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Of all tyrannies, a tyranny exercised for the good of its victims may be the most 
oppressive. It may be better to live under robber barons than under omnipotent moral 
busybodies. The robber baron's cruelty may sometimes sleep, his cupidity may at some 
point be satiated; but those who torment us for our own good will torment us without end, 
for they do so with the approval of their own conscience. 

C. S. Lewis 
The Humanitarian Theory of Punishment1 

 



 

 iv

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my loving husband Diondré 
and  

for Loretta, Helen, Carol and Eugene 



 

 v

ACKNOWLEDGEMENTS 
 
 
 
I would like to thank my thesis advisors, Dr. Ronald Rousseau and Dr. Athanassios 

Sambanis, for their guidance through the maze that is graduate school. Many thanks go to 

my thesis committee, Dr. Amyn Teja, Dr. Athanasios Nenes and Dr. Ingeborg Schmidt-

Krey, who were instrumental in shaping my research. I offer my gratitude to the members 

of the crystallization group who offered ideas and opinions and a (willing?) ear, 

especially Karsten Bartling, Apichit Svang-Ariyaskul, Stephanie Barthe, Krystle Chavez, 

and George Dumont. Special thanks also go to Dr. Athanassios Sambanis, Dr. Andreas 

Bommarius and Dr. Sven Behrens and their group members who provided advice, 

training, materials and equipment for my experiments. David Detwiler, my able 

undergraduate assistant, provided invaluable help in the lab especially with protein 

production. In addition, Pei-Yoong Koh provided valuable insight into my research, 

patiently sitting through slide after slide of my presentations. 

I would like to acknowledge the Cecil J. “Pete” Silas Endowment and the Georgia 

Research Alliance which provided funding for this research. 

Above all, I would like to thank my husband Diondré who always believed in me, 

even when I didn’t, and has the utmost faith in my abilities. 



 

 vi

TABLE OF CONTENTS 
 
 
 
ACKNOWLEDGEMENTS................................................................................................ v 
 
LIST OF TABLES............................................................................................................. ix 
 
LIST OF FIGURES ........................................................................................................... xi 
 
NOMENCLATURE ........................................................................................................ xix 
 
SUMMARY.................................................................................................................... xxii 
 
CHAPTER 1: INTRODUCTION....................................................................................... 1 
 
CHAPTER 2: BACKGROUND......................................................................................... 6 

2.1 PROTEIN CRYSTALLIZATION............................................................................ 6 
2.1.1 Factors Affecting Crystallization....................................................................... 7 
2.1.2 Supersaturation .................................................................................................. 8 
2.1.3 Nucleation Kinetics.......................................................................................... 11 
2.1.4 Phase Diagrams................................................................................................ 17 
2.1.5 Protein Crystallization Methods ...................................................................... 18 

2.2 PROTEIN CRYSTALLIZATION AND THE SECOND VIRIAL COEFFICIENT
....................................................................................................................................... 21 

2.2.1 Measurement of B22 ......................................................................................... 24 
2.2.2 Static Light Scattering...................................................................................... 25 

2.3 THE CRYSTALLINS............................................................................................. 27 
2.4 APOFERRITIN....................................................................................................... 30 
2.5 CATARACTS......................................................................................................... 31 
2.6 THE ROLE OF CRYSTALLINS AND APOFERRITIN IN CATARACT 
FORMATION............................................................................................................... 34 
2.7 THE ROLE OF DIVALENT CATIONS IN CATARACT.................................... 38 
2.8 POTENTIAL FOR DEVELOPMENT OF THERAPUETIC DRUGS .................. 40 

 
CHAPTER 3: METHODOLOGY .................................................................................... 44 

3.1 EXPRESSION AND ISOLATION OF PROTEINS .............................................. 44 
3.1.1 Gamma D-Crystallin........................................................................................ 44 
3.1.2 Apoferritin........................................................................................................ 50 
3.1.3 Material Preparation......................................................................................... 51 

3.2 CRYSTALLIZATION............................................................................................ 52 
3.2.1 Crystallization Apparatus................................................................................. 52 
3.2.2 Determination of Phase Diagrams ................................................................... 54 

3.3 LIGHT SCATTERING........................................................................................... 56 
3.3.1 Static Light Scattering...................................................................................... 56 
3.3.2 Dynamic Light Scattering ................................................................................ 59 



 

 vii

CHAPTER 4: EVALUATING CRYSTALLIZATION THERMODYNAMICS OF 
GAMMA D-CRYSTALLIN............................................................................................. 62 

4.1 ABSTRACT............................................................................................................ 62 
4.2 INTRODUCTION .................................................................................................. 63 
4.3 MATERIALS AND METHODS............................................................................ 65 

4.3.1 Solution Preparation......................................................................................... 65 
4.3.2 Crystallization Experiments............................................................................. 66 

4.4 RESULTS AND DISCUSSION............................................................................. 69 
4.4.1 Linear Growth Rates ........................................................................................ 69 
4.4.2 Liquid-Liquid Phase Separation ...................................................................... 74 
4.4.3 Temperature Phase Diagram............................................................................ 76 
4.4.4 Precipitant Phase Diagram............................................................................... 80 
4.4.5 Enthalpy and Free Energy of Crystallization................................................... 84 

4.5 CONCLUSIONS..................................................................................................... 93 
 
CHAPTER 5: EVALUATING INTERMOLECULAR INTERACTIONS BY LIGHT 
SCATTERING TECHNIQUES........................................................................................ 95 

5.1 ABSTRACT............................................................................................................ 95 
5.2 INTRODUCTION .................................................................................................. 95 
5.3 THEORY ................................................................................................................ 97 

5.3.1 Dynamic Light Scattering ................................................................................ 97 
5.3.2 Derivation for Equation Relating B22 and kD

100 ............................................. 101 
5.3.3 Static Light Scattering.................................................................................... 104 

5.4 MATERIALS AND METHODS.......................................................................... 105 
5.4.1 Protein Preparation......................................................................................... 105 
5.4.2 Methods.......................................................................................................... 106 

5.5 RESULTS AND DISCUSSION........................................................................... 108 
5.5.1 Simultaneous Static and Dynamic Light Scattering ...................................... 108 
5.5.2 Dynamic Light Scattering Alone ................................................................... 115 

5.6 DISCUSSION AND CONCLUSIONS ................................................................ 124 
 
CHAPTER 6: EFFECTS OF DIVALENT CATIONS ON NUCLEATION OF 
APOFERRITIN AND GAMMA D-CRYSTALLIN...................................................... 126 

6.1 ABSTRACT.......................................................................................................... 126 
6.2 INTRODUCTION ................................................................................................ 127 
6.3 THEORY .............................................................................................................. 129 

6.3.1 Dynamic Light Scattering .............................................................................. 129 
6.3.2 Energy and Nucleation Kinetics .................................................................... 131 

6.4 EXPERIMENTAL PROCEDURE ....................................................................... 136 
6.4.1 Materials ........................................................................................................ 136 
6.4.2 Methods.......................................................................................................... 137 

6.5 RESULTS AND DISCUSSION........................................................................... 139 
6.5.1 Phase Diagrams.............................................................................................. 139 
6.5.2 Solubility and B22........................................................................................... 143 
6.5.3 Aggregation.................................................................................................... 145 
6.5.4 Second Virial Coefficient and Crystallization ............................................... 153 



 

 viii

6.5.5 Factors Influencing Nucleation Kinetics ....................................................... 155 
6.6 CONCLUSIONS................................................................................................... 162 

 
CHAPTER 7: EFFECT OF SOLUBILIZERS ON NUCLEATION AND 
CRYSTALLIZATION OF GAMMA D-CRYSTALLIN............................................... 165 

7.1 ABSTRACT.......................................................................................................... 165 
7.2 INTRODUCTION ................................................................................................ 166 
7.3 THEORY .............................................................................................................. 170 

7.3.1 Dynamic Light Scattering .............................................................................. 170 
7.3.2 Energy and Nucleation Kinetics .................................................................... 170 

7.4 EXPERIMENTAL PROCEDURE ....................................................................... 173 
7.4.1 Materials ........................................................................................................ 173 
7.4.2 Methods.......................................................................................................... 174 

7.5 RESULTS ............................................................................................................. 175 
7.5.1 Oxidized HGD vs. Non-oxidized HGD......................................................... 175 
7.5.2 Experiments With Oxidized HGD................................................................. 176 
7.5.3 Experiments With Non-oxidized HGD.......................................................... 188 

7.6  DISCUSSION AND CONCLUSIONS ............................................................... 194 
 
CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS.................................. 198 

8.1 SUMMARY AND CONCLUSIONS ................................................................... 198 
8.2 RECOMMENDATIONS FOR FUTURE WORK ............................................... 202 

 
APPENDIX A: GAMMA D-CRYSTALLIN EXPRESSION........................................ 205 

A.1 EXPRESSION OF GAMMA D-CRYSTALLIN ................................................ 205 
A.1.1 Day 1 - Agar Culture..................................................................................... 206 
A.1.2 Day 2 - Starter Culture .................................................................................. 208 
A.1.3 Day 3 – Cultures ........................................................................................... 209 
A.1.4 Day 4 - Extraction......................................................................................... 210 
A.1.5 Day 5 - Cation Exchange Chromatography .................................................. 213 
A.1.6 Day 6 - SDS-PAGE....................................................................................... 214 

A.2 STOCK SOLUTIONS FOR EXPRESSION OF GAMMA D-CRYSTALLIN .. 216 
 
APPENDIX B: HIGH PERFORMANCE LIQUID CHROMATOGRAPHY-SIZE 
EXCLUSION CHROMATOGRAPHY.......................................................................... 222 

B.1 OPERATION AND BUFFER RECIPES ............................................................ 222 
B.2 PROCEDURE ...................................................................................................... 223 

 
APPENDIX C: DYNAMIC LIGHT SCATTERING PROCEDURE ............................ 232 
 
APPENDIX D: STATIC LIGHT SCATTERING DATA OBTAINED FOR 
APOFERRITIN IN CdCl2 SOLUTIONS ....................................................................... 236 
 
REFERENCES ............................................................................................................... 238 
 



 

 ix

LIST OF TABLES 
 
 
 
Table 2-1: Factors that influence crystallization of proteins (Adapted from McPherson16)8 
 
Table 2-2: Common crystallization  methods 16 ............................................................... 19 
 
Table 2-3: Divalent cation concentrations in lenses (From Cekic, 19982). Concentrations 

(ppm) of Cadmium, Copper, Lead and Calcium in cataractous and normal lenses 
grouped according to different smoking habits. 2; 59 ................................................. 40 

 
Table 4-1: The number of crystals in 20-µL drops obtained at each time point for each 

concentration of HGD............................................................................................... 72 
 
Table 4-2: Grid showing concentrations of HGD and temperatures used in determining 

the temperature phase diagram for HGD. The concentration of HGD was varied 
from 1 to 5 mg/mL, and temperature from 25.87 to 34.13°C. “X” designates where 
crystals were observed and “O” designates where no crystals were observed. The 
outermost wells with crystals for each HGD concentration were taken as the 
solubility boundary. The “X”es which form the solubility curve are marked in red.79 

 
Table 4-3: Grid showing data obtained using 2 microbatch experiments to determine the 

phase diagram of HGD in the presence of BaCl2 at 298 K....................................... 81 
 
Table 4-4: Grid showing data obtained using 2 microbatch experiments to determine the 

phase diagram of HGD in the presence of CaCl2 at 298 K....................................... 82 
 
Table 4-5: Thermodynamic properties obtained from the present study. The equilibrium 

temperatures and concentrations were obtained from the solubility curve in Figure 
4-9. ............................................................................................................................ 89 

 
Table 4-6: Thermodynamic results extracted from the study by Pande et al.12 Rather than 

mole fractions, volume fractions φp were used in this study and evaluated using φp = 
cυ where c is the concentration of HGD on the solubility line and υ is the specific 
volume of HGD taken to be 7.1 x 10-4 mL/mg.12 ..................................................... 89 

 
Table 5-1: Table of average Kc/Rθ values obtained from static light scattering and the 

corresponding calculated values of φ and KcM/Rθ. ................................................ 109 
 
Table 5-2: Diffusivity and normalized diffusivity (D/Do) values obtained from the DLS 

portion of simultaneous SLS/DLS. These data are plotted in Figure 5-3............... 113 
 
Table 5-3: Summary of terms obtained from the DLS portion of simultaneous SLS/DLS 

experiments. ............................................................................................................ 115 



 

 x

Table 5-4: Summary of data from DLS used to evaluate B22 and A. .............................. 118 
 
Table 5-5: Comparison of dimensionless second virial coefficient A obtained by static 

light scattering (SLS) and dynamic light scattering (DLS). The dimensionless 
second virial coefficient was obtained in the present study by static light scattering 
(SLS) and dynamic light scattering (DLS) and the results compared with previously 
published SLS results. The error reported for DLS is the deviation from the mean 
with n = 2. The error reported for SLS is the population standard deviation with n ≥ 
2............................................................................................................................... 121 

 
Table 6-1: Grid showing data obtained during microbatch experiments to determine the 

phase diagram of apoferritin in the presence of CdCl2. .......................................... 140 
 
Table 6-2: Summary of nucleation factors in apoferritin and HGD solutions. The fractal 

dimension df was calculated using Equation 6-8 and Rh values obtained by DLS; the 
initial aggregation rate was determined from a linear fit to the initial data points on 
the Rh-t profile; Rc was determined from the Rh-log t profile; γ was evaluated using 
Equation 6-6; ΔGc was evaluated using the Rc value previously determined and 
Equation 6-7............................................................................................................ 152 

 
Table 6-3: Summary of B22 and kD values for HGD solutions ....................................... 154 
 
Table 7-1: Summary of factors affecting nucleation in oxidized HGD-CaCl2 solutions 179 
 
Table 7-2: Second virial coefficient values for oxidized HGD in solution with various 

additives. The concentration of HGD used in all solutions 0.2 mg/mL HGD........ 181 
 
Table 7-3: Summary of nucleation factors in oxidized HGD solutions.......................... 183 
 
Table 7-4: Cross second virial coefficient (B23) value for oxidized HGD with 20 mM 

CaCl2 and 0.1 mg/mL alpha A-crystallin, and mole fraction values for pure oxidized 
HGD (y2) and pure alpha A-crystallin (y3).............................................................. 186 

 
Table 7-5: Second virial coefficient values for non-oxidized HGD in solution with 

various additives. The concentration of HGD used in all solutions was 0.2 mg/mL. 
Procedures for obtaining these data are explained in CHAPTER 5. ...................... 191 

 
Table 7-6: Cross second virial coefficient (B23) value for non-oxidized HGD with 20 mM 

CaCl2 and 0.1 mg/mL alpha A-crystallin, and non-oxidized HGD with 20 mM BaCl2 
and 0.1 mg/mL alpha A-crystallin. Mole fraction values for pure non-oxidized HGD 
(y2) and pure alpha A-crystallin (y3) are given here and were the same in both 
solutions. ................................................................................................................. 191 

 



 

 xi

LIST OF FIGURES 
 
 
 
Figure 2-1: Protein phase diagram showing the regions that comprise supersaturation. 

Crystallization is impossible below the solubility line.10; 17 ..................................... 10 
 
Figure 2-2: Free energy of nucleation as a function of particle radius. The schematic 

illustrates the nucleation process.(Adapted from McPherson, 199816)..................... 12 
 
Figure 2-3: Schematic illustration mechanisms by which nucleation occurs (Adapted 

from Mullin, 200417)................................................................................................. 13 
 
Figure 2-4: Free energy of nucleation as a function of radius. The surface and volume 

energy contributions add up to the overall free energy.(Adapted from Mullin, 
200417)....................................................................................................................... 14 

 
Figure 2-5: Protein phase diagram showing the different regions of 

supersaturation.(Adapted from McPherson, 200416) ................................................ 17 
 
Figure 2-6: Illustration of microbatch crystallization under paraffin oil. ......................... 20 
 
Figure 2-7: Schematic showing the two set-ups for vapor diffusion. The protein drop is 

suspended in hanging drop, but is placed on a pedestal for sitting drop. ................. 21 
 
Figure 2-8: Protein crystallization slot.............................................................................. 23 
 
Figure 2-9: Schematic illustrating the different types of slope obtained from static light 

scattering corresponding to the value of the second virial coefficient B22 in three 
different solutions; (a) non-crystallizing (positive B22). (b) Theta solvent i.e. B22 = 0. 
(c) Crystallizing or precipitating (negative B22)........................................................ 26 

 
Figure 2-10: 3-D structure of human beta B1-crystallin................................................... 28 
 
Figure 2-11: 3-D structure of human gamma S-crystallin ................................................ 28 
 
Figure 2-12: Schematic illustrating relationship between the crystallins. ........................ 30 
 
Figure 2-13: Structure of the ferritin complex.................................................................. 31 
 
Figure 2-14: Structure of the eye showing location and structure of the lens. The lens 

comprises non-vascularized tissue that focuses images on the retina.47 ................... 32 
 
Figure 2-15: Advanced cataract in the lens of a diabetic patient.31 .................................. 33 
 



 

 xii

Figure 2-16: Surgical correction for cataract (a) A probe is inserted into the cornea to 
break up the cataractous lens and suction it out. (b) An artificial lens is implanted to 
replace the cataractous lens....................................................................................... 34 

 
Figure 2-17: Transmission of light by the lens. ................................................................ 35 
 
Figure 2-18: 3-D structure of human gamma D-crystallin ............................................... 36 
 
Figure 2-19: Gamma-crystallin crystals deposits found in lens fiber removed from patient 

suffering from congenital cataract51.......................................................................... 37 
 
Figure 2-20: Structure of NDSB-201 showing oppositely charged ends of a carbon bridge

................................................................................................................................... 42 
 
Figure 2-21: Schematic of EDTA chelating a metal ion................................................... 42 
 
Figure 3-1: Illustration of buffer exchange via dialysis.................................................... 46 
 
Figure 3-2: Flowchart of the manual cation exchange chromatography process ............. 47 
 
Figure 3-3: Schematic of SDS-PAGE apparatus showing how an electric current is 

applied across a gel to cause migration of proteins. SDS binds to the proteins giving 
them a negative charge so movement results in separation based on size alone. 
Larger molecules move more slowly through the gel............................................... 48 

 
Figure 3-4: SDS-PAGE gel of HGD obtained after ion exchange chromatography. ....... 49 
 
Figure 3-5: Buffer exchange using dialysis cassettes (a) Dialysis cassette is loaded with a 

syringe (b) The cassette is kept afloat in the beaker of buffer by a buoy . ............... 50 
 
Figure 3-6: Crystallization setup showing an isolated well from the multi-well plate.20 . 53 
 
Figure-3-7: Crystallization apparatus20............................................................................. 54 
 
Figure 3-8:  Multiwell microbatch set-up used to determine protein phase diagrams...... 55 
 
Figure 3-9: Static light scattering apparatus9 .................................................................... 57 
 
Figure-3-10: Debye plot showing how the MW is obtained from the intercept and the 

second virial coefficient from the slope. Four or more different protein 
concentrations are used and background scattering is determined using the pure 
buffer......................................................................................................................... 58 

 
Figure 4-1: Multiwell microbatch set-up used to determine protein phase diagrams....... 68 
 



 

 xiii

Figure 4-2: Sketch of a tetragonal crystal  (adapted from Mullin17) along with a 
photomicrograph of an actual crystal of HGD grown at 25°C in phosphate buffer 
containing 20 mg/mL of HGD.  The schematic shows that two sides of the crystal 
are the same length i.e. x = y ≠ z, and all axes are mutually perpendicular. The 
crystal in the photomicrograph is not perfectly tetragonal and this may be a result of 
impurities in the solution. ......................................................................................... 70 

 
Figure 4-3: Photomicrographs of crystals in samples from the 10 mg/mL HGD solution 

taken at different times. The size of crystals increased with time. The crystals in the 
photomicrographs represent the typical size of crystals obtained in each of the 
solutions. Crystals are shown after (a) 161 hours (b) 185 hours (c) 210 hours (d) 236 
hours.......................................................................................................................... 72 

 
Figure 4-4: Photomicrographs of crystals in samples from the 20 mg/mL HGD solution 

taken at different times. The crystals in the photomicrographs represent the typical 
size of crystals obtained in each of the solutions. Crystals are shown after (a) 161 
hours (b) 185 hours (c) 210 hours (d) 236 hours. ..................................................... 73 

 
Figure 4-5: Photomicrographs of crystals in samples from the 30 mg/mL HGD solution 

taken at different times. The crystals in the photomicrographs represent the typical 
size of crystals obtained in each of the solutions. Crystals are shown after (a) 161 
hours (b) 185 hours (c) 210 hours (d) 236 hours. ..................................................... 73 

 
Figure 4-6: Length of crystals of HGD at 10, 20 and 30 mg/mL of HGD tracked over 

time. A different sample was used at each time point for each concentration. The 
error bars represent population standard deviations. ................................................ 74 

 
Figure 4-7: Observations made in microwells during determination of the temperature 

phase diagram. .......................................................................................................... 76 
 
Figure 4-8: Plot showing linear temperature gradient across a multiwell plate. The clear 

triangles represent the edge wells while the grey triangles represent the interior 
wells. Only the gray triangles were used to evaluate the linear plot. The error bars 
represent standard deviations with n = 3. ................................................................. 77 

 
Figure 4-9: Temperature phase diagram of pure HGD obtained by microbatch 

crystallization............................................................................................................ 80 
 
Figure 4-10: Photomicrographs of tetragonal HGD crystals obtained during determination 

of the phase diagram in the presence of CaCl2. (a) 0.2 mg/mL HGD in solution 
containing 10 mM CaCl2 (b) 0.3 mg/mL HGD in solution containing 12 mM CaCl2
................................................................................................................................... 82 

 
Figure 4-11: Precipitant concentration phase diagram for HGD in the presence of CaCl2 

or BaCl2 at a temperature of 298 K........................................................................... 84 



 

 xiv

Figure 4-12: Determination of the enthalpy of crystallization. The solubility curve shown 
in Figure 4-9 was used to obtain the present plot. Results from the study by Pande et 
al.12 are shown for comparison. ................................................................................ 90 

 
Figure 5-1: Results from simultaneous static and dynamic light scattering experiments. 

Values for Kc/Rθ obtained from light scattering (SLS) were plotted against 
apoferritin concentration. The molecular weight of apoferritin was obtained from the 
intercept................................................................................................................... 110 

 
Figure 5-2: Results from simultaneous static and dynamic light scattering experiments. 

Static light scattering (SLS) used to measure the dimensionless second virial 
coefficient A from slope of plot of KcM/Rθ vs. ϕ. The error bars represent standard 
deviations with n ≥ 2............................................................................................... 111 

 
Figure 5-3: The diffusivity slope kD was obtained as the slope of the plot of normalized 

diffusivity D/Do vs. apoferritin concentration at different concentrations of CdCl2.
................................................................................................................................. 114 

 
Figure 5-4: Hydrodynamic radii at various concentrations of CdCl2 measured by 

simultaneous SLS/DLS and by DLS alone............................................................. 114 
 
Figure 5-5: Dynamic light scattering of tris-HCl buffer containing various additives... 116 
 
Figure 5-6: Autocorrelation functions obtained from dynamic light scattering (DLS) 

experiments after 81 seconds. The experiments were carried out on 0.2 mg/mL 
apoferritin at 10 mM, 13 mM and 20 mM CdCl2. .................................................. 117 

 
Figure 5-7: Time profile of the hydrodynamic radius of apoferritin aggregates tracked by 

DLS. ........................................................................................................................ 118 
 
Figure 5-8: The dimensionless second virial coefficient A at 10 mM, 13 mM and 20 mM 

CdCl2 determined over 5000 seconds. .................................................................... 120 
 
Figure 5-9: The values of the dimensionless second virial coefficient A obtained in the 

present study at 4 concentrations of CdCl2 by SLS and by DLS were compared with 
each other and with SLS results previously obtained by Bartling.9 There was an 
excellent match between the DLS- and SLS-obtained values showing that DLS is a 
useful alternative to SLS......................................................................................... 121 

 
Figure 5-10: DLS was used to track aggregation in an apoferritin solution with 30 mM 

CdCl2. This solution crystallized so rapidly that static light scattering could not be 
used to measure interactions. The rate of aggregation of the 30 mM CdCl2 solution 
is shown relative to 10, 13, and 20 mM CdCl2 solutions. Inset: the size of aggregates 
vs. time is shown for the 30 mM CdCl2 solution by itself. ..................................... 123 



 

 xv

Figure 5-11: The dimensionless second virial coefficient A of the 30 mM CdCl2 solution 
is shown as a function of time and relative to the other apoferritin-CdCl2 solutions.
................................................................................................................................. 123 

 
Figure 6-1: Free energy of nucleation as a function of radius illustrating the classical 

theory of nucleation. (Adapted from McPherson, 199816) ..................................... 132 
 
Figure 6-2: Free energy change of nucleation as a function of radius. The surface and 

volume energy contributions add up to the overall free energy. (Adapted from 
Mullin, 200117)........................................................................................................ 133 

 
Figure 6-3: Plot showing apoferritin concentration as a function of CdCl2 concentration. 

Apoferritin concentration was varied from 0.00 mg/mL to 0.30 mg/mL while CdCl2 
concentration was varied from 0.0 mM to 30.0 mM. The solid line is the solubility 
line and it is obtained by connecting the points at the edge of the region where 
crystals were observed. ........................................................................................... 141 

 
Figure 6-4: Photomicrographs of cubic apoferritin crystals obtained via PLM during 

determination of the phase diagram in the presence of CdCl2. (a) 0.2 mg/mL 
apoferritin in solution containing 13 mM CdCl2 (b) 0.2 mg/mL apoferritin in 
solution containing 20 mM CdCl2 .......................................................................... 142 

 
Figure 6-5: Solubility and B22 phase diagrams for apoferritin in solutions containing 

CdCl2. ...................................................................................................................... 144 
 
Figure 6-6: Time profile of the hydrodynamic radius of aggregates of apoferritin upon 

addition of various concentrations of CdCl2. The drop in the size of Rh for the 20 
mM solution is due to sedimentation that removed particles from the area of 
detection. The concentration of HGD used in every case was 0.2 mg/mL............. 147 

 
Figure 6-7: The time profile of the hydrodynamic radius of aggregates formed in HGD 

solutions upon addition of BaCl2 and CaCl2 to a final concentration of 10 mM each 
measured by DLS. HGD concentration was 0.2 mg/mL in all three systems. The 
dotted line is at 24,000 seconds. The autocorrelation functions shown in Figure 6-8 
are taken from the data in the present figure at 24, 000 seconds. Inset: The Rh-t 
profile for HGD with no additives showing that the average Rh in this solution is 18 
nm. .......................................................................................................................... 149 

 
Figure 6-8: Autocorrelation functions for HGD with no precipitant, with BaCl2, and with 

CaCl2 added. Measurements were taken approximately 24,000 seconds after 
addition of divalent cations. In all three systems, HGD concentration was 0.2 
mg/mL while the final concentration of the cations was 10 mM in each case. ...... 150 

 
Figure 6-9: Semi logarithmic plot of hydrodynamic radius against time for 0.2 mg/mL 

apoferritin with three CdCl2 solutions. The arrows indicate the approximate critical 
radius which is the point where the slope suddenly increases. ............................... 157 



 

 xvi

Figure 6-10: Semi logarithmic plot of hydrodynamic radius against time for 0.2 mg/mL 
apoferritin with 13 mM CdCl2. The lines are linear fits to the data. The intersection 
of the lines represents the approximate value of the critical radius Rc. .................. 157 

 
Figure 6-11: Semi logarithmic plot of hydrodynamic radius against time for 0.2 mg/mL 

HGD with 10 mM BaCl2 and 10 mM CaCl2 solutions. The arrows indicate the 
approximate critical radius which is the point where the slope suddenly increases.
................................................................................................................................. 158 

 
Figure 6-12: The overall free energy of apoferritin with CdCl2 aggregating systems. The 

arrows point to the critical energy barriers to nucleation. The lines through the points 
are polynomial fits to guide the eye. The apoferritin concentration was 0.2 mg/mL in 
every case. The inset is the entire 30 mM CdCl2 curve. ......................................... 160 

 
Figure 6-13: Time profile of hydrodynamic radius of 0.2 mg/mL apoferritin upon 

addition of 10 mM BaCl2. ....................................................................................... 162 
 
Figure 7-1: Schematic illustrating the relationship between the crystallins. .................. 167 
 
Figure 7-2: 3-D structure of human gamma D-crystallin. .............................................. 169 
 
Figure 7-3: Structure of NDSB-201 showing oppositely charged ends of a carbon bridge

................................................................................................................................. 169 
 
Figure 7-4: Free energy of nucleation as a function of radius. (Adapted from McPherson, 

199816)..................................................................................................................... 171 
 
Figure 7-5: Time profile of hydrodynamic radii of HGD upon addition of 3 different 

concentrations of CaCl2. It is impossible to determine from the plot which CaCl2 
concentration induced the greatest aggregation. Inset: The Rh-t plot for all three 
CaCl2 concentrations over a shorter time scale....................................................... 178 

 
Figure 7-6: The Rh-log t profile of the 30 mM CaCl2 solution with an arrow indicating the 

critical radius. The lines are linear fits to the data. The intersection of the lines 
represents the critical radius.................................................................................... 178 

 
Figure 7-7:  Nucleation energy profile for HGD on addition of 20, 30, and 35 mM CaCl2. 

The energy barrier increases as the concentration of CaCl2 added increases. The 
lines are polynomial fits of the data........................................................................ 179 

 
Figure 7-8: Second virial coefficient B22 values for HGD solutions with various additives. 

Two experiments were carried out at each condition except for the NDSB 
experiment where only one experiment was carried out. The error bars represent 
deviations from the mean. The HGD solution with no additives had a positive B22.  
Addition of 20 mM CaCl2 resulted in negative B22 which fell within the 
crystallization slot. Addition of a final concentration of 0.1 mg/mL alpha A-



 

 xvii

crystallin to a solution containing HGD and CaCl2 increased B22 and actually 
resulted in a positive B22 higher than that of HGD with no additives. Addition of 100 
mM NDSB-201 to a solution containing HGD and CaCl2 did not affect B22. The 
dotted lines represent the limits of the crystallization slot. The concentration of HGD 
used in every case was 0.2 mg/mL. ........................................................................ 182 

 
Figure 7-9: Photomicrographs of crystals of HGD obtained upon addition of the 

following solutions at 298 K (a) 20 mM CaCl2 (b) 20 mM CaCl2 and 100 mM 
NDSB-201 (c) 20 mM CaCl2 and alpha A-crystallin. No crystals were obtained in 
the solution containing alpha A-crystallin. ............................................................. 183 

 
Figure 7-10: Overall nucleation energy profile of HGD upon addition of CaCl2 by itself, 

and upon addition of CaCl2 in the presence of NDSB-201. The lines through the 
points are polynomial fits to guide the eye. ............................................................ 183 

 
Figure 7-11: DLS results showing the hydrodynamic radius of HGD solutions as a 

function of time....................................................................................................... 187 
 
Figure 7-12: The Rh-t plot for alpha A-crystallin obtained from dynamic light scattering

................................................................................................................................. 187 
 
Figure 7-13: DLS results showing hydrodynamic radii of HGD solutions with DTT as a 

function of time....................................................................................................... 189 
 
Figure 7-14: DLS results showing hydrodynamic radii of HGD solutions with DTT as a 

function of time....................................................................................................... 189 
 
Figure 7-15: Second virial coefficient B22 (or B in solutions containing alpha A-crystallin) 

values for HGD solutions with various additives. Two experiments were carried out 
at each condition. The error bars represent deviations from the mean. The HGD 
solution with no additives had a positive second virial coefficient. Addition of 20 
mM CaCl2 resulted in negative B22 which fell within the crystallization slot. 
Addition of alpha A-crystallin to a solution containing HGD and CaCl2 increased 
B22 although B22 remained negative. The dotted lines represent the limits of the 
crystallization slot. The concentration of HGD used in every case was 0.2 mg/mL.
................................................................................................................................. 192 

 
Figure 7-16: Second virial coefficient B22 values for HGD solutions with various 

additives. Two experiments were carried out at each condition. The error bars 
represent deviations from the mean. The HGD solution with no additives had a 
positive second virial coefficient. Addition of 20 mM BaCl2 resulted in negative B22 
which fell within the crystallization slot. Addition of alpha A-crystallin to a solution 
containing HGD and BaCl2 increased B22 and actually resulted in a positive B22 
higher than that of HGD with no additives. The dotted lines represent the limits of 
the crystallization slot. The concentration of HGD used in every case was 0.2 
mg/mL..................................................................................................................... 193 



 

 xviii

Figure 7-17: Photomicrographs of crystals of non-oxidized HGD obtained upon addition 
of the following solutions at 298 K (a) 20 mM CaCl2 (b) 20 mM CaCl2 and 100 mM 
NDSB-201 (c) 20 mM CaCl2 and alpha A-crystallin. Crystals were obtained in every 
solution.................................................................................................................... 194 

 
Figure 7-18: Photomicrographs of crystals of non-oxidized HGD obtained in the 

following solutions at 298 K (a) 20 mM BaCl2 (b) 20 mM BaCl2 and 0.1 mg/mL 
alpha A-crystallin. No crystals were obtained in the solution containing alpha A-
crystallin.................................................................................................................. 194 

 
Figure A-1: Chart outlining the steps taken during expression and purification of HGD

................................................................................................................................. 205 
 
Figure A-2: Treatment of pellet after cell culture........................................................... 215 
 
Figure B-1: The LDC Analytical Pump (CM4000) showing the injection valve in the 

"inject" position. ..................................................................................................... 224 
 
Figure B-2: Shimadzu system used for UV detection. The controller is on the left, and 

pumps A and B and the UV detector are on the right. ............................................ 229 



 

 xix

NOMENCLATURE 
 
 
 
ae  Activity of solute in equilibrium with crystals 

A  Dimensionless second virial coefficient 

B22  Second virial coefficient (mol mL/g2) 

B23  Cross second virial coefficient (mol mL/g2) 

c  Solute concentration (mg/mL) 

D  Diffusion coefficient (μm2/s) 

df  Fractal dimension 

ΔG  Free energy (J/mol) 

ΔGo
  Standard free energy (J/mol) 

ΔHo
  Standard enthalpy (J/mol) 

kB  Boltzmann’s constant (1.38 x 10-23 J/K) 
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SUMMARY 
 
 
 
Crystallization of proteins in the human body can lead to the development of diseases 

such as sickle cell anemia and cataract. Understanding the processes involved in protein 

crystallization can help us gain a better understanding of such diseases. Furthermore, 

protein crystallization is necessary for protein structure resolution which is the first step 

towards determination of protein function. This is important since resolution of protein 

structure is the first step towards establishing structure/function relations, and possibly at 

performing specific structural modifications that may change the function in desirable 

directions. Another important application of protein crystallization is in downstream 

processing in the pharmaceutical industry where it is used for separation and as a final 

purification step. The present study increases knowledge of interactions between protein 

molecules during crystallization and hence the crystallization process. 

Crystallization of a lens protein, human gamma D-crystallin (HGD), was studied 

in relation to cataract formation. The crystallization habits of this protein were 

determined in the presence of divalent cations which are found at elevated concentrations 

in cataractous lenses. Results indicate that the divalent cations studied enhance 

crystallization of HGD.  

A thermodynamic property, the osmotic second virial coefficient, was measured 

in protein solutions and its value was correlated with the occurrence of crystallization. It 

was found that the second virial coefficient successfully predicted crystallization of 

HGD. A new method was developed for indirect measurement of the second virial 
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coefficient using dynamic light scattering. This new method is more robust and efficient 

than the traditional static light scattering method. 

Finally the ability of solubilizers to prevent crystallization of proteins was studied. 

A commercial solubilizer, NDSB-201, was found to increase the energy barrier to 

nucleation. Although this did not prevent crystallization, it resulted in fewer and smaller 

crystals being obtained. The naturally occurring alpha A-crystallin was a superior 

solubilizer to NDSB-201, as it suppressed aggregation and prevented crystallization of 

HGD under conditions for which NDSB-201 did not. 

The findings in the present study provide insight into the processes by which 

protein crystallization occurs. Using the second virial coefficient to assess whether a 

protein will crystallize out of solution, approaches for retardation and prevention of 

protein crystallization, and implications for future research, are discussed. 
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CHAPTER 1: INTRODUCTION 
 
 
 
Crystallization of proteins in the human body can lead to the development of diseases 

such as sickle cell anemia and cataracts. Understanding the phenomena involved in 

protein crystallization can help us gain a better understanding of such diseases 

Furthermore, protein crystallization is used in determining the three dimensional structure 

of proteins through x-ray diffraction.2 This is important since resolution of protein 

structure is the first step towards establishing structure/function relations, and possibly at 

performing specific structural modifications that may change the function in desirable 

directions. Another important application of protein crystallization is in downstream 

processing in the pharmaceutical industry where it is used for separation and as a final 

purification step. The present study increases knowledge of interactions between protein 

molecules during crystallization. 

Human gamma D-crystallin (HGD) is one of the major proteins found in the 

human lens and crystallization of this protein has been linked to several types of cataract. 

Abnormally elevated concentrations of divalent cations such as Ca2+and Ba2+ have been 

found in cataractous lenses and may play a part in cataract formation.3 The effects of 

divalent cations on the crystallization habits of HGD were thus investigated in the present 

study. Temperature is another important factor in cataract formation. Studies show that 

the temperature in the lens decreases from 34°C to 32.5°C from the age of 15 weeks to 80 

years. While this temperature change may seem inconsequential, temperature is known to 

affect the solubility of some proteins. For example, Bénas et al.4 found that the solubility 

of lysozyme in solutions containing rubidium chloride increased by 30% with an increase 
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in temperature of only 2°C (26°C to 28°C). Therefore the effect of temperature on the 

solubility of HGD was also investigated.  HGD was obtained by production with 

recombinant Escherichia coli clones. 

