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Abstract— The objective of this research effort is to advance
the process of quantifying physical rehabilitation techniques
by developing and validating the core technologies needed
to integrate therapy instruction with human-robot interaction
in order to improve upper-arm rehabilitation. The method
presented uses computer vision techniques such as Motion
History Imaging (MHI), edge detection, and Random Sample
Consensus (RANSAC) to quantify movements through robot
observation. The results are compared with ground truth data
retrieved via the Trimble 5606 Robotic Total Station for the
purpose of assessing the efficiency of this approach.

I. INTRODUCTION

It is essential that society as a whole continuously and

persistently strives to provide the basic means toward the ful-

fillment of the lives of all its inhabitants, including those with

disabilities [1]. Unfortunately, access to necessary assistive

technology remains unequal and persons with severe or mul-

tiple physical disabilities are largely overlooked. However,

recent successes in commercial robots appear to foreshadow

an explosion of promising robotic applications for individuals

with disabilities [2].

Mechatronic and robotic systems for neurorehabilita-

tion can be generally used to record information about

the motor performance (position, trajectory, interaction

force/impedance) during active movements [3], [4]. Quan-

titative assessment of motor abilities in physically disabled

individuals can provide valuable feedback to guide physical

therapists during interventions. Being able to objectively

assess the performance of a patient through repeatable and

quantifiable metrics has shown to be an effective means for

rehabilitation therapy [5]–[7]. The major barrier is that, to

date, most assistive robotic devices are not designed for

children, especially those with severe disabilities. This causes

a unique challenge for deploying such robotics for this target

demographic.

To overcome this barrier, state-of-the-art techniques must

be created to facilitate the interaction necessary to be useful

for therapeutic rehabilitation with respect to children. Uti-

lizing the logical fact that animate toys naturally engage

children, this research focuses on the design of a robotic

therapeutic playmate that will aid children in physical reha-

bilitation by fusing play and rehabilitation techniques that

are both entertaining for the child and effective for upper-

arm rehabilitation [2]. In this paper, we present the initial

phase of developing this robotic system to aid in physical

rehabilitation by presenting a novel method for automating
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and quantizing two physical theraputic metrics, obtained

from the Fugl-Meyer test, namely Range of Motion (ROM)

and Peak (angular) Velocity.

In performing the Fugl-Meyer assessment, physical thera-

pists administer a series of tests, which include reflex activity,

balance, sensation, position sense, ROM and peak velocity,

for evaluating a patient’s degree of impairment [8]. Since

the research presented here focuses on non-touch, upper-

arm rehabilitation, the Fugl-Meyer assessment is limited

to ROM and angular velocity, for now. We specifically

present an approach which solely utilizes computer vision

techniques for accurately determining these metrics for a

patient through a non-touch exercise senario. The use of a

simple webcam based system would drastically reduce the

cost of determining a patient’s physical abilities as opposed

to utilizing motion analysis systems such as magneto-inertial

and stereo-photogrammetric systems. The method presented

uses Motion History Imaging (MHI), edge detection, and

Random Sample Consensus (RANSAC) to quantify move-

ments through robot observation. Ground truth data, provided

via the Trimble 5606 Robotic Total Station, was used as a

baseline measurement for determining the efficiency of our

approach.

Section II gives a detailed account of the methodology

used in this research to achieve the aforementioned goals of

attaining appropriate physical therapy metrics. Section III is a

presentation of the results that were obtained when applying

this algorithm, and Section IV provides a discussion of the

overall efficiency. Finally, Section V concludes the article

with a discussion of the advantages and disadvantages and

future direction of this research.

II. APPROACH

In order to achieve the goal of obtaining physical therapy

metrics by using computer vision as the only means of

collecting data, our approach utilizes several well-known

image processing techniques. First, the video sequence is

partitioned into separate grayscale images containing infor-

mation regarding human movement via a process termed

Motion History Imaging. Then, a contour extraction process

is applied to each of the remaining images, which creates

an ideal representation of the two movements. Following, a

Random Sample Consensus is applied to the ideal contours,

which enables the determination of straight line segments

ultimately allowing the calculation of the ROM. Finally, the

angular velocity is calculated by applying physics equations

to already known angles and frame rate.
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A. Motion History Imaging

1) Background: The initial step for recognizing the pa-

tient’s movements is to segment a video sequence into

individual images that contain pertinent information as they

relate to the overall representation of recent movement [9].

