
Dynamic Spectral Clustering

Amy LaViers, Amir Rahmani, and Magnus Egerstedt

Abstract— Clustering is a powerful tool for data classifi-
cation; however, its application has been limited to analysis
of static snapshots of data which may be time-evolving. This
work presents a clustering algorithm that employs a fixed time
interval and a time-aggregated similarity measure to determine
classification. The fixed time interval and a weighting parameter
are tuned to the system’s dynamics; otherwise the algorithm
proceeds automatically finding the optimal cluster number and
appropriate clusters at each time point in the dataset. The
viability and contribution of the method is shown through
simulation.

I. INTRODUCTION

The search for structure within a dataset is an established
problem with many solutions. Often, this problem amounts
to finding a simpler, more natural representation of the data.
Notably, grouping similar data into clusters has proved useful
in computer vision, genomics, and network analysis. With
an appropriate number of clusters, the task of representing
the data is simply assignment to one of a (relatively) few
distinct clusters. In this sense, clustering may be thought
of as data compression: like methods such as principle
component analysis (PCA), clustering exploits data structure
to find a more succinct representation but does not rely on
the same explicit linear relationships. An extensive overview
of this community of academic work is given in a review by
Schaeffer [1].

These methods are typically used to analyze a single,
static dataset; however, many datasets are time-varying and
possibly maintain clusters over time which may not be
captured by instantaneous analysis alone. Static methods can
provide insight to data structure at each time point, but
this approach is computationally cumbersome and without a
clear procedure for interpretation. Furthermore, to treat such
data as a series of static clusters is equivalent to ignoring
the additional information provided by time evolving data.
For example, when tracking social behaviors biologists are
interested in alliances that account for interactions over time;
in fact, instantaneous clusters alone are meaningless for
these evolving relationships as organisms may interact with
alliances of which they are not a member [6].

With this weakness of current clustering methods in
mind, we look to incorporate time-varying attributes of data
into a clustering method. A particularly natural choice of
clustering algorithm is that of Zelnik-Manor and Perona’s
“Self-Tuning Spectral Clustering” [2]. Unlike a more basic
clustering method, such as k-means, where the number of

Authors are with the School of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta, GA 30332;
Emails: {alaviers,arahmani,magnus}@gatech.edu.

clusters and interaction distances of the nodes in the data set
must be assumed a priori, this algorithm automatically (and
optimally) tunes these parameters. In time-varying data these
are particularly important aspects as clusters may appear and
disappear over time.

Thus, we present an extension to Zelnik-Manor and Per-
ona’s clustering method [2] that enables its application to
data with time-varying attributes. A key feature of our
algorithm is that it retains the desirable quality of all spec-
tral clustering techniques in that it partitions data without
presuming any direct scale to be characteristic of the data a
priori. In fact, the final algorithm has only two parameters
that can be tuned: a weighting factor on the similarity
measure and the length of the time interval over which the
dynamic algorithm is applied. Both parameters are robust to
the type of changes that will occur as the data evolves in
time; this result is theoretically pleasing and has also proven
itself useful in practice.

II. SPECTRAL CLUSTERING

We begin with a finite dataset with n entries that form
the set V; hence n = |V|. Onto this dataset we may apply a
notion of abstract distance, δ : V × V → R, that is defined
between every pair of points (i, j) in the dataset V (let
δ(i, j) = δij). This distance is an alternate expression for
the similarity measure between data points.

The structure that δ imposes over the data can be encoded
in a matrix by defining a complete, weighted graph over the
data points, G = (V, E , w), where E is the edge set of G
and the edge weights, wij , are a monotonically decreasing
function of the distance measure between data points, δij .
For a δ that corresponds to Euclidean distance, points which
are closest to each other have the biggest weights, are most
similar in terms of location, and, thus, will be more likely
to be in the same cluster.

We define the normalized weighted adjacency matrix as

LN = ∆− 1
2A∆− 1

2 = I −∆− 1
2L∆− 1

2 , (1)

where the graph Laplacian is L = ∆ − A; ∆n×n is the
diagonal degree matrix which is defined as

∆ij =

{
deg(vi) i = j
0 i ̸= j

, (2)

for our completely connected graph this is simply the identity
matrix scaled by the number of nodes in V , n · Inxn; and
An×n is the weighted adjacency matrix which encodes the
distances between nodes and is defined as

Aij =

{
wij (vi, vj) ∈ E
0 o.w.

