design freedom afforded by expanding the material design space from a 

discrete point to a continuous design space.  

 



   

   185

The VDSE is applied in the example problem on BRP design in Section 4.3.1. By 

calculating the VDSE metric for the BRP design problem, the value of expanding the 

material design space for the BRP is assessed.  Based on the calculated VDSE values, it 

is found that the improvements in the system goals are outweighed by the increase in the 

cost of expanding the design space, and as such, material selection is the preferred option 

in the BRP example.  

5.2.3 Question 3: Providing Guidance for Subsequent Phases of Design 

In the third hypothesis, it is proposed that the ranged sets of solutions found using the 

ranged cDSP can be analyzed in order gain to insight into the material property targets of 

the product.  Furthermore, by calculating the VDSE metric, guidance is provided to 

support the decision between material selection and material design.  The structural 

validity of the ranged cDSP is established in Chapters 2 and 3 and is discussed previously 

in Section 5.2.1.  Also, the structural validity of value of information metrics is 

established in Chapters 2 and 3 and is discussed previously in Section 5.2.2.  The DSES 

is applied in Chapter 4 to an example problem on BRP design in order to assess the 

performance validity.  In Section 4.3.2, material property targets are identified from the 

expansion solutions, and the targets are located both in material databases and on material 

selection charts.  By locating the material property targets both in databases of existing 

materials and on material selection charts, designers gain insight into the types of 

materials that may meet the targets. 

5.2.4 Domain-Independent Performance Validation of Hypotheses 1, 2 and 3 

As introduced in Section 1.4.1, domain-independent performance validity involves 

establishing that the proposed methods are useful beyond the example problems. This 

involves determining the characteristics of the example problems that make them 
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representative of general classes of problems. Based on the usefulness of the method for 

the example problem, its usefulness for general classes of problems is inferred. 

 

For domain-specific structure validation, it is argued in Section 3.3.2 that the example 

problem on BRP design is representative of a general class of problems, defined by the 

following characteristics: 

• Multiple-conflicting objectives must be balanced in order to achieve families of 

compromise solutions. 

• Motivation exists to tailor the material to the product through material design, but 

the value of this material design freedom relative to the increase in complexity of 

the design process is unknown.  It is assumed that the designers beliefs about the 

extent of the material design freedom is embodied in the bounds, constraints, and 

the cost of design space expansion function in the formulation of the problem. 

• Variations in the material properties cause significant performance variation, the 

nature and/or magnitude of which is influenced by the levels of all design 

variables. This provides a rationale for modeling the sensitivity of the product 

performance to the variability in the material properties and seeking ranged sets of 

solutions which meet ranged design requirements. 

• Analytical models are available that relate material properties and other design 

variables to the performance of the product, and these models are relatively 

precise, accurate, and fast enough to permit agile design space exploration. 

 

This is intended to be a list of the characteristics of problems for which the effectiveness 

of the DSES has been demonstrated.  In Section 4.4.2 it is demonstrated that the DSES is 

effective for an example problem on BRP design which shares these characteristics. 

Therefore, there is reason to believe that the DSES is effective for a general class of 

problems with these characteristics. The capabilities, advantages and limitations of the 
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DSES for the general class of problems represented by the example problem in BRP 

design are summarized in Section 5.2.1 through 5.2.3 and are not repeated here.  

 

The human designer is essential for the successful application of the DSES as an attention 

directing tool in the early stages of design.  That is, the preferences, beliefs, and expertise 

of the designer have significant impacts on the usefulness of the strategy and the validity 

of the conclusions, and the design solutions and conclusions are likely to be different for 

different designers.  By completing the validation square, it is shown that the DSES can 

be a useful tool for supporting the decision between material selection and material 

design for the general class of problems with the characteristics listed above; however, 

the usefulness of the DSES is dependent upon the meaningfulness of the assumptions 

made by the human designer.  With meaningless assumptions the DSES is rendered 

useless because no confidence can be placed on the resulting conclusions. 

 

In the next section, the achievements and contributions to the field of engineering design 

that have been established by answering the research questions and demonstrating and 

validating the research hypotheses are highlighted. 

 

5.3 ACHIEVEMENTS AND CONTRIBUTIONS 

To identify the achievements and contributions in this thesis, the research opportunities 

identified in Section 2.4 are revisited in this section.  Contributions are identified here 

both in the field of engineering design as well as in BRP design.  First, the research 

opportunities are revisited to identify the achievements and contributions in the field of 

engineering design.   
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The first two research opportunities identified in Table 2.3 are embodied in Research 

Question 1.  These are to identify a way to determine how well material concepts meet 

product requirements and a computationally efficient way to represent and evaluate the 

performance of new materials.  This gap is addressed by the identification of the 

continuous material design space represented by independent material property variables.  

As design variables and used in conjunction with engineering equations, the material 

property variables provide both a way to represent material concepts and a way to 

evaluate their performance.   

 

Several of the research opportunities identified in Tables 2.3 and 2.4 refer to the 

establishment of the Value of Design Space Expansion metric, which is embodied in 

Research Question 2.  In these tables it is identified that a metric is needed that is similar 

to value of information metrics but quantifies the value of expanding the design space.  

Furthermore, this metric must be compatible with the cDSP, because the cDSP enables 

the simultaneous consideration of both product performance goals and the cost of design 

space expansion goal, a design process goal.  Thus the metric must determine the value of 

design space expansion based on the reduction of overall deviation in the expansion 

solution relative to the baseline solution.  These needs are met in the VDSE metric 

proposed in Section 3.2.  This metric enables the quantitative comparison of material 

selection and material design on the basis of meeting product and design process 

objectives.  By calculating the VDSE metric and identifying material property targets, 

designers can decide whether or not material design is warranted in the context of the 

product design, given the increase in design complexity.  Furthermore, this decision can 

be made prior to the development of complex material models for material design. 

 

Finally, a need is established in Table 2.3 to identify material property targets from the 

cDSP solutions, which is embodied in Research Question 3.  In Section 4.3.2 a process is 
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established for identifying material property targets from the expansion cDSP solutions 

and to locate these targets in material databases and on material selection charts.  This 

process allows designers to gain insight into the material requirements of the product. 

 

The primary contribution in this thesis is the establishment of a strategy to support a 

designer’s choice between material selection and material design in the context of 

product design.  The DSES enables the identification of material property targets through 

agile design space exploration throughout an expanded material design space defined by 

independent material property variables.  The flexibility of the cDSP construct is 

leveraged by including additional system variables in the expansion cDSP to enable 

design space expansion.  Also, the multiobjective capabilities of the cDSP are leveraged 

to find solutions to product and design process objectives simultaneously. Specifically, 

the cost of design space expansion objective is sought simultaneously with the product 

performance objectives.  The strategy is applicable in a more general sense in the context 

of scoping decisions in engineering design, not just for the decision between material 

selection and material design.  The extension of this strategy towards a more 

comprehensive strategy for generic design scoping decisions is discussed in the next 

section. 

 

In addition to the contributions listed above in the field of design, contributions are made 

in this thesis in the field of BRP design (see Chapter 4).  First, by implementing the 

DSES strategy for BRP design, it is found that the VDSE is positive for all preference 

schemes in the Point Scenario while the VDSE is negative for all preference schemes in 

the Ranged Scenario which have a nonzero weight on the CDSE goal (see Section 4.3).  

Also, it is seen that the material property variables tend to stay very close to the baseline 

properties when the weight on the CDSE goal is nonzero.  Thus, the increase in 

complexity due to the design of new materials outweighs the improvements in mass and 
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deflection of the panel when uncertainty is considered in the design.  When the 

uncertainty is ignored and a point solution is sought, the improvements in mass and 

deflection outweigh the increase in complexity due to material design; however, it is 

unlikely that the material properties can be precisely achieved, and the variation in the 

performance of the panel as a result of the variation in these properties can be significant. 

 

In addition, some interesting trends are identified.  It is found that in the Ranged 

Scenario, there is a tendency towards thicker face sheets and a thin core layer.  

Conversely, in the Point Scenario, a tendency towards a thicker core layer with nearly 

equal face sheet thicknesses is found.  In both scenarios, a tendency towards smaller cell 

wall thicknesses and larger cell spacing is found. Therefore, it seems that the ranged 

solutions rely on thicker back face sheets while the point solutions take advantage of the 

crushing of the core layer.  These results indicate that the opportunities to leverage the 

crushing layer are localized minima in the design space that cannot be reached when 

seeking ranged solutions.  This conclusion is further supported by the tendency of the 

mass goal to dominate the deflection goal in the Point Scenario (see Sections 4.1.3 and 

4.2.3).  This is because reducing the cell wall thickness, increasing the cell spacing, and 

reducing the mass density of the material in the core layer facilitates a reduction in mass 

of the panel but does not necessarily help to reduce the deflection of the panel.  The 

impact of changes in these variables on the deflection of the panel depends on the values 

of the other system variables as well, thus it is easier to improve the deviation function by 

reducing the panel mass because it is easier to achieve a reduction in mass.  In future 

work it is prudent to expand the bounds on cell spacing and cell wall thickness if possible 

because these variables tended toward their bounds in all cases. Also, because the mass 

goal dominates the achievement of the deflection goal in the Point Scenario, it may be 

more appropriate to constrain rather than minimize the panel deflection. 
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5.4 LIMITATIONS AND OPPORTUNITIES FOR FUTURE WORK 

The Design Space Expansion Strategy is proposed in this thesis as a starting point to 

explore how to formulate a tool to support a designer’s decision between material 

selection and material design in the context of product design. However, there are 

limitations to the breadth and extent of this work, and these limitations offer opportunities 

for future work. In this section the simplifying assumptions made in this work are 

identified and the resulting opportunities for future work are outlined. First, the 

assumptions in the BRP example are discussed, and are summarized in Table 5.1.   

 
TABLE 5.1. SIMPLIFYING ASSUMPTIONS AND ASSOCIATED FUTURE WORK 

IN THE BRP EXAMPLE 
 Assumptions Future Work 
1 The baseline materials used in the 

example are the preferred materials for 
selection. 

Conduct a material selection procedure to 
determine the most preferred existing 
materials for the BRP. 

2 The BRP analysis models used in the 
example provide results that are 
accurate enough to support the 
decision between selection and design.

Determine the error in the BRP 
performance models and incorporate this 
model uncertainty into the decision-
making process. 

3 The mass and deflection targets are 
appropriate, and the CDSE function 
appropriately models the designer's 
preferences in this example. 

• Conduct a sensitivity analysis of the 
mass and deflection targets and the 
weighting coefficients in the CDSE 
function. 

• Consult industry experts to verify the 
targets and CDSE function. 

 

In the BRP example, assumptions are made in the problem formulation as well as in the 

equations used to predict the BRP performance.  Many simplifying assumptions are made 

by Hutchinson and Xue to arrive at the equations for panel deflection, and these 

assumptions are thus made here as well (Hutchinson and Xue, 2005).  In future work, the 

error in these equations should be quantified so that it can be modeled in the decision 

making process as a type of uncertainty.  In the formulation of the BRP design problem 

in this thesis, assumptions are made concerning the baseline materials, the mass and 
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deflection targets, and the CDSE function.  It is assumed that the set of baseline materials 

used in the example comes as a result of undertaking a material selection procedure; 

however, that procedure is not demonstrated here.  To verify or correct this assumption, a 

material selection procedure should be conducted to determine the most preferred 

existing materials for the BRP.   

 

Assumptions are also made in the selection of mass and deflection targets in the BRP 

problem formulation.  These targets can significantly impact the solution, and as a result, 

a sensitivity analysis should be performed to determine the sensitivity of the solutions to 

these targets.  Industry experts can be consulted to determine more appropriate targets if 

necessary.  These same assumptions apply to the specification of the CDSE function in 

the BRP example.  A linear function with weighting coefficients is used in the example to 

reflect a designer’s belief that the complexity of the design will increase as the solutions 

diverge from the baseline materials.  A sensitivity analysis should be performed to 

determine the sensitivity of the solutions to the weighting coefficients on the CDSE 

functions as well as to the form of the CDSE function itself.  Again, industry experts can 

be consulted to identify a CDSE function that more accurately reflects their beliefs. 

 

The assumptions made in the DSES itself and the VDSE metric are summarized in Table 

5.2.  The first assumption in the DSES strategy is that the continuous material design 

space combined with the CDSE goal captures the complexity of material design 

sufficiently for making the decision between material design and selection.  To improve 

on this assumption, a more thorough survey of existing materials should be conducted to 

determine the distribution of existing materials throughout this design space supports this 

assumption.  Additionally, other forms of the CDSE function should be investigated 

including value and/or utility functions.  
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To balance the costs of material design with the potential improvement in performance, a 

cost of design space expansion (CDSE) is defined by the designer in the formulation of 

the DSES.  This cost function is intended to reflect the beliefs of the designer about how 

the cost or complexity of the design process will be impacted by choosing material 

properties that diverge from the baseline material.  This cost function is critical for 

balancing the potential benefits of material design with the increases in design 

complexity that are expected if a material must be designed concurrently with the 

product.  Because minimizing the cost or complexity of the design process is only one of 

multiple design objectives, it is included in the formulation of the DSES as a design goal. 

The CDSE function used in the BRP design example in this thesis is only one option for a 

cost function, and some designers may prefer a more rigorous definition of the CDSE.  

Another option for a cost function is a utility-based cost function.  Both utility and value 

functions should be investigated as potential forms for the CDSE function.  

 

The monotonically increasing CDSE function that is used in the BRP example is 

appropriate for incremental improvements in material properties in the neighborhood of 

existing materials.   Outside of the neighborhood of an existing material, it is unlikely 

that a monotonically increasing CDSE function is an appropriate assumption.  This is 

because there are other existing materials which populate the material design space, and 

the CDSE should therefore decrease as solutions approach existing materials.  Because of 

this, the DSES using a monotonically increasing CDSE function is only appropriate for 

supporting the decision between material selection and incremental material design.  In 

revolutionary material design new materials are sought which have properties that are 

drastically different from properties of existing materials.  To support a designer’s 

decision between material selection and revolutionary material design, a different non-

monotonically increasing CDSE function should be employed. 
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By selecting a set of baseline materials in the DSES strategy, two assumptions are made.  

First, it is assumed that a set of baseline materials can be identified and that there is a 

feasible solution using these baseline materials.  The need for a baseline material limits 

the applicability of this strategy to cases in which feasible design solutions can be found 

using existing materials.  Some critics may argue that if a feasible solution (one that 

meets design constraints) can be found using an existing material, there is no value in 

designing a material. In the author’s opinion, this argument ignores the potential 

improvement in the achievement of design goals by tailoring a material to the particular 

requirements of the product; this potential improvement may outweigh the increase in 

complexity of the design due to the design of the material.   

 

If there is no feasible design solution with existing materials, then it is possible that there 

is no need for the DSES because the only option is to design a new material.  However, it 

is also possible that a revision of the problem formulation may allow for a feasible 

solution using existing materials.  There is a trade-off here between the lost performance 

of the product due to the revision of the problem formulation and the expense of material 

design.  This is a similar decision to the decision between material design and material 

selection that is addressed in this thesis, but this decision cannot be made using the DSES 

as it is proposed here, and significant changes to the DSES are needed to address this 

question. 

 

Another assumption relating to the baseline materials is that only one baseline material 

set can be considered at a time in the DSES strategy.  To address this assumption, a more 

sophisticated CDSE function can be identified that incorporates multiple minima 

representing multiple baseline solutions.  In addition, a systematic method for comparing 
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the expansion solution to the multiple baseline solutions is needed.  This new method 

may require changes to the VDSE metric. 

 
TABLE 5.2. SIMPLIFYING ASSUMPTIONS AND ASSOCIATED FUTURE WORK 

IN THE DSES 
 Assumptions Future Work 
 DSES 
1 A continuous material design space 

combined with the CDSE goal 
appropriately models the complexities 
of material design for the purpose of 
making the decision between material 
selection and material design. 

• Conduct a more thorough survey of the 
material design space to determine the 
distribution of existing materials 
throughout the design space. 

• Investigate other forms for the CDSE 
function including utility and/or value 
functions. 

2 Baseline material properties can be 
identified at this stage in the design 
process, and there is a feasible design 
solution with baseline properties. 

Identify a method to determine if material 
design is the only option when there is no 
feasible baseline solution, or if it is 
preferred to revise the problem 
formulation in order to find a feasible 
baseline solution. 

3 Only one set of baseline material 
properties is considered at a time. 

• Identify a CDSE function that reflection 
multiple baseline material options. 

• Identify a systematic method for 
comparing the expansion solution to 
multiple baseline solutions. 

4 The goal targets and Archimedean 
deviation function of the cDSP 
effectively model the designer's 
preferences. 

Adapt the DSES to be compatible with 
other preference models including utility 
and/or value functions. 

5 The ranged form of the cDSP using 
DCIs is sufficient for characterizing 
the uncertainties in the choice between 
selection and design. 

Identify methods for incorporating model 
uncertainty in addition to uncertainty in 
requirements, noise factors and system 
variables 

 VDSE 
6 The cDSP deviation function is 

sufficient for calculating the VDSE 
and effectively models the designer's 
preferences concerning trade-offs and 
risks. 

Identify forms of the VDSE metric that 
are compatible with other forms of 
preference modeling including value 
and/or utility functions. 

 

An assumption is made in the DSES that the target values for the goals and the 

Archimedean deviation function in the cDSP effectively model the preferences of a 
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designer for the purposes of making the decision between material selection and design.  

Other preference models such as utility and value functions exist that may offer a better 

representation of a designer’s preferences.  The DSES should be adapted to be 

compatible with these other preference models.  These assumptions relating to the 

preference models also extend to the VDSE metric.  The metric proposed here is 

compatible with the cDSP deviation function, but is not directly compatible with utility 

and/or value functions.  This incompatibility is due to the fact that the objective with a 

deviation function is to minimize the deviation and the objective with a utility or value 

function is to maximize.  Therefore, the VDSE metric will have to be revised to be 

compatible with utility and value functions. 

 

In addition to assumptions about preference models, assumptions are made in the DSES 

that the ranged form of the cDSP using DCI’s is sufficient for characterizing the 

uncertainties in the decision between material selection and design.  However; model 

uncertainty can also be a significant factor.  Therefore the DSES should be adapted to 

account for this type of uncertainty as well.   

 

* * * 

 

I believe that decisions in design should be made consciously, not implicitly; however, 

many design alternatives are discarded early in the design process due to lack of 

knowledge or inexperience with the technologies.  Therefore, I believe there is a need for 

decision support constructs which help designers to determine when it is beneficial to 

take the risk to develop new technologies.  Strategies such as the DSES can be used to 

quickly determine the value of expanding the design space to include new technologies.  I 

also believe that it is prudent to adopt a set-based approach to design in which efforts are 

directed at eliminating poor solutions rather than identifying the one best solution.   
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I believe that the DSES proposed in this thesis is an effective strategy for supporting a 

designer’s decision between material selection and material design in the context of 

product design, but the decision between material selection and material design is only 

one type of design scoping decision that may arise in a design process.  In my PhD 

research I hope to develop a more comprehensive strategy in which the notion of 

information economics is infused in a set-based design approach.  The opportunities for 

future work in extending the DSES are summarized in proposal form in Figure 5.1 by 

identifying the problem and the primary research question. 
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ob

le
m

 

The generation of alternatives is an important step in any design process, one 
which may ultimately limit the success of the final product if the best 
alternative is not identified.  Designers often make implicit decisions to rule out 
design alternatives that increase the complexity or cost of the design without 
analyzing the potential benefits of the complicating technology.  Material 
design is one such example; designers are quick to rule out designing a new 
material for a product in favor of material selection because material design is 
costly and complicated, although designing the material may enable product 
improvements that are not possible with existing materials.   
 
The Design Space Expansion Strategy has been established to support a 
designer’s decision between material selection and material design in the 
context of product design.  This strategy can be generalized into a more 
comprehensive set-based design approach. 

Research Question 
How can the notion of information economics be infused into design 
scoping decisions to balance the cost of exploring additional alternatives 
with the potential for improving product performance? 

R
es

ea
rc

h 
Q

ue
st

io
ns

 

Pr
im

ar
y 

Hypothesis 
By generalizing the DSES into a more comprehensive set-based design 
approach, information economics can be infused into design scoping 
decisions. 

FIGURE 5.1. PROBLEM AND RESEARCH QUESTIONS FOR PHD RESEARCH 
 

The DSES is the first step towards infusing information economics into a comprehensive, 

systematic approach for set-based design.  I believe that a special class of value of 

information metrics can be defined to assess the value of design space expansion in a 
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more general sense.  These new metrics can then be used to support all types of scoping 

decisions in a set-based approach to design. 