One common technique for attaining the three-dimensional

information from a particular movement is to recover the

pose of the person at each time instant using a three-

dimensional model [10]. This generally requires a strong seg-

mentation of foreground/background and also of individual

body parts, in congruence with background uniformity [11],

[12]. However, in this work, it is desirable to enable human-

robot interaction and data collection immediately rather than

require idle waiting time during an initiation process. As

such, the use of Motion History Imaging

Since the purpose of this work is to analyze the movement

of specific body parts, similar to [13], the algorithmic ap-

proach is to use temporal templates. While some algorithms

utilize sequences of static configurations, which require

recognition and segmentation of the person [14], here, a

Motion History Image (MHI) to represent how motion in

the image is moving is specifically formed. This essentially

allows real-time processing of the input data.

2) Methodology: In a MHI, Hτ , pixel intensity is a

function of the temporal history of motion at that point in

physical space [10]. Similar to [10], a replacement and decay

operator is used, as shown in Equation (1), to obtain the

MHIs:

Hτ (x,y, t) =

{

τ if D(x,y,t)=1

max(0,Hτ(x,y, t− 1)− 1) otherwise
(1)

where D is a binary image sequence indicating regions of

motion, x and y are the horizontal and vertical directions in

the image, respectively, t is the current time step, and τ is the

current intensity value. The result, as illustrated in Figure 1,

is a scalar-valued image where more recently moving pixels

are brighter in intensity.

Once the patient’s movements have been effectively repre-

sented using MHI, the next step invokes extracting the overall

contour of the movement for quickly and efficiently quanti-

fying the physical therapy metrics previously mentioned.

B. Contour Extraction

Once the patient’s movements have been recognized, a

contour representing the shape of the movements is then ex-

tracted. The first step in this process is to use a median filter

that will remove smaller, unwanted contours in the image

typically caused by camera jitter or human inaccuracies (i.e.

movements of body parts other than the desired limb). The

median filter is a sliding-window spatial filter that replaces

the center pixel value in the window with the median of all

the pixel values in the window, and it can be of any central

symmetric shape. Here, a 16x16 square window was used.

Figure 2b illustrates the use of a median filter on the image

data.

(a) Subject’s starting position. (b) Subject’s ending position.

(c) MHI of sequence.

Fig. 1. Motion History Image of the left arm movement.

When the smaller contours have been removed, a canny

edge detection algorithm [15] is utilized in order to ex-

tract the edges of the contour representing the upper-arm

movement, see Figure 2c. Utilizing the edge detected shape,

a proper representation of the sequence is then created.

Again, due to camera inaccuracies there will undoubtedly be

areas in the image where actual movement is not properly

represented, even after the initial filtering and edge detection

processes. Figure 2a illustrates an inaccuracy caused by

camera lag time; even though the subject’s arm moved in one

complete motion, the video sequence shows a gap between

arm positions. Therefore, the convex hull of the edge detected

image is calculated and utilized.

The convex hull can be thought of as the boundary of a

minimal convex set of points containing a given non-empty

finite set of points in a plane. Here, we utilize a simple

polygon model in order to construct our convex hulls. By

looking at three consecutive vertices of the polygon, during

a recursive progression around the polygon, this algorithm

simplifies to determining whether the resulting angle between

the three vertices is concave or convex. If the resulting angle

is concave, then the middle point is removed and the next

(along the polygon) vertex is added to the triple to be tested.

If the angle is convex, then the each of the points in the triple

is shifted by one vertex along the polygon [16]. Melkman’s

Algorithm was employed to ensure correct outcomes [17].

This implementation gives a somewhat ideal outline as seen

in Figure 2d.

C. RANSAC

Now that a somewhat ideal outline has been obtained,

determining the best method for finding the range of motion

using only the image data is needed. Utilizing the major axis

as a symmetrical dissection of the polygon and employing a

Hough Transform [18] on either the upper or lower region

of the contour could enable a determination of the upper

or lower lines for the purpose of finding the angle between
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(a) Original image obtained from the
MHI process.

(b) Image obtained from the Median
Filter.

(c) Image obtained from the Canny
Edge Detection algorithm.

(d) Image obtained from the Convex
Hull.

Fig. 2. Example image processing sequence used to extract an ideal contour from the human’s movements.

Fig. 3. Illustration of the original convex hull image.
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Fig. 4. Illustration of the Major (dashed line) and Minor (dotted line)
semiaxes located on a contour obtained from human upper-arm movement.
The polygon boundary used to calculate the two semiaxes is shown with
square markers.

either line and the major axis. The Hough Transform is a

method used in computer vision to detect simple shapes,

such as straight lines, by using the parameters of a line,

y = mx + b and representing the slope and intercept in

parameter space (b,m). However, after much deliberation

and testing, it was decided that since the Hough Transform

merely makes estimations of the best possible line to fit the

upper or lower region, a more accurate approach would be

beneficial. Therefore, it was decided to use the RANdom

SAmple Consensus (RANSAC) algorithm [19].