Ordinarily, trial-and-error is used to determine conditions favorable for protein 

crystal growth.  However there are over 20 factors that affect protein crystallization. 

These factors include pressure, precipitant type and concentration, type and ionic strength 

of solvent, metal ions, temperature and pH. Therefore, random screening is time-

consuming and expensive, requiring numerous experiments and a large amount of 

material.  George and Wilson discovered a correlation between the value of the second 

virial coefficient, B22, and crystallization of a number of proteins including lysozyme and 

bovine serum albumin (BSA).5; 6 The present study investigates the correlation between 

B22 and the occurrence of crystallization for HGD and makes use of this correlation to 

reduce the number of crystallization screening experiments for HGD. Usually B22, which 

is a measure of protein-protein interactions in a particular solvent, is evaluated using 

static light scattering (SLS). However, this method requires relatively large amounts of 

protein and is notoriously unreliable especially in solutions containing aggregates.7 This 

was of particular concern in the present work because the protein solutions that were 

studied often contained aggregates, which are precursors to crystals. In this work, a more 

reliable and robust method was developed whereby dynamic light scattering (DLS) can 

be used to measure B22 indirectly. This new method is also more efficient as it requires 

much less material and time than SLS. Whereas SLS averages out fluctuations caused by 

Brownian motion of protein molecules, DLS makes use of deviations from the average 

scattering intensity to evaluate the diffusion coefficient of the protein molecules. In 
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addition, the use of DLS enables real-time monitoring of the aggregation process in a 

protein solution. Therefore information about the Gibbs free energy associated with the 

nucleation process can be obtained with DLS. Probes are currently in development for in 

vivo ophthalmic studies via DLS.8; 9  Therefore there is potential for use of our newly 

developed method as a diagnostic tool for biomedical applications. 

Once conditions conducive for crystallization were established, attempts were 

made to prevent crystallization through the use of solubilizers which are known to 

increase the solubility of proteins in solution. A naturally occurring solubilizer, alpha A-

crystallin, which is also found in the lens was used for this part of the study along with a 

commercial solubilizer, non-detergent sulfobetaine 201 (NDSB-201). The purpose of this 

part of the study was to inhibit or delay crystallization. Preventing protein crystallization 

or precipitation would be of potential benefit in biomedical applications and in particular 

in developing treatments for crystallization-related diseases, such as cataracts. 

The overall objective of the present study is to increase knowledge of interactions 

between protein molecules during crystallization. The specific aims of the present study 

are summarized as follows: 

1. To determine the conditions that favor crystallization of human gamma D-

crystallin. 

This was accomplished by carrying out crystallization experiments with varying protein 

concentration while simultaneously varying the temperature or the concentration of 

divalent cations. 

2. To establish a direct correlation between the sign and magnitude of the second 

virial coefficient and the incidence of crystallization of human HGD. 
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After determination of conditions conducive for crystallization, B22 of protein solutions 

was measured using DLS. The results were then correlated with the results from Specific 

Aim 1. 

3. To determine the role of human alpha A-crystallin chaperone as a solubilizer in 

solutions of HGD. 

The effects of alpha A-crystallin were determined by measuring B22 and evaluating 

nucleation terms. Comparisons of these terms were then made with those from identical 

protein solutions containing no alpha A-crystallin. The solubilizing effects of alpha A-

crystallin were then compared with those of NDSB-201. 

The specific aims and the related research to address each of these are presented 

in CHAPTERS 4 through 8 of this thesis. CHAPTER 4 addresses the determination of 

conditions of protein concentration, temperature and divalent cation concentration 

conducive for crystallization, which is Specific Aim 1. The measurement of B22 by SLS 

was found to be unreliable for the aggregating systems under study. As such a new 

method was developed in CHAPTER 5 using DLS to indirectly measure B22. Another 

lens protein, apoferritin, was used in the development of this method as it had been used 

for SLS studies by a previous member of our lab which provided results for comparison 

with the new method.10 The use of DLS permitted determination of nucleation terms such 

as interfacial energy and critical free energy. These results are presented in CHAPTER 6 

for both apoferritin and HGD along with B22 measurements. The correlation between B22 

and the occurrence of crystallization is addressed in this chapter and this satisfies Specific 

Aim 2. The effects of solubilizers on nucleation terms, B22 and crystallization of HGD 

were examined in CHAPTER 7. Thus Specific Aim 3 was addressed in this chapter. 
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Conclusions and recommendations for future work are discussed in CHAPTER 8. The 

Appendices provide step-by-step procedures on the methods used in the present study. 

APPENDIX A deals with expression and purification of HGD, APPENDIX B focuses on 

high performance liquid chromatography - size exclusion chromatography which was 

used for protein purification, and APPENDIX C contains the procedure used for dynamic 

light scattering studies. Results from SLS experiments with apoferritin are given in 

APPENDIX D. 

Overall the present study enhances understanding of intermolecular interactions 

of HGD and apoferritin during crystallization. In addition, it provides a more rational 

means for screening crystallization conditions. The newly developed method which uses 

DLS makes determination of intermolecular interactions easier, more robust and more 

efficient as it is faster and requires less material.  These findings can be applied to 

prevent or impede cataracts and other protein condensation diseases.  They may also lead 

to development of diagnostic tools for protein condensation diseases.  
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CHAPTER 2: BACKGROUND 
 
 
 

2.1 PROTEIN CRYSTALLIZATION 
 
 

Aggregation of molecules in an ordered and repetitive manner from a supersaturated 

solution results in crystal formation. A crystal is a highly organized solid whose 

constituent particles, i.e. atoms, ions or molecules, are arranged in an orderly manner in 

all three spatial dimensions.11 Crystal structure is highly dependent upon solution 

conditions including temperature. The angles between the different faces of a crystal are 

characteristic of the material being crystallized. A solid may exhibit more than one 

crystal structure and this is referred to as polymorphism. Polymorphs exhibit different 

stabilities and different physical properties. This is of particular relevance to 

pharmaceuticals as therapeutic efficacy may vary from one polymorph to another. 

Although simple organic molecules can be crystallized in a few minutes, it may take 

weeks for proteins to crystallize as they are much bigger and therefore diffuse much 

slower.12 

There are many different applications of protein crystallization. It is used in 

determining the three dimensional structure of proteins through x-ray diffraction.2 This is 

important since resolution of protein structure is the first step towards establishing 

structure/function relations, and possibly at performing specific structural modifications 

that may change the function in desirable directions. Another important application of 
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protein crystallization is in downstream processing in the pharmaceutical industry where 

it is used for separation and as a final purification step. 

Protein crystallization has been linked to diseases such as sickle cell anemia and 

cataracts.13 With sickle-cell anemia, a mutant form of hemoglobin which has a lower 

solubility in its deoxygenated form is expressed. As such, it forms crystals or fibers 

within the red blood cells.13; 14 The formation of aggregates, crystals or precipitates of the 

proteins found in the lens of the eye has been linked to cataracts.15 

 

2.1.1 Factors Affecting Crystallization 

 

Crystallization is affected by many different variables. These include temperature; 

protein concentration; type and concentration of precipitating agent; and type, 

concentration and pH of buffer.2 Screening is necessary to determine the conditions that 

favor crystallization. 

Crystallization of proteins can be induced by creating supersaturated solutions. 

Addition of precipitating agents such as inorganic salts, polymers and organic solvents 

can induce supersaturation. Precipitants are thought to induce supersaturation by 

competing with the protein for water molecules thereby reducing the amount of water 

available to dissolve the protein. Other factors that affect crystallization are protein 

concentration, presence of metal ions, pH and temperature.12 A list of factors which 

influence crystallization is shown in Table 2-1. 

Determining conditions that favor crystallization is empirical and requires 

comprehensive screening experiments. An understanding of protein interactions with 



 

 8

solvents and other solutes may lead to prediction of crystal formation.16 George and 

Wilson induced crystallization in several proteins including bovine serum albumin, 

ovalbumin and lysozyme by addition of precipitants such as polyethylene glycol 8000 

and NaCl.6 They observed that the value of the second virial coefficient of protein 

solutions correlates to solution conditions favorable for the crystallization of proteins.6 In 

the present study, the effect of temperature and different types and concentrations of 

divalent cations on crystallization of proteins was studied. 

 

Table 2-1: Factors that influence crystallization of proteins (Adapted from McPherson17) 

 
1 

 
Temperature 

 
2 

 
Gravity 

 
3 

 
pH 

 
4 

 
Precipitant type and concentration 

 
5 

 
Purity of the protein 

 
6 

 
Ionic strength 

 
7 

 
Mechanical perturbations 

 
8 

 
Metal ions 

 
9 

 
Detergents / solubilizers 

 
10 

 
Isoelectric point 

 

 

2.1.2 Supersaturation 

 

Crystallization comprises three phenomena: supersaturation, nucleation and 

growth. A saturated solution is one which contains the maximum possible solute 
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concentration at a given condition and which is thermodynamically stable.11 Thus crystals 

cannot grow from a saturated solution. A supersaturated solution results from changing 

the solution conditions of a saturated solution, such that the new solution contains more 

solute than its maximum solubility and is thermodynamically unstable. However, a 

supersaturated solution may be metastable, i.e. it may remain unchanged for a long period 

of time if there are no external influences such as introduction of seed crystals. 

Supersaturation is the driving force necessary for crystallization to occur.18 The greater 

the supersaturation, the further from equilibrium the solutions is and therefore the greater 

the crystallization driving force. Supersaturation may be achieved in several ways 

including cooling, evaporation and addition of precipitants.  

 Supersaturation may be divided into three regions namely the labile, intermediate 

and metastable regions which are illustrated in a protein phase diagram in Figure 2-1. The 

solubility line is well-defined whereas the limits of the metastable and intermediate 

regions are variable. Below the solubility line, crystallization is impossible. Crystal 

growth occurs in the metastable region although nuclei do not form spontaneously. In the 

intermediate region, both crystal growth and nucleation occur while in the labile region 

nuclei form spontaneously from a clear solution.17 
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Figure 2-1: Protein phase diagram showing the regions that comprise supersaturation. Crystallization is 

impossible below the solubility line.11; 18 

 
 

 

There are many representations for supersaturation. One of the most often used 

expressions is the concentration driving force 

 

scc −=Δ                2-1 

 

where c is the solute concentration and s is the solubility of the protein at those 

conditions. In the present study, supersaturation is represented by σ and is defined by 

 

s
cln=σ                2-2 
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This representation is most often used when studying the energy changes associated with 

nucleation. As nucleation was investigated in the present study, Equation 2-2 was used to 

represent supersaturation. 

 

2.1.3 Nucleation Kinetics 

 
 

Nucleation is the formation of an ordered solid phase, a nucleus, from a liquid or 

amorphous phase. This results in crystal formation via transfer of solute from the liquid 

phase to the solid phase. It differs from growth in that solute is not deposited on an 

already existing crystal. The nucleation process is illustrated in Figure 2-2. Protein 

monomers aggregate reversibly resulting in random clusters and aggregates which break 

apart and re-form. The existence of an energy barrier prevents nucleation from occurring 

spontaneously except in cases where supersaturation is large enough to overcome the 

barrier. If the aggregates can overcome the energy barrier they reach a critical size where 

they become stable nuclei and rearrangement from random aggregates to crystals 

results.17 The rate of crystal growth is influenced by diffusion of solute molecules from 

the bulk solution to the growing crystal surface, as well as by incorporation of solute 

molecules into the crystal lattice. 

Aggregates have hydrophobic interiors which is energetically favorable. 

However, the molecules at the surface have greater contact and thus competition with 

water, which is less energetically favorable. Thus the surface molecules need to gain 

entry to the interior and the number of interior molecules must increase in relation to the 

number of exterior molecules. The aggregates thus increase in size and become more 
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stable.18 As supersaturated solutions are unstable, a solid state, the nucleus, must be 

created in order for equilibrium to be achieved. This is the rate limiting step for the 

crystallization process. The energy barrier can be overcome by increasing the 

supersaturation of the system. 
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Figure 2-2: Free energy of nucleation as a function of particle radius. The schematic illustrates the 

nucleation process.(Adapted from McPherson, 199817) 

 

 

There are two types of nucleation: primary and secondary nucleation.18 Existing 

crystals do not play a role in primary nucleation. The mechanisms involved in primary 

nucleation are homogeneous and heterogeneous nucleation. Both mechanisms involve 

formation of crystals by successive addition of protein molecules. They both require high 

levels of supersaturation and display a high order dependence on supersaturation.  
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Therefore, small changes in supersaturation can drastically change the nucleation rate. 

Homogeneous nucleation is the formation of nuclei from a clear solution. On the other 

hand, heterogeneous nucleation requires the presence of insoluble material such as dust 

which provide nucleation sites. Secondary nucleation requires that solute crystals be 

present in the system. It can occur at low supersaturation. There are three main 

mechanisms by which secondary nucleation occurs. With initial breeding, seed crystals 

are added to the solution. Smaller crystals dislodged from the surface of the larger 

crystals provide nucleation sites. The second mechanism is contact nucleation whereby 

crystals collide with the vessel and with each other, breaking off smaller crystal pieces 

which can act as secondary nucleation sites. The third mechanism is shear breeding 

where crystal precursors are removed from the surface of growing crystals by a 

supersaturated solution. The different mechanisms involved in nucleation are illustrated 

in Figure 2-3. 
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Figure 2-3: Schematic illustration mechanisms by which nucleation occurs (Adapted from Mullin, 200418) 
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The free energy change ΔG for the formation of a spherical crystalline aggregate 

has two contributions: a volume energy term and a surface energy term. This may be 

illustrated as shown in Figure 2-4. 

 

 

 
Figure 2-4: Free energy of nucleation as a function of radius. The surface and volume energy contributions 

add up to the overall free energy.(Adapted from Mullin, 200418) 

 

 

ΔG is calculated using 19 

 

γπσπ 2
3

.4
.3

.4 rTkrG B +
Ω

−
=Δ            2-3 

 

where r is the radius of the aggregate, kB is Boltzmann’s constant, T is the absolute 

temperature, σ is the supersaturation, Ω is the protein monomer volume in solution, and γ 
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is the interfacial energy. The interfacial energy γ is the amount of energy necessary to 

create a unit of surface area of the growing crystal.19 The solution supersaturation is 

determined from σ  = ln (c/s) where c is the protein concentration and s is the solubility 

of the protein. 

The critical radius, Rc, may be calculated using Equation 2-4 below. This equation 

is obtained by setting to zero the first derivative of ΔG with respect to the radius. 

 

σ
πγ
Tk

R
B

c
2

=              2-4 

 

Equation 2-4 is taken from an article by Malkin and McPherson.19 However, the article 

contains a typographical error with a factor of 4 instead of a factor of 2. In the present 

work, Equation 2-4, which uses the correct factor of 2, is used to evaluate Rc. The critical 

radius is the size beyond which aggregation is no longer reversible. At this point, the 

aggregates have overcome the energy barrier and irreversible aggregation results in 

growth. Below Rc the aggregates are unstable and stochastically grow and dissociate. 

Upon determination of Rc and γ, the critical free energy change, ΔGc, may be 

calculated using Equation 2-9.  This equation is obtained by combining Equations 2-3 

and 2-4 and setting ΔG = ΔGc. This gives 
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The critical free energy is calculated using Equation 2-9. The higher the value of ΔGc, the 

less likely it is that irreversible aggregation will occur and the slower the rate of 

aggregation. If ΔGc is very low, a very strong attraction results between protein 

molecules. This strong attraction does not allow them adequate time to orient themselves 

as they come together and. precipitates may form rather than crystals.20 

The nucleation rate J can be calculated using J = A exp [−ΔGc / (kBT)] where A is 

a pre-exponential constant18 The main variables determining the nucleation rate J are 

interfacial energy, temperature and supersaturation. The nucleation rate J decreases as the 

value of ΔGc increases. Therefore, values of ΔGc may be used to gain insight into 

nucleation rates at different conditions even when A cannot be determined. 
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2.1.4 Phase Diagrams 

 

Phase diagrams are plots of protein solubility or concentration against experimental 

variables, such as precipitant concentration, keeping other variables constant. Batch 

crystallization is used to develop phase diagrams.17 
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Figure 2-5: Protein phase diagram showing the different regions of supersaturation.(Adapted from 

McPherson, 200417)  

  

 

Figure 2-5 shows the three main regions of a phase diagram: unsaturated, 

metastable and labile. Crystals dissolve in the unsaturated region. In the metastable 

region, stable nuclei grow but do not form spontaneously. In the labile region, stable 

nuclei form and grow spontaneously. 

 Crystals are formed by nucleation. Homogeneous nucleation results from a 

supersaturated solution while heterogeneous nucleation is crystal formation from 
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insoluble material such as seed crystals or dust. It is necessary to enter the labile region to 

grow nuclei spontaneously or homogeneously. However, amorphous precipitate forms in 

the upper part of the labile region. Even when no precipitate forms, an infinite number of 

microcrystals may form. The metastable region must be entered to obtain fewer, larger 

crystals. It is best to start in the lower part of the labile region where nuclei form 

spontaneously. As the nuclei grow, protein concentration decreases until the metastable 

region is entered and growth of fewer and larger crystals can occur.11 In the present 

study, nucleation was induced from a clear solution, i.e. homogeneously. 

 

2.1.5 Protein Crystallization Methods 

 

The key to crystallizing proteins is lowering the energy barrier to nucleation or infusing 

energy into the system. The energy barrier may be lowered by addition of catalysts such 

as enzymes.17 Energy may be added to a system by adding heat or by inducing 

supersaturation through seeding. There are a number of methods for inducing 

supersaturation including batch crystallization, vapor diffusion and dialysis. A list of 

common methods is shown in Table 2-2. 

Batch crystallization is the oldest crystallization method presented in Table 2-2 

and it has been in use for over 150 years. It is one of the most widely used techniques 

because of its simplicity and reliability upon optimization of crystallization conditions. It 

involves mixing of an unsaturated protein solution with a precipitating agent which 

creates supersaturation. Alternatively, supersaturation may be induced by changing the 

temperature. After a period of time ranging from hours to weeks, spontaneous nucleation 
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occurs. A major disadvantage of this method is that only one solution can be tested at a 

time. This difficulty can be overcome by setting up arrays of vessels each testing a 

different condition. A modification of this method involves microbatch crystallization 

under paraffin oil which is illustrated in Figure 2-6. The paraffin oil prevents evaporation 

while the microbatch set-up allows for high throughput screening of crystallization 

conditions requiring only microliter volumes of protein solutions.21 

 
 

Table 2-2: Common crystallization  methods 17 

 
1 

 
Bulk crystallization 

 
2 

 
Batch crystallization 

 
3 

 
Evaporation 

 
4 

 
Bulk dialysis 

 
5 

 
Concentration dialysis 

 
6 

 
Microdialysis 

 
7 

 
Liquid bridge 

 
8 

 
Free interface diffusion 

 
9 

 
Vapor diffusion on plates (sitting drop) 

 
10 

 
Vapor diffusion in hanging drops 

 
11 

 
Sequential extraction 

 
12 

 
pH-induced crystallization 

 
13 

 
Temperature-induced crystallization 

 
14 

 
Crystallization by addition of precipitants 
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Paraffin oil Protein solutionParaffin oil Protein solution

 
Figure 2-6: Illustration of microbatch crystallization under paraffin oil. 

As little as 1 μL of protein solution may be required.  
(Source: http://www-structmed.cimr.cam.ac.uk/Course/Crystals/Theory/methods.html) 

 

Another commonly used method is vapor diffusion. It can be used to screen a 

large number of conditions and is both economic and convenient. There are two main 

ways in which vapor diffusion is carried out: hanging drop where a drop of the protein 

solution with precipitant is suspended from a surface, and sitting drop where the drop is 

supported by a surface. Hanging drop and sitting drop vapor diffusion are illustrated in 

Figure 2-7. Generally, the protein solution is first mixed with the additive such as 

precipitant. A drop of the mixture is placed in the headspace of a tightly closed chamber 

containing a large amount of the additive. The additive thus saturates the headspace and 

water diffuses from the drop into the headspace. This causes the concentration of protein 

and additive to increase continuously, allowing different concentrations to be examined 

in one experiment.2 However, it is difficult to measure intermediate concentrations with 

this method. In addition, many variables are associated with this method including the 

contact angle of the drop, the volume of the drop and the distance between the drop and 

the reservoir.  
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Hanging drop Sitting dropHanging drop Sitting drop

 
Figure 2-7: Schematic showing the two set-ups for vapor diffusion. The protein drop is suspended in 

hanging drop, but is placed on a pedestal for sitting drop. 
(Source: http://www.bio.davidson.edu/courses/MolBio/MolStudents/spring2003/Kogoy/protein.html)  

 

Multiwell microbatch crystallization was utilized in the present study. The 

microbatch apparatus used was developed by Bartling et al.21 It consists of an automated 

stage which allowed timed image acquisition and online monitoring of the multiwell tray. 

A linear temperature gradient could be applied for temperature experiments. The 

microbatch apparatus will be further described in CHAPTER 3. 

 

2.2 PROTEIN CRYSTALLIZATION AND THE SECOND VIRIAL 

COEFFICIENT 

 

The second virial coefficient, B22, is a thermodynamic property which is a measure of 

solute-solute and solute-solvent interactions in dilute solutions solutions.6; 16 Studies have 

shown that a negative second virial coefficient corresponds to overall attractive 

interactions between solute molecules which could result in crystallization, precipitation 

or aggregation.7 A positive second virial coefficient corresponds to repulsive interactions 

between solute molecules, resulting in the solute remaining in solution.6; 7 When 
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repulsive and attractive interactions are equal, the solution is called a theta solvent and 

has a B22 value of zero.6 This state is analogous to the Boyle temperature where real gases 

behave ideally and B22 is zero.22  

George and Wilson studied crystallization of a number of proteins including 

lysozyme, bovine serum albumin and ovalbumin, and induced crystallization by addition 

of precipitants such as NaCl and polyethylene glycol 8000.6 They found that values of 

B22 which correspond to crystallization lie within a narrow range of slightly negative 

values. They call this range of values from −1 x 10-4 to −8 x 10-4 mol mL g-2 the 

crystallization slot.6  

Figure 2-8 is a schematic depicting the crystallization slot. Values greater than −1 

x 10-4 mol mL g-2 were measured in solutions where no crystallization occurred while 

values less than −8 x 10-4 mol mL g-2 were measured in solutions where precipitation was 

observed. The crystallization slot was achieved for many different proteins under many 

different crystallization conditions including solvents containing alcohols, additives such 

as inorganic salts, various molecular weight polyethylene glycols, and mixtures of 

inorganic salts and alcohols.5 Therefore it can be concluded that B22 can predict the 

occurrence of crystallization regardless of the driving force for crystallization.  

 



 

 23

 
 

Second virial coefficient B22 [10-4 mol mL g-2 ]
-8 -1

Precipitation Crystallization No Crystallization

0

Second virial coefficient B22 [10-4 mol mL g-2 ]
-8 -1

Precipitation Crystallization No Crystallization

0

 
 

Figure 2-8: Protein crystallization slot 
Schematic showing behavior of proteins in solution relative to the value of the second virial coefficient B22. 

Crystallization occurs between −1 and −8 x 10-4 mol mL g-2, a range of values referred to as the 
crystallization slot. More negative values of B22 are obtained under precipitating conditions while no 

crystallization or precipitation is observed at greater values of B22. 
 

 

Trial-and-error is often used to determine conditions suitable for crystal growth. 6 

As shown in Table 2-1, there are over 20 different variables which can affect 

crystallization, including temperature, pH and protein purity and concentration. Therefore 

numerous screening experiments have to be carried out to determine conditions suitable 

for growing protein crystals.16 Correlating the value of B22 to conditions conducive for 

crystallization eliminates the need for extensive screening experiments.16 Bartling10 

successfully correlated the occurrence of crystallization of apoferritin in solutions 

containing CdCl2 with the second virial coefficient of the solutions. In the present study, 
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attempts were made to replicate Bartling’s results and correlate crystallization of human 

gamma D-crystallin to the value of the second virial coefficient. 

 

2.2.1 Measurement of B22 

 

Static light scattering (SLS) is the method most commonly used to measure B22. 

However, B22 has also been measured using small angle x-ray and neutron scattering, 

self-interaction chromatography, 23; 24; 25 size exclusion chromatography, 23; 26 

sedimentation equilibrium, 27 and membrane osmometry.7; 20; 23; 27 These methods all have 

difficulties associated with them. For example, membrane osmometry is unreliable as 

proteins adsorb onto membranes or block membrane pores.7 Sedimentation is time-

consuming and requires large amounts of protein which limits the number of solution 

conditions which can be studied. SLS is convenient because it is non-destructive and the 

protein sample can be recovered after the experiment. However, it also requires relatively 

large amounts of protein and in addition is very sensitive to aggregates in the solution, 

which may be impossible to avoid at very negative B22.7 

Protein cross interactions B23 have only been directly determined through the use 

of membrane osmometry.7 However, for SLS and other methods, mixing rules can be 

applied to determine B23 of a mixture of two proteins in solution after measuring B22 of 

the individual pure protein solutions. Mixing rules can also be applied to mixtures of 

more than two proteins. The equation used in the present study for a binary mixture is 

shown below:28 
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where y is the mole fraction of components i and j, Bij are the virial coefficients and B is 

the second virial coefficient of the mixture which may be measured by any of the 

methods mentioned above. The mixing rule for a binary mixture was used in the present 

study to determine the cross second virial coefficient of a mixture of alpha A-crystallin 

and human gamma D-crystallin.  

 

2.2.2 Static Light Scattering 

 

The basic premise of static light scattering (SLS) is that it measures the scattering 

intensity of a protein in solution relative to background scattering.29 If the size of the 

molecule is less than λ/20, where λ is the wavelength of the laser, then there is no angular 

dependence and all data can be collected at 90°.6 

Data from static light scattering are interpreted using the Rayleigh equation 

shown below: 
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and c is the protein concentration, R90 is the excess Rayleigh ratio at 90°, M is the 

molecular weight of the protein, no is the solvent refractive index, (dn/dc) is the 

differential refractive index increment of the solvent containing the solute, NA is 

Avogadro’s number and λ is the wavelength of the laser. 

A plot of Kc/R90 against c is called a Debye plot and its slope and intercept yield 

B22 and M respectively. Measurement of B22 of a theta solvent would result in a 

horizontal line. A non-crystallizing solvent would yield a sloped line above that of the 

theta solvent while a crystallizing or precipitating solution would yield a sloped line 

below the horizontal line as illustrated in Figure 2-9. 
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Figure 2-9: Schematic illustrating the different types of slope obtained from static light scattering 
corresponding to the value of the second virial coefficient B22 in three different solutions; (a) non-

crystallizing (positive B22). (b) Theta solvent i.e. B22 = 0. (c) Crystallizing or precipitating (negative B22) 
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2.3 THE CRYSTALLINS 

 

The crystallins are structural water-soluble proteins found in the lens of the mammalian 

eye. Three classes of crystallins are found in mammalian lenses, namely alpha-, beta- and 

gamma-crystallins. They are the major proteins maintaining lens transparency and they 

represent up to 90% of the soluble lens protein.30 The high refractive index of the lens is 

due to the high concentration of these proteins, up to 430 mg/mL,31 and the absence of 

organelles from the lens fiber cells. Organelles may interfere with the lens’ function by 

scattering light.32 There is almost no protein turnover in the lens. Therefore, the proteins 

in the center of the lens are approximately the same age as the individual.15 This also 

implies that the crystallins sustain substantial damage over time through post-biosynthetic 

modifications such as oxidation and deamidation.15 

Alpha-crystallin makes up 40% of the soluble lens protein.15 There are two alpha-

crystallin genes, alpha A and alpha B. is Approximately 40 subunits of alpha A- and 

alpha B-crystallin make up the structure of alpha-crystallin, in a ratio of approximately 

3:2.15 Expression of alpha A-crystallin is limited to the lens. Alpha B-crystallin is 

systemically expressed but is found primarily in the eye lens. Both alpha A- and alpha B-

crystallin belong to the small heat shock protein (sHSP) family.33 In addition to being 

structural, both alpha-crystallin and its subunits exhibit chaperone-like activity by 

inhibiting aggregation and insolubilization of the crystallin proteins, including 

themselves, due to conditions of stress. Such stress may be generated by oxidation, 

elevated temperature and chemical reduction, for example.34 Alpha-crystallin chaperones 
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proteins by incorporating them into large complexes thus preventing their nonspecific 

aggregation.33 

 

 

Figure 2-10: 3-D structure of human beta B1-crystallin 
(Source: http://www.ebi.ac.uk/pdbsum/1oki) 

 

 

 

Figure 2-11: 3-D structure of human gamma S-crystallin 
(Source: http://www.ebi.ac.uk/pdbsum/1ha4) 
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Like alpha-crystallin, beta-crystallin is a heterogeneous oligomeric protein 

whereas gamma-crystallin is a monomer.35 Beta-crystallin has an average molecular 

weight of 200 kDa with subunits around 20 to 30 kDa, and gamma-crystallin has an 

average molecular weight of 20 kDa.36 The beta and gamma subunits are structurally 

related.37 The beta-crystallin subunits present in the human lens are βB1, βB2, βB3, 

βA1/A3, βA2,, and βA4.38 The 3-D structure of human βB1-crystallin is shown in Figure 

2-10.  

There are seven gamma-crystallin genes (γA, γB, γC, γD, γE, γF, γS), the most 

abundant of which are γC and γD.15; 39; 40 The first six, γA-F, are similar in sequence but 

the gamma S-crystallin gene is less similar in sequence and is situated on another 

chromosome.15 The 3-D structure of human gamma S-crystallin is shown in Figure 2-11. 

Point mutations in the γC and γD genes have been linked to many genetic cataracts 

demonstrating the importance of these two proteins to lens transparency.40 The 

relationship between the crystallins is illustrated in Figure 2-12.  
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Figure 2-12: Schematic illustrating relationship between the crystallins. 

 

2.4 APOFERRITIN 

 

Ferritin is an iron-storage protein found in every tissue in the body as well as in most 

living organisms.41 The structure of ferritin is shown in Figure 2-13. It comprises 24 

polypeptide chains42 which are arranged to form a hollow shell 7 to 8 nm wide within 

which up to 4500 iron ions can be stored as a complex with the protein.42; 43 Ferritin has a 

molecular weight of approximately 456 kDa44 and an outer diameter of 12 to 13 nm.42 By 

taking up iron, ferritin plays a detoxification role as iron catalyzes the formation of 

reactive oxygen species which cause oxidative damage.42 Iron-free ferritin is called 

apoferritin.45  
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Figure 2-13: Structure of the ferritin complex 
(Source: http://www.coe.drexel.edu/ret/personalsites/2005/Geisler/startframe.html) 

 
 
 
 In vertebrates, apoferritin is a hetero-oligomer of the heavy H-chain, which has 

182 amino acids, and the light L-chain, which has 174 amino acids.41 Apoferritin 

molecules found in different organs in the body contain different ratios of H-chain to L-

chain.42 Apoferritin rich in L-chains is most often found in organs that store iron, i.e. the 

liver and the spleen. The H-chain is thought to play a part in iron sequestration as 

overexpression of the H-chain leads to anemia.41 

 
 
 

2.5 CATARACTS 

 

Cataract disease affects the lens of the eye. Figure 2-14 illustrates the position of the lens 

relative to the other parts of the eye. Cataract disease is characterized by progressive loss 
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of lens transparency, accumulation of molecules that absorb in the UV-Vis range, and 

formation of fluid-filled vacuoles, especially in diabetics when sugar levels are high in 

the lens. 46  Elevated levels of divalent cations such as Ca2+, Fe2+ and Cu2+ ions are also 

associated with cataract.47 

 
 

 
Figure 2-14: Structure of the eye showing location and structure of the lens. The lens comprises non-

vascularized tissue that focuses images on the retina.48 
 

 

Cataracts are the leading cause of blindness, affecting an estimated 16–20 million 

people worldwide.15 Ageing is the major risk factor for cataract. Cataracts can also be 

caused by metabolic disturbances, trauma, drugs, smoking, heavy alcohol consumption 

and congenital disorders.47 Systemic diseases such as diabetes can also be factor and 

Figure 2-15 shows the lens of a diabetic with advanced cataract.15 Currently, the only 

cure for cataracts is surgical removal of the lens and replacement with a plastic 
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intraocular lens.15 A slit is made in the side of the cornea and a probe is inserted to break 

up the cataractous lens and suction it out. An intraocular lens is implanted in its place. 

This process is illustrated in Figure 2-16. A better understanding of this disease may lead 

to development of non-invasive cures. The results from the present study increase 

understanding of the protein crystallization process, which can be applied to cataract 

formation and may lead to prevention or stagnation of cataract disease. 

 

 

 

 
Figure 2-15: Advanced cataract in the lens of a diabetic patient.32 
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a ba b

 
Figure 2-16: Surgical correction for cataract (a) A probe is inserted into the cornea to break up the 
cataractous lens and suction it out. (b) An artificial lens is implanted to replace the cataractous lens.  

(Source: http://www.allaboutvision.com/conditions/cataract-surgery.htm) 
 
 
 

2.6 THE ROLE OF CRYSTALLINS AND APOFERRITIN IN 

CATARACT FORMATION 

 

Modification of the crystallins, either through mutations, post-biosynthetic modifications 

such as oxidative stress and thermal stress, occurs with time.14; 47 Since there is no 

turnover of lens proteins, the damage from modifications tends to accumulate leading to 

altered interaction between the crystallins or leading to them unfolding.15 The 

modifications often result in reduced crystallin solubility in the form of aggregation, 

precipitation or crystallization of crystallins, which in turn leads to occurrence of 

cataract.15; 48; 49; 50 Protein crystals or precipitates with molecular masses above 50 MDa 

diffract light and hence interfere with vision15; 51 as illustrated in Figure 2-17.  
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Figure 2-17: Transmission of light by the lens. 
Transmission through a normal lens (left) and diffusion of light by a lens with cataract (right) resulting in 

unfocused vision. (Source: http://www.harvardeye.com/cataract/cataracts.html) 
 

 

Human beta-crystallin remains soluble even with extensive modification.15 

However, gamma-crystallin has been linked to cataracts which are caused by mutations 

but the differences between the wildtype and the mutant proteins are usually small. Point 

mutations in gamma C- and gamma D-crystallin are the genetic basis for many dominant 

cataracts.40 For instance, the R58H mutation in human gamma D-crystallin (HGD) causes 

the aculeiform cataract. The mutation results in crystallization of the mutant protein 

which is an order of magnitude less soluble than the wildtype protein.49 Crystal deposits 

of HGD have been identified in the lenses of individuals with coralliform cataracts.52 The 

3-D structure of human gamma D-crystallin is shown in Figure 2-18. 

 

http://www.harvardeye.com/cataract/cataracts.html�
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Figure 2-18: 3-D structure of human gamma D-crystallin 

(Source: http://www.ebi.ac.uk/pdbsum/1hk0) 
 

 

The lenses of young mammals exhibit cold cataract in which the center of the lens 

becomes opaque when cooled but rapidly clarifies when warmed. Large amounts of 

gamma-crystallin have been linked to cold cataract as gamma-crystallin has long been 

known to undergo reversible cryoprecipitation.14; 53 

Post-biosynthetic modifications of alpha-crystallin have been shown to 

compromise its chaperone function, resulting in the formation of light-scattering 

aggregates of lens proteins which proceed to form cataracts. The lens UV-filter 3-

hydroxykynurenine readily catalyzes the oxidation of methionine residues in both alpha 

A- and alpha B-crystallin, making the overall alpha-crystallin molecule a poorer 

chaperone and contributing to cataract.54 

Mutations in the beta B3-crystallin gene have been associated with recessive 

genetic cataracts. A mutation in the beta A3/beta A1-crystallin coding gene causes a 

dominant cataract in mice.37 
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UV-A causes oxidative damage to the crystallins which leads to cataractogenesis. 

Antioxidants present in the lens include catalase, peroxidase, glutathione and ascorbic 

acid. Levels and activity of these antioxidants decrease with age while oxidative stress 

increases, making the lens more vulnerable to cataracts.46 The eyes are more susceptible 

to UV damage with age as the number of UV filters in the lenses decreases linearly with 

age.55 

Studies show that treatment of patients with hyperbaric oxygen (HBO) leads to 

subsequent cataract formation. It has been suggested that high concentrations of oxygen 

in the tissues leads to corresponding levels of tissue H2O2. Very low levels of oxygen are 

present in the lens with a steep gradient from the exterior of the lens to its center. It may 

be that the increased liquefaction of the vitreous humor with age enables more retinal 

oxygen to diffuse into the lens thus contributing to cataract.47 

 

 

 
Figure 2-19: Gamma-crystallin crystals deposits found in lens fiber removed from patient suffering from 

congenital cataract52 
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Unlike the other crystallins, gamma-crystallins have attractive interactions 

between them both in the lens and in vitro.13; 53  These attractive interactions increase the 

likelihood of gamma-crystallin undergoing phase separation and aggregation, thus 

leading to cataract formation.13 Figure 2-19 shows crystals of gamma-crystallin extracted 

from the lens of a patient suffering from coralliform cataract caused by mutations in the 

gamma D-crystallin gene.52 Non-genetic forms of cataract involving crystal formation in 

the lens have also been reported.13 Since gamma D-crystallin has been linked to many 

cataracts, it was used for crystallization experiments in the present study. 

