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SUMMARY

The humoral adaptive immune system in vertebrates includes a process called the ger-

minal center reaction in which B-cells rapidly increase their binding affinity to an antigen

that is part of a pathogen. A fraction of germinal center B cells differentiates into plasma

cells that secrete antibodies. Antibodies bind to the pathogen and neutralize it. In a sec-

ondary immune response to the same pathogen, memory B-cells and long-lived plasma

cells generated during the primary immune response encode higher affinity antibodies and

are able to fight the pathogen more efficiently.

We develop a delay differential equation model of the germinal center reaction incorpo-

rating known physical mechanisms. We find that secondary immune responses including

low affinity seeder B-cells outperform those seeded only with higher affinity. This helps to

explain a recent laboratory observation that a high fraction of seeder B-cells in a secondary

immune response are naive. Further, two mechanisms of antibody feedback are explored,

where antibodies produced in the reaction interact with the reaction itself. Negative feed-

back occurs via epitope masking, which is consistent with experimental data. Positive

feedback occurs via improved antigen presentation on follicular dendritic cells, which is a

mechanism we propose.

Additionally, we propose a novel path optimization algorithm. Given a path connected

environment, our proposed algorithm finds the shortest paths from which surfaces in the

environment are surveyed under a limited visibility constraint. We further explore how this

is related to the inradius problem in classical geometry: What is the shortest curve whose

convex hull includes the unit sphere? The solution is known for closed curves, but not for

open curves. Our algorithm seems to converge numerically to the true solution for closed

curves and to the best-known conjecture for open curves. This offers validation of our

method and evidence for the open path conjecture.

xii



Part I

Model of the Germinal Center Reaction
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CHAPTER 1

BACKGROUND AND INTRODUCTION: THE GERMINAL CENTER

REACTION

1.1 The Humoral Adaptive Immune System

The immune system has two arms: The innate immune system that includes preprogrammed

responses, and the adaptive immune system which includes processes that adapt to combat

a priori unknown pathogens. This work is focused specifically on the humoral adaptive

immune response which is mediated by B-cells which secrete ’Y’-shaped proteins called

antibodies (Ab).

The root of the immune system begins in the bone marrow. Stem cells, cells that have

not yet differentiated to a particular purpose, are found in the marrow. While exiting the

marrow, they differentiate to a number of different cells, two of which are important in this

work: T-cells (TCs) and B-cells (BCs).

T-cells have many roles, but here we focus on one: T-cells help in selection and acti-

vation of B-cells via a combination of membrane-bound and secreted signal proteins. One

of the results of T-cell help is increasing B-cell cMyc expression which determines the

number of divisions that the B-cell will undergo in the germinal center.

Each B-cell encodes for a single type of antibody which appears on its surface as a

B-cell receptor (BCR). Through genetic recombination, a diverse repertoire of BCRs is

generated to combat a wide range of pathogens. Additional diversification occurs via so-

matic hypermutation in the germinal center reaction during an immune response.

A variety of B-cells types are important in this work. Plasma cells secrete antibodies

to bind and neutralize the pathogen. Memory B-cells have a long lifespan and are used to

maintain immunity over years. Naive follicular B-cells encounter antigen in the secondary
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lymphoid organs, and after receiving T-cell help, undergo proliferation and differentiation

either into plasma cells or memory B-cells.

An antibody (or B-cell) is called Ag-specific if it is capable of binding to the antigen.

The binding sites on the antigen are called epitopes. The strength of that binding is deter-

mined by the rate of binding, kon, and the rate of unbinding, koff . The ratio Ka = kon/koff is

the antibody’s affinity to the epitope.

The topic of this work is the reaction through which follicular B-cells rapidly evolve

to express antibodies of high affinity to epitopes found on antigen during an antigenic

challenge such as infection. This reaction is called the germinal center (GC) reaction and

the result of the reaction, the increase of affinity to the Ag in a B-cell population, is called

affinity maturation.

For more information, see [1, 2]

1.2 The Germinal Center

Germinal Centers (GCs) are transient structures that appear during the immune response

within B-cell follicles of lymph nodes and the spleen. GCs form around follicular dendritic

cells (FDCs) that serve as a repository for pieces of antigen delivered by macrophages.

They require a critical number of T follicular helper cells (TFH) and follicular B-cells with

Ag-specific BCRs for the process to begin.

During the germinal center reaction, two distinct functional regions appear, termed

the dark zone (DZ) and the light zone (LZ) [3]. Within the dark zone, B-cells are found

proliferating with an extreme rate of mutation affecting the antibody variable region with,

on average, one point mutation per division [4]. Because the extreme mutation only occurs

for the encoding of antibodies, not for the B-cell itself, this does not lead to an abnormal

number of cell deaths and the B-cells do continue to function properly.

In the DZ, B-cell proliferation and mutation are the only mechanisms important for our

model. Within the LZ, a more complicated interplay emerges involving B-cells and the
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affinity of their BCRs, FDC-bound Ag, TFH-cells, and free Ab. First, B-cells must collect

Ag from the FDC. Once collected, they display peptide MHC (pMHC) on their surface.

The B-cell interacts with TFH-cells via the pMHC resulting in T-cell help. Higher BCR

affinity to the Ag leads to more collection, thereby more pMHC presentation on the B-cell

surface, more TFH interaction, finally resulting in a stronger T-cell signal [2].

During this trek through the LZ, a B-cell must contend with external Ab entering the

GC and masking the epitopes of FDC-bound Ag that the B-cell is attempting to collect.

A major source of these Ab are plasma B-cells produced by the current immune response,

i.e., there is negative feedback occurring [5]. Antigen collection, although modulated via

Ab feedback, is not affected by direct competition with other B-cells of differing affinities,

meaning that each B-cell has equal access to the FDC-presented antigen. Higher affinity

leads to more Ag collection, but the affinity of neighboring B-cells does not affect this.

After collecting Ag, the B-cells compete with each other for access to TFH-cells. B-cells

that collect more Ag will bind longer and more frequently to TFH-cells limiting the ability

of other B-cells to receive a strong signal. Thus, unlike during Ag collection, competition

for selection is directly affected by the distribution of affinities of the BCR repertoire of

B-cells in the LZ.

If a strong enough TFH signal is not received, the B-cell will undergo apoptosis. When

a B-cell does receive a strong enough signal, we say that it is selected. Once selected, it is

epigenetically altered to express higher levels of the onco-protein cMyc [6], with cMyc ex-

pression dependent on the strength of the signal [7]. The signal also changes the phenotype

of the B-cell so that it expresses receptors for chemokines that cause it to migrate back to

the DZ [8].

The expression of cMyc (and thus, the strength of the received signal) determines the

number of divisions that the B-cell will undergo once back in the DZ, which is known to be

between 1 and 6 [7]. After dividing, some portion of the daughter cells will migrate back

to the LZ to continue participating in the reaction (a process termed cyclic re-entry [9, 10]),
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while others differentiate to plasma and memory B-cells and enter the blood stream.

The competition in the LZ combined with cyclic re-entry induces Darwinian selection

for B-cells encoding antibodies with greater affinity for the antigen, a process known as

affinity maturation [2]. The goal of this work is to understand how the initial distribution

of B-cells over affinity in a single GC affects affinity maturation.

In a secondary or recall immune response, the immune system has prior experience

with the antigen it is responding to. B-cells resulting from affinity maturation during a prior

immune response are available to seed GCs during a secondary response. Recent research

has found that a major portion of the B-cells seeding the GC in a secondary response are

naive [11].

It is interesting that more experienced B-cells are available, but they are not recruited

more often than naive B-cells. The proposed model shows that a high proportion of naive

seeder cells results more effective affinity maturation, implying that the experimental ob-

servation is predictable via the mechanisms included in the model.

1.3 The Role of Mathematical Modeling in Understanding the GC

Mathematical modeling has proven indispensable for the understanding of the GC reaction

and affinity maturation. Experiments offer valuable data, but the interpretation of data

in cellular biological processes is fraught with ambiguity due to complexity and the high

variability from one experiment to the next. Modeling offers a way to pinpoint which

mechanisms are important and give hints about causality within complicated systems.

The dynamics of the GC reaction are studied by systems of ordinary differential equa-

tions and agent based models. Successes of ODE models include predicting iterative mat-

uration of GC B-cells via cyclic re-entry [9], the first large-scale understanding of the dy-

namics of the GC reaction and the role of T-cell help [12] that inspired many subsequent

ODE models, a study predicting the recycling probabilities that includes the first use of

shape-space for affinity [13] within GC models [10], and a study that proposed that recy-

5



cling probability is time-varying and that it could be beneficial for high affinity B-cells to

be preferentially output from the reaction [14].

Subsequently, as we saw increased speed and decreased price of computer hardware,

agent based models became important in GC modeling [15]. Starting with a base model

that included the vast majority of mechanisms that the community was aware of [16], many

hypotheses were derived [8, 5, 17, 18] and experimentally verified [19, 5, 11].

We highlight here mechanisms for which our work makes significant contribution: Mu-

tation, affinity dependent number of divisions, antibody feedback.

1.3.1 Mutation

A mutation has 3 outcomes for the daughter B-cell [4]:

1. The daughter B-cell is no longer capable of binding to the the Ag at all, which we

call a deleterious mutation,

2. the daughter B-cell has exactly the same affinity as the parent (e.g., the mutation

doesn’t cause a phenotypic change), which we call a silent mutation, or

3. the mutation changes the affinity.

There is no predictive theory of the link between genotype and phenotype, so every

extra presumption beyond this either implies a new hypothesis or constitutes a parameter

of the model. Previous models that have included mutation have done this in one of two

ways:

1. Split B-cells in to a small number of bins of affinity and let mutation describe flow

between bins. E.g., Blow, Bmed, Bhigh.

2. The shape space model [13, 10]. “Shape” refers to the phenotype of the antibody.

Model a particular antibody’s shape as a location in a high dimensional lattice, usu-

ally Z4 [10, 8, 18], with the origin representing the highest possible affinity, and other
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locations having an affinity that decays exponentially with respect to the taxi-cab dis-

tance from the origin.

The first option is straightforward and makes no assumptions beyond acknowledging

that there are different possible affinities. The latter includes additional assumptions. When

using the shape space model, there are three major parameters introduced without predic-

tive benefit: 1) The space itself, 2) a map from shape space to affinity, and 3) the choice of

possible movements within the space to represent mutation.

We introduce a continuous affinity model analogous to the binning model above. Affin-

ity is given by a variable x ∈ [0, 1]. Mutation in this space is informed by the literature [4]

and is given by a discrete time, continuous space Markov process. This avoids the large

parameter space that a shape space model introduces and makes no more assumptions than

the binning model.

1.3.2 Number of Divisions

Some models have included more than one division for a single cycle through the dark

zone. Many ODE models that have done this have used a fixed number of divisions, e.g.,

10 [12]. Recent agent-based models [17] have implemented affinity and time dependent

number of divisions in accordance with recent evidence [7], but this has not been included

in a differential equations model.

Including this in a differential equation model is difficult because the number of divi-

sions (and therefore the length of time that proliferation should occur) depends on the state

of the light zone at the time when T-cell selection occurred. We implement this by using

delay differential equations.

1.3.3 Antibody Feedback

It has been shown that exogeneous antibodies enter the GC and bind to antigen on the FDC

[5]. However, it has been discovered that the antibody appears on the FDC-bound antigen
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in two ways. 1) The traditionally understood masking, but also, 2) the antibodies are found

participating in the connection holding the Ag to the FDC, meaning that more Ag-specific

Ab available will allow the Ag to be presented more robustly in the GC reaction giving

positive antibody feedback [20]. This mechanism has not been used in prior models and

we investigate whether it produces results consistent with the literature.

1.3.4 Differential Equations vs. Agent-based

Prominent researchers in the field have argued that differential equations models and agent

based models complement each other [15]. Agent based modeling has been highly success-

ful recently in studying the physical dynamics of individual cells (the speed and nature of

cell migration, e.g.). Meanwhile, there have been few differential equations based models

in recent years and some mechanisms have not been explored in this framework.

Agent based models are resource intensive. There are hundreds of GCs in each lymph

node, and thousands of lymph nodes in the human body. To get a full picture of the immune

response, the interaction between GCs and lymph nodes must be understood. Differential

equations solvers are fast enough to make this feasible with today’s consumer laptops,

while trying to run hundreds of thousands of interacting agent based models is not.

8



CHAPTER 2

MODEL OF THE GERMINAL CENTER

We model the germinal center reaction using a delay differential equation. There are two

independent variables: Time t (days) and affinity x. All derivatives in the model are in

time.

Day 0 Day 3

selection

apoptosis

available
antigen

Dark zone

competition

feedbackLight zone

antibody
production

Seeder cells

Proliferation and
mutation defined by 

proliferation

decay

Figure 2.1: Model schematic.

Figure 2.1 presents an overview of the model dynamics. Boxes represent dependent

variables, all of which are given as distributions over affinity, and solid arrows represent

the flow of quantities. Dotted ovals represent mechanisms that are explicitly modeled with

dotted arrows implying a direct effect. At day 0 an initial distribution of DZ B-cells start

proliferating (B∗), and at day 3, these cells begin migrating to the LZ (C) where compe-

tition for available antigen determines selection. All selected B-cells migrate to the DZ to

proliferate (for a length of time determined by selection strength) with mutation (a process

included in E(x, t)). Some of these cells will be output (O) and go on to produce antibodies

([Ab](x, t) is the concentration of antibodies), while some will be recycled (B0).

The function E(x, t) is the flux of B-cells completing their final division at time t of

affinity x. Thus, this function contains the part of the model that requires a delay. This
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function is of particular interest since it includes 1) a variable number of divisions 2) de-

termined by the state of the system at a previous time and it is also 3) where the mutation

model is incorporated. We start with the main equations of the model.

2.1 Main equations

Time t is measured in days starting at day 0. Affinity x ∈ [0, 1] is a unitless quantity in

the model that can be transformed to real affinity via Equation (2.1). The range of real

affinities represented, [105.5, 109.5], and Equation (2.1) itself have been used frequently in

the literature [10, 16, 8, 5, 17].

Ka(x) = 104x+5.5. (2.1)

2.1.1 Variables and parameters

The model variables are given in Table 2.1, functions are given in Table 2.2, and parameters

are given in Table 2.3.