 

* * * 
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APPENDIX A:  MATLAB CODE 

 

In Chapter 4, baseline and expansion cDSPs are solved as part of the example problem on 

BRP design (see Sections 4.1 and 4.2). In this appendix, the MATLAB m-files that are 

used for finding the baseline and expansion solutions are presented.  In addition, 

algorithms for finding the solutions using these m-files are presented.  The algorithm for 

finding the baseline solutions is presented in Table A.1, and the algorithm for finding the 

expansion solutions is presented in Table A.2.  In both the baseline and expansion cDSPs, 

separate m-files are used for the Point and Ranged Scenarios.  The Point Scenario is 

denoted by “_nr” in the filename, while the Ranged Scenario is denoted by “_r” in the 

filename.  For example, BRPfitness_r.m is the GA fitness function for the Ranged 

Scenario, while BRPfitness_nr.m is the GA fitness function for the Point Scenario.  The 

m-files are listed after the algorithms in alphabetical order.  For convenience, the page 

numbers for each of the m-files are listed in Table A.3. 

 

In Table A.1 the algorithm for finding the baseline solutions is presented.  There are four 

tasks, which are described in the second column.  The functions that are called by the 

scripts for each task are listed in the third column, and the names of the files in which the 

results are stored are listed in the fourth column.  This procedure must be carried out for 

each of the two design scenarios, but the scripts are written such that the solutions for all 

eleven preference schemes are found at the same time.  The resulting text files should be 

copied outside of the MATLAB current directory once all the tasks have been performed 

for one of the scenarios.  Otherwise, the files will be overwritten when running the scripts 

for the next scenario.  The only exception is the first task in which the text file of baseline 

points is created.  This task can be performed only once as the same file can be used for 

both scenarios. 
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TABLE A.1. ALGORITHM FOR FINDING BASELINE SOLUTIONS 

Task Description Function Calls  
(from current directory) 

Stores  
(in current directory) 

1 Generate points by 
running 
"get_points_baseline.m" 

• get_points_baseline.m • baseline_points.txt 

2 Find the feasible points 
 
• Point Scenario: run 

"baseline_nr_ 
 getfeasible.m" 
• Ranged Scenario: run 

"baseline_r_ 
 getfeasible.m" 

• baseline_nr/r_ 
 getfeasible.m 
• BRPdefl.m 
• ineq_constraints_ 
 BRP_nr/r.m 
• baseline_points.txt 

• feasible_A2.txt 
• infeasible_A2_ 
 gamma.txt 
• infeasible_A2_mu.txt 
• infeasible_A2_R_c.txt
• infeasible_A2_defl.txt 
• infeasible_A2_mass.txt
• infeasible_A2_hcB.txt
• timelog.txt 

3 Calculate deviation 
variables 
 
• Point Scenario: run 

"baseline_nr.m" 
• Ranged Scenario: run 

"baseline_r.m" 

• baseline_nr/r.m 
• BRPdefl.m 
• DSEcost.m 
• deviation.m 
• feasible_A2.txt 

• a2_devvars.txt 
• a2_cost.txt 

4 Find and report the 
minimum by running 
"baseline_getsolutions.m"

• baseline_ 
 getsolutions_nr/r.m 
• a2_devvars.txt 
• feasible_a2.txt 
• a2_cost.txt 

a2_solutions_arch.txt 

 

The algorithm for finding the expansion cDSP solutions is shown in Table A.2.  The 

tasks are described in the second column and the functions that are called during each 

task are listed in the third column.  This procedure must be carried out for both design 

scenarios and for each preference scheme separately.  The results of each step in this 

algorithm are not stored in text files as in the algorithm for the baseline solutions.  Rather, 

the solutions must be exported to the MATLAB workspace from the GA and pattern 

search tools.  At the end of the procedure the output from the 

solution_check_pattern_nr/r.m scripts should be copied from the command window to a 

separate file to save the data. 
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TABLE A.2. ALGORITHM FOR FINDING EXPANSION SOLUTIONS 

Task Description function calls 
(in current directory)

Set the scheme number in the appropriate m-files 1 
- BRPfitness_nr/r.m   (line 33) 
- BRPpattern_nr/r.m   (line 33) 
- solution_check_pattern_nr/r.m (line 30) 

 

Run the GA 
• open GA tool by typing "gatool" at the command line 
• enter the fitness function 

@BRPfitness_nr/r 
• Number of variables = 55 
• Select "Best Fitness" and "Mean Fitness" for the plots 
• Population type = "bit string" 
• Population size = 200 

2 

• Click on "Run Solver" 

• BRPfitness_ 
 nr/r.m 
• BRPdefl.m 
• norm01.m 
• unnorm01.m 
• ineq_constraints_
 BRP_nr/r.m 
• DSEcost.m 
• deviation.m 

3 Export the GA solution to the workspace and save plot  
Convert the bit string into a vector of normalized design 
variables using the following commands, where 'gasol' is 
the name of the exported structure containing the GA 
solution 

4 

 xga = gasol.x, [xps] = xga2xps(xga) 

xga2xps.m 

Run the pattern search 
• Open pattern search tool by typing "psearchtool" at the 

command line 
• Enter the objective function 

@BRPpattern_nr/r 
• Start point = xps 
• Set the bounds:  LB = zeros(1,11) 

    UB = ones(1,11) 
• Select "Best Fitness" to plot 

5 

• Click on "Start" 

• BRPpattern_ 
 nr/r.m 
• unnorm01.m 
• ineq_constraints_
 BRP_nr/r.m 
• BRPdefl.m 
• DSEcost.m 
• deviation.m 

6 Export the pattern search solution to the workspace and 
save plot 

 

Check the pattern search solution by entering the 
following command where "pssol" is the pattern search 
solution vector and save the output 

7 

solution_check_pattern_nr/r(pssol) 

solution_check_ 
 pattern_nr/r.m

 Repeat for remaining schemes  
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TABLE A.3. INVENTORY OF M-FILES INCLUDED IN THIS APPENDIX 
Filename Page 
baseline_getsolutions_nr 205 
baseline_getsolutions_r 207 
baseline_nr 208 
baseline_nr_getfeasible 210 
baseline_r 214 
baseline_r_getfeasible 216 
BRPdefl 220 
BRPfitness_nr 231 
BRPfitness_r 234 
BRPpattern_nr 237 
BRPpattern_r 240 
deviation 243 
DSEcost.m 244 
get_points_baseline 245 
ineq_constraints_BRP_nr 247 
ineq_constraints_BRP_r 248 
norm01 250 
solution_check_pattern_nr 250 
solution_check_pattern_r 255 
unnorm01 259 
xga2xps 260 

 

baseline_getsolutions_nr.m 

% Fall 2006 
% 
% AUTHOR:  Stephanie Thompson 
% 
% PURPOSE: to solve the baseline cDSP for the Point Scenario BRP  
% 
% ASSUMPTIONS:  
%       - The file 'a2_devvars.txt' is in the working directory and 
%         contains the deviation variables for the feasible points 
%       - The file 'feasible_a2.txt' is in the working directory and 
%         contains the design variables and performance values for the 
%         feasible points 
%       - The file 'a2_cost.txt' is in the working directory and  
%         contains the Design Space Expansion cost of each of the  
%         feasible points 
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% -------------------------------------------------------------------- 
% Problem formulation: 
% -------------------------------------------------------------------- 
  
% Define weighting factors 
W = [1 0 0; 0 1 0; 0 0 1; ... 
    .6 .2 .2; .2 .6 .2; .2 .2 .6; ... 
    .2 .4 .4; .4 .2 .4; .4 .4 .2; ... 
    1/3 1/3 1/3; 0.5 0.5 0]; 
  
% Load deviation variables, feasible points and cost values 
a2_devvars = load('a2_devvars.txt'); 
dplus = [a2_devvars(:,2) a2_devvars(:,4) a2_devvars(:,6)]; 
  
% -------------------------------------------------------------------- 
% Problem solution: 
% -------------------------------------------------------------------- 
  
% Deviation Function: Archimedian formulation 
% Compute the value of the deviation function 
devfunc = dplus*W'; 
  
% recall design variables, etc. and concatenate matrices 
feasible_points = load('feasible_a2.txt'); 
cost = load('a2_cost.txt'); 
points = [feasible_points, cost, a2_devvars]; 
  
% Find the minimum and report the solution 
[min_val_ArchDev1, index_ArchDev1]= min(devfunc(:,1)); 
sol_ArchDev1 = [points(index_ArchDev1,:) min_val_ArchDev1]; 
[min_val_ArchDev2, index_ArchDev2]= min(devfunc(:,2)); 
sol_ArchDev2 = [points(index_ArchDev2,:) min_val_ArchDev2]; 
[min_val_ArchDev3, index_ArchDev3]= min(devfunc(:,3)); 
sol_ArchDev3 = [points(index_ArchDev3,:) min_val_ArchDev3]; 
[min_val_ArchDev4, index_ArchDev4]= min(devfunc(:,4)); 
sol_ArchDev4 = [points(index_ArchDev4,:) min_val_ArchDev4]; 
[min_val_ArchDev5, index_ArchDev5]= min(devfunc(:,5)); 
sol_ArchDev5 = [points(index_ArchDev5,:) min_val_ArchDev5]; 
[min_val_ArchDev6, index_ArchDev6]= min(devfunc(:,6)); 
sol_ArchDev6 = [points(index_ArchDev6,:) min_val_ArchDev6]; 
[min_val_ArchDev7, index_ArchDev7]= min(devfunc(:,7)); 
sol_ArchDev7 = [points(index_ArchDev7,:) min_val_ArchDev7]; 
[min_val_ArchDev8, index_ArchDev8]= min(devfunc(:,8)); 
sol_ArchDev8 = [points(index_ArchDev8,:) min_val_ArchDev8]; 
[min_val_ArchDev9, index_ArchDev9]= min(devfunc(:,9)); 
sol_ArchDev9 = [points(index_ArchDev9,:) min_val_ArchDev9]; 
[min_val_ArchDev10, index_ArchDev10]= min(devfunc(:,10)); 
sol_ArchDev10 = [points(index_ArchDev10,:) min_val_ArchDev10]; 
[min_val_ArchDev11, index_ArchDev11]= min(devfunc(:,11)); 
sol_ArchDev11 = [points(index_ArchDev11,:) min_val_ArchDev11]; 
  
solutions_ArchDev = [sol_ArchDev1; sol_ArchDev2; sol_ArchDev3; ... 
                     sol_ArchDev4; sol_ArchDev5; sol_ArchDev6; ... 
                     sol_ArchDev7; sol_ArchDev8; sol_ArchDev9; ... 
                     sol_ArchDev10; sol_ArchDev11]; 
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% -------------------------------------------------------------------- 
% Problem interpretation: 
% -------------------------------------------------------------------- 
                  
dlmwrite('a2_solutions_arch.txt', solutions_ArchDev , ... 
    'delimiter', '\t', 'precision', 3, 'newline', 'pc') 
% -------------------------------------------------------------------- 
 

baseline_getsolutions_r.m 

% Fall 2006 
% 
% AUTHOR:  Stephanie Thompson 
% 
% PURPOSE: to solve the baseline cDSP for the Ranged Scenario BRP  
% 
% ASSUMPTIONS:  
%       - The file 'a2_devvars.txt' is in the working directory and 
%         contains the deviation variables for the feasible points 
%       - The file 'feasible_a2.txt' is in the working directory and 
%         contains the design variables and performance values for the 
%         feasible points 
%       - The file 'a2_cost.txt' is in the working directory and  
%         contains the Design Space Expansion cost of each of the  
%         feasible points 
  
% -------------------------------------------------------------------- 
% Problem formulation: 
% -------------------------------------------------------------------- 
% Define weighting factors 
W = [1 0 0; 0 1 0; 0 0 1; ... 
    .6 .2 .2; .2 .6 .2; .2 .2 .6; ... 
    .2 .4 .4; .4 .2 .4; .4 .4 .2; ... 
    1/3 1/3 1/3; 0.5 0.5 0]; 
  
% Load deviation variables, feasible points and cost values 
a2_devvars = load('a2_devvars.txt'); 
dminus = [a2_devvars(:,1) a2_devvars(:,3) a2_devvars(:,5)]; 
  
% -------------------------------------------------------------------- 
% Problem solution: 
% -------------------------------------------------------------------- 
  
% Deviation Function: Archimedian formulation 
% Compute the value of the deviation function 
devfunc = dminus*W'; 
  
% recall design variables, etc. and concatenate matrices 
feasible_points = load('feasible_a2.txt'); 
cost = load('a2_cost.txt'); 
points = [feasible_points, cost, a2_devvars]; 
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% Find the minimum and report the solution 
[min_val_ArchDev1, index_ArchDev1]= min(devfunc(:,1)); 
sol_ArchDev1 = [points(index_ArchDev1,:) min_val_ArchDev1]; 
[min_val_ArchDev2, index_ArchDev2]= min(devfunc(:,2)); 
sol_ArchDev2 = [points(index_ArchDev2,:) min_val_ArchDev2]; 
[min_val_ArchDev3, index_ArchDev3]= min(devfunc(:,3)); 
sol_ArchDev3 = [points(index_ArchDev3,:) min_val_ArchDev3]; 
[min_val_ArchDev4, index_ArchDev4]= min(devfunc(:,4)); 
sol_ArchDev4 = [points(index_ArchDev4,:) min_val_ArchDev4]; 
[min_val_ArchDev5, index_ArchDev5]= min(devfunc(:,5)); 
sol_ArchDev5 = [points(index_ArchDev5,:) min_val_ArchDev5]; 
[min_val_ArchDev6, index_ArchDev6]= min(devfunc(:,6)); 
sol_ArchDev6 = [points(index_ArchDev6,:) min_val_ArchDev6]; 
[min_val_ArchDev7, index_ArchDev7]= min(devfunc(:,7)); 
sol_ArchDev7 = [points(index_ArchDev7,:) min_val_ArchDev7]; 
[min_val_ArchDev8, index_ArchDev8]= min(devfunc(:,8)); 
sol_ArchDev8 = [points(index_ArchDev8,:) min_val_ArchDev8]; 
[min_val_ArchDev9, index_ArchDev9]= min(devfunc(:,9)); 
sol_ArchDev9 = [points(index_ArchDev9,:) min_val_ArchDev9]; 
[min_val_ArchDev10, index_ArchDev10]= min(devfunc(:,10)); 
sol_ArchDev10 = [points(index_ArchDev10,:) min_val_ArchDev10]; 
[min_val_ArchDev11, index_ArchDev11]= min(devfunc(:,11)); 
sol_ArchDev11 = [points(index_ArchDev11,:) min_val_ArchDev11]; 
  
solutions_ArchDev = [sol_ArchDev1; sol_ArchDev2; sol_ArchDev3; ... 
                     sol_ArchDev4; sol_ArchDev5; sol_ArchDev6; ... 
                     sol_ArchDev7; sol_ArchDev8; sol_ArchDev9; ... 
                     sol_ArchDev10; sol_ArchDev11]; 
  
% -------------------------------------------------------------------- 
% Problem interpretation: 
% -------------------------------------------------------------------- 
  
dlmwrite('a2_solutions_arch.txt', solutions_ArchDev , ... 
    'delimiter', '\t', 'precision', 3, 'newline', 'pc') 
% -------------------------------------------------------------------- 
 

baseline_nr.m 

% Fall 2006 
% 
% AUTHOR:  Stephanie Thompson 
% 
% PURPOSE: to calculate the deviation variables for the Point Scenario 
%          of the baseline cDSP for BRP design 
% 
% ASSUMPTIONS:  
%       -   The file 'feasible_a2.txt' is in the working directory and 
%           contains the feasible points for this scenario 
% 
  
% -------------------------------------------------------------------- 
% Problem formulation: 
% -------------------------------------------------------------------- 



   

   211

  
% CONSTANTS 
% Geometry 
L = 1; % 1 meter 
  
% Noise factors (blast loading) 
t_0 = 0.0001; % 10^-4 seconds 
delta_t_0 = 0.15*t_0; % 0.000015 seconds 
p_0 = 25 * 10^6; % 25 MPa 
delta_p_0 = 0.15*p_0; % 0.15*25 MPa 
  
% Baseline Material Properties 
rho_mg = 1770; % 1770 kg/m3 
rho_st = 7845; % 7845 kg/m3 
sigma_y_mg = 200 * 10^6; % 200 MPa 
sigma_y_st = 538 * 10^6; % 538 MPa 
  
% Variation in material properties 
delta_rho_mg = 170; % 170 kg/m3 
delta_rho_st = 100; % 100 kg/m3 
delta_sigma_y_mg = 20 * 10^6; % 20 MPa 
delta_sigma_y_st = 150 * 10^6; % 150 MPa 
  
x_base = [sigma_y_mg, sigma_y_st, sigma_y_mg, rho_mg, rho_st, rho_mg]; 
dx = [delta_sigma_y_mg, delta_sigma_y_st, delta_sigma_y_mg, ... 
    delta_rho_mg, delta_rho_st, delta_rho_mg, ... 
    delta_p_0, delta_t_0]; 
weights = 1-dx(1:6)./x_base; 
dx = zeros(1,8); 
  
tic 
dmass_minus = []; 
dmass_plus = []; 
ddefl_minus = []; 
ddefl_plus = []; 
dcost_minus = []; 
dcost_plus = []; 
cost = []; 
d = []; 
  
% load feasible points 
feasible_points = load('feasible_a2.txt'); 
% Note: columns of feasible_points are as follows: 
% (B, H, h_c, h_f, h_b, defl, delta_defl, M, delta_M, R_c, m_c, m_f) 
  
% Goals 
% Minimize mass as close as possible to 0 kg/m2 with a maximum value  
% of 568.4 
M_max = 568.4; 
  
% Minimize deflection as close as possible to 0 cm with a maximum  
% value of 7.553 m 
defl_max = 7.553; 
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% Minimize cost as close as possible to 0, normalized by 1 
cost_max = 1; 
  
% Get cost 
[cost, delta_cost] = DSEcost(x_base, x_base, weights, dx(1:6)); 
  
% -------------------------------------------------------------------- 
% Problem solution: 
% -------------------------------------------------------------------- 
% Get values of deviation variables for all feasible points 
for i = [1:size(feasible_points,1)] 
    % Evaluate BRP deflection code  
    [defl, delta_defl, M, delta_M, R_c, m_c, m_f] = BRPdefl(... 
        feasible_points(i,1), ... 
        feasible_points(i,2), ... 
        feasible_points(i,3), ... 
        feasible_points(i,4), ... 
        feasible_points(i,5), ... 
        sigma_y_mg, sigma_y_st, sigma_y_mg,... 
        rho_mg, rho_st, rho_mg, ... 
        L, p_0, t_0, dx); 
  
    % calculate deviation vector 
    [dmass_minus,dmass_plus] = deviation(M,M_max,'m20'); 
    [ddefl_minus,ddefl_plus] = deviation(defl,defl_max,'m20'); 
    [dcost_minus,dcost_plus] = deviation(cost,cost_max,'m20'); 
    % save deviation variables in a text file using 3 sig digits 
dlmwrite('a2_devvars.txt', [dmass_minus, dmass_plus, ... 
                            ddefl_minus, ddefl_plus, ... 
                            dcost_minus, dcost_plus], ... 
                            'delimiter', '\t', 'precision', 3, ... 
                            'newline', 'pc', '-append') 
end 
  
% -------------------------------------------------------------------- 
% Problem interpretation: 
% -------------------------------------------------------------------- 
% save cost information in a text file using 3 sig figs 
dlmwrite('a2_cost.txt', [cost*ones(size(feasible_points,1),1), ... 
    delta_cost*ones(size(feasible_points,1),1)] , ... 
    'delimiter', '\t', 'precision', 3, 'newline', 'pc') 
% -------------------------------------------------------------------- 
 

baseline_nr_getfeasible.m 

% Fall 2006 
% 
% AUTHOR:  Stephanie Thompson 
% 
% PURPOSE: to separate feasible points from infeasible points in the 
%          Point Scenario of the baseline cDSP for BRP design 
% 
% ASSUMPTIONS:  
%       -  The file 'baseline_points.txt' is in the working directory  
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% 
  
%  WARNING: This script creats several .txt files in the current  
%           directory and takes some time to execute. 
  