Apoferritin has been implicated in the development of Hereditary 

Hyperferritinemia Cataract Syndrome (HHCS), which is inherited, and characterized by 

early onset of cataract.41 HHCS is thought to occur as a result of a mutation in the L-

chain which leads to overexpression of the L-chain. This overexpression may affect the 

antioxidant properties of the lens as well as the solubility of the other proteins in the 

lens.41 Crystals of L-rich ferritin have been found in lenses of HHCS patients.56 L-rich 

ferritin complexes with few, if any, iron ions, making it similar to apoferritin. For this 

reason, apoferritin was used by Bartling et al.10 in investigations into the effect of CdCl2 

on crystallization of ferritin in HHCS. 

 

2.7 THE ROLE OF DIVALENT CATIONS IN CATARACT 

 

Divalent cations play important roles in metabolic processes in the body. For instance, 

Ca2+ is required for activation of Calpain 2, an enzyme found in the lens and involved 
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with signal transduction.48 The concentrations of divalent cations, including Ca2+, Ba2+, 

Cd2+, Cu2+, Pb2+ and Zn2+, have been shown to increase in cataractous lenses.3; 48 Table 

2-3 shows concentrations of various divalent cations in normal and cataractous lenses.3 It 

can be seen that the concentration of Cd2+ is approximately 20 times higher in cataractous 

lenses. One study evaluated the impact of a 5-week oral Pb2+ (~30μg/dL) exposure on the 

alpha A-crystallin profile in the lens of Fisher 344 rats. It was found that exposure to Pb2+ 

led to the crystallins undergoing post-biosynthetic modifications leading to lens 

opacities.30 Injection of frogs with BaCl2 and CaCl2 resulted in formation of cataracts in 

the lenses of the frogs.57 Studies have shown that divalent cations cause increased 

attractive interactions between proteins in solution unlike monovalent cations which 

increase repulsion between protein molecules.58 Divalent cations were used in the present 

study to induce crystallization. 

Apoferritin is normally crystallized by addition of cadmium ions.59 Previous 

crystallization studies were conducted by Bartling9 and Bartling et al.10; 44 with 

apoferritin in solutions containing CdCl2. Bartling discovered that crystallization was 

successfully induced at concentrations of CdCl2 above 13 mM. At higher CdCl2 

concentration, the final size of crystals obtained was smaller. 
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Table 2-3: Divalent cation concentrations in lenses (From Cekic, 19983). Concentrations (ppm) of 

Cadmium, Copper, Lead and Calcium in cataractous and normal lenses grouped according to different 
smoking habits. 3; 60 

Lenses Concentration (μg/g dry tissue weight = ppm) 

Cataractous Cd2+ Cu2+ Pb2+ Ca2+ 
Overall 0.99 2.11 5.17 82.31 
Males 1.05 2.13 5.00 80.36 

Females 0.88 2.04 5.53 86.83 
1−10 cigarettes/day 1.01    
> 20 cigarettes/day 1.19    

Non−smokers 0.79    
Normal     

Overall 0.045 0.69 0 15.11 
Males 0.055 0.66 0 15.18 

Females 0.032 0.72 0 15.01 
 

 
 

2.8 POTENTIAL FOR DEVELOPMENT OF THERAPUETIC DRUGS 

 

At present, the only way to cure cataract is to surgically remove the lens and replace it 

with a plastic intraocular lens.36; 48 Administration of antioxidant cocktails helps in 

slowing down age-related cataract according to the Roche European American Cataract 

Trial (REACT).46 A recent study found that supplementation of the antioxidant lutein in 

patients with age-related cataract led to improvement in visual function. Natural sources 

of antioxidants include green and black tea, gingko biloba (which contains EGb761), 

tumeric (contains curcumin) and Withania somnifera.46 

Alpha A- and alpha B-crystallin have been shown to increase the solubility of the 

mutant T5P gamma C-crystallin both in vitro and in transfected cells, as well as to 

significantly reduce the size of its aggregates. It has previously been shown that the 

alpha-crystallins interact with both the beta- and gamma-crystallins, assisting in their 
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refolding and preventing their aggregation.40 Understanding how cataracts are formed on 

the molecular level may provide a means to prevent them or treat them without surgery.  

The alpha A-crystallin null mouse suffers from cataract caused by inclusion 

bodies containing alpha B-crystallin as well as gamma-crystallin. This implies that alpha 

A-crystallin plays a part in maintaining solubility of gamma-crystallin.15 Alpha A-

crystallin has been shown to prevent non-specific aggregation of proteins by 

incorporating them into large complexes.40 It may therefore prevent the occurrence of 

crystallization of HGD. Solubilizers are known to increase hydration of proteins resulting 

in increased protein solubility and possibly preventing crystal formation. Non-detergent 

sulfobetaine 201 (NDSB-201) has been shown to act as a solubilizer in protein 

solutions.61 As such, the solubilizing effects of alpha A-crystallin are compared with the 

effect of NDSB-201. 

Solubilizers are molecules which increase the solubility of proteins by causing 

them to become preferentially hydrated. Alpha-crystallin behaves like a solubilizer when 

it carries out its chaperoning activities. Solubilizers are useful in separating proteins from 

inclusion bodies or biological membranes during protein purification. Examples of 

solubilizers include urea, non-detergent sulfobetaines (NDSBs), detergents and salts.61 A 

study on NDSBs showed that they prevent protein aggregation and precipitation at low 

ionic strengths without denaturing proteins.61; 62 The structure of NDSB-201 is illustrated 

in Figure 2-20. Detergents attach their hydrophilic tails to the hydrophobic regions of the 

protein and thus allow the hydrophilic part of the protein to interact with water, 

increasing the solubility of the protein. Sucrose has also been reported to maintain protein 
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solubility under harsh conditions.62 The use of solubilizers may suppress crystallization 

and thus may lead to prevention of cataract disease.  

 

 

 

Figure 2-20: Structure of NDSB-201 showing oppositely charged ends of a carbon bridge 
(Source: http://www.gbiosciences.com/NDSB_201-desc.aspx) 

 

 

Figure 2-21: Schematic of EDTA chelating a metal ion. 
(Source: http://www.benbest.com/nutrceut/EDTA.html) 
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Chelating agents such as ethylenediaminetetraacetic acid (EDTA) form multiple 

bonds with metal ions thus inactivating them. Figure 2-21 shows EDTA chelating a metal 

ion. Injection of chelating agents into dogs and rabbits resulted in retinal detachment and 

blindness.63 This may be because divalent cations are essential for functioning of the 

body. Lower concentrations of chelating agents may suppress crystallization brought 

about by high concentrations of divalent cations. In the present study, the solubilizing 

effects of NDSB-201 and alpha A-crystallin were investigated. 
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CHAPTER 3: METHODOLOGY 
 
 
 

3.1 EXPRESSION AND ISOLATION OF PROTEINS 
 
 

3.1.1 Gamma D-Crystallin 
 
 

Commercially available human gamma D-crystallin (HGD) and alpha A-crystallin are 

costly. For instance, the cost of alpha A-crystallin from Sigma Aldrich (St. Louis, MO) is 

$400 for 1 mg. Approximately 50 mg of each protein is needed per experiment making 

commercial purchase impractical. As a result, these proteins were obtained by expression 

using Escherichia  coli clones obtained from the Petrash Lab at Washington University in 

St. Louis, MO. The protocol described below for expression of HGD using Escherichia 

coli was developed by the Petrash Lab at Washington University in St. Louis.64; 65; 66  

Over-expression of HGD was achieved in Escherichia coli strain BL21-DE3. 

Approximately 10 batches of HGD were produced over the course of the present study. 

For each batch, four cultures of 400 mL each were grown in 2 liter baffled shaker flasks. 

Isopropyl-1-thio-beta-D-galactopyranoside (IPTG) at a final concentration of 0.1 mM 

was added to each flask to induce expression of HGD at an OD600 of approximately 0.8 

and cultures were grown for another 2.5 to 4 hours. Cells were collected by centrifugation 

(10,000 x g, 15 minutes, 4°C) and the cell pellets frozen at −80°C for at least 12 hours 

and up to a week. The freeze-thaw process aided in breaking open the bacterial cell walls. 
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Extraction of proteins from the cell pellet was done using 10 μg/mL DNase 

(Fisher Scientific, Pittsburgh, PA), an N-lysis buffer (50 mM Tris Cl pH = 7.5, 0.3 M 

NaCl, 0.5 EDTA) and 0.05 mg/mL lysozyme (Sigma-Aldrich Co., St. Louis, MO). 

DNase degrades the DNA of the bacteria, making the solution containing the pellets less 

viscous. The purpose of the lysozyme was to break down bacterial cell walls.67 The 

solution produced from the extraction process is called the whole cell lysate (WCL).  

Dialysis was carried out next to exchange the N-lysis buffer for chromatography 

buffer (20 mM tris-acetate buffer, pH 6.0, 0.5 mM dithiothreitol and 0.5 mM 

ethylenediaminetetraacetic acid) in preparation for ion exchange chromatography. Buffer 

exchange of the WCL was achieved using dialysis bags with a molecular weight cutoff 

(MWCO) of 12 – 14 kDa (Fisher Scientific, Pittsburgh, PA). Dialysis of the WCL was 

done against 2 L of cold chromatography buffer in a cold room. The solution in the 

beaker was stirred to reduce the time required for the WCL and the chromatography 

buffer in the beaker to reach equilibrium. After equilibrium was achieved, approximately 

3 hours later, the dialysis bag was transferred to a beaker with a fresh solution of 

chromatography buffer. After 2 more hours, the dialysis bags were moved to another 

beaker of fresh solution and left for 12 hours. This process resulted in the formation of a 

white precipitate, mostly composed of lysozyme,64 which was removed by centrifugation 

(10,000 x g, 15 minutes, 4°C). The supernatant contained HGD and other proteins 

expressed by the bacteria. 
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Figure 3-1: Illustration of buffer exchange via dialysis. 
At equilibrium, the concentration of salts from the buffers is the same in the dialysis bag and in the beaker. 
The bag must be transferred to a beaker with fresh buffer for further buffer exchange to take place. (Source: 

http://www.bio.mtu.edu/campbell/bl482/lectures/lec5/482w52.htm) 
 

 

Cation exchange chromatography was carried out next to separate HGD from the 

other proteins expressed by the bacteria. The chromatography buffer consisted of 20 mM 

tris-acetate buffer (pH 6.0) to which 0.5 mM dithiothreitol (DTT) and 0.5 mM 

ethylenediaminetetraacetic acid (EDTA) were added. DTT prevents thiol-mediated 

aggregation while EDTA protects the protein from metalloproteases. The amount of 

protein in the supernatant was determined by total protein assay using Bradford reagent 

(Pierce Biotechnology, Rockford, IL). The supernatant was manually applied with a 

syringe to a Macro-Prep S cation exchange column (BioRad Laboratories, Hercules, CA) 

shielded from ambient light and already equilibrated with chromatography buffer at 1 

ml/min. Enough protein was loaded to put 80% of the maximum column loading. A wash 

was applied to remove unadsorbed material and the bound protein was eluted using 5 
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column volumes (CV) of 6% v/v Na acetate in the chromatography buffer.  A flowchart 

of the manual chromatography process is outlined in Figure 3-2. After the protein was 

eluted from the column, residual protein was removed with 5 CV of 1 M Na acetate in 

chromatography buffer followed by 5 CV of pure chromatography buffer. The process 

was repeated until all the protein was purified. Five CV of 30% v/v ethanol were run over 

the column and the column was stored at 4°C. 

 

 

 
 

Figure 3-2: Flowchart of the manual cation exchange chromatography process 

 

 

Sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE) was 

used to detect the presence of HGD in the elution fractions by comparing migration rates 
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with a molecular weight standard. This involves denaturing proteins with sodium dodecyl 

sulfate (SDS), which also binds strongly to the proteins, giving them a negative charge, 

and running the proteins through a gel.12 Separation is only based on size and is done by 

applying an electric current across the gel as shown in Figure 3-3. Larger molecules 

move more slowly through the gel. A mixture of known polypeptides is used as the 

molecular weight standard. The purity of a protein can also be assessed. When a protein 

sample is purified by SDS-PAGE, all the proteins in the sample separate according to 

size only. The different proteins appear as separate “bands” in the gel. More than one 

protein band implies that impurities, or unwanted proteins, are present.  

 

 

 
 

Figure 3-3: Schematic of SDS-PAGE apparatus showing how an electric current is applied across a gel to 
cause migration of proteins. SDS binds to the proteins giving them a negative charge so movement results 

in separation based on size alone. Larger molecules move more slowly through the gel. 
(Source: http://web.chemistry.gatech.edu/~williams/bCourse_Information/4581/techniques/gel_elect/page_protein.html) 

 
 
 
 
 

http://web.chemistry.gatech.edu/~williams/bCourse_Information/4581/techniques/gel_elect/page_protein.html�
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In the present study, Nupage Novex 10% Bis-Tris gels (Invitrogen, Carlsbad, CA) were 

utilized for SDS-PAGE. Figure 3-4 shows a gel obtained after purification of HGD. Lane 

2 shows the whole cell lysate which has many proteins expressed by the E. coli clones 

including HGD at 20 kDa. The other proteins represent impurities for HGD. 

 

 1   2   3  4  5   6

20 kDa

1   2   3  4  5   6

20 kDa

 

Figure 3-4: SDS-PAGE gel of HGD obtained after ion exchange chromatography. 
Lane 1: Molecular weight standard containing proteins of different molecular weights; Lane 2: whole cell 
lysate or unpurified protein; Lane 3: HGD eluted by 6% v/v Na acetate in chromatography buffer; Lane 4: 
residual protein eluted with 1 M Na acetate in chromatography buffer; Lane 5: protein which did not bind 

to the column when the whole cell lysate was run over it ; Lane 6: concentrated HGD (from 6% v/v Na 
acetate in chromatography buffer) 

 
 
 
 
HGD was concentrated using Microcon and Centricon centrifugal filter units with 

a 10 kDa membrane cutoff (Millipore, Billerica, MA). In preparation for crystallization 

experiments, HGD was dialyzed into 100 mM phosphate buffer (pH 7.4, 10 mM DTT) or 

50 mM tris-HCl (pH 7.4, 150 mM NaCl, 10 mM NaN3 and 10 mM DTT) using 10 kDa 

MWCO dialysis cassettes (Pierce Biotechnology, Rockford, IL). Figure 3-5 shows how 
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the dialysis cassettes are loaded with a syringe. The cassette is then immersed in buffer 

and kept afloat by a buoy. After dialysis, the protein was stored at −80°C until needed for 

crystallization or light scattering experiments. 

 

a b

Dialysis cassette

buoya b

Dialysis cassette

buoy

 
Figure 3-5: Buffer exchange using dialysis cassettes (a) Dialysis cassette is loaded with a syringe (b) The 

cassette is kept afloat in the beaker of buffer by a buoy . 
(Source: http://www.piercenet.com/Objects/View.cfm?Type=Page&ID=B76E5F7B-B7C3-4BED-92B4-7BB8F6EF9D5E) 

 

 

3.1.2 Apoferritin 

 

The protocol described here for apoferritin was developed by Bartling et al.10; 44 Size 

exclusion chromatography - high performance liquid chromatography (SEC-HPLC) was 

used to prepare apoferritin for crystallization and light scattering experiments. Horse 

spleen apoferritin (Sigma-Aldrich Co., St. Louis, MO) was dialyzed at 4°C overnight into 

50 mM Tris-HCl buffer (pH 7.4 with 150 mM NaCl and 10 mM NaN3) using dialysis 

cassettes with a 10 kDa molecular weight cutoff (Pierce Biotechnology, Rockford, IL). 

Preparative SEC-HPLC was then carried out to separate apoferritin monomers from 
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oligomers and subunits. A HiPrep 16/60 Sephacryl S-300 High Resolution column 

(Amersham Biosciences, Piscataway, NJ) was utilized for this separation with 50 mM 

Tris-HCl buffer (pH 7.4 with 150 mM NaCl and 10 mM NaN3) as the mobile phase at a 

flow-rate of 0.5 mL/min. 

SEC-HPLC was carried out using a CM4000 LDC analytical pump, an SCL-10A 

VP Shimadzu system controller, and an SPD-10AV Shimadzu detector at a wavelength 

of 280 nm (Shimadzu Scientific Instruments, Columbia, MD). The chromatogram was 

recorded using CLASS-VP 7.2.1 software (Shimadzu Scientific Instruments, Columbia, 

MD).  

 

3.1.3 Material Preparation 

 

Stock solutions of NDSB-201 (EMD, Gibbstown, NJ), BaCl2 (Sigma-Aldrich Co., St. 

Louis, MO) and CaCl2 (Sigma-Aldrich Co., St. Louis, MO) were prepared by dissolving 

the appropriate amount in 50 mM tris-HCl buffer (pH 7.4, 10 mM NaN3). Appropriate 

amounts of cadmium chloride (MP Biomedicals, Solon, OH) were dissolved in ultrapure 

HPLC-grade water (Alfa Aesar, Ward Hill, MA) to prepare stock solutions. Human alpha 

A-crystallin was purchased from ProSpec (Rehovot, Israel) and used as received in 20 

mM Tris-HCl buffer (pH 7.5). 

Protein solutions were prepared by first mixing buffer and stock protein solution 

and then adding the appropriate metal chloride to obtain the final desired concentration of 

both protein and metal chloride. Fresh solutions were prepared for each experiment and 
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used immediately. All protein and buffer solutions were filtered through a 0.2 μm 

Whatman filter (VWR International, West Chester, PA) prior to mixing. 

 

 
 

3.2 CRYSTALLIZATION 

 

3.2.1 Crystallization Apparatus 

 

Crystallization experiments were carried out using a multi-well plate and the set-up 

shown in Figure 3-6. The apparatus was developed by Bartling et al.21 The set-up 

comprises a multi-well plate mounted on a thermal gradient plate which in turn sits on an 

insulation plate. All three rest on the automated stage of a microscope which is used to 

view the individual wells. There are water channels on either side of the thermal gradient 

plate attached to a heating and cooling water bath to create a temperature gradient along 

the x-axis of the multi-well plate. The temperature gradient was found to be linear in the 

present study and in a study by Bartling et al.21 In other experiments, solution conditions 

were varied on an isothermal plate. The other factor varied along the x-axis was 

concentration of divalent cation. In both isothermal and non-isothermal experiments, 

protein concentration was varied along the y-axis. 
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Figure 3-6: Crystallization setup showing an isolated well from the multi-well plate.21 

   

 

To carry out crystallization, paraffin oil was pipetted into each well in the multi-

well plate and then the protein solution was pipetted under the oil to prevent evaporation 

of the aqueous phase and hence false results. This process is called microbatch 

crystallization under oil.21 This method was useful because small amounts of protein, 4 

µL of protein solution per well, were needed. The microbatch multiwell setup was also a 

high-throughput method and as such allowed for many different conditions to be tested 

on one multiwell plate.21 Batch crystallization was chosen because this is the method by 

which crystallization occurs in the lens during cataract formation.   

The complete crystallization apparatus is shown in Figure-3-7. The multi-well 

plate sits on the stage of the microscope. The microscope is attached to a digital camera 

A: Multi-well plate 
B: Thermal Gradient Plate 
C: Insulation Plate 
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which is in turn connected to a computer. Through a macro program on the computer, 

images are taken of each well at regular time intervals. The microscope is housed in a 

Plexiglas box for uniform temperature control. 
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Figure-3-7: Crystallization apparatus21 

 

 
3.2.2 Determination of Phase Diagrams 

 

The solubility of proteins was determined in some cases by measuring the concentration 

of the supernatant in equilibrium with crystals grown for at least 3 weeks. In other cases, 
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the microbatch multi-well system described by Bartling21 was used. A crystallization grid 

was set up as shown in Figure 3-8 with protein concentration varied along the vertical 

axis and precipitant concentration varied along the horizontal axis. Each well had a 

unique concentration of protein and divalent cation. After approximately 4 weeks, 

crystals were obtained in the shaded region though crystals did not grow in every well. 

Crystals not growing in every well in the shaded region may be attributed to different 

rates of crystal growth in each well since nucleation is stochastic.  

Each of the conditions where crystals were obtained was noted on a graph of 

protein concentration against temperature or precipitant temperature. The solubility line 

was formed by joining the wells on the outer boundary of the region with crystals as 

illustrated in Figure 3-8.  
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Figure 3-8:  Multiwell microbatch set-up used to determine protein phase diagrams.  

Crystals were obtained in ~ 50% of the wells in the shaded region. The solubility curve is drawn to the 
boundary between the region where crystals were observed and the region where no crystals were 

observed. 
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3.3 LIGHT SCATTERING 

 

3.3.1 Static Light Scattering 

 

Data from static light scattering were interpreted using the Rayleigh equation shown 

below: 
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and c is the protein concentration, R90 is the excess Rayleigh ratio at 90°, M is the 

molecular weight of the protein, no is the solvent refractive index, (dn/dc) is the refractive 

index increment, which is how the refractive index of a solution varies with 

concentration, NA is Avogadro’s number and λ is the wavelength of the laser.6 The 

second virial coefficient can be obtained from the slope of the plot of (Kc/R90) against c.  
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Figure 3-9: Static light scattering apparatus10 

 

 

Data from static light scattering are represented as a Debye plot. Light scattering 

intensity is obtained at one scattering angle, 90°, as a function of different concentrations 

of the protein as shown in Figure 3-10. The slope of the plot gives the second virial 

coefficient while the average molecular weight is obtained from the intercept using 

Equation 3-1. 
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Figure-3-10: Debye plot showing how the MW is obtained from the intercept and the second virial 
coefficient from the slope. Four or more different protein concentrations are used and background 

scattering is determined using the pure buffer. 
(Source: http://www.nbtc.cornell.edu/facilities/downloads/Zetasizer%20chapter%2015.pdf) 

 

 
The light scattering system consisted of an ALV 5000/E/EPP instrument, an 

ALV/LSE-5004 digital correlator and ALV-60X0 4.0 software (ALV, Langen, 

Germany). A 22 mW laser (632.80 nm) served as the light source. Samples were placed 

in 2.5 mL cylindrical glass cuvettes (ALV, Langen, Germany) and capped. Three 10-

second measurements were taken at each angle with no more than 5% deviation between 

the measurements. For rapidly aggregating solutions, the deviation was increased to 10%.  

Five different protein concentrations were utilized for static light scattering: 0.1, 

0.2, 0.3, 0.4 and 0.5 mg/mL. The stock protein solution was first diluted with buffer and 

finally the stock divalent cation solution was added to the protein and the mixture was 
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gently vortexed. Measurements were taken immediately thereafter. All protein, buffer 

and cation solutions were filtered through a 0.2 μm Whatman filter (VWR International, 

West Chester, PA) prior to mixing. 

 
 

3.3.2 Dynamic Light Scattering 

 

Dynamic light scattering (DLS) makes use of the same laser set-up as SLS. Protein 

molecules scatter the laser light in all directions. Since the laser is coherent and 

monochromatic, and the molecules are undergoing Brownian motion, the scattering 

intensity exhibits a time-dependent fluctuation.68 Whereas SLS averages out fluctuations, 

DLS makes use of deviations from the average scattering intensity to evaluate the 

diffusion coefficient. 

An autocorrelation function can be derived from this fluctuation. From Adel at al, 

we can see that the autocorrelation function G(t) is related to the delay time, i.e. the time 

scale of movement of the scattering molecules, as follows:69 
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where A is a system-specific constant, τ is delay time and B is the baseline. The apparent 

diffusion coefficient D is related to the delay time by 
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τ2
1

q
D =                 3-4 

 

with the scattering wave vector q defined by 

 

2
sin4 θ

λ
πnq =                 3-5 

 

where n is the refractive index of the solvent, θ is the scattering angle, and λ is the 

wavelength of the laser. Once the diffusion coefficient is obtained, the hydrodynamic 

radius of the aggregates can be determined from the Stokes-Einstein equation. 
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where kB is the Boltzmann constant, T is absolute temperature, ηo is the solvent viscosity 

and Rh is the hydrodynamic radius. The diffusion coefficient is related to the diffusivity 

slope kD as follows:70 

 

)1(, ckDD Dop +=                3-7 

           

where D is the collective diffusion coefficient, Dp,o is the diffusion coefficient at infinite 

dilution, and c is protein concentration. A plot of D against c yields Dp,o as the intercept 

and kD can be obtained from the slope.  
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Buffer and protein were first mixed and the divalent cation was added last to 

obtain the final desired concentration of both protein and divalent cation. The mixture 

was gently vortexed and then placed inside the ALV 5000/E/EPP instrument (ALV, 

Langen, Germany). The samples were kept in the machine for the full duration of the 

experiment. The hydrodynamic radius of the particles in solution was obtained from the 

third cumulant of a computer-generated Cumulant analysis.  
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CHAPTER 4: EVALUATING CRYSTALLIZATION 

THERMODYNAMICS OF GAMMA D-CRYSTALLIN 

 
 

4.1 ABSTRACT 

 

Crystallization of human gamma D-crystallin (HGD), a lens protein, has been linked to 

the occurrence of cataracts. Crystallization of HGD was carried out using a microbatch 

grid over a temperature range from 300 K to 305 K to determine HGD concentrations 

suitable for tracking crystal growth over time. The results from this study were then used 

to determine the solubility of HGD, and hence the thermodynamic crystallization 

properties of HGD, over this temperature range. It was observed that the solubility of 

HGD increased with increasing temperature, and the dependence on temperature was 

used to estimate the enthalpy of crystallization as −455 kJ/mol, while the Gibbs free 

energy of crystallization ranged from −34.9 kJ/mol to −31.1 kJ/mol. Over a temperature 

range from 301 K to 304 K, the entropy of crystallization was determined to decrease 

from −1398 J/mol-K to −1394 J/mol-K which disfavors crystallization. Therefore the 

large negative enthalpy compensates for the loss of entropy determined over the 

temperature range studied allowing crystallization to occur. The entropy loss was 

attributed to trapping of ~55 water molecules per HGD molecule in the crystal structure. 

The solubility of HGD in the presence of CaCl2 and BaCl2 was also determined 

and found to decrease with increasing salt concentration. This can be explained by 

increased attraction of Ca2+ and Ba2+ for water molecules at higher concentrations of 
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BaCl2 and CaCl2, resulting in decreased HGD solubility. The results from the present 

study advance knowledge of the factors needed to control crystallization of HGD in 

solutions with divalent cations and at different temperatures.  

 

4.2 INTRODUCTION 

 

Cataract disease is characterized by a progressive loss of lens transparency. Left 

untreated, it may result in complete blindness. In fact, it is the leading cause of blindness 

worldwide9 with approximately 10 million new cases diagnosed every year.3 At present, 

the only cure for cataracts is removal of the lens and replacement with a plastic lens. The 

majority of cataract patients are unable to afford this surgery, making it even more 

imperative that the link between crystallization of lens proteins and cataract formation be 

better understood.48 

The crystallins are a family of lens proteins that make up 90% of all proteins in 

the lens.35 They are water-soluble and are responsible for the structure and transparency 

of the lens.49; 71 Three types of crystallins can be found in the human lens: namely, alpha-

crystallin, beta-crystallin and gamma-crystallin. There are seven different proteins within 

the gamma-crystallin family: γA-, γB-, γC-, γD-, γE-, γF- and γS-crystallin.72 Though γC- 

and γD-crystallin are the most abundantly expressed of the gamma-crystallins in the 

human lens,40 human gamma D-crystallin (HGD) has been linked to numerous cataracts 

including punctate and aculeiform cataract.73  Also, x-ray scattering and osmotic pressure 

studies show that the gamma-crystallins have attractive interactions in solution and tend 
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to exist as aggregates in vitro while the other crystallins have repulsive interactions in 

solution.13; 53  

Many factors have been linked to cataracts including age, smoking and diseases 

like diabetes.32 The temperature in the eye decreases with age, which may result in 

decreased solubility of the lens proteins. In diabetes, sorbitol, a metabolized form of 

glucose, is present in very high concentrations throughout the body and therefore reduces 

the solubility of lens protein by drawing water from the lens by osmosis.74 

Elevated concentrations of divalent cations such as Ba2+, Ca2+ and Cd2+ have also 

been found in cataractous lenses.75; 76 For example, one study found that the 

concentration of Cd2+ is increased 20-fold in cataractous lenses.3 These cations are found 

naturally in the lens and play various roles in the metabolism of the eye.32; 63 The 

mechanisms that result in elevated concentrations of divalent cations are not well-

understood, although it is thought that cigarettes and alcohol are a possible source.3 All 

these factors may culminate in cataracts forming and are aggravated by the fact that there 

is no protein turnover in the lens.71 

In the present study, the effects of temperature and the precipitants BaCl2 and 

CaCl2 on crystallization of HGD were examined. The thermodynamics of crystallization 

of HGD were determined as a function of temperature. Determining the conditions 

conducive for crystallization of HGD may provide a means to control or prevent 

crystallization of this protein. The results from the present study provide information that 

may be used to prevent conditions conducive for cataracts and other protein condensation 

diseases. 
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4.3 MATERIALS AND METHODS 

 

4.3.1 Solution Preparation 

 

HGD was expressed using recombinant E. coli BL21-DE3 clones obtained from the 

Petrash Lab at Washington University in St. Louis, MO using the method described by 

Andley et al.64 After purification, buffer exchange into either 100 mM phosphate buffer 

(pH 7.4, 10 mM dithiothreitol (DTT), 10 mM NaN3) for the linear growth rate 

experiment and determination of the temperature phase diagram, or 50 mM tris-HCl 

buffer (pH 7.4 with 150 mM NaCl, 10 mM NaN3 and 10 mM DTT) for determination of 

the precipitant phase diagrams was accomplished either by dialysis using a 10 kDa 

MWCO dialysis cassette (Pierce Biotechnology, Rockford, IL) or via centrifugation with 

a 10 kDa MWCO Centricon centrifugal filter unit (Millipore, Billerica, MA). HGD was 

then concentrated via centrifugation with the Centricon centrifugal filter unit (Millipore, 

Billerica, MA) and stored at -80°C until use. 

Protein concentration was determined by total protein assay using Bradford 

reagent (Pierce Biotechnology, Rockford, IL). Ultrapure HPLC-grade water (Alfa Aesar, 

Ward Hill, MA) was used for all buffers. All solutions were filtered through a 0.2μm 

Whatman filter (VWR International, West Chester, PA) prior to use. 
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Stock solutions of CaCl2 (Sigma-Aldrich Co., St. Louis, MO) and BaCl2 (Sigma-

Aldrich Co., St. Louis, MO) were prepared by dissolving the appropriate amounts in 50 

mM Tris-HCl buffer (pH 7.4). 

 

4.3.2 Crystallization Experiments 

 

Linear growth rates of crystals of HGD at different concentrations were determined by 

preparing 1-mL solutions of pure HGD in 100 mM phosphate buffer (pH 7.4, 10 mM 

DTT, 10 mM NaN3) in Eppendorf tubes (Fisher Scientific, Pittsburgh, PA) and allowing 

crystals to grow for a week at 298 ± 0.43 K. Three concentrations were used, 10, 20 and 

30 mg/mL, and four solutions were prepared for each concentration. The solutions were 

left undisturbed for one week to facilitate growth of crystals to a measurable size. 

Measurements were then taken approximately every 24 hours for 4 days.  To measure 

crystal size, approximately 20 μL of each solution was pipetted onto a micro slide 

(Corning Glass Works, Corning, NY), covered with a micro cover (VWR International, 

West Chester, PA) and the remainder of the solution was discarded. The 20 μL samples 

were taken from the near the bottom of the Eppendorf solution in every case. A Meiji 

Techno (Santa Clara, CA) video-microscope was utilized for polarized light microscopy 

(PLM) and images of crystals were taken with a DKC-5000 digital camera (Sony 

Electronics, San Diego, CA). Crystal length measurements were taken with Image-Pro 

Plus 4.0 (Media Cybernetics, Silver Spring, MD). Photomicrographs were taken of each 

crystal in the 20 μL drop as follows: successive frames containing crystals were 

photographed until each crystal in the drop had been photographed. The length of the 
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longest side of each crystal in the drop was measured using optical microscopy and 

averaged for each solution. A single set of experiments was performed to determine the 

linear growth rates. 

For determination of phase diagrams of HGD, 50 mM tris-HCl buffer (pH 7.4 

with 150 mM NaCl and 10 mM NaN3) and the multi-well micro batch crystallization set-

up described by Bartling et al.21 were used. Crystallization was carried out under paraffin 

oil (Hampton, Aliso Viejo, CA) to prevent evaporation and condensation of solvent, and 

oxidation of the protein in solution. A crystallization grid was set up as shown in Figure 

4-1 with protein concentration varied along the vertical axis and precipitant concentration 

or temperature varied along the horizontal axis. For determination of precipitant phase 

diagrams, each well had a unique concentration of protein and divalent cation whereas for 

the temperature phase diagram, identical protein solutions were used for each well in a 

row. After approximately 4 weeks, crystals were observed in the shaded region in about 

50% of the wells. Each of these points was noted on a graph of protein concentration 

against temperature or precipitant concentration, and the wells on the outer boundary 

between the region with crystals and the region with no crystals formed the solubility 

relationship as shown in the qualitative schematic in Figure 4-1. The outermost wells in 

the region containing crystals form the solubility curve. The closer a well is to the 

solubility line, the closer the initial protein concentration approaches the protein 

concentration in equilibrium with the crystals. In the wells in the region where crystals 

did not form, the final protein concentration is reasonably assumed to be equal to the 

initial protein concentration. While it is obvious that solutions where crystals formed 

were supersaturated, it cannot be said for certain that solutions with no crystals were not 



 

 68

supersaturated. It was assumed that there is a high probability that the area above the 

curve represents supersaturated conditions. Similarly, it was assumed that below the 

curve, it was still possible that supersaturated conditions may have existed although the 

probability was much lower than for the area above the curve. 

It should be noted that the microbatch method was not used for linear growth 

experiments because of occasional equipment failure upon heating of the plate, and the 

small size of the crystals obtained when the equipment did work. In addition, the low 

concentrations and low volumes used resulted in small crystals being obtained. This 

made it difficult to use the microbatch method to track crystal lengths in the linear growth 

experiment. Therefore, Eppendorf tubes were used to determine linear growth rates as 

described in the beginning of this section. 
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Figure 4-1: Multiwell microbatch set-up used to determine protein phase diagrams.  

Crystals were obtained in ~ 50% of the wells in the shaded region. The solubility curve is drawn to the 
boundary between the region where crystals were observed and the region where no crystals were 

observed. 
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4.4 RESULTS AND DISCUSSION 

 

4.4.1 Linear Growth Rates 

 

For three different initial concentrations of HGD, 10, 20 and 30 mg/mL, the length of the 

longest side of all crystals observed was tracked over time at 298 K. Initially, these 

experiments were designed to see if crystal growth would occur, and to compare crystal 

sizes under the conditions studied. They were not designed to characterize the crystal 

growth kinetics of HGD. However, since information on crystal sizes was obtained, 

approximate crystal growth rates were determined. A single experiment was used to 

determine linear growth rates of HGD at the three concentrations. Crystals were obtained 

at all concentrations of HGD and appeared to be tetragonal, which is consistent with 

findings from previous studies.77 A schematic of the tetragonal crystal structure is shown 

in Figure 4-2 (left). Two of the three sides are of the same length, and all axes are 

perpendicular to each other. A photomicrograph of an actual crystal of HGD grown in 

phosphate buffer containing 20 mg/mL of HGD at 25°C is also shown in Figure 4-2 

(right). 
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Figure 4-2: Sketch of a tetragonal crystal  (adapted from Mullin18) along with a photomicrograph of an 
actual crystal of HGD grown at 25°C in phosphate buffer containing 20 mg/mL of HGD.  The schematic 

shows that two sides of the crystal are the same length i.e. x = y ≠ z, and all axes are mutually 
perpendicular. The crystal in the photomicrograph is not perfectly tetragonal and this may be a result of 

impurities in the solution. 

 
 

As explained in the Section 4.3.2, four solutions were prepared in Eppendorf 

tubes for each concentration and one sample from each tube was examined at one time 

point only. A 20-µL sample was extracted from the solution in the Eppendorf tube and 

examined for crystals under an optical microscope. Each solution was used only once and 

discarded after use. The number of crystals observed in each 20-µL sample ranged from 5 

to 24 and the longest side of each crystal was measured. As nucleation is stochastic, 

nucleation rates can vary for solutions with identical conditions, resulting in variation in 

the number of crystals obtained in each solution, and thereby affecting sizes of resulting 

crystals. No crystals were obtained in control experiments carried out with phosphate 

buffer containing no HGD. 

Photomicrographs of crystals obtained at 10, 20 and 30 mg/mL HGD at different 

times are shown in Figure 4-3, Figure 4-4 and Figure 4-5 respectively. The crystals 

shown represent a sample of all the crystals obtained under the specific solution 

conditions. Irregularities in the crystal shapes may be attributed to the crystal growing 
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environment (Eppendorf tubes) and incorporation of impurities into the crystal. Some of 

the crystals shown in Figure 4-4 c appear to be more rod-shaped than tetragonal although 

the reason for this is not clear. 

