REVISION No.
DATE $7 \quad / 12 \quad / 84$
Project No. G-37-608
Project Director: R.P. Kertz and T.P Hill
GTRI/GKIX
School/kzax Math

Sponsor: National Science Foundation
Type Agreement: Grant No. DMS-8401604

ADMINISTRATIVE DATA

1) Sponsor Technical Contact:

OCA Contact Lynn Boyd x4820
2) Sponsor Admin/Contractual Matters:

Stephen G. Burnisky
Grants Official
National Science Foundation
Washington, DC 20550
(202) 357-9671

(or) Company/Industrial Proprietary: | nilitary Security Classification: | n / a |
| :--- | :--- |

n/a
n/a

RESTRICTIONS

See Attached
Travel: Foreign travel must have prior approval - Contact OCA in each case. Domestic travel requires sponsor approval where total will exceed greater of $\$ 500$ or 125% of approved proposal budget category.
Equipment: Title vests with GIT.

COMMENTS:

*Includes usual 6 month unfunded flexibility period

This is a continuing grant.

COPIES TO:

Project Director

Research Administrative Network
Procurement/EES Supply Services
Research Security Services
Research Property Management
Accounting
Research Communications (2)

GTRI
Library
Project File
Other Newton

FINAL REPORT

MATHEMATICAL SCIENCES: OPTIMIZATION AND CONDITIONING PRINCIPLES FOR DISCRETE PARAMETER STOCHASTIC PROCESSES

Theodore P. Hill
Robert P. Kertz

Award Period
July 1, 1984 to December 31, 1986

Under
NSF Award Number DMS-8401604

March 1987

GEORGIA INSTITUTE OF TECHNOLOGY A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA SCHOOL OF MATHEMATICS
 ATLANTA, GEORGIA 30332

b. Publication Citations

List of papers by T. P. Hill which were partially supported by NSF Grant DMS 84-01604.

1. "Equipartitioning Common Domains of Non-Atomic Measures," Math. Z. 189, 415-419 (1985).
2. "Optimal-Partitioning Inequalities for Non-Atomic Probability Measures," Trans. Amer. Math. Soc. 296, 703-725 (1986) (with J. Elton and R. Kertz).
3. "Prophet Inequalities for Averages of Independent NonNegative Random Variables," Math. Z. 192, 427-436 (1996).
4. "A Generalization of Lyapounov's Convexity Theorem to Measures with Atoms," Proc. Amer. Math. Soc. 99, 297-304 (1987) (with J. Elton).
5. "Monotonically Improving Limit-Optimal Strategies in Finite-State Decision Processes," to appear in Math. of O.R. (with J. Van der Wal).
6.

"Partitioning General Probability Measures," to appear in Ann. Prob.
7. "The Existence of Good Markov Strategies in Decision Processes with General Payoffs," to appear in Stoch. Proc. Appl. (with V. Pestien).
8. "Common Hyperplane Medians for Random Vectors," to appear in Amer. Math. Monthly.
9. "A Sharp Partitioning-Inequality for Non-Atomic Probability Measures Based on the Mass of the Infimum of the Measures," to appear in Prob. Th. Rel. Topics (Z. Wahrscheinlichkeitsth.)
10. "Expectation Inequalities Associated with Prophet Problems," to appear in Stoch. Anal. Appl.
11. "Equitable Distribution of Indivisible Objects," (with S. Demko), submitted for publication.
12. "Random-Number Guessing and the First-Digit Phenomenon," submitted for publication.
13. "Prophet Inequalities for Parallel Processes," (with D. Kennedy), submitted for publication.
14. "Minimax-Risk Inequalities in the Classification Problem," (with Y. Tong) in preparation.

List of papers by Robert P. Kertz which were partially supported by NSF Grant DMS 84-01604.