% -------------------------------------------------------------------- 
% Problem formulation: 
% -------------------------------------------------------------------- 
  
% CONSTANTS 
% Geometry 
L = 1; % 1 meter 
  
% Noise factors (blast loading) 
t_0 = 0.0001; % 10^-4 seconds 
delta_t_0 = 0.15*t_0; % 0.000015 seconds 
p_0 = 25 * 10^6; % 25 MPa 
delta_p_0 = 0.15*p_0; % 0.15*25 MPa 
  
% Baseline Material Properties 
rho_mg = 1770; % 1770 kg/m3 
rho_st = 7845; % 7845 kg/m3 
sigma_y_mg = 200 * 10^6; % 200 MPa 
sigma_y_st = 538 * 10^6; % 538 MPa 
  
% Variation in material properties 
delta_rho_mg = 170; % 170 kg/m3 
delta_rho_st = 100; % 100 kg/m3 
delta_sigma_y_mg = 20 * 10^6; % 20 MPa 
delta_sigma_y_st = 150 * 10^6; % 150 MPa 
  
x_base = [sigma_y_mg, sigma_y_st, sigma_y_mg, ... 
          rho_mg, rho_st, rho_mg]; 
dx = [delta_sigma_y_mg, delta_sigma_y_st, delta_sigma_y_mg, ... 
    delta_rho_mg, delta_rho_st, delta_rho_mg, ... 
    delta_p_0, delta_t_0]; 
weights = 1-dx(1:6)./x_base; 
dx = zeros(1,8); 
  
% Initialize vectors of points 
points = load('baseline_points.txt'); 
  
  
tic 
  
feasible_points_3 = []; 
infeasible_hcB_3 = []; 
infeasible_mass_3 = []; 
infeasible_defl_3 = []; 
infeasible_R_c_3 = []; 
infeasible_mu_3 = []; 
infeasible_gamma_3 = []; 
  
% store begintime 
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dlmwrite('timelog.txt', 'Beginning feasible points', ... 
    'newline', 'pc', '-append') 
dlmwrite('timelog.txt', clock, 'delimiter', '\t', ... 
    'newline', 'pc', '-append') 
  
% -------------------------------------------------------------------- 
% Problem solution: 
% -------------------------------------------------------------------- 
% create vector of feasible points for the three layer panel 
for i = 1:length(points)                   
    if points(i,3)<points(i,1) 
         
    % evaluate BRPdefl  
    [defl, delta_defl, M, delta_M, R_c, m_c, m_f] = BRPdefl(... 
        points(i,1), ... 
        points(i,2), ... 
        points(i,3), ... 
        points(i,4), ... 
        points(i,5), ... 
        sigma_y_mg, sigma_y_st, sigma_y_mg, ... 
        rho_mg, rho_st, rho_mg, ... 
        L, p_0, t_0, dx); 
         
    % evaluate constraints 
    gx = ineq_constraints_BRP_nr([points(i,:), ... 
            sigma_y_mg, sigma_y_st, sigma_y_mg, ... 
            rho_mg, rho_st, rho_mg], dx); 
        if gx(1) == 0 
            if  gx(2) ==0 
                if gx(3) == 0 
                    if gx(4) ==0  
                        if gx(5) == 0 
                            feasible_points_3 = [feasible_points_3;... 
                                                points(i,1), ... 
                                                points(i,2), ... 
                                                points(i,3), ... 
                                                points(i,4), ... 
                                                points(i,5), ... 
                                                defl, delta_defl, ... 
                                                M, delta_M, ... 
                                                R_c, m_c, m_f]; 
                        else 
                            infeasible_gamma_3 = [... 
                                                infeasible_gamma_3;... 
                                                points(i,1), ... 
                                                points(i,2), ... 
                                                points(i,3), ... 
                                                points(i,4), ... 
                                                points(i,5), ... 
                                                defl, delta_defl, ... 
                                                M, delta_M, ... 
                                                R_c, m_c, m_f]; 
                        end 
                    else 
                        infeasible_mu_3 = [infeasible_mu_3; ... 
                                            points(i,1), ... 
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                                            points(i,2), ... 
                                            points(i,3), ... 
                                            points(i,4), ... 
                                            points(i,5), ... 
                                            defl, delta_defl, ... 
                                            M, delta_M, ... 
                                            R_c, m_c, m_f]; 
                    end 
                else 
                    infeasible_R_c_3 = [infeasible_R_c_3; ... 
                                        points(i,1), ... 
                                        points(i,2), ... 
                                        points(i,3), ... 
                                        points(i,4), ... 
                                        points(i,5), ... 
                                        defl, delta_defl, ... 
                                        M, delta_M, R_c, m_c, m_f]; 
                end 
            else 
                infeasible_defl_3 = [infeasible_defl_3; ... 
                                    points(i,1), ... 
                                    points(i,2), ... 
                                    points(i,3), ... 
                                    points(i,4), ... 
                                    points(i,5), ... 
                                    defl, delta_defl, ... 
                                    M, delta_M, R_c, m_c, m_f]; 
            end 
        else 
            infeasible_mass_3 = [infeasible_mass_3; ... 
                                points(i,1), ... 
                                points(i,2), ... 
                                points(i,3), ... 
                                points(i,4), ... 
                                points(i,5), ... 
                                defl, delta_defl, ... 
                                M, delta_M, R_c, m_c, m_f]; 
        end 
    else 
        infeasible_hcB_3 = [infeasible_hcB_3; ... 
                            points(i,1), ... 
                            points(i,2), ... 
                            points(i,3), ... 
                            points(i,4), ... 
                            points(i,5)]; 
    end 
end 
toc 
  
% -------------------------------------------------------------------- 
% Problem interpretation: 
% -------------------------------------------------------------------- 
dlmwrite('timelog.txt', 'Beginning storing points', ... 
    'newline', 'pc', '-append') 
dlmwrite('timelog.txt', clock, 'delimiter', '\t', ... 
    'newline', 'pc', '-append') 
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tic 
dlmwrite('feasible_a2.txt', feasible_points_3, ... 
    'delimiter', '\t', 'precision', 3, 'newline', 'pc') 
dlmwrite('infeasible_a2_gamma.txt', infeasible_gamma_3, ... 
    'delimiter', '\t', 'precision', 3, 'newline', 'pc') 
dlmwrite('infeasible_a2_mu.txt', infeasible_mu_3, ... 
    'delimiter', '\t', 'precision', 3, 'newline', 'pc') 
dlmwrite('infeasible_a2_R_c.txt', infeasible_R_c_3, ... 
    'delimiter', '\t', 'precision', 3, 'newline', 'pc') 
dlmwrite('infeasible_a2_defl.txt', infeasible_defl_3, ... 
    'delimiter', '\t', 'precision', 3, 'newline', 'pc') 
dlmwrite('infeasible_a2_mass.txt', infeasible_mass_3, ... 
    'delimiter', '\t', 'precision', 3, 'newline', 'pc') 
dlmwrite('infeasible_a2_hcB.txt', infeasible_hcB_3, ... 
    'delimiter', '\t', 'precision', 3, 'newline', 'pc') 
toc 
% -------------------------------------------------------------------- 
 

baseline_r.m 

% Fall 2006 
% 
% AUTHOR:  Stephanie Thompson 
% 
% PURPOSE: to calculate the deviation variables for the Ranged  
%          Scenario of the baseline cDSP for BRP design 
% 
% ASSUMPTIONS:  
%       -   The file 'feasible_a2.txt' is in the working directory and 
%           contains the feasible points for this scenario 
  
% -------------------------------------------------------------------- 
% Problem formulation: 
% -------------------------------------------------------------------- 
% CONSTANTS 
% Geometry 
L = 1; % 1 meter 
  
% Noise factors (blast loading) 
t_0 = 0.0001; % 10^-4 seconds 
delta_t_0 = 0.15*t_0; % 0.000015 seconds 
p_0 = 25 * 10^6; % 25 MPa 
delta_p_0 = 0.15*p_0; % 0.15*25 MPa 
  
% Baseline Material Properties 
rho_mg = 1770; % 1770 kg/m3 
rho_st = 7845; % 7845 kg/m3 
sigma_y_mg = 200 * 10^6; % 200 MPa 
sigma_y_st = 538 * 10^6; % 538 MPa 
  
% Variation in material properties 
delta_rho_mg = 170; % 170 kg/m3 
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delta_rho_st = 100; % 100 kg/m3 
delta_sigma_y_mg = 20 * 10^6; % 20 MPa 
delta_sigma_y_st = 150 * 10^6; % 150 MPa 
  
x_base = [sigma_y_mg, sigma_y_st, sigma_y_mg, rho_mg, rho_st, rho_mg]; 
dx = [delta_sigma_y_mg, delta_sigma_y_st, delta_sigma_y_mg, ... 
    delta_rho_mg, delta_rho_st, delta_rho_mg, ... 
    delta_p_0, delta_t_0]; 
weights = 1-dx(1:6)./x_base; 
  
tic 
dmass_minus = []; 
dmass_plus = []; 
ddefl_minus = []; 
ddefl_plus = []; 
dcost_minus = []; 
dcost_plus = []; 
cost = []; 
d = []; 
  
% load feasible points 
feasible_points = load('feasible_a2.txt'); 
% Note: columns of feasible_points are as follows: 
% (B, H, h_c, h_f, h_b, defl, delta_defl, M, delta_M, R_c, m_c, m_f) 
  
% Goals 
% Minimize mass as close as possible to 0 kg/m2 
M_target = 0; 
  
% Minimize deflection as close as possible to 0 cm 
defl_target = 0; 
  
% Minimize cost as close as possible to 0 
cost_target = 0; 
  
% Get cost 
[cost, delta_cost] = DSEcost(x_base, x_base, weights, dx(1:6)); 
  
% -------------------------------------------------------------------- 
% Problem solution: 
% -------------------------------------------------------------------- 
% Get values of deviation variables for all feasible points 
for i = [1:size(feasible_points,1)] 
   % Evaluate BRP deflection code  
    [defl, delta_defl, M, delta_M, R_c, m_c, m_f] = BRPdefl(... 
        feasible_points(i,1), ... 
        feasible_points(i,2), ... 
        feasible_points(i,3), ... 
        feasible_points(i,4), ... 
        feasible_points(i,5), ... 
        sigma_y_mg, sigma_y_st, sigma_y_mg,... 
        rho_mg, rho_st, rho_mg, ... 
        L, p_0, t_0, dx); 
  
    % Get Cdk's 
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    Cdk_M = (M_target - M)/delta_M; 
    Cdk_defl = (defl_target - defl)/delta_defl; 
    Cdk_cost = (cost_target - cost)/delta_cost; 
  
    % calculate deviation vector 
    [dmass_minus,dmass_plus] = deviation(Cdk_M,1,'max'); 
    [ddefl_minus,ddefl_plus] = deviation(Cdk_defl,1,'max'); 
    [dcost_minus,dcost_plus] = deviation(Cdk_cost,1,'max'); 
    d = [d; [dmass_minus, dmass_plus, ... 
             ddefl_minus, ddefl_plus, ... 
             dcost_minus, dcost_plus]]; 
    dmass_minus = []; 
    dmass_plus = []; 
    ddefl_minus = []; 
    ddefl_plus = []; 
    dcost_minus = []; 
    dcost_plus = []; 
end 
  
% -------------------------------------------------------------------- 
% Problem interpretation: 
% -------------------------------------------------------------------- 
% save deviation variables in a text file using 3 significant digits 
dlmwrite('a2_devvars.txt', [d], ... 
    'delimiter', '\t', 'precision', 3, 'newline', 'pc') 
  
% save cost information in a text file using 3 sig figs 
dlmwrite('a2_cost.txt', [cost*ones(size(feasible_points,1),1), ... 
    delta_cost*ones(size(feasible_points,1),1)] , ... 
    'delimiter', '\t', 'precision', 3, 'newline', 'pc') 
  
toc 
% -------------------------------------------------------------------- 
 

baseline_r_getfeasible.m 

% Fall 2006 
% 
% AUTHOR:  Stephanie Thompson 
% 
% PURPOSE: to separate feasible points from infeasible points in the 
%          Ranged Scenario of the baseline cDSP for BRP design 
% 
% ASSUMPTIONS:  
%       -  The file 'baseline_points.txt' is in the working directory  
% 
  
%  WARNING: This script creats several .txt files in the current  
%           directory and takes some time to execute. 
  
% -------------------------------------------------------------------- 
% Problem formulation: 
% -------------------------------------------------------------------- 
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% CONSTANTS 
% Geometry 
L = 1; % 1 meter 
  
% Noise factors (blast loading) 
t_0 = 0.0001; % 10^-4 seconds 
delta_t_0 = 0.15*t_0; % 0.000015 seconds 
p_0 = 25 * 10^6; % 25 MPa 
delta_p_0 = 0.15*p_0; % 0.15*25 MPa 
  
% Baseline Material Properties 
rho_mg = 1770; % 1770 kg/m3 
rho_st = 7845; % 7845 kg/m3 
sigma_y_mg = 200 * 10^6; % 200 MPa 
sigma_y_st = 538 * 10^6; % 538 MPa 
  
% Variation in material properties 
delta_rho_mg = 170; % 170 kg/m3 
delta_rho_st = 100; % 100 kg/m3 
delta_sigma_y_mg = 20 * 10^6; % 20 MPa 
delta_sigma_y_st = 150 * 10^6; % 150 MPa 
  
x_base = [sigma_y_mg, sigma_y_st, sigma_y_mg, rho_mg, rho_st, rho_mg]; 
dx = [delta_sigma_y_mg, delta_sigma_y_st, delta_sigma_y_mg, ... 
    delta_rho_mg, delta_rho_st, delta_rho_mg, ... 
    delta_p_0, delta_t_0]; 
weights = 1-dx(1:6)./x_base; 
  
% Initialize vectors of points 
points = load('baseline_points.txt'); 
  
% create vector of feasible points for the three layer panel 
tic 
  
feasible_points_3 = []; 
infeasible_hcB_3 = []; 
infeasible_mass_3 = []; 
infeasible_defl_3 = []; 
infeasible_R_c_3 = []; 
infeasible_mu_3 = []; 
infeasible_gamma_3 = []; 
  
% -------------------------------------------------------------------- 
% Problem solution: 
% -------------------------------------------------------------------- 
% Create a vector of feasible points: 
for i = 1:length(points)                   
    if points(i,3)<points(i,1) 
         
    % evaluate BRPdefl  
    [defl, delta_defl, M, delta_M, R_c, m_c, m_f] = BRPdefl(... 
        points(i,1), ... 
        points(i,2), ... 
        points(i,3), ... 
        points(i,4), ... 
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        points(i,5), ... 
        sigma_y_mg, sigma_y_st, sigma_y_mg, ... 
        rho_mg, rho_st, rho_mg, ... 
        L, p_0, t_0,dx); 
         
    % evaluate constraints 
    gx = ineq_constraints_BRP_r([points(i,:), ... 
        sigma_y_mg, sigma_y_st, sigma_y_mg, ... 
            rho_mg, rho_st, rho_mg], dx); 
        if gx(1) == 0 
            if  gx(2) ==0 
                if gx(3) == 0 
                    if gx(4) ==0  
                        if gx(5) == 0 
                            feasible_points_3 = [feasible_points_3;... 
                                                points(i,1), ... 
                                                points(i,2), ... 
                                                points(i,3), ... 
                                                points(i,4), ... 
                                                points(i,5), ... 
                                                defl, delta_defl, ... 
                                                M, delta_M, ... 
                                                R_c, m_c, m_f]; 
                        else 
                            infeasible_gamma_3 = [... 
                                                infeasible_gamma_3; ... 
                                                points(i,1), ... 
                                                points(i,2), ... 
                                                points(i,3), ... 
                                                points(i,4), ... 
                                                points(i,5), ... 
                                                defl, delta_defl, ... 
                                                M, delta_M, ... 
                                                R_c, m_c, m_f]; 
                        end 
                    else 
                        infeasible_mu_3 = [infeasible_mu_3; ... 
                                            points(i,1), ... 
                                            points(i,2), ... 
                                            points(i,3), ... 
                                            points(i,4), ... 
                                            points(i,5), ... 
                                            defl, delta_defl, ... 
                                            M, delta_M, ... 
                                            R_c, m_c, m_f]; 
                    end 
                else 
                    infeasible_R_c_3 = [infeasible_R_c_3; ... 
                                        points(i,1), ... 
                                        points(i,2), ... 
                                        points(i,3), ... 
                                        points(i,4), ... 
                                        points(i,5), ... 
                                        defl, delta_defl, ... 
                                        M, delta_M, R_c, m_c, m_f]; 
                end 
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            else 
                infeasible_defl_3 = [infeasible_defl_3; ... 
                                    points(i,1), ... 
                                    points(i,2), ... 
                                    points(i,3), ... 
                                    points(i,4), ... 
                                    points(i,5), ... 
                                    defl, delta_defl, ... 
                                    M, delta_M, R_c, m_c, m_f]; 
            end 
        else 
            infeasible_mass_3 = [infeasible_mass_3; ... 
                                points(i,1), ... 
                                points(i,2), ... 
                                points(i,3), ... 
                                points(i,4), ... 
                                points(i,5), ... 
                                defl, delta_defl, ... 
                                M, delta_M, R_c, m_c, m_f]; 
        end 
    else 
        infeasible_hcB_3 = [infeasible_hcB_3; ... 
                            points(i,1), ... 
                            points(i,2), ... 
                            points(i,3), ... 
                            points(i,4), ... 
                            points(i,5)]; 
    end 
end 
toc 
  
% -------------------------------------------------------------------- 
% Problem interpretation: 
% -------------------------------------------------------------------- 
tic 
dlmwrite('feasible_a2.txt', feasible_points_3, ... 
    'delimiter', '\t', 'precision', 3, 'newline', 'pc') 
dlmwrite('infeasible_a2_gamma.txt', infeasible_gamma_3, ... 
    'delimiter', '\t', 'precision', 3, 'newline', 'pc') 
dlmwrite('infeasible_a2_mu.txt', infeasible_mu_3, ... 
    'delimiter', '\t', 'precision', 3, 'newline', 'pc') 
dlmwrite('infeasible_a2_R_c.txt', infeasible_R_c_3, ... 
    'delimiter', '\t', 'precision', 3, 'newline', 'pc') 
dlmwrite('infeasible_a2_defl.txt', infeasible_defl_3, ... 
    'delimiter', '\t', 'precision', 3, 'newline', 'pc') 
dlmwrite('infeasible_a2_mass.txt', infeasible_mass_3, ... 
    'delimiter', '\t', 'precision', 3, 'newline', 'pc') 
dlmwrite('infeasible_a2_hcB.txt', infeasible_hcB_3, ... 
    'delimiter', '\t', 'precision', 3, 'newline', 'pc') 
toc 
% -------------------------------------------------------------------- 
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BRPdefl.m 

function [defl, delta_defl, M, delta_M, R_c, m_c, m_f] = BRPdefl(... 
    B, H, h_c, h_f, h_b, ... 
    sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
    rho_b, rho_c, rho_f, ... 
    L, p_0, t_0, uncert_vars) 
  
%   BRPdefl Calculates the mass per area and deflection per  
%       length of a metal sandwich plate subjected to an impulse load  
%       defined by pressure, p_0, and characteristic time, t_0.  The  
%       variation of mass and deflection as a result of 8 uncertain  
%       factors is also calculated. 
% 
%   Inputs: 
%                  B: cell spacing in [m] 
%                  H: core layer height in [m] 
%                h_c: cell wall thickness in [m] 
%                h_f: front face sheet thickness in [m] 
%                h_b: back face sheet thickness in [m] 
%      sigma_yield_b: the back face sheet yield strength in [Pa] 
%      sigma_yield_c: the core material yield strength in [Pa] 
%      sigma_yield_f: the front face sheet yield strength in [Pa] 
%              rho_b: the back face sheet density in [kg/m^3] 
%              rho_c: the core material density in [kg/m^3] 
%              rho_f: the front face sheet density in [kg/m^3] 
%                  L: the length of the panel in [m] 
%                p_0: the peak pressure in [Pa] 
%                t_0: the characteristic time of the blast in [s] 
%        uncert_vars: a vector of uncertain parameters 
%  
%   Outputs: 
%            defl: the panel deflection in [m] 
%      delta_defl: the variation in the panel deflection in [m] 
%               M: the panel mass per area in [kg/m^2] 
%         delta_M: the variation in the panel deflection in [kg/m^2] 
%             R_c: the relative density of the core layer [no units] 
%             m_c: the mass/area of the core layer in [kg/m^2] 
%             m_f: the mass/area of the front face sheet in [kg/m^2] 
  
%   Assumptions:  
%         - the panel is clamped on all edges 
%         - the pressure blast is uniform 
%         - elastic, perfectly plastic materials 
  
% Created by Stephanie Thompson and Hannah Muchnick 
% Summer 2006 
  
%--------------------------------------------------------------------- 
% Define uncertain parameters 
%--------------------------------------------------------------------- 
delta_sigma_yield_b = uncert_vars(1); 
delta_sigma_yield_c = uncert_vars(2); 
delta_sigma_yield_f = uncert_vars(3); 
delta_rho_b = uncert_vars(4); 
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delta_rho_c = uncert_vars(5); 
delta_rho_f = uncert_vars(6); 
delta_p_0 = uncert_vars(7); 
delta_t_0 = uncert_vars(8); 
%--------------------------------------------------------------------- 
% End uncertain parameter definition 
%--------------------------------------------------------------------- 
  