The purpose of the photomicrographs was to examine the average size of crystals 

obtained. As explained in SECTION 4.3.2, a 20 µL drop was extracted from each sample 

and examined under a microscope. Either a 10X or a 20X magnification was used in 

order to get photomicrographs that were as sharp as possible. Photomicrographs were 

taken of all crystals in the drop in successive frames until the entire drop had been 

examined. It can be seen in Figure 4-3, Figure 4-4 and Figure 4-5 that the size of crystals 

in the 10 mg/mL, 20 mg/mL and 30 mg/mL HGD solutions was approximately the same 

in all three solutions for the duration of the experiment. Figure 4-6 shows a plot of the 

length of crystals obtained as a function of time with four data points for each initial 

concentration. The error bars, which represent standard deviations from the average 

crystal length, show that there is no statistical difference between the crystal lengths at all 

three concentrations and at all time points. The number of crystals obtained for each 

sample at each time point are shown in Table 4-1 along with the mean size and the 

standard deviation of the crystals. Using the TTEST function in Excel, the p values was 

determined to be 0.22 for the 10 mg/mL and 20 mg/mL data sets, 0.17 between the 10 

mg/mL and 30 mg/mL data sets, and 0.31 between the 20 mg/mL and 30 mg/mL data 

sets. Since the p values are all ≥ 0.17, there is indeed no statistical difference between the 

data. 
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Table 4-1: The number of crystals in 20-µL drops obtained at each time point for each concentration of 
HGD 

Concentration 

(mg/mL) 
Time (h) Number of Crystals 

Mean Crystal Size 

(µm) 

Standard 

Deviation 

161 5 19.35 3.13 

185 12 18.97 4.81 

210 24 19.86 8.06 
10 

236 24 22.34 8.85 

161 13 19.02 1.54 

185 19 21.40 7.72 

210 21 23.16 8.06 
20 

236 16 24.82 12.00 

161 8 15.19 4.74 

185 24 24.01 13.73 

210 19 23.43 9.10 
30 

236 9 22.26 7.48 
 

 

 

 
Figure 4-3: Photomicrographs of crystals in samples from the 10 mg/mL HGD solution taken at different 
times. The size of crystals increased with time. The crystals in the photomicrographs represent the typical 
size of crystals obtained in each of the solutions. Crystals are shown after (a) 161 hours (b) 185 hours (c) 

210 hours (d) 236 hours. 
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a b

c d

a b

c d  
Figure 4-4: Photomicrographs of crystals in samples from the 20 mg/mL HGD solution taken at different 
times. The crystals in the photomicrographs represent the typical size of crystals obtained in each of the 

solutions. Crystals are shown after (a) 161 hours (b) 185 hours (c) 210 hours (d) 236 hours. 
 
 
 
 

 

a b

c d

a b

c d  
Figure 4-5: Photomicrographs of crystals in samples from the 30 mg/mL HGD solution taken at different 
times. The crystals in the photomicrographs represent the typical size of crystals obtained in each of the 

solutions. Crystals are shown after (a) 161 hours (b) 185 hours (c) 210 hours (d) 236 hours. 
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Figure 4-6: Length of crystals of HGD at 10, 20 and 30 mg/mL of HGD tracked over time. A different 
sample was used at each time point for each concentration. The error bars represent population standard 

deviations. 
 

 

As explained earlier in this section, the experiments from which the data in this 

section were obtained were not designed to measure the kinetics of crystal growth. In 

addition, only one experiment was carried out. The results do, however, give a rough idea 

of the growth trends of crystals of HGD under the conditions studied. 

 

4.4.2 Liquid-Liquid Phase Separation 

 

Liquid-liquid phase separation (LLPS) is a phenomenon whereby protein-rich liquid 

drops form within a protein solution.78 HGD was observed to exhibit LLPS in the present 
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study in determination of both the temperature and precipitant (Ba2+ and Ca2+) phase 

diagrams. LLPS has been observed in fewer than 20 proteins including the gamma-

crystallins, arachin, and lysozyme.78 Crystals often grow out of the protein-rich phase, 

thus LLPS is thought to promote crystallization.78 Figure 4-7 shows three microwells 

each containing 5 mg/mL HGD: one with no crystals, one with LLPS, and one with a 

“skin” formation. All three wells contained HGD in the presence of 100 mM phosphate 

buffer at 32°C after one week. In many cases, crystals grew in wells where LLPS was 

first noted which is compatible with the theory that LLPS is a metastable transition with 

respect to crystallization.78 Indeed, Figure 4-7 shows that crystals of HGD are coexisting 

with LLPS. Temperature-induced LLPS has previously been reported in HGD79 but the 

present study is the first time, to the knowledge of the author, that LLPS has been 

reported to be induced in HGD by addition of Ba2+ and Ca2+.  

“Skin” formations like the one shown in Figure 4-7 were observed in 

approximately 2% of the wells in the temperature phase diagram experiment. In such 

cases, the skin did not re-dissolve. Skin formations are considered a negative 

crystallization result like amorphous precipitate. In the present study, crystals rarely grew 

out of solutions containing skins and were not considered in the phase diagram 

determination if they did. It is not known what causes skins to grow but it is sometimes 

attributed to denatured protein.80 Skin formations are easily distinguishable from LLPS 

by their wrinkled surfaces. 
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Figure 4-7: Observations made in microwells during determination of the temperature phase diagram. 
(a) Microwell with no crystals. (b) Liquid-liquid phase separation of 5 mg/mL pure HGD in 100 mM 

phosphate buffer at 32°C observed after 1 week and coexisting with crystals of HGD. (c) Skin formation 
observed in some wells. Its wrinkled surface distinguishes the skin from LLPS. 

 

 

4.4.3 Temperature Phase Diagram 

 

The temperature phase diagram for pure HGD was determined using microbatch 

crystallization and a range of concentrations of HGD from 1 mg/mL to 5 mg/mL. 

Initially, the experiment was set up to determine concentrations of HGD which would 

yield crystals large enough for their growths to be tracked by microscopy. However, the 

crystals obtained were too small for this purpose. The results were used instead to 

determine solubility of HGD. 

The microbatch set up used in the present study was developed by Bartling et al.21 

who determined that the temperature gradient along the microbatch plate was linear 

provided that the surrounding temperature was midway between the temperature ranges 

of the plate. The temperature of the surroundings was controlled by placing the plate in a 

Plexiglas box with a heat lamp and a temperature controller. The temperature gradient 

across the plate was generated by two water baths on either end of the plate. Experiments 

were carried out to measure the temperature in each well and they confirmed that the 
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temperature gradient across the plate was linear. In the present study, temperature was 

varied from 26.8°C to 31.4°C across the plate. Well temperatures were determined by 

setting up a similar experiment in which the temperature across the plate was also varied 

from 26.8°C to 31.4°C. The well temperatures were allowed to equilibrate and then the 

temperature in each well was measured in random order with a thermocouple. The 

measurements were repeated two more times over a two hour period. Figure 4-8 shows a 

plot of average well temperature vs. well number. It can be seen from the plot that edge 

temperatures did not follow the linear trend obtained for the interior wells. As a result, 

the first two wells and the last two wells were not used. The error bars in the plot 

represent standard deviations with n = 3. 
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Figure 4-8: Plot showing linear temperature gradient across a multiwell plate. The clear triangles represent 

the edge wells while the grey triangles represent the interior wells. Only the gray triangles were used to 
evaluate the linear plot. The error bars represent standard deviations with n = 3. 
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Temperature was varied linearly across the plate from 26.8°C to 31.4°C. A grid of 

concentrations of HGD and temperatures used in determination of the phase diagram is 

shown in Table 4-2.  Crystals were allowed to grow for 2 weeks. Conditions where 

crystals were obtained are marked by an “X” and conditions that did not yield crystals are 

marked with an “O.” The results from Table 4-2 were plotted on a graph of HGD 

concentration against temperature with no processing of data as shown in Figure 4-9. The 

solubility line is obtained by joining the outer points of the region where crystals were 

obtained i.e. the outermost wells containing crystals for each HGD concentration form 

the solubility boundary. Stochastic aggregation of protein molecules is thought to be the 

first step in crystallization. At a critical radius Rc, the aggregates overcome the energy 

barrier and irreversible aggregation results in growth. Below Rc the aggregates are 

unstable and stochastically grow and dissociate. The stochastic nature of nucleation may 

result in solutions of the same supersaturation forming crystals at different rates. 

Therefore, varying amounts of time are needed for nucleation and equilibration of solid 

and liquid phases. This may explain the apparent randomness of crystals obtained in the 

present study. 

It was observed that the solubility of HGD has a normal dependence on 

temperature, i.e. solubility increased with increasing temperature as shown in Figure 4-9 

which is consistent with results from previous studies13; 79 although the equilibrium 

temperatures determined in the present study are lower. As temperature increases, the 

energy barrier to nucleation also increases (Mullin 2001, pages 186 - 187).18 Therefore, 

even though the HGD molecules have more energy at higher temperatures, they also have 
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a higher energy barrier to overcome and this leads to increasing solubility of HGD at 

higher temperatures. 

 

Table 4-2: Grid showing concentrations of HGD and temperatures used in determining the temperature 
phase diagram for HGD. The concentration of HGD was varied from 1 to 5 mg/mL, and temperature from 
25.87 to 34.13°C. “X” designates where crystals were observed and “O” designates where no crystals were 

observed. The outermost wells with crystals for each HGD concentration were taken as the solubility 
boundary. The “X”es which form the solubility curve are marked in red. 
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Crystals obtained were on the order of 20 μm and appeared to match the 

tetragonal structure previously described.81 No visual change in crystal form was 

observed over the temperature range studied. Higher concentrations of HGD yielded 

more crystals suggesting that crystallization was taking place close to the labile region of 

the phase diagram where precipitation or formation of microcrystals occurs. More 
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crystals were also obtained at lower temperatures, possibly as a result of lower energy 

barriers to nucleation at lower temperatures.18 This is consistent with findings in previous 

crystallization studies e.g. Bartling et al.44 also observed more crystals of apoferritin at 

lower temperatures.  
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Figure 4-9: Temperature phase diagram of pure HGD obtained by microbatch crystallization.  

The diamonds represent concentration and temperatures where crystals were observed. The line through the 
points is a guide for the eye and represents the solubility line. Two or more crystals were obtained at each 

point on the solubility line except for the 3 mg/mL concentration where only one crystal was observed.  

 

4.4.4 Precipitant Phase Diagram 

 

A phase diagram was determined for HGD in the presence of two precipitants, CaCl2 and 

BaCl2, at 298 K. Two independent experiments were carried out for each divalent cation 

and crystals were allowed to grow for 4 weeks in each case. Conditions used in 
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determination of the HGD phase diagram with BaCl2 are shown in Table 4-3 while 

conditions used in determination of the HGD phase diagram with CaCl2 are shown in 

Table 4-4. Conditions where crystals were obtained are marked with a “Y” or an “X” for 

the first and second microbatch experiment respectively. It can be seen in both Table 4-3 

and Table 4-4 that more crystals were obtained in the second set of experiments, i.e. there 

are more “X”es than “Y”s. This may be attributed to the stochastic nature of the 

nucleation process. The divalent cation concentrations were varied from 0.0 to 12.0 

mg/mL while HGD concentration was varied from 0.00 mg/mL to 0.30 mg/mL. These 

low concentrations were used in order to preserve HGD which was available in limited 

quantities. The range of concentrations of HGD used span the concentration (0.2 mg/mL) 

used for experiments in the chapters that follow. Crystallization experiments with 

solutions containing 0.2 mg/mL of HGD and 10 mM BaCl2 or 10 mM CaCl2 yielded 

crystals and this gave confidence that crystals would be obtained at the low concentration 

used. 

 

 

Table 4-3: Grid showing data obtained using 2 microbatch experiments to determine the phase diagram of 
HGD in the presence of BaCl2 at 298 K. Both HGD concentration and BaCl2 concentration were varied. 

Wells where crystals were obtained are marked with a “Y” representing the first experiment and/or an “X” 
for the second experiment. Wells where no crystals were observed are marked with an “O.” The X’es and 

Y’s which form the solubility curve are marked in red. 
 BaCl2 concentration, mM 
  0.0 1.0 2.0 4.0 6.0 8.0 10.0 12.0 

0.00 O O O O O O O O 
0.01 O O O O O O O O 
0.05 O O O X Y, X  X O Y, X 
0.10 O Y, X X O Y, X O O X 
0.15 O Y, X Y, X X O Y, X X Y, X 
0.20 O X X O Y, X Y, X O Y, X 

HGD 
concentration, 

mg/mL 

0.30 O X X O O Y, X Y, X Y, X 
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Table 4-4: Grid showing data obtained using 2 microbatch experiments to determine the phase diagram of 
HGD in the presence of CaCl2 at 298 K. Both HGD concentration and BaCl2 concentration were varied. 

Wells where crystals were obtained are marked with a “Y” representing the first experiment and/or an “X” 
for the second experiment. Wells where no crystals were observed are marked with an “O.” The X’es and 

Y’s which form the solubility curve are marked in red. 
 CaCl2 concentration, mM 
  0.0 1.0 2.0 4.0 6.0 8.0 10.0 12.0 

0.00 O O O O O O O O 
0.01 O O O O O O O Y, X 
0.05 O O O Y, X X Y, X Y, X X 
0.10 O Y, X Y, X Y, X X X O Y, X 
0.15 O O O O Y, X X X Y, X 
0.20 O Y, X Y, X X X X X X 

HGD 
concentration, 

mg/mL 

0.30 O Y, X X Y, X X Y, X Y, X Y, X 
 

 

 

 
Figure 4-10: Photomicrographs of tetragonal HGD crystals obtained during determination of the phase 

diagram in the presence of CaCl2. (a) 0.2 mg/mL HGD in solution containing 10 mM CaCl2 (b) 0.3 mg/mL 
HGD in solution containing 12 mM CaCl2 

 

 

Figure 4-10 shows photomicrographs of crystals obtained with 0.2 mg/mL HGD-

10 mM CaCl2 and 0.3 mg/mL HGD-12 mM CaCl2. The crystals obtained appear to be 

tetragonal which is consistent with findings from previous studies.77 The phase diagrams 

are shown in Figure 4-11 as a plot of HGD concentration against divalent cation 
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concentration. The solubility curve was taken to pass through the wells on the outer 

boundary between the region with crystals and the region with no crystals. A salting-out 

effect was observed with both CaCl2 and BaCl2 as solubility of HGD decreased with 

increasing precipitant concentration. Divalent cations are thought to induce crystallization 

of proteins by binding to water, effectively increasing the concentration of the protein in 

the “free” water.82 HGD has attractive interactions in solution53 so addition of the 

divalent cations increased the attraction between HGD molecules as the concentration of 

the protein increased, hence the salting-out effect. HGD behaves similarly in solutions 

containing either CaCl2 or BaCl2 at the conditions examined in the present study. These 

results imply that in the lens, increasing concentrations of the divalent cations under 

study may lead to crystallization of HGD. Concentrations of Ca2+ as high as 64 mM have 

been reported in cataractous lenses.83 As much lower concentrations of Ca2+ were used in 

the present study (≤ 12 mM), this suggests that divalent cations have a strong effect on 

the solubility of HGD.  
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Figure 4-11: Precipitant concentration phase diagram for HGD in the presence of CaCl2 or BaCl2 at a 

temperature of 298 K. 

 

4.4.5 Enthalpy and Free Energy of Crystallization 

 

Thermodynamic properties were determined for the temperature phase diagram of pure 

HGD using results from SECTION 4.4.3. As explained in the aforementioned section, the 

experiment was initially set up to track crystal growth over time. However, the crystals 

obtained were too small for this purpose and as such the results were used instead to 

determine solubility of HGD. The thermodynamic properties determined were then 

compared with results from the literature. 
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The standard enthalpy of crystallization ΔHo
cryst was evaluated from a modified 

form of the van’t Hoff equation which was derived from the Gibbs-Helmholtz equation 

as follows.84; 85  For a closed system, 

 

VdPSdTdG +−=                4-1 

     

where S is entropy, T is the absolute temperature, V is volume, and P is pressure. At 

constant pressure, 
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The dependence of the ratio G/T on T can be found using the quotient rule: 
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Combining Equations 4-2 and 4-3, we obtain 
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where H is enthalpy. The Gibbs free energy change may be written as 
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cryst
o KRTG ln−=Δ                4-5 

 

where R is the universal gas constant and Kcryst is defined by Smith et al.28 as 
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where as,cryst is the activity of the solute in the crystal, as,sol’n is the activity of the solute in 

the solution, xs,cryst is the mole fraction of the solute in the crystal, fs
S is the fugacity of 

pure solid solute at the temperature and pressure of the system, γs is the activity 

coefficient of the solute in liquid solution, xs,sol’n is the mole fraction of the solute in 

solution, and fs
L is the fugacity of pure liquid solute at the temperature and pressure of the 

system. Assuming that the value of xs,cryst is close to unity since the crystal is mostly 

made up of solute, and that  fs
S is equal to fs

L at equilibrium, Equation 4-6 simplifies to 
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with xs,sol’n evaluated using  
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where np is the number of moles of HGD in the solution at the points on the solubility 

curve, and nw is the number of moles of water in the solution. Using results from 

Equation 4-4 and Equation 4-5, we obtain 
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where ΔGo
cryst is the change of the standard Gibbs free energy upon crystallization. If the 

solution is assumed to be ideal i.e. γe ≈ 1, we can combine Equations 4-7 and 4-9 to 

obtain 
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or 
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which is a modified form of the van’t Hoff equation. Thus ΔHo
cryst may be obtained from 

the slope of the plot of ln xs,sol’n against 1/T. 

A summary of the results from the present study and results from an HGD 

solubility study by Pande et al.13 are shown in Table 4-5 and Table 4-6, respectively. The 

HGD concentrations and corresponding temperatures in Table 4-5 were obtained from 
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the solubility data in Figure 4-9. Figure 4-12, which shows a graph of Ln xs.soln against 

1/T was plotted using data from Table 4-5. Using Equation 4-11, the value of ΔHo
cryst was 

determined to be −455 kJ/mol from the graph in Figure 4-12. The value of ΔHo
cryst 

determined for HGD in the present study is much lower than the value (−61.5 kJ/mol) 

reported by Pande et al.13 After reviewing the procedures used in both studies, the only 

logical explanation is the presence of aggregates in the HGD solution used in the present 

study as aggregates in a protein solution may shift the position of the solubility curve.78 

Pande et al.13 used 20 mM dithiothreitol (DTT) to prevent thiol-mediated aggregation of 

HGD molecules. The average size of HGD molecules in a solution containing 20 mM 

DTT was determined by Pande et al.38 to be 2.3 nm, which is also the size of a single 

molecule of HGD.86; 87 A 10 mM solution of DTT was used in the present study to 

prevent aggregation of HGD molecules. Although the HGD solution used for the 

temperature phase diagram was not examined for aggregates, dynamic light scattering 

experiments have shown that the average radius in the HGD solutions used for other 

experiments in the present study was 18 nm. Since the radius of a single molecule of 

HGD is 2.5 nm,86; 87 a radius of 18 nm suggests that aggregates were present in HGD 

samples. The presence of aggregates in the HGD solution may explain why the solubility 

curve determined in the present study is different from that determined by Pande et al.13 

In spite of the discrepancy in values determined for ΔHo
cryst, both the present study as 

well as the study by Pande et al.13 determined that the dependence of solubility of HGD 

on temperature was normal, i.e. higher solubility at higher temperatures. However, it can 

be argued that the partially oxidized HGD used in the present study is more like the HGD 
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involved in protein condensation diseases such as cataract. Hence the results from the 

present study are relevant to protein condensation diseases. 

 

Table 4-5: Thermodynamic properties obtained from the present study. The equilibrium temperatures and 
concentrations were obtained from the solubility curve in Figure 4-9. 

Temperature (°C) Concentration 
(mg/mL) 

Mole fraction xs,soln ΔSo
cryst  

(J/mol-K) 
ΔGo

cryst (kJ/mol) 

27.7 1 9.0 x 10-7 −1397.5 −34.8 

28.5 1 9.0 x 10-7 −1393.5 −34.9 

30.0 3 2.7 x 10-6 −1395.1 −32.3 

30.5 5 4.5 x 10-6 −1396.9 −31.1 

 

 

Table 4-6: Thermodynamic results extracted from the study by Pande et al.13 Rather than mole fractions, 
volume fractions φp were used in this study and evaluated using φp = cυ where c is the concentration of 

HGD on the solubility line and υ is the specific volume of HGD taken to be 7.1 x 10-4 mL/mg.13 

Temperature (°C) Concentration 
(mg/mL) 

Volume fraction φ ΔSo
cryst  

(J/mol-K) 
ΔGo

cryst (kJ/mol) 

2.3 2 0.001 −189.71 −15.04 

13.7 4 0.003 −186.40 −13.83 

16.2 6 0.004 −186.86 −13.23 

19.0 12 0.008 −190.43 −11.66 

27.3 16 0.011 −186.60 −11.24 

29.4 26 0.018 −189.17 −10.06 

35.7 43 0.030 −188.81 −8.99 
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Figure 4-12: Determination of the enthalpy of crystallization. The solubility curve shown in Figure 4-9 was 

used to obtain the present plot. Results from the study by Pande et al.13 are shown for comparison. 

 

 

ΔGo
cryst was calculated using the equation below: 

 

nsolse
o
cryst xRTaRTG ',lnln ≅=Δ            4-12 

 

The resulting values of ΔGo
cryst determined for HGD ranged from −34.9 kJ/mol at 302 K 

to −31.1 kJ/mol at 304 K. These values of ΔGo
cryst are comparable to values reported in 

literature such as the ΔGo
cryst of crystallization of hemoglobin C which was determined to 

be −21.3 kJ/mol at 289 K.88 The negative values for ΔGo
cryst along with the negative value 

for enthalpy indicate that the crystallization process is thermodynamically feasible for 
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HGD under the conditions studied. The change in the standard entropy ΔSo
cryst was 

evaluated from 

 

o
cryst

o
cryst

o
cryst STHG Δ−Δ=Δ             4-13 

 

Values for ΔSo
cryst ranged from −1393.5 J/mol-K at 302 K to −1397.5 J/mol-K at 301 K, 

showing a slight decrease in entropy, which disfavors crystallization. The discrepancy in 

entropy values between the present study and the study by Pande et al.13 may be 

attributed to the narrow temperature range used for determination of solubility of HGD in 

the present study. 

Proteins in solution are thought to be associated with specific arrangements of 

water molecules.85 During crystallization, as the protein molecules rearrange to form the 

new phase, the water molecules also undergo rearrangement, with the trapping of more 

water molecules around the protein molecules, or the release of some water molecules. 

Entropy change during crystallization is thought to be due to trapping or release and 

rearrangement of water molecules (ΔSo
solvent), as well as incorporation of protein 

molecules to the surface of the crystal (ΔSo
protein), i.e.88; 89 

 

o
solvent

o
protein

o
cryst SSS Δ+Δ=Δ             4-14 

 

While ΔSo
protein is expected to be negative, ΔSo

solvent may be positive or negative 

depending on whether water molecules are released or trapped, respectively. Therefore, 

ΔSo
cryst may be positive or negative. The term ΔSo

protein is assumed to be insignificant as 
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has been discovered for hemoglobin C and apoferritin.85 Thus in cases where water 

molecules are trapped, crystallization is thermodynamically feasible if ΔHo
cryst < 0 and of 

greater magnitude than TΔSo
cryst. Conversely, when water molecules are released, 

crystallization is thermodynamically feasible if ΔHo
cryst < 0, or if ΔHo

cryst > 0 but of 

smaller magnitude than TΔSo
cryst. 

Using the assumption that ΔSo
protein is insignificant, the entropy of crystallization 

of HGD under the conditions in the present study can be solely attributed to the 

reordering of water molecules. This entropy effect can be compared with the entropy 

change associated with the melting of ice at 273 K, ΔSo
ice = 22 J, following an analogy 

first proposed by Tanford.90 The analogy is based on the transfer of water molecules to a 

more ordered state during freezing. Previous studies with lysozyme showed that 7 or 8 

water molecules are trapped in the crystal for each lysozyme molecule incorporated into 

the crystal.85 Similar studies with apoferritin showed that 20 to 30 water molecules are 

released for each molecule of apoferritin incorporated into the crystal.85 A comparison of 

the entropy values from the present study with the entropy of the melting of ice suggests 

that approximately 55 molecules of water are trapped rather than released in HGD 

crystals for each molecule of HGD incorporated into the crystal, in addition to the water 

molecules already associated with HGD molecules in solution. It is not well-understood 

why water molecules are trapped in some protein crystals but released in others. 

The insight into the thermodynamics of protein crystallization developed in the 

present study increases understanding of the processes associated with protein 

condensation diseases such as cataract. Since crystallization of HGD is more favorable at 

lower temperatures, decreasing temperatures in the eye may promote development of 



 

 93

cataracts. The abundance of water in the lens may also be a contributing factor since 

water is trapped during crystallization of HGD. 

 

4.5 CONCLUSIONS 

 

The equilibrium phase boundary for HGD was experimentally determined over a 

temperature range from 300 K to 305 K. The phase diagrams of HGD in the presence of 

BaCl2 and CaCl2 were determined at 298 K. A salting-out effect was observed in both 

cases as higher concentrations of the cations resulted in lower solubility of HGD. The 

salting-out effect was attributed to the increased hydration of the divalent cations at 

higher concentrations of the salt, resulting in lowered protein solubility. 

Thermodynamic analyses of crystallization of HGD as a function of temperature 

yielded a negative Gibbs free energy, which favors crystallization at the conditions 

studied. The entropy of crystallization was determined to range from −1397 J/mol-K at 

301 K to −1393 J/mol-K at 302 K. It was determined that there was a small decrease in 

entropy, which disfavors crystallization. The loss of entropy was attributed to the 

trapping of ~ 55 water molecules for each molecule of HGD incorporated into the crystal. 

Crystallization was therefore possible because of the high negative enthalpy of −455 

kJ/mol. 

The results from this chapter serve to further the understanding of the 

thermodynamics of crystallization of proteins involved in protein condensation diseases. 

The findings indicate that HGD, a protein involved in cataract disease, is more likely to 

crystallize at the lower temperatures examined in the present study. They also indicate 
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that in the presence of Ba2+ or Ca2+, the solubility of HGD is lowered, which may 

increase the likelihood of cataract formation in the lens. Thus, cataract formation may be 

impeded if the concentration of divalent cations is prevented from increasing above 

physiological levels. 
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CHAPTER 5: EVALUATING INTERMOLECULAR 

INTERACTIONS BY LIGHT SCATTERING TECHNIQUES 

 
 

5.1 ABSTRACT 

 

The second virial coefficient, B22, has long been used as a measure of protein-protein 

interactions in solution. The value of B22 measured in protein solutions may be used to 

predict crystallization in these solutions. Although static light scattering (SLS) is the most 

common method for measuring B22, it requires a significant amount of material, effort 

and time. In this work, we demonstrate that dynamic light scattering (DLS) 

measurements can be used in evaluating intermolecular interactions in protein solutions 

and assessing B22. Results obtained with apoferritin show that DLS alone may be used to 

derive the second virial coefficient with less material and time than SLS.  Additional 

advantages of DLS measurements, especially in cases of active protein aggregation and 

for biological fluid specimens, are discussed. 

 

5.2 INTRODUCTION 

 

Several human degenerative diseases such as cataract, Alzheimer’s and Parkinson’s 

disease can be linked to aggregation and crystallization of proteins.91; 92; 93 Crystallization 

of proteins is also a key step in the purification and separation of pharmaceutical 
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products.25; 94 According to the classical model of nucleation,95 the initial stage of protein 

crystallization is the stochastic aggregation of protein molecules. When the aggregate 

reaches a critical size, it forms a nucleus. The nucleus rearranges to a crystalline form and 

additional molecules are added to the nucleus leading to crystal growth. Many factors can 

lead to proteins crystallizing or precipitating out of solution, including temperature, pH, 

and elevated divalent cation concentration3; 32 in the case of cataract.20; 94; 96 As a result, 

predicting crystallization is difficult and still largely depends on random screening 

experiments.16; 97 

Light scattering methods may be used to study the pre-crystallization state of 

proteins in solution98 and therefore track aggregation and predict crystallization. Static 

light scattering (SLS) yields the second virial coefficient B22, while dynamic light 

scattering (DLS) yields the diffusivity slope, kD, which is a measure of solute-solute 

interactions.   The sign of B22 signifies the type of interaction of the protein molecules 

with each other. A negative B22 indicates greater attraction between solute molecules than 

between solute and solvent, while a positive second virial coefficient indicates a greater 

attraction between the solute and the solvent than between solute molecules.23; 68 The 

diffusivity slope, however, is only indicative of solute-solute interactions.105 When kD is 

negative, the particles have attractive interactions while a positive kD implies repulsive 

interactions.68 Both terms are negative under crystallizing or precipitating conditions, and 

positive in solutions where the protein remains in solution. Thus, the value of kD or B22 

can be correlated to the occurrence of crystallization. 

While SLS may be used to measure B22 directly, it requires significant amounts of 

material and time.7 DLS requires much less material than SLS and is quicker and easier 
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to carry out. SLS is also very sensitive to the formation of aggregates, which may skew 

the measurements, especially in cases where there are significant attractive interactions in 

the solution. In contrast, DLS measures the size of the aggregates in solution and this 

information is then used to calculate kD. DLS is also relatively more tolerant of 

aggregates as it measures fluctuations about an average intensity whereas static light 

scattering (SLS) averages out intensity measurements.29 While values of kD may also be 

used to predict crystallization, it is advantageous to determine B22 values as there is a 

universal range of B22 values within which crystallization of most proteins is likely to 

occur. A similar range of kD values can be determined but such a range is unique to each 

protein since the molecular weight of the protein and friction effects must be taken into 

account. Therefore, the crystallization window for kD must be determined for each protein 

whereas the B22 window is universal for all proteins. 

Here, we report on the development of a methodology to assess intermolecular 

solute interactions and the second virial coefficient from DLS measurements alone. SLS 

and DLS measurements were carried out with apoferritin and yielded essentially the same 

results. These results correlate with the crystallization outcome, indicating that the signs 

of both B22 and kD may be used to predict crystallization.   

 

5.3 THEORY 

 

5.3.1 Dynamic Light Scattering 
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Dynamic light scattering (DLS) makes use of a laser. Macromolecules in solution, in this 

case, protein molecules, scatter the laser light in all directions. Since the laser is coherent 

and monochromatic, and the molecules are undergoing Brownian motion, the scattering 

intensity exhibits a time-dependent fluctuation.68 An autocorrelation function can be 

derived from this fluctuation. From Adel at al, we can see that the autocorrelation 

function G(t) is related to the delay time, i.e. the time scale of movement of the scattering 

molecules, as follows:69 

 

BtAtG +⎟
⎠
⎞

⎜
⎝
⎛−=

τ
2exp)(               5-1 

 

where A is a system-specific constant, τ is delay time and B is the baseline. The apparent 

diffusion coefficient D is related to the delay time by69 

 

τ2
1

q
D =                 5-2 

 

with the scattering wave vector q defined by69 

 

2
sin4 θ

λ
πnq =                 5-3 
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where n is the refractive index of the solvent, θ is the scattering angle, and λ is the 

wavelength of the laser. Once the diffusion coefficient is obtained, the hydrodynamic 

radius of the aggregates can be determined from the Stokes-Einstein equation.69 

 

D
TkR
o

B
h πη6
=                  5-4 

 

where kB is the Boltzmann constant, T is absolute temperature, ηo is the solvent viscosity 

and Rh is the hydrodynamic radius. The diffusion coefficient is related to kD as follows:69  

 

) 1(, ckDD Dop +=                5-5 

           

where D is the diffusion coefficient, Dp,o is the diffusion coefficient at infinite dilution, 

and c is protein concentration. Traditionally, kD is determined by varying c and measuring 

D at the corresponding concentrations. By plotting D against c, kD can be obtained from 

the slope. 

In the present study, protein amounts were limited and as such only one 

concentration was used. Aggregation of apoferritin was induced by addition of CdCl2 and 

measurements were taken immediately upon addition of CdCl2. Since aggregation is a 

dynamic process, both D and kD are changing with time. By making the assumption that c 

is constant, Equation 5-5 may be re-written as follows:  
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with Do taken as the diffusion coefficient at time zero. Therefore, at time zero, kD = 0. 

This is the first time, to the knowledge of the author, that Equation 5-5 has been used as a 

dynamic equation and with concentration constant. The efficacy of this method with be 

demonstrated in this chapter. Once the diffusivity slope is determined at each time point, 

B22 may be evaluated using:69
 

 

vkMBk swD −−= 222                    5-7 

 

where Mw is the molecular weight, ks is a friction term, and v is the partial specific 

volume. The first term in the expression usually dominates in polymer solutions and is 

therefore used as an approximation in the present study.69 The solutions used in the 

present study are very dilute thus friction effects, i.e. ks, may be safely ignored. The value 

of v for HGD, 7.1 x 10-4 mL/mg,13 is also negligible compared to the 2B22Mw term. 

Dynamic light scattering has been used by Brown and Zhou99 to measure B22 

values for polymers. Muschol and Rosenberger70 showed that values of kD can be related 

to the occurrence of crystallization of proteins. However, no evidence of the use of 

dynamic light scattering for measurement of B22 for proteins has been found by the 

author. In addition, this method has never before been demonstrated as useful for 

apoferritin in solutions of CdCl2 as it is in the present study. 
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5.3.2 Derivation for Equation Relating B22 and kD
100 

 

Diffusion arises because of movement of molecules due to concentration gradients. 

Assuming a concentration gradient along the x-axis, the diffusion flux or rate of flow of 

solute molecules across a unit area perpendicular to the x-axis, J, is give by Fick’s law, 

 

x
cDJ
∂
∂

−=                  5-8 

 

where D is the translational diffusion coefficient and c is the solute concentration. 

Combining Equation 5-8 with the equation of continuity below, 

 

x
J

t
c

∂
∂

−=
∂
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we get the one-dimensional diffusion equation 
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D may be expanded as shown below: 100 
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where Dp,o is the diffusion coefficient at infinite dilution and kD is the diffusivity slope. 

 According to the thermodynamics of irreversible processes, J is proportional to 

the force per molecule X which causes the flow. In this case, X is the negative gradient of 

the solute chemical potential per molecule μ1, i.e. 

 

x
LLXJ
∂
∂

−== 1μ              5-12 

 

The velocity of flow is J / c = X / f where f is the translational frictional coefficient of 

each molecule. Therefore, L = c / f and  
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where π is the osmotic pressure, Mw is the molecular weight of the solute, NA is 

Avogadro’s number, υ is the partial specific volume of the solute. The Gibbs-Duhem 

equation was used to obtain the second equality. Combining Equations 5-11, 5-12 and 5-

13, and using the following relationships, 
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( )ckff so += 1              5-16 

 

where R is the universal gas constant, T is the absolute temperature, kB is Boltzmann’s 

constant and fo is the friction coefficient at infinite dilution, we obtain 
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which leads to  

 

o

B
op f

Tk
D =,               5-19 

 

which is Einstein’s relation between the diffusion and friction coefficients, and  

 

υ−=+ wDs MBkk 222              5-20 
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5.3.3 Static Light Scattering 

 

Static light scattering (SLS) compares the intensity of laser light scattered by a protein 

solution with the laser’s incident intensity. This ratio is called the Rayleigh ratio. By 

varying the concentration of the protein solution, the molecular weight of the sample and 

the second virial coefficient may be obtained from the Rayleigh equation below: 

 

cB
MR

Kc

w
2221

+=
θ

             5-21 

 

K is a system-specific constant which may be calculated as follows: 

 

4

222 )/(4
λ

π

A

o

N
dcdnn

K =              5-22 

 

where no is the refractive index of the solvent, (dn/dc) is the refractive index increment of 

the solvent-solute system, NA is Avogadro’s constant and λ is the wavelength of the laser. 

Upon determination of the molecular weight of the protein, a dimensionless 

second virial coefficient A may be calculated from101 

 

ϕ
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A
R
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An approximate value of the protein volume fraction φ may be determined using the 

hydrodynamic diameter dh as. 

 

w

hA

M
dcN

6
  3π

ϕ =              5-24 

 

Therefore, the dimensionless form of the second virial coefficient may be calculated from 

the dimensional second virial coefficient as follows:44 
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The dimensionless second virial coefficient was calculated in order to ease comparison of 

second virial coefficient values from the present study with previous studies. 

 

5.4 MATERIALS AND METHODS 

 

5.4.1 Protein Preparation 

 

Horse spleen apoferritin (Sigma-Aldrich Co., St. Louis, MO) was dialyzed at 4°C 

overnight into 50 mM Tris-HCl buffer (pH 7.4 with 150 mM NaCl and 10 mM NaN3) 

using dialysis cassettes with a 10 kDa molecular weight cutoff (Pierce Biotechnology, 
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Rockford, IL). Preparative size exclusion high performance liquid chromatography (SEC-

HPLC) was then carried out to separate apoferritin monomers from oligomers and 

subunits. A HiPrep 16/60 Sephacryl S-300 High Resolution column (Amersham 

Biosciences, Piscataway, NJ) was utilized for this separation with 50 mM Tris-HCl buffer 

(pH 7.4 with 150 mM NaCl and 10 mM NaN3) as the mobile phase at a flow-rate of 0.5 

mL/min. SEC-HPLC was carried out using a CM4000 LDC analytical pump, an SCL-

10A VP Shimadzu system controller, and an SPD-10AV Shimadzu detector at a 

wavelength of 280 nm (Shimadzu Scientific Instruments, Columbia, MD). The 

chromatogram was recorded using CLASS-VP 7.2.1 software (Shimadzu Scientific 

Instruments, Columbia, MD).  

The purified protein was then concentrated via centrifugation with an Amicon 

centrifugal filter unit (Millipore Corporation, Billerica, MA) and stored at 4°C until use. 

Appropriate amounts of cadmium chloride (MP Biomedicals, Solon, OH) were dissolved 

in ultrapure HPLC-grade water (Alfa Aesar, Ward Hill, MA).  

Protein concentration was determined by total protein assay using Bradford 

reagent (Pierce Biotechnology, Rockford, IL). Fresh solutions were prepared for each 

experiment and used within 2 minutes.  