Table 2.1: Model variables.

Variable Description
x log of linearly transformed affinity, 0 ≤ x ≤ 1
t time (days)
B∗(x, t) Distribution of seeder cells
B0(x, t) Distribution of recycled DZ B-cells after division
C(x, t) Distribution of light zone B-cells
O(x, t) Distribution of output B-cells
[Ab](x, t) Distribution of Ab concentration produced by immune response

2.1.2 Initial condition

For t ≤ 3, C(x, t) = B0(x, t) = O(x, t) = [Ab](x, t) = 0. B∗(x, 0) is nonnegative for all

x ∈ [0, 1]. The variable [Ab] only describes antibodies produced from this reaction, so it

must start at 0. There could be Ag-specific antibody from previous immune responses. If
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Table 2.2: Model functions.

Function Description
M(t) Proportion of epitopes that are bound by Ab
fi(x|y) PDF for mutating from affinity y to x after i divisions
ps(x, t) Selection rate scale, ps ∈ [0, 1] (depends on C and M )
D(ps(x, t)) Destined number of divisions for BCs of affinity x selected at time t
E(x, t) Flux of BCs completing their final division
Ka(x) Transformation from x to real affinity

the model describes a primary immune response then this is not an issue. For a secondary

immune response, Ag-specific antibody from previous immune responses is present. We

call this background antibody, [Bg](x), and model it as a distribution of antibody concen-

tration over affinity x. The background antibody does not change over time because we

assume it is at or near equilibrium.

The initial condition B∗(x, 0) is chosen so that
∫ 1

0
B∗(x, 0) dx = 3 which leads to the

correct GC size at day t = 3 when the full reaction begins. It is not necessary for the initial

distribution B∗(x, 0) to be the sum of three delta distributions representing three real cells

because the initial three days in this model approximate a more complicated recruitment of

initial cells [11].

2.1.3 Day 0 to day 3

During the first three days of the GC reaction, recruited seeder B-cells proliferate in the

dark zone with no mutation, so for 0 ≤ t ≤ 3, the model follows Equations (2.2)–(2.3).

∂B∗

∂t
(x, t) = ρB∗(x, t), (2.2)

∂B0

∂t
(x, t) =

∂C

∂t
(x, t) =

∂O

∂t
(x, t) =

∂[Ab]

∂t
(x, t) = 0. (2.3)
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Table 2.3: Model parameters and initial conditions.

Parameter Description Reference
Tdiv = 1/4 Dark zone BC division time (days) [21]
Tdiff = 1 Time (days) for output BCs to differentiate [5]
ρ = (ln 2)/Tdiv Continuous rate of proliferation (days−1)
δ = 24

16
ln 2 Centrocyte apoptosis rate (days−1) [22]

md = 9/32 Probability of a deleterious mutation (used in fi(x|y)) [4]
ms = 17/32 Probability of a silent mutation (used in fi(x|y)) [4]
g = (ln 2)/10 Antibody decay rate (days−1) [5]
σ = 0.06 Standard deviation of affinity change under mutation
η = 4.0 Rate of BC migration, B0 → C (days−1)
λ = 2.6 Maximum rate of BC migration, C → DZ (days−1)
µ = 7.0 Rate of BC migration, B∗ → C (days−1)
pr = 0.7 Probability of recycling given selection
h = 0.8, n = 3.0 Terms defining the function D(ps(x, t))
c = 2.5× 10−13 Antibody production coefficient
[Bg](x) Concentration of background Ag-specific antibody
s = 0.05, z = 0.2 Parameters for positive antibody feedback∫
B∗(x, 0) dx = 3 Initial number of seeder cells [14]

B∗(x, 0) Initial distribution of seeder cells [23]
B0(x, 0) = 0 Initial distribution of B-cells migrating DZ→ LZ
C(x, 0) = 0 Initial proportion of light zone B-cells
O(x, 0) = 0 Initial proportion of output B-cells
[Ab](x, 0) = 0 Initial distribution of Ab concentration from this reaction
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2.1.4 Full equation from day 3

For t ≥ 3, B-cells in B∗(x, t) begin migrating to the light zone and the full model begins

described by Equations (2.4)–(2.8).

∂B∗

∂t
(x, t) = ρB∗(x, t)− µB∗(x, t), (2.4)

∂B0

∂t
(x, t) = prE(x, t)− ηB0(x, t), (2.5)

∂C

∂t
(x, t) = µB∗(x, t) + ηB0(x, t)− λps(x, t)C(x, t)− δC(x, t), (2.6)

∂O

∂t
(x, t) = (1− pr)E(x, t), (2.7)

∂[Ab]

∂t
(x, t) = cO(x, t− Tdiff)− g[Ab](x, t). (2.8)

2.2 Epitope Masking via Antibody Feedback

We build M(t) so that it gives the propotion of antigen binding sites that are bound by an-

tibodies. If [Ag] is the concentration of unbound antigen binding sites, [Ab] is the concen-

tration of antibodies, and [IC] is the concentration of immune complexes (antibody-bound

antigen), then the proportion that is bound or masked is given by

θ =
[IC]

[Ag] + [IC]
. (2.9)

Assuming equilibrium, basic chemical kinetics gives for a single affinity antibody:

[IC] = Ka[Ag][Ab]. (2.10)

This is true for any affinity. Adding up all possibilities (including background antibody not
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produced from this reaction, [Bg](x)) yields

[IC] =

∫ 1

0

Ka(x)[Ag]
(
[Ab](x)+ [Bg](x)

)
dx = [Ag]

∫ 1

0

Ka(x)
(
[Ab](x)+ [Bg](x)

)
dx.

(2.11)

Plugging (2.11) into (2.9) gives

M(t) =

∫ 1

0
Ka(x)

(
[Bg](x) + [Ab](x, t)

)
dx

1 +
∫ 1

0
Ka(x)

(
[Bg](x) + [Ab](x, t)

)
dx

. (2.12)

In addition to this describing masking, it is a general calculation that applies to the

antigen elsewhere in the body as well. We use the same Equation (2.12) to describe what

proportion of antigen in the body is being disabled by the immune response. This gives a

natural and physically meaningful measure of the effectiveness of the immune response.

2.3 T-cell Selection Strength

We construct a function ps(x, t) ∈ [0, 1] that measures the strength of the T-cell signal a

light zone B-cell of affinity x at time t (i.e., cells described by C(x, t)) receives. It is used

directly as a scale on the rate of selection for such cells. Further, this value will determine

the number of divisions that the cell is destined to undergo described in Section 2.5.

The determinates of T-cell signal strength that we consider in this construction are:

1. The proportion of FDC-bound Ag that is not masked.

2. The ability of a B-cell to bind with and capture Ag via its BCR.

3. Competition between B-cells attempting to interact with a limited supply of T-cells.

4. Optionally, we include positive antibody feedback.

Item 1 is given by 1 −M(t). Item 2 simply implies that higher affinity B-cells should

receive a stronger T-cell signal, and for item 3 we will use the average affinity of light zone
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B-cells defined by Equation (2.13).

xavg(t) =

∫ 1

0
xC(x, t) dx∫ 1

0
C(x, t) dx

. (2.13)

We define a function G(x, t) given in Equation (2.14) that for a fixed time t is made

up of two line segments, each segment with one of their endpoint at (xavg(t), 1/2), and the

other endpoints at (0, 0) and (1, 1).

G(x, t) =


x

2xavg(t)
x ≤ xavg(t)

x−xavg(t)

2(1−xavg(t))
+ 1

2
x > xavg(t).

(2.14)

Finally, item 4: Positive antibody feedback. This can occur because the mechanism

for presenting antigen on FDCs to make them available for collection by B-cells involves

immune complexes (antigen bound to antibody). All numerical experiments are conducted

both with and without this mechanism.

Positive feedback depends on the proportion of antigen found as immune complexes,

i.e., M(t) as defined in Section 2.2. Let z be the proportion of antigen binding sites on

the FDC that we expect to be filled with immune complexes rather than antigen without

antibody. One of the functions of macrophages is to transport immune complex in the

body quickly to lymph node follicles and onto FDCs. Because of this, we expect that

these FDC binding sites will be filled far more efficiently and with more robust immune

complex presentation as M(t) increases. We introduce a shape parameter s to control for

how quickly this occurs giving Equation (2.15).

H(M) =
zM

s+M
+ (1− z). (2.15)

Putting all of this together, we arrive at Equation (2.16) defining ps(x, t). The denom-

inator is necessary so that ps ∈ [0, 1]. For a light zone B-cell of affinity x at time t, this
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function is a scale on the rate of T-cell selection.

ps(x, t) =
(1−M(t))G(x, t)H(M(t))

max0≤y≤1{(1− y)H(y)} . (2.16)

ps(x, t) will also be used in determining the number of divisions a B-cell should un-

dergo, covered in the following section.

2.4 Antibody Production

Some proportion of the output B-cells O(x, t) differentiate to plasma B-cells which secrete

antibody at a high rate. It takes time to differentiate and begin producing antibodies, so we

incorporate a delay of Tdiff = 1 day in Equation (2.8) from output to antibody production

[16, 5, 17].

2.5 Number of Divisions

The number of divisions a B-cell is selected to undergo is determined by its cMyc ex-

pression. The cMyc expression of newly selected B-cells—and therefore the number of

divisions—is directly proportional to the strength of the received T-cell signal. The num-

ber of divisions has been experimentally observed to be between 1 and 6. [7]

Equation (2.16) defining ps(x, t) is a measure of the strength of the T-cell signal. Fol-

lowing [17] we use a (shifted) Hill function to represent this. We map ps(x, t) from

[0, 1] → [1, 7] using this Hill function, then take the floor (treating 7 as a special case)

to obtain an integer number of divisions, 1–6, resulting in Equation (2.17):

D(ps) :=


⌊
1 + 6(1 + hn) pns

pns+hn

⌋
0 ≤ ps < 1

6 ps = 1.

(2.17)

Here h and n are parameters of the Hill function. A graph of D(ps) using the parameters

from our model, h = 0.8 and n = 3, is shown in Figure 2.2.
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Figure 2.2: The number of divisions resulting from T-cell signal strength ps.

2.6 Mutation

Recycled dark zone B-cells undergo somatic hypermutation (SHM) [3, 24] which greatly

increases mutation rate in the antibody encoding variable region to roughly one point muta-

tion per division [4]. Following [4, 25, 14], we estimate that the probability of a deleterious

mutation is md = 9/32 and the probability of a silent mutation is ms = 17/32. If the mu-

tation is neither silent nor deleterious, we assume that the affinity x of daughter cells will

be normally distributed around the parent’s affinity y (truncated to [0, 1]) with a standard

deviation σ that becomes a parameter of the model.

Given this, we define a continuous space, discrete time Markov process with kernel

given in Equation (2.18). From this, we can compute the affinity distributions of further

generations by Equation (2.19).

f1(x|y) =


mdδ(x) +msδ(x− y) + (1−md −ms)N (µ = y, σ; 0 ≤ x ≤ 1) y ̸= 0

δ(x) y = 0,

(2.18)

fi+j(x|y) =
∫ 1

0

fi(x|z)fj(z|y) dz. (2.19)

The special case for y = 0 in Equation (2.18) treats affinity x = 0 as an absorbing

boundary in the mutation process. Once a deleterious mutation is accumulated, it is as-

tronomically unlikely that a subsequent point mutation in a single GC reaction is going to
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grant Ag-specificity again.

Given a distribution of B-cells Bbefore(x), if the entire distribution undergoes a single

round of division (double the size) and mutation (apply the Markov process defined by the

kernel in Equation (2.18)), the resulting distribution is given by

Bafter 1 division(x) = 2

∫ 1

0

Bbefore(y)f1(x|y) dy. (2.20)

Similarly, given k rounds of division and mutation applied to Bbefore(x), the resulting

distribution is given by

Bafter k divisions(x) = 2k
∫ 1

0

Bbefore(y)fk(x|y) dy. (2.21)

2.7 Flux of B-cells Completing Division, E(x, t)

Since we know how many divisions B-cells will undergo when they enter the DZ from

Equation (2.17) and how they will be distributed after a division from Equation (2.18), we

also know exactly what distribution will be entering the LZ after the divisions are complete.

Because of this, explicitly tracking the B-cells in the DZ is unnecessary. Instead of tracking

B-cells through the DZ, we derive the flux E(x, t) at time t of B-cells of affinity x moving

into the LZ from the DZ.

This is where a delay is used in this model, and the length of the delay depends on the

number of divisions. In Equation (2.22) we define subsets Xi(t) ⊂ [0, 1] of affinity at time

t on which the B-cells selected at time t will undergo i divisions for i = 1, . . . , 6:

Xi(t) =
{
x ∈ [0, 1] : D

(
ps(x, t)

)
= i

}
i = 1, . . . , 6. (2.22)

The flux of cells out of the light zone of affinity x at time t, via inspecting Equa-
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tion (2.6), is given by

λps(x, t)C(x, t),

therefore, applying Equation (2.22) to this distribution to only consider those cells that will

divide i times, we arrive at Equation (2.23) defining Ei(x, t) the flux of B-cells completing

division that were selected to divide i times. Note that the time iTdiv is precisely the amount

of time the divisions take. This is where the most important delay occurs in our model.

Ei(x, t+ iTdiv) = 2iλ

∫
Xi(t)

fi(x|y)ps(y, t)C(y, t) dy. (2.23)

And thus we arrive at Equation (2.24) for E(x, t):

E(x, t) =
6∑

i=1

Ei(x, t). (2.24)

Note that the model does not explicitly represent the distribution of actively dividing B-

cells in the model. We calculate the number of actively dividing B-cells via Equation (2.26):

gi(t) =

∫
Xi(t)

λps(x, t)C(x, t) dx, (2.25)

Bdiv(t) =
6∑

i=1

∫ iTdiv

0

eρτgi(t− τ) dτ. (2.26)

Note that Equation (2.26) approximates by assuming continuous proliferation rather

than discrete division events.

2.8 Assumptions and Numerical Considerations

2.8.1 Single epitope model

Many antigen are highly complex and have multiple epitopes available for antibody bind-

ing. Here we use a single epitope model, highly common in the literature [9, 12, 10, 14].
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2.8.2 FDCs remain stocked

We assume that there is enough antigen that the FDCs stay fully stocked throughout the

reaction. The restocking of antigen on FDCs is supported by laboratory experiment [5].