%--------------------------------------------------------------------- 
% Mass Calculation 
%--------------------------------------------------------------------- 
% Relative Density of Square Core 
R_c = (2*B*h_c-h_c^2)/B^2; 
  
% mass/area of the core 
m_c = rho_c*R_c*H; 
  
% mass/area of one front sheet 
m_f = rho_f*h_f; 
  
% mass/area of one back sheet 
m_b = rho_b*h_b; 
  
% mass/area of total sandwich plate 
M = m_c + m_f + m_b; 
%--------------------------------------------------------------------- 
% End Mass Calculation 
%--------------------------------------------------------------------- 
  
%--------------------------------------------------------------------- 
% Change in Mass Calculation 
%--------------------------------------------------------------------- 
% change in mass is the sum of the partial derivatives of the mass  
% function with respect to each uncertain parameter multiplied by the 
% change of the uncertain parameter 
  
delta_M = (R_c*H)*delta_rho_c + (h_f)*delta_rho_f + (h_b)*delta_rho_b; 
%--------------------------------------------------------------------- 
% End Change in Mass Calculation 
%--------------------------------------------------------------------- 
  
%--------------------------------------------------------------------- 
% Deflection Calculation 
%--------------------------------------------------------------------- 
% Define lambda_c, "core compression strength factor", approximately  
% equal to one for all extruded honeycomb cores 
lambda_c = 1; % for square honeycomb core 
  
% Define lambda_s, "core stretching strength factor", depends on core 
% geometry 
lambda_s = 0.5; % for square honeycomb core 
  
  
% the deflection equation is the sum of two functions, f1 and f2 
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% defl = f1 + f2;  % must define f1 and f2 first 
  
% f1 is divided into g1N and g1D 
% f1 = g1N/g1D; % must define g1N and g1D 
  
% f2 is also divided into two function g2N and g2D 
% f2 = g2N/g2D; % must define g2N and g2D  
  
% g2N is divided into j2N and j2D   
% g2N = sqrt(j2N/j2D); % must define j2N and j2D 
  
% j2N is the sum of j2Na through j2Nf 
% j2N = j2Na + j2Nb + j2Nc + j2Nd + j2Ne + j2Nf;  
% must define j2Na through j2Nf 
  
j2Na = (9*h_b^2*H^2*lambda_c^2*R_c^2*h_f^2*... 
    sigma_yield_b^2*sigma_yield_c^2*... 
    (rho_f^4*h_f^2 + rho_f^2*rho_b^2*h_b^2 + ... 
    rho_f^2*rho_c^2*R_c^2*H^2 + ... 
    2*rho_f^3*h_f*rho_b*h_b + ... 
    2*rho_f^3*h_f*rho_c*R_c*H + 2*rho_f^2*rho_b*h_b*rho_c*R_c*H)); 
  
j2Nb = (-36*h_b^2*H*lambda_c*R_c*h_f*p_0^2*t_0^2*... 
    sigma_yield_b^2*sigma_yield_c*... 
    (rho_b*h_b*rho_f^2*h_f + rho_f*rho_b^2*h_b^2 + ... 
    2*rho_f*rho_b*h_b*rho_c*R_c*H + ... 
    rho_f^2*h_f*rho_c*R_c*H + rho_f*rho_c^2*R_c^2*H^2)); 
  
j2Nc = (36*h_b^2*p_0^4*t_0^4*sigma_yield_b^2*... 
    (rho_b^2*h_b^2 + 2*rho_b*h_b*rho_c*R_c*H + ... 
    rho_c^2*R_c^2*H^2)); 
  
j2Nd = 3*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0^2*rho_f^3*... 
    (sigma_yield_f*sigma_yield_c^2*h_f^2 + ... 
    sigma_yield_c^3*R_c*H*h_f*lambda_s + ... 
    sigma_yield_c^2*sigma_yield_b*h_f*h_b); 
  
j2Ne = 3*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0^2*rho_f^2*rho_b*... 
    (sigma_yield_f*sigma_yield_c^2*h_f*h_b + ... 
    sigma_yield_c^3*R_c*H*h_b*lambda_s +... 
    sigma_yield_c^2*sigma_yield_b*h_b^2); 
  
j2Nf = 3*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0^2*rho_f^2*rho_c*... 
    (sigma_yield_f*sigma_yield_c^2*R_c*H*h_f + ... 
    sigma_yield_c^3*R_c^2*H^2*lambda_s + ... 
    sigma_yield_c^2*sigma_yield_b*R_c*H*h_b); 
  
j2N = j2Na + j2Nb + j2Nc + j2Nd + j2Ne + j2Nf; 
  
j2D = L^2*lambda_c^2*R_c^2*h_f^2*sigma_yield_c^2 * ... 
    (rho_f^4*h_f^2 + ... 
     rho_f^2*rho_b^2*h_b^2 + ... 
     rho_f^2*rho_c^2*R_c^2*H^2 + ... 
     2*rho_f^3*h_f*rho_b*h_b + ... 
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     2*rho_f^3*h_f*rho_c*R_c*H + ... 
     2*rho_f^2*rho_b*h_b*rho_c*R_c*H); 
  
g2N = sqrt(j2N/j2D); 
  
g2D = (sigma_yield_f*h_f + ... 
        sigma_yield_c*R_c*H*lambda_s + ... 
        sigma_yield_b*h_b); 
  
g1N = (-3*H*lambda_c*R_c*h_f*h_b*sigma_yield_c*sigma_yield_b*... 
    (rho_f^2*h_f + rho_f*rho_b*h_b + rho_f*rho_c*R_c*H) + ... 
    6*p_0^2*t_0^2*sigma_yield_b*h_b * (rho_b*h_b + rho_c*R_c*H)); 
  
g1D = lambda_c*R_c*h_f * ... 
    (rho_f^2*h_f + rho_f*rho_b*h_b + rho_f*rho_c*R_c*H)*... 
    (sigma_yield_c*sigma_yield_f*h_f + ... 
    sigma_yield_c^2*R_c*H*lambda_s +... 
    sigma_yield_c*sigma_yield_b*h_b); 
  
f2 = g2N/g2D; 
  
f1 = g1N/g1D; 
  
defl = f1 + L*f2; 
%--------------------------------------------------------------------- 
% End Deflection Calculation 
%--------------------------------------------------------------------- 
  
%--------------------------------------------------------------------- 
% Change in Deflection Calculation 
%--------------------------------------------------------------------- 
% change in deflection is the sum of the partial derivatives of the 
% deflection function with respect to each uncertain parameter   
% multiplied by the change of the uncertain parameter 
  
% delta_defl = ddefl_dsigma_yield_b*delta_sigma_yield_b + ... 
%     ddefl_dsigma_yield_c*delta_sigma_yield_c + ... 
%     ddefl_dsigma_yield_f*delta_sigma_yield_f + ... 
%     ddefl_drho_b*delta_rho_b + ... 
%     ddefl_drho_c*delta_rho_c + ... 
%     ddefl_drho_f*delta_rho_f + ... 
%     ddefl_dp_0*delta_p_0 + ... 
%     ddefl_dt_0*delta_t_0 
  
% General partial derivative of defl for referece: 
% ddefl_dX = (g1D*dg1N_dX - g1N*dg1D_dX)/g1D^2 + ... 
%     (((sqrt(j2D)/(2*sqrt(j2N)) * dj2N_dX) -... 
%     (sqrt(j2N)/(2*sqrt(j2D)) * dj2D_dX))/(j2D*g2D) - ... 
%     (sqrt(j2N/j2D)*dg2D_dX)/(g2D^2)) 
  
%%-- Partial Derivatives with respect to sigma_yield_b --------------- 
dg1N_dsigma_yield_b = (-3*H*lambda_c*R_c*h_f*h_b*sigma_yield_c*... 
    (rho_f^2*h_f + rho_f*rho_b*h_b + rho_f*rho_c*R_c*H) + ... 
    6*p_0^2*t_0^2*h_b * (rho_b*h_b + rho_c*R_c*H)); 
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dg1D_dsigma_yield_b = lambda_c*R_c*h_f * ... 
    (rho_f^2*h_f + rho_f*rho_b*h_b + rho_f*rho_c*R_c*H)*... 
    (sigma_yield_c*h_b); 
  
dj2Na_dsigma_yield_b = (18*h_b^2*H^2*lambda_c^2*R_c^2*h_f^2*... 
                        sigma_yield_b*sigma_yield_c^2*... 
    (rho_f^4*h_f^2 + rho_f^2*rho_b^2*h_b^2 + ... 
    rho_f^2*rho_c^2*R_c^2*H^2 + ... 
    2*rho_f^3*h_f*rho_b*h_b + ... 
    2*rho_f^3*h_f*rho_c*R_c*H + ... 
    2*rho_f^2*rho_b*h_b*rho_c*R_c*H)); 
dj2Nb_dsigma_yield_b = (-72*h_b^2*H*lambda_c*R_c*h_f*p_0^2*t_0^2*... 
    sigma_yield_b*sigma_yield_c*... 
    (rho_b*h_b*rho_f^2*h_f + ... 
    rho_f*rho_b^2*h_b^2 + ... 
    2*rho_f*rho_b*h_b*rho_c*R_c*H + ... 
    rho_f^2*h_f*rho_c*R_c*H + ... 
    rho_f*rho_c^2*R_c^2*H^2)); 
dj2Nc_dsigma_yield_b = (72*h_b^2*p_0^4*t_0^4*sigma_yield_b*... 
    (rho_b^2*h_b^2 + ... 
    2*rho_b*h_b*rho_c*R_c*H + ... 
    rho_c^2*R_c^2*H^2)); 
dj2Nd_dsigma_yield_b = 3*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0^2*... 
    rho_f^3*(sigma_yield_c^2*h_f*h_b); 
dj2Ne_dsigma_yield_b = 3*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0^2*... 
    rho_f^2*rho_b*... 
    (sigma_yield_c^2*h_b^2); 
dj2Nf_dsigma_yield_b = 3*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0^2*... 
    rho_f^2*rho_c*... 
    (sigma_yield_c^2*R_c*H*h_b); 
  
dj2N_dsigma_yield_b = dj2Na_dsigma_yield_b + dj2Nb_dsigma_yield_b +... 
                    dj2Nc_dsigma_yield_b + dj2Nd_dsigma_yield_b + ... 
                    dj2Ne_dsigma_yield_b + dj2Nf_dsigma_yield_b; 
  
dj2D_dsigma_yield_b = 0; 
  
dg2D_dsigma_yield_b = (h_b); 
  
ddefl_dsigma_yield_b = (g1D*dg1N_dsigma_yield_b - ... 
                        g1N*dg1D_dsigma_yield_b)/g1D^2 + ... 
    (((sqrt(j2D)/(2*sqrt(j2N)) * dj2N_dsigma_yield_b) -... 
    (sqrt(j2N)/(2*sqrt(j2D)) * dj2D_dsigma_yield_b))/(j2D*g2D) - ... 
    (sqrt(j2N/j2D)*dg2D_dsigma_yield_b)/(g2D^2)); 
%%-- End Partial Derivatives with respect to sigma_yield_b ----- 
  
%%-- Partial Derivatives with respect to sigma_yield_c --------------- 
dg1N_dsigma_yield_c = (-3*H*lambda_c*R_c*h_f*h_b*sigma_yield_b*... 
    (rho_f^2*h_f + rho_f*rho_b*h_b + rho_f*rho_c*R_c*H)); 
  
dg1D_dsigma_yield_c = lambda_c*R_c*h_f * ... 
    (rho_f^2*h_f + rho_f*rho_b*h_b + rho_f*rho_c*R_c*H)*... 
    (sigma_yield_f*h_f + 2*sigma_yield_c*R_c*H*lambda_s +... 
    sigma_yield_b*h_b); 
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dj2Na_dsigma_yield_c = (18*h_b^2*H^2*lambda_c^2*R_c^2*h_f^2*... 
    sigma_yield_b^2*sigma_yield_c*... 
    (rho_f^4*h_f^2 + rho_f^2*rho_b^2*h_b^2 + ... 
    rho_f^2*rho_c^2*R_c^2*H^2 + ... 
    2*rho_f^3*h_f*rho_b*h_b + ... 
    2*rho_f^3*h_f*rho_c*R_c*H + ... 
    2*rho_f^2*rho_b*h_b*rho_c*R_c*H)); 
dj2Nb_dsigma_yield_c = (-36*h_b^2*H*lambda_c*R_c*h_f*p_0^2*t_0^2*... 
    sigma_yield_b^2*... 
    (rho_b*h_b*rho_f^2*h_f + ... 
    rho_f*rho_b^2*h_b^2 + ... 
    2*rho_f*rho_b*h_b*rho_c*R_c*H + ... 
    rho_f^2*h_f*rho_c*R_c*H + ... 
    rho_f*rho_c^2*R_c^2*H^2)); 
dj2Nc_dsigma_yield_c = 0; 
dj2Nd_dsigma_yield_c = 3*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0^2*... 
    rho_f^3*(2*sigma_yield_f*sigma_yield_c*h_f^2 + ... 
    3*sigma_yield_c^2*R_c*H*h_f*lambda_s + ... 
    2*sigma_yield_c*sigma_yield_b*h_f*h_b); 
dj2Ne_dsigma_yield_c = 3*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0^2*... 
    rho_f^2*rho_b*... 
    (2*sigma_yield_f*sigma_yield_c*h_f*h_b + ... 
    3*sigma_yield_c^2*R_c*H*h_b*lambda_s +... 
    2*sigma_yield_c*sigma_yield_b*h_b^2); 
dj2Nf_dsigma_yield_c = 3*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0^2*... 
    rho_f^2*rho_c*... 
    (2*sigma_yield_f*sigma_yield_c*R_c*H*h_f + ... 
    3*sigma_yield_c^2*R_c^2*H^2*lambda_s + ... 
    2*sigma_yield_c*sigma_yield_b*R_c*H*h_b); 
  
dj2N_dsigma_yield_c = dj2Na_dsigma_yield_c + dj2Nb_dsigma_yield_c +... 
    dj2Nc_dsigma_yield_c + dj2Nd_dsigma_yield_c + ... 
    dj2Ne_dsigma_yield_c + dj2Nf_dsigma_yield_c; 
  
dj2D_dsigma_yield_c = 2*L^2*lambda_c^2*R_c^2*h_f^2*sigma_yield_c * ... 
    (rho_f^4*h_f^2 + ... 
    rho_f^2*rho_b^2*h_b^2 + ... 
    rho_f^2*rho_c^2*R_c^2*H^2 + ... 
    2*rho_f^3*h_f*rho_b*h_b + ... 
    2*rho_f^3*h_f*rho_c*R_c*H + ... 
    2*rho_f^2*rho_b*h_b*rho_c*R_c*H); 
  
dg2D_dsigma_yield_c = (R_c*H*lambda_s); 
  
ddefl_dsigma_yield_c = (g1D*dg1N_dsigma_yield_c - ... 
                        g1N*dg1D_dsigma_yield_c)/g1D^2 + ... 
    L*(((sqrt(j2D)/(2*sqrt(j2N)) * dj2N_dsigma_yield_c) -... 
    (sqrt(j2N)/(2*sqrt(j2D)) * dj2D_dsigma_yield_c))/(j2D*g2D) - ... 
    (sqrt(j2N/j2D)*dg2D_dsigma_yield_c)/(g2D^2)); 
%%-- End Partial Derivatives with respect to sigma_yield_c ----------- 
  
%%-- Partial Derivatives with respect to sigma_yield_f --------------- 
dg1N_dsigma_yield_f = 0; 
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dg1D_dsigma_yield_f = lambda_c*R_c*h_f * ... 
    (rho_f^2*h_f + rho_f*rho_b*h_b + rho_f*rho_c*R_c*H)*... 
    (sigma_yield_c*h_f); 
  
dj2Na_dsigma_yield_f = 0; 
dj2Nb_dsigma_yield_f = 0; 
dj2Nc_dsigma_yield_f = 0; 
dj2Nd_dsigma_yield_f = 3*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0^2*... 
    rho_f^3*(sigma_yield_c^2*h_f^2); 
dj2Ne_dsigma_yield_f = 3*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0^2*... 
    rho_f^2*rho_b*... 
    (sigma_yield_c^2*h_f*h_b); 
dj2Nf_dsigma_yield_f = 3*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0^2*... 
    rho_f^2*rho_c*... 
    (sigma_yield_c^2*R_c*H*h_f); 
  
dj2N_dsigma_yield_f = dj2Na_dsigma_yield_f + dj2Nb_dsigma_yield_f +... 
    dj2Nc_dsigma_yield_f + dj2Nd_dsigma_yield_f + ... 
    dj2Ne_dsigma_yield_f + dj2Nf_dsigma_yield_f; 
  
dj2D_dsigma_yield_f = 0; 
  
dg2D_dsigma_yield_f = (h_f); 
  
ddefl_dsigma_yield_f = (g1D*dg1N_dsigma_yield_f - ... 
                        g1N*dg1D_dsigma_yield_f)/g1D^2 + ... 
    L*(((sqrt(j2D)/(2*sqrt(j2N)) * dj2N_dsigma_yield_f) -... 
    (sqrt(j2N)/(2*sqrt(j2D)) * dj2D_dsigma_yield_f))/(j2D*g2D) - ... 
    (sqrt(j2N/j2D)*dg2D_dsigma_yield_f)/(g2D^2)); 
%%-- End Partial Derivatives with respect to sigma_yield_f ----------- 
  
%%-- Partial Derivatives with respect to rho_b ----------------------- 
dg1N_drho_b = (-3*H*lambda_c*R_c*h_f*h_b*... 
    sigma_yield_c*sigma_yield_b*... 
    (rho_f*h_b) + 6*p_0^2*t_0^2*sigma_yield_b*h_b * (h_b)); 
  
dg1D_drho_b = lambda_c*R_c*h_f * ... 
    (rho_f*h_b)*(sigma_yield_c*sigma_yield_f*h_f + ... 
    sigma_yield_c^2*R_c*H*lambda_s +... 
    sigma_yield_c*sigma_yield_b*h_b); 
  
dj2Na_drho_b = (9*h_b^2*H^2*lambda_c^2*R_c^2*h_f^2*... 
    sigma_yield_b^2*sigma_yield_c^2*... 
    (2*rho_f^2*rho_b*h_b^2 + ... 
    2*rho_f^3*h_f*h_b + ... 
    2*rho_f^2*h_b*rho_c*R_c*H)); 
dj2Nb_drho_b = (-36*h_b^2*H*lambda_c*R_c*h_f*p_0^2*t_0^2*... 
    sigma_yield_b^2*sigma_yield_c*... 
    (h_b*rho_f^2*h_f + ... 
    2*rho_f*rho_b*h_b^2 + ... 
    2*rho_f*h_b*rho_c*R_c*H)); 
dj2Nc_drho_b = (36*h_b^2*p_0^4*t_0^4*sigma_yield_b^2*... 
    (2*rho_b*h_b^2 + 2*h_b*rho_c*R_c*H)); 
dj2Nd_drho_b = 0; 
dj2Ne_drho_b = 3*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0^2*rho_f^2*... 
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    (sigma_yield_f*sigma_yield_c^2*h_f*h_b + ... 
    sigma_yield_c^3*R_c*H*h_b*lambda_s +... 
    sigma_yield_c^2*sigma_yield_b*h_b^2); 
dj2Nf_drho_b = 0; 
  
dj2N_drho_b = dj2Na_drho_b + dj2Nb_drho_b + dj2Nc_drho_b +... 
    dj2Nd_drho_b + dj2Ne_drho_b + dj2Nf_drho_b; 
  
dj2D_drho_b = L^2*lambda_c^2*R_c^2*h_f^2*sigma_yield_c^2 * ... 
    (2*rho_f^2*rho_b*h_b^2 + ... 
    2*rho_f^3*h_f*h_b + ... 
    2*rho_f^2*h_b*rho_c*R_c*H); 
  
dg2D_drho_b = 0; 
  
ddefl_drho_b = (g1D*dg1N_drho_b - g1N*dg1D_drho_b)/g1D^2 + ... 
    L*(((sqrt(j2D)/(2*sqrt(j2N)) * dj2N_drho_b) -... 
    (sqrt(j2N)/(2*sqrt(j2D)) * dj2D_drho_b))/(j2D*g2D) - ... 
    (sqrt(j2N/j2D)*dg2D_drho_b)/(g2D^2)); 
%%-- End Partial Derivatives with respect to rho_b ------------------- 
  