RANSAC determines the best possible line fit by itera-

tively selecting a random subset of the original input data

and returns points from the original input data that are inliers.

Given a set of data points U, there is an unknown number of

data points that are consistent with the model with unknown

parameters from parameter space Θ. These data points are

inliers, and all others are outliers. The goal is to find model

parameters θ ∗ from a parameter space Θ that maximizes a

cost function JS (θ ,U,∆) [20]. Here, RANSAC is employed

in the following manner:

1) The input data is provided via the upper and lower

regions provided by the convex hull and the major

or minor axis (dissection line), depending upon the

orientation.

2) A subset of the data is randomly selected from U.

3) The model parameters are estimated in order to fit the

sample created from the previous step.

4) The support value (cost) of the model is calculated.

5) If the current support is greater than the previously

calculated support, then store the current model pa-

rameters.

6) The process is repeated until the probability of finding

a model with support larger than I∗k −1 in the k-th step

falls under a predefined threshold η0, where I∗k is the

largest support of a hypothesized model found up to

the k-th sample inclusively.

7) The inlier values are returned and are used to create the

upper and lower straight line segments of the convex

hull.

The basic structure can be found in [19].

This method is a more accurate approach, for our needs,

than the Hough Transform because it only returns points

from the original input data (inliers) rather than creating its

own values when predicting the line segment. Also, rather

than using the major axis as one of the two lines used to find

the range of motion, it was determined that a more accurate

measure would be to perform RANSAC on the upper and

lower regions (created by the major axis’s dissection of the

contour), thus creating a measure of the highest and lowest

positions of the subject’s arm. Figures 3, 4, and 5 illustrate

this process.

D. ROM

Once the points that create the upper and lower lines

are recognized, the slopes of each are used to calculate the

angle between the two lines via simple geometry, shown in

Equation 2:

m1 =
y2−y1
x2−x1

m2 =
y4−y3
x4−x3

Θ = arctan( m2−m1
1+m2∗m1

)

ROM = |Θ 180◦

π
|

(2)
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Fig. 5. Lower and Upper lines, determined by RANSAC, used to find the ROM.

(a) Subject’s starting position. (b) Subject’s ending position.

Fig. 6. Lateral and medial movement demonstrated by participant.

where x and y are the coordinates of points on each line

segment and m1 and m2 are the slopes of each line, respec-

tively. The maximum angle found over the length of the

video sequence gives the range of motion of the patient’s

movements.

E. Angular Velocity

Given that the frame rate of the camera used to capture

the patient’s movements was 15fps, calculating the angular

velocity of the arm was trivial. We chose to use the initial

lower line and subsequent upper lines that were recognized

via RANSAC to determine the angular velocity as it relates

to each frame. Meaning, the lower line found during the first

RANSAC calculation over the convex hull in frame one of

the video sequence was used as the initial position of the arm,

while the current upper line changed as the subject moved his

arm upward during the exercise. Using the standard equation

for angular velocity, shown in Equation (3), the angular

velocity of the patient can easily be determined with the

angle obtained from each pass of the ROM calculation and

known frame rate.

ω =
dθ

dt
(3)

III. RESULTS

For the initial testing of the methodology of this research,

two subjects were utilized, both male adults. The subject

was asked to perform a series of upper arm exercises,

which were captured via a simple webcam. The specific

exercises involved adduction and abduction, shown in Figure

1, and lateral and medial movements, shown in Figure

6. The images were then processed by our algorithm in

TABLE I

GROUND TRUTH VERSUS ALGORITHMIC MEASUREMENTS OF ROM FOR

ADDUCTION/ABDUCTION EXERCISE FOR SUBJECT A.

Repetition 1 2 3

Ground Truth (Degrees) 89.9979 41.3106 16.5313

Algorithm (Degrees) 89.5342 40.2887 16.6658

Difference (Degrees) 0.4637 1.0219 0.1345

Error (Percentage) 0.5152 2.4736 0.8136

TABLE II

GROUND TRUTH VERSUS ALGORITHMIC MEASUREMENTS OF ROM FOR

ADDUCTION/ABDUCTION EXERCISE FOR SUBJECT B.