2.8.3 Both primary and secondary GC reactions

A primary GC reaction is one in which the immune system has no B or T-cell memory

of the antigen. While most models are restricted to studying either primary or secondary

immune responses, this model reproduces both by choosing appropriate initial conditions.

In a primary response, the B-cells that seed the reaction have relatively low affinity to

the epitope, while in the secondary response, at least some recruited seeder cells have

higher affinity to the epitope. Further, in a secondary response, background antibody from

previous immune responses is included.

2.8.4 Quadrature and DE solvers

For numerical computation of integrals, a fixed quadrature is chosen for affinity x ∈ [0, 1].

Result remain identical with any reasonable choice, and here we use Gauss-Lobatto quadra-

ture. Using a fixed quadrature allows the main equations (2.4)–(2.8) to be easily represented

as a basic DDE. E.g., if we choose 100 quadrature nodes then the 5 equations can be easily

represented as a system of 100× 5 = 500 equations.

We use the Julia language [26] package DifferentialEquations.jl [27] with the Tsitouras

5/4 Runge-Kutta method [28]. Numerically for these equations the Euler method is also

acceptable and leads to indistinguishable results.
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CHAPTER 3

RESULTS AND DISCUSSION

Here we study the secondary immune response, that is, the immune system has prior ex-

perience with the antigen. Some memory B-cells specific to the antigen from past immune

responses will be recruited to participate in the germinal center reaction. It is reasonable to

expect that starting with the best B-cells will lead to neutralizing antigen faster. However,

recent results suggest that a majority of the B-cells seeding the GC in a secondary response

are naive [11]. We divise numerical experiments to study this.

In all experiments, parameters are as given in Table 2.3 unless otherwise noted. We

study four variations of the model given by the combination of positive antibody feedback

either being included or not, and two possible initial seeder cell scenarios to investigate the

role of naive seeders.

Throughout, when positive antibody feedback is included, we use parameters s = 0.05

and z = 0.2 as in Table 2.3. When positive antibody feedback is not included, z = 0, in

which case s drops out of Equation (2.15) entirely.

3.1 Validation

We verify that the model provides reasonable predictions for basic phenomena that is ob-

served in laboratory experiments and established models. For the first experiments, the

initial condition for high affinity seeder cells will be given by

B∗(x, 0) = 3δ(x− 0.5),
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where all seeder cells have affinity x = 0.5, and for a mixture of experienced, high affinity

seeder cells and naive seeder cells, we use

B∗(x, 0) = 1.5δ(x− 0.5) + 1.5δ(x− 0.1),

where half of the seeder cells have affinity x = 0.1 and half have affinity x = 0.5. We will

make a more sophisticated choice in a later experiment, but the simplicity here is beneficial.

Since these experiments are for secondary immune responses, we choose background

antibody given by

[Bg](x) = 10−7δ(x− 0.1). (3.1)

Throughout Section 3.1, results obtained without positive antibody feedback are in blue

and results with positive antibody feedback are in red. Results for the high affinity seeder

cell scenario are given by dashed curves and results for the mixed affinity scenario (naive

seeder cells are also recruited) are given by solid curves.

3.1.1 GC Size

0 3 6 9 12 15 18 21

Time (days)

0

5.0× 103

1.0× 104

1.5× 104

2.0× 104

2.5× 104

GC Size (# BCs)

High affinity, negative feedback

High affinity, negative and positive

Mixed affinity, negative feedback

Mixed affinity, negative and positive

Figure 3.1: The number of B-cells comprising the GC over time.

A realistic GC size and profile over time [14, 21] is obtained for all four scenarios

(Figure 3.1). This is an important first step towards validation of our model. For a given
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choice of inclusion of positive antibody feedback, the inclusion of naive seeder cells in the

mixed affinity scenario leads to a larger GC. Note that a larger GC does not necessarily

imply more antigen neutralization.

3.1.2 Dividing cell ratio

When cells divide, they pass through a few distinct phases, one of which is S-phase. In

the GC, a B-cell in the light zone that is selected to divide enters its first S-phase before

reaching the dark zone. On average, the ratio of S-phase cells in the dark zone to those in

the light zone is approximately 2 [7].

To calculate this ratio in our model, we make an approximation that assumes the makeup

of selected cells is the same over a period of 1.25 days. Under this assumption, we compare

cells that are instanteously being selected (representing the light zone S-phase cells) with

the number of cells that will be at exactly that the same point in the cell cycle in the dark

zone.

The instantaneous rate of light zone cells being selected at time t is calculated from

Equation (2.6), resulting in ∫ 1

0

λC(x, t)ps(x, t) dx. (3.2)

The dark zone calculation is more difficult. Cells that are selected to divide only once

will never be found in S-phase in the dark zone. For cells selected to divide i > 1 times,

assuming that all selection has been identical for the past 1.25 days, then the average factor

increase in cell number is given by

∑i−1
d=1 2

d

i− 1
, 2 ≤ i ≤ 6. (3.3)

S-phase occurs before division, so this sum is stopped before the final division.

Finally, recall thatXi(t) ⊂ [0, 1] is the set of affinities x ∈ [0, 1] such that D(ps(x, t)) =

i, i.e., it is the set describing which cells will divide i times. Using this, we have our
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estimate of the ratio of dark zone S-phase cells to light zone S-phase cells:

S-phase DZ:LZ ratio =

∑6
i=2

∑i−1
d=1 2

d

i−1

∫
Xi(t)

λC(x, t)ps(x, t) dx∫ 1

0
λC(x, t)ps(x, t) dx

. (3.4)
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S-phase, DZ/LZ ratio
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Mixed affinity, negative feedback

Mixed affinity, negative and positive

Figure 3.2: Dark zone to light zone ratio of S-phase B-cells.

For all scenarios, we reproduce a reasonable DZ/LZ ratio of S-phase B-cells [7] seen in

Figure 3.2. All scenarios have a ratio of around 2 during their most productive times.

3.1.3 Rate of movement between zones and LZ/DZ size ratio

We also calculate the ratio of the number of B-cells in the light zone to the dark zone,

and the intra-migration rates between in Figure 3.3. Again, all scenarios match experiment

reasonably well [19].
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Figure 3.3: Light zone/dark zone dynamics.
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3.2 Main results

The goal of the GC reaction is to manufacture a large supply of Ag-specific antibodies

which bind to antigen throughout the body. The more binding that occurs, the more likely

it is that antigen can be found and removed by other cells in the immune system. We’ve

already established Equation (2.12) which gives M(t) the proportion of epitopes (antigen

binding sites for antibodies) are bound at any time during the reaction. Therefore, we use

Equation (2.12) to measure the success of an immune response.

Negative
feedback only

3.5 7.0 10.5 14.0 17.5 21.0

Time (days)

0.0

0.2
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High affinity seeders
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0.4

0.6
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Mixed affinity seeders

Output rate ×10−4

Output cell affinity

Antibody binding, M(t)

Time to 100 total B-cells
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positive feedback
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Figure 3.4: Inclusion of naive seeders and the inclusion of positive antibody feedback both
lead to improved antigen neutralization.

In Figure 3.4 we find that naive seeders and positive antibody feedback have little effect

on the length of time the reaction lasts (measured as the time it takes for the GC to drop

to 100 B-cells). Average affinity of output cells is slightly lower when naive seeders are

included. This is countered by the output rate being higher later in the reaction when there

has been more time to reach higher affinities.

The result shows that M(t) is higher when naive cells are included. Further, inclusion

of positive antibody feedback is noticeably effective at producing a stronger response in
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terms of increased M(t).

The result continues to hold when more realistic initial seeding is used. There are

many distinct clonal lineages found in a typical GC [11]. We draw 50 seeder cells from

a distribution for the following experiments. While the current work does not attempt to

create a full model of the seeding process itself, using a more diverse initial condition serves

to confirm both the model’s generality and the results thereof.

High affinity seeder cells are given by a normal distribution with µ = 0.5, σ = 0.05

truncated to [0, 1]. Naive seeder cells are given by a normal distribution with µ = 0,

σ = 0.05 truncated to [0, 1]. The mixed distribution weights its two components equally.

See Figure 3.5.

0.0 0.2 0.4 0.6 0.8 1.0

Affinity (x)

High affinity distribution

0.0 0.2 0.4 0.6 0.8 1.0

Affinity (x)

Mixed distribution

Figure 3.5: Seeder cell distribution

An immune response typically consists of many thousands of GC reactions. Since we

are drawing seeder cells from a distribution, the initial condition varies from one run to the

next. To see a more accurate picture of reality, we average over 50 runs.

The resulting output rate and light zone B-cell distribution can be seen in the contour

plots of Figure 3.6. It is again clear that including naive seeder cells vastly improves the

resulting affinity maturation and gives a more robust GC reaction.

3.3 Discussion

Secondary immune responses have the advantage of memory B and T-cells that have prior

experience with the antigen, while recent research [11] has found that in fact many naive

B-cells are recruited to participate in secondary immune responses. There are two (not nec-
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essarily mutually exclusive) possibile explanations for this: 1) More efficient recruitment

of experienced cells is not evolutionarily attainable, and 2) It is in fact advantageous to

recruit naive cells.

We have shown that option 2 is true, though not to the exclusion of option 1. This

appears to be due to a slower start when naive B-cells are recruited, and therefore later

peak in GC size. The later peak allows more time for the previously experienced B-cells to

mature to higher affinity (Figure 3.4).

A further contributor is that around days 4–7, experienced B-cells do not have as many

other experienced cells to compete with for T-cell signal (Figure 3.6). Having so much of

the available space taken up by B-cells that simply are not expressing enough pMHC to be

competitive improves the chances of the experienced cells and gives an extended productive

period where the GC has the opportunity to take advantage of the affinity maturation that

has occurred.

We have also seen that positive antibody feedback helps the reaction, as would be ex-

pected. Biologically, we proposed positive antibody feedback because having higher affin-

ity antibody available should lead to more stable immune-complexes available on FDCs

for B-cells to collect. In our model, we see that this leads to a more effacacious immune

response.

Mathematically, this work represents a new avenue to study affinity maturation at a

lower computational cost. This allows for future work to model many interacting GCs to

form a more complete picture of how the body mounts an immune response on a large

scale.
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Part II

Surface Surveillance from Minimum

Length Paths
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CHAPTER 4

INTRODUCTION AND BACKGROUND: PATH OPTIMIZATION

4.1 Previous Work and Literature on Path Planning

Path and route planning has been a topic of mathematical interest for centuries. In the

1750s, Euler studied the Knight’s Tour problem: Find a sequence of knight moves on a

chess board such that every square is visited exactly once. The Knight’s Tour is an early

example of the problem of finding a Hamiltonian path on a graph where the goal is to find

a path on a graph that visits each vertex exactly once [29].

The most famous discrete path planning problem is the travelling salesman problem:

Given a complete weighted graph, find the lowest weight cycle that visits every vertex

exactly once [30]. Equivalently, the name “traveling salesman” derives from the following

description: Given a list of cities and some known cost associated with traveling between

the cities, find the lowest cost route to visit all cities once. The travelling salesman problem

remains NP-hard even when restricted to general grids [31].

A significant amount of work has been done in continuous settings as well which we

discuss for the remainder of this section [32, 33, 34, 35]. The art gallery problem [32]

poses the problem of finding the fewest number of stationary guards or security cameras

necessary to fully survey an art gallery. Viewing distance is assumed to be unlimited.

The goal is to survey the entire environment, not just the walls or surfaces. Throughout

the literature, environment surveillance is a much more common problem to address than

surface surveillance.

The art gallery is NP-hard even for polygonal environments in R2. In R3 there is an

additional subtlety: In 2-dimensions guard locations can be chosen at vertices and full en-

vironment surveillance is still possible, however in 3-dimensions, simple (but non-convex)
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polyhedra can be constructed such that even with a camera at every vertex, there will be

interior regions that can not be seen [32, chapter 10].

The watchman route problem [33] studies paths that a watchman could traverse so that

an entire environment in R2 is surveyed. As in the art gallery problem, the watchman is

assumed to have unlimited viewing distance.

For polygonal environments, if the environment is simple (i.e., has no holes), then there

is a polynomial time algorithm to find exact solutions [36]. For every convex corner, the

path must enter the cone created by that corner and the two edges meeting it. If this is done

for every corner, full surveillance will be acheived. In the majority of cases, the shortest

path is unique, but in a few cases there are an infinite number of equally short paths [37].

For polygonal environments with holes an exact solution is NP-hard, but a solution can be

approximated in polynomial time [38].

The literature discussed above assumes that the visiblity distance is infinite. The d-

sweeper problem is identical to the watchman route problem except that the watchman has

a limited visibility distance d [34]. The goal is to find the shortest route that the entire

polygonal environment is surveyed by the watchman with limited visibility. The name

“sweeper” comes from thinking of the watchman surrounded by a disc of radius d that

must sweep over the entire area.

Similarly, the d-watchman problem is identical to d-sweeper except that only the bound-

ary of the environment needs to be surveyed. This is a subset of the problem space for

which the proposed surface surveillance algorithm of this thesis applies. There are poly-

nomial time approximate algorithms for both the d-sweeper and d-watchman problems in

simple (i.e., there are no holes) polygonal environments in R2 [34].

Algorithms for finding safari routes [39] and zookeeper routes [40] are necessary for

the d-watchman algorithm [34]. A safari route is one that intersects a given collection

of subregions in an environment. A zookeeper route intersects the boundaries of a given

collection of subregions, but does not enter the interior of those regions. Safari routes
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in particular are important: A d-watchman or d-sweeper route must see all corners of a

polygonal environment. These routes must visit regions within a distance d of each corner,

which means these routes must be safari routes for those regions.

The path optimization with limited sensing ability (POLSA) algorithm uses a level-

set framework to define the environment in R2 or R3 [35]. The POLSA algorithm finds

the shortest full environment surveillance paths. A path is represented by a list of points

that are connected via shortest paths, and paths are evolved by moving their representative

points.

To determine the shortest path between two points, POLSA employs the evolving junc-

tions over boundaries (E-JOB) algorithm [41] which uses an initial value problem of ODEs.