%%-- Partial Derivatives with respect to rho_c ----------------------- 
dg1N_drho_c = (-3*H*lambda_c*R_c*h_f*h_b*... 
    sigma_yield_c*sigma_yield_b*... 
    (rho_f*R_c*H) + ... 
    6*p_0^2*t_0^2*sigma_yield_b*h_b * (R_c*H)); 
  
dg1D_drho_c = lambda_c*R_c*h_f * (rho_f*R_c*H)*... 
    (sigma_yield_c*sigma_yield_f*h_f + ... 
    sigma_yield_c^2*R_c*H*lambda_s +... 
    sigma_yield_c*sigma_yield_b*h_b); 
  
dj2Na_drho_c = (9*h_b^2*H^2*lambda_c^2*R_c^2*h_f^2*... 
    sigma_yield_b^2*sigma_yield_c^2*... 
    (2*rho_f^2*rho_c*R_c^2*H^2 + ... 
    2*rho_f^3*h_f*R_c*H + ... 
    2*rho_f^2*rho_b*h_b*R_c*H)); 
dj2Nb_drho_c = (-36*h_b^2*H*lambda_c*R_c*h_f*p_0^2*t_0^2*... 
    sigma_yield_b^2*sigma_yield_c*... 
    (2*rho_f*rho_b*h_b*R_c*H + ... 
    rho_f^2*h_f*R_c*H + ... 
    2*rho_f*rho_c*R_c^2*H^2)); 
dj2Nc_drho_c = (36*h_b^2*p_0^4*t_0^4*sigma_yield_b^2*... 
    (2*rho_b*h_b*R_c*H + 2*rho_c*R_c^2*H^2)); 
dj2Nd_drho_c = 0; 
dj2Ne_drho_c = 0; 
dj2Nf_drho_c = 3*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0^2*rho_f^2*... 
    (sigma_yield_f*sigma_yield_c^2*R_c*H*h_f + ... 
    sigma_yield_c^3*R_c^2*H^2*lambda_s + ... 
    sigma_yield_c^2*sigma_yield_b*R_c*H*h_b); 
  
dj2N_drho_c = dj2Na_drho_c + dj2Nb_drho_c + dj2Nc_drho_c +... 
    dj2Nd_drho_c + dj2Ne_drho_c + dj2Nf_drho_c; 
  
dj2D_drho_c = L^2*lambda_c^2*R_c^2*h_f^2*sigma_yield_c^2 * ... 
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    (2*rho_f^2*rho_c*R_c^2*H^2 + ... 
    2*rho_f^3*h_f*R_c*H + ... 
    2*rho_f^2*rho_b*h_b*R_c*H); 
  
dg2D_drho_c =0; 
  
ddefl_drho_c = (g1D*dg1N_drho_c - g1N*dg1D_drho_c)/g1D^2 + ... 
    L*(((sqrt(j2D)/(2*sqrt(j2N)) * dj2N_drho_c) -... 
    (sqrt(j2N)/(2*sqrt(j2D)) * dj2D_drho_c))/(j2D*g2D) - ... 
    (sqrt(j2N/j2D)*dg2D_drho_c)/(g2D^2)); 
%%-- End Partial Derivatives with respect to rho_c ------------------- 
  
%%-- Partial Derivatives with respect to rho_f ----------------------- 
dg1N_drho_f = (-3*H*lambda_c*R_c*h_f*h_b*... 
    sigma_yield_c*sigma_yield_b*... 
    (2*rho_f*h_f + rho_b*h_b + rho_c*R_c*H)); 
  
dg1D_drho_f = lambda_c*R_c*h_f * ... 
    (2*rho_f*h_f + rho_b*h_b + rho_c*R_c*H)*... 
    (sigma_yield_c*sigma_yield_f*h_f + ... 
    sigma_yield_c^2*R_c*H*lambda_s +... 
    sigma_yield_c*sigma_yield_b*h_b); 
  
dj2Na_drho_f = (9*h_b^2*H^2*lambda_c^2*R_c^2*h_f^2*... 
    sigma_yield_b^2*sigma_yield_c^2*... 
    (4*rho_f^3*h_f^2 + ... 
    2*rho_f*rho_b^2*h_b^2 + ... 
    2*rho_f*rho_c^2*R_c^2*H^2 + ... 
    6*rho_f^2*h_f*rho_b*h_b + ... 
    6*rho_f^2*h_f*rho_c*R_c*H + ... 
    4*rho_f*rho_b*h_b*rho_c*R_c*H)); 
dj2Nb_drho_f = (-36*h_b^2*H*lambda_c*R_c*h_f*p_0^2*t_0^2*... 
    sigma_yield_b^2*sigma_yield_c*... 
    (2*rho_b*h_b*rho_f*h_f + ... 
    rho_b^2*h_b^2 + ... 
    2*rho_b*h_b*rho_c*R_c*H + ... 
    2*rho_f*h_f*rho_c*R_c*H + ... 
    rho_c^2*R_c^2*H^2)); 
dj2Nc_drho_f = 0; 
dj2Nd_drho_f = 9*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0^2*rho_f^2*... 
    (sigma_yield_f*sigma_yield_c^2*h_f^2 + ... 
    sigma_yield_c^3*R_c*H*h_f*lambda_s + ... 
    sigma_yield_c^2*sigma_yield_b*h_f*h_b); 
dj2Ne_drho_f = 6*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0^2*... 
    rho_f*rho_b*... 
    (sigma_yield_f*sigma_yield_c^2*h_f*h_b + ... 
    sigma_yield_c^3*R_c*H*h_b*lambda_s +... 
    sigma_yield_c^2*sigma_yield_b*h_b^2); 
dj2Nf_drho_f = 6*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0^2*... 
    rho_f*rho_c*... 
    (sigma_yield_f*sigma_yield_c^2*R_c*H*h_f + ... 
    sigma_yield_c^3*R_c^2*H^2*lambda_s + ... 
    sigma_yield_c^2*sigma_yield_b*R_c*H*h_b); 
  
dj2N_drho_f = dj2Na_drho_f + dj2Nb_drho_f + dj2Nc_drho_f +... 
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    dj2Nd_drho_f + dj2Ne_drho_f + dj2Nf_drho_f; 
  
dj2D_drho_f = L^2*lambda_c^2*R_c^2*h_f^2*sigma_yield_c^2 * ... 
    (4*rho_f^3*h_f^2 + ... 
    2*rho_f*rho_b^2*h_b^2 + ... 
    2*rho_f*rho_c^2*R_c^2*H^2 + ... 
    6*rho_f^2*h_f*rho_b*h_b + ... 
    6*rho_f^2*h_f*rho_c*R_c*H + ... 
    4*rho_f*rho_b*h_b*rho_c*R_c*H); 
  
dg2D_drho_f = 0; 
  
ddefl_drho_f = (g1D*dg1N_drho_f - g1N*dg1D_drho_f)/g1D^2 + ... 
    L*(((sqrt(j2D)/(2*sqrt(j2N)) * dj2N_drho_f) -... 
    (sqrt(j2N)/(2*sqrt(j2D)) * dj2D_drho_f))/(j2D*g2D) - ... 
    (sqrt(j2N/j2D)*dg2D_drho_f)/(g2D^2)); 
%%-- End Partial Derivatives with respect to rho_f ------------------- 
  
%%-- Partial Derivatives with respect to p_0 ------------------------- 
dg1N_dp_0 = (12*p_0*t_0^2*sigma_yield_b*h_b * ... 
    (rho_b*h_b + rho_c*R_c*H)); 
  
dg1D_dp_0 = 0; 
  
dj2Na_dp_0 = 0; 
dj2Nb_dp_0 = (-72*h_b^2*H*lambda_c*R_c*h_f*p_0*t_0^2*... 
    sigma_yield_b^2*sigma_yield_c*... 
    (rho_b*h_b*rho_f^2*h_f + ... 
    rho_f*rho_b^2*h_b^2 + ... 
    2*rho_f*rho_b*h_b*rho_c*R_c*H + ... 
    rho_f^2*h_f*rho_c*R_c*H + ... 
    rho_f*rho_c^2*R_c^2*H^2)); 
dj2Nc_dp_0 = (144*h_b^2*p_0^3*t_0^4*sigma_yield_b^2*... 
    (rho_b^2*h_b^2 + 2*rho_b*h_b*rho_c*R_c*H + ... 
    rho_c^2*R_c^2*H^2)); 
dj2Nd_dp_0 = 6*L^2*lambda_c^2*R_c^2*h_f^2*p_0*t_0^2*rho_f^3*... 
    (sigma_yield_f*sigma_yield_c^2*h_f^2 + ... 
    sigma_yield_c^3*R_c*H*h_f*lambda_s + ... 
    sigma_yield_c^2*sigma_yield_b*h_f*h_b); 
dj2Ne_dp_0 = 6*L^2*lambda_c^2*R_c^2*h_f^2*p_0*t_0^2*rho_f^2*rho_b*... 
    (sigma_yield_f*sigma_yield_c^2*h_f*h_b + ... 
    sigma_yield_c^3*R_c*H*h_b*lambda_s +... 
    sigma_yield_c^2*sigma_yield_b*h_b^2); 
dj2Nf_dp_0 = 6*L^2*lambda_c^2*R_c^2*h_f^2*p_0*t_0^2*rho_f^2*rho_c*... 
    (sigma_yield_f*sigma_yield_c^2*R_c*H*h_f + ... 
    sigma_yield_c^3*R_c^2*H^2*lambda_s + ... 
    sigma_yield_c^2*sigma_yield_b*R_c*H*h_b); 
  
dj2N_dp_0 = dj2Na_dp_0 + dj2Nb_dp_0 + dj2Nc_dp_0 + ... 
            dj2Nd_dp_0 + dj2Ne_dp_0 + dj2Nf_dp_0; 
  
dj2D_dp_0 = 0; 
  
dg2D_dp_0 = 0; 
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ddefl_dp_0 = (g1D*dg1N_dp_0 - g1N*dg1D_dp_0)/g1D^2 + ... 
    L*(((sqrt(j2D)/(2*sqrt(j2N)) * dj2N_dp_0) -... 
    (sqrt(j2N)/(2*sqrt(j2D)) * dj2D_dp_0))/(j2D*g2D) - ... 
    (sqrt(j2N/j2D)*dg2D_dp_0)/(g2D^2)); 
%%-- End Partial Derivatives with respect to p_0 --------------------- 
  
%%-- Partial Derivatives with respect to t_0 ------------------------- 
dg1N_dt_0 = (12*p_0^2*t_0*sigma_yield_b*h_b * ... 
    (rho_b*h_b + rho_c*R_c*H)); 
  
dg1D_dt_0 = 0; 
  
dj2Na_dt_0 = 0; 
dj2Nb_dt_0 = (-72*h_b^2*H*lambda_c*R_c*h_f*p_0^2*t_0*... 
    sigma_yield_b^2*sigma_yield_c*... 
    (rho_b*h_b*rho_f^2*h_f + ... 
    rho_f*rho_b^2*h_b^2 + ... 
    2*rho_f*rho_b*h_b*rho_c*R_c*H + ... 
    rho_f^2*h_f*rho_c*R_c*H + ... 
    rho_f*rho_c^2*R_c^2*H^2)); 
dj2Nc_dt_0 = (144*h_b^2*p_0^4*t_0^3*sigma_yield_b^2*... 
    (rho_b^2*h_b^2 + 2*rho_b*h_b*rho_c*R_c*H + ... 
    rho_c^2*R_c^2*H^2)); 
dj2Nd_dt_0 = 6*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0*rho_f^3*... 
    (sigma_yield_f*sigma_yield_c^2*h_f^2 + ... 
    sigma_yield_c^3*R_c*H*h_f*lambda_s + ... 
    sigma_yield_c^2*sigma_yield_b*h_f*h_b); 
dj2Ne_dt_0 = 6*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0*rho_f^2*rho_b*... 
    (sigma_yield_f*sigma_yield_c^2*h_f*h_b + ... 
    sigma_yield_c^3*R_c*H*h_b*lambda_s +... 
    sigma_yield_c^2*sigma_yield_b*h_b^2); 
dj2Nf_dt_0 = 6*L^2*lambda_c^2*R_c^2*h_f^2*p_0^2*t_0*rho_f^2*rho_c*... 
    (sigma_yield_f*sigma_yield_c^2*R_c*H*h_f + ... 
    sigma_yield_c^3*R_c^2*H^2*lambda_s + ... 
    sigma_yield_c^2*sigma_yield_b*R_c*H*h_b); 
  
dj2N_dt_0 = dj2Na_dt_0 + dj2Nb_dt_0 + dj2Nc_dt_0 + ... 
            dj2Nd_dt_0 + dj2Ne_dt_0 + dj2Nf_dt_0; 
  
dj2D_dt_0 = 0; 
  
dg2D_dt_0 = 0; 
  
ddefl_dt_0 = (g1D*dg1N_dt_0 - g1N*dg1D_dt_0)/g1D^2 + ... 
    L*(((sqrt(j2D)/(2*sqrt(j2N)) * dj2N_dt_0) -... 
    (sqrt(j2N)/(2*sqrt(j2D)) * dj2D_dt_0))/(j2D*g2D) - ... 
    (sqrt(j2N/j2D)*dg2D_dt_0)/(g2D^2)); 
%%-- End Partial Derivatives with respect to t_0 --------------------- 
% Now that all the partial derivatives have been defined, the change  
% in deflection can be calculated. 
delta_defl = abs(ddefl_dsigma_yield_b)*delta_sigma_yield_b + ... 
    abs(ddefl_dsigma_yield_c)*delta_sigma_yield_c + ... 
    abs(ddefl_dsigma_yield_f)*delta_sigma_yield_f + ... 
    abs(ddefl_drho_b)*delta_rho_b + ... 
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    abs(ddefl_drho_c)*delta_rho_c + ... 
    abs(ddefl_drho_f)*delta_rho_f + ... 
    abs(ddefl_dp_0)*delta_p_0 + ... 
    abs(ddefl_dt_0)*delta_t_0; 
  
%--------------------------------------------------------------------- 
% End Change in Deflection Calculation 
%--------------------------------------------------------------------- 
 

BRPfitness_nr.m 

function [Z] = BRPfitness_nr(x) 
  
%   BRPfitness_nr Determines the value of the fitness function Z  
%       given a vector of design variables, x. This fitness function   
%       is used to solve the expansion cDSP for the Point Scenario of  
%       the BRP example 
% 
%   Inputs: 
%      X:   a vector of design variables represented by a vector of  
%           55 bits 
%   Outputs: 
%      Z:   the value of the fitness function at design point X   
%   
%   Assumptions:  
%         - design variable vector in the order of: 
%           X = [B, H, h_c, h_f, h_b, ... 
%                 sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%                 rho_b, rho_c, rho_f] 
%         - uncertain parameter vector in the order of: 
%           DX = [sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%                 rho_b, rho_c, rho_f, ... 
%                 p_0, t_0] 
%         - constraint values vector in the order of: 
%           GX = [mass_con, defl_con, Rc_con, gamma_con, mu_con] 
  
% 
% Fall 2006 
% 
% AUTHOR:  Stephanie Thompson 
% 
  
% Set scheme 
scheme = 11; 
  
% -------------------------------------------------------------------- 
% Convert x from bit string to normalized design variables 
% -------------------------------------------------------------------- 
% There are eleven design variables, each discretized into 32 points 
% between zero and one.  The 32 points are represented by a binary  
% string of 5 bits.   
  
% separate bit string x into 11 design variables: 
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x = [x(1:5); x(6:10); x(11:15); x(16:20); x(21:25); x(26:30);... 
     x(31:35); x(36:40); x(41:45); x(46:50); x(51:55)]; 
  
% convert binary to base ten: 
x = bin2dec(strcat(num2str(x)))'; 
  
% normalize from 0 to 1: 
x = norm01(x,zeros(1,11),31*ones(1,11)); 
  
% -------------------------------------------------------------------- 
% GIVEN 
% -------------------------------------------------------------------- 
% Constant parameters 
L = 1; 
p_0 = 25*10^6; 
t_0 = 0.0001; 
P = 1000; % Penalty parameter 
delta_p_0 = 0.15*p_0; 
delta_t_0 = 0.15*t_0; 
  
% Baseline Material Properties 
rho_mg = 1770; % 1770 kg/m3 
rho_st = 7845; % 7845 kg/m3 
sigma_y_mg = 200 * 10^6; % 200 MPa 
sigma_y_st = 538 * 10^6; % 538 MPa 
  
% Variation in material properties 
delta_rho_mg = 170; % 170 kg/m3 
delta_rho_st = 100; % 100 kg/m3 
delta_sigma_y_mg = 20 * 10^6; % 20 MPa 
delta_sigma_y_st = 150 * 10^6; % 150 MPa 
  
x_base = [sigma_y_mg, sigma_y_st, sigma_y_mg, rho_mg, rho_st, rho_mg]; 
dx = [delta_sigma_y_mg, delta_sigma_y_st, delta_sigma_y_mg, ... 
    delta_rho_mg, delta_rho_st, delta_rho_mg, ... 
    delta_p_0, delta_t_0]; 
weights = 1-dx(1:6)./x_base; 
dx = zeros(1,8); 
  
  
% Archimedean weights 
% W = [mass, defl, cost]; 
W = [1 0 0; 0 1 0; 0 0 1; ... 
    .6 .2 .2; .2 .6 .2; .2 .2 .6; ... 
    .2 .4 .4; .4 .2 .4; .4 .4 .2; ... 
    1/3 1/3 1/3; 0.5 0.5 0]; 
  
% [defl, delta_defl, M, delta_M, R_c, m_c, m_f] = BRPdefl(... 
%     x(1), x(2), x(3), x(4), x(5), ... 
%     x(6), x(7), x(8), ... 
%     x(9), x(10), x(11), ... 
%     L, p_0, t_0, uncert_vars); 
  
% -------------------------------------------------------------------- 
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% FIND 
% -------------------------------------------------------------------- 
% Design Variables 
% xabs = [B, H, h_c, h_f, h_b, ... 
%     sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%     rho_b, rho_c, rho_f]; 
  
% Deviation Variables 
% d = [sum(deviation(M,M_target,'min')),...  
%      sum(deviation(defl,defl_target,'min')),... 
%      sum(deviation(cost,cost_target,'min'))]; 
% -------------------------------------------------------------------- 
% SATISFY 
% -------------------------------------------------------------------- 
% Bounds 
ub = [2/100, 5/100, 1/100, 5/100, 5/100, ... 
    1200e6, 1200e6, 1200e6, ... 
    20000, 20000, 20000]; 
lb = [1/1000, 5/1000, 0.1/1000, 1/1000, 1/1000, ... 
    20e6, 20e6, 20e6 ... 
    1600, 1600, 1600]; 
xabs = unnorm01(x, lb, ub); 
  
% Constraints 
% constraints are defined and evaluated in function  
% ineq_constraints_BRP_nr 
gx = ineq_constraints_BRP_nr(xabs, dx); 
  
% Goals 
% Minimize mass as close as possible to 0 kg/m2 with a maximum value  
% of 2997.7 
M_max = 2997.7; 
  
% Minimize deflection as close as possible to 0 cm with a maximum  
% value of 234.5 m 
defl_max = 234.5; 
  
% Minimize cost as close as possible to 0, with a maximum value of  
% 5.35 
cost_max = 5.35; 
  
% Evaluate BRP deflection code  
[defl, delta_defl, M, delta_M, R_c, m_c, m_f] = BRPdefl(... 
    xabs(1), xabs(2), xabs(3), xabs(4), xabs(5), ... 
    xabs(6), xabs(7), xabs(8), ... 
    xabs(9), xabs(10), xabs(11), ... 
    L, p_0, t_0, dx); 
  
% Get cost 
[cost, delta_cost] = DSEcost(xabs(6:11), x_base, weights, dx(1:6)); 
  
  
    [dmass_minus,dmass_plus] = deviation(M,M_max,'m20'); 
    [ddefl_minus,ddefl_plus] = deviation(defl,defl_max,'m20'); 
    [dcost_minus,dcost_plus] = deviation(cost,cost_max,'m20'); 
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    d = [(dmass_minus + dmass_plus), ... 
        (ddefl_minus+ddefl_plus), ... 
        (dcost_minus+ dcost_plus)]; 
    dmass_minus = []; 
    dmass_plus = []; 
    ddefl_minus = []; 
    ddefl_plus = []; 
    dcost_minus = []; 
    dcost_plus = []; 
  
% -------------------------------------------------------------------- 
% MINIMIZE 
% -------------------------------------------------------------------- 
% Archimedean formulation 
Z = W(scheme,:)*(d)' + P*sum(gx.^2);  
% -------------------------------------------------------------------- 
 

BRPfitness_r.m 

function [Z] = BRPfitness_r(x) 
  
%   BRPfitness_r Determines the value of the fitness function Z  
%       given a vector of design variables, x. This fitness function   
%       is used to solve the expansion cDSP for the Ranged Scenario of 
%       the BRP example 
% 
%   Inputs: 
%      X:   a vector of design variables represented by a vector of  
%           55 bits 
%   Outputs: 
%      Z:   the value of the fitness function at design point X   
%   
%   Assumptions:  
%         - design variable vector in the order of: 
%           X = [B, H, h_c, h_f, h_b, ... 
%                 sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%                 rho_b, rho_c, rho_f] 
%         - uncertain parameter vector in the order of: 
%           DX = [sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%                 rho_b, rho_c, rho_f, ... 
%                 p_0, t_0] 
%         - constraint values vector in the order of: 
%           GX = [mass_con, defl_con, Rc_con, gamma_con, mu_con] 
  
% 
% Fall 2006 
% 
% AUTHOR:  Stephanie Thompson 
% 
  
%Set Scheme 
scheme = 11; 
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% -------------------------------------------------------------------- 
% Convert x from bit string to normalized design variables 
% -------------------------------------------------------------------- 
% There are eleven design variables, each discretized into 32 points 
% between zero and one.  The 32 points are represented by a binary  
% string of 5 bits.   
  