. (3)

Thus, LN is a direct variant of the the graph Laplacian; we
will use the spectral properties of this matrix to perform the
clustering.

This matrix LN contains the complete connectivity infor-
mation of G and the similarity metric defined by δ. Since L
is symmetric and positive semi-definite, we know that LN is
also symmetric and has eigenvalues belonging to the interval
(−∞, 1]. Furthermore, for the completely connected graph,
the largest eigenvalue of LN equals 1 and its associated
eigenvector is a vector of ones (perhaps scaled by a constant),
1 ∈ Rn.

For further intuition about this matrix, consider an ideally
clustered graph with c clusters where there is an edge-weight
of zero between nodes which do not belong to the same
cluster. As outlined in [7], LN is now in block diagonal
form with c blocks as in Eq. 4.

LN =

LN1

LN2

. . .
LNc

 (4)

In this disconnected case, LN has c eigenvalues equal
to one. Correspondingly, the c eigenvectors associated with
these characteristic eigenvalues define the clustering: if row
i of eigenvector j contains a nonzero entry, then node i is in
cluster j for i = {1, ..., n} and j = {1, ..., c}. Every other
entry of the eigenvector will be a zero and none of the cluster
assignments are multiply defined. This structure is shown by:

Vn×c =

11 0 0

0 12
...

...
...

. . . 0
0 0 1c

 , (5)

where the c eigenvectors corresponding to eigenvalues of 1
have been concatenated into a matrix, V and 1i is a vector
of ones with dimension equal to the number of nodes in the
ith connected component . We can also think of this ideal
case as one where the eigenvectors have no inter-dependence
when expressed in terms of the n dimensional space defined
by the data points (and nodes of our constructed graph); that
is, each basis vector is used once and only once to describe
the eigenvectors.

Next, consider our graph G, where V = {1, ..., n} are
the nodes of the graph defined by n data points; E =
{1, ...,m} is the edge set of a complete graph, Kn (where
m = n(n−1)

2); and wij is a weight on edge (vi, vj) ∈ E that
defines a monotonically decreasing function of distance (or
monotonically increasing function of similarity) δ : E → R
between the two nodes.

There is one connected component in this graph; hence
one eigenvalue of LN is equal to 1. A first look at the
eigenvectors in the form of Eq. 5 shows a single vector
of ones describing one uninformative cluster; however, the
data may still have underlying clusters. These clusters are
determined by groups of data points which are close to each

other (where closeness is defined by δ since some edge
weights will be small relative to the others).

Since the eigenvalues and eigenvectors vary continuously
with modifications to the matrix entries, the number of
relatively large eigenvalues of LN (close to one) gives a
good, initial guess of the number of clusters, c, in the dataset.
Again, only one eigenvalue of LN equals 1 (since there is
one connected component in a complete graph), but the other
eigenvalues corresponding to highly clustered regions of the
graph, which have now drifted, remain close to 1.

Likewise, the eigenvectors that before gave a definite
clustering of the graph’s clusters are now skewed from the
ideal case. The effect of this skew can be reversed or reduced
by rotating the new eigenvectors until they are close to the
ideal case again. As before, we would like to express these
eigenvectors with the smallest possible inter-dependence in
the n-dimensional space of the dataset.

Let the first c eigenvectors of LN compose V ∈ Rn×c.
Rotating V such that each row of the new, rotated matrix Z
has only one non-zero entry provides the cluster assignment
for each node. Defining this rotation by a matrix R(Θ)c×c,
we want to find a vector Θ ∈ Rc(c−1)/2 where each entry is
an angle in [−π

2 ,
π
2) such that it minimizes a cost function,

min
Θ

J = Σn
i=1Σ

c
j=1(

Zij

Mi
)2, (6)

subject to the constraint

Zn×c = Vn×cR(Θ)c×c. (7)

To achieve clear clustering assignments one term on each
row of Z should be large relative to the other entries of that
row; in the ideal case, this corresponds to only one nonzero
entry per row (as in Eq. 5). Thus, we set Mi = maxj |Zij | in
order for the optimization to achieve the desired structure in
Z. This optimization can be solved using the gradient descent
approach proposed by Goyal [3] with the update rule:

Θk+1 = Θk − α∇J |Θ=Θk
. (8)

After this rotation node i belongs to the cluster given by
argmaxj |Zij |.