The level-set framework is used to define a gradient flow that shortens the path while in-

termittent diffusion [41] provides random perturbations and allows for global optima to be

found.

Visibility in the level-set framework is determined using PDE based visibility dynam-

ics [42]. This combined with gradient flow applied to the list of points representing the

path is used to evolve paths to full surveillance. To shorten the paths, a local optimum can

be found through alternating gradient descent on the length and gradient ascent on visibil-

ity to maintain full surveillance. POLSA finds global optima via global optimization by

intermittent diffusion [43].

4.2 Literature on Surface Surveillance

There are limited references studying surface surveillance with limited visibility. The only

surface surveillance problem discussed above was the d-watchman route problem for which

there exists an approximate algorithm that applies to simple polygons in R2 [34].

It should be noted when visibility distance is unlimited in R2 as in the original watch-

man route problem, surface and full environment surveillance routes are equivalent. A

difference only arises under limited visibility distance [34]. Thus, in R2 with unlimited
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visibility, there has implicitly been significant work [32, 33, 36, 37, 38].

Surface surveillance of the unit sphere (without a visibility distance restriction) in R3

has received substantial attention. This is known as the asteroid surveillance problem [44],

the sphere inspection problem [45], or the inradius problem in R3 [46]. For closed curves,

i.e., routes that start and end at the same point, this problem was recently solved analytically

by a curve of length 4π [47]. For open curves, the shortest sphere surveillance path remains

unsolved.

Definition 4.2.1 (Inradius). The inradius of a curve is the radius of the largest sphere con-

tained in that curve’s convex hull.

The inradius problem is to find the shortest curve of inradius 1. If it happens that this

curve does not intersect the unit sphere contained in its convex hull, then this is equivalent to

sphere surveillance [45]. It isn’t a priori guaranteed that a solution to the inradius problem

will not intersect the sphere, but the solution for closed curves [47] and the best conjecture

for open curves [45] do not, and so they are also sphere surveillance paths.

The history of sphere surveillance begins in 1956 with a proposed problem often called

the lost in a forest problem: If you are a distance 1 into a forest (modeled as a half-plane

in R2) but don’t know what direction leads out of the forest, find the route that minimizes

the maximum possible time to exit the forest [48]. A solution with a proof outline was

proposed the following year [49] and a rigorous proof was published in 1980 [50].

The forest problem is equivalent to a modification of the inradius problem in R2. It can

be restated as: Find the shortest path in R2 whose convex hull contains a unit disk such that

the path intersects the center of that disk. Since the path must pass through the disk, it is

not the same as a surface surveillance problem. Removing the section of path inside the

disk leaves us with a path that does solve a constrained surface surveillance problem: Find

the shortest surface surveillance path that starts on the surface of the unit disk but doesn’t

intersect the interior of the disk [45, 51]. The latter interpreation can be thought of as a

drone that starts its surveillance from the ground before taking flight.
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These problems and other variations have been solved in R2 [45]. Analytic solutions

to the analogous sphere surveillance problems in R3 have been more elusive. Only sphere

surveillance via a closed path has been solved [47]. There is a conjecture for the open path

[45].

Section 4.3 provides necessary definitions and other details of the precise setup of the

surface surveillance problem. In Chapter 5, the SSMILE algorithm is proposed as a general

method for computing optimal surveillance paths in general environments. Chapter 6 uses

SSMILE to study the closed path solution and open path conjecture to the inradius problem.

Chapter 7 presents a potential starting point for analytical study of surface surveillance in

a 2-dimensional environment.

4.3 Mathematical Details

In this work, our focus is the study of path optimization with full surface surveillance. A

surface refers to a 1-dimensional subspace of R2 or a 2-dimensional subspace of R3. For

example, the environment could be a 2-dimensional floorplan with surfaces being the 1-

dimensional walls in that floorplan. The objective is to find the shortest path such that the

entirety of the walls can be seen when the path is traversed. An example in R3 that we will

discuss in detail is the surveillance of the suface of a sphere.

A surface could be surveyed from the inside or outside determined by the definition of

the environment, e.g., consider a security guard patroling either the interior of a building

or the exterior. Broadly, a surface is surveyed by a path if each point on the surface can

be seen from some point along the path. In addition to the security guard analogy which

works well when considering 2d maps, in 3d we can think of the flight path of a drone with

a mounted camera.

This work explores various constraints on visibility. In all cases, visibility requires that

the line of sight must be unobstructed. Other limitations on visibility that we consider are

limited visibility distance and a requirement that surfaces be seen from angles that are are
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not too extreme.

4.3.1 Environment Definition and Surface Discretization

We begin by defining the possible environments which can be considered for surface surveil-

lance from paths.

Definition 4.3.1 (environment). An environment is a subset X ⊆ Rn (n = 2, 3) such that:

1. X is path-connected,

2. X is equal to the closure of its interior, and

3. the boundary of X is oriented and has finite area when n = 3 and finite length when

n = 2.

Definition 4.3.2 (path-connected). X is called path-connected if for any x, y ∈ X , there

exists a continuous function γ : [0, 1] → X such that γ(0) = x and γ(1) = y. In other

words, there exists a path connecting any two points.

The first requirement of Definition 4.3.1 is necessary because there is no way for a

single path to survey more than one path-connected component. The second requirement

enforces that all boundary points are accessible from the interior of X . The final require-

ment removes some pathological and physically unrealistic possibilities.

We denote the boundary of X by ∂X and call this the surface. The subset to be surveyed

will be denoted by S ⊆ ∂X throughout and referred to as the target surveillance surface.

Frequently we set S = ∂X to survey all surfaces, but the proposed algorithm in Chapter 5

applies regardless.

We discretize the boundary of the environment ∂X by triangulation [52] (see Defini-

tion 4.3.3). When S is a strict subset of ∂X , we require that S be a sub-triangulation in

the sense that all elements of the triangulation of S are also elements of the triangulation

of ∂X .
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Definition 4.3.3 (triangulation). A triangulation T∂X of the boundary of an environment

∂X is a collection of elements which are oriented line segments in R2 or oriented triangles

in R3 with normal vector pointing out of X such that

⋃
e∈T∂X

e = ∂X,

and the intersection of two elements is either empty, a single vertex, or in R3 a complete

edge.

For polyhedral environments, this allows our computational description of ∂X to be ex-

act. The restrictions on environments in Definition 4.3.1 allow for triangulation to provide

a good approximation. Conversely, any triangulation with a finite number of elements and

consistent outward pointing normals defines an environment.

Using this discretization framework provides many benefits:

• Since we require elements in surface descriptions to be oriented, it is easy to test if

a point is in X . Follow a ray in any direction until it intersects with an element, and

then check if the dot product of this ray with the normal of the element is positive or

negative.

• It’s easy to refine triangulations. In R2, one may break any line segment into as many

pieces as desired. In R3, one strategy is to add vertices at the midpoint of each edge

and create four triangles similar to the original using the 6 vertices, a method which

has the advantage of maintaining Delaunay triangulations [53].

• Using triangulations allows the use of a variety of common tools used in animated

film and video game development such as Blender [54].

The algorithm we propose in Chapter 5 applies to environments defined by triangula-

tion. In Chapter 6 we present a modification to apply the algorithm to a true sphere, not a

triangulation.
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4.3.2 Paths

We define precisely what we mean by a path in X:

Definition 4.3.4. The space of all (rectifiable) paths in X is given by

Ω = {Image of γ
∣∣ γ : [0, 1]→ X is continuous}.

The Euclidean length of a path Γ ∈ Ω is denoted by L(Γ).

The space of all rectifiable paths Ω in an environment X is infinite dimensional and

computationally infeasible to search within directly. We use a discretization developed

for the POLSA algorithm [35] to approximate the space of all paths. In this framework,

a discretized path is given by an ordered list of points in X which are connected by the

shortest path from one point to the next.

Definition 4.3.5. Given a list of points (x1, . . . , xN) ∈ XN , construct a discretized path

starting at x1 that connects xi to xi+1 for i = 1, . . . , N − 1 via the shortest path in X . We

denote this path Γ[x1, . . . , xN ]. The set of all paths defined by N points is denoted ΩN ⊂ Ω

and we call the defining points of such a path junction points.

From Definition 4.3.5 we see that a path Γ ∈ ΩN is identified by a point in XN ⊂ RN×n

where n = 2, 3 is the dimension of the environment. Therefore this discretization of paths

provides a finite dimensional search space.

Recall that we required an environment X to be path connected, so the construction

in Definition 4.3.5 is possible. The construction of a path from N junction points is not

necessarily made up of N − 1 line segments because there could be an obstacle between

two points. In general, the shortest path between two points will consist of a union of

line segments and geodesic curves along ∂X . Within the evironment framework defined

in Section 4.3.1, since we use a triangulation, these geodesics will be a union of (possibly

very many) line segments.
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It’s possible that there are multiple shortest paths connecting two junction points. When

there are multiple shortest paths between xi and xi+1, a random small purturbation of either

point results almost surely (in a probabilistic sense) in a unique shortest path between the

two points. Because of this, the ambiguity causes no issues.

It is worth noting that ΩN ⊂ ΩN+1. Indeed, for points x1, . . . , xN ∈ X , we have that

Γ[x1, . . . , xN ] ∈ ΩN defines the same path as Γ[x1, x1, . . . , xN ] ∈ ΩN+1.

4.3.3 Visibility of Surfaces

Common to all visibility problems discussed in this chapter, visibility requires a line of

sight. Further restrictions we place on visibility are given by a maximum visibility distance

d ∈ (0,∞] and a maximum visibility angle α ∈ (0, π/2]. Choosing d = ∞ and α = π/2

removes the distance and angle restrictions leaving only only line of sight for determining

visibility.

Definition 4.3.6. A point x ∈ X in the environment has a line of sight to a point s ∈ S if

the line segment connecting x and s is contained entirely in X .

Definition 4.3.7. A point s ∈ S on the target surveillance surface is visible from a point

x ∈ X with maximum visibility distance d and maximum visibility angle α if:

• ∥s− x∥ ≤ d,

•
(s− x) · n
∥s− x∥ ≥ cosα where n is the outward pointing normal of ∂X at s,

• and x has a line of sight to s.

We say a point s ∈ S is visible from a path Γ if it is visible from any point x ∈ Γ, and S is

visible from Γ if every s ∈ S is visible from Γ.

An illuminating example is the unit square. Let the environment be X = [0, 1]× [0, 1]

with target surveillance surface the entire boundary S = ∂X . If d =∞ and α = π/2 (i.e.,
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only consider line of sight), then every path will survey all of S. In fact, this is the case for

any convex X with only a line of sight constraint on visibility.

If d = 1/4, then there is no point in X from which all surfaces are visible, so the

optimal paths will necessarily have length greater than 0 and the solution is not obvious.

Alternatively, if d = ∞ and α = π/6, again the optimal paths are not obvious. So even in

simple environments, these added restrictions to visibility provide opportunities for inter-

esting problems.
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CHAPTER 5

SURFACE SURVEILLANCE FROM MINIMUM LENGTH PATH ALGORITHM

We propose a method to find globally optimal paths that survey surfaces in an environment

that accounts for constraints on visibility distance and visibility angle. We refer to this as

the Surface Surveillance from Minimum Length Paths (SSMILE) algorithm. SSMILE is

developed to apply to the following problem: Given an environment X ⊂ Rn, n = 2, 3

(see Definition 4.3.1) with a target surveillance surface S ⊆ ∂X , constraints for visibility

distance d ∈ (0,∞] and angle α ∈ (0, π/2] (see Definition 4.3.7), find the shortest paths in

X that survey all of S.

For computational feasibility we consider a discretization of both paths and environ-

ments. The choice we make for the proposed algorithm gives the following problem setup:

Given

• a triangulation T∂X defining the boundary ∂X of an environment X in Rn, n = 2, 3

(see Definition 4.3.3),

• a target surveillance surface S ⊆ ∂X defined by a sub-triangulation TS ⊆ T∂X ,

• constraints for visibility distance d ∈ (0,∞] and angle α ∈ (0, π/2], and

• a number of junction points N ∈ N to define the discretized path space ΩN (see

Definition 4.3.5),

find the shortest paths in ΩN that fully survey S.

Section 5.1 details constructions, algorithms, and optimization techniques relevant to

the main algorithm starting with Section 5.1.1 which discusses the environment triangula-

tion. In Section 5.1.2 we show how to construct full paths from a list of junction points.

Section 5.1.3 introduces a test for determining visibility of elements of a triangulation. Fol-

lowing this, in Section 5.1.4 we develop a gradient based algorithm to smoothly transform
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a path that doesn’t survey all of S to one that does, which we call projection to full surveil-

lance. Section 5.1.5 discusses global optimization via intermittent diffusion [43] which we

use in the SSMILE algorithm. The SSMILE algorithm is presented in Section 5.2. In Sec-

tion 5.3 we show the results of numerical experiments applying the SSMILE algorithm to

various examples.

5.1 Constructions, Algorithms, and Optimization Techniques for SSMILE

5.1.1 The Environment and Surface to be Surveyed

The input that defines the environment for the SSMILE algorithm is a triangulation T∂X
(see Definition 4.3.3) of the boundary of the environment. The elements of T∂X are oriented

with consistent, outward pointing normal vectors, meaning that the surface ∂X defined

by the triangulation is itself oriented. The volume or area enclosed by the triangulation,

including the boundary, is what we call the environment X (see Definition 4.3.1).

Note that changing the sign on the normal vectors results in the same surface, but with

the environment on the other side of the surface. If the triangulation given is the sides of the

unit square in R2, the direction of the normal vectors determines whether the environment

is the interior or exterior of the unit square.

We distinguish between convex, concave, and saddle vertices of the triangulation T∂X
in upcoming algorithms. The intuition for the naming we choose is that these corners are

seen from inside the environment. Note that if the signs are switched on the normal vectors

changing the environment, then convex vertices become concave and vice versa.

Definition 5.1.1. Given a triangulation T∂X that defines an environment X and v a vertex

of T∂X , in R2, if the interior angle at v is, greater than π then v is called convex, and if it is

less than π, v is called concave.

In R3, consider all edges in T∂X that include v. If the interior angle of each edge is

greater than or equal to π with at least one inequality strict, we call v convex. If all interior

41



angles are less than or equal to π with at least one inequality strict, we call v concave. If

there is at least one interior angle around v strictly greater than π and one strictly less than

π, we call v a saddle vertex.