1. "Common Strict Character of Some Sharp Infinite-Sequence Martingale Inequalities," co-authored with David C. Cox (1985) Stochastic Processes and Their Applications, 20, 169-179.
2. "Prophet Regions and Sharp Inequalities for pth Absolute Moments of Martingales," co-authored with David C. Cox (1986) Journal of Multivariate Analysis, 18, 242-273.
3. "Comparison of Optimal Value and Constrained Maxima Expec-tations for Independent Random Variables," (1986) Advances in Applied Probability, $18,311-340$.
4. "Optimal-Partitioning Inequalities for Non-Atomic Probability Measures," co-authored with J. Elton and T. P. Hill (1986) Transactions of the American Mathematical Society, 296, 703-725.
5. "Comparison of Stop Rule and Maximum Expectations for Finite Sequences of Exchangeable Random Variables," coauthored with J. Elton (1986). Submitted for publication.
6. "Decision Processes Under Total Expected Concomitant Constraints, with Applications to Bandit Processes," (1986). Submitted for publication.
7. "Leaving an Interval in Limited Playing Time," co-authored with David Heath (1986). Submitted for publication.
8. "Prophet Problems in Optimal Stopping: Results, Techniques, and Variations," (1986) Technical Report, School of Mathematics, Georgia Institute of Technology, Atlanta.
9. "Simulated Annealing, Diffusions, and Large Deviations for Nonlinear Programming," with Craig Tovey (1987), in preparation.
10. "Measures of Perfect Information in Bernoulli Bandit Processes," with Donald Berry (1987), in preparation.
11. "Comparisons Between Multi-Choice Gamblers and Prophets, with Application to Optimal Job Assignment Procedures," with Douglas P. Kennedy (1987), in preparation.
12. "Limit Theorems for Threshold-Stopped Random Variables," with Douglas P. Kennedy (1987), in preparation.
c. Scientific Collaborators

Principal Investigators for NSF Grant DMS 84-01604 were Theodore P. Hill and Robert P. Kertz, both associate professors in the School of Mathematics, Georgia Institute of Technology.
e. Technical Summary of Activities and Results

Results of research by T. P. Hill and R. P. Kertz which was supported in part by NSF Grant DMS 84-01604 are summarized below. Abstracts of pertinent papers are given, followed by conferences, workshops, meetings, and universities at which talks were given and names of three professors who were brought in for consultation.

Abstracts of papers by T. P. Hill which were partially supported by NSF Grant DMS 84-01604.

1. "Equipartitioning common domains of non-atomic measures," Math. Z. 189 415-419 (1985).

Abstract. If $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ are non-atomic finite measures on a measure space (S, F), then there is a measurable partition A_{1}, \ldots, A_{n} of S satisfying $\mu_{i}\left(A_{i}\right) \geq n^{-1} h\left(\left\|\mu_{1}\right\|, \ldots,\left\|\mu_{n}\right\|\right)$ for all i, where $h(\cdot)$ is the harmonic mean, and $\|\mu\|$ is the total mass of μ. Moreover, this bound is sharp and attained and strict inequality is possible if not all the measures are proportional. A probabilistic corollary is the following: If X_{1}, \ldots, X_{n} are continuous nonnegative L_{1} random variables on (Ω, F, P), then there is a measurable partition A_{1}, \ldots, A_{n} of Ω such that $\delta_{A_{i}} X_{i} d P \geq\left(\left(E X_{1}\right)^{-1}+\ldots+\left(E X_{n}\right)^{-1}\right)^{-1}$ for all i and this bound is best possible.
2. "Optimal-partitioning inequalities for non-atomic probability measures,"

Trans. Amer. Math. Soc. 296, 703-725 (1986) (with J. Elton and R. Kertz).
Abstract. Suppose μ_{1}, \ldots, μ_{n} are nonatomic probability measures on the same measurable space (S, B). Then there exists a measurable partition $\left\{S_{i}\right\}_{i=1}^{n}$ of S such that $\mu_{i}\left(S_{i}\right) \geq(n+1-M)^{-1}$ for all $i=1, \ldots, n$, where M is the total mass of $v_{i=1}^{n} \mu_{i}$ (the smallest measure majorizing each μ_{i}). This inequality is the best possible for the functional M, and sharpens and quantifies a well-known cake cutting theorem of Urbanik and of Dubins and Spanier. Applications are made to L_{1}-functions, discrete allocation problems, statistical decision theory, and a dual problem.
3. "Prophet inequalities for averages of independent non-negative random variables," Math. Z. 192, 427-436 (1986).

Abstract. If X_{1}, \ldots, X_{n} are independent non-negative random variables, then $E\left\{\max _{j \leq n}\left(X_{1}+\ldots+X_{j}\right) / j\right\} \leq\left(2-n^{-1}\right) \sup \left\{E\left[\left(X_{1}+\ldots+X_{t} / t\right]: t\right.\right.$ is a stop rule for $\left.X_{1}, \ldots, X_{n}\right\}$, and this bound is best possible for all $n \geq 1$. This result sharpens results of Krengel and Sucheston, in which the weaker bound $2(1+\sqrt{3})$ was obtained, and yields the $k=2$ prophet inequality for independent non-negative random variables.
4. "A generalization of Lyapounov's convexity theorem to measures with atoms," Proc. Amer. Math. Soc. 99, 297-304 (1987) (with J. Elton).