Which number of clusters produces the rotation closest to
the ideal case? To answer this, we consider the quality of
each clustering. Quality can be defined as

q(c, n) = 1−
(
J
n

− 1

)
. (9)

Note that n is the minimum of J for the ideally clustered
case, and in that case q is equal to 1. Thus, clustering
quality is correspondingly farther from 1 for poorer cluster
assignments. Since the number of nodes n = |V| is constant,
argmaxc q(c, n) provides the optimum cluster number. This
results in a number of clusters chosen independent of human
choice or prejudice.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

time = 6

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

time = 7.65

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

time = 9

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

time = 17.5

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

time = 18

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

(a) t=6
−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

(b) t=7.65
−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

(c) t=9
−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

(d) t=17.5
−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

(e) t=18

Fig. 1. A comparison of previous, static methods and our choice of dynamic weights: spectral clustering using aggregated distances (top) using instantaneous
distances (bottom).

III. DYNAMIC DATA CLUSTERING

Previous works have used repeated patterns in clusters
assigned at periodic time points as a way to identify re-
silient clusters [5]. Clustering at each time step and basing
the dynamic case on the frequency of each static cluster
places undue importance on these intermediate clusterings.
In particular, since the relationships of nodes inside the
intermediate clusterings is lost in this method, it is not clear
what the interpretation of these intermediate clusters is. That
is, information about nodes which are close to each other
inside a larger cluster is lost with this type of analysis.

Instead, we look for an algorithm that captures the in-
formation contained within these larger clusters at each time
point. Our choice of weight - an aggregate, pairwise distance
between nodes - tracks the relative positions of each node as
it moves between other clusters and among other nodes and
retains that information throughout a desired time interval. In
other words, our algorithm saves the information about inter-
agent relationships over some time rather than considering
only the movement of agents between clusters.

We define the distance between two dynamically evolving
points in our dataset, d : V(t)× V(t) → R, as a function of
their instantaneous distance over a window of time leading
to current time (let d(i, j) = dij). In general:

dij(k) = f(δij(0), · · · , δij(k)). (10)

Specifically, we choose this function to simply sum the
distances over time, i.e.

dij(k) =
k∑

m=k−l

δij(m), (11)

over a sliding time period [k − l, k] ∈ [t0, tf]. We redefine
our graph to contain the aggregated information of inter-
agent distance over a period of time as G(V, E , ŵ(k)). Here

we define new weights of the form

ŵij(k) = − exp

(
d2ij(k)

σi(k)σj(k)

)
, (12)

where σi(k) is a local scaling factor for the inter-agent dis-
tances and is chosen to be the aggregated distance to the 7th
nearest neighbor to node i. This choice of weight is inherited
from [2] and will be discussed further below. Now, the data
points are described in terms not of their absolute positions
(or similarities), but in terms of net movement over the
sliding window. However, the algorithm still tries to reduce
the inter-dependence of the new, aggregate eigenvectors in
the same n-dimensional space.

This choice of weight self-tunes the scale of the algorithm
to the scale inherent in the data. Using the 7th nearest
neighbor biases the method to assign clusterings where the
number of nodes in each cluster is on the order of 7; while
it has proven useful for a wide range of data sets of various
sizes of clusters [2], if the number of nodes in a cluster
should be more on the order of 7 million in an ill defined
data set (where the difference in the weights inside and out
of a given cluster is small), this parameter may need to be
adjusted though it is expected to remain constant for one
time varying data set. This implements Zelnik-Manor and
Perona’s second main contribution to spectral clustering.