The surface to be surveyed is given as a sub-triangulation TS ⊆ T∂X which defines a

subset S ⊆ ∂X of the boundary of the environment. In many applications it is reasonable

for the surveillance surface to be the entire boundary, TS = T∂X , such as in sphere surveil-

lance. The flexibility to choose a subset of the boundary for surveillance allows there to be

obstacles in the environment that are not of interest to the surveyer, but still must be taken

into account for path planning and visibility.

The refinement of TS directly affects the accuracy of SSMILE. This is discussed in

Section 5.1.3. If S ̸= ∂X , then the refinement of the elements in T∂X \ TS does not affect

accuracy. For computational efficiency it is advantageous for this part of the triangulation

to be as coarse as possible.

5.1.2 Path Construction from Junction Points

In this section we discuss how to construct paths from junction points. Recall from Defini-

tion 4.3.5 that a path Γ ∈ ΩN defined by N junction points x1, . . . , xn ∈ X is created by

connecting xi to xi+1 via the shortest path in X . The focus of this section is on connecting

two points in an environment X defined by a triangulation T∂X of its boundary ∂X .

In any environment, not limited to those defined by triangulation, the shortest path

between two points is a union of zero or more geodesics along surfaces and line segments

in the environment [41]. Since the environment is given by triangulation, surfaces are

polyhedral and therefore the geodesics are also unions of line segments. This fact informs

our method for determining the shortest path.

This will be reformulated as optimization on a weighted graph where we apply Dijk-

stra’s algorithm. There is a subgraph that is needed both for finding the shortest path and

for computations in Section 5.1.4. We call it the line of sight graph and denote it GLOS. The
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vertices of GLOS are selected from points on the surface ∂X as described in the upcoming

Definitions 5.1.2 and 5.1.3. Graph edges are included between any two vertices that have a

line of sight in X with weight given by the distance between them.

The choice of vertices to include in GLOS affects the accuracy of the shortest path algo-

rithm that we introduce in this section. For environments in R2 we choose the vertices so

that the calculation is analytically exact. The graph that accomplishes this is the following:

Definition 5.1.2. In R2, the line of sight graph GLOS is constructed with graph vertices

given by all convex vertices of T∂X , an edge connecting two vertices if the connecting line

segment is in X , and edge weight given by the distance between vertices.

The choice of vertices to define GLOS for environments in R3 is more complex, and

a general analytic solution to the shortest path is NP-hard [41]. Frequently, geodesics on

polyhedral surfaces will intersect the interior of edges and not pass through vertices of the

triangulation. Because of this, to approximate the shortest path with higher accuracy we

include points sampled from convex edges of T∂X as graph vertices, not just vertices of

T∂X . The density of sampled points on edges determines the accuracy of the approximated

geodesics where paths are on surfaces.

Definition 5.1.3. In R3, with sampling density parameter δ > 0, the line of sight graph

GLOS is constructed with graph vertices given by:

• Every convex and saddle point vertex of T∂X and

• sample points at a density of at least 1 per length δ for each convex edge of T∂X .

A graph edge connects two vertices if the connecting line segment is in X and the two

vertices are not sampled from the same convex edge of the triangulation. The edge weight

given by the distance between vertices.

In the preceeding Definition 5.1.3, the reason that points sampled from the same edge

of T∂X are never connected by a graph edge is that such an edge can never be in the optimal
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path. These edges would not harm accuracy if included, but they cause the path construc-

tion to take longer with no benefit.

Using the line of sight graph GLOS, we propose Algorithm 5.1 to find the shortest path

between two points.

Algorithm 5.1 Shortest path between two points

1: Given an environment X defined by triangulation and two points x, y ∈ X

2: If the line segment xy is contained in X , return xy immediately. Otherwise:

3: Construct a graph G by adding to the line of sight graph GLOS:

a. Include x and y as vertices

b. For each vertex v of GLOS, if xv ⊂ X then include the edge {x, v} with weight

∥x− v∥, and if yv ⊂ X then include the edge {y, v} with weight ∥y − v∥

4: Apply Dijkstra’s algorithm to G and return the shortest path between x and y.

An example of the construction through step 3 of Algorithm 5.1 is seen in Figure 5.1.

x

y

Figure 5.1: An example of GLOS. The boundary of the environment is in black. GLOS is in
blue. The added edges are in red.

The graph GLOS that was used in Algorithm 5.1 will be used again in Section 5.1.4 to

define a gradient based method to project a path to full surveillance. In both uses, it will be

needed repeatedly and should be precomputed.
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5.1.3 Visibility Calcuation

Recall from Definition 4.3.7 that for a point x ∈ X in the environment to survey a point

s ∈ S on the surface, x must have a line of sight to s (the line segment xs is entirely

contained in X), it must be within the maximum viewing distance d > 0, and the angle

between xs and the normal vector n of the surface S at s must be less than the maximum

viewing angle α ≤ π/2. A path Γ surveys the surface S if for every s ∈ S there exists a

point x ∈ Γ that surveys s.

Using the triangulation, we discretize the definition of visibility of a point s ∈ S from a

point x ∈ X by checking if an element e ∈ TS of the triangulation is visible from x. This is

accomplished by checking if each vertex of e is visible using the outward pointing normal

vector n of the element. Note that these vertices are each a part of more than one element,

but the normal vectors for these adjacent elements may differ. This visibility calculation is

summarized in the following definition.

Definition 5.1.4. An element e ∈ TS of a the triangulation of S with outward pointing

normal vector n is visible from a point x ∈ X with maximum visibility distance d and

maximum visibility angle α if the following conditions hold:

1.
(x− v) · n
∥x− v∥ ≥ cosα for each vertex v of e.

2. ∥x− v∥ ≤ d for each vertex v of e.

3. For each vertex v of e, the line segment xv does not intersect any other element of

the triangulation.

Condition 1 prevents the viewing angle from being too extreme. In experiments when

this restriction is not required, set α = π/2 which gives the simpler condition (x − v) ·

n ≥ 0. When α = π/2, the calculation is called backface culling in computer graphics.

Condition 2 imposes a limited visibility distance. When a limited distance is not required,

set d =∞. Condition 3 is satisfied when there are no obstructions to the line of sight.
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When conditions 1 and 2 are met for an element, every point in the element is within the

angle and distance requirements for visibility. This is because the element is a convex set

and the vertices are the extreme points of this convex set. The maximum angle and distance

must occur at an extreme point. Thus, conditions 1 and 2 are analytically sufficient.

When X ⊂ R2, condition 3 can also be guaranteed to imply the entire element has an

unobstructed line of sight when we impose an extra requirement on the triangulation TS:

The largest element length in TS should not exceed the smallest width of all holes in the

environment. In other words, no element of TS should be so large that an obstacle can

obstruct vision to the interior while both end points are still visible.

When X ⊂ R3, analytically there is no guarantee that condition 3 implies total visi-

bility to the element. This is because, even when all vertices are seen, the corner of some

obstruction can protrude into the line of sight to the interior of the element via the element’s

edge. This didn’t occur in R2 because the element’s vertices were also it’s entire boundary.

In R3, we accept that condition 3 is an approximation.

Using Definition 5.1.4, we propose Algorithm 5.2 to find the proportion of S that is

visible from a path Γ in X . For X ⊂ R2, visibility from this algorithm implies that analyt-

ically the surface is visible from the path as in Definition 4.3.7. As discussed above, in R3,

this is an approximation and no such guarantee can be made.

Note that a path could survey a surface analytically as in Definition 4.3.7 and this algo-

rithm could find less than complete surveillance. This underestimation of surveillance has

two sources: First, for an element of the triangulation to be surveyed, then entire element

must be surveyed from a single point on the path. This source of error is proportional to the

maximum element size. Second, we sample points along the path to test visibility, which

produces error proportioal to the inverse of the sampling density.
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Algorithm 5.2 Visible Surface Proportion from a Path

Require: A path Γ in X , a triangulation {e1, . . . , en} of S, and a number k ≫ 0 of points

to be sampled from Γ

1: Sample points x1, . . . , xk evenly by length from Γ and initialize V ← 0

2: For each element ei, if ei is visible from any sample point xj , then update:

3: V ← V +
|ei|
|S|

4: return V

5.1.4 Projection to Full Surveillance

In this section we develop a method to modify paths so that they acheive full surveillance.

This is used in the SSMILE algorithm to maintain full surveillance as paths are modified.

Traditional application of gradient ascent to the visibility calculation given in Algo-

rithm 5.2 is not sufficient because frequently there is no local modification to a path that

increases visibility. For example, see Figure 5.2 where any local modification to the path

will still only see the target surveillance surface in the left arm. Instead we construct an

algorithm by replacing conditions for visibility with penalty functions that have nonzero

gradient for paths that don’t fully survey S.

Figure 5.2: With no limits on visibility distance or angle, half of the target surveillance re-
gion (blue) is visible from the path (red). All local modifications to the path leave visibility
unchanged.

We start by creating penalty functions for the visibility of a single point s ∈ S on

the surveillance surface from a single point x ∈ X in the environment. Recall the three

47



conditions for visibility of s ∈ S from x ∈ X given in Definition 4.3.7:

1. ∥s− x∥ ≤ d,

2. (s−x)·n
∥s−x∥ ≥ cosα, and

3. x has a line of sight to s.

Here d is the maximum visiblity distance and α is the maximum visibility angle from the

normal n of ∂X at s. Conditions 1 and 2 will be replaced with penalty functions. The

last condition will be satisfied by using the line of sight graph GLOS (Definitions 5.1.2 and

5.1.3) to define the penalties.

Denote the penalty function for distance from x ∈ X to s ∈ S by P ∗
dist(x, s). Using

Algorithm 5.1, find the shortest path from x to s. This path will be constructed of line

segments with a sequence of end points we denote by x = y0, y1, . . . , yk = s. Then we

have

P ∗
dist(x, s) =

k−1∑
i=1

∥yi − yi−1∥+max {0, ∥yk−1 − yk∥ − d} . (5.1)

If the line of sight condition is met, the first sum is vacuously 0 because k = 1. Otherwise,

the first sum evaluates to the distance x would need to travel to obtain a line of sight to s.

The latter summand gives the remaining distance necessary to meet the limited visibility

distance requirement.

For the angle penalty function, there are three angles to consider: The maximum visi-

bility angle α, the angle between the normal vector n at s ∈ S and the final leg syk−1 of

the path derived from GLOS above given by

cos θ1 =
(s− yk−1) · n
∥s− yk−1∥

, (5.2)

and the angle between n and sx given by

cos θ2 =
(s− x) · n
∥s− x∥ . (5.3)
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For s to be visible, modification of x must eventually result in θ2 being less than both

α and θ1. I.e., we need max{cosα, cos θ1} ≤ cos θ2. This suggests the following penalty

function for the angle:

P ∗
angle(x, s) = max {0, max{cosα, cos θ1} − cos θ2} . (5.4)

Adding (5.1) and (5.4), we have a penalty function that is almost everywhere smooth

with a nonzero gradient when s is not visible from x:

P ∗(x, s) = P ∗
dist(x, s) + P ∗

angle(x, s). (5.5)

Recall that an element of the triangulation of the surface is defined to be surveyed when

all vertices are visible (Definition 5.1.4). Given e ∈ TS , we extend Equation (5.5) to e by

summing over the vertices of e:

P ∗(x, e) =
∑
s∈e

P ∗(x, s), (5.6)

where the normal vector n in Equations (5.2) and (5.3) is taken to be the normal of e.

To complete the construction of the penalty function, we extend Equation (5.6) to paths

and full triangulations. To extend to triangulations, we take the sum of penalties for each

triangulation element scaled by the size of the element. To extend to paths, for each ele-

ment, the point along the path that provides the minimum penalty is used.

Definition 5.1.5. Given a path Γ and a triangulation TS of the surveillance region of the

surface, the visibility penalty function is given by

P (Γ, TS) =
∑
e∈TS
|e|min

x∈Γ
P ∗(x, e). (5.7)

With equation (5.7), we now present the path projection algorithm:
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Algorithm 5.3 Project Path to Full Surveillance

Require: A path Γ[x] in X where x ∈ Xm is a list of junction points, a triangulation TS
of S, and a number k ≫ 0 of points to be sampled from Γ[x]

1: Sample points y1, . . . , yk evenly by length from Γ[x]

2: Use gradient descent on x applied to Equation (5.7) via:

dx

dt
= −∇xP (Γ[x], TS), (5.8)

with the approximation P (Γ[x], TS) ≈
∑
e∈TS
|e| min

i=1,...,m
P (yi, e)

3: return Γ[x]

Note that this method is heuristic. Algorithm 5.3 can not return a full surveillance path

if there aren’t enough junction points to obtain full surveillance. In an extreme case, e.g., if

a path Γ is only given by two junction points, full surveillance will not be possible for most

possible surveillance targets S ⊆ ∂X . Even when there are enough junction points for

some full surveillance path to exist, since gradient based methods are local, it is possible

that this path would not be reachable.

Intuitively, using more junction points improves the heuristic. In practice, when choos-

ing enough junction points for paths to look reasonable, the heuristic already has more than

enough junction points. Where this might fail is if an experiment is specifically looking for

a minimum number of junctions. We do not explore this because in this work the junction

point construction of paths is meant to approximate the space of all paths.

5.1.5 Global Optimization by Intermittent Diffusion

The problem our algorithm is intended to solve requires global optimization in a highly

non-convex space. We cannot hope to have a deterministic algorithm that guarantees a

solution within any pre-specified error bound in finite time. Instead, we employ the strategy

of global optimization by intermittent diffusion [43]. This Section 5.1.5 is a summary of
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the ideas in [43] as they apply to our problem.

At its core, the intermittent diffusion strategy is a stochastic extension of gradient de-

scent as in Equation (5.9). The diffusion term defined in Equation (5.10) turns on and off

over time (i.e., the diffusion is intermittent). The idea is that when there is no diffusion,

trajectories of the SDE will find local optima. When diffusion is turned on, trajectories

have the opportunity to break out of local optima traps to search for global optima.

dx(t, ω) = −∇xL(Γ[x]) dt+ σ(t) dW (t), t ≥ 0, x ∈ Xn (5.9)

σ(t) =
N∑
i=1

σi1[Si,Ti](t). (5.10)

In Equation (5.10), 1[Si,Ti](t) is the characteristic function of the interval [Si, Ti]. The

intervals are chosen such that 0 = S1 < T1 < S2 < T2 < · · · < SN < TN and the length of

the each interval [Si, Ti] for i = 1, . . . , N is drawn from a uniform distribution on [0, Tmax].