Repetition 1 2 3

Ground Truth (Degrees) 86.8948 61.7268 19.1962

Algorithm (Degrees) 90.0000 56.4174 16.6992

Difference (Degrees) 3.1052 5.3094 2.4970

Error (Percentage) 3.5735 8.6014 13.0077

order to obtain the ROM and angular velocity, which then

was compared to the ground truth data captured via the

Trimble 5606 Robotic Total Station. The Trimble 5606 uses

a time-of-flight measurement technique based on the pulse

measurement principle; it measures the time for a very short

transmitted pulse to travel to a targeted prism, held by

the subject, and back, thus calculating the position of the

subject’s end-effector. Tables I, II, III, and IV show the ROM

comparison between ground truth and algorithmic data for

each subject per exercise. Figures 7 and 8 illustrate the peak

angular velocity for the ground truth versus our algorithm.

TABLE III

GROUND TRUTH VERSUS ALGORITHMIC MEASUREMENTS OF ROM FOR

LATERAL/MEDIAL EXERCISE SUBJECT A.

Repetition 1 2 3

Ground Truth (Degrees) 87.8455 61.0102 14.2693

Algorithm (Degrees) 81.2742 58.1582 12.3986

Difference (Degrees) 6.5713 2.8520 1.8707

Error (Percentage) 7.4805 4.6746 13.1099
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(a) Ground Truth Data for Subject A - Adduction/Abduction. (b) Algorithmic Data for Subject A - Adduction/Abduction.

Fig. 7. Ground truth and algorithmic angular velocity for aubject A performing the Adduction/Abduction exercise.

(a) Peak Angular Velocity comparison for Subject A - Adduction/Abduction.

Fig. 8. Comparison of Ground truth and algorithmic peak angular velocity for subject A.

TABLE IV

GROUND TRUTH VERSUS ALGORITHMIC MEASUREMENTS OF ROM FOR

LATERAL/MEDIAL EXERCISE SUBJECT B.

Repetition 1 2 3

Ground Truth (Degrees) 88.9327 24.9530 14.1838

Algorithm (Degrees) 89.8538 23.3008 14.7707

Difference (Degrees) 0.9211 1.6522 0.5869

Error (Percentage) 1.0357 6.6212 4.1378

IV. ANALYSIS

As shown in the tables, the ROM values calculated via

our algorithm are closely related to the ground truth data

(average error < 6%). For a patient with a limited range of

motion, our algorithm could be used to identify this condition

in real-time, given a known standard ROM. This will allow

the system to monitor patient progress between sessions.

The angular velocity calculated via our algorithm, shown

in Figure 7b, is related to the trend of those calculated via

ground truth data, shown in Figure 7a. When analyzing the

data, one should note that the Trimble 5606 captures data at a

rate that is equivalent to 4fps, which is a bit on the slow side,

while our camera captured data at a rate of 15fps. Therefore,

there is approximately four times the amount of data points

for our graphs then there are for the ground truth graphs. This

gives some explanation to the variation in frames for each

set of measurements. It should also be noted that because the

Trimble 5606 is a real tracking system, and human motion is

not ideal, instances where the patient is not moving may not

be conveyed with zero velocity in the ground truth data; thus

values that are approximately zero are categorized as non-

movement. The other important aspect to note is that the

magnitude of the velocity calculations in the ground truth

data matches closely with that of our algorithm.

V. CONCLUSION AND FUTURE WORKS

In this paper, an approach to evaluate patient movements

using robotic observation has been discussed. Specifically,

the physical therapeutic metrics range of motion and angular

velocity used in the Fugl-Meyer test have been calculated

via computer vision techniques and can be utilized in a

robotic system. While the efficiency of our method can

be increased with the addition of extra sensors (e.g. retro-

reflective markers in passive optical systems), our approach

performs at a high degree of efficiency with a much lower

cost. One disadvantage of our system is the fact that the

exercises must be in planar view of the camera; thus the robot

or patient will have to position himself or herself accordingly.

The immediate future work for this research is to incor-

porate another physical therapy metric, which is movement

smoothness. This will enable the final robotic system to

better assess the physical disability of the patient through the

quantification of measurements recieved during a physical
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Fig. 9. Illustration of the Manoi AT01.

therapy scenario, which can be reported to a physical thera-

pist for further evaluation. The final step of this research is

to equip a robotic platform, shown in Figure 9, with a small

camera and Gumstix OveroTM Air, a small computer-on-

module, that will enable the robot to perform its movements,

video capture, and image processing completely on-board

[9]. Again, the motivation for this work is to create a

robotic playmate for children with severe disabilites, thus

keeping them engaged during rehabilitation. Currently, our

vision processing is done on a separate host computer. Once

this phase is complete, all aspects of the observation and

analysis will be accomplished via the robot, which will

interact directly with physically injured/disabled individuals

in realistic physical therapy senarios.
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