% separate bit string x into 11 design variables: 
x = [x(1:5); x(6:10); x(11:15); x(16:20); x(21:25); x(26:30);... 
     x(31:35); x(36:40); x(41:45); x(46:50); x(51:55)]; 
  
% convert binary to base ten: 
x = bin2dec(strcat(num2str(x)))'; 
  
% normalize from 0 to 1: 
x = norm01(x,zeros(1,11),31*ones(1,11)); 
  
% -------------------------------------------------------------------- 
% GIVEN 
% -------------------------------------------------------------------- 
% Constant parameters 
L = 1; 
p_0 = 25*10^6; 
t_0 = 0.0001; 
P = 1000; % Penalty parameter 
delta_p_0 = 0.15*p_0; 
delta_t_0 = 0.15*t_0; 
  
% Baseline Material Properties 
rho_mg = 1770; % 1770 kg/m3 
rho_st = 7845; % 7845 kg/m3 
sigma_y_mg = 200 * 10^6; % 200 MPa 
sigma_y_st = 538 * 10^6; % 538 MPa 
  
% Variation in material properties 
delta_rho_mg = 170; % 170 kg/m3 
delta_rho_st = 100; % 100 kg/m3 
delta_sigma_y_mg = 20 * 10^6; % 20 MPa 
delta_sigma_y_st = 150 * 10^6; % 150 MPa 
  
x_base = [sigma_y_mg, sigma_y_st, sigma_y_mg, rho_mg, rho_st, rho_mg]; 
dx = [delta_sigma_y_mg, delta_sigma_y_st, delta_sigma_y_mg, ... 
    delta_rho_mg, delta_rho_st, delta_rho_mg, ... 
    delta_p_0, delta_t_0]; 
weights = 1-dx(1:6)./x_base; 
  
  
% Archimedean weights 
% W = [mass, defl, cost]; 
W = [1 0 0; 0 1 0; 0 0 1; ... 
    .6 .2 .2; .2 .6 .2; .2 .2 .6; ... 
    .2 .4 .4; .4 .2 .4; .4 .4 .2; ... 
    1/3 1/3 1/3; 0.5 0.5 0]; 
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% [defl, delta_defl, M, delta_M, R_c, m_c, m_f] = BRPdefl(... 
%     x(1), x(2), x(3), x(4), x(5), ... 
%     x(6), x(7), x(8), ... 
%     x(9), x(10), x(11), ... 
%     L, p_0, t_0, uncert_vars); 
  
% -------------------------------------------------------------------- 
% FIND 
% -------------------------------------------------------------------- 
% Design Variables 
% xabs = [B, H, h_c, h_f, h_b, ... 
%     sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%     rho_b, rho_c, rho_f]; 
  
% Deviation Variables 
% d = [sum(deviation(M,M_target,'min')),...  
%      sum(deviation(defl,defl_target,'min')),... 
%      sum(deviation(cost,cost_target,'min'))]; 
% -------------------------------------------------------------------- 
% SATISFY 
% -------------------------------------------------------------------- 
% Bounds 
ub = [2/100, 5/100, 1/100, 5/100, 5/100, ... 
    1200e6-delta_sigma_y_mg, ... 
    1200e6-delta_sigma_y_st, ... 
    1200e6-delta_sigma_y_mg, ... 
    20000-delta_rho_mg, 20000-delta_rho_st, 20000-delta_rho_mg]; 
lb = [1/1000, 5/1000, 0.1/1000, 1/1000, 1/1000, ... 
    20e6+delta_sigma_y_mg, ... 
    20e6+delta_sigma_y_st, ... 
    20e6+delta_sigma_y_mg, ... 
    1600+delta_rho_mg, 1600+delta_rho_st, 1600+delta_rho_mg]; 
xabs = unnorm01(x, lb, ub); 
  
% Constraints 
% constraints are defined and evaluated in function  
% ineq_constraints_BRP_r 
gx = ineq_constraints_BRP_r(xabs, dx); 
  
% Goals 
% Minimize mass as close as possible to 0 kg/m2 
M_target = 0; 
  
% Minimize deflection as close as possible to 0 cm 
defl_target = 0; 
  
% Minimize cost as close as possible to 0 
cost_target = 0; 
  
% Evaluate BRP deflection code  
[defl, delta_defl, M, delta_M, R_c, m_c, m_f] = BRPdefl(... 
    xabs(1), xabs(2), xabs(3), xabs(4), xabs(5), ... 
    xabs(6), xabs(7), xabs(8), ... 
    xabs(9), xabs(10), xabs(11), ... 
    L, p_0, t_0, dx); 
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% Get Cdk's 
Cdk_M = (M_target - M)/delta_M; 
Cdk_defl = (defl_target - defl)/delta_defl; 
[cost, delta_cost] = DSEcost(xabs(6:11), x_base, weights, dx(1:6)); 
Cdk_cost = (cost_target - cost)/delta_cost; 
  
    % calculate deviation vector 
    [dmass_minus,dmass_plus] = deviation(Cdk_M,1,'max'); 
    [ddefl_minus,ddefl_plus] = deviation(Cdk_defl,1,'max'); 
    [dcost_minus,dcost_plus] = deviation(Cdk_cost,1,'max'); 
    d = [(dmass_minus), (ddefl_minus), (dcost_minus)]; 
    dmass_minus = []; 
    dmass_plus = []; 
    ddefl_minus = []; 
    ddefl_plus = []; 
    dcost_minus = []; 
    dcost_plus = []; 
  
% -------------------------------------------------------------------- 
% MINIMIZE 
% -------------------------------------------------------------------- 
% Archimedean formulation 
Z = W(scheme,:)*(d)' + P*sum(gx.^2); 
% -------------------------------------------------------------------- 
 

BRPpattern_nr.m 

function [Z] = BRPpattern_nr(x) 
  
%   BRPpattern_nr Determines the value of the objective function Z  
%       given a vector of design variables, x. This objective function 
%       is used to solve the expansion cDSP for the Point Scenario of  
%       the BRP example 
% 
%   Inputs: 
%      X:   a vector of design variables normalized between 0 and 1 
% 
%   Outputs: 
%      Z:   the value of the objective function at design point X   
%   
%   Assumptions:  
%         - design variable vector in the order of: 
%           X = [B, H, h_c, h_f, h_b, ... 
%                 sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%                 rho_b, rho_c, rho_f] 
%         - uncertain parameter vector in the order of: 
%           DX = [sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%                 rho_b, rho_c, rho_f, ... 
%                 p_0, t_0] 
%         - constraint values vector in the order of: 
%           GX = [mass_con, defl_con, Rc_con, gamma_con, mu_con] 
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% 
% Fall 2006 
% 
% AUTHOR:  Stephanie Thompson 
% 
  
% Set Scheme 
scheme = 11; 
  
% -------------------------------------------------------------------- 
% GIVEN 
% -------------------------------------------------------------------- 
% Constant parameters 
L = 1; 
p_0 = 25*10^6; 
t_0 = 0.0001; 
P = 1000; % Penalty parameter 
delta_p_0 = 0.15*p_0; 
delta_t_0 = 0.15*t_0; 
  
% Baseline Material Properties 
rho_mg = 1770; % 1770 kg/m3 
rho_st = 7845; % 7845 kg/m3 
sigma_y_mg = 200 * 10^6; % 200 MPa 
sigma_y_st = 538 * 10^6; % 538 MPa 
  
% Variation in material properties 
delta_rho_mg = 170; % 170 kg/m3 
delta_rho_st = 100; % 100 kg/m3 
delta_sigma_y_mg = 20 * 10^6; % 20 MPa 
delta_sigma_y_st = 150 * 10^6; % 150 MPa 
  
x_base = [sigma_y_mg, sigma_y_st, sigma_y_mg, rho_mg, rho_st, rho_mg]; 
dx = [delta_sigma_y_mg, delta_sigma_y_st, delta_sigma_y_mg, ... 
    delta_rho_mg, delta_rho_st, delta_rho_mg, ... 
    delta_p_0, delta_t_0]; 
weights = 1-dx(1:6)./x_base; 
dx = zeros(1,8); 
  
  
% Archimedean weights 
% W = [mass, defl, cost]; 
W = [1 0 0; 0 1 0; 0 0 1; ... 
    .6 .2 .2; .2 .6 .2; .2 .2 .6; ... 
    .2 .4 .4; .4 .2 .4; .4 .4 .2; ... 
    1/3 1/3 1/3; 0.5 0.5 0]; 
  
% [defl, delta_defl, M, delta_M, R_c, m_c, m_f] = BRPdefl(... 
%     x(1), x(2), x(3), x(4), x(5), ... 
%     x(6), x(7), x(8), ... 
%     x(9), x(10), x(11), ... 
%     L, p_0, t_0, uncert_vars); 
  
% -------------------------------------------------------------------- 
% FIND 
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% -------------------------------------------------------------------- 
% Design Variables 
% xabs = [B, H, h_c, h_f, h_b, ... 
%     sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%     rho_b, rho_c, rho_f]; 
  
% Deviation Variables 
% d = [sum(deviation(M,M_target,'min')),...  
%      sum(deviation(defl,defl_target,'min')),... 
%      sum(deviation(cost,cost_target,'min'))]; 
% -------------------------------------------------------------------- 
% SATISFY 
% -------------------------------------------------------------------- 
% Bounds 
ub = [2/100, 5/100, 1/100, 5/100, 5/100, ... 
    1200e6, 1200e6, 1200e6, ... 
    20000, 20000, 20000]; 
lb = [1/1000, 5/1000, 0.1/1000, 1/1000, 1/1000, ... 
    20e6, 20e6, 20e6 ... 
    1600, 1600, 1600]; 
xabs = unnorm01(x, lb, ub); 
  
% Constraints 
% constraints are defined and evaluated in function  
% ineq_constraints_BRP_nr 
gx = ineq_constraints_BRP_nr(xabs, dx); 
  
% Goals 
% Minimize mass as close as possible to 0 kg/m2 with a maximum value  
% of 2997.7 
M_max = 2997.7; 
  
% Minimize deflection as close as possible to 0 cm with a maximum  
% value of 234.5 m 
defl_max = 234.5; 
  
% Minimize cost as close as possible to 0, with a maximum value of  
% 5.35 
cost_max = 5.35; 
  
% Evaluate BRP deflection code  
[defl, delta_defl, M, delta_M, R_c, m_c, m_f] = BRPdefl(... 
    xabs(1), xabs(2), xabs(3), xabs(4), xabs(5), ... 
    xabs(6), xabs(7), xabs(8), ... 
    xabs(9), xabs(10), xabs(11), ... 
    L, p_0, t_0, dx); 
  
% Get cost 
[cost, delta_cost] = DSEcost(xabs(6:11), x_base, weights, dx(1:6)); 
  
  
    [dmass_minus,dmass_plus] = deviation(M,M_max,'m20'); 
    [ddefl_minus,ddefl_plus] = deviation(defl,defl_max,'m20'); 
    [dcost_minus,dcost_plus] = deviation(cost,cost_max,'m20'); 
    d = [(dmass_minus + dmass_plus), ... 
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        (ddefl_minus+ddefl_plus), ... 
        (dcost_minus+ dcost_plus)]; 
    dmass_minus = []; 
    dmass_plus = []; 
    ddefl_minus = []; 
    ddefl_plus = []; 
    dcost_minus = []; 
    dcost_plus = []; 
  
% -------------------------------------------------------------------- 
% MINIMIZE 
% -------------------------------------------------------------------- 
% Archimedean formulation 
Z = W(scheme,:)*(d)' + P*sum(gx.^2);  
% -------------------------------------------------------------------- 
 

BRPpattern_r.m 

function [Z] = BRPpattern_r(x) 
  
%   BRPpattern_r Determines the value of the objective function Z  
%       given a vector of design variables, x. This objective function 
%       is used to solve the expansion cDSP for the Ranged Scenario of 
%       the BRP example 
% 
%   Inputs: 
%      X:   a vector of design variables normalized between 0 and 1 
% 
%   Outputs: 
%      Z:   the value of the objective function at design point X   
%   
%   Assumptions:  
%         - design variable vector in the order of: 
%           X = [B, H, h_c, h_f, h_b, ... 
%                 sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%                 rho_b, rho_c, rho_f] 
%         - uncertain parameter vector in the order of: 
%           DX = [sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%                 rho_b, rho_c, rho_f, ... 
%                 p_0, t_0] 
%         - constraint values vector in the order of: 
%           GX = [mass_con, defl_con, Rc_con, gamma_con, mu_con] 
  
% 
% Fall 2006 
% 
% AUTHOR:  Stephanie Thompson 
% 
  
% Set Scheme 
scheme = 11; 
  
% -------------------------------------------------------------------- 
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% GIVEN 
% -------------------------------------------------------------------- 
% Constant parameters 
L = 1; 
p_0 = 25*10^6; 
t_0 = 0.0001; 
P = 1000; % Penalty parameter 
delta_p_0 = 0.15*p_0; 
delta_t_0 = 0.15*t_0; 
  
% Baseline Material Properties 
rho_mg = 1770; % 1770 kg/m3 
rho_st = 7845; % 7845 kg/m3 
sigma_y_mg = 200 * 10^6; % 200 MPa 
sigma_y_st = 538 * 10^6; % 538 MPa 
  
% Variation in material properties 
delta_rho_mg = 170; % 170 kg/m3 
delta_rho_st = 100; % 100 kg/m3 
delta_sigma_y_mg = 20 * 10^6; % 20 MPa 
delta_sigma_y_st = 150 * 10^6; % 150 MPa 
  
x_base = [sigma_y_mg, sigma_y_st, sigma_y_mg, rho_mg, rho_st, rho_mg]; 
dx = [delta_sigma_y_mg, delta_sigma_y_st, delta_sigma_y_mg, ... 
    delta_rho_mg, delta_rho_st, delta_rho_mg, ... 
    delta_p_0, delta_t_0]; 
weights = 1-dx(1:6)./x_base; 
  
  
% Archimedean weights 
% W = [mass, defl, cost]; 
W = [1 0 0; 0 1 0; 0 0 1; ... 
    .6 .2 .2; .2 .6 .2; .2 .2 .6; ... 
    .2 .4 .4; .4 .2 .4; .4 .4 .2; ... 
    1/3 1/3 1/3; 0.5 0.5 0]; 
  
% [defl, delta_defl, M, delta_M, R_c, m_c, m_f] = BRPdefl(... 
%     x(1), x(2), x(3), x(4), x(5), ... 
%     x(6), x(7), x(8), ... 
%     x(9), x(10), x(11), ... 
%     L, p_0, t_0, uncert_vars); 
  
% -------------------------------------------------------------------- 
% FIND 
% -------------------------------------------------------------------- 
% Design Variables 
% xabs = [B, H, h_c, h_f, h_b, ... 
%     sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%     rho_b, rho_c, rho_f]; 
  
% Deviation Variables 
% d = [sum(deviation(M,M_target,'min')),...  
%      sum(deviation(defl,defl_target,'min')),... 
%      sum(deviation(cost,cost_target,'min'))]; 
% -------------------------------------------------------------------- 
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% SATISFY 
% -------------------------------------------------------------------- 
% Bounds 
ub = [2/100, 5/100, 1/100, 5/100, 5/100, ... 
    1200e6-delta_sigma_y_mg, ... 
    1200e6-delta_sigma_y_st, ... 
    1200e6-delta_sigma_y_mg, ... 
    20000-delta_rho_mg, 20000-delta_rho_st, 20000-delta_rho_mg]; 
lb = [1/1000, 5/1000, 0.1/1000, 1/1000, 1/1000, ... 
    20e6+delta_sigma_y_mg, ... 
    20e6+delta_sigma_y_st, ... 
    20e6+delta_sigma_y_mg, ... 
    1600+delta_rho_mg, 1600+delta_rho_st, 1600+delta_rho_mg]; 
xabs = unnorm01(x, lb, ub); 
  
% Constraints 
% constraints are defined and evaluated in function  
% ineq_constraints_BRP_r 
gx = ineq_constraints_BRP_r(xabs, dx); 
  
% Goals 
% Minimize mass as close as possible to 0 kg/m2 
M_target = 0; 
  
% Minimize deflection as close as possible to 0 cm 
defl_target = 0; 
  
% Minimize cost as close as possible to 0 
cost_target = 0; 
  
% Evaluate BRP deflection code  
[defl, delta_defl, M, delta_M, R_c, m_c, m_f] = BRPdefl(... 
    xabs(1), xabs(2), xabs(3), xabs(4), xabs(5), ... 
    xabs(6), xabs(7), xabs(8), ... 
    xabs(9), xabs(10), xabs(11), ... 
    L, p_0, t_0, dx); 
  
% Get Cdk's 
Cdk_M = (M_target - M)/delta_M; 
Cdk_defl = (defl_target - defl)/delta_defl; 
[cost, delta_cost] = DSEcost(xabs(6:11), x_base, weights, dx(1:6)); 
Cdk_cost = (cost_target - cost)/delta_cost; 
  
    % calculate deviation vector 
    [dmass_minus,dmass_plus] = deviation(Cdk_M,1,'max'); 
    [ddefl_minus,ddefl_plus] = deviation(Cdk_defl,1,'max'); 
    [dcost_minus,dcost_plus] = deviation(Cdk_cost,1,'max'); 
    d = [(dmass_minus), (ddefl_minus), (dcost_minus)]; 
    dmass_minus = []; 
    dmass_plus = []; 
    ddefl_minus = []; 
    ddefl_plus = []; 
    dcost_minus = []; 
    dcost_plus = []; 
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% -------------------------------------------------------------------- 
% MINIMIZE 
% -------------------------------------------------------------------- 
% Archimedean formulation 
Z = W(scheme,:)*(d)' + P*sum(gx.^2); 
% -------------------------------------------------------------------- 
 

deviation.m 

function [di_minus, di_plus] = deviation(A, G, minmax) 
  
%   DEVIATION Determines the values of the deviation variables  
%       DI_MINUS and DI_PLUS given the achievement A, the target  
%       (goal) G, and the direction MINMAX which can have values of  
%       'min', 'max', or 'm20'. This function is used in the context  
%       of a compromise Decision Support problem. 
%  
%   Inputs: 
%      A:           the achievment of the objective  
%      G:           the target for the objective, or the maximum value 
%                   in the design space for 'm20' case 
%      MINMAX:      minimize 'min' or maximize 'max' or  
%                   minimize to zero 'm20' 
% 
%   Outputs: 
%      DI_MINUS:    the underachievement of the objective 
%      DI_PLUS:     the overachievement of the objective 
%   
  
% 
% Fall 2006 
% 
% AUTHOR:  Stephanie Thompson 
% 
%--------------------------------------------------------------------- 
% initialize deviation variables 
di_minus = []; 
di_plus = []; 
  
% Input error checking 
  
if G == 0 
    error('Target value cannot be zero'), return 
end 
  
if minmax == 'min' 
  
    % Minimize : 
    % G + di_minus - di_plus = A 
    di_minus = 1 - G/A; 
        if di_minus <= 0 
            di_plus = -1*di_minus; 
            di_minus = 0; 
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        else 
            di_plus = 0; 
        end 
else 
    if minmax == 'max' 
        % Maximize : 
        % A + di_minus - di_plus = G 
        di_minus = 1 - A/G; 
            if di_minus <= 0 
                di_plus = -1*di_minus; 
                di_minus = 0; 
            else 
                di_plus = 0; 
            end 
    else 
            if minmax == 'm20' 
            % Minimize : 
            % A/Aimax + di_minus - di_plus = 0 
            di_minus = 0 - A/G; 
                if di_minus <= 0 
                    di_plus = -1*di_minus; 
                    di_minus = 0; 
                else 
                    di_plus = 0; 
                end 
            else 
                error('minmax must be either min, max, or min2zero') 
            end 
    end 
end 
%--------------------------------------------------------------------- 
 

DSEcost.m.m 

function [cost, delta_cost] = DSEcost(x_sol, x_base, weights, delta_x) 
  
%   DSEcost Determines the design space expansion cost at design point 
%       X_SOL given a baseline point X_BASE, directional weights   
%       WEIGHTS, and variation due to uncertainty in the design  
%       variables defined in DELTA_X. The function defines cost as the 
%       vector length of the difference in the evaluation point and   
%       the baseline material properties multiplied by a weighting  
%       factor. 
% 
%   Inputs: 
%      X_SOL:           a vector of material property design variables 
%      X_BASE:          a vector of baseline material properties 
%      WEIGHTS:         a vector of material property weights 
%      DELTA_X:         a vector of variation in material property  
%                       design variables 
% 
%   Outputs: 
%      COST:            (scalar) the cost of design space expansion at 
%                       design point X_SOL 
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%      DELTA_COST:      (scalar) the variation in the cost of design   
%                       space expansion at design point X_SOL 
%   
%   Assumptions:  
%         - goals are evaluated in terms of design capability indices 
%         - material property design variable vectors in the order of: 
%           X_SOL = [sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%                    rho_b, rho_c, rho_f] 
%           X_BASE = [sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%                     rho_b, rho_c, rho_f] 
%         - variation in material property design variable vector in   
%           the order of: 
%           DELTA_X = [sigma_yield_b, sigma_yield_c, sigma_yield_f,... 
%                 rho_b, rho_c, rho_f] 
%         - material property weights in the order of: 
%           WEIGHTS = [sigma_yield_b, sigma_yield_c, sigma_yield_f,... 
%                      rho_b, rho_c, rho_f] 
   
% 
% Fall 2006 
% 
% AUTHOR:  Stephanie Thompson 
% 
%--------------------------------------------------------------------- 
cost = norm((weights).*abs(x_sol - x_base)./x_base); 
  
delta_cost = 0; 
  
for i = 1:length(x_sol) 
    if cost == 0 
        delta_cost = norm(weights.*delta_x./x_base); 
    else 
        delta_cost = delta_cost + ... 
        (weights(i)/(x_base(i)))*... 
        (abs((x_sol(i) - x_base(i))/sqrt(cost)))* ... 
        (delta_x(i)/x_base(i)); 
    end 
end 
%--------------------------------------------------------------------- 
 

get_points_baseline.m 

% Fall 2006 
% 
% AUTHOR:  Stephanie Thompson 
% 
% PURPOSE: create a grid of points in the baseline BRP design space 
% 
% ASSUMPTIONS:  
%       -   The grid is defined by 16 grid points 
%       -   Bounds listed below 
%       -   Five variables/dimensions (B, H, h_c, h_f, h_b) 
% 
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%  WARNING: This script creats a .txt file that is approx 40 MB and  
%           takes some time to execute. 
  