Abstract. The distance from the convex hull of the range of an n dimensional vector-valued measure to the range of that measure is no more than $\alpha \mathrm{n} / 2$, where α is the largest (one-dimensional) mass of the atoms of the measure. The case $\alpha=0$ yields Lyapounov's Convexity Theorem; applications are given to the bisection problem and to the bang-bang principle of optimal control theory.
5. "Monotonically improving limit-optimal strategies in finite-state decision processes," accepted for publication in Math. of O.R. (with J. Van der Wal).

Abstract. In every finite state leavable gambling problem and in every finite-state Markov decision process with discounted, negative or positive reward criteria there exists a Markov strategy which is monotonically improving and optimal in the limit along every history. An example is given to show that for the positive and gambling cases such strategies cannot be constructed by simply switching to a "better" action or gamble at each successive return to a state.
6. "Partitioning general probability measures," accepted for publication in Ann. Prob.

Abstract. Suppose μ_{1}, \ldots, μ_{n} are probability measures on the same measurable space (Ω, F). Then if all atoms of each μ_{i} have mass α or less, there is a measurable partition A_{1}, \ldots, A_{n} of Ω so that $\mu_{i}\left(A_{i}\right) \geq V_{n}(\alpha)$ for all $i=1, \ldots, n$, where $v_{n}(\cdot):[0,1] \rightarrow\left[0, n^{-1}\right]$ is the unique non-increasing function satisfying $V_{n}(\alpha)=1-k(n-1) \alpha$ for $\alpha \in\left[(k+1) k^{-1}((k+1) n-1)^{-1},(k n-1)^{-1}\right]$ for all $k \geq 1$. Moreover, the bound $v_{n}(\alpha)$ is attained for all n and all α. Applications are given in L_{1} spaces, to statistical decision theory, and to the classical non-atomic case.
7. "The existence of good Markov strategies in decision processes with general payoffs," accepted for publication in Stoch. Proc. Appl. (with V. Pestien).

Abstract. For countable-state decision processes (dynamic programming problems), a general class of objective functions is identified for which it is shown that good Markov strategies always exist. This class includes product and lim inf rewards, as well as practically all the classical dynamic programming expected payoff functions.
8. "Common hyperplane medians for random vectors," accepted for publication in Amer. Math. Monthly.

Abstract. Every collection of $m \leq n$ random n-dimensional vectors has a common hyperplane median, that is, there is a single hyperplane which simultaneously bisects each of the distributions in the sense that at least half the mass of each distribution lies on one side of the hyperplane (including the hyperplane) and at least half lies on the other side (again including the hyperplane). This result generalizes the well-known Ham Sandwich Theorem; the proof is based on first principles using an application of the Borsuk-Ulam Theorem to a "midpoint median" function.
9. "A sharp partitioning-inequality for non-atomic probability measures based on the mass of the infimum of the measures," accepted for publication in Prob. Theory (Z. Wahrscheinlichkeitsth.).

Abstract. If μ_{1}, \ldots, μ_{n} are non-atomic probability measures on the same measurable space (S, F), then there is an F-measurable partition $\left\{A_{i}\right\}_{i=1}^{n}$ of S so that $\mu_{i}\left(A_{i}\right) \geq(n-1+m)^{-1}$, where $m=\left\|\hat{i}_{1=1}^{n} \mu_{i}\right\|$ is the total mass of the largest measure dominated by each of the $\mu_{i} s$; moreover, this bound is attained for all $\mathrm{n} \geq 1$ and all m in $[0,1]$. This result is an analog of the bound $(\mathrm{n}+1-\mathrm{M})^{-1}$ of Elton, Hill, and Kertz based on the mass M of the supremum of the measures; each gives a quantative generalization of a well-known cake cutting inequality of Urbanik and of Dubins and Spanier.
10. "Expectation inequalities associated with prophet problems," accepted for publication in Stoch. Ana1. App1.

Abstract. Applications of the original prophet inequalities of Krengel and Sucheston are made to problems of order selection, non-measurable stop rules, look-ahead stop rules, and iterated maps of random variables. Also, proofs are given of two results of Hill and Hordijk concerning optimal orderings of uniform and exponential distributions.
11. "Equitable distribution of indivisible objects," (with S. Demko), submitted for publication.

Abstract. Deterministic and randomized solutions are developed for the problem of equitably distributing m indivisible objects to n people (whose values may differ), without the use of outside judges or side-payments. Several general bounds for the minimal share are found; a practical method is given for determining an optimal lottery and the largest minimal share; and the case of repeated allocations is analyzed.
12. "Random-number guessing and the first digit phenomenon," submitted for publication.