 

5.4.2 Methods 

 

5.4.2.1 Static and Dynamic Light Scattering 
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Multi-angle static and dynamic light scattering were carried out simultaneously. The light 

scattering system consisted of an ALV 5000/E/EPP instrument, an ALV/LSE-5004 

digital correlator and ALV-60X0 4.0 software (ALV, Langen, Germany). Scattering 

intensity was measured from 90° to 110° at 10° increments. A 22 mW laser (632.80 nm) 

served as the light source. Samples were placed in 2.5 mL cylindrical glass cuvettes 

(ALV, Langen, Germany) and capped. Three 10-second measurements were taken at 

each angle with no more than 5 % deviation between the measurements. For rapidly 

aggregating solutions, the deviation was increased to 10 %. A (dn/dc) value of 0.195 was 

used.102 

Five different protein concentrations were utilized for static light scattering: 0.1, 

0.2, 0.3, 0.4 and 0.5 mg/mL. A stock apoferritin solution was first diluted with buffer and 

finally cadmium chloride solution was added to the solution which was then gently 

vortexed. Measurements were taken immediately thereafter. Five concentrations of 

cadmium chloride were used: 0 mM (i.e. no cadmium chloride), 5 mM, 10 mM, 13 mM, 

and 20 mM. 

Dynamic light scattering was carried out independently of static light scattering at 

90° for 30 seconds per run, 10 seconds between each run and a total of 1000 runs. Only 

one concentration of apoferritin was used in this case, 0.2 mg/mL. Five different 

concentrations of cadmium chloride were used: 0 mM, 10 mM, 13 mM, and 20 mM. 

Buffer and apoferritin were first mixed and cadmium chloride was added last to obtain 

the final desired concentration of both apoferritin and cadmium chloride. The mixture 

was gently vortexed and then placed inside the ALV 5000/E/EPP instrument (ALV, 

Langen, Germany). The samples were kept in the machine for the full duration of the 
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experiment. The hydrodynamic radius of the particles in solution was obtained from the 

third cumulant of a computer-generated Cumulant analysis. The results from the DLS 

experiments were compared with the results from the DLS portion of the simultaneous 

SLS/DLS experiments. 

All measurements were taken at 298 ± 0.43 K. 

 

 

5.4.2.2 Crystallization experiments 
 

Crystallization of apoferritin was carried out at 298 K under the same solution conditions 

as the light scattering experiments using the multiwell batch crystallization set-up 

described by Bartling et al.21  

 

5.5 RESULTS AND DISCUSSION 

 

5.5.1 Simultaneous Static and Dynamic Light Scattering 

 

5.5.1.1 Static Light Scattering 

 

Simultaneous SLS and DLS were carried out with apoferritin at concentrations between 

0.1 mg/mL and 0.5 mg/mL, and various CdCl2 concentrations ranging from 0 mM to 20 

mM. Average Kc/Rθ values are shown in Table 5-1 along with apoferritin molecular 
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weight at each concentration, calculated volume fraction and KcM/Rθ values. Values of 

Kc/Rθ used to determine average Kc/Rθ values are given in APPENDIX D. Each 

experiment was carried out at least twice. Figure 5-1 shows the plot of Kc/Rθ against 

apoferritin concentration at all concentrations of CdCl2. The molecular weight of 

apoferritin was obtained from the intercept of the plot. In each case, the molecular weight 

of apoferritin was determined to be between 320,000 g/mol and 400,000 g/mol, which is 

close to the expected 456,000 g/mol.10 For each concentration of CdCl2, KcM/Rθ was 

plotted against the protein volume fraction, and A was obtained from the slope as shown 

in Figure 5-2. Results from the DLS portion of simultaneous SLS/DLS are summarized in 

Table 5-3. 

 

 

Table 5-1: Table of average Kc/Rθ values obtained from static light scattering and the corresponding 
calculated values of φ and KcM/Rθ. 

 
 
 

CdCl2 
Concentration 

(mM) 

Protein 
Concentration 

(mg/mL) 

Kc/Rθ 
(mol/g) 

Molecular 
Weight 
(g/mol) 

Volume 
fraction φ KcM/Rθ 

0.1 3.0 x 10-6 3.5 x 10-4 1.10 
0.2 3.2 x 10-6 7.1 x 10-4 1.16 
0.4 3.7 x 10-6 1.4 x 10-3 1.35 0 

0.5 3.9 x 10-6 

366,311 

1.7 x 10-3 1.44 
0.1 3.2 x 10-6 3.6 x 10-4 1.12 
0.2 3.6 x 10-6 7.4 x 10-4 1.25 
0.3 3.7 x 10-6 1.1 x 10-3 1.28 5 

0.4 4.3 x 10-6 

350,405 

1.5 x 10-3 1.49 
0.1 3.4 x 10-6 4.0 x 10-4 1.10 
0.2 3.6 x 10-6 8.0 x 10-4 1.15 10 
0.3 4.0 x 10-6 

321,520 
1.2 x 10-3 1.28 

0.3 2.4 x 10-6 9.6 x 10-4 0.95 
0.4 2.3 x 10-6 1.3 x 10-3 0.93 13 
0.5 2.3 x 10-6 

402,037 
1.6 x 10-3 0.92 

0.1 2.9 x 10-6 4.0 x 10-4 0.92 
0.3 2.5 x 10-6 8.0 x 10-4 0.82 
0.4 2.3 x 10-6 1.2 x 10-3 0.73 20 

0.5 2.0 x 10-6 

321,621 

1.6 x 10-3 0.63 
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Figure 5-1: Results from simultaneous static and dynamic light scattering experiments. Values for Kc/Rθ 
obtained from light scattering (SLS) were plotted against apoferritin concentration. The molecular weight 

of apoferritin was obtained from the intercept.  



 

 111

At 0 mM, 5 mM and 10 mM CdCl2, a positive second virial coefficient was 

obtained. A salting-in effect was observed as the solution with no added CdCl2 had a 

smaller A than the solution with 5 mM CdCl2. This salting-in effect was also reported by 

Bartling10. With 13 mM and 20 mM CdCl2, negative A values were obtained. When 

parallel crystallization experiments were carried out under the same conditions, crystals 

were formed with 13 mM and 20 mM CdCl2, whereas no crystals were detected in the 

other solutions (results not shown). 
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Figure 5-2: Results from simultaneous static and dynamic light scattering experiments. Static light 
scattering (SLS) used to measure the dimensionless second virial coefficient A from slope of plot of 

KcM/Rθ vs. ϕ. The error bars represent standard deviations with n ≥ 2. 
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5.5.1.2 Dynamic Light Scattering 

 

Dynamic light scattering carried out simultaneously with the static light scattering 

yielded the diffusivity slope kD. The diffusivity values used to obtain kD are shown in 

Table 5-2. As expected, kD was positive for 0 mM, 5 mM and 10 mM CdCl2, and 

negative for 13 mM and 20 mM CdCl2. As Figure 5-3 shows, the salting-in effect was 

also observed with DLS, as the kD of the 0 mM solution was smaller than that of the 5 

mM solution. The hydrodynamic radius Rh was extrapolated to zero protein concentration 

to mimic infinite dilution at each CdCl2 concentration. The results are shown in Figure 

5-4 and summarized in Table 5-3. Rh increased from 6.33 nm at 0 mM CdCl2 

concentration to 27.80 nm at 20 mM CdCl2, indicating that apoferritin monomers in 

solution were forming aggregates which increased in size as the CdCl2 concentration 

increased. 

DLS carried out alone begins measurement of Rh as soon as the experiment is 

started. With simultaneous SLS/DLS, however, background scattering is measured first. 

In addition, SLS/DLS takes 3 measurements and rejects measurements that deviate by 

5% from the mean. In rapidly aggregating solutions, these delays may result in inaccurate 

values of B22 and Rh. This is reflected in Figure 5-4 which compares values of Rh 

obtained by DLS alone with those obtained by simultaneous SLS/DLS. The initial size of 

the aggregates in solution obtained by DLS alone is less than that measured by 

simultaneous SLS/DLS. This indicates that with DLS alone, measurements are taken 

early in the aggregation process. As the concentration of CdCl2 increases, the gap 

increases between the Rh values measured by DLS and simultaneous SLS/DLS. Thus in 
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more supersaturated solutions, simultaneous SLS/DLS may measure skewed values of Rh 

and B22. 

 

 

Table 5-2: Diffusivity and normalized diffusivity (D/Do) values obtained from the DLS portion of 
simultaneous SLS/DLS. These data are plotted in Figure 5-3. 

 
CdCl2 Concentration 

(mM) 
Concentration 

(mg/mL) 
D (µm2/s) D/Do 

0.1 30.46 1.01 
0.2 31.02 1.03 0 
0.3 31.36 1.04 
0.2 25.93 1.05 
0.3 28.57 1.16 
0.4 27.70 1.13 5 

0.5 29.36 1.19 
0.2 26.38 1.03 
0.3 27.64 1.08 
0.4 27.35 1.07 10 

0.5 28.26 1.11 
0.3 20.07 0.74 
0.4 17.98 0.66 13 
0.5 15.45 0.57 
0.2 50.17 0.70 
0.3 30.92 0.43 20 
0.4 26.45 0.37 
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Figure 5-3: The diffusivity slope kD was obtained as the slope of the plot of normalized diffusivity D/Do 

vs. apoferritin concentration at different concentrations of CdCl2.
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Figure 5-4: Hydrodynamic radii at various concentrations of CdCl2 measured by simultaneous SLS/DLS 

and by DLS alone. 
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Table 5-3: Summary of terms obtained from the DLS portion of simultaneous SLS/DLS experiments.  
Simultaneous static and dynamic light scattering were carried out on apoferritin solutions at 5 different 

concentrations of CdCl2. The diffusivity slope was obtained from diffusion coefficient data in Table 5-2. 
The hydrodynamic radius of apoferritin was also measured by dynamic light scattering at these conditions. 

 

CdCl2 concentration (mM) Diffusivity slope, kD (mL/mg) Hydrodynamic radius, Rh (nm) 

0 0.151 6.33 

5 0.383 8.74 

10 0.210 12.68 

13 −0.853 19.75 

20 −1.660 27.80 

 
 

5.5.2 Dynamic Light Scattering Alone 

 

In order to ascertain that scattering in the protein solutions was due to protein and not 

additives, dynamic light scattering (DLS) experiments were carried out on tris-HCl buffer 

with no additives, and tris-HCl buffer containing 10 mM CdCl2, 10 mM CaCl2 or 10 mM 

BaCl2. None of the solutions contained any protein. Figure 5-5 shows a plot of Rh as a 

function of time for the solutions being tested. The size of Rh in these solutions averaged 

around 0 nm. DLS carried out on a solution of 0.2 mg/mL apoferritin yielded an average 

Rh of 7 nm, which is the size of an apoferritin monomer,59 showing that the protein 

molecules were responsible for scattering observed in protein solutions. 
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Figure 5-5: Dynamic light scattering of tris-HCl buffer containing various additives. 

To determine whether the aggregates detected in protein solutions were due to protein or solvent, dynamic 
light scattering (DLS) was carried out on solutions containing various additives but no protein and 

compared with DLS results from 0.2 mg/mL of apoferritin. The hydrodynamic radii, shown here after 202 
seconds, averaged around zero for the solutions with no protein, and around 7 nm for the apoferritin 

solution, showing that particles detected in protein solutions were indeed proteins and not solvent particles. 
 

 

Dynamic light scattering was carried out on 0.2 mg/mL apoferritin with 0 mM, 10 

mM, 13 mM and 20 mM CdCl2. Data obtained at 0 mM CdCl2 was approximately the 

same as data obtained at 10 mM CdCl2. As such, results for 0 mM CdCl2 have been 

omitted from graphs to prevent cluttering. For these DLS measurements, the 

autocorrelation function G(t) and the hydrodynamic radius Rh were obtained as functions 

of time. Values obtained for Rh are shown in Table 5-4. 

The autocorrelation functions, G(t), defined in Equation 5-1 are shown in Figure 

5-6 for three CdCl2 concentrations after 81 seconds. The autocorrelation function may be 

used to determine relative aggregate sizes in the protein solutions. The autocorrelation 
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function decays more slowly when the size of the particles is bigger103 indicating that the 

size of the apoferritin aggregates increases with increasing CdCl2 concentration. It also 

indicates that the 20 mM CdCl2 solution had the largest aggregates of all three solutions. 
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Figure 5-6: Autocorrelation functions obtained from dynamic light scattering (DLS) experiments after 81 

seconds. The experiments were carried out on 0.2 mg/mL apoferritin at 10 mM, 13 mM and 20 mM CdCl2. 

 

 

The size of the hydrodynamic radius was tracked for approximately 11 hours. 

Figure 5-7 shows a plot of Rh against time for apoferritin in 10, 20 and 30 mM CdCl2. It 

was shown at the beginning of this section that apoferritin monomers averaged around 7 

nm. In the solution containing 10 mM CdCl2, the apoferritin molecules had an average 

size of 8.05 nm, and therefore remained monomers.  
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Figure 5-7: Time profile of the hydrodynamic radius of apoferritin aggregates tracked by DLS. 

 

 

Table 5-4: Summary of data from DLS used to evaluate B22 and A. 

CdCl2 Concentration (mM) Rh (nm) Do (µm2/s) D (µm2/s) kD (mL/mg) 
B22 

(mol mL/g2) 
A 

0 6.51 33.24 37.28 0.61  6.66 x 10-4 107.20 

10 7.55 28.83 32.17 0.58  6.35 x 10-4 102.23 

13 14.86 17.06 16.34 −0.21 −2.33 x 10-4 −37.46 

20 21.22 13.18 11.44 −0.66 −7.25 x 10-4 −116.64 

30 116.67 2.54 2.08 −0.90 −9.84  x 10-4 −158.43 

 

 

Aggregation began almost immediately in the 13 mM and 20 mM solutions but 

was faster in the 20 mM solution. This can be explained by the fact that the 20 mM 
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solution is more supersaturated and therefore nucleation is faster than in the 20 mM 

solution.  Figure 5-7 also shows that after approximately 26000 seconds, the particle size 

in the 20 mM CdCl2 solution dropped sharply. At the end of the experiment, a white 

crystalline deposit was observed at the bottom of the cuvette. Thus it is theorized that the 

drop in particle size was caused by the formed crystals falling to the bottom of the cuvette 

where they could no longer be detected by the laser. 

The diffusivity slope kD was calculated from the diffusion coefficient using 

Equation 5-6. The value of Do was determined from the first Rh data point on each graph. 

Alternatively, a linear fit to the initial data points can be extrapolated to estimate the 

value of Rh at time zero. In the 13 mM CdCl2 solution, the extrapolation method yielded 

an Rh value of 14.40 nm which is close to the initial data point value of 14.86 nm. 

Diffusion coefficient values calculated at each concentration of CdCl2 using Equation 5-4 

and Rh values from DLS are given in Table 5-4. As expected, kD was positive for 10 mM 

CdCl2 and negative for 13 mM and 20 mM CdCl2. In the latter solutions, kD decreased 

rapidly initially before leveling out. The dimensionless second virial coefficient A was 

calculated using Equations 5-7 and 5-25, and Figure 5-8 shows that it followed the same 

trend as kD. The initial decrease explains why difficulties may arise when measuring the 

second virial coefficient of rapidly aggregating solutions by SLS. Muschol and 

Rosenberger70 suggest that protein interaction rather than aggregation may explain 

difficulties encountered. However, since aggregation is caused by attractive protein 

interactions, the findings by Muschol and Rosenberger concur with the findings from the 

present study. 
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Figure 5-8: The dimensionless second virial coefficient A at 10 mM, 13 mM and 20 mM CdCl2 determined 

over 5000 seconds. 

 

 

The dimensional second virial coefficient B22 was evaluated for the first 20 

seconds at each CdCl2 concentration and converted to the dimensionless second virial 

coefficient A using Equation 5-25. Data obtained from DLS are summarized in Table 5-4 

along with calculated values of B22 and A. The results were then compared with 

previously published studies.10 Values of A are shown in Figure 5-9 and summarized in 

Table 5-5. It is clear that the dimensionless second virial coefficient calculated from kD 

closely matched the values obtained by SLS both in the present study and the study by 

Bartling.10  
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Figure 5-9: The values of the dimensionless second virial coefficient A obtained in the present study at 4 

concentrations of CdCl2 by SLS and by DLS were compared with each other and with SLS results 
previously obtained by Bartling.10 There was an excellent match between the DLS- and SLS-obtained 

values showing that DLS is a useful alternative to SLS. 

 

 

Table 5-5: Comparison of dimensionless second virial coefficient A obtained by static light scattering 
(SLS) and dynamic light scattering (DLS). The dimensionless second virial coefficient was obtained in the 
present study by static light scattering (SLS) and dynamic light scattering (DLS) and the results compared 
with previously published SLS results. The error reported for DLS is the deviation from the mean with n = 

2. The error reported for SLS is the population standard deviation with n ≥ 2. 

CdCl2 concentration 
(mM) SLS DLS Bartling10 (SLS) 

0  123.53 ± 3.12  107.20 ± 4.80  106.40 ± 9.60 

10  111.51 ± 2.30  102.23 ± 7.77  98.55 ± 2.90 

13 −26.59 ± 2.00 −37.46 ± 0.98 −27.33 ± 2.79 

20 −116.78 ± 23.10 −116.64 ± 16.32 −108.84 ± 7.47 

 

 



 

 122

Both sign and magnitude of the second virial coefficient are important in 

predicting crystallization, and it should be noted that there is consistency in the sign of A 

at all concentrations of cadmium chloride. In all cases, there was a decrease in the 

absolute value of A from 0 mM to 13 mM and an increase from 13 mM to 20 mM. The 

crossover from a positive A to a negative A also occurred at the same cadmium chloride 

concentration of approximately 12.5 mM. 

In order to determine the efficacy of the DLS method in rapidly aggregating 

systems, experiments were carried out with 30 mM CdCl2. Aggregation proceeded so 

quickly that it was impossible to use SLS. However, as Figure 5-10 shows, DLS was 

effectively used to track aggregation and as a result, the second virial coefficient was 

successfully measured under these conditions. Figure 5-11 shows the dimensionless 

second virial coefficient A for the 30 mM CdCl2 solution measured over time and 

compared with values of A for the solutions containing 10, 13 and 20 mM CdCl2. As 

expected, A is more negative in the 30 mM CdCl2 solution. 

 

 



 

 123

0

1000

2000

3000

4000

5000

0 10000 20000 30000 40000
Time (s)

H
yd

ro
dy

na
m

ic
 R

ad
iu

s 
(n

m
)

10mM CdCl2
13mM CdCl2
20mM CdCl2
30mM CdCl2

10 mM CdCl2
13 mM CdCl2
20 mM CdCl2
30 mM CdCl2

 
Figure 5-10: DLS was used to track aggregation in an apoferritin solution with 30 mM CdCl2. This 

solution crystallized so rapidly that static light scattering could not be used to measure interactions. The 
rate of aggregation of the 30 mM CdCl2 solution is shown relative to 10, 13, and 20 mM CdCl2 solutions. 

Inset: the size of aggregates vs. time is shown for the 30 mM CdCl2 solution by itself.  
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Figure 5-11: The dimensionless second virial coefficient A of the 30 mM CdCl2 solution is shown as a 

function of time and relative to the other apoferritin-CdCl2 solutions. 
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5.6 DISCUSSION AND CONCLUSIONS  

 

The present study showed that, for apoferritin in solution with various CdCl2 

concentrations, the dimensionless second virial coefficient values obtained through 

dynamic light scattering (DLS) alone closely matched those obtained by static light 

scattering (SLS) in both this and previous studies.  Additionally, the present study 

confirmed that the second virial coefficient reliably correlates with the protein 

crystallization outcome for apoferritin in CdCl2 solutions.  Thus, DLS constitutes a 

dependable method for measuring interactions between protein molecules in solution.  As 

DLS is faster and requires less material than SLS, it is a sensible alternative to the latter 

even for cases where both methods produce accurate measurements. SLS requires 5 

solutions of different protein concentration for each condition tested. In the present study, 

apoferritin concentrations used were 0.1, 0.2, 0.3, 0.4 and 0.5 mg/mL, whereas only one 

concentration was used for DLS, 0.2 mg/mL. The volume of each solution used for both 

SLS and DLS was 1 mL. Therefore, 1.5 mg of apoferritin were used for SLS for each 

condition whereas only 0.2 mg were used for DLS per condition tested. This represents 

an 87% reduction in the amount of material necessary for determination of B22. This is 

significant especially for researchers working with limited amounts of protein, which is 

often the case.  

If there is rapid protein aggregation at the start of an experiment, SLS may not 

accurately measure the interactions between the particles in solution, as it is not designed 

for dynamic systems.  Furthermore, with biological fluids from experimental animals or 

human patients in which one wishes to assess the tendency of proteins to precipitate or 
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crystallize, the volume may be too small for SLS to be effectively applied.  In such cases, 

DLS may be the only reliable alternative, as it is able to continuously capture the 

diffusivity in small sample volumes. 

In summary, we have successfully derived a method by which the second virial 

coefficient may be accurately determined by dynamic light scattering alone.  

Furthermore, we confirmed that the second virial coefficient reliably correlates with the 

protein crystallization outcome in the apoferritin-CdCl2 system.  



 

 

 

CHAPTER 6: EFFECTS OF DIVALENT CATIONS ON 

NUCLEATION OF APOFERRITIN AND GAMMA D-

CRYSTALLIN 

 
 

6.1 ABSTRACT 

 

Dynamic light scattering (DLS) was used to study the effect of divalent cations on 

aggregation and crystallization of two proteins found in the lens, gamma D-crystallin and 

apoferritin. In protein systems where crystallization was successfully induced, DLS was 

used to track aggregation and determine nucleation kinetics through estimation of key 

quantities such as the critical radius Rc, interfacial energy γ, and critical free energy ΔG. 

The fractal dimension, a measure of the compactness and regularity of aggregates formed 

during nucleation, was found to be approximately 1.5 for these systems indicating that 

aggregation occurred in the diffusion-limited cluster-cluster aggregation regime. This 

implies that aggregation that led to crystallization was limited only by diffusion, with 

particles sticking together irreversibly on contact. However, the presence of an energy 

barrier > kBT in the aggregating systems in the present study suggests that aggregation 

proceeded by reaction-limited cluster-cluster aggregation initially. Thus, initially, 

collisions between protein monomers or clusters did not always result in formation of 

aggregates. The second virial coefficient, B22, was also determined for each system using 
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DLS and found to be negative under crystallizing conditions. Thus B22 was found to 

effectively predict crystallization for the conditions studied. 

 

6.2 INTRODUCTION 

 

Cataracts are the leading cause of blindness worldwide104 and the only cure currently 

available is surgical removal of the lens and replacement with a plastic lens.46; 48 This 

surgery is unaffordable for the majority of individuals suffering from cataract, making it 

vital that early, non-invasive diagnostics and alternative cures be developed.48 

Many conditions are associated with the incidence of cataracts, including ageing 

and smoking.3 These conditions are augmented by the lack of protein turnover in the 

lens.32 The proteins in the center of the lens are approximately the same age as the 

individual.15 As the lens proteins are continuously modified over a lifetime, they sustain 

substantial damage over time through modifications that result in their instability.48; 105 

Insolubilization of the lens proteins, i.e. crystallization, aggregation, or precipitation, may 

occur as a result, leading to cataract formation.48; 105 The incidence of cataracts is also 

associated with an increase in the concentration of divalent cations in the lens.3; 106 

Human gamma D-crystallin (HGD) is one of the two most abundant of the 

crystallin family and has a molecular weight of 20 kDa.36 It has been linked to various 

congenital cataracts 87 and has also been implicated in the incidence of cold cataract 

where the lenses of animals grow cloudy at very low temperatures and clear up on 

warming.107 Apoferritin, an iron-storage protein found throughout the body, including the 

lens, has a molecular weight of 456 kDa.10 Mutations in the apoferritin gene have been 
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linked to Hereditary Hyperferritinemia Cataract Syndrome (HHCS)41 which makes it of 

interest in the present study. 

There are two quantities that have been related to the crystallization of proteins 

from solution: the osmotic second virial coefficient B22, and an interaction parameter kD, 

often referred to as the diffusivity slope.70 The osmotic second virial coefficient B22 is a 

measure of the interaction of the protein molecules with the solvent compared with their 

interaction with each other.5; 6; 44; 108 A negative B22 indicates overall attractive 

interactions between the protein molecules while a positive B22 indicates overall repulsive 

interactions.68; 108 The diffusivity slope kD is a measure of protein-protein interactions 

only.70; 108 A negative kD implies attractive interactions between protein molecules while 

a positive kD implies repulsive interactions. Therefore both B22 and kD are negative under 

crystallizing conditions. George and Wilson5; 6 studied crystallization of a number of 

proteins including lysozyme, bovine serum albumin and ovalbumin, and found that there 

is a range of slightly negative values of B22 from −1 x 10-4 to −8 x 10-4 mol mL/g2 within 

which protein crystallization is most likely to occur. They called this range of values the 

crystallization slot.5 Subsequent studies with various proteins support the existence of a 

crystallization slot.24; 109 

  Calcium48; 110 and barium63 cations are found throughout the eye, including the 

lens, and elevated concentrations of both have been associated with cataracts, with 

concentrations of Ca2+ as high as 64 mM being found in cataractous lenses.83; 110 In 

studies where frogs were injected with BaCl2 and CaCl2, cataracts formed in the lenses of 

the frogs.57 Cataractous lenses extracted from human patients can contain up to 20 times 

as much Cd2+ as normal lenses.3 In the present study, divalent cations were added to 
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solutions of HGD and of apoferritin to induce crystallization, and the size of protein 

aggregates in solution was tracked over time by dynamic light scattering. 

Bartling.10 observed that even at concentrations as high as 50 mM, Ca2+ and Ba2+ 

did not induce crystallization in apoferritin. Addition of Cd2+ to apoferritin has been 

shown to induce crystallization of this protein44; 101 and therefore CdCl2 was used in the 

present study to induce aggregation and crystallization of apoferritin. In the present study, 

addition of 10 mM CdCl2 to HGD resulted in immediate precipitation. Since such a low 

concentration of CdCl2 caused precipitation of HGD, it was deemed unsuitable for use in 

the present study. In the HGD systems investigated, CaCl2 and BaCl2 were used to induce 

crystallization since high concentrations of these cations have been linked to cataract 

disease. 

In the present study, when crystallization occurred, DLS was used to evaluate 

interfacial energy, critical radius and critical free energy of nucleation. The second virial 

coefficient and the diffusivity slope were also determined for these systems and the 

results correlated with crystallization outcome showing that both quantities may be used 

to predict crystallization of HGD and apoferritin.  

 

6.3 THEORY 

 

6.3.1 Dynamic Light Scattering 
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Dynamic light scattering (DLS) was used to evaluate the diffusion coefficient D using an 

autocorrelation function G(t) obtained directly from DLS measurements and defined by69 

 

BtAtG +⎟
⎠
⎞
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⎛−=

τ
2exp)(               6-1 

 

where A is a system-specific constant, τ is delay time and B is the baseline. As explained 

in CHAPTER 5, the diffusion coefficient D can be obtained from G(t). The 

hydrodynamic radius Rh of protein monomers and aggregates can be determined from D 

using the Stokes-Einstein equation:70 
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where kB is the Boltzmann constant, T is absolute temperature and ηo is the solvent 

viscosity. The diffusion coefficient D is related to the diffusivity slope kD as follows: 
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where Do is the diffusion coefficient at time zero, and c is the concentration. Once the 

diffusivity slope is determined at each time point, B22 may be determined using 69 

 

vkMBk swD −−= 222                 6-4 

 

where Mw is the molecular weight of the protein, ks is a friction term, and v is the specific 

molar volume of the protein. The first term in the expression usually dominates in 

polymer solutions and is therefore used as an approximation in the present study.69 The 

accuracy of this method was established in CHAPTER 5. 

 

6.3.2 Energy and Nucleation Kinetics  

 

The nucleation process is illustrated in Figure 6-1. Stochastic and reversible aggregation 

of protein monomers to form clusters of monomers or aggregates is thought to be the first 

step in the nucleation process according to the classical theory of nucleation.17; 18 When 

the aggregates reach a critical size, they are called nuclei. Rearrangement of aggregates to 

a crystalline form occurs at the critical size and aggregation becomes irreversible, leading 

to growth of the crystal.17 However, the exact nature of a nucleus and the process by 

which nuclei are formed are not known.18 The changing size of aggregates in solution 

during aggregation can be tracked by dynamic light scattering. The free energy change 

ΔG for the formation of a spherical crystalline aggregate has two contributions: a volume 

term, which is the free energy released upon formation of a unit volume, and a surface 

term, which is the free energy difference between the surface of the aggregate and the 
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bulk of the aggregate. This may be illustrated as shown in Figure 6-2. The surface term is 

always positive while the volume term is always negative. The overall free energy change 

therefore goes through a maximum where the size of the aggregates is the critical size 

and ΔGc is the critical free energy. 
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Figure 6-1: Free energy of nucleation as a function of radius illustrating the classical theory of nucleation. 

(Adapted from McPherson, 199817) 
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Figure 6-2: Free energy change of nucleation as a function of radius. The surface and volume energy 

contributions add up to the overall free energy. (Adapted from Mullin, 200118) 

 

 

ΔG is calculated using 19 
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where r is the radius of the aggregate, kB is Boltzmann’s constant, T is the absolute 

temperature, σ is the supersaturation, Ω is the protein monomer volume in solution, and γ 

is the interfacial energy. Equation 6-5 may be used to obtain a plot of ΔG against r and 

the curve obtained would be similar to that shown in Figure 6-2. The interfacial energy γ 
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is the amount of energy necessary to create a unit of new surface area on the growing 

crystal face.19 Many representations are available for supersaturation. In the present 

study, the solution supersaturation was determined from σ  = ln (c/s) where c is the 

protein concentration and s is the solubility of the protein.19 This representation is most 

often used when studying the energy changes associated with nucleation. As nucleation 

was investigated in the present study, this representation was appropriate. 

The critical radius, Rc, is first determined and then the interfacial energy 

calculated using Equation 6-6 below. This equation is obtained by setting to zero the first 

derivative of ΔG with respect to the radius. 

 

σ
γ

Tk
R

B
c

  2Ω
=                 6-6 

 

Equation 6-6 is taken from an article by Malkin and McPherson.19 However, the article 

contains a typographical error with a factor of 4 instead of a factor of 2. In the present 

work, Equation 6-6, which uses the correct factor of 2, is used to evaluate Rc. The critical 

radius is the size beyond which aggregation is no longer reversible. At this point, the 

aggregates have overcome the energy barrier and aggregation is irreversible resulting in 

growth. Below Rc the aggregates are unstable and stochastically grow and dissociate. 

Upon determination of Rc and γ, the critical free energy, ΔGc, may be calculated 

using Equation 6-7.  This equation is obtained by combining Equations 6-5 and 6-6 and 

setting ΔG = ΔGc. This gives 
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The critical free energy is calculated using Equation 6-7. The lower the value of ΔGc, the 

more likely it is that irreversible aggregation will occur and the faster the rate of 

aggregation. If ΔGc is very low, strong attraction between protein molecules does not 

allow them adequate time to orient themselves as they come together. Thus, amorphous 

aggregates, i.e. precipitates, may form rather than crystals.20 

According to classical nucleation theory, the nucleation rate J can be calculated 

using J = A exp [−ΔGc / (kBT)] where A is a pre-exponential constant.18 The main 

variables affecting J are interfacial energy, supersaturation, and temperature. The 

nucleation rate J decreases as the value of ΔGc increases. Therefore, values of ΔGc may 
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be used to gain insight into how the rate of nucleation is affected at different conditions 

even when A cannot be determined. 

 

6.4 EXPERIMENTAL PROCEDURE 

 

6.4.1 Materials 

 

Horse spleen apoferritin was purchased from Sigma-Aldrich Co. (St. Louis, MO) and 

purified using size-exclusion chromatography as described in CHAPTER 5. Purified 

apoferritin was then concentrated via centrifugation with the Amicon centrifugal filter 

unit (Millipore Corporation, Billerica, MA) and stored in 50 mM Tris-HCl buffer (pH 7.4 

with 150 mM NaCl and 10 mM NaN3) at 4°C until use. HGD was prepared as described 

in CHAPTER 4. A single batch of HGD was used for the experiments in this chapter. 

Protein concentration was determined by total protein assay using Bradford 

reagent (Pierce Biotechnology, Rockford, IL). Only one concentration of protein was 

used in every case, 0.2 mg/mL. 

Stock solutions of BaCl2 and CaCl2 were prepared by dissolving the appropriate 

amount in tris-HCl buffer and a final concentration of 10 mM was used for each. 

Appropriate amounts of cadmium chloride (MP Biomedicals, Solon, OH) were dissolved 

in ultrapure HPLC-grade water (Alfa Aesar, Ward Hill, MA) to prepare stock solutions. 

The final concentrations of CdCl2 used were 10, 13, 20 and 30 mM. 
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Protein solutions were prepared by first mixing tris-HCl buffer and stock protein 

solution and then adding the appropriate cation solution to obtain the final desired 

concentration of both protein and cation. Fresh solutions were prepared for each 

experiment and used within 1 hour for crystallization or 1 minute for dynamic light 

scattering. 

 

6.4.2 Methods 

 

6.4.2.1 Dynamic Light Scattering 

 

Dynamic light scattering was carried out on a system that consisted of an ALV 

5000/E/EPP instrument, an ALV/LSE-5004 digital correlator and ALV-60X0 4.0 

software (ALV, Langen, Germany). A 22 mW laser (632.80 nm) served as the light 

source. Scattering intensity was measured at 90° for 30 seconds per run, 10 seconds 

between each run and a total of 1000 runs. The mixture was gently vortexed and 

transferred to 2.5 mL cylindrical glass cuvettes (ALV, Langen, Germany), capped and 

then placed inside the ALV 5000/E/EPP instrument (ALV, Langen, Germany). The 

samples were kept in the machine for the full duration of the experiment. The 

hydrodynamic radius of the particles in solution was obtained from the third cumulant of 

a computer-generated Cumulant analysis. All measurements were taken at 298 K. 
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6.4.2.2 Crystallization Experiments 

 

Crystallization of apoferritin and HGD was carried out at 298 ± 0.43 K under the same 

solution conditions as the light scattering experiments using the multi-well microbatch 

crystallization set-up described by Bartling.21 

 

6.4.2.3 Determination of phase diagrams 

 

The microbatch multi-well system described by Bartling21 was used to determine the 

phase diagrams for apoferritin and HGD. A crystallization grid was set up with protein 

concentration varied along the vertical axis and precipitant concentration varied along the 

horizontal axis. Each well had a unique concentration of protein and divalent cation i.e. 

each pair of concentrations was represented by one well. After approximately 4 weeks, 

crystals were obtained in some wells. Each of these points was noted on the graph and a 

plot was then obtained showing the solubility of the protein as a function of precipitant 

concentration. For the apoferritin experiments, the protein concentration was varied from 

0 mg/mL to 0.3 mg/mL while Cd2+ concentration was varied from 0 mM to 30 mM. With 

HGD, protein concentration was varied from 0 mg/mL to 0.3 mg/mL and Ba2+ and Ca2+ 

concentrations were varied from 0 mM to 12 mM. Low protein concentrations were used 

to preserve material. All dynamic light scattering experiments used 0.2 mg/mL of HGD 

or apoferritin. The range of protein concentrations used in determining the phase 

diagrams straddled the concentrations used in DLS so that the results from both 

experiments could be correlated. 



 

 139

 

6.5 RESULTS AND DISCUSSION 

 

6.5.1 Phase Diagrams 

 

In a study by Bartling et al.,10 it was observed that apoferritin could only be crystallized 

by addition of CdCl2 and addition of up to 50 mM BaCl2 and 50 mM CaCl2 to apoferritin 

did not result in crystallization. In the present study, therefore, CdCl2 was used to induce 

crystallization in apoferritin systems. The phase diagram for apoferritin in the presence of 

CdCl2 was obtained from 2 experiments using the microbatch method at 298 K. Crystals 

were allowed to grow for 4 weeks. Table 6-1 shows a grid of apoferritin concentration 

versus CdCl2 concentration. Apoferritin concentration was varied from 0.00 to 0.30 

mg/mL along one axis while CdCl2 concentration was varied from 0.0 to 30.0 mM along 

the second axis. Wells marked with an “X” indicate where crystals were observed while 

wells marked with an “O” indicate where no crystals were observed. These results were 

plotted on a graph of initial apoferritin concentration against CdCl2 concentration as 

shown in Figure 6-3. The solid solubility line is obtained by joining the outer points of 

the region where crystals were obtained. 