Similarly, each σi for i = 1, . . . , N is drawn from a uniform distribution on [0, σmax].

The values σmax > 0 and Tmax can theoretically be chosen arbitrarily by the experi-

menter. Regardless of the choice, we have that as N → ∞, the probablility of finding

all minima (including the global minima) of L(·) approaches 1. In practice, these values

can dramatically change the run time and it is reasonable to run smaller experiments in the

problem domain to see how they effect behavoir before running more expensive experi-

ments.

The lengths of the intervals [Ti, Si+1] where σ(t) = 0 are unimportant. Indeed, when

σ(t) = 0, Equation (5.9) becomes a local gradient descent:

dx

dt
= −∇xL(Γ[x]), t ∈ [Ti, Si+1], i = 1, . . . , N x ∈ Xn. (5.11)

Because of this, all trajectories of the SDE in Equation (5.9) will converge exponentially

quickly to a local minimum when σ(t) = 0. In fact, this implies that we can use any
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valid local optimization strategy in our algorithm when σ(t) = 0. Thus, this SDE visits

N local minima at times S1, . . . , SN , with increasing probability that global minima have

been found as N increases.

5.1.6 The Benefit of Intermittent Diffusion vs. Simulated Annealing

Simulated annealing is a popular global optimization strategy that, in a continuous SDE

setting, also uses Equation (5.9) but has a different diffusion term σ(t). In simulated an-

nealing, the diffusion σ(t) = c/
√
log t (where c > 0 is large) starts high and decays

gradually. This will converge weakly to a distribution concentrated at the global optima of

L(Γ[x]) [43].

Numerically, this requires an SDE algorithm to be run to completion to find a single

minimum, as each trajectory will only converge to a single solution at very large t. This can

be expensive. Intermittent diffusion, for a single trajectory, converges to a local optimum

every time the diffusion is turned off.

The intermittent diffusion strategy allows for any local optimization technique to be

used, so this can be tuned to the problem domain. Further, there is a bounded amount of

time for diffusion to be non-zero during intermittent diffusion and there is no need check

for convergence during this time. Thus, the SDE solver part of intermittent diffusion is very

cheap, and the local optimization is as cheap as the problem domain allows.

Both global optimization strategies are very useful in a variety of domains. Though the

equations have the same form—both are a stochastic extension of gradient descent—they

work quite differently in practice.

For SSMILE, intermittent diffusion is the best choice. This is because the problem

requires the paths Γ[x] to stay in the highly non-convex set of full surveillance paths. This

is computationally expensive, and being able to choose any local optimization technique

expands the possibilities for improving computational efficiency.
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5.2 The SSMILE Algorithm

We can now present the main result: The Surface Surveillance via Minimum Length Paths

(SSMILE) Algorithm. SSMILE is the application of global optimization via intermittent

diffusion to the structure and algorithms presented in Section 5.1.

The structural idea of the algorithm is: Given a starting path, jiggle the path to break

out of local gradient traps, find a local optimum with respect to length and save it, repeat.

Throughout, maintain full surveillance. This results in a list of local optima. As discussed

in Section 5.1.5, since we are using global optimization by intermittent diffusion, probabil-

ity approaches 1 that global optima are included in that list as time increases.

During intermittent diffusion, while the diffusion term is positive the path is perturbed

(i.e., this is the “jiggling” step). Path perturbation is presented in Algorithm 5.4 explic-

itly showing the use of the Euler-Maruyama scheme [55] for solving SDEs. While other

schemes can be used, we recommend this one because the purpose of the perturbation is

explicitly to break out of local optima traps. This does not require high accuracy or an

expensive algorithm.

When the diffusion term is 0 in intermittent diffusion, trajectories of the SDE converge

to a local optimum exponentially quickly. Thus, we are free to use any local optimization

technique. We use an explicit 2nd order PDE accelerated gradient descent scheme [56]

which is a momentum based technique.

Algorithm 5.5 shows how any step-wise local optimization technique can be used. Full

surveillance must be maintained while minimizing length, so we alternate between taking

steps towards the local optimum and projection to full surveillance.

Putting the perturbation step and local optimization step together, we arrive at Algo-

rithm 5.6.
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Algorithm 5.4 Perturb Path via Euler-Maruyama

Require: A path Γ[x] given by junction points x ∈ Xn

Require: A maximum diffusion strength σmax > 0 and time Tmax > 0

Require: A small time step ∆t > 0

1: Draw from uniform distributions: σ ∈ [0, σmax] and T ∈ [0, Tmax]

2: t← 0

3: repeat

4: Draw ∆W from a multivariate normal distribution N (⃗0, diag(∆t))

5: x← x−∇xL(Γ[x]) ·∆t+ σ ·∆W

6: t← t+∆t

7: Project x to full surveillance using Algorithm 5.3

8: until t ≥ T

9: return x

Algorithm 5.5 Local Optimization for SSMILE

Require: An initial path given by junction points x ∈ Xn

Require: A choice of step-wise local optimization scheme

1: repeat

2: Update x by taking a step towards the local optimum with the chosen scheme

3: Project x to full surveillance using Algorithm 5.3

4: until convergence is reached

5: return x
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Algorithm 5.6 Surface Surveillance via Minimum Length Path (SSMILE)

Require: An initial path given by junction points x0 ∈ Xn

Require: A maximum diffusion strength σmax > 0 and time Tmax > 0 for perturbation

1: for i = 1, . . . , N do

2: Perturb the junction points xi−1 using Algorithm 5.4 to obtain x∗
i

3: Find a local minimum xi of L(Γ[x]) with initial value x∗
i using Algorithm 5.5

4: end for

5: Return xk such that L(Γ[xk]) ≤ L(Γ[xj]) for j = 1, . . . , N

5.3 Computational Experiments

We present numerical experiments for various environments to validate the SSMILE algo-

rithm.

First we have an example of an art gallery floor plan seen in Figure 5.3. The length

of the top wall is 2.4, the maximum viewing radius is rmax = 1 and the minimum viewing

radius is rmin = 0.1. The maximum viewing angle from the normal vectors off of the walls

is θmax = π/3. From the given initial path (a), a local minimum found by SSMILE is

shown in (b). With intermittent diffusion, a possible global minimum is found shown in

(c). Notice the configuration of the three paths are quite different, demonstrating that as the

algorithm continues, it searches through distant regions of the the space of all paths.

Figure 5.4 presents a 3-dimensional example of surveying a torus. The torus has an

interior radius of 0.5 and outer radius of 1.5. We discretize this torus with a Delaunay

triangulation containing 812 triangles. The longest edge in the triangulation has length

h = 0.3115.

The viewing radius of the sensor is r = 1.0. We impose no minimum viewing distance

or maximum angle. The path has 91 junction points to give a smoother approximation. As

can be seen, the path passes through the hole in the torus, demonstrating that the algorithm

can handle surfaces with non-trivial genus.
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(a) Initial condition (b) Local optimum (c) Global optimum

Figure 5.3: Surveillance of all walls in an art gallery floor plan. Parameters for this exper-
iment were a minimum visibility distance of rmin = 0.1 (surfaces within this distance are
not considered surveyed), a maximum visibility distance of rmax = 1.0, and a maximum
visibility angle of θmax = π/3.

(a) Top view of torus (b) Side view of torus (c) Bottom view of torus

Figure 5.4: Optimal path for torus surveillance. Distance from center of torus to center of
tube = 1.0. Radius of tube is = 0.5. The parameters for visibility were rmax = 1.0 with no
lower limit on visibility and no limit on visibility angle.
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CHAPTER 6

SPHERE SURVEILLANCE

In this chapter, we explore the special case of sphere surveillance. Using the notation and

terminology developed in Chapters 4 and 5, sphere surveillance is defined by the following:

Definition 6.0.1. The Sphere Surveillance Problem: Take the environment to be the exterior

of the unit ball, X = {x ∈ R3 : ∥x∥ ≥ 1}, and the surveillance surface to be the entire

boundary, S = ∂X . There is no limit on visibility distance or angle. Find the shortest

surveillance path.

Sphere surveillance is illustrative because the goal is conceptually simple, the question

has been discussed in the literature for decades, and Algorithms 5.2 and 5.3 can be modified

to use geometric concepts for better theoretical applicability. The modifications will make

approximation error easier to understand and showcase the ability of the SSMILE algorithm

to apply to classical geometry problems more broadly.

6.1 Background

We start by defining the concept of inradius and the associated inradius problem which we

will refer to frequently [46].

Definition 6.1.1 (Inradius). The inradius of a curve in Rn is the radius of the largest n-

sphere contained in that curve’s convex hull. The inradius problem is to find the shortest

path of inradius 1.

6.1.1 History and Results in R2

In 1956, the lost in a forest problem was proposed: If a hiker is lost in a forest and discovers

a sign that informs them that they are exactly 1 mile away from a straight road, what is the
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shorest path the hiker can travel that guarantees they will find the road [48]? A solution with

a proof outline was proposed the following year [49] and a rigorous proof was published in

1980 [50], which was later translated to English in 2019 [57].

Since the road is straight and exactly 1 mile away, it is a tangent line of the radius 1

circle centered at the hiker’s starting point. The hiker’s path is guaranteed intersect with

this road if and only if their path intersects every tangent of the circle. Equivalently, the

circle must be contained in the convex hull of the hiker’s path. An easy first attempt is to

pick any direction, walk a distance 1, and then follow the circle all the way around giving

a distance of 1 + 2π. Figure 6.1 depicts a construction that improves on this and yields the

optimal solution [50].

start

α

Figure 6.1: This construction yields a family of paths satisfying the conditions of the lost
in a forest problem. The shortest path is obtained when α = π/6 [50].

Removing the condition that the path must start at the center of the circle yields the

following problem: What is the shortest curve in the plane that contains a unit circle in its

convex hull? In other words, the R2 inradius problem as seen in Definition 6.1.1.

The R2 inradius problem was solved along with the lost in a forest problem [50] and

the solution of length π + 2 can be seen in Figure 6.2.

Notice that the path that solves the R2 inradius problem in Figure 6.2 is also a full

surveillance path for the unit disk. The path stays in the environment X = {x ∈ R2 :

∥x∥ ≥ 1} and every point of its surface is visible from somewhere along that path. Half

of the surface is surveyed from points on the path that actually touch the disk. This is still
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Figure 6.2: The shortest curve in the plane that contains a radius 1 circle in its convex hull.

physically reasonable from a surface surveillance perspective: If the unit disk is the view

of a circular building from the top and a security guard wants to see all the way around as

quickly as possible, this is the ideal path, though the physical size of the guard will force

them slightly away from the ideal path.

The connection between the inradius problem and sphere surveillance is captured in the

following Lemma:

Lemma 6.1.2. In Rn with n ≥ 2, we have:

(1) A minimal length inradius 1 path that does not intersect the interior of the contained

sphere is a minimal length sphere surveillance path.

(2) A minimal length sphere surveillance path has inradius 1.

Proof. Take a point x ∈ Rn outside the unit sphere, ∥x∥ ≥ 1, and a point s ∈ Rn on the

unit sphere, ∥s∥ = 1. By Definition 4.3.7, since s is also the normal vector to the unit

sphere at s, we have that s is visible from s exactly when (x − s) · s ≥ 0 (i.e., x is in the

outer half-space defined by the tangent plane at s) and when the line segment xs doesn’t

intersect the sphere. The first requirement implies the latter because the unit ball is convex.

From this, we see that a sphere surveillance path is a path that passes through every

tangent plane of the sphere and doesn’t intersect the sphere. The former requirement is

precisely the same as having an inradius of at least 1. This establishes (1).

Suppose Γ is a sphere surveillance path with inradius R > 1. (2) will be proven by

showing that Γ is not a minimal length surveillance path. The path Γ/R = {x/R : x ∈ Γ}
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is shorter and has inradius 1, but it might intersect the sphere, so more care is needed.

Instead, scale by

f(∥x∥) =


1/R if R ≤ ∥x∥

1/∥x∥ if 1 ≤ ∥x∥ < R

1 otherwise

(6.1)

to create a path Γ2 = {xf(∥x∥) : x ∈ Γ}. Since f is continuous, Γ2 is a path. Since Γ

has inradius R > 1, there must be a point on the path x with ∥x∥ ≥ R, so Γ2 is strictly

shorter. By construction of f , Γ2 will not intersect the sphere and the inradius of Γ2 is at

least 1. This demonstrates that Γ was not a minimal length sphere surveillance path. Thus,

a minimal length sphere surveillance path must have inradius exactly 1.

Note that a priori the solution to the R2 inradius problem could have intersected the

unit disk. Since a posteriori we see that it does not, Lemma 6.1.2 proves that the path in

Figure 6.2 solves the R2 sphere surveillance problem.

6.1.2 The Inradius Problem in R3

In R3, we consider the inradius problem for both open paths and closed paths (paths where

the end points meet). In R2, closed paths are not interesting because the solution is simply

the unit circle itself. The R3 inradius problem is also known as the asteroid surveying

problem [44].

The R3 inradius problem has not been solved for open paths. The shortest known

conjecture is given by Zalgaller [45] and shown in the left graphic of Figure 6.3. We

describe Zalgaller’s construction of the path using the right graphic of Figure 6.3.

Place the center of the unit sphere C at the origin and choose an angle 0 < α < π/4.

Consider the cone with vertex P5 = (1, 0,− cotα), opening angle α, and center passing

through C. The sphere sits inside of this cone with the two intersecting on a great circle
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Figure 6.3: Zalgaller’s conjectured optimal inradius 1 path in R3 [45].

plotted as a dashed line. We define the point P1 = (1, 0, cotα) so that M = (1, 0, 0) is

the midpoint of P1P5 which lies entirely on the cone. The equator of the sphere lying in

the xy-plane has also been plotted as a dashed line. The point P3 is defined to lay on the

cone, above the equator, π radians around the sphere from P1, which implies P3 lies on the

x-axis.