In our dynamic extension, we have introduced a second
parameter, the length of the sliding time window l, which,
while invariant to many types of data or small changes in a
given dataset, may need to be tweaked for individual dataset.
This window represents the algorithm’s ability to use the past
temporal information to influence clusterings. Thus, it should
be sized according to the rate of change of the data and to
any notion of memory the system has. That is, the window
should be short enough so that quickly changing data is able
to form and reform clusters - the lack of any window may

result in equal weights across all edges as after some point
each node has undergone a similar net overall change. Even
for a very slowly evolving system, the window should remain
small enough to accurately model the fact that nodes “forget”
past interactions after some time.

IV. SIMULATION RESULTS

To compare the performance of our dynamic clustering
to that of the static one, we generated a 100 point dataset
with groups of points moving in R2. The distance metric
was defined as the Euclidean distance between the position
of each two points,

δij(k) = ∥xi(k)− xj(k)∥, (13)

summed over a time window of 10 seconds. Figure 1 depicts
the results of the proposed clustering algorithm for the
dynamic case on the top row versus that of the static case
on the bottom row.

The figure illustrates our algorithm’s ability to keep track
of the cluster associations over time. Consider the three
clusters which converge at time t=6: dynamic clustering
shows a blue, burgundy, and green cluster while static
clustering shows them as one green cluster. In the case where
clusters converge or diverge and remain close or far for some
time, the dynamic algorithm identifies this as a cluster merge
or split, respectively. These phenomena are visible at times
t=18 when the green and burgundy clusters have merged and
t=7.65 with the emergence of the pink cluster.

V. CONCLUSIONS

Clustering is an established tool, with many variations, that
has proven itself useful in a diversity of applications where
classification of data into distinct groups is desired. Many
applications involve data points which are time evolving and,
thus, may become more suited to a different classification
as time passes. Furthermore, the dataset may evolve such
that the original discrete classifications are no longer apt for
representing the data and new classifications may become
necessary.

These applications present new questions and challenges
for current clustering algorithms. Previous dynamic applica-
tions have considered the intermediate static clusterings of
time-evolving data and created a dynamic characterization
from these static clusters. The inherently dynamic algorithm
presented here redefines the method for encoding dataset
structure into a formal graph. Specifically, a new approach
for weighting the graph edges allows a spectral clustering
algorithm to capture any time-varying aspect of the data.

This algorithm retains some computational overkill.
Namely, it is a reasonable assumption that clusterings do not
change much from time point to time point. Hence, saving
the optimal rotation and cluster number from the previous
time step would reduce some computation and allow for
real time data processing. Furthermore, difference equations
can provide an update rule for the evolution of LN which
would result in a dynamic model of this clustering system.

Finally, the algorithm still has yet to prove itself in many
real-world applications such as animal interactions and video
segmentation. Such extensions to this work would enhance
the power of this new, dynamic clustering method.

ACKNOWLEDGMENT

This work is partially supported by the Office of Naval
Research through the MURI-HUNT.

REFERENCES

[1] S. E. Schaeffer. “Graph clustering,” Computer Science Review I, pp.
27-64, 2007.

[2] L. Zelnik-Manor and P. Perona, “Self-Tuning Spectral Clustering,”
Proceedings of Advances in Neural Information Processing Systems,
2005.

[3] V. K. Goyal and M. Vetterli. “Block transform adaptation by stochastic
gradient descent,” IEEE Digital Signal Processing Workshop, Bryce
Canyon, UT, Aug. 1998.

[4] A. Y. Ng, M. I. Jordan, and Y. Weiss. “On spectral clustering: Anal-
ysis and an algorithm,” Advances in Neural Information Processing
Systems, 14, 2002.

[5] M. Lahiri and T. Y. Berger-Wolf. “Mining periodic behavior in
dynamic social networks,” IEEE Computer Society, pp. 373-382, 2008.

[6] S. Sundaresan, I. Fischhoff, J. Dushoff & D. Rubenstein. “Network
metrics reveal differences in social organization between two fission-
fusion species, Grevys zebra and onager,” Oecologia, 151(1), 2007.

[7] U. Von Luxburg. “A Tutorial on Spectral Clustering,” Statistics and
Computing, 17(4), 2007.