 

 

 

 



 

 140

Table 6-1: Grid showing data obtained during microbatch experiments to determine the phase diagram of 
apoferritin in the presence of CdCl2. Both apoferritin concentration and CdCl2 concentration were varied. 
Each pair of concentrations was represented by a single well. Data shown were obtained with 2 different 
experiments. Wells where crystals were observed are marked with an “X” while wells where no crystals 

were observed are marked with an “O.” The “X”es in red indicate the solubility line. 
 CdCl2 concentration, mM 
  0.0 5.0 10.0 12.0 12.5 13.0 20.0 30.0 

0.00 O O O O O O O O 
0.01 O O O O X X X X 
0.05 O O O O O O X X 
0.10 O X X X X X X X 
0.15 O X X X X X X X 
0.20 O X X X X X X X 

Apoferritin 
concentration, 

mg/mL 

0.30 X X X X X X X X 
 

 

The solubility of apoferritin was observed to decrease as CdCl2 concentration 

increased, which indicates that higher concentrations of CdCl2 favor crystallization of 

apoferritin. Cations are thought to induce crystallization of proteins by becoming 

hydrated in solution, binding to water molecules and thereby decreasing the concentration 

of protein in the “free” water.82 The Hofmeister series ranks cations according to their 

degree of hydration in protein solutions, with divalent cations being more hydrated than 

monovalent cations due to their higher charge densities.4 The decreased solubility of 

apoferritin at higher concentrations of CdCl2 observed in the present study may be 

explained by the hydrating action of cations in protein solutions. At higher concentrations 

of Cd2+, the effective concentration of apoferritin is decreased leading to decreased 

solubility of this protein. 
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Figure 6-3: Plot showing apoferritin concentration as a function of CdCl2 concentration. Apoferritin 

concentration was varied from 0.00 mg/mL to 0.30 mg/mL while CdCl2 concentration was varied from 0.0 
mM to 30.0 mM. The solid line is the solubility line and it is obtained by connecting the points at the edge 

of the region where crystals were observed. 

 

 

In the apoferritin-CdCl2 system, the size of the crystals obtained decreased as the 

concentration of CdCl2 increased. Figure 6-4 shows photomicrographs of apoferritin 

crystals obtained with 0.2 mg/mL of apoferritin at 2 different concentrations of CdCl2: 13 

mM and 20 mM. The purpose of the photomicrographs was to compare average crystal 

size at each condition. A Meiji Techno (Santa Clara, CA) video-microscope was utilized 

for polarized light microscopy (PLM) and images of crystals were taken with a DKC-

5000 digital camera (Sony Electronics, San Diego, CA). Average crystal size was 

determined by measuring crystal lengths using Image Pro Plus 4.0 (Media Cybernetics, 

Silver Spring, MD) which is an image analysis software. The crystals obtained in the 13 
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mM CdCl2 solution averaged around 20 μm while in the 20 mM CdCl2 solution, the 

crystals averaged around 10 μm. This is consistent with studies by Bartling et al.44 where 

smaller crystals of apoferritin were obtained at higher CdCl2 concentrations. Bartling et 

al.44 found that csrystals grown in a solution containing 8 mg/mL of apoferritin and 15 

mM CdCl2 averaged around 80 μm, while crystals grown in a solution containing 8 

mg/mL of apoferritin and 20 mM CdCl2 averaged around 20 μm. The crystals in the 

present study were smaller because they were grown from a solution of 0.2 mg/mL 

compared with 8 mg/mL used in the study by Bartling et al.44 In the present study, more 

crystals were observed in the 20 mM CdCl2 solution implying that crystallization was 

occurring near the precipitation region of the phase diagram. Bartling et al.44 reported a 

cubic octahedral shape for apoferritin crystallized in solutions of CdCl2. In the present 

study, apoferritin crystals obtained exhibited the same cubic octahedral shape.  

 

 

 
Figure 6-4: Photomicrographs of cubic apoferritin crystals obtained via PLM during determination of the 

phase diagram in the presence of CdCl2. (a) 0.2 mg/mL apoferritin in solution containing 13 mM CdCl2 (b) 
0.2 mg/mL apoferritin in solution containing 20 mM CdCl2 
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The microbatch method was used to determine precipitant phase diagrams for 

HGD-CaCl2 and HGD-BaCl2 at 298 K. The results are shown and discussed in 

CHAPTER 4.  

 

6.5.2 Solubility and B22 

 

Using dynamic light scattering, the second virial coefficient B22 was evaluated for 

apoferritin at 0, 10, 13, 20 and 30 mM CdCl2. Two experiments were performed for each 

concentration of CdCl2. Values of B22 at each CdCl2 concentration are reported in 

CHAPTER 5 in Table 5-4 along with values of D and Rh used to determine B22. The 

phase diagram for apoferritin in the presence of CdCl2 was compared with a plot of B22 as 

a function of CdCl2 concentration. Figure 6-5 shows a plot of apoferritin concentration 

against CdCl2 concentration (extracted from Figure 6-3), and a plot of the second virial 

coefficient B22 against CdCl2 concentration. It was observed that both plots have a similar 

shape showing that B22 correlates well with solubility. Similar observations were made by 

George et al.5 who observed that a plot of the solubility of lysozyme had the same shape 

as the plot of B22 against NaCl concentration. This serves to emphasize the role of B22 as 

a means for predicting crystallization. As the value of B22 is a measure of interactions 

between protein molecules, it is reasonable that as solution conditions change, B22 values 

also change. These changes in interaction between protein molecules are reflected in the 

changes in solubility as solution conditions change. Thus, both the plot of B22 against 

CdCl2 concentration and the plot of apoferritin concentration against CdCl2 concentration 

in Figure 6-5 follow the same trend. For each concentration of CdCl2 used in the present 
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study for the B22 measurements, only one protein concentration, 0.2 mg/mL, was used. In 

contrast, a range of protein concentrations from 0.00 mg/mL to 0.30 mg/mL was used to 

determine the solubility curve. Thus establishing a B22 phase diagram using DLS requires 

less time for each pair of conditions i.e. protein concentration and CdCl2 concentration 

than establishing a crystallization phase diagram using microbatch crystallization. In the 

absence of solubility data, B22 measurements may be used to establish how the solubility 

of a protein changes as solution conditions change.  
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Figure 6-5: Solubility and B22 phase diagrams for apoferritin in solutions containing CdCl2. 

The error bars for the B22 plot indicate two measurements at each point. The missing error bars are 
contained within the data points. The dotted lines indicate the limits of the crystallization slot. 
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6.5.3 Aggregation 

 

It is theorized that stochastic aggregation of protein monomers is the first step in the 

nucleation process.17; 18 When the aggregates reach a critical size, they are called nuclei, 

and further aggregation becomes irreversible, leading to crystal growth.17 However, the 

exact nature of a nucleus and the process by which nuclei are formed are not known.18 In 

the present work, crystallization of proteins was induced by addition of divalent cations. 

Dynamic light scattering (DLS) was used to track the size of the protein aggregates as a 

function of time. DLS could not distinguish between aggregates, nuclei and crystals, 

however, and only yielded the size of particles in solution regardless of their precise 

structure. DLS detected that upon addition of cations, the protein molecules in solution 

began to form aggregates. The DLS setup used in the present study can detect aggregates 

in solution ranging in radius from 1 nm to about 1000 nm. Outside of these limits, there 

can be little confidence in the Rh values measured. 

Aggregation was induced in apoferritin by addition of CdCl2 to final 

concentrations of 10, 13, 20 and 30 mM, and a final apoferritin concentration of 0.2 

mg/mL in every case. Figure 6-6 shows a plot of Rh against time for apoferritin in the 

presence of the four different concentrations of CdCl2; data for apoferritin by itself were 

omitted as they coincide with the data for the 10 mM CdCl2 case. Aggregation was 

observed at all concentrations except in the 10 mM CdCl2 case. In previous studies, the 

hydrodynamic radius of apoferritin monomers has been shown to average around 6.5 

nm.101 In the present study, the average hydrodynamic radius of apoferritin in a solution 

with no divalent cations was 7.3 nm showing that by itself, apoferritin did not exhibit any 
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aggregation. It can be seen in Figure 6-6 that after approximately 26,000 seconds, the size 

of the aggregates in the 20 mM solution dropped rapidly. It is theorized that 

sedimentation of particles occurred in the 20 mM solution resulting in the sudden drop in 

hydrodynamic radius. 

Cations are thought to induce crystallization of proteins by becoming hydrated in 

solution, binding to water molecules and thereby decreasing the concentration of protein 

in the “free” water.82  At higher concentrations of Cd2+, the effective concentration of 

apoferritin is decreased leading to decreased solubility of this protein. Figure 6-6 shows 

that the initial rate of aggregation increased as the concentration of CdCl2 added to 

apoferritin increased. This is possibly due to increased overall hydration of Cd2+ at higher 

concentrations of CdCl2, leading to higher supersaturation of apoferritin hence faster 

nucleation. In addition, cadmium is a transition element and can form coordination bonds 

thus connecting molecules of apoferritin via specific “salt bridges.”59; 111 Higher 

concentrations of Cd2+ may result in formation of more salt bridges which may result in 

faster nucleation. 
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Figure 6-6: Time profile of the hydrodynamic radius of aggregates of apoferritin upon addition of various 

concentrations of CdCl2. The drop in the size of Rh for the 20 mM solution is due to sedimentation that 
removed particles from the area of detection. The concentration of HGD used in every case was 0.2 

mg/mL. 
 

 

HGD is known to have attractive interactions between monomers so that stable 

baseline aggregates that do not yield crystals are normally present in HGD solutions.13; 53 

Monomers of HGD have an Rh of approximately 2.5 nm.86; 87 In the present study, DLS 

measurements were carried out on a 0.2 mg/mL sample of HGD with no divalent cations 

added. These measurements showed that aggregates of HGD with Rh = 18 nm were 

present before the start of each experiment in the present study. HGD molecules tend to 

form aggregates via thiol-mediated aggregation. Typically, dithiothreitol (DTT) is used to 

reduce the aggregates to monomers. Pande et al.13 used 20 mM DTT in their HGD 
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solutions and this was sufficient to prevent aggregation altogether. In the present study, 

10 mM DTT was used in all HGD solutions. However, this concentration decreased 

aggregation but did not prevent it altogether which explains why 18 nm aggregates were 

present in the HGD solutions.  Figure 6-7 shows a plot of hydrodynamic radius Rh of 

HGD aggregates as a function of time in a solution of HGD with no divalent cations, in a 

solution containing BaCl2 and in a solution containing CaCl2. The inset is the Rh-t plot of 

HGD in solution with no additives and it shows that the average size of the aggregates in 

that solution was 18 nm. Figure 6-7 shows that over a period of 14 hours, no further 

aggregation occurred in the solution of HGD by itself, showing that the aggregates 

already present in the solution were stable. Addition of BaCl2 and CaCl2 to HGD induced 

further aggregation which was tracked by DLS for approximately 11 hours. The figure 

also shows that the initial rate of aggregation was faster with CaCl2 than with BaCl2.   

The autocorrelation function G(t), which is defined in Equation 6-1, is derived by 

comparison of scattering intensities caused by movement of protein aggregates by 

Brownian motion.103 At short time delays, where delay refers to the difference between 

the starting time and the present time, the value of G(t) is high because molecules do not 

move to a great extent relative to their initial state. At longer delay times, movement of 

protein aggregates results in less correlation between the initial and final scattered 

intensity.103 Thus G(t) decays exponentially to zero at long delay times. The 

autocorrelation function for solutions with larger aggregates decays slower as the 

molecules move more slowly through the solution. Larger molecules move slower 

because diffusion is inversely proportional to size as shown in Equation 6-2. Figure 6-8 

shows a partial logarithmic plot of autocorrelation function against delay time for the 
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HGD-BaCl2 and HGD-CaCl2 systems, and for HGD with no divalent cations added. The 

autocorrelation measurements shown were taken approximately 24,000 seconds after the 

start of the experiment. The autocorrelation function of HGD by itself decays first 

followed by that of HGD-BaCl2, and then HGD-CaCl2. This implies that the size of 

aggregates was largest in the HGD-CaCl2 solution, showing that CaCl2 induced more 

aggregation than BaCl2. 
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Figure 6-7: The time profile of the hydrodynamic radius of aggregates formed in HGD solutions upon 

addition of BaCl2 and CaCl2 to a final concentration of 10 mM each measured by DLS. HGD concentration 
was 0.2 mg/mL in all three systems. The dotted line is at 24,000 seconds. The autocorrelation functions 

shown in Figure 6-8 are taken from the data in the present figure at 24, 000 seconds. Inset: The Rh-t profile 
for HGD with no additives showing that the average Rh in this solution is 18 nm. 

 
 
 

0

20

40

60

80

100

0 7000 14000 21000 28000 35000

t (s)

R
h
(n

m
)

No precipitant



 

 150

0.0

0.2

0.4

0.6

0.8

1.0

0.0001 0.01 1 100 10000

Delay time (ms)

G
(t

)

No precipitant
10mM BaCl2
10mM CaCl2
10 mM BaCl2
10 mM CaCl2

 
Figure 6-8: Autocorrelation functions for HGD with no precipitant, with BaCl2, and with CaCl2 added. 
Measurements were taken approximately 24,000 seconds after addition of divalent cations. In all three 
systems, HGD concentration was 0.2 mg/mL while the final concentration of the cations was 10 mM in 

each case. 
 

 

There are 3 steps in the formation of an aggregate: diffusion of monomers, 

reaction or collision of the particles, and aggregation where the particles stick together. It 

is thought that there are 2 mechanisms by which aggregation occurs: diffusion-limited 

cluster-cluster aggregation (DLCA) where diffusion is the rate-limiting step, and 

reaction-limited cluster-cluster aggregation (RLCA) where reaction is the rate-limiting 

step.112 In DLCA, almost every cluster-cluster collision leads to aggregation. With 

RLCA, an energy barrier to aggregation greater than kBT is present and a large number of 

collisions must occur before aggregation occurs.113; 114 Aggregation is also faster in the 

DLCA regime than in the RLCA regime.112 The fractal dimension df is a measure of the 

compactness and regularity of the inner structure of an aggregate.98; 115 Aggregates with 
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denser structures have higher values of df.115 Faster aggregation results in aggregate 

structures that are less dense and therefore the value of df correlates to the rate of 

aggregation, with lower values of df corresponding to faster aggregation. The value of df 

may be used to determine the mechanism by which protein molecules aggregate: RLCA 

or DLCA. At long times, the dependence of Rh on df becomes a power law:116 

 

fd
h tR

1

~                    6-8 

 

 A value of df < 2 implies aggregation proceeds by DLCA, while df > 2 implies 

aggregation proceeds by RLCA. Using Equation 6-8, df was determined for all protein 

systems exhibiting aggregation in the present study. Table 6-2 shows values of df 

determined for all aggregating solutions. The value of df was determined to be less than 2 

for all aggregating systems, which implies that aggregation proceeded in DLCA regime. 

This implies that the aggregation rate was controlled by the diffusion rate of clusters 

between collisions. In the apoferritin-CdCl2 system, the value of df decreased as the 

concentration of CdCl2 increased, implying that aggregation proceeded faster at higher 

CdCl2 concentrations. The increasing aggregation rates may be due to increasing 

hydration of Cd2+ at higher concentrations of CdCl2, which in turn leads to decreased 

solubility of apoferritin. 

In the HGD systems, CaCl2 induced faster aggregation than BaCl2. In an endeavor 

to explain this observation, the Hofmeister series was examined. The Hofmeister series is 

a scale that qualitatively compares the ability of different ions to precipitate or crystallize 

proteins from solution.117 Cations are thought to induce crystallization by binding to 
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water, effectively increasing the concentration of the protein in the “free” water.82 Ca2+ is 

slightly higher than Ba2+ in the Hofmeister series.118 This implies that Ca2+ is more 

strongly hydrated than Ba2+, and indeed effective salting-out agents are known to be 

strongly hydrated.82 Ca2+ therefore increases the effective protein concentration more 

than Ba2+, leading to faster aggregation. It is also hypothesized that binding of divalent 

cations to proteins may alter the solubility of the protein, although this mechanism is not 

well-understood.118 Divalent cations are higher in the series than monovalent cations 

which may explain why monovalent cations are less effective than divalent cations at 

inducing aggregation.4 

 

Table 6-2: Summary of nucleation factors in apoferritin and HGD solutions. The fractal dimension df was 
calculated using Equation 6-8 and Rh values obtained by DLS; the initial aggregation rate was determined 
from a linear fit to the initial data points on the Rh-t profile; Rc was determined from the Rh-log t profile; γ 

was evaluated using Equation 6-6; ΔGc was evaluated using the Rc value previously determined and 
Equation 6-7. 

 HGD Apoferritin 

 10 mM 
BaCl2 

10 mM 
CaCl2 

13 mM 
CdCl2 

20 mM 
CdCl2 

30 mM 
CdCl2 

df , dimensionless 1.78 1.37 1.27 1.23 0.67 

Initial aggregation 
rate (nm/s) 0.0059 0.0271 0.0124 0.1875 0.6943 

Rc (nm) 30.63 27.56 65.10 39.10 31.70 

γ (J/m2) 2.58x 10-3 2.32 x 10-3 2.25 x 10-4 1.35 x 10-4 1.09 x 10-4 

ΔGc (J/mol) 1.01 x 10-9 7.39x 10-10 9.10 x 10-9 1.97 x 10-9 1.05 x 10-9 

Exponential 
Nucleation factor 

ΔGc/(kBT), 
dimensionless 

2400 1800 980 210 110 
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6.5.4 Second Virial Coefficient and Crystallization 

 

As discussed in CHAPTER 5, the value of the osmotic second virial coefficient, 

B22, may be used to predict crystallization in protein solutions.6 George and Wilson6 

studied crystallization of a number of proteins including lysozyme, bovine serum albumin 

and ovalbumin, and induced crystallization by addition of precipitants such as NaCl and 

polyethylene glycol 8000. They found that values of B22 which correspond to 

crystallization lie within a narrow range of slightly negative values. They called this 

range of values from −1 x 10-4 to −8 x 10-4 mol mL g-2 the crystallization slot.6 More 

negative values of B22 have been shown to correlate to precipitation while more positive 

values correlate to solutions where no crystallization occurs.5; 6 Blouwolff and Fraden119 

found, however, that B22 of CLC-ecl, a membrane protein, in crystallizing solutions 

containing n-octyl-β-maltoside detergent and PEG400 were positive and hence did not 

fall within the crystallization slot. Hitscherich et al.120 found that another membrane 

protein, OmpF porin, crystallized within a range of values of B22 from −0.5 x 10-4 to −2 x 

10-4 mol mL g-2 which they suggested may be a crystallization slot for membrane 

proteins.  Most proteins, other than membrane proteins, studied to date in crystallizing 

solutions have B22 values that fall within the crystallization slot.29; 44 In general, for each 

protein, B22 measurements must be carried out to determine if they correlate to the 

occurrence of crystallization of that protein. 

In the present study, the second virial coefficient B22 and the diffusivity slope kD 

were determined for the HGD and apoferritin systems using results from dynamic light 
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scattering in Equations 6-3 and 6-4. The results for the HGD solutions are summarized in 

Table 6-3 while the results for apoferritin are summarized in CHAPTER 5 in Table 5-4 

and plotted in Figure 6-5. In all HGD and apoferritin systems where crystallization 

occurred, the value of B22 fell within the crystallization slot except for the apoferritin-30 

mM CdCl2 system where it fell just outside the crystallization slot. No precipitate was 

observed in the apoferritin-30 mM CdCl2 system which suggests that the crystallization 

slot is a rough guideline for crystallization and values outside the crystallization slot may 

also correlate to crystallization occurring. Addition of BaCl2 and CaCl2 to final 

concentrations of 10 mM each to HGD resulted in crystallization. While B22 for both 

HGD systems fell within the crystallization slot, it was more negative in the 10 mM 

CaCl2 solution. Likewise, crystallization of apoferritin occurred upon addition of 13, 20 

and 30 mM CdCl2 with the value of B22 becoming more negative with increasing CdCl2 

concentration. Figure 6-5 shows that in the apoferritin systems where no crystallization 

occurred, i.e. in solutions containing 0 mM and 10 mM CdCl2, B22 was positive. These 

results are consistent with the crystallization slot described by George et al.5 They also 

show that the value of B22 can be used to predict crystallization of HGD and apoferritin 

under the conditions of the present study. 

 

Table 6-3: Summary of B22 and kD values for HGD solutions 

Additives Rh (nm) Do (µm2/s) D (µm2/s) kD (mL/mg) 
B22 

(mol mL/g2) 

No additive 21.18 11.32 11.46  0.06    6.66 x 10-4 

10 mM BaCl2 23.34 10.52 10.40 −0.05  −6.35 x 10-4 

10 mM CaCl2 26.33 9.45 9.22 −0.11 −7.25 x 10-4 
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6.5.5 Factors Influencing Nucleation Kinetics 

 

The size of the critical nucleus and an approximation of the number of units comprising 

that nucleus can lead to an understanding and model of nucleation. An estimate of the 

size of the critical nucleus was obtained by examining the hydrodynamic radius Rh as a 

function of time. Figure 6-9 shows such a plot with a logarithmic timescale for apoferritin 

in solutions containing 13 mM, 20 mM and 30 mM CdCl2. Using a logarithmic time-

scale makes it easier to estimate the point where aggregation is no longer reversible as the 

point on the Rh -log t plot where the slope increases suddenly. In all three solutions, there 

is little increase in Rh until well into the runs: approximately 3648 seconds for the 13 mM 

solution, 283 seconds for the 20 mM solution, and 261 seconds for the 30 mM CdCl2 

solution. It is postulated that the rapid increase in Rh at these times correspond to embryos 

reaching the size of critical nuclei. Prior to these times, embryos grow and redissolve in 

the stochastic manner associated with classical nucleation theory.18 After the critical 

nucleus has been achieved, dissolution no longer occurs and growth is rapid. After the 

rapid growth, the growth rate slows down for approximately 10,000 seconds and then 

increases again. It is postulated that the decreased growth rate corresponds to transitions 

on the ΔG–Rh curve, or rearrangement into a crystalline form, which suggests that 

rearrangement may not occur at the critical radius. It is also possible that the growth rate 

may slow down due to sedimentation of aggregates. Figure 6-10 shows a plot of Rh 

against log t for the apoferritin-13 mM CdCl2 solution. An alternative method for 

determination of the critical radius involves using linear fits to the data below and above 
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the area where there is a sudden increase in the slope in the Rh-log t plot. The equations 

for both lines are set equal to each other and the solution gives the time when at which Rc 

occurs. Using this procedure and the linear fits in Figure 6-10, Rc was determined to be 

67 nm in the apoferritin-13 mM CdCl2 solution. This agreed closely with the value 

determined by visual inspection of the Rh-log t plot, which was 65 nm. 

Figure 6-11 shows a plot of Rh against log t for HGD in 10 mM BaCl2 and 10 mM 

CaCl2 solutions.  The value of Rc was greater in the BaCl2 system than in the CaCl2 

system which is reasonable since supersaturation was higher in the CaCl2 solution. The 

change in Rh with time was more gradual in the HGD solutions than in the apoferritin 

solutions. Therefore in the HGD systems, Rc was determined using linear fits to the data 

above and below the location of the sudden increase in Rh. Table 6-2 is a summary of 

nucleation factors, including Rc, evaluated for the protein solutions under study. Theory 

predicts that higher supersaturation leads to lower values for Rc.18 As higher 

concentrations of CdCl2 result in higher supersaturation in apoferritin, lower 

concentrations of CdCl2 resulted in higher values of Rc. Greater hydration of Cd2+ at 

higher concentrations of CdCl2 results in higher supersaturation and hence lower Rc. 
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Figure 6-9: Semi logarithmic plot of hydrodynamic radius against time for 0.2 mg/mL apoferritin with 
three CdCl2 solutions. The arrows indicate the approximate critical radius which is the point where the 

slope suddenly increases. 
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Figure 6-10: Semi logarithmic plot of hydrodynamic radius against time for 0.2 mg/mL apoferritin with 13 

mM CdCl2. The lines are linear fits to the data. The intersection of the lines represents the approximate 
value of the critical radius Rc. 
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Figure 6-11: Semi logarithmic plot of hydrodynamic radius against time for 0.2 mg/mL HGD with 10 mM 
BaCl2 and 10 mM CaCl2 solutions. The arrows indicate the approximate critical radius which is the point 

where the slope suddenly increases. 

 
 

Factors influencing nucleation were determined for the HGD-CaCl2 and HGD-

BaCl2 systems. The energy barrier ΔGc was evaluated from Equation 6-7 using the Rc 

value previously determined from the semi logarithmic Rh-t plot, and the interfacial 

energy γ evaluated using Equation 6-6. The value of ΔGc was higher in the HGD-BaCl2 

system which is expected since Ba2+ is less hydrated and thus creates less supersaturation 

than Ca2+. Figure 6-12 shows a plot of ΔG against Rh for apoferritin in solutions 

containing 13, 20 and 30 mM CdCl2. The lines through the points are a third-order 

polynomial fit, which is the functional form associated with the free energy change 

according to the classical theory of nucleation, to guide the eye. The plot of ΔG against 

Rh for apoferritin with 30 mM CdCl2 is shown in the inset in Figure 6-12 to show the 

complete curve below the x-axis. The maxima represent the critical energy barrier ΔGc. 
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Values for ΔGc are summarized in Table 6-2. Nicolis and Nicolis121 report that the critical 

energy barrier to nucleation for proteins is of the order of 100 kBT which is of the order of 

10-19 J, or 10-9 J/mol for apoferritin, at 298 K.  The values obtained for ΔGc in the present 

study are also of the order of 10-9 J/mol and are thus comparable with literature values. It 

was observed that increasing the concentration of CdCl2 resulted in lower values of ΔGc. 

This observation may be explained by the fact that there is a salting-out effect as the 

concentration of CdCl2 increases. This implies there is a greater hydration of Cd2+ leading 

to a greater driving force to crystallization which lowers the energy barrier. This is 

reflected in the aggregation rates which also increase as the concentration of CdCl2 

increase. Table 6-2 shows that the surface energy γ decreased with increasing CdCl2 

concentration indicating that less work needed to be done to move particles to the 

growing surface. The critical energy barrier ΔGc was greater than kBT which is 

unexpected since values for df indicate aggregation occurred in apoferritin solutions by 

DLCA. A possible explanation is that aggregation occurred by a combination of RLCA 

and DLCA, with initial aggregation occurring by RLCA and subsequent aggregation by 

DLCA. An examination of the Rh-log t plot in Figure 6-9 reveals that the Rh of the 

aggregates increases rapidly after a period where the aggregate size does not increase 

appreciably. This supports the theory that initial aggregation occurs by RLCA. 
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Figure 6-12: The overall free energy of apoferritin with CdCl2 aggregating systems. The arrows point to 
the critical energy barriers to nucleation. The lines through the points are polynomial fits to guide the eye. 
The apoferritin concentration was 0.2 mg/mL in every case. The inset is the entire 30 mM CdCl2 curve. 

 

 

Theory predicts that the nucleation rate J should increase with increasing 

supersaturation.18 In the present study, the exponential nucleation factor ΔGc / (kBT) was 

found to decrease with increasing CdCl2 concentration implying that J increased with 

increasing CdCl2 concentration as predicted by theory. In HGD solutions, addition of 

BaCl2 resulted in a higher energy barrier, a higher surface energy, and a slower 

nucleation rate than CaCl2. These values are summarized in Table 6-2.  

In general, it was observed that HGD molecules had a greater tendency to 

aggregate than apoferritin molecules. Addition of 10 mM CdCl2 to 0.2 mg/mL apoferritin 
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yielded no aggregation while precipitation occurred immediately upon addition of 10 mM 

CdCl2 to 0.2 mg/mL HGD. Similarly, Figure 6-13 shows that the addition of 10 mM 

BaCl2 did not cause aggregation of 0.2 mg/mL apoferritin, whereas it resulted in 

immediate aggregation in HGD. Bartling et al.10 found that concentrations of BaCl2 as 

high as 50 mM did not result in crystallization of apoferritin. It is possible that HGD is 

more sensitive to the divalent cations used in the present study. Also, apoferritin is a 

much larger molecule than HGD and higher concentrations of the divalent cations may be 

necessary to induce the same level of aggregation as in HGD. Therefore normalizing 

cation concentrations to protein moles rather than solution volumes may provide a better 

basis for comparison. Cadmium is a transition element and can form coordination bonds 

thus connecting molecules of apoferritin via specific “salt bridges.”59 In addition, 

apoferritin participates in iron storage in the body by binding iron to 24 nucleation sites 

in its inner cavity.43 It is possible that the nucleation sites allow binding between 

apoferritin and Cd2+.  
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Figure 6-13: Time profile of hydrodynamic radius of 0.2 mg/mL apoferritin upon addition of 10 mM 

BaCl2. 

 

 

6.6 CONCLUSIONS 

 

Phase diagrams were determined for HGD-BaCl2, HGD-CaCl2, and apoferritin-CdCl2 

systems using a microbatch method. Protein concentrations were varied from 0 to 0.3 

mg/mL. Concentrations of CaCl2 and BaCl2 were varied from 0 to 12 mM while 

concentrations of CdCl2 were varied from 0 to 30 mM. In the HGD systems, tetragonal 

crystals were obtained at all concentrations of BaCl2 and CaCl2. Crystals of apoferritin 

obtained under all conditions of the present study were cubic octahedral. 

Dynamic light scattering (DLS) was applied to systems of human gamma D-

crystallin (HGD) and apoferritin with and without selected divalent cations added. The 

diffusivity slope kD and the second virial coefficient B22 were determined for all systems 

and both were negative in systems where crystallization occurred. This shows that values 
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for B22 and kD can be used to predict the likelihood of a protein solution crystallizing. In 

HGD systems, addition of Ca2+ resulted in more negative values of B22 and kD than upon 

addition of Ba2+, implying that Ca2+ was more hydrated in HGD solutions than Ba2+. In 

apoferritin-CdCl2 systems, B22 and kD decreased with increasing concentration of CdCl2. 

The B22 vs. CdCl2 concentration plot was found to have the same shape as the solubility 

plot for apoferritin-CdCl2 system. Therefore in the absence of solubility data, B22 

measurements, which require less material and time than solubility experiments, can be 

used to establish the solubility of apoferritin.  

In systems of HGD and apoferritin where aggregation was successfully induced, 

the critical radius, the interfacial energy and the critical free energy were determined. As 

supersaturation increased, initial aggregation rates were found to increase while the 

critical radius decreased. The interfacial free energies obtained ranged from 0.11 x 10-3 to 

3.06 x 10-3 J/m2 while the range of energy barriers was from 1.05 x 10-9 to 9.10 x 10-9 

J/mol.  

 Comparison of exponential nucleation factors in the apoferritin-CdCl2 system at 

different concentrations of CdCl2 showed that nucleation proceeded faster at higher 

concentrations of CdCl2. Therefore, since nucleation is the rate limiting step for 

crystallization, faster crystallization can be induced in apoferritin systems by increasing 

the concentration of CdCl2 added. These results provide evidence that DLS can be used 

to evaluate criteria such as critical energy and nucleation rates which allow 

characterization of aggregating systems. Knowledge of these criteria provides a means to 

manipulate crystallization processes to either induce or prevent crystallization. 
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 In summary, phase diagrams were determined for HGD and apoferritin in the 

presence of selected divalent cations. DLS was used to measure the second virial 

coefficient and the values obtained confirm that the second virial coefficient can be used 

to predict the occurrence of crystallization. DLS measurements were used to evaluate 

nucleation factors leading to determination of the overall free energy of nucleation. 
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CHAPTER 7: EFFECT OF SOLUBILIZERS ON 

NUCLEATION AND CRYSTALLIZATION OF GAMMA D-

CRYSTALLIN 

 
 

7.1 ABSTRACT 

 

Crystallization of proteins is thought to begin with stochastic aggregation of protein 

monomers. The effects of alpha A-crystallin on solutions of human gamma D-crystallin 

(HGD) where aggregation was induced were examined and compared with the effects of 

NDSB-201, a commercially available solubilizer. Aggregation and crystallization were 

induced in HGD by addition of CaCl2 or BaCl2 to solutions of the protein. Aggregation 

was tracked in HGD solutions by dynamic light scattering. While both alpha A-crystallin 

and NDSB-201 reduced the occurrence of crystallization, the solubilizing properties of 

alpha A-crystallin were far superior. Alpha A-crystallin decreased the size of the 

aggregates in solution and also prevented crystallization from occurring. NDSB-201 did 

not decrease the size of the aggregates but it decreased the size of crystals obtained and 

increased the energy barrier to nucleation compared to HGD-CaCl2 solutions with no 

NDSB-201. 

 



 

 166

 

7.2 INTRODUCTION 

 

The crystallins are structural water-soluble proteins that make up 90% of all the proteins 

found in the lens.38 They are the major proteins that maintain lens transparency.30 There 

are three classes of crystallins in the mammalian lens, namely alpha-, beta- and gamma-

crystallins.  

Gamma-crystallin has an average molecular weight of 20 kDa.36 As Figure 7-1 

illustrates, there are seven gamma-crystallin genes (gamma A, gamma B, gamma C, 

gamma D, gamma E, gamma F, gamma S), and the most abundantly expressed gamma-

crystallin genes in the human lens are gamma C and gamma D.15; 39; 40 Many genetic 

cataracts have been linked to point mutations in the gamma C and gamma D genes, which 

demonstrates the importance of these two proteins to lens transparency.40 However, the 

genetic cataracts linked to gamma D-crystallin are more numerous.87 Gamma D-crystallin 

has also been linked to cold cataract wherein the center of the lenses of young mammals 

becomes opaque when cooled but clear up rapidly upon warming.14; 53 The 3-D structure 

of gamma D-crystallin is shown in Figure 7-2. 

Alpha-crystallin is composed of heterogeneous complexes of alpha A-crystallin 

and alpha B-crystallin, as illustrated in the schematic in Figure 7-1, and makes up 40% of 

the soluble lens protein.15 Alpha A-crystallin and alpha B-crystallin have molecular 

weights of 20-kDa each. Approximately 40 molecules of alpha A-crystallin and alpha B-

crystallin in a ratio of approximately 3:2 make up the structure of alpha-crystallin. 

Expression of alpha A-crystallin is restricted to the lens cells. Alpha B-crystallin is 
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systemically expressed but is mainly found in the eye lens.122 Alpha A-crystallin and 

alpha B-crystallin have not been crystallized successfully to date so the quaternary 

structure of alpha-crystallin remains unknown.123 Alpha A-crystallin, alpha B-crystallin 

and alpha-crystallin inhibit insolubilization of the crystallin proteins, including 

themselves, due to conditions of stress33 which may be generated by oxidation and 

chemical reduction, for example.34 Studies carried out with a mutant form of gamma C-

crystallin  show that alpha-crystallin may prevent insolubilization of aggregating 

crystallins by forming complexes with them thus improving their solubility.40 Results 

from a study with beta-crystallin and gamma-crystallin suggest that alpha-crystallin 

selectively binds to denatured proteins and inhibits pathways that lead to non-specific 

aggregation.71; 124  
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Figure 7-1: Schematic illustrating the relationship between the crystallins. 
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Cataracts, which are defined as opacity of the lens,36 are the leading cause of 

blindness, affecting an estimated 16–20 million people worldwide. Currently, the only 

cure for cataracts is surgical removal of the lens and replacement with a plastic 

intraocular lens.15 The crystallins have been implicated in cataract formation. The lack of 

protein turnover in the lens results in stress-induced damage to the crystallins 

accumulating over time.15 This damage often leads to decreased solubility of the 

crystallins resulting in the formation of precipitates or crystals. Crystals or precipitates 

with molecular masses above 50 MDa diffract light and therefore interfere with vision15; 

51 leading to cataract formation.15; 48; 49; 50 Cataracts have been associated with increased 

concentrations of divalent cations such as Ca2+, Cd2+, Pb2+ and Ba2+.3; 106 

The exact mechanism by which crystallization occurs is not known. According to 

the classical theory of nucleation,95 stochastic aggregation of protein molecules is the first 

stage of protein crystallization. Aggregates that reach a critical size form a nucleus and 

rearrange to a crystalline form. More molecules are then added to the nucleus leading to 

growth of the crystal.  

In the present study, Ca2+ and Ba2+ were added to solutions of HGD and 

aggregation leading to crystallization was tracked over time by dynamic light scattering. 

The chaperone activity of alpha A-crystallin was studied by addition of the protein to 

solutions of HGD where aggregation had been induced. The results were then compared 

with the solubilizing effects of 3-(1-Pyridino)-1-propane sulfonate (NDSB-201) whose 

structure is shown in Figure 7-3. NDSB-201 is a commercially available solubilizer 
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which is thought to prevent interaction between protein molecules, thus leading to 

increased solubility of the protein.61 

 

 
Figure 7-2: 3-D structure of human gamma D-crystallin. 

(Source: http://www.ebi.ac.uk/pdbsum/1hk0) 
 

 

 

 

Figure 7-3: Structure of NDSB-201 showing oppositely charged ends of a carbon bridge 
(Source: http://www.gbiosciences.com/NDSB_201-desc.aspx) 



 

 170

 

7.3 THEORY 

 

7.3.1 Dynamic Light Scattering 

 

Dynamic light scattering (DLS) makes use of fluctuations caused by Brownian motion to 

measure the diffusion coefficient of protein molecules in solution.68 The hydrodynamic 

radius of the protein molecules or aggregates can be calculated from the diffusion 

coefficient using the Stokes-Einstein equation. The diffusion coefficient Do is also used 

to calculate the diffusivity slope kD and hence the second virial coefficient B22. Details of 

the calculations involved are presented in CHAPTER 5.  

 

 

7.3.2 Energy and Nucleation Kinetics 

 

Figure 7-4 shows an illustration of a plot of the overall free energy of nucleation as a 

function of the radius of protein aggregates in solution. It is not known exactly how 

crystallization of proteins occurs. According to the classical theory of nucleation,95 which 

is used in the present study, crystallization of proteins begins with aggregation of 

proteins. However, it is not known whether aggregation occurs by combination of protein 

monomers or oligomers, or by joining of clusters (small aggregates), or a combination of 

all three.17 Aggregation of protein monomers is initially random, reversible and 
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stochastic, resulting in the formation of clusters which break apart to monomers. 