With this in place, we can describe the path. The curve from P1 to P3 is a geodesic on

the intersection of the cone and the upper half-space z ≥ 0. The rest of the curve, from P3

to P5, is the the arc from P1 to P3 rotated pi radians around the x-axis. Since P3 lies on the

x-axis, this creates a single continuous path from P1 to P5.

The point P2 and its rotated copy P4 also appear in Figure 6.3. P2 is the first point

along the path starting from P1 that touches the xy-plane, and the part of the path from P2

to P4 lies entirely in the xy-plane. Without requiring the geodesic to be in the upper half-

space, it would drop below the equator and Zalgaller shows that this would leave portions

of the upper hemisphere unsurveyed [45]. The resulting path length is minimized when

α ≈ π/2− 1.1421, attaining a value of L ≈ 9.576778.

The solution to the R3 inradius problem for closed paths is shown in the right graphic

of Figure 6.4. This path was originally conjectured by Zalgaller in 1997 [58]. Progress was
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made in 2018 [46] and in 2021 this path was shown to be the unique (up to rigid motion)

optimal solution [47].

Figure 6.4: The construction of the shortest closed path of inradius 1 in R3.

To construct this path, start with two disjoint unit circles with centers laying on antipo-

dal points of the unit sphere. The top hemisphere is surveyed by the top semicircles and

the bottom hemisphere is surveyed by the bottom semicircles. Rotate the top half by π/2

radians to create a single closed path of length 4π as seen in Figure 6.4. By construction,

this clearly surveys the sphere. The proof that this path is optimal can be seen in [47].

6.2 SSMILE Implementation for Inradius

The SSMILE algorithm introduced in Chapter 5 can be directly applied to the inradius

problem by triangulating the sphere. However, here we take the opportunity to showcase

the wide applicability of SSMILE by using the definition of inradius directly. By directly

calculating the inradius of paths, the sphere doesn’t need to be modelled at all.

6.2.1 Computing the Inradius

We start with a method to calculate the inradius of a path. Recall Definition 6.1.1: The in-

radius of a path Γ is the radius of the largest sphere that sits inside the convex hull conv(Γ).

Our strategy will be to construct the convex hull of the path, and then to use linear pro-

gramming to find the radius of the largest sphere that sits inside that convex hull.
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Recall that in SSMILE, paths are discretized by a list of junction points x = (x1, . . . , xN) ∈

R3N . The path Γ[x] is constructed by connecting xi to xi+1 via the shortest path, which is

always a line segment since we are considering the inradius of curves in space and thus

have no obstacles. Since the connecting line segments are themselves the convex hull of

the connecting points, we have established the following:

Lemma 6.2.1. The convex hull of the discretized path Γ[x1, . . . , xN ] is the convex hull of

the junction points x1, . . . , xN ∈ R3.

We can apply any technique to build the convex hull of the point cloud x1, . . . , xN ∈ R3.

We use an incremental method that is a simplified version of the Quickhull algorithm [59].

The convex hull of a finite set of points is always a polytope which can be represented

as an intersection of half-spaces. A half-space is most easily described by a normal vector

n ∈ R3 and an offset b ≥ 0 via {x ∈ R3 : n · x ≤ b}. Then the polytope P defined by the

intersection of m half-spaces will have the form

P = {x ∈ R3 : ni · x ≤ bi, i = 1, . . . ,m}. (6.2)

Given the representation in Equation (6.2) of the convex hull P of a path Γ[x] with

x = (x1, . . . , xN) ∈ R3N , we find the radius of the largest sphere that sits inside P using

linear programming. This linear program is often used to solve for the Chebyshev center

of P [60] which is the center of the largest sphere, but the radius is also found. The linear

program for the Chebyshev center and inradius is:

maximize R

subject to ai · c+R ≤ bi, i = 1, . . . ,m.
(6.3)

where c ∈ R3 is the center of the largest sphere inside P and R ≥ 0 is the radius. Thus, for

the junction points x ∈ R3N , we can compute the inradius R(Γ[x]) of the path.
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6.2.2 Modified Local Optimization Strategy

Now that we can compute the inradius, we could apply SSMILE now by replacing the

projection to full surveillance step with gradient ascent of R(Γ[x]) with respect to x. This

does work, but we have developed a better strategy.

We start with the observation that we can rescale paths to inradius 1 easily:

Lemma 6.2.2 (Inradius Rescaling). For any path Γ with positive inradius, the rescaled

path (1/R(Γ)) · Γ has inradius 1 and it’s length is given by

L

(
1

R(Γ)
· Γ

)
=

L(Γ)

R(Γ)
. (6.4)

Proof. Let Γ be a path with positive inradius R(Γ) (which implies the length L(Γ) is also

positive). Let α > 0. Both L and R are homogeneous functions, i.e., L(αΓ) = αL(Γ) and

R(αΓ) = αR(Γ). This is well known for L. For R, note that scaling the path scales the

largest sphere in its hull with it, and so it scales the radius of that sphere.

This proves Equation (6.4), and a simple calculation shows that the rescaled path has

inradius 1: R(Γ/R(Γ)) = R(Γ)/R(Γ) = 1.

Lemma 6.2.2 gives a global method for projecting a path Γ to inradius 1: Simply rescale

it by 1/R(Γ). This was attempted as a replacement in SSMILE, and it was found that a

local length reduction followed by a global inradius rescaling increases length. This process

does not converge and leads to an unbounded length. Figure 6.5 shows why this happens.

Since local decrease in length followed by global projection to inradius 1 does not work,

we instead consider the quantity L(Γ)/R(Γ). The following theorem shows that this ratio

is an ideal object for optimization.

Theorem 6.2.3. If a path Γ∗ minimizes L(Γ)/R(Γ) subject to R(Γ) > 0, then (1/R(Γ∗))Γ∗

minimizes L(Γ) subject to R(Γ) = 1.
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−∇xL
x← x− ε∇xL rescale

L ≈ 6.8 L ≈ 8.0
x1

x2

x3

Figure 6.5: This depicts locally reducing the length by following the gradient and then
globally rescaling to inradius 1. This results in increased length. Here ε = 1/2 so that the
effect can be easily visualized, but this occurs for any ε > 0. The dashed circle is the radius
1 circle that sits inside the convex hull.

Proof. Note that L/R is scale invariant, i.e., for a path Γ with positive inradius and α > 0,

L(αΓ)

R(αΓ)
=

αL(Γ)

αR(Γ)
=

L(Γ)

R(Γ)
.

This combined with Lemma 6.2.2 establishes the theorem.

Because of Theorem 6.2.3, we can minimize L/R instead of L. Almost all possible

modifications to Γ will maintain a positive inradius, so maintaining a feasible path becomes

trivial and the projection step of SSMILE is no longer necessary. Further, this allows us to

use backtracking line search [61] for local minimization to reduce the number of gradient

calculations.

Minimizing L/R means that we are focused on the shape of paths without regard for

scale. Intuitively, this means the gradient direction should improve the shape of the curve

faster, and so it should take fewer steps than if we only considered the gradient of L.
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6.2.3 Modified SSMILE Algorithm

We are now able to present Algorithm 6.1 for the inradius problem.

Algorithm 6.1 Modified SSMILE for the inradius problem

Require: An initial path given by junction points x ∈ R3N

1: repeat

2: Perturb x with Algorithm 5.4 replacing L with L/R and skipping step 7

3: repeat

4: Calculate g = −∇x(L(Γ[x])/R(Γ[x]) using a finite difference method

5: Use backtracking line search on x in the direction g to reduce L(Γ[x])/R(Γ[x])

6: until convergence

7: Save the rescaled local optima (1/R(Γ[x])) · x

8: until the desired number of optima have been found

6.3 Numerical Results, Validation, and Prediction

We applied Algorithm 6.1 to both open and closed paths across a wide range of number of

junction points. For closed paths, it is known that 4π is the optimal length and so we can

validate our method with this knowledge and visually ensure that the paths we compute

look like the known unique (up to rigid motion) optimal path [47]. For open paths, we can

check if our results match the current best conjecture [45] and thereby offer a prediction

about whether the conjecture is optimal.

First, we check the relative error on a log-log plot for different numbers of junction

points, shown in Figure 6.6. If the relative error is converging to 0 in the number of junction

points, we expect the points to fall on a line. This is what we see. The slope of the best

fit line (using least squares) for each is approximately −2, meaning that we have order 2

convergence in the number of junction points.
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Figure 6.6: For open paths, the error is relative to the conjectured optimum. For closed
paths, the error is relative to the known optimum. The slopes of the plotted best fit lines are
-2.15 (open) and -2.02 (closed) implying approximately order 2 convergence in the number
of junction points.

Figure 6.6 provides good evidence that Zalgaller’s conjecture for open paths is the

correct length. It is possible that the path he provides is not the only solution attaining this

length, therefore we still need to inspect the paths. Note that since the sphere has rotational

and reflectional symmetry, uniqueness of solutions can only be found up to rotation and

reflection. We standardize all paths to account for this.

In Figure 6.7 we see the shortest inradius 1 open paths found via Algorithm 6.1 for a

variety of numbers of junction points N . There are no examples in the data of any other

configuration attaining optimal length for any N . Therefore, our results provide evidence

that the Zalgaller conjecture is not merely optimal, but is also the unique optimal inradius

1 path in R3.

Figure 6.8 shows a collection of closed paths resulting from Algorithm 6.1. Again,

after rotating (in this case, reflection is actually unnecessary) we see that all paths have the

same configuration as the known unique solution. Along with the relative error graph in

Figure 6.6, this helps validate our method.

Now that we’ve verified the algorithm produces the expected result for closed paths
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Figure 6.7: The result of Algorithm 6.1 for open paths with junction points N =
6, 8, 16, 24, 32, and finally Zalgaller’s conjectured optimal path.
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Figure 6.8: The result of Algorithm 6.1 for closed paths with junction points N =
6, 8, 16, 24, 32, and finally the unique (up to rotation) optimal path.

and produces the conjectured optimum for open paths, there are a few observations we

can make. We were searching for inradius 1 paths and imposed no requirement that these

paths not intersect the sphere. Since we see that they have not intersected the sphere, by

Lemma 6.1.2, we know we have also found optimal sphere surveillance paths.

Also, we have experimentally found convergence of roughly order 2 in the number of

junction points. Since we used an exact calculation for inradius, this has allowed us to

learn about convergence characteristics with respect to path discretization. In Chapter 5,

we couldn’t do this because surfaces were also discretized.

Order 2 convergence is precisely what we would expect. For example, consider ap-

proximating the unit circle with a linear spline interpolation with N knots. The circle has

perimeter 2π. The spline forms a regular polygon with N vertices which has perimeter

2N sin(π/N). Using the Maclaurin series for sin, we have:
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approximation error = 2π − 2N sin
π

N

= 2π − 2N(
π

N
− π3

N33!
+

π5

N55!
− . . . )

= 2π − 2π +
2π3

N23!
− 2π5

N45!
+ . . .

= O(1/N2).

(6.5)

Focusing on the paths themselves, there are a couple details worth noting. First, as

would be expected, there are fewer junction points by length describing straigher portions

of optimized paths as compared to higher curvature portions of the same paths. Second, for

closed paths, particularly noticeable with N = 8, 16, 24 in Figure 6.8, the optimized paths

have less symmetry than expected, though they are still converging to the expected result.

In particular, these paths do not have the reflective symmetry found in the optimal path.

Our final observation is that the success seen in this chapter suggests a wide applicabil-

ity of these ideas to other classical geometry problems. For example: The width of a curve

in Rn is the infimum of the distance between parallel hyperplanes bounding the path [46].

This could be studied in a similar way. Further, “paths” could be replaced with polytopes,

e.g., opening a broad range of problems to study. This algorithm is only useful in giving

evidence for pure math conjectures and can not prove anything on its own, but we believe

this is a useful and underexplored area, evidenced by the results herein which strongly im-

ply that Zalgaller has given the correct conjecture [45] and that it is better to spend time

searching for a proof rather than searching for a shorter path.
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CHAPTER 7

THEORETICAL EXPLORATIONS

7.1 Introduction

In this chapter we present some theoretical explorations related to surface surveillance via

paths with limited visibility distance. There has been some theoretical work for polygon

surveillance with unlimited visiblity distance which we discussed in Chapter 4. With lim-

ited visibility distance, research has been limited to numerical approximation. Theoretical

results, in addition to being intrinsically interesting, can help validate numerical methods.

Thus, while we do not present major results in this chapter, it is valuable to present some

possible starting points for future work.

We focus on environments in R2, however the generalized setup presented in Sec-

tion 7.2 works in R3 as well. After giving a generalized setup, we discuss surveillance

within simple polygons in Section 7.3.

7.2 Generalized Setup and Observations

This setup is meant to be general enough to encompass many surveillance style problems.

This could be surface surveillance, full environment surveillance, surveillance of a finite

collection of points, and so on. The definition of visibility is abstract notation that can

represent any possible visibility rules. Finally, we do not limit our surveillance to happen

from paths, so that the problems with stationary sensors or security guards, like the art

gallery problem [32], can be encoded in this framework.

We will prove two lemmas using this general setup. In the following section, we will

limit the problem space to surface surveillance from paths with limited visibility distance.

Consider an environment X ⊆ Rn (n = 2, 3), a target surveillance set S ⊂ X , and a

71



visibility criterion V(x, y) that determines if y ∈ X is visible from a point x ∈ X . S can be

any subset of X . The visibility criterion is a function that encodes the visibility rules and

has the form X × X → {0, 1} where V(x, y) = 1 if y is visible from x and V(x, y) = 0

otherwise. For convenience, we also use the notation V(Γ, y) which is 1 when V(x, y) = 1

for any x ∈ Γ.

A set Γ ⊆ X surveys S if for all y ∈ S there is an x ∈ Γ such that V(x, y) = 1. We call

this a surveillance set. Because we have generalized to allow Γ to be a set, this framework

encompasses problems where there are stationary guards or cameras as well.

When a surveillance set Γ is a path, we call it a surveillance path. Γ is called an

optimal path if there are no shorter surveillance paths. I.e., if length is given by L(Γ), the

surveillance path Γ is called optimal if L(Γ) ≤ L(Γ′) for all other surveillance path Γ′.