Abstract. A widely-accepted empirical observation called the First Digit Phenomenon or Benford's Law says that in collections of random tables of data (such as physical constants, almanacs, newspaper articles, etc.), the first significant digit is more likely to be a low number than a high number. In this study, an analysis of the frequencies of the first and second digits of "random" six-digit numbers guessed by people suggests that people's responses share some of the properties of Benford's Law: first digit 1 occurs much more frequently than expected; first digit 8 or 9 occurs much less frequently; and the second digits are much more uniformly distributed than the first.
13. "Prophet inequalities for parallel processes," (with D. Kennedy), submitted for publication.

Abstract. Generalizations of prophet inequalities for single sequences are obtained for optimal stopping of several parallel sequences of independent random variables. For example, if $\left\{X_{i, j}\right\}_{j=1, j=1}^{n}$ are independent non-negative random variables, then $E\left(\sup _{i, j} X_{i j}\right) \leq(n+1) \max \sup \left\{E\left(X_{i, t}\right): t\right.$ is a stop rule for $\left.X_{i, 1}, X_{i, 2}, \ldots\right\}$, and this bound is best possible. Applications are made to comparisons of the optimal expected returns of various alternative methods of stopping of parallel processes.
14. "Minimax-risk inequalities in the classification problem," (with Y. Tong) in preparation.

Abstracts of papers by Robert P. Kertz which were partially supported by NSF Grant DMS 84-01604.

1. "Common strict character of some sharp infinite-sequence martingale inequalities," co-authored with David C. Cox (1985) Stochastic Processes and Their Applications, 20, 169-179.

Abstract. A procedure is given for proving strictness of some sharp, infinite-sequence martingale inequalities, which arise from sharp, finitesequence martingale inequalities attained by degenerating extremal distributions. The procedure is applied to obtain strictness of the sharp inequalities of Cox and Kemperman $P\left(\left|X_{i}\right| \geq 1\right.$ for some $\left.i=1,2, \ldots\right) \leq$ (ℓ n 2) $)^{-1} \sup E\left|\sum_{i=0}^{n} X_{i}\right|$ and of Cox (sharp form of Burkholder's inequality) $P\left(\sum_{i=0}^{\infty} X_{i}^{2} \geq 1\right) \leq e^{n} \sup _{n}^{i=0} E\left|\sum_{i=0}^{n} X_{i}\right|$ for all nontrivial martingale difference sequences X_{0}, X_{1}, \ldots.
2. "Prophet regions and sharp inequalities for pth absolute moments of martingales," co-authored with David C. Cox (1986) Journal of Multivariate Analysis, 18, 242-273.
Abstract. Exact comparisons are made relating $E\left|Y_{0}\right|^{p}, E\left|Y_{n-1}\right|^{P}$, and $E\left(\max _{j \leq n-1}\left|Y_{j}\right|^{p}\right)$, valid for all martingales Y_{0}, \ldots, Y_{n-1}, for each $p \geq 1$. Specifically, for $p>1$, the set of ordered triples $\left\{(x, y, z): x=E\left|Y_{0}\right|^{p}\right.$, $y=E\left|Y_{n-1}\right|^{P}$, and $z=E\left(\max _{j \leq n-1}\left|Y_{j}\right|^{P}\right)$ for some martingale $\left.Y_{0}, \ldots, Y_{n-1}\right\}$ is precisely the $\operatorname{set}\left\{(x, y, z): 0 \leq x \leq y \leq z \leq \Psi_{n, p}(x, y)\right\}$, where $\psi_{n, p}(x, y)=$ $\mathrm{x} \psi_{\mathrm{n}, \mathrm{p}}(\mathrm{y} / \mathrm{x})$ if $\mathrm{x}>0$, and $=a_{\mathrm{n}-1, p} \mathrm{y}$ if $\mathrm{x}=0$; here $\psi_{\mathrm{n}, \mathrm{p}}$ is a specific recursively defined function. The result yields families of sharp inequallities, such as $E\left(\max _{j \leq n-1}\left|Y_{j}\right|^{p}\right)+\psi_{n, p}^{*}(a) E\left|Y_{0}\right|^{P} \leq a E\left|Y_{n-1}\right|^{p}$, valid for all martingales Y_{0}, \ldots, Y_{n-1}, where $\psi_{n, p}^{*}$ is the concave conjugate function of $\psi_{\mathrm{n}, \mathrm{p}}$. Both the finite sequence and infinite sequence cases are developed. Proofs utilize moment theory, induction, conjugate function theory, and functional equation analysis.
3. "Comparison of optimal value and constrained maxima expectations for independent random variables," (1986) Advances in Applied Probability, 18, 311-340.