Aggregation is initially reversible due to the existence of an energy barrier ΔGc. If the 

aggregates reach a critical size, they overcome the energy barrier and become critical 

nuclei. It remains unknown whether the critical nucleus is ordered at the start of 

aggregation or whether it undergoes reorganization at a later stage.17 In the present study, 

it is assumed that reordering from random aggregates to crystals takes place after the 

energy barrier has been overcome. The crystals then grow bigger as more protein 

monomers or clusters are added.  
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Figure 7-4: Free energy of nucleation as a function of radius. (Adapted from McPherson, 199817) 
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As described in SECTION 6.3.2, ΔG is calculated for a spherical radius by19 
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where r is the radius of the aggregate, kB is Boltzmann’s constant, T is the absolute 

temperature, σ is the supersaturation, Ω is the protein monomer volume in solution, and γ 

is the interfacial energy. The interfacial energy γ is the amount of energy necessary to 

create a unit of new surface area on the growing crystal face.19  

The critical free energy ΔGc is the energy barrier that must be overcome for stable 

nuclei to form. As described in SECTION 6.3.2, ΔGc is calculated using19 

 

2

32

)(3
 16
σ
γπ

Tk
G

B
c

Ω
=Δ                7-2 

 

Aggregates with an overall free energy less than ΔGc dissociate while those with an 

overall free energy greater than ΔGc continue to grow.18 
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Solubilizers like NDSB-201 work by increasing the solubility of proteins17; 61 thus 

increasing the critical energy barrier ΔGc which in turn may increase the interfacial 

energy γ. Alpha A-crystallin is thought to solubilize proteins by preventing aggregation 

of proteins,33 which implies that ΔGc is so great that it approaches infinity. 

 

7.4 EXPERIMENTAL PROCEDURE 

 

7.4.1 Materials 

 

HGD was expressed using E. coli BL21-DE3 clones obtained from the Petrash Lab at 

Washington University in St. Louis, MO using the method described by Andley. 64 After 

purification, buffer exchange into 50 mM Tris-HCl buffer (pH 7.4 with 10 mM NaN3) or 

the same buffer with 150 mM NaCl and 10 mM dithiothreitol (DTT) was accomplished 

by dialysis with 10 kDa molecular weight cutoff dialysis cassettes (Pierce Biotechnology, 

Rockford, IL). After dialysis, HGD was stored at 4°C until use. Human alpha A-crystallin 

was purchased from ProSpec (Rehovot, Israel) and used as received in 20 mM Tris-HCl 

buffer (pH 7.5). 

Stock solutions of CaCl2 or BaCl2 (Sigma-Aldrich Co., St. Louis, MO) were 

prepared by dissolving the appropriate amounts of each in 50 mM tris-HCl buffer (pH 7.4 

with 10 mM NaN3). Appropriate amounts of NDSB-201 (EMD, Gibbstown, NJ) were 

dissolved in tris-HCl buffer (pH 7.4 with 10 mM NaN3) to prepare stock solutions.  
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Protein solutions were prepared by first mixing buffer and stock protein solution 

and then adding CaCl2 or BaCl2 to obtain the final desired concentration of both the 

protein and the cation. Fresh solutions were prepared for each experiment and used 

immediately for crystallization or dynamic light scattering. Protein concentration was 

determined by total protein assay using Bradford reagent (Pierce Biotechnology, 

Rockford, IL). Only one concentration of HGD was used in every case, 0.2 mg/mL. 

 

7.4.2 Methods 

 

7.4.2.1 Dynamic Light Scattering 

 

Dynamic light scattering measurements were carried out on a system which consisted of 

an ALV 5000/E/EPP instrument, an ALV/LSE-5004 digital correlator and ALV-60X0 

4.0 software (ALV, Langen, Germany). A 22 mW laser (632.80 nm) served as the light 

source. More details are given in CHAPTER 6. All measurements were taken at 298 K. 

 

7.4.2.2 Crystallization Experiments 

 

Crystallization of apoferritin and HGD was carried out at 298 ± 0.43 K under the same 

solution conditions as the light scattering experiments using the multiwell microbatch 

crystallization set-up described by Bartling et al.21  
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7.5 RESULTS 

 

7.5.1 Oxidized HGD vs. Non-oxidized HGD 

 

HGD molecules have a tendency to form intermolecular disulfide bonds with other HGD 

molecules, resulting in aggregation of HGD. Dithiothreitol (DTT), which is a reducing 

agent, prevents aggregating of proteins by forming intermolecular disulfide bonds with 

them.12 In the experiments in CHAPTER 4 and CHAPTER 6, 10 mM DTT was used in 

HGD solutions and the average Rh of HGD was 18 nm in these solutions. The HGD 

production and purification processes used in SECTION 7.5.2 were the same as for the 

HGD batch used in the experiments presented in CHAPTER 4 and CHAPTER 6, with the 

same migration of bands showing similar purity of HGD. However, in the experiments in 

SECTION 7.5.2, DTT was inadvertently left out of the HGD solution and this resulted in 

HGD solutions with an average Rh of 73 nm as determined by dynamic light scattering. In 

the present study, the HGD solution with an average Rh of 73 nm is referred to as 

oxidized HGD while the HGD solution with an average Rh of 18 nm is referred to as non-

oxidized HGD. In the sections following, results are presented from experiments 

performed with both oxidized and non-oxidized HGD. Results from experiments with 

oxidized HGD are relevant because oxidation of lens proteins such as HGD has been 

implicated in cataract formation.15 
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7.5.2 Experiments With Oxidized HGD 

 

Three different concentrations of CaCl2 were added at 298 K to human gamma D-

crystallin (HGD) to give a final HGD concentration of 0.2 mg/mL and final CaCl2 

concentrations of 20, 30 and 35 mM. Figure 7-5 shows a plot of Rh against time for HGD 

in solution with no CaCl2 and in solution with 20, 30 and 35 mM CaCl2 added. The plot 

shows that the 0.2 mg/mL sample of HGD with no CaCl2 added had aggregates with an 

average Rh around 73 nm initially present in the solution. The aggregates did not increase 

in size and were therefore stable. As explained in SECTION 7.5.1, the aggregates were 

larger than the aggregates in the HGD sample used in CHAPTER 6 i.e. 18 nm. Thus, one 

could speculate that slight oxidation in the absence of DTT caused baseline aggregation. 

Addition of all three concentrations of CaCl2 resulted in aggregation of HGD. 

However, Figure 7-5 shows that it was difficult to distinguish significant differences 

between the dependence of size on time for the three concentrations of CaCl2. Figure 7-6 

shows an Rh-log t plot for the 30 mM CaCl2 solution. An estimation of the critical radius 

was taken from the intersection of linear fits to the data above and below the point where 

the slope of the Rh-log t plot suddenly increases. The overall free energy of nucleation 

was compared for all three solutions. The critical free energy ΔGc of all three solutions as 

well as the critical radius Rc and the interfacial energy γ are reported in Table 7-1 along 

with B22 values. The procedures for obtaining these quantities are given in CHAPTER 5 

and CHAPTER 6. Figure 7-7 shows a plot of ΔGc against radius for the 20, 30 and 35 

mM CaCl2 solutions. It can be seen that ΔGc was lowest for the 20 mM CaCl2 case, and 

highest for the 35 mM case. The higher the value of ΔGc, the less likely it is that the 
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protein aggregates will overcome the energy barrier. Therefore, the protein solutions with 

high ΔGc remain soluble. Conversely, protein solutions with low ΔGc values are more 

likely to yield crystals. Applying this logic to Figure 7-7, it appears that since the value of 

ΔGc increases as the concentration of CaCl2 added to HGD increases from 20 to 35 mM, 

there is a salting-in effect i.e. an increase in the solubility of HGD. However, scatter in 

the data does not allow this conclusion to be drawn with certainty. This observation 

introduces another means by which salting-in and salting-out, or decreased solubility, 

may be observed in protein solutions. The B22 values calculated for each solution, and 

reported in Table 7-1, corroborate this conclusion as the 20 mM CaCl2 solution had the 

highest B22 value and the 35 mM CaCl2 solution had the lowest B22 value. 
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Figure 7-5: Time profile of hydrodynamic radii of HGD upon addition of 3 different concentrations of 

CaCl2. It is impossible to determine from the plot which CaCl2 concentration induced the greatest 
aggregation. Inset: The Rh-t plot for all three CaCl2 concentrations over a shorter time scale. 
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Figure 7-6: The Rh-log t profile of the 30 mM CaCl2 solution with an arrow indicating the critical radius. 
The lines are linear fits to the data. The intersection of the lines represents the critical radius. 
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Table 7-1: Summary of factors affecting nucleation in oxidized HGD-CaCl2 solutions 

CaCl2 
Concentra-
tion (mM) 

Rh 
(nm) 

Do 
(µm2/s) D/Do 

kD 
(mL/mg) 

B22 (mol 
mL/g2) Rc (nm) γ (J/m2) ΔGc (J/mol) 

20 92.33 3.48 0.76 −1.22 −7.63 x 10-4 113.00 2.06 x 10-2 1.10 x 10-7 

30 94.61 2.88 0.89 −0.55 −3.44 x 10-4 120.71 2.20 x 10-2 1.34 x 10-7 

35 103.52 2.54 0.92 −0.39 −2.41 x 10-4 130.36 2.37 x 10-2 1.69 x 10-7 
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Figure 7-7:  Nucleation energy profile for HGD on addition of 20, 30, and 35 mM CaCl2. The energy 

barrier increases as the concentration of CaCl2 added increases. The lines are polynomial fits of the data. 

 

 

As suggested by its name, non-detergent sulfobetaine 201 (NDSB-201) is not a 

detergent. It solubilizes proteins without denaturing them, unlike detergents.61 NDSB-201 

has opposite charges at each end of a carbon bridge, which creates a dipole. Vuillard et 
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al.61 suggested that the interaction of the dipole with the charges on the surface of the 

protein molecules may prevent interaction between protein molecules, leading to 

increased solubility of the protein.61 The effect of NDSB-201 on an HGD-CaCl2 solution 

was therefore examined. 

Table 7-2 gives values of the second virial coefficient B22 for HGD obtained 

under different solution conditions. Values of Rh, D and kD used to evaluate B22 are also 

given in Table 7-2. The first non-scattered point on the Rh-t curve was used to determine 

the second virial coefficient. Second virial coefficient values of HGD from Table 7-2 are 

plotted on the bar chart in Figure 7-8. It can be seen that the value of B22 did not change 

appreciably upon addition of NDSB-201 to the HGD-20mM CaCl2 system. Previous 

studies with apoferritin in solutions containing 10 mM and 15 mM CdCl2 showed that 1 

M each of NDSB-195, NDSB-201 and NDSB-256 did not change the sign of the second 

virial coefficient, though they changed the magnitude of B22 slightly.10 Figure 7-9 shows 

photomicrographs of HGD crystals obtained in the following solutions: 0.2 mg/mL HGD 

with 20 mM CaCl2; 0.2 mg/mL HGD with 20 mM CaCl2 and 100 mM NDSB-201; and 

0.2 mg/mL HGD with 20 mM CaCl2, and 0.1 mg/mL alpha a-crystallin. The results for 

the solution containing alpha A-crystallin will be discussed later in this section. The 

photomicrographs were obtained by examining approximately 20 μL from a 1 mL sample 

of each solution. The purpose of the examination was to compare the average size of 

crystals in each solution. Details of the apparatus used are described in CHAPTER 4. The 

crystals obtained in the solution containing NDSB-201 were approximately 5 μm while 

those in the solution with no NDSB-201 were approximately 20 μm. Therefore, even 
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though addition of NDSB-201 did not prevent crystallization, it may have resulted in 

smaller crystals being obtained.  

 

 
Table 7-2: Second virial coefficient values for oxidized HGD in solution with various additives. The 

concentration of HGD used in all solutions 0.2 mg/mL HGD. 

 
Additives 

Rh 
(nm) 

Do 
(µm2/s) D/Do 

kD 
(mL/mg) 

B or B22 (mol 
mL/g2) 

 
No additives 73.26 3.08 1.08 0.38 2.40 x 10-4 

 
20 mM CaCl2 

92.33 3.48 0.76 −1.22 −7.63 x 10-4 

 
20 mM CaCl2 with 100 mM NDSB 102.00 3.36 0.71 −1.46 −9.13 x 10-4 

 
20 mM CaCl2 with 0.1 mg/mL alpha A-
crystallin 

70.90 2.96 1.16 0.78 4.86 x 10-4 

 

 

Values for Rc, γ and ΔGc are reported in Table 7-3 for HGD solutions containing 

20 mM CaCl2, and HGD solutions containing both 20 mM CaCl2 and 100 mM NDSB-

201. Procedures for obtaining these data are explained in CHAPTER 6. Figure 7-10 

shows a plot of overall free energy of nucleation as a function of aggregate size in the 0.2 

mg/mL HGD with 20 mM CaCl2 solution, and the 0.2 mg/mL HGD with 20 mM CaCl2 

and 100 mM NDSB-201 added. A similar plot was not made for the HGD solution 

containing 20 mM CaCl2 and alpha A-crystallin because no aggregation occurred in that 

solution as can be seen from the Rh-t plot in Figure 7-11. It can be seen from Figure 7-10 

that addition of NDSB-201 resulted in an increase in the free energy barrier. Thus NDSB-

201 may have increased HGD solubility in this system by increasing the barrier to 

nucleation and thereby making it more difficult for crystals to form. The presence of 

large protein crystals in the lens results in diffraction of light and hence cataract. The use 



 

 182

of solubilizers such as NDSB-201, while not preventing crystallization, would at least 

decrease the size of crystals obtained, thereby decreasing the amount of diffraction in the 

lens and reducing the incidence of cataracts. 
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Figure 7-8: Second virial coefficient B22 values for HGD solutions with various additives. Two 
experiments were carried out at each condition except for the NDSB experiment where only one 

experiment was carried out. The error bars represent deviations from the mean. The HGD solution with no 
additives had a positive B22.  Addition of 20 mM CaCl2 resulted in negative B22 which fell within the 
crystallization slot. Addition of a final concentration of 0.1 mg/mL alpha A-crystallin to a solution 

containing HGD and CaCl2 increased B22 and actually resulted in a positive B22 higher than that of HGD 
with no additives. Addition of 100 mM NDSB-201 to a solution containing HGD and CaCl2 did not affect 

B22. The dotted lines represent the limits of the crystallization slot. The concentration of HGD used in every 
case was 0.2 mg/mL. 
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Figure 7-9: Photomicrographs of crystals of HGD obtained upon addition of the following solutions at 298 

K (a) 20 mM CaCl2 (b) 20 mM CaCl2 and 100 mM NDSB-201 (c) 20 mM CaCl2 and alpha A-crystallin. 
No crystals were obtained in the solution containing alpha A-crystallin. 

 

 

Table 7-3: Summary of nucleation factors in oxidized HGD solutions 

Additive Rc (nm) γ (J/m2) ΔGc (J/mol) 

20 mM CaCl2 113.00 2.06 x 10-2 1.10 x 10-7 

20mM CaCl2and 100mM NDSB-201 145.38 2.65 x 10-2 2.34 x 10-7 
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Figure 7-10: Overall nucleation energy profile of HGD upon addition of CaCl2 by itself, and upon addition 

of CaCl2 in the presence of NDSB-201. The lines through the points are polynomial fits to guide the eye. 
 

 



 

 184

Previous studies with alpha A-crystallin have shown that it acts as a molecular 

chaperone, i.e. it prevents aggregation of proteins in the lens and in vitro.33; 64 Therefore, 

in the present study, an attempt was made to prevent aggregation of HGD by addition of 

alpha A-crystallin. Figure 7-12 shows a plot of Rh vs. t obtained by dynamic light 

scattering (DLS) for a sample of 0.1 mg/mL alpha A-crystallin in solution by itself. These 

data yielded an average Rh of 13.88 nm which is close to the Rh of 12.2 nm reported for 

monomers of alpha A-crystallin by Biswas et al.125 The effect of 0.1 mg/mL alpha A-

crystallin on the 0.2 mg/mL HGD with 20 mM CaCl2 system was investigated. Figure 

7-11 shows a plot of Rh against time for HGD in solution by itself, with 20 mM CaCl2, 

and with 20 mM CaCl2 and 0.1 mg/mL alpha A-crystallin. The solution of HGD by itself 

contained aggregates with an average size of 73 nm. As explained in SECTION 7.5.1, the 

73 nm aggregates were caused by the absence of DTT in the HGD solution. Upon 

addition of CaCl2 to HGD, aggregation of HGD occurred until approximately 800 

seconds after the start of the experiment, at which point the size of the aggregates 

plateaued at approximately 140 nm. In the solution containing HGD, alpha A-crystallin 

and CaCl2, stable aggregates of approximately 50 nm were formed. The ratio of alpha A-

crystallin to HGD in the human lens is approximately 3.4:1.126 In the present study, the 

ratio of alpha A-crystallin to HGD used was 0.5:1. This implies that much less alpha A-

crystallin was used in the present study compared to actual lens conditions. In spite of 

this, alpha A-crystallin exhibited remarkable chaperoning properties, reducing the size of 

aggregates from 73 nm for pure HGD to 50 nm as shown in Figure 7-11. It is likely that 

the 50 nm aggregates are a complex of alpha A-crystallin and HGD since alpha A-

crystallin has been reported to inhibit aggregation of proteins by forming complexes with 
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them.33 The cross second virial coefficient B23, which measures the effect of alpha A-

crystallin on intermolecular interactions of HGD, was calculated using 

 

33
2
3322322

2
2 2 ByyyBByB ++=            7-3 

 

where B is the second virial coefficient of HGD and alpha A-crystallin in the 20 mM 

CaCl2 solution; B22 is the second virial coefficient of HGD in a solution by itself with no 

CaCl2 and no alpha A-crystallin; B33 is the second virial coefficient of alpha A-crystallin 

in a solution with no HGD and no CaCl2; y2 is the solvent-free mole fraction20 of HGD; 

and y3 is the solvent-free mole fraction of alpha A-crystallin. The mole fractions were 

CaCl2-free because in solutions by itself, CaCl2 did not scatter any light (data shown in 

CHAPTER 5). The values of B, B22 and B33 were determined by DLS and are given in 

Table 7-2 along with the corresponding Rh, D and kD values. The value of the second 

virial coefficient for alpha A-crystallin with no additives (B33) was determined to be 7.83 

x 10-4 while that of HGD with no additives (B22) was 2.40 x 10-4 mol mL/g2. Upon 

addition of 20 mM CaCl2, B22 of HGD decreased to −7.63 x 10-4 mol mL/g2. Using 

Equation 7-3, and the measured B value of 4.86 x 10-4 mol mL/g2, the cross second virial 

coefficient (B23) value for HGD in the solution containing CaCl2 and alpha A-crystallin 

was determined to be 6.58 x 10-4 mol mL/g2, which was even higher than B22 of HGD 

with no CaCl2 added. This shows that addition of alpha A-crystallin led to a more 

positive value of the second virial coefficient. The value of B23 is reported in Table 7-4 

along with mole fraction values for HGD with CaCl2 (y2) and pure alpha A-crystallin (y3). 
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The positive cross virial coefficient shows that alpha A-crystallin plays a solubilizing role 

in HGD solutions in vitro. 

 

Table 7-4: Cross second virial coefficient (B23) value for oxidized HGD with 20 mM CaCl2 and 0.1 mg/mL 
alpha A-crystallin, and mole fraction values for pure oxidized HGD (y2) and pure alpha A-crystallin (y3) 

B23 6.58 x 10-4 mol mL g-2 

y2 0.67 

y3 0.33 

 
 
 
 

Figure 7-11 shows that alpha A-crystallin subdued aggregation of HGD in a 

solution containing 20 mM CaCl2 at 298 K. However, oscillations were observed in the 

solution containing alpha A-crystallins. It is possible that the oscillations are due to 

clusters forming and dissipating as a result of not enough dissolved protein in the solution 

to take aggregates beyond the critical dimension. The photomicrographs in Figure 7-9 

show a sample of the HGD-CaCl2 with alpha A-crystallin solution. As Figure 7-9 shows, 

no crystals were obtained in this solution showing that alpha A-crystallin prevented 

crystallization of HGD. The reduced aggregation and absence of crystals confirm the 

solubilizing action of alpha A-crystallin under the conditions of the present study. 
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Figure 7-11: DLS results showing the hydrodynamic radius of HGD solutions as a function of time.  

Addition of CaCl2 resulted in aggregation of HGD. Alpha A-crystallin prevented aggregation and reduced 
the size of aggregates of HGD below that of HGD with no additives. 

 

 

0

20

40

60

80

0 500 1000 1500

t (s)

R
h 
(n
m
)

 
Figure 7-12: The Rh-t plot for alpha A-crystallin obtained from dynamic light scattering 
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7.5.3 Experiments With Non-oxidized HGD 

  

In order to investigate the solubilizing action of alpha A-crystallin on non-oxidized HGD, 

experiments were carried out with non-oxidized HGD i.e. HGD containing 10 mM DTT. 

The purpose of DTT was to reduce thiol-mediated aggregation of HGD monomers. 

Figure 7-13 shows a plot of Rh against time for non-oxidized HGD with no additives, 

with 20 mM CaCl2, in a solution containing 20 mM CaCl2 and 0.1 mg/mL alpha A-

crystallin, and in a solution containing 20 mM CaCl2 and 100 mM NDSB-201. The same 

concentration of HGD, 0.2 mg/mL, was used for all three solutions. Figure 7-13 shows 

that the solution containing no additives had initial aggregates around 20 nm and 

exhibited no further aggregation over time whereas the solution containing 20 mM CaCl2 

exhibited aggregation. There was initial aggregation in the solution containing CaCl2 and 

alpha A-crystallin, although alpha A-crystallin prevented further aggregation of HGD as 

can be seen in Figure 7-13, keeping the size of the aggregates constant at 56 nm. The Rh-t 

profile for the solution containing CaCl2 and 100 mM NDSB-201 was similar to that of 

HGD with CaCl2 and without NDSB-201, showing that NDSB-201 did not prevent 

aggregation of HGD. 

Figure 7-14 shows a plot of Rh against time for non-oxidized HGD with no 

additives, with 20 mM BaCl2, and in a solution containing 20 mM BaCl2 and 0.1 mg/mL 

alpha A-crystallin. The results are similar to those from the CaCl2 experiments although 

there was no initial aggregation upon addition of BaCl2 as there was upon addition of 

CaCl2. Alpha A-crystallin successfully suppressed aggregation induced by addition of 

BaCl2. 
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Figure 7-13: DLS results showing hydrodynamic radii of HGD solutions with DTT as a function of time.  
Addition of CaCl2 to a final concentration of 20 mM resulted in aggregation of HGD. Although there was 
initial aggregation upon addition of CaCl2, alpha A-crystallin prevented further aggregation and kept the 

size of aggregates of HGD below that of HGD with CaCl2. NDSB-201 did not prevent aggregation.  
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Figure 7-14: DLS results showing hydrodynamic radii of HGD solutions with DTT as a function of time.  
Addition of BaCl2 to a final concentration of 20 mM resulted in aggregation of HGD. Alpha A-crystallin 

prevented aggregation and reduced the size of aggregates of HGD below that of HGD with BaCl2.  
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The second virial coefficient values for all non-oxidized HGD solutions are 

reported in Table 7-5 along with the corresponding values of Rh, D and kD. Figure 7-15 

shows values of the second virial coefficient B22, or B23 in the solution with alpha A-

crystallin, for HGD obtained under the different solution conditions in the CaCl2 

experiments while Figure 7-16 shows second virial coefficient values for the BaCl2 

experiments. The cross second virial coefficient (B23) values for the HGD solution 

containing CaCl2 and alpha A-crystallin, and BaCl2 and alpha A-crystallin, are reported 

in Table 7-6 along with mole fraction values for pure HGD (y2) and pure alpha A-

crystallin (y3). The second virial coefficient was positive for HGD with no additives, 

negative with 20 mM CaCl2 and 20 mM BaCl2, and positive in the solution containing 

alpha A-crystallin and 20 mM BaCl2, showing that for non-oxidized HGD, alpha A-

crystallin was an effective solubilizer. However, the second virial coefficient was 

determined to be negative in the solution containing CaCl2 and alpha A-crystallin. This 

negative second virial coefficient can be explained by the initial aggregation of HGD 

observed upon addition of CaCl2 as shown in Figure 7-13. The fact that the value of the 

second virial coefficient did not change appreciably upon addition of alpha A-crystallin 

implies that higher concentrations of alpha A-crystallin are needed to prevent aggregation 

of HGD in the presence of 20 mM CaCl2. 

 

 

 



 

 191

Table 7-5: Second virial coefficient values for non-oxidized HGD in solution with various additives. The 
concentration of HGD used in all solutions was 0.2 mg/mL. Procedures for obtaining these data are 

explained in CHAPTER 5. 

 
Additives Rh (nm) Do (µm2/s) D/Do kD (mL/mg) B or B22 

(mol mL/g2) 
 

No additives 22.04 10.83 1.02 0.09 1.78 x 10-4 

 
20 mM CaCl2 

36.88 7.19 0.92 −0.42 −8.82 x 10-4 

 
20 mM CaCl2 with 100 mM 

NDSB 
35.52 7.47 0.92 −0.42 −8.83 x 10-4 

 
20 mM CaCl2 with 0.1 

mg/mL alpha A-crystallin 
43.94 5.67 0.97 −0.13 −2.66 x 10-4 

 
20 mM BaCl2 

29.06 8.76 0.95 −0.23 −4.81 x 10-4 

 
20 mM BaCl2 with 0.1 

mg/mL alpha A-crystallin 
22.99 9.78 1.08 0.40 8.29 x 10-4 

 

 

 

Table 7-6: Cross second virial coefficient (B23) value for non-oxidized HGD with 20 mM CaCl2 and 0.1 
mg/mL alpha A-crystallin, and non-oxidized HGD with 20 mM BaCl2 and 0.1 mg/mL alpha A-crystallin. 
Mole fraction values for pure non-oxidized HGD (y2) and pure alpha A-crystallin (y3) are given here and 

were the same in both solutions. 
 

B23 (CaCl2) −9.10 x 10-4 mol mL g-2 

B23 (BaCl2) 1.55 x 10-3 mol mL g-2 

y2 0.67 

y3 0.33 

 

 



 

 192

-1E-03

-8E-04

-4E-04

0E+00

4E-04

S
ec

on
d 

V
iri

al
 C

oe
ffi

ci
en

t (
m

ol
 m

L/
g2 )

CaCl2
CaCl2 & 
NDSB 

CaCl2 & 
alpha A

No 
additives

 
Figure 7-15: Second virial coefficient B22 (or B in solutions containing alpha A-crystallin) values for HGD 

solutions with various additives. Two experiments were carried out at each condition. The error bars 
represent deviations from the mean. The HGD solution with no additives had a positive second virial 

coefficient. Addition of 20 mM CaCl2 resulted in negative B22 which fell within the crystallization slot. 
Addition of alpha A-crystallin to a solution containing HGD and CaCl2 increased B22 although B22 

remained negative. The dotted lines represent the limits of the crystallization slot. The concentration of 
HGD used in every case was 0.2 mg/mL. 

 

 

Crystallization experiments were carried out for all the solutions studied. 

Photomicrographs obtained for the CaCl2 experiments are shown in Figure 7-17 while 

those for the BaCl2 experiments are shown in Figure 7-18. Crystals were obtained in 

HGD solution containing CaCl2 and alpha A-crystallin, which correlates with the 

negative second virial coefficient calculated for HGD in this solution. The crystals 

obtained were less than 1 µm, and hence smaller than the average 12 µm of those 

obtained in the solution containing only CaCl2. Therefore, even where alpha A-crystallin 

does not prevent crystallization, it may delay the onset of diseases by decreasing the size 
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of crystals obtained. Similarly, NDSB-201 also decreased the size of crystals obtained to 

~ 5 µm. 

 

-1.0E-03

-5.0E-04

0.0E+00

5.0E-04

1.0E-03

S
ec

on
d 

V
iri

al
 C

oe
ffi

ci
en

t (
m

ol
 m

L/
g2 )

No additives

BaCl2

BaCl2 & 
alpha A

 
Figure 7-16: Second virial coefficient B22 values for HGD solutions with various additives. Two 

experiments were carried out at each condition. The error bars represent deviations from the mean. The 
HGD solution with no additives had a positive second virial coefficient. Addition of 20 mM BaCl2 resulted 

in negative B22 which fell within the crystallization slot. Addition of alpha A-crystallin to a solution 
containing HGD and BaCl2 increased B22 and actually resulted in a positive B22 higher than that of HGD 

with no additives. The dotted lines represent the limits of the crystallization slot. The concentration of HGD 
used in every case was 0.2 mg/mL. 
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a b ca b c
 

Figure 7-17: Photomicrographs of crystals of non-oxidized HGD obtained upon addition of the following 
solutions at 298 K (a) 20 mM CaCl2 (b) 20 mM CaCl2 and 100 mM NDSB-201 (c) 20 mM CaCl2 and alpha 

A-crystallin. Crystals were obtained in every solution. 
 

 

a ba b
 

Figure 7-18: Photomicrographs of crystals of non-oxidized HGD obtained in the following solutions at 298 
K (a) 20 mM BaCl2 (b) 20 mM BaCl2 and 0.1 mg/mL alpha A-crystallin. No crystals were obtained in the 

solution containing alpha A-crystallin. 
 

 

7.6  DISCUSSION AND CONCLUSIONS 

 

Various mechanisms have been suggested for the chaperone action of alpha A-crystallin, 

including incorporation of unfolded proteins into large complexes thus preventing their 

nonspecific aggregation33 and selective binding to denatured proteins and inhibition of 

pathways that lead to non-specific aggregation.71; 124; 127 In the present study, it is clear 

that alpha A-crystallin prevented aggregation of HGD although the exact mechanism is 

not known. Horwitz127 discovered that thermally induced aggregation of gamma-
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crystallin and a number of enzymes including alcohol dehydrogenase, enolase and 

aldolase was completely suppressed by alpha-crystallin under the conditions of his study. 

Horwitz induced aggregation in some solutions of gamma-crystallin with guanidine 

hydrochloride and precipitates formed within 20 minutes. After exhaustive dialysis of the 

denatured gamma-crystallin solution, addition of alpha-crystallin resulted in ~95% of the 

gamma-crystallin being solubilized and renatured.127 This, coupled with the fact that 

aggregation was induced by addition of divalent cations in the present study, suggests 

that the alpha-crystallins can suppress aggregation irrespective of the method used to 

generate the aggregation. The results from Horwitz’s study also demonstrate that alpha-

crystallin can act as a chaperone for a wide range of proteins not just the crystallins. In 

the present study, aggregation was induced only by addition of CaCl2 or BaCl2 to HGD. 

It could be argued that alpha A-crystallin is a specific solubilizer for aggregation of HGD 

induced by CaCl2 or BaCl2. The studies carried out by Horwitz127 suggest however that 

alpha A-crystallin acts as a solubilizer regardless of the driving force for aggregation and 

the results from the present study support this theory. The results from the present study 

are more physiologically relevant since Ba2+ and Ca2+ are found in the body whereas 

guanidine HCl, which was used by Horwitz, is not. 

Alpha A-crystallin is a naturally occurring protein whose solubilizing properties 

are well demonstrated in the present study and in the literature. Therefore the use of alpha 

A-crystallin as a therapy for protein aggregation diseases should be considered. Examples 

of other commonly used solubilizers include urea, detergents and salts.61 Urea is thought 

to solubilize proteins by disrupting the normal structure of water.17 However, urea 

denatures proteins,62; 128 which would negatively affect the body if urea was ingested or 
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injected as a therapy. Detergents attach their hydrophilic tails to the hydrophobic regions 

of the protein and thus allow the hydrophilic part of the protein to interact with water, 

increasing the solubility of the protein. However, detergents are known to denature 

proteins and are difficult to separate from proteins.61 For these reasons, detergents are 

unsuitable for therapeutic use. Salts can increase the solubility of proteins but they can 

also decrease protein solubility at other concentrations. As elevated salt concentrations 

are associated with the occurrence of cataracts,3 using salts as a therapy is not advisable. 

Sucrose has also been reported to maintain protein solubility under harsh conditions.62 

However, elevated concentrations of sucrose in the blood eventually lead to insulin 

resistance and hence diabetes.129; 130 Chelating agents such as ethylenediaminetetraacetic 

acid (EDTA) form multiple bonds with metal ions thus inactivating them.17 This prevents 

hydration of the metal ions and thus allows preferential hydration of the proteins in the 

solution. However, injection of chelating agents into dogs and rabbits resulted in retinal 

detachment and blindness.63 This may be because divalent cations are essential for 

functioning of the body. As there is some danger associated with injecting chelating 

agents, more studies are required before they can be put to therapeutic use. Other delivery 

methods, such as transdermal or oral, may produce better results. Thus far, NDSBs have 

not been used in vivo so adverse effects of NDSBs are unknown. However, NDSBs do 

not denature proteins, do not significantly alter the pH of buffers, and are easily removed 

from protein solutions since they do not form micelles as do detergents.61 These reasons 

make NDSBs a potential therapy for protein aggregation diseases such as cataracts. 

Proteins in the body exhibit a natural solubility which may be compromised if the 

environment in the body changes e.g. due to pH changes or changes in the concentration 
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of cations. In the present study, it was observed that solubilization of oxidized HGD by 

alpha A-crystallin was more pronounced compared to solubilization of non-oxidized 

HGD.  Based on these results, it could be speculated that alpha A-crystallin works best 

under conditions where the solubility of proteins is decreased. As it was not the purpose 

of the present study to compare the solubility of oxidized HGD to that of non-oxidized 

HGD, additional experiments need to be done to demonstrate reproducibility. However, 

these results do highlight the importance of alpha A-crystallin in solubilizing partially 

denatured proteins. 

In conclusion, alpha A-crystallin was added to aggregating solutions of HGD in 

proportions that resulted in much less chaperone than is present in the lens. In spite of 

this, alpha A-crystallin exhibited extraordinary chaperoning ability, preventing or 

decreasing aggregation of HGD and even reducing the size of the aggregates of HGD in 

the case of the oxidized HGD solutions. Alpha A-crystallin also prevented crystallization 

of HGD altogether in the solution containing BaCl2. In contrast, NDSB-201 did not 

prevent crystallization. It did, however, increase the energy barrier to nucleation and 

decrease the size of crystals obtained. 

 To the knowledge of the author, this is the first time the effects of alpha A-

crystallin on solutions of HGD with BaCl2 or CaCl2 have been investigated. Since both 

Ba2+ and Ca2+ have been implicated in cataract formation, the results from the present 

study show that alpha A-crystallin may play a significant role in prevention of cataract 

disease. The results from the present study also suggest alpha A-crystallin and NDSB-

201 may be potential therapies for cataract disease as well as other protein condensation 

diseases. 
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CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS 

 
 

8.1 SUMMARY AND CONCLUSIONS 

 
 
Crystallization of proteins plays a key role in the determination of protein structure and 

the separation and purification of therapeutic proteins such as insulin. Protein crystals 

have been linked to human diseases including Alzheimer’s, cataracts and sickle cell 

anemia. In spite of the clear importance of crystallization of proteins, determination of 

conditions favorable for protein crystal growth remains empirical and involves extensive 

screening with no clear rationale for conditions tested. Protein crystallization is further 

complicated by the large number of variables and the fact that learnings from 

crystallization studies cannot be applied from one protein to another without further 

screening. The present study focused on relating protein solution conditions to 

thermodynamic properties of the solution as a means to predict the crystallization of 

clinically relevant proteins, specifically the lens protein, human gamma D-crystallin 

(HGD). However, protein crystallization is not always desired as in the case of the human 

diseases mentioned above. Therefore the possibility of subduing or preventing 

crystallization of proteins through the use of solubilizers was evaluated by examining the 

effects of natural and synthetic solubilizers on the nucleation and thermodynamic 

properties of human gamma D-crystallin (HGD) during crystallization. 

 Crystallization studies were carried out using HGD, a lens protein 

involved in cataract formation. The equilibrium phase diagram of HGD was determined 
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as a function of the concentrations of Ba2+ and Ca2+. A salting-out effect was observed in 

both cases possibly because higher concentrations of the cations resulted in greater 

hydration of the cations and hence lower solubility of HGD. Addition of certain 

concentrations of Ca2+ to oxidized HGD appeared to result in a salting-in effect although 

scatter in the data does not allow this conclusion to be drawn with certainty. The 

equilibrium phase boundary for HGD was experimentally determined over a temperature 

range from 300 K to 305 K and the thermodynamics of crystallization were evaluated for 

HGD as a function of temperature. The dependence of solubility of HGD on temperature 

was found to be normal, i.e. higher solubility at higher temperatures which was consistent 

with previously published results from Pande et al.13 However, the enthalpy determined 

in the present study did not match that from the study by Pande et al.13 This discrepancy 

was attributed to the presence of aggregates in the HGD solution used in the present 

study which may have shifted the solubility curve. 