% -------------------------------------------------------------------- 
% Problem formulation: 
% -------------------------------------------------------------------- 
  
tic % start timer to determine the time to create and store points 
points = []; 
  
grid_pts = 16; 
  
% Bounds 
h_c_lb = 0.1/1000; % 0.1 mm 
h_c_ub = 1/100; % 1 cm 
H_lb = 5/1000; % 5 mm 
H_ub = 5/100; % 5 cm 
B_lb = 1/1000; % 1 mm 
B_ub = 2/100; % 2 cm 
h_f_lb = 1/1000; % 1 mm 
h_f_ub = 5/100; % 5 cm 
h_b_lb = 1/1000; % 1 mm 
h_b_ub = 5/100; % 5 cm 
  
% -------------------------------------------------------------------- 
% Problem solution: 
% -------------------------------------------------------------------- 
for h_c = [h_c_lb:((h_c_ub - h_c_lb)/(grid_pts-1)):h_c_ub] 
    for H = [H_lb:((H_ub - H_lb)/(grid_pts-1)):H_ub] 
        for B = [B_lb:((B_ub - B_lb)/(grid_pts-1)):B_ub] 
            for h_f = [h_f_lb:((h_f_ub - h_f_lb)/(grid_pts-1)):h_f_ub] 
                for h_b = ... 
                        [h_b_lb:((h_b_ub-h_b_lb)/(grid_pts-1)):h_b_ub] 
                     
                    points = [points; B, H, h_c, h_f, h_b]; 
  
                end 
            end 
        end 
    end 
end 
toc  
% -------------------------------------------------------------------- 
% Problem interpretation: 
% -------------------------------------------------------------------- 
tic 
dlmwrite('baseline_points.txt', points, ... 
    'delimiter', '\t', 'newline', 'pc') 
toc 
% -------------------------------------------------------------------- 
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ineq_constraints_BRP_nr.m 

function [gx, varargin] = ineq_constraints_BRP_nr(x, dx) 
  
%   INEQ_CONSTRAINTS_BRP_NR Determines the extent to which a design  
%       point X violates the constraints on the BRP problem in the    
%       Point Scenario. GX is equal to zero if the constraint is not  
%       violated and is equal to the value of the constraint if the  
%       constraint is violated. 
% 
%   Inputs: 
%      X:   a vector of design variables 
%      DX:  a vector of uncertain parameters 
% 
%   Outputs: 
%      GX:       a vector of constraint values  
%      VARARGIN: a matrix containing the evaluated constraints and  
%                their limits.   
%  
%   Assumptions:  
%         - all constraints are inequality constraints <= 0 
%         - design variable vector in the order of: 
%           X = [B, H, h_c, h_f, h_b, ... 
%                 sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%                 rho_b, rho_c, rho_f] 
%         - uncertain parameter vector in the order of: 
%           DX = [sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%                 rho_b, rho_c, rho_f, ... 
%                 p_0, t_0] 
%         - constraint values vector in the order of: 
%           GX = [mass_con, defl_con, Rc_con, gamma_con, mu_con] 
  
% 
% Fall 2006 
% 
% AUTHOR:  Stephanie Thompson 
% 
  
% Define limits 
mass_max = 150; 
defl_max = 0.15;  
Rc_min = 0.07; 
gamma_max = 0.6; 
mu_max = 4/sqrt(3); 
  
% Constant parameters 
L = 1; 
p_0 = 25*10^6; 
t_0 = 0.0001; 
uncert_vars = dx; 
  
% -------------------------------------------------------------------- 
% Several constraint evaluations require the evaluation of the BRPdefl 
% function.   
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[defl, delta_defl, M, delta_M, R_c, m_c, m_f] = BRPdefl(... 
    x(1), x(2), x(3), x(4), x(5), ... 
    x(6), x(7), x(8), ... 
    x(9), x(10), x(11), ... 
    L, p_0, t_0, uncert_vars); 
  
gamma = (2*p_0*t_0/(x(4)*sqrt(x(8)*(x(11))))); 
  
mu = m_c/m_f; 
  
% -------------------------------------------------------------------- 
% Constraints 
% -------------------------------------------------------------------- 
mass_con = min([0,(mass_max-M)]); 
defl_con = min([0,(defl_max-defl)]); 
Rc_con = min([0,(R_c-Rc_min)]); 
gamma_con = min([0,(gamma_max-gamma)]); 
mu_con = min([0,(mu_max-mu)]); 
  
gx = [mass_con, defl_con, 100*Rc_con, gamma_con, mu_con]; 
varargin = [M mass_max;... 
            defl defl_max;... 
            R_c Rc_min;... 
            gamma gamma_max;... 
            mu mu_max]; 
% -------------------------------------------------------------------- 
 

ineq_constraints_BRP_r.m 

function [gx, varargin] = ineq_constraints_BRP_r(x, dx) 
  
%   INEQ_CONSTRAINTS_BRP_R Determines the extent to which a design  
%       point X violates the constraints on the BRP problem in the    
%       Ranged Scenario. GX is equal to zero if the constraint is not  
%       violated and is equal to the value of the constraint if the  
%       constraint is violated. 
% 
%   Inputs: 
%      X:   a vector of design variables 
%      DX:  a vector of uncertain parameters 
% 
%   Outputs: 
%      GX:  a vector of constraint values    
%      VARARGIN: a matrix containing the evaluated constraints and  
%                their limits. 
%  
%   Assumptions:  
%         - all constraints are inequality constraints <= 0 
%         - robust constraints are evaluated in terms of design   
%           capability indices 
%         - design variable vector in the order of: 
%           X = [B, H, h_c, h_f, h_b, ... 
%                 sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
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%                 rho_b, rho_c, rho_f] 
%         - uncertain parameter vector in the order of: 
%           DX = [sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%                 rho_b, rho_c, rho_f, ... 
%                 p_0, t_0] 
%         - constraint values vector in the order of: 
%           GX = [mass_con, defl_con, Rc_con, gamma_con, mu_con] 
  
% 
% Fall 2006 
% 
% AUTHOR:  Stephanie Thompson 
% 
  
% Define limits 
mass_max = 150; 
defl_max = 0.15;  
Rc_min = 0.07; 
gamma_max = 0.6; 
mu_max = 4/sqrt(3); 
  
% Constant parameters 
L = 1; 
p_0 = 25*10^6; 
t_0 = 0.0001; 
uncert_vars = dx; 
  
% -------------------------------------------------------------------- 
% Several constraint evaluations require the evaluation of the BRPdefl 
% function.   
  
[defl, delta_defl, M, delta_M, R_c, m_c, m_f] = BRPdefl(... 
    x(1), x(2), x(3), x(4), x(5), ... 
    x(6), x(7), x(8), ... 
    x(9), x(10), x(11), ... 
    L, p_0, t_0, uncert_vars); 
  
gamma = (2*p_0*t_0/(x(4)*sqrt(x(8)*(x(11))))); 
  
delta_gamma = (abs((2*t_0/(x(4)*sqrt(x(8)*x(11))))*dx(7))+... 
    (abs(2*p_0/(x(4)*sqrt(x(8)*x(11))))*dx(8))+... 
    (abs(-t_0*p_0/(x(4)*sqrt(x(8)^3*x(11))))*dx(3))+... 
    (abs(-t_0*p_0/(x(4)*sqrt(x(8)*x(11)^3)))*dx(6))); 
  
mu = m_c/m_f; 
  
delta_mu = (abs((-x(10).*x(2).*R_c)./(x(11).^2.*x(4))).*dx(6) + ... 
    (abs((x(2).*R_c)./(x(11).*x(4))).*dx(5))); 
  
% -------------------------------------------------------------------- 
% Constraints 
% -------------------------------------------------------------------- 
mass_con = max(0,(1-((mass_max-M)/delta_M))); 
defl_con = max(0,(1-((defl_max-defl)/delta_defl))); 
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Rc_con = max(0,(Rc_min-R_c)); 
gamma_con = max(0,(1-((gamma_max-gamma)/delta_gamma))); 
mu_con = max(0,(1-((mu_max-mu)/delta_mu))); 
  
gx = [mass_con, defl_con, 100*Rc_con, gamma_con, mu_con]; 
varargin = [((mass_max-M)/delta_M) 1;... 
            ((defl_max-defl)/delta_defl) 1;... 
            R_c Rc_min;... 
            ((gamma_max-gamma)/delta_gamma) 1;... 
            ((mu_max-mu)/delta_mu) 1]; 
% -------------------------------------------------------------------- 
 

norm01.m 

function [x_norm] = norm01(x, lb, ub) 
  
%   NORM01 Returns a vector X_NORM that is normalized to be between  
%       zero and one using an input vector X, a lower bound vector LB, 
%       and an upper bound vector UB such that the lower bound is  
%       equal to zero and the upper bound is equal to one. The inverse 
%       operation which restores the absolute x values is performed by 
%       the function unnorm01.m 
% 
%   Inputs: 
%      X:          a vector of absolute design variables 
%      LB:         a vector of lower bounds 
%      UB:         a vector of upperbounds 
% 
%   Outputs: 
%      X_NORM:     a normalized vector 
%   
  
% 
% Fall 2006 
% 
% AUTHOR:  Stephanie Thompson 
% 
%--------------------------------------------------------------------- 
x_norm = (x - lb)./(ub - lb); 
%--------------------------------------------------------------------- 
 

solution_check_pattern_nr.m 

function [d] = solution_check_pattern_nr(x) 
  
%   solution_check_pattern_nr Evaluates the design point x and prints  
%       an analysis of the performance of BRP at that point.  This  
%       version is for the Point Scenario of the expansion cDSP 
% 
%   Inputs: 
%      X:   a vector of design variables (normalized between 0 & 1) 
% 
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%   Outputs: 
%   
%   Assumptions:  
%         - design variable vector in the order of: 
%           X = [B, H, h_c, h_f, h_b, ... 
%                 sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%                 rho_b, rho_c, rho_f] 
%         - uncertain parameter vector in the order of: 
%           DX = [sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%                 rho_b, rho_c, rho_f, ... 
%                 p_0, t_0] 
%         - constraint values vector in the order of: 
%           GX = [mass_con, defl_con, Rc_con, gamma_con, mu_con] 
% 
% Fall 2006 
% 
% AUTHOR:  Stephanie Thompson 
% 
  
% Set Scheme 
scheme = 11; 
  
% -------------------------------------------------------------------- 
% GIVEN 
% -------------------------------------------------------------------- 
% Constant parameters 
L = 1; 
p_0 = 25*10^6; 
t_0 = 0.0001; 
P = 1000; % Penalty parameter 
delta_p_0 = 0.15*p_0; 
delta_t_0 = 0.15*t_0; 
  
% Baseline Material Properties 
rho_mg = 1770; % 1770 kg/m3 
rho_st = 7845; % 7845 kg/m3 
sigma_y_mg = 200 * 10^6; % 200 MPa 
sigma_y_st = 538 * 10^6; % 538 MPa 
  
% Variation in material properties 
delta_rho_mg = 170; % 170 kg/m3 
delta_rho_st = 100; % 100 kg/m3 
delta_sigma_y_mg = 20 * 10^6; % 20 MPa 
delta_sigma_y_st = 150 * 10^6; % 150 MPa 
  
x_base = [sigma_y_mg, sigma_y_st, sigma_y_mg, rho_mg, rho_st, rho_mg]; 
dx = [delta_sigma_y_mg, delta_sigma_y_st, delta_sigma_y_mg, ... 
    delta_rho_mg, delta_rho_st, delta_rho_mg, ... 
    delta_p_0, delta_t_0]; 
weights = 1-dx(1:6)./x_base; 
dx = zeros(1,8); 
  
% Archimedean weights 
% W = [mass, defl, cost]; 
W = [1 0 0; 0 1 0; 0 0 1; ... 
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    .6 .2 .2; .2 .6 .2; .2 .2 .6; ... 
    .2 .4 .4; .4 .2 .4; .4 .4 .2; ... 
    1/3 1/3 1/3; 0.5 0.5 0]; 
  
% [defl, delta_defl, M, delta_M, R_c, m_c, m_f] = BRPdefl(... 
%     x(1), x(2), x(3), x(4), x(5), ... 
%     x(6), x(7), x(8), ... 
%     x(9), x(10), x(11), ... 
%     L, p_0, t_0, uncert_vars); 
  
% -------------------------------------------------------------------- 
% FIND 
% -------------------------------------------------------------------- 
% Design Variables 
% xabs = [B, H, h_c, h_f, h_b, ... 
%     sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%     rho_b, rho_c, rho_f]; 
  
% Deviation Variables 
% d = [sum(deviation(M,M_target,'min')),...  
%      sum(deviation(defl,defl_target,'min')),... 
%      sum(deviation(cost,cost_target,'min'))]; 
% -------------------------------------------------------------------- 
% SATISFY 
% -------------------------------------------------------------------- 
% Bounds 
ub = [2/100, 5/100, 1/100, 5/100, 5/100, ... 
    1200e6, 1200e6, 1200e6, ... 
    20000, 20000, 20000]; 
lb = [1/1000, 5/1000, 0.1/1000, 1/1000, 1/1000, ... 
    20e6, 20e6, 20e6 ... 
    1600, 1600, 1600]; 
xabs = unnorm01(x, lb, ub); 
  
% Constraints 
% constraints are defined and evaluated in function  
% ineq_constraints_BRP_nr 
[gx, cons] = ineq_constraints_BRP_nr(xabs, dx); 
  
% Goals 
% Minimize mass as close as possible to 0 kg/m2 with a maximum value  
% of 2997.7 
M_max = 2997.7; 
  
% Minimize deflection as close as possible to 0 cm with a maximum  
% value of 234.5 m 
defl_max = 234.5; 
  
% Minimize cost as close as possible to 0, with a maximum value of  
% 5.35 
cost_max = 5.35; 
  
% Evaluate BRP deflection code  
[defl, delta_defl, M, delta_M, R_c, m_c, m_f] = BRPdefl(... 
    xabs(1), xabs(2), xabs(3), xabs(4), xabs(5), ... 
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    xabs(6), xabs(7), xabs(8), ... 
    xabs(9), xabs(10), xabs(11), ... 
    L, p_0, t_0, dx); 
  
% Get cost 
[cost, delta_cost] = DSEcost(xabs(6:11), x_base, weights, dx(1:6)); 
  
  
    [dmass_minus,dmass_plus] = deviation(M,M_max,'m20'); 
    [ddefl_minus,ddefl_plus] = deviation(defl,defl_max,'m20'); 
    [dcost_minus,dcost_plus] = deviation(cost,cost_max,'m20'); 
    d = [(dmass_minus + dmass_plus), ... 
        (ddefl_minus+ddefl_plus), ... 
        (dcost_minus+ dcost_plus)]; 
    dmass_minus = []; 
    dmass_plus = []; 
    ddefl_minus = []; 
    ddefl_plus = []; 
    dcost_minus = []; 
    dcost_plus = []; 
  
% -------------------------------------------------------------------- 
% MINIMIZE 
% -------------------------------------------------------------------- 
% Archimedean formulation 
Z = W(scheme,:)*(d)' + P*sum(gx.^2); 
% -------------------------------------------------------------------- 
  
fid = 1; 
  
% Design Scenario 
fprintf(fid, ... 
    '| Design Scenario and Deviation Function Value--------------|\n') 
fprintf(fid, '| Mass Weight                          | % 5.4f |\n',... 
    W(scheme,1) ) 
fprintf(fid, '| Deflection Weight                    | % 5.4f |\n',... 
    W(scheme,2) ) 
fprintf(fid, '| Cost Weight                          | % 5.4f |\n',... 
    W(scheme,3) ) 
fprintf(fid, '| Deviation Function Value             | % 5.4f |\n',... 
    Z ) 
fprintf(fid, '| Deviation - Mass                     | % 5.4f |\n',... 
    d(1) ) 
fprintf(fid, '| Deviation - Deflection               | % 5.4f |\n',... 
    d(2) ) 
fprintf(fid, '| Deviation - Cost                     | % 5.4f |\n',... 
    d(3) ) 
  
fprintf(fid, '| Material Properties------------------------------|\n') 
fprintf(fid,... 
    '| Yield Strength, Back |%6.2f|MPa|between|%6.2f|and|%6.2f|\n',... 
    xabs(6)/1e6, lb(6)/1e6,ub(6)/1e6) 
fprintf(fid,... 
    '| Yield Strength, Core |%6.2f|MPa|between|%6.2f|and|%6.2f|\n',... 
    xabs(7)/1e6, lb(7)/1e6,ub(7)/1e6) 
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fprintf(fid,... 
    '| Yield Strength, Front|%6.2f|MPa|between|%6.2f|and|%6.2f|\n',... 
    xabs(8)/1e6, lb(8)/1e6,ub(8)/1e6) 
fprintf(fid,... 
    '| Density, Back | % 6.2f|kg/m^3|between|% 6.2f|and|% 6.2f|\n',... 
    xabs(9), lb(9),ub(9)) 
fprintf(fid,... 
    '| Density, Core | % 6.2f|kg/m^3|between|% 6.2f|and|% 6.2f|\n',... 
    xabs(10), lb(10),ub(10)) 
fprintf(fid,... 
    '| Density, Front| % 6.2f|kg/m^3|between|% 6.2f|and|% 6.2f|\n',... 
    xabs(11), lb(11),ub(11)) 
  
fprintf(fid, '| BRP Dimensions ----------------------------------|\n') 
fprintf(fid,... 
    '|Cell Spacing, B | %6.4f |m| between |% 6.4f|and|% 6.4f |\n',... 
    xabs(1), lb(1), ub(1)) 
fprintf(fid,... 
    '|Core Height, H | %6.4f |m| between |% 6.4f |and|% 6.4f |\n',... 
    xabs(2), lb(2), ub(2)) 
fprintf(fid,... 
    '|Cell Wall Thickness, h_c|%6.4f|m|between|%6.4f|and|%6.4f|\n',... 
    xabs(3), lb(3), ub(3)) 
fprintf(fid,... 
    '|Front FS Thickness, h_f|%6.4f|m|between|%6.4f|and|%6.4f|\n',... 
    xabs(4), lb(4), ub(4)) 
fprintf(fid,... 
    '|Back FS Thickness, h_b|%6.4f|m|between|%6.4f|and|%6.4f|\n',... 
    xabs(5), lb(5), ub(5)) 
  
fprintf(fid, '| Performance -------------------------------------|\n') 
fprintf(fid,... 
    '| Deflection                          | % 5.4f | m       |\n',... 
    defl ) 
fprintf(fid,... 
    '| Variation in Deflection             | % 5.4f | m       |\n',... 
    delta_defl ) 
fprintf(fid,... 
    '| Mass per Area                       | %6.4f | kg/m^2  |\n',... 
    M ) 
fprintf(fid,... 
    '| Variation in Mass per Area          | % 6.4f | kg/m^2  |\n',... 
    delta_M ) 
fprintf(fid,... 
    '| Cost                                | % 6.4f | no unit |\n',... 
    cost ) 
fprintf(fid,... 
    '| Variation in Cost                   | % 6.4f | no unit |\n',... 
    delta_cost ) 
  
fprintf(fid, '| Constraint Analysis -----------------------------|\n') 
fprintf(fid,... 
    '| Mass             | % 5.4f |  at most | %6.4f |kg/m^2  |\n',... 
    cons(1,1:2)) 
fprintf(fid,... 
    '| Deflection       | % 5.4f |  at most | % 5.4f |m      |\n',... 
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    cons(2,1:2)) 
fprintf(fid,... 
    '| Relative Density | % 5.4f | at least | % 5.4f |no unit |\n',... 
    cons(3,1:2) ) 
fprintf(fid,... 
    '| Mu              | %5.4f |  at most   | % 5.4f |no unit |\n',... 
    cons(4,1:2)) 
fprintf(fid,... 
    '| Gamma           | %6.4f |  at most   | % 5.4f |no unit |\n',... 
    cons(5,1:2)) 
  