When Γ is a finite set of points, as in the art gallery problem [32], we define L(Γ) to be

the number of elements in Γ. We call Γ an optimal set if it is a finite cardinality surveillance

set and there does not exist any finite surveillance set with fewer elements.

Lemma 7.2.1. Let T ⊂ S ⊆ X . If Γ is: 1) An optimal path (or set) for T , and 2) a

surveillance path (or set) for S, then Γ is also optimal for S.

Proof. Suppose that Γ′ is a surveillance path (or set) for S such that L(Γ′) < L(Γ). Let

y ∈ T be chosen arbitrarily. Since T ⊂ S, y ∈ S, and since Γ′ surveys S, V(Γ′, y) = 1.

Since y was an arbitrary element of T , we see that Γ′ surveys T . This is a contradiction

since Γ was assumed to be optimal for T , completing the proof.

The proof is simple, but the resulting Lemma 7.2.1 is powerful. To demonstrate the

concept: Suppose S is some large and complicated set we would like to survey. If we can

construct a very simple subset T ⊂ S that has easy to find optimal paths (or sets) that

happen to also survey S, then we’ve solved the problem for S. This will be used later.

Another way to make use of Lemma 7.2.1 is to construct a class of subsets T = {T :

T ⊂ S} where each member of T has easy to find optimal paths (or sets). Then the
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optimization problem can be recast as a search over T for sets T with optimal paths (or

sets) that also survey S.

Next, we make an observations about self intersecting paths in R2. Recall from Defi-

nition 4.3.4 that a path in an environment X ⊂ R2 is the image of a continuous map from

the closed unit interval [0, 1] to X . We will argue that self intersections can be interpreted

as non-crossing using the idea of disentangling a path [35]. A visual explanation of the

disentangling procedure is given in Figure 7.1.

Lemma 7.2.2 (No self-crossing). A path Γ in an environment X ⊂ R2 with a finite number

of self-intersections is the image of a continuous map η : [0, 1]→ X with no self-crossing.

Proof. Let γ : [0, 1]→ X be any continuous map defining Γ. Suppose that for t1 < t2, we

have the path crossing itself at xintersect := γ(t1) = γ(t2). Construct a new continuous map,

η : [0, 1]→ X that disentangles γ at the point xintersect:

η(t) =


γ(t) t ≤ t1

γ(t2 + t1 − t) t1 < t < t2

γ(t) t2 ≤ t.

(7.1)

See Figure 7.1 for a visual example of Equation 7.1. Note that the image of η is identical

to the image of γ, so they are defining the same path Γ.

Repeat this process for every other point where the path crosses itself.

7.3 Surface Surveillance in Simple Polygonal Environments

A polygon is simple if its boundary is formed by a single, non-self-intersecting path. We

call an environment X a simple polygonal environment when X is a simple polygon. In

particular, this means that X has no holes.
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(a) (b)

Figure 7.1: Example of disentangling a path. (a) Before and (b) after.

In this section we will explore surface surveillance within simple polygonal environ-

ments. Throughout this section, the surveillance set S = ∂X is the boundary of the simply

polygon X . For concreteness, the vertices of X are labeled v1, . . . , vn in clockwise order.

Our visibility criterion is given by a finite visibility distance. We will not consider a

limited viewing angle as we did in Chapter 5. Precisely, we have V(x, y) = 1 (y is visibile

from x) when xy ⊂ X (i.e., there is a line of sight) and ∥x − y∥ ≤ r for a finite visibility

distance 0 < r <∞.

We will frequently refer to the region in X from which a point y ∈ X is visible. For

convenience, we name this regionR(y) := {x ∈ X : V(x, y) = 1}.

7.3.1 Closed Paths

We start with closed paths. Our general strategy is to pick a finite subset T of S such

that there exists an optimal path for surveillance of T also surveys S, and then apply

Lemma 7.2.1. We will choose T = {v1, . . . , vn}, the vertices of the polygon.

We will show that there is an optimal closed path with the form Γ[x1, . . . , xn, x1] where

xi ∈ R(vi). Recall from Definition 4.3.5 that this is the shortest path connecting the list

of junction points in order. In other words, we will prove that there is an optimal path for

surveying S that is formed by taking the shortest route to survey each vertex in order.

Before we prove this, first we look at an example of a polygon and a path of this form
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in Figure 7.2. There is an important idea exemplified in this image. The junction points x3

and x4 are superfluous for defining this path, and the junction points x5, x6, and x7 are all

identical. Thus, while we will prove that a path of this form is optimal, its representation

as a list of junction points is not unique, nor is the representation necessarily the shortest

possible list of junction points.

v1

v2

v3 v4

v5

v6

v7

v8

v9

R(v1)

R(v2)

R(v3) R(v4)

R(v5)

R(v6)

R(v7)

R(v8)

R(v9)

x1

x2

x3 = v3 x4 = v4

x5 = x6 = x7

x8

x9

Γ[x1, . . . , x9, x1]

Figure 7.2: An example of a path of the form given in Theorem 7.3.1.

Theorem 7.3.1 (Closed paths in simple polygons). Given a simple polygonal environment

X with vertices given in clockwise order v1, . . . , vn, if an optimal path for {v1, . . . , vn} ex-

ists, then there exists an optimal closed path surveying S = ∂X of the form Γ[x1, . . . , xn, x1]

where xi ∈ R(vi).

Proof. Define the subset T = {v1, . . . , vn} ⊂ S to be the vertices of the polygon. Our

strategy is to first construct an optimal path for surveying T , then show that it also surveys

S, and finally apply Lemma 7.2.1 to show that this path is optimal for surveillance of S.

Any path that surveys T must by definition pass through the regions R(vi) for all i =

1, . . . , n. Suppose there is an optimal surveillance path Γ for T , pick an i ∈ {1, . . . , n} and

point xi on the path in the regionR(vi). Follow the path and find the first regionR(vj) that

does not include xi is entered, and label the first point in this region xj . Since Γ is supposed

to be optimal, and no other new point of T could have been surveyed until reaching xj , the
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path from xi to xj must be the shortest possible.

Thus we can see that Γ = Γ[xI1 , . . . xIm ] for m ≤ n and I ⊆ {1, . . . , n}. If m < n, let

k ∈ {1, . . . , n} \ I . The path must enter R(vk) since vk ∈ T , so at a point xk where this

occurs, include the (superfluous) junction point xk in the representation of Γ. Continue this

process until there is a junction point associated with each vertex.

At this point, there is some permutation p of {1, . . . , n} such that Γ = Γ[xp(1), . . . , xp(n), xp(1)]

where xi ∈ R(vi) for all i = 1, . . . , n.

Since we are working with closed paths and it doesn’t matter where along the path we

choose to start, without loss of generality we can take p(1) = 1. If there is an index i > 1

such that p(i) ̸= i, then this will generate a crossing in the path since the vertices are given

in order. By Lemma 7.2.2, we can add two junction points each at the intersection point and

reorder the junction points according to Equation (7.1). By the triangle inequality, these

two new junction points can be removed to shorten the path. Thus p(i) = i for all 1, . . . , n.

So far we have proven that an optimal path for surveying T has the form Γ[x1, . . . , xn, x1]

with xi ∈ R(vi). Note that this path in fact surveys all of S because the section of the path

given by Γ[xi, xi+1] must survey the side vivi+1. Thus, by Lemma 7.2.1, this path is optimal

for surveillance of S as well.

The disentangling argument used in the proof of Theorem 7.3.1 gives the following for

open paths, which could be useful in future work:

Corollary 7.3.2. Given any environment X ⊆ R2 and a finite surveillance set T =

{v1, . . . , vn}, an optimal path to survey T will have the form Γ[xp(1), . . . , xp(n)] where p

is a permutation of 1, . . . , n and xi ∈ R(vi) for i = 1, . . . , n, and the optimal path will not

be self-crossing.

7.3.2 Open paths

With open paths in most simple polygonal environments, the form given in Theorem 7.3.1

will not work. Consider the unit square, X = [0, 1] × [0, 1] with a maximum visibility
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distance of r = 0.2. Figure 7.3 shows the shortest path of this form. Clearly, the majority

of the side v1v4 is not surveyed.

v1

v2 v3

v4

x1

x2 x3

x4

Figure 7.3: Open path in the square of the form Γ[x1, . . . , x4] with xi ∈ R(vi) for i =
1, . . . , 4. This path does not survey all of S = ∂X .

One possible way to create a path that does survey the entire boundary of the square

is to pick a point v5 ∈ v1v4, and then add two additional junction points on either end of

the path that are both required to survey v5. This gives Γ[x0, . . . , x5] with xi ∈ R(vi) for

i = 1, . . . , 5 and x0 ∈ R(v5).

This does create a path that surveys the entire boundary. What is not clear is which

point v5 along v1v4 we should pick, and whether or not this surveillance path is optimal.

Figure 7.4 shows the resulting path when v5 is picked to be the midpoint of v1v4. The

regionR(v5) is shown in green and must be entered by both ends of the path.

v1

v2 v3

v4v5

x0x1

x2 x3

x4x5

Figure 7.4: This construction gives a path that surveys the entire boundary.

We conjecture that this construction for some point v5 ∈ v1v4 does give an optimal path
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for surveying the boundary of the square. Further, it is likely that including a point that must

be covered by both ends of the path is a strategy that will work for many environments.

The strategy will not work for all environments. We call the following example the

hallway. Take X = [0, 1] × [0, 5] with a maximum visibility distance of r = 0.7. It’s

possible to survey both sides of the hallway from near the center. In this case, the central

channel from which both sides can be surveyed is 0.4 wide. Figure 7.5 shows this central

channel in green, along with a path that surveys the entire boundary without needing to

consider an extra point v5.

v1

v2 v3

v4

x1 = x2 x3 = x4

Figure 7.5: The hallway example. In green is the central channel from which some portion
of either side of the hallway can be surveyed.

The full surveillance path given in Figure 7.5 is less than 4 units long. Consider what

happens if we try to force some point to be surveyed from both ends of the path. Since

r = 0.7, the endpoints would need to be within 1.4 units of each other, which would force

a much longer path.

So, with examples as simple as the square and the hallway, we can see that a single

general theorem similar to Theorem 7.3.1 for closed paths will not be possible.
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CHAPTER 8

CONCLUSIONS

8.1 Model of the Germinal Center Reaction

The germinal center reaction is a vital process of the adaptive immune system. As such,

it has received much attention in the literature. ODE models of the reaction have been

important historically [9, 10, 12, 14]. More recently, the literature has been focused on

computationally expensive agent-based modeling [15, 16]. This has allowed many more

complex interactions to be included in models.

Our contribution is a delay differential equation model that captures the complex behav-

ior of the agent-based models and offers new predictions. During the GC reaction, plasma

B-cells are produced that manufacture antibodies. Some of these antibodies re-enter the GC

and interact directly with the GC reaction that produced them. As discussed in the litera-

ture, this causes negative feedback where BCRs are competing with free antibodies to bind

to epitopes on immune complex. We propose there is also positive feedback because the

availibility of stable immune complexes for BCRs to capture should increase with higher

affinity antibodies available. We find that including this mechanism in the model produces

stronger and more realistic immune responses.

Our model also resolves a puzzle related to the B-cells that seed a secondary immune

response. It has been found in the laboratory that many naive B-cells are seeding the GC

reactions [11]. Being a secondary response, higher affinity B-cells are available, which has

been puzzling. We find that in fact, having lower affinity seeders improves the outcome of

the reaction. This improvement is measured as the proportion of antigen epitopes outside

of the GC that are masked by antibodies.

Having a differential equations model, as opposed to an agent-based model, is impor-
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tant because it is computationally much cheaper. Modifications to the model can be iterated

quickly to devlop new ideas because there is no perceivable wait when running an experi-

ment. Further, popular tools for differential equations solving can be used (e.g., [27]).

Having a computationally cheap model that represents our current understanding of a

single germinal center reaction points to the possibility of coupling many reactions together

in a network to model an entire lymph node or even the interactions between many lymph

nodes. This is something we intend to explore in future work. This would allow us to

study location dependency with vaccinations and infections, e.g., intranasal vaccines and

injections are not identical in the real world, which we might be able to capture in a future

networked model.

One of the novel features of our model is the mutation and division model. Now that we

have seen that a normal distribution is correct for modeling affinity change in our affinity

space (which is log-normal in real affinity), this allows us to consider using a heat equation

for mutation. Based on this observation, in future work we intend to create a reaction-

diffusion PDE model of the GC reaction. Our hope is that this will lead to a model that has

more to discover through analytical study.

8.2 Surface Surveillance from Minimal Length Paths

In Chapters 4 and 5, we introduced the novel SSMILE Algorithm 5.6 to find the shortest

paths from which surfaces can be surveyed in arbitrary environments. This included the

option of a limited visibility distance constraint and a limited visibility angle constraint.

In Chapter 6, the SSMILE algorithm was modified to approximate solutions to the

inradius problem in R3. This was an ideal application because the theoretical solution is

known for closed paths [47], but not for open paths. The algorithm converged on the true

solution for closed paths in all tests which offers some validation for our method.

For open paths, the solution to the inradius problem is not known. We compared our

numerical results to the best known conjecture which was offered by Zalgaller [45] and
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found that we do converge to this conjecture in all tests. We therefore predict that the

conjecture is correct.

In addition to this validation and prediction, the modifcations made to study inradius

allowed us to isolate the path discretization because no other quantity or structure required

approximation. We numerically found that path length has about order 2 convergence in the

number of junction points defining paths. This is the expected convergence for a polygonal

path approximating a curved path, thus offering another validation of the algorithm.

The success of our application of the SSMILE algorithm to the inradius problem sug-

gests that, in future work, we should apply this method to other classical geometry prob-

lems. It allows a systematic method for determining if a conjecture needs improvement, or

of time should be spent on trying to prove a conjecture.

Finally, in Chapter 7, we discuss some potential starting points for a theoretical study

of surveillance problems. Numerically, SSMILE allows us to find approximations of op-

timal surveillance paths, but more theoretically known true solutions would allow further

validation and is interesting in its own right.

Future research directions could include: 1) Minimization of some quantity other than

path length, 2) other classical geometry problems, 3) replacing path discretization with

polytopes (i.e., convex surface discretization) for application to other types of problems,

and 4) further theoretical work as in Chapter 7.
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