The second virial coefficient, B22, was identified in previous studies5; 6 as having a 

correlation with the occurrence of crystallization of various proteins regardless of the 

driving force for crystallization. The driving force used in this part of the present study 

was the addition of divalent cations. While static light scattering (SLS) is most commonly 

used for measurement of B22, this method was found unsuitable in the present study 

because the fast aggregation rates of HGD under the conditions studied resulted in 

inconsistent values of B22. A new method was developed for measurement of B22 values 

through the use of dynamic light scattering (DLS). Whereas SLS averages out fluctuation 

intensities caused by Brownian motion of protein molecules, DLS makes use of the 

deviations from the average fluctuation to evaluate the diffusion coefficient and the 
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diffusivity slope kD. DLS and SLS experiments conducted with apoferritin, another 

protein, in solutions containing CdCl2 led to the development of a correlation between kD 

and B22. Therefore DLS provided an alternate method for measurement of B22. The new 

method is more robust and efficient, requiring only a fraction of the time and material 

needed for SLS. This could be useful for assessment of the tendency of proteins in 

biological fluids taken from experimental animals or human patients to precipitate or 

crystallize. The volumes available in such cases may be too small for SLS to be 

effectively applied. DLS may be the only reliable alternative, as it is able to continuously 

capture the diffusivity in small sample volumes. DLS also worked well with the 

aggregating systems under study in the present work and yielded accurate and reliable 

values for B22. As DLS measures aggregate size, it allowed tracking of the aggregation 

process and thus provided a means to determine kinetic nucleation and thermodynamic 

terms including the interfacial energy and the free energy barrier, leading to a better 

understanding of the nucleation process. Additionally, the present study confirmed that 

the second virial coefficient reliably correlates with protein crystallization outcome in the 

apoferritin-CdCl2, HGD-CaCl2, and HGD-BaCl2 systems. The shapes of the apoferritin-

CdCl2 crystallization phase diagram and the B22 phase diagram under varying 

concentrations of CdCl2 were similar; thus it can be concluded that simply measuring B22 

provides an idea of how the solubility of apoferritin changes as the concentration of 

CdCl2 changes. This could save time and material as it would greatly reduce the need for 

extensive screening for crystallization conditions.  

The newly developed DLS method enabled determination of nucleation properties 

in the apoferritin-CdCl2, HGD-CaCl2, and HGD-BaCl2 systems. Increasing the 
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concentration of CdCl2 resulted in higher supersaturation in the apoferritin-CdCl2 system. 

Higher supersaturation was induced by CaCl2 than by BaCl2 in the HGD systems, 

possibly because Ba2+ is less strongly hydrated than Ca2+. Increasing the supersaturation 

resulted in higher critical radii, lower energy barriers and lower interfacial energies, 

which were all consistent with theory. 

The solubilizing properties of alpha A-crystallin, a lens protein, in aggregating 

solutions of HGD-CaCl2 were investigated and compared with the solubilizing effects of 

non-detergent sulfobetaine 201 (NDSB-201), a commercial solubilizer. Under the 

conditions of the present study, alpha A-crystallin decreased the size of HGD aggregates, 

prevented further aggregation of HGD and increased the second virial coefficient of the 

HGD molecules in solution. It ultimately prevented crystallization of HGD. It was 

observed that solubilization of oxidized HGD by alpha A-crystallin was more 

pronounced compared to solubilization of non-oxidized HGD which suggests that alpha 

A-crystallin works best under conditions where the solubility of proteins is decreased. 

The solubilizing properties of alpha A-crystallin were compared with those of NDSB-

201. Upon addition of 100 mM NDSB to an HGD solution with 20 mM CaCl2, 

aggregation was observed. However, smaller crystals were obtained compared with 

crystals obtained in HGD-CaCl2 solutions containing no NDSB-201. The value of B22 did 

not change significantly but the free energy barrier to nucleation increased three-fold. 

This shows that NDSB-201 does solubilize HGD, increasing the energy barrier to 

nucleation and hence slowing down the crystal growth process. This observation shows 

potential for development of medications for protein aggregation and crystallization 
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diseases, based on the mechanisms of solubilizers, which could arrest or reverse protein 

aggregation.  

 The observations from the present study serve to increase understanding of 

protein interactions and the aggregation process especially in the presence of divalent 

cations. In addition, a new method was developed which makes it easier to quantify 

interactions between protein molecules. These results provide a stepping stone towards 

curing or preventing cataracts and other diseases associated with protein aggregation. 

These results could also ease the process of determining suitable conditions for crystal 

growth both for determination of crystal structure and in purification of therapeutic 

proteins. Measuring B22 could provide a quick and easy way to determine the type and 

strength of the intermolecular interactions in a protein solution, ultimately decreasing the 

number of crystallization trials necessary for determination of protein crystal growth 

conditions. 

 

8.2 RECOMMENDATIONS FOR FUTURE WORK 

 
 

1. The solubility plot determined in the present study used a partially oxidized form 

of HGD.  The solubility plot should be determined for a solution of monomeric 

HGD. 

 

2. The solubilizing properties of alpha A-crystallin on solutions of HGD should be 

further examined. Different ratios of alpha A to gamma D could be utilized to 

investigate whether there is an optimum ratio at which alpha A-crystallin exhibits 
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the most solubilization or at which the value of B22 is highest. A similar 

investigation could be carried out using different concentrations of NDSB-201. 

There is a possibility that the solubilizing action of alpha A-crystallin in HGD 

solutions is specific to Ca2+ and Ba2+. As such, the solubilizing action of alpha A-

crystallin on solutions of HGD containing other divalent cations should be 

studied.  

 

3. Previous studies show that alpha A-crystallin is able to chaperone many different 

proteins both in vivo and in vitro.40; 71; 127 At present, the exact mechanism 

employed by alpha A–crystallin is not known though studies suggest that the 

chaperone forms complexes with aggregating proteins and inhibits pathways that 

lead to non-specific aggregation.40; 127 Studies should be set up to determine the 

mechanism(s) by which alpha A-crystallin is able to solubilize proteins. 

Evaluating the change in energy when alpha A-crystallin binds to aggregating 

proteins, for instance, could yield valuable information about the solubilizing 

mechanism.  

 

4. Previous studies have shown that the only cation that can be used to crystallize 

apoferritin is cadmium cation10; 44 although addition of polyethylene glycol 

created attractive interactions between apoferritin molecules ultimately resulting 

in crystallization.59 Other divalent cations, including Ba2+ and Ca2+, did not 

induce crystallization. Apoferritin possesses 24 nucleation sites to which iron can 

bind.43 It is possibly the presence of the 24 nucleation sites that enables cadmium 
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to bind to apoferritin’s crystal structure. In addition, cadmium is a transition 

element and can form coordination bonds thus connecting molecules of 

apoferritin via specific “salt bridges.”59 Further investigation could be carried out 

into the unique relationship between apoferritin and Cd2+. Extensive studies could 

be carried out with other transition metals, such as chromium or nickel, to test if 

the ability of cadmium to form coordination bonds is a key factor. X-ray 

diffraction studies of crystals of apoferritin could be utilized to further examine 

the incorporation of Cd2+ into the crystal structure of apoferritin. 

 

5. The new method developed for measurement of B22 could be further investigated 

to validate the assumptions made, especially the assumption that the friction term 

and the partial specific volume are negligible in the equation relating B22 and kD. 

While this assumption holds for dilute solutions, it may be necessary to measure 

the friction term, which can be done by pulsed field gradient NMR. The 

investigation could also be extended to include other proteins to ensure that the 

method applies to other proteins.  

 

6. It has been observed that the temperature in the eye decreases with age which 

most likely plays a part in cataractogenesis.131 The effects of temperature on 

solubility of HGD in systems with divalent cations could be further investigated.  

  



 

 205

APPENDIX A: GAMMA D-CRYSTALLIN EXPRESSION 
 

 

A.1 EXPRESSION OF GAMMA D-CRYSTALLIN 

 

The procedure for expression and purification of HGD was obtained from Dr. Mark 

Petrash at Washington University in St. Louis. Dr. Petrash also provided the E. coli 

clones for HGD expression. An operations chart for the production and purification 

process is shown in Figure A-1. 

 

 

Figure A-1: Chart outlining the steps taken during expression and purification of HGD 
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A.1.1 Day 1 - Agar Culture 

 
Materials 

 

• YT medium 

o 10g Bactotryptone (N-Z-Amine-A) 

o 5 g Bacto yeast 

o 5 g NaCl 

o 1000 mL deionized water 

o 1 N NaOH for pH 

o 1 N HCl for pH 

• For agar: 1.5g Bactoagar 

• 100μL of 50mg/mL Antibiotic (Ampicillin) 

• Bacteria 

• 4 Tissue culture plates 

 

Procedure 

 

1. Prepare approx 2L of YT medium.  

2. Start with 950 mL deionized water. Fill to 1000 mL after adjusting pH. 

3. Pour into measuring cylinder then into flask. 

4. Adjust pH to 7.4 with NaOH or HCl as necessary. 
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5. Mix all ingredients for YT-agar. Use 100 mL of YT for agar (in which case use 1.5g 

Bactoagar, etc.). Stir 

6. Wait till solution is clear not cloudy 

7. Autoclave media and agar mixture for 20 minutes on liquid cycle. Leave stir bar in 

agar mix. 

8. Fill tray with water to minimize water loss. Also autoclave deionized water to 

replace lost water. 

9. After cooling, add antibiotic (100μL of 50mg/mL) to agar mix. 

10. Pour into tissue culture plates under hood (turn hood light on) 

11. Pour about 10ml in each plate (about 4 plates). Pour slowly to prevent bubbles from 

forming. 

12. Allow to cool. Keep covers cracked to allow cooling. 

13. Streak different concentrations from 100 – 200 μL: e.g. bacteria only, half buffer, 

etc. 

14. Sterilize spreader in ethanol and flame (allow to cool).  

15. Add bacteria after mixing thoroughly with buffer 

16. Pool buffer/bacteria in center of plate first 

17. Once spreader is cool, spread buffer/bacteria on agar. 

18. Dispose of leftover bacteria 

19. Place plates in incubator at 37°C. 

20. Flip plates after 10 minutes to prevent condensation. 

21. Leave plates for approx 12 hours. 

 



 

 208

NOTE: Bactotryptone is the same as N-Z-Amine-A (Casein enzymatic hydrolysate) from 

bovine milk (Sigma-Aldrich Corporation, St. Louis, MO) 

 

A.1.2 Day 2 - Starter Culture 

 
Materials: 

 

• Bunsen burner 

• Agar bacterial culture 

• Autoclaved YT Ampicillin Medium 

• Sterilized volumetric flask 

• Sterile pipette 

 

Procedure 

 

1. Flame flask 

2. Pour ~50ml of YT medium into flask 

3. Drag pipette across individual colony and dip into side of flask and medium. 

4. Cover flask with foil. Label. 

5. Place flask in shaker (~300rpm) at 37°C. Leave overnight or for approx 12 hours. 

6. Cover agar jar with parafilm and store at 4°C for approx 1 week (just in case 

another starter culture is needed). 
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A.1.3 Day 3 – Cultures 

 
Materials 

 

• 3200μL Ampicillin (50mg/mL, autoclaved) 

• 4 X 2L baffled flasks (autoclaved) 

• 1600 mL YT medium (autoclaved) 

• Sterile glycerol 

• Bunsen burner 

• Screw-top vial (autoclaved) 

• Overnight starter culture 

 

Procedure (Multiply by 4 baffle flasks) 

 

1. Put 400mL of YT culture medium into each baffle flask 

2. Add 800μL per 400mL of 50mg/mL ampicillin to flask 

3. Flame the neck of the flask with the overnight culture  

4. Add 8mL of overnight culture per 400ml of medium to flask. Swirl to mix. Label 

5. Put baffle flasks in shaker at 37°C and ~100 rpm. 

6. Leave until induction (OD600~0.800), approx 2 hours. [Rule of thumb: cell 

concentration doubles every 45 minutes.] 

7. (Meanwhile, add 800μL of remaining culture to 200μL of glycerol in sterile 

screw-top vial. Shake and store at -80°C.) 

8. After 2 hours, measure turbidity using UV-Vis spec at λ = 600nm (visible). 
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9. Use medium as blank 

10. Flame medium flask before and after 

11. After measuring, kill bacteria in cuvette with a drop of bleach and pour down the 

sink. 

12. When A600 ~ 0.800, add 400μL of 1M IPTG to each 400mL culture 

13. Leave for ~2.5 to 4 hours 

14. Extract 1mL of culture from each flask. 

15. Select even number of centrifuge bottles. Make sure they all fit into centrifuge 

snugly. 

16. Pour equal amounts (or weights) of culture into centrifuge bottles. Balance 

weights with de-ionized water if necessary. 

17. Make sure the bottles are not more than three quarters full or they will spill. 

18. Centrifuge at 10,000 rpm for ~30 minutes. 

19. Pour out supernatant into beaker. Add a few drops of bleach to kill the cells. 

20. Label bottles. Freeze pellets overnight at -80°C overnight. Can keep frozen up to 

1 week. 

 

A.1.4 Day 4 - Extraction   

 

The steps required for extraction and purification are outlined in Figure A-2. 
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Materials 

 

• Lysozyme (20 mg X 4) 

• N-Lysis buffer (40 mL X 4) 

• Protease inhibitor (4 X 80 μL) 

• Ice bath 

• 10X Mg/Mn salt solution (16 mL) 

• DNase (0.16 mg for 4 X 400 mL) 

• Tissue homogenizer 

• 2 boiled Dialysis tubes 

• Short funnel 

• 20 mM Tris-acetate buffer, pH = 6 (1600 mL), cold 

• 3 X 2 L beakers = 4800 mL 

• 1M DTT (0.8 mL) 

• 500 mM EDTA (1.6 mL) 

 

Procedure 

 

1. Weigh out 80 mg lysozyme. 

2. Add lysozyme to 160 mL of N-lysis buffer. 

3. Add 320 μL of protease inhibitor to the N-Lysis buffer. 

4. Put solution on ice until needed. 
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5. Remove pellets from freezer. Warm pellets by putting centrifuge bottles under 

running tap. 

6. Remove all pellets and add to one centrifuge bottle. 

7. Place bottle in tap water bath at room temperature for approx 15 minutes to thaw. 

Freeze-thaw helps break open cell walls. 

8. Add 0.16 mg of DNase to 16 mL Mg/Mn salt solution. 

9. Put DNase + Mg/Mn salt solution mixture on ice until needed. 

10. Add lysozyme + N-lysis mixture to pellets. Mix with tissue homogenizer (don’t 

overdo it; heat is bad for the protein). 

11. Add Mg/Mn salt mixture to culture 

12. Leave on ice for ~2 hours. 

 

Dialysis 

13. Wear gloves to protect dialysis tubing (12000-14000 kDa) 

14. Remove 2 already boiled dialysis tubes from ethanol (use 2 in case one ruptures) 

15. Wash thoroughly with de-ionized water, inside and out. 

16. Tie one end of each bag being careful to tug/tighten the end outside the knot (so 

as not to stretch membrane and increase pore size). 

17. Store in a beaker with de-ionized water until needed. 

 

Pellets 

18. After 2 hours on ice, culture should be removed from ice and mixed with tissue 

homogenizer. 
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19. Centrifuge solution for ~15 minutes at 10000rpm. (Don’t forget to balance out the 

mass.) 

20. Use supe for dialysis 

21. (Pellets may be stored in case not all protein has been extracted.) 

 

Dialysis: wear gloves 

22. Fill three 2L beakers each with cold 20mM Tris/Acetate buffer, pH = 6.0, 0.5mM 

DTT and 1.6ml of 500mM EDTA (Total volume approx 1600ml = outside volume 

= ~ 20 times inside volume.) 

23. Put stir bar in each beaker 

24. Fill each dialysis bag halfway with supernatant; use short funnel. 

25. Tie the top of each bag. Hold knot and tighten by pulling outside the knot. 

26. Make sure you leave some air in the bags to help them float. 

27. Fold dialysis bags in half and plop into beaker #1 in cold room 

28. Leave for ~3 hours. Move bags to beaker #2. Leave for 2 hours 

29. Throw away solution in beaker #1 to prevent confusion 

30. Move to beaker #3. Leave overnight 

 

A.1.5 Day 5 - Cation Exchange Chromatography 

 
1. Prepare no-salt buffer: 20 mM Tris acetate, pH 6 + 0.5 mM DTT + 0.5 mM 

EDTA. Sterile filter. 
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2. Prepare salt buffer: 20 mM Tris acetate, pH 6 + 1 M Na acetate + 10 mM DTT + 

0.5 mM EDTA. Sterile filter. 

3. Prepare 6% v/v salt buffer i.e. 6% salt buffer + 94% no-salt buffer. 

4. Measure whole cell lysate (WCL) concentration with Bradford reagent. 

5. Mount column onto 5 mL syringe. 

6. Wash column with 5 CV 100% salt buffer. 

7. Equilibrate with 5 CV of no-salt buffer (4°C). 

8. Load enough sample to put 44 mg protein on column (80% of max loading). 

9. Re-equilibrate with 5 CV of no-salt buffer. 

10. Run 6% salt over column to elute protein. 

11. Check fraction with Bradford and save an aliquot to run a gel. 

12. Wash with 5 CV of 100% salt. 

13. Remove salt with 5 CV of no-salt buffer. 

14. Collect samples for SDS-PAGE: crude lysate, flow-through, waste, 3% salt buffer 

(protein), and 100% salt buffer. 

15. Repeat as necessary until all protein has been purified. 

16. Wash column with 5 CV of 30% ethanol. Store in 30% ethanol in refrigerator. 

 

A.1.6 Day 6 - SDS-PAGE  

 
1. Run SDS-PAGE gels on samples.  
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2. Dialyze HGD (3% salt fraction) into storage buffer of your choice (100 mM 

phosphate buffer, pH 7.4, 10 mM DTT, 10 mM NaN3; or 50 mM tris-HCl buffer, 

pH 7.4, 150 mM NaCl, 10 mM DTT, 10 mM NaN3). 

3. Freeze protein at −80°C. 

 

 

Figure A-2: Treatment of pellet after cell culture. 
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A.2 STOCK SOLUTIONS FOR EXPRESSION OF GAMMA D-

CRYSTALLIN 

 

(Adapted from documentation provided by Dr. Mark Petrash at Washington University in 

St. Louis) 

 

ANTIBIOTIC (AMP) 

AMP S/F store:-25°FR  

0.5 g Antibiotic 10 mL  diH2O  

Stir to dissolve, aliquot in 10 μL X 10 mL 

 

1M DTT Dithiothreitol (Cleland reagent) 

 S/F   store: -25°FR thaw as needed 

 25   g C4H10O2S 

 100    mL diH2O 

 Stir to dissolve 

 Q.S. to 162 mL with diH2O 

 Divide into 10-15ml aliquots 

 

500 mM EDTA (ETHYLENEDIAMINETETRAACETIC ACID) 

 A/C stored: RTS 

146.13 g C10H16O8N2 (186.13 g C10H14)8(Na·2H2O) 

900 mL diH2O 
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 20 g NaOH pellets(=~40pellets) 

 Stir to dissolve 

 PH TO 8.0 with 5 M NaOH 

 Q.S. to 1000 mL 

Must be near pH = 6.0 to dissolve 

 

 

1M TRIS/HCl pH=7.1 

 A/C  store: RTS 

 121.14 g Tris [NH2C(CH2OH)3] 

 900 mL diH2O stir until dissolved 

 pH to 7.4 with 12 N HCl 

 Q.S. to 1000 mL with diH2O 

 

PROTEASE INHIBITORS 

 NON-STERILE store: -25°FR 

 Using the weight designated on the manufacture’s bottle  

 Add appropriate total volume of solvent 

i.e.: 

 ANTIPAIN  resuspend to 1mg/mL diH2O 

 BESTATIN resuspend to 1mg/mL diH2O 

 CHYMOSTATIN  resuspend to 1mg/mL      

  DMSO 
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 LEUPEPTIN resuspend to1mg/mL diH2O 

 PEPSTATIN resuspend to 1mg/mL   

 

IPTG Isopropyl Thio-β-D-Galactoside (1M) 

 S/F store:-25°FR in 1-3ml aliquots 

 10 g IPTG 

 42 mL diH2O 

 stir to dissolve, aliquot=1.0ml, freeze 

 

 YEAST TRYPTONE = YT=LB 

 A/C store: RTS in 100ml aliquots 

 10g Bacto-tryptone 

 5 g Bacto-Yeast extract 

 5 g NaCl 

 950 mL diH2O 

 pH to 7.4 with NaOH 

 Q.S. to 1000ml with diH2O 

 

DESTAIN (40% Methanol/7.5% Acetic Acid) 

NON STERILE stored: RTS 

 4200 mL diH2O 

 3200 mL  Methanol 

   600 mL  Glacial Acetic Acid* 
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YT AGAR 

 A/C store: 4°CR 

 10 g Bactotryptone 

  5  g Bacto yeast 

  5 g NaCl 

 950 mL diH2O 

 pH to 7.4 with 1 M NaOH 

 15 g Bactoagar 

 Q.S. 1000 mL (Remove stir bar) 

 Autoclave, cool to 50°C, add  antibiotic(1/1000), pour into plates. 

 

N-LYSIS BUFFER (50 mM Tris Cl pH = 7.5, 0.3M NaCl, 0.5 EDTA) 

NONSTERILE stored: 4°CB 

6.06g  Tris 

17.53g NaCl 

1.0 mL 0.5M EDTA 

pH→ 7.5 with HCl 

Q.S. 1000ml  

 

10X Mg/Mn SALTS (100mM MgCl2, 10mM MnCl2) 

NONSTERILE stored: 4°CB 

10.16g MgCl2 
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0.99g MnCl2 

Q.S. 500ml 

 

DIALYSIS TUBING 

NONSTERILE stored: 4°CB 

Cut into 14-16” lengths 

 Boil for 10 minutes in large volume of : 

 2% Sodium Bicarb (60g/3000ml) 

 1mM EDTA pH=8.0(2ml/L 500mM) 

Rinse thoroughly in diH2O 

Be sure to wash tubing inside with diH2Oand out before using. 

 

KEY 

 

S/F = Sterile filter into previously autoclaved container 

A/C = Autoclave for 30 minutes on liquid cycle with lid on but loose 

4°CB = 4°C degrees cold box 

4°CR = 4°C degrees cold room 

RTS = Room Temperature Shelf 

-25°FR = -25°C Freezer 

Q.S. = Add deionized H2O sufficient quantity to make... 
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*NOTE:  When using concentrated acids it is advisable to add the acid to the water rather 

than the reverse.  This prevents serious burns due to splattering or splashing as a result of 

heat generated. 



 

 

APPENDIX B: HIGH PERFORMANCE LIQUID 

CHROMATOGRAPHY-SIZE EXCLUSION 

CHROMATOGRAPHY 

 

B.1 OPERATION AND BUFFER RECIPES 

 

Horse spleen apoferritin was purchased from Sigma-Aldrich Corporation (St. Louis, MO) 

and further purified to remove aggregates using high performance liquid chromatography 

– size exclusion chromatography (HPLC-SEC). A HiPrep 16/60 Sephacryl S-300 High 

Resolution column (GE Healthcare, Piscataway, NJ) was used. A flow-rate of 0.5 

mL/min was used for running the protein sample and the running buffer over the column 

while the storage buffer and rinsing buffer were run at 0.3 mL/min. Three different 

buffers were utilized for this process: a storage buffer, a running buffer and a rinsing 

buffer. All buffers were prepared with ultrapure water (Alfa Aesar, Ward Hill, MA). The 

storage buffer was 20% v/v ethanol. The rinsing buffer comprised 0.6501 g of NaN3 in 

1000 mL of water.  

The running buffer used was 50 mM Tris-HCl buffer, pH 7.4, with 150 mM NaCl 

and 10 mM NaN3 added. The recipe for this buffer is below: 
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    1000 mL of Solution A       1000 mL of Solution B 

6.057 g Tris base    50 mL of 1 N HCl 

8.766 g NaCl     8.766 g NaCl 

0.6501 g NaN3     0.6501 g NaN3 

 

The two solutions are then mixed until the right pH is reached. 

All buffers were vacuum filtered prior to use. This removed particles from the 

solution to prevent clogging of the column and also degassed the solutions to ensure no 

air was passed over the column. 

 

NOTE: Never let the column run dry. 

 

B.2 PROCEDURE 

 

The steps involved in this procedure are outlined below: 

• The storage buffer is flushed out using 3-4 column volumes (CV) of rinsing 

buffer. One CV is 120 mL. 

• The column is equilibrated with 3-4 CV of running buffer. 

• The protein sample is injected into the column. 

• After all the protein elutes, more protein can be loaded onto the column. 

• Once all the protein is loaded and eluted, 3-4 CV of rinsing buffer is run over the 

column. 

• Finally, the column is equilibrated with 3-4 CV of storage buffer and stored. 
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Step-by-step instructions for the operation of the HPLC process were first described by 

Bartling.10 They are as follows: 

 

• Turn on the LDC Analytical Pump (CM4000). Press “Lim” to set the pressure 

limits. The maximum pressure of the HiPrep 16/60 Sephacryl S-300 High 

Resolution column (Amersham Biosciences, Piscataway, NJ) is 21 psi. The 

minimum pressure is 0 psi. Confirm each entry by pressing “Ent.” 

 

Figure B-1: The LDC Analytical Pump (CM4000) showing the injection valve in the "inject" position.  
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• Close the spring-loaded valve of the transport syringe. Disconnect the syringe 

from the column and start the pump to purge the feed lines to the column. 

Connect the top of the column to the outlet of the injection valve. Connect the 

bottom of the column to the UV detector. 

 

• If the column is not in use for 2 days or more, it is stored in 20% v/v ethanol. Start 

running the rinsing buffer over the column at 0.3 mL/min. Always begin at a low 

flow-rate, e.g. 0.1 mL/min, and gradually increase the flow-rate in steps of 0.1 

mL/min. 

 

• A maximum of 3 buffers can be connected to the column at the same time. Press 

“%” to check what line the buffer is being drawn from. To switch buffers, set the 

appropriate proportions of buffers and set the time delay to 0.1 min. The switch 

will be accompanied by a loud click after a few seconds. Stop the flow 

immediately and open the prime/purge valve. Draw approximately 10 mL of 

buffer from the prime/purge valve to remove any air trapped in the line. Close the 

valve and restart the flow. 

 

• Equilibrate column with 3-4 CV of running buffer at 0.5 mL/min, then turn on 

UV lamp. 

 

• Connect the outlet of the column to the inlet of the reference loop of the UV 

detector to purge the reference loop. Close the loop and set the detector to 280 
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nm.  

 

• Switch the injection valve to the “Load” position (see Figure B-1). Use a blunt 

end needle to inject running buffer into the injection loop to rinse the loop. 

Remove the needle and switch the injection valve to the “inject” position. 

 

•  Switch the injection valve to the “Load” position. Use a blunt end needle to inject 

the protein sample into the injection loop to rinse the loop. Do not inject more 

than 2 mL of sample. Remove the needle and switch the injection valve to the 

“inject” position and start the timer. 

 

• Turn on Shimadzu controller (Figure B-2), pump and UV detector. Turn on 

Shimadzu Class VP software (old HPLC). Instructions for operating the 

Shimadzu unit are below: 

 

 
1. Turn on the following IN ORDER: 

a. Controller 

b. Pump B 

c. Pump A 

d. Detector 

2. Turn on computer (log on) 

3. Open Class-VP 7.2.1 (by Shimadzu) 
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4. Fill vials with disposable pipette (minimum 0.5ml); number vials from 

zero (not one!). 

5. Close vial. Shake. 

6. Click on “Old HPLC;” listen for beep indicating connection has been 

made between computer and controller. 

7. Click on LC setup icon 

8. Open method: 

Desktop → HPLC users → kBartling → Method → Karsten 

0.8ml-min…UV only 

9. Click on pump in schematic 

10. Start with flow-rate of 0.1ml/min. Increase flow gradually by 

0.1ml/min. At each step, wait for pressure to equilibrate before 

increasing flow-rate further. 

11. Increase flow-rate to 0.8 mL/min (or 1ml/min depending on method 

being used). 

12. After reaching target flow-rate, wait about 15 minutes before loading 

sample. 

13. Click “Sequence wizard” icon: 

Next → data path → HPLC users → name → data → ok 

Sample ID 

Data fill → Sample ID → Detection vial → number of unknowns in 

sequence 

Next → first vial → 0 →increment by 1 
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Autosampler injection volume → 0 μL → next → finish → next → 

finish 

14. Hit green arrow icon (Sequence run) 

15. Name file in sequence. Save. 

16. Make sure all buffers are connected.  

17. Hit the “Start” button. 

18. To turn off: 

a. Reduce flow-rate gradually to zero. Reduce by 0.1ml/min each 

time, waiting for pressure to equilibrate before further 

reducing. 

b. Close window. Wait for beep (controller and computer 

disconnecting). 

c. Turn off detector, then pumps A and B, then controller last. 

d. Close final window. Log off. 
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Figure B-2: Shimadzu system used for UV detection. The controller is on the left, and pumps A and B and 
the UV detector are on the right. 

 

 

• Apoferritin oligomers elute first followed by monomers, followed by subunits. At 

a flow-rate of 0.5 mL/min, the oligomers elute after approximately 1 hour, the 

monomers after approximately 1 hour and 27 minutes, and the subunits after 

approximately 3 hours. These times are approximate so monitor the UV readings 

carefully. 

 

• Collect the monomers by placing a 50 mL centrifuge tube at the exit of the UV 

detector. 
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• Continue running the running buffer until the UV reading returns to zero. 

 

• Switch to rinsing buffer and equilibrate with 3-4 CV. Never allow the column to 

sit in running buffer for more than 2 days. The salts in the buffer may crystallize, 

compromising the ability of the column to separate proteins effectively. 

 

• Decrease the flow-rate to 0.3 mL/min and equilibrate the column with 3-4 CV of 

storage buffer. 

 

• Attach the spring-loaded transport syringe to the bottom of the column while the 

buffer is still running. Open the valve and let the syringe fill up to the 26 mL 

mark. Filling it more may result in very high back pressure. Leave the valve open. 

 

• Stop flow and turn off the pump and UV detector. Unscrew the inlet tube at the 

top of the column. Close the top of the column with a blind connector. 

 

Occasionally, an SCL Communications error is encountered when dealing with the 

Shimadzu UV detector. This arises because the Shimadzu pump is not being used. To 

erase errors, carry out the steps outlined below before turning on the software. 

 
• On the Shimadzu Controller, press the F3 and Power buttons together until the 

Run and Act lights blink 

• Press F2 and wait until controller says Pass 

• Turn off power 
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• Turn on 

• Press F5 (for menu) 

• Press 4 (system) 

• Press F3; make the following changes 

o CLASS-VP = 5.X 

o Interface = RS-232C 

o Baud rate = 19200 

o Level = enhanced 

• Turn off and restart system. 

• Wait about 3 minutes then turn on software. 

 



 

 

APPENDIX C: DYNAMIC LIGHT SCATTERING 

PROCEDURE 

 

1. Prepare protein solution minus the additive (NDSB, Cd2+, etc), i.e. just protein 

solution and buffer in the required amounts in (micro) centrifuge tube. (If carrying 

out experiment with protein alone, add buffer right before taking measurements 

(step 7). 

 

2. Turn on correlator and leave on for at least one minute (instrument: ALV/LSE-

5004 light scattering electronics and multiple tau digital correlator). 

 

3. Open ALV software (ALV 5000/E/EPP). 

 

4. Go to “Set up” → “option setup” → “ALV/LSE-5004” (last option). Select 

“COM 3.” Click “OK.” 

 

5. Clean cuvette(s) as follows: scrub with soapy water and soft scrubber inside and 

out. Rinse thoroughly several times with deionized water. Rinse thoroughly 

several times with acetone inside and out. Dry outside of cuvette wit lens paper. 

Hold cuvette by top end until the inside is completely dry. 

Note: never touch the lower end of the cuvette. If this is necessary, use lens 

paper. 
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6. Lay cuvette on lens paper. Add required amount of additive to centrifuge tube and 

mix thoroughly with vortexer. 

 

7. Transfer mixture to cuvette using syringe (no needle or cuvette may be scratched). 

 

8. Cap cuvette and place in holder in machine. Adjust opening if necessary. Cover 

holder with lid. Open laser shutter. 

 

9. Hit play to get an idea of the signal strength. If count rate is 10 or less, duration 

should be set to 2 minutes rather than 30 seconds (step 10). 

 

10. For a quick run to determine Rh, do the following: Go to “Set up” → “ALV 

correlator set up” → “Manual run” → “Duration” → 30 s (or up to 2 minutes if 

signal strength is 10 or less). 

 

11. For a long run over time, do the following: Go to “Set up” → “ALV correlator set 

up” → “Manual run” → “Create experiment schedule via script” → “Edit script.” 

Change duration to 2 minutes if count rate was less than 10. Adjust number of 

runs as necessary. Click “Compile and run.” Click “Yes” to save. After saving, 

software shows how long entire experiment will take including rest time (10 

seconds) between each run. If too short or too long, change number of runs and 

click on compile and run again. After saving, click “Ok” to exit. 
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12. Go to “File” → “Auto save” → “data” → “name-folder.” Enter name of 

experiment. If name-folder has not been created yet, go to “start” → “my 

computer” → “programs and files” → “ALV_V3.0” → “data.” Create own folder 

in data folder. Return to ALV program and set up auto save. 

 

13. Hit play button. 

 

14. After experiment is over, open name-folder. Data summary is stored in 

DYNADYST file. Open this file, select all, copy and paste into excel. Save and 

email to self. Each run has its own individual file. Right-click one of them and 

open with notepad. Select all, copy and paste into excel, and save. Write down 

date and conditions. Email to self. 

 

15. Close laser shutter. 

 

16. To exit ALV program, go to “file” and select “exit.” Click “ok.” (DO NOT exit 

program without going through file → exit. Failure to exit properly could result 

in errors next time the program is opened.) 

 

17. Turn off autocorrelator. 
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18. Remove cuvette and pour solution back into centrifuge tube. Wash cuvette as 

described above. 

 

19. Close cuvette holder. 
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APPENDIX D: STATIC LIGHT SCATTERING DATA 

OBTAINED FOR APOFERRITIN IN CdCl2 SOLUTIONS 

 

0 mM CdCl2 
Apoferritin 

Conc (mg/mL) 
Kc/R 

(mol/g) 
Kc/R 

(mol/g) Kc/R (mol/g) Average   
0.1 2.90E-06 3.00E-06 3.09E-06 3.00E-06   
0.2 3.29E-06 3.05E-06 3.17E-06 3.17E-06   
0.4 3.72E-06 3.60E-06 3.71E-06 3.68E-06   
0.5 3.89E-06 3.92E-06 3.99E-06 3.93E-06   

       
Apoferritin 

Conc (mg/mL) KcM/R KcM/R KcM/R Average 
Standard 
deviation phi 

0.1 1.06 1.10 1.13 1.10 0.028 0.00035 
0.2 1.21 1.12 1.16 1.16 0.036 0.00071 
0.4 1.36 1.32 1.36 1.35 0.021 0.00141 
0.5 1.43 1.43 1.46 1.44 0.015 0.00176 

       
       
       
       
5 mM CdCl2 

Apoferritin 
Conc (mg/mL) 

Kc/R 
(mol/g) 

Kc/R 
(mol/g) Kc/R (mol/g) Average   

0.1 3.17E-06 3.01E-06 3.42E-06 3.20E-06   
0.2 3.46E-06 3.35E-06 3.86E-06 3.56E-06   
0.3 3.66E-06 3.82E-06 3.47E-06 3.65E-06   
0.4 4.18E-06 4.13E-06 4.44E-06 4.25E-06   

       
Apoferritin 

Conc (mg/mL) KcM/R KcM/R KcM/R Average 
Standard 
deviation phi 

0.1 1.11 1.05 1.20 1.12 0.059 0.00037 
0.2 1.21 1.17 1.35 1.25 0.077 0.00074 
0.3 1.28 1.34 1.22 1.28 0.050 0.00111 
0.4 1.46 1.45 1.56 1.49 0.047 0.00147 

       
       
       
       
10 mM CdCl2 

Apoferritin 
Conc (mg/mL) 

Kc/R 
(mol/g) 

Kc/R 
(mol/g) Kc/R (mol/g) Average   

0.1 3.40E-06 3.36E-06 3.54E-06 3.43E-06   
0.2 3.54E-06 3.52E-06 3.68E-06 3.58E-06   
0.3 3.96E-06 4.02E-06  3.99E-06   
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Apoferritin 
Conc (mg/mL) KcM/R KcM/R KcM/R Average 

Standard 
deviation phi 

0.1 1.09 1.08 1.14 1.10 0.025 0.00040 
0.2 1.14 1.13 1.18 1.15 0.022 0.00080 
0.3 1.27 1.29  1.28 0.010 0.00121 

       
       
       
       
       
13 mM CdCl2 

Apoferritin 
Conc (mg/mL) 

Kc/R 
(mol/g) 

Kc/R 
(mol/g) Kc/R (mol/g) Average   

0.3 2.34E-06 2.33E-06 2.42E-06 2.36E-06   
0.4 2.29E-06 1.97E-06 2.68E-06 2.31E-06   
0.5 2.31E-06 2.22E-06 2.30E-06 2.28E-06   

       
       

Apoferritin 
Conc (mg/mL) KcM/R KcM/R KcM/R Average 

Standard 
deviation phi 

0.3 0.94 0.94 0.97 0.95 0.016 0.00096 
0.4 0.92 0.79 1.08 0.93 0.116 0.00129 
0.5 0.93 0.89 0.93 0.92 0.017 0.00161 

       
       
       
       
20 mM CdCl2 

Apoferritin 
Conc (mg/mL) 

Kc/R 
(mol/g) 

Kc/R 
(mol/g) Kc/R (mol/g) Average   

0.1 2.89E-06 2.71E-06 2.94E-06 2.85E-06   
0.3 2.51E-06 2.57E-06  2.54E-06   
0.4 2.17E-06 2.15E-06 2.44E-06 2.25E-06   
0.5 1.90E-06 2.08E-06 1.93E-06 1.97E-06   

       
Apoferritin 

Conc (mg/mL) KcM/R KcM/R KcM/R Average 
Standard 
deviation phi 

0.1 0.93 0.87 0.95 0.92 0.032 0.00040 
0.2 0.81 0.83  0.82 0.001 0.00080 
0.3 0.70 0.69 0.79 0.73 0.042 0.00120 
0.4 0.61 0.67 0.62 0.63 0.025 0.00161 
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