%--------------------------------------------------------------------- 
% End Print Solution to Command Window 
%--------------------------------------------------------------------- 
 

solution_check_pattern_r.m 

function [d] = solution_check_pattern_r(x) 
  
%   solution_check_pattern_r Evaluates the design point X and prints  
%       an analysis of the performance of BRP at that point.  This  
%       version is for the Ranged Scenario of the expansion cDSP 
% 
%   Inputs: 
%      X:   a vector of design variables (normalized between 0 & 1) 
% 
%   Outputs: 
%   
%   Assumptions:  
%         - design variable vector in the order of: 
%           X = [B, H, h_c, h_f, h_b, ... 
%                 sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%                 rho_b, rho_c, rho_f] 
%         - uncertain parameter vector in the order of: 
%           DX = [sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%                 rho_b, rho_c, rho_f, ... 
%                 p_0, t_0] 
%         - constraint values vector in the order of: 
%           GX = [mass_con, defl_con, Rc_con, gamma_con, mu_con] 
% 
% Fall 2006 
% 
% AUTHOR:  Stephanie Thompson 
% 
  
% Set Scheme 
scheme = 11; 
  
% -------------------------------------------------------------------- 
% GIVEN 
% -------------------------------------------------------------------- 
% Constant parameters 
L = 1; 
p_0 = 25*10^6; 
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t_0 = 0.0001; 
P = 1000; % Penalty parameter 
delta_p_0 = 0.15*p_0; 
delta_t_0 = 0.15*t_0; 
  
% Baseline Material Properties 
rho_mg = 1770; % 1770 kg/m3 
rho_st = 7845; % 7845 kg/m3 
sigma_y_mg = 200 * 10^6; % 200 MPa 
sigma_y_st = 538 * 10^6; % 538 MPa 
  
% Variation in material properties 
delta_rho_mg = 170; % 170 kg/m3 
delta_rho_st = 100; % 100 kg/m3 
delta_sigma_y_mg = 20 * 10^6; % 20 MPa 
delta_sigma_y_st = 150 * 10^6; % 150 MPa 
  
x_base = [sigma_y_mg, sigma_y_st, sigma_y_mg, rho_mg, rho_st, rho_mg]; 
dx = [delta_sigma_y_mg, delta_sigma_y_st, delta_sigma_y_mg, ... 
    delta_rho_mg, delta_rho_st, delta_rho_mg, ... 
    delta_p_0, delta_t_0]; 
weights = 1-dx(1:6)./x_base; 
  
  
% Archimedean weights 
% W = [mass, defl, cost]; 
W = [1 0 0; 0 1 0; 0 0 1; ... 
    .6 .2 .2; .2 .6 .2; .2 .2 .6; ... 
    .2 .4 .4; .4 .2 .4; .4 .4 .2; ... 
    1/3 1/3 1/3; 0.5 0.5 0]; 
  
% [defl, delta_defl, M, delta_M, R_c, m_c, m_f] = BRPdefl(... 
%     x(1), x(2), x(3), x(4), x(5), ... 
%     x(6), x(7), x(8), ... 
%     x(9), x(10), x(11), ... 
%     L, p_0, t_0, uncert_vars); 
  
% -------------------------------------------------------------------- 
% FIND 
% -------------------------------------------------------------------- 
% Design Variables 
% xabs = [B, H, h_c, h_f, h_b, ... 
%     sigma_yield_b, sigma_yield_c, sigma_yield_f, ... 
%     rho_b, rho_c, rho_f]; 
  
% Deviation Variables 
% d = [sum(deviation(M,M_target,'min')),...  
%      sum(deviation(defl,defl_target,'min')),... 
%      sum(deviation(cost,cost_target,'min'))]; 
% -------------------------------------------------------------------- 
% SATISFY 
% -------------------------------------------------------------------- 
% Bounds 
ub = [2/100, 5/100, 1/100, 5/100, 5/100, ... 
    1200e6-delta_sigma_y_mg, ... 
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    1200e6-delta_sigma_y_st, ... 
    1200e6-delta_sigma_y_mg, ... 
    20000-delta_rho_mg, 20000-delta_rho_st, 20000-delta_rho_mg]; 
lb = [1/1000, 5/1000, 0.1/1000, 1/1000, 1/1000, ... 
    20e6+delta_sigma_y_mg, ... 
    20e6+delta_sigma_y_st, ... 
    20e6+delta_sigma_y_mg, ... 
    1600+delta_rho_mg, 1600+delta_rho_st, 1600+delta_rho_mg]; 
xabs = unnorm01(x, lb, ub); 
  
% Constraints 
% constraints are defined and evaluated in function  
% ineq_constraints_BRP_r 
[gx, cons] = ineq_constraints_BRP_r(xabs, dx); 
  
% Goals 
% Minimize mass as close as possible to 50 kg/m2 
M_target = 0; 
  
% Minimize deflection as close as possible to 5 cm 
defl_target = 0; 
  
% Minimize cost as close as possible to 1 
cost_target = 0; 
  
% Evaluate BRP deflection code  
[defl, delta_defl, M, delta_M, R_c, m_c, m_f] = BRPdefl(... 
    xabs(1), xabs(2), xabs(3), xabs(4), xabs(5), ... 
    xabs(6), xabs(7), xabs(8), ... 
    xabs(9), xabs(10), xabs(11), ... 
    L, p_0, t_0, dx); 
  
% Get Cdk's 
Cdk_M = (M_target - M)/delta_M; 
Cdk_defl = (defl_target - defl)/delta_defl; 
[cost, delta_cost] = DSEcost(xabs(6:11), x_base, weights, dx(1:6)); 
Cdk_cost = (cost_target - cost)/delta_cost; 
  
% calculate deviation vector 
[dmass_minus,dmass_plus] = deviation(Cdk_M,1,'max'); 
[ddefl_minus,ddefl_plus] = deviation(Cdk_defl,1,'max'); 
[dcost_minus,dcost_plus] = deviation(Cdk_cost,1,'max'); 
d = [(dmass_minus), (ddefl_minus), (dcost_minus)]; 
  
% -------------------------------------------------------------------- 
% MINIMIZE 
% -------------------------------------------------------------------- 
% Archimedean formulation 
Z = W(scheme,:)*(d)' + P*sum(gx.^2); 
% -------------------------------------------------------------------- 
  
fid = 1; 
  
% Design Scenario 
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fprintf(fid, '| Design Scenario and Deviation Function Value-----|\n') 
fprintf(fid, '| Mass Weight                          | % 5.4f |\n',... 
    W(scheme,1) ) 
fprintf(fid, '| Deflection Weight                    | % 5.4f |\n',... 
    W(scheme,2) ) 
fprintf(fid, '| Cost Weight                          | % 5.4f |\n',... 
    W(scheme,3) ) 
fprintf(fid, '| Deviation Function Value             | % 5.4f |\n',... 
    Z ) 
fprintf(fid, '| Deviation - Mass                     | % 5.4f |\n',... 
    d(1) ) 
fprintf(fid, '| Deviation - Deflection               | % 5.4f |\n',... 
    d(2) ) 
fprintf(fid, '| Deviation - Cost                     | % 5.4f |\n',... 
    d(3) ) 
  
fprintf(fid, '| Material Properties------------------------------|\n') 
fprintf(fid,... 
    '| Yield Strength, Back |%6.2f|MPa|between|%6.2f|and|%6.2f|\n',... 
    xabs(6)/1e6, lb(6)/1e6,ub(6)/1e6) 
fprintf(fid,... 
    '| Yield Strength, Core |%6.2f|MPa|between|%6.2f|and|%6.2f|\n',... 
    xabs(7)/1e6, lb(7)/1e6,ub(7)/1e6) 
fprintf(fid,... 
    '| Yield Strength, Front|%6.2f|MPa|between|%6.2f|and|%6.2f|\n',... 
    xabs(8)/1e6, lb(8)/1e6,ub(8)/1e6) 
fprintf(fid,... 
    '| Density, Back | % 6.2f|kg/m^3|between|% 6.2f|and|% 6.2f|\n',... 
    xabs(9), lb(9),ub(9)) 
fprintf(fid,... 
    '| Density, Core | % 6.2f|kg/m^3|between|% 6.2f|and|% 6.2f|\n',... 
    xabs(10), lb(10),ub(10)) 
fprintf(fid,... 
    '| Density, Front| % 6.2f|kg/m^3|between|% 6.2f|and|% 6.2f|\n',... 
    xabs(11), lb(11),ub(11)) 
  
fprintf(fid, '| BRP Dimensions ----------------------------------|\n') 
fprintf(fid,... 
    '| Cell Spacing, B| %6.4f | m |between|% 6.4f |and|% 6.4f |\n',... 
    xabs(1), lb(1), ub(1)) 
fprintf(fid,... 
    '| Core Height, H | %6.4f | m |between|% 6.4f |and|% 6.4f |\n',... 
    xabs(2), lb(2), ub(2)) 
fprintf(fid,... 
    '|Cell Wall Thickness, h_c|%6.4f|m|between|%6.4f|and|%6.4f|\n',... 
    xabs(3), lb(3), ub(3)) 
fprintf(fid,... 
    '|Front FS Thickness, h_f|%6.4f|m|between|%6.4f|and|%6.4f|\n',... 
    xabs(4), lb(4), ub(4)) 
fprintf(fid,... 
    '|Back FS Thickness, h_b|%6.4f|m|between|%6.4f|and|%6.4f|\n',... 
    xabs(5), lb(5), ub(5)) 
  
fprintf(fid, '| Performance -------------------------------------|\n') 
fprintf(fid, '| Deflection             | % 5.4f | m       |\n',... 
    defl ) 
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fprintf(fid, '| Variation in Deflection | % 5.4f | m       |\n',... 
    delta_defl ) 
fprintf(fid, '| Mass per Area           | %6.4f | kg/m^2  |\n',... 
    M ) 
fprintf(fid, '| Variation in Mass per Area | % 6.4f | kg/m^2  |\n',... 
    delta_M ) 
fprintf(fid, '| Cost                       | % 6.4f | no unit |\n',... 
    cost ) 
fprintf(fid, '| Variation in Cost          | % 6.4f | no unit |\n',... 
    delta_cost ) 
  
fprintf(fid, '| Constraint Analysis -----------------------------|\n') 
fprintf(fid,... 
    '| Mass, Cdk        | % 5.4f |  at least | %6.4f |kg/m^2  |\n',... 
    cons(1,1:2)) 
fprintf(fid,... 
    '| Deflection, Cdk  | % 5.4f | at least | % 5.4f |m       |\n',... 
    cons(2,1:2)) 
fprintf(fid,... 
    '| Relative Density | % 5.4f | at least | % 5.4f |no unit |\n',... 
    cons(3,1:2) ) 
fprintf(fid,... 
    '| Mu, Cdk          | % 5.4f |  at least | % 5.4f |no unit |\n',.. 
cons(4,1:2)) 
fprintf(fid,... 
    '| Gamma, Cdk       | %6.4f |  at least | % 5.4f |no unit |\n',... 
    cons(5,1:2)) 
  
%--------------------------------------------------------------------- 
% End Print Solution to Command Window 
%--------------------------------------------------------------------- 
 

unnorm01.m 

function [x] = unnorm01(x_norm, lb, ub) 
  
%   UNNORM01 Reverses the normalization of a vector of design   
%       variables X_NORM to restore the absolute values of the design  
%       variables in the vector X using a lower bound vector LB, and  
%       an upper bound vector UB. The inverse operation which  
%       normalizes the design variables is performed by the function  
%       norm01.m 
% 
%   Inputs: 
%      X_NORM:     a vector of absolute design variables 
%      LB:         a vector of lower bounds 
%      UB:         a vector of upperbounds 
% 
%   Outputs: 
%      X:          a normalized vector 
%   
  
% 
% Fall 2006 
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% 
% AUTHOR:  Stephanie Thompson 
% 
%--------------------------------------------------------------------- 
x = (ub - lb).*x_norm + lb; 
%--------------------------------------------------------------------- 
 

xga2xps.m 

function [xps] = xga2xps(xga) 
  
%   XGA2XPS converts a 55 bit string into a vector of 11 design  
%       variables, normalized between zero and one. 
% 
%   Inputs: 
%      XGA: a bit string of 55 bits 
% 
%   Outputs: 
%      XPS: a vector of 11 design variables normalized between zero  
%           and one 
%   
%   Assumptions:  
%         - XGA is a vector of length 55 containing only zeros and  
%           ones 
  
% 
% Fall 2006 
% 
% AUTHOR:  Stephanie Thompson 
% 
%--------------------------------------------------------------------- 
% separate bit string x into 11 design variables: 
x = [xga(1:5); xga(6:10); xga(11:15); xga(16:20); xga(21:25); ... 
     xga(26:30); xga(31:35); xga(36:40); xga(41:45); xga(46:50); ... 
     xga(51:55)]; 
  
% convert binary to base ten: 
x = bin2dec(strcat(num2str(x)))'; 
  
% normalize from 0 to 1: 
xps = norm01(x,zeros(1,11),31*ones(1,11)); 
%--------------------------------------------------------------------- 
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APPENDIX B: CONVERGENCE PLOTS 

 

In this appendix, convergence plots are presented for each solution to the expansion 

cDSP for BRP design (see Section 4.2).  A hybrid solution-finding approach is used in 

which a genetic algorithm (GA) is first used to find the general area of the global 

minimum in a discretized design space and then a pattern search algorithm is used to 

pinpoint the location of the minimum. As such, two convergence plots are shown for each 

solution: one GA convergence plot and one pattern search convergence plot.  The plots 

are shown below in Figures B.1 through B.44.  In both cases, the plots are expected to 

exhibit smooth convergence to the solution.  On the GA convergence plots, both the 

mean fitness and the best fitness are shown on the plot.  All of the plots show the desired 

smooth convergence to the solution.  Although the deviation function is still decreasing in 

Figure B.44, the pattern search is terminated after 2000 iterations because the reduction 

in the deviation function is occurring in the sixth decimal place, which is an insignificant 

digit.  These convergence plots confirm the smooth convergence of the solution-finding 

algorithms to the design solutions reported in Section 4.2.2, and this smooth convergence 

contributes to the confidence in the validity of these design solutions. 
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FIGURE B.1. SCHEME 1, RANGED SCENARIO, GA CONVERGENCE 
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FIGURE B.2. SCHEME 1, RANGED, PATTERN SEARCH CONVERGENCE 
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FIGURE B.3. SCHEME 2, RANGED, GA CONVERGENCE 
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FIGURE B.4. SCHEME 2, RANGED, PATTERN SEARCH CONVERGENCE 
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FIGURE B.5. SCHEME 3, RANGED, GA CONVERGENCE 
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FIGURE B.6. SCHEME 3, RANGED, PATTERN SEARCH CONVERGENCE 
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FIGURE B.7. SCHEME 4, RANGED, GA CONVERGENCE 
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FIGURE B.8. SCHEME 4, RANGED, PATTERN SEARCH CONVERGENCE 
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FIGURE B.9. SCHEME 5, RANGED, GA CONVERGENCE 
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FIGURE B.10. SCHEME 5, RANGED, PATTERN SEARCH CONVERGENCE 
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FIGURE B.11. SCHEME 6, RANGED, GA CONVERGENCE 
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FIGURE B.12. SCHEME 6, RANGED, PATTERN SEARCH CONVERGENCE 
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FIGURE B.13. SCHEME 7, RANGED, GA CONVERGENCE 

 

0 200 400 600 800 1000 1200
4

4.1

4.2

4.3

4.4

4.5

4.6

Iteration

Fu
nc

tio
n 

va
lu

e

Best Function Value: 4.0577

 
FIGURE B.14. SCHEME 7, RANGED, PATTERN SEARCH CONVERGENCE 
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FIGURE B.15. SCHEME 8, RANGED, GA CONVERGENCE 
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FIGURE B.16. SCHEME 8, RANGED, PATTERN SEARCH CONVERGENCE 
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FIGURE B.17. SCHEME 9, RANGED, GA CONVERGENCE 
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FIGURE B.18. SCHEME 9, RANGED, PATTERN SEARCH CONVERGENCE 
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FIGURE B.19. SCHEME 10, RANGED, GA CONVERGENCE 
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FIGURE B.20. SCHEME 10, RANGED, PATTERN SEARCH CONVERGENCE 
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FIGURE B.21. SCHEME 11, RANGED, GA CONVERGENCE 
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FIGURE B.22. SCHEME 11, RANGED, PATTERN SEARCH CONVERGENCE 
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FIGURE B.23. SCHEME 1, POINT SCENARIO, GA CONVERGENCE 
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FIGURE B.24. SCHEME 1, POINT, PATTERN SEARCH CONVERGENCE 
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FIGURE B.25. SCHEME 2, POINT, GA CONVERGENCE 
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FIGURE B.26. SCHEME 2, POINT, PATTERN SEARCH CONVERGENCE 
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FIGURE B.27. SCHEME 3, POINT, GA CONVERGENCE 
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FIGURE B.28. SCHEME 3, POINT, PATTERN SEARCH CONVERGENCE 

 



   

   278

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7
x 108

Generation

Fi
tn

es
s 

va
lu

e

Best: 0.0357 Mean: 102600

Best fitness
Mean fitness

 
FIGURE B.29. SCHEME 4, POINT, GA CONVERGENCE 
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FIGURE B.30. SCHEME 4, POINT, PATTERN SEARCH CONVERGENCE 
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FIGURE B.31. SCHEME 5, POINT, GA CONVERGENCE 

 

0 500 1000 1500
5

6

7

8

9

10

11
x 10-3

Iteration

Fu
nc

tio
n 

va
lu

e

Best Function Value: 0.0056803

 
FIGURE B.32. SCHEME 5, POINT, PATTERN SEARCH CONVERGENCE 
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FIGURE B.33. SCHEME 6, POINT, GA CONVERGENCE 
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FIGURE B.34. SCHEME 6, POINT, PATTERN SEARCH CONVERGENCE 
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FIGURE B.35. SCHEME 7, POINT, GA CONVERGENCE 
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FIGURE B.36. SCHEME 7, POINT, PATTERN SEARCH CONVERGENCE 
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FIGURE B.37. SCHEME 8, POINT, GA CONVERGENCE 
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FIGURE B.38. SCHEME 8, POINT, PATTERN SEARCH CONVERGENCE 
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FIGURE B.39. SCHEME 9, POINT, GA CONVERGENCE 
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FIGURE B.40. SCHEME 9, POINT, PATTERN SEARCH CONVERGENCE 
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FIGURE B.41. SCHEME 10, POINT, GA CONVERGENCE 
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FIGURE B.42. SCHEME 10, POINT, PATTERN SEARCH CONVERGENCE 
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FIGURE B.43. SCHEME 11, POINT, GA CONVERGENCE 
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FIGURE B.44. SCHEME 11, POINT, PATTERN SEARCH CONVERGENCE 

 