Abstract. For all uniformly bounded sequences of independent random variables X_{1}, X_{2}, \ldots, a complete comparison is made between the optimal value $V\left(X_{1}, X_{2}, \ldots\right)=\sup \left\{E X_{t}\right.$: t is an (a.e.) finite stop rule for $\left.X_{1}, X_{2}, \ldots\right\}$ and $E\left(k^{-1} \Sigma_{i=1}^{k} M_{i}\left(X_{1}, X_{2}, \ldots\right)\right)$, where $M_{i}\left(X_{1}, X_{2}, \ldots\right)$ is the ith largest order statistic for X_{1}, X_{2}, \ldots. In particular, for $k>1$, the set of ordered pairs $\left\{(x, y): x=V\left(X_{1}, X_{2}, \ldots\right)\right.$ and $y=E\left(k^{-1} \sum_{i=1}^{k} M_{i}\left(X_{1}, X_{2}, \ldots\right)\right)$ for some independent
random variables X_{1}, X_{2}, \ldots taking values in $\left.[0,1]\right\}$ is precisely the set $\left\{(x, y): k^{-1} x \leqq y<B_{k}(x) ; 0<x \leqq 1\right\} \cup\{(0,0),(1,1)\}$, where $B_{k}(0)=0$, $B_{k}(1)=1$, and for $0<x<1, B_{k}(x)=1-k^{-1} \sum_{i=0}^{k-1} \sum_{j=0}^{i}(1-x)^{2^{k}}(-\ell n(1-x))^{j} / j!$. The result yields sharp, universal inequalities for independent random variables comparing two choice mechanisms, the mortal's value of the game $V\left(X_{1}, X_{2}, \ldots\right)$ and the prophet's constrained maxima expectation of the game $E\left(k^{-1} \sum_{i=1}^{k} M_{i}\left(X_{1}, X_{2}, \ldots\right)\right)$. Techniques of proof include probability- and convexity-based reductions; calculus-based, multivariate, extremal problem analysis; and limit theorems of Poisson-approximation type. Precise results are also given for finite sequences of independent random variables.
4. "Optimal-partitioning inequalities for non-atomic probability measures." co-authored with J. Elton and T. P. Hill (1986) Transactions of the American Mathematical Society, 296, 703-725.

Abstract. Suppose μ_{1}, \ldots, μ_{n} are nonatomic probability measures on the same measurable space (S, B). Then there exists a measurable partition $\left\{S_{i}\right\}_{i=1}^{n}$ of S such that $\mu_{i}\left(S_{i}\right) \geq(n+1-M)^{-1}$ for all $i=1, \ldots, n$, where M is the total mass of $v_{i=1}^{n} \mu_{i}$ (the smallest measure majorizing each μ_{i}). This inequality is the best possible for the functional M, and sharpens and quantifies a well-known cake-cutting theorem of Urbanik and of Dubins and Spanier. Applications are made to L_{1}-functions, discrete allocation problems, statistical decision theory, and a dual problem.
5. "Comparison of stop rule and maximum expectations for finite sequences of exchangeable random variables," co-authored with J. Elton (1986). Submitted for publication.

Abstract. For sequences of exchangeable random variables X_{1}, \ldots, X_{n} taking values in $[0,1]$, results are given which compare $E\left(\max _{1 \leq i \leq n} X_{i}\right)$ and $V\left(X_{1}, \ldots, X_{n}\right)=\sup \left\{E X_{t}\right.$: t is a stop rule for $\left.X_{1}, \ldots, X_{n}\right\}$. Complete results are given for the $n=2$ and $n=\infty$ cases; results are also given for the $2<\mathrm{n}<\infty$ case. A constructive approach is taken, with extremal distributions given where applicable. For the $n=2$ case, conjugate function theory is used in an essential way. The transformations and constructions of finite sequences of exchangeable random variables which are given should be of independent interest to those working with this class of processes.
6. "Decision processes under total expected concomitant constraints, with applications to bandit processes," (1986). Submitted for publication.

Abstract. A problem of optimization under constraints is stated for general nonstationary stochastic decision models, and studied using convexity theory. For constrained multi-armed bandit processes with geometric
discounting, optimal plans are characterized through dynamic allocation indices, and value functions are expressed in terms of single-arm value functions. Techniques of proof include randomizations, conjugate duality, and characterizations for the unconstrajned problem. Explicit closed-form representations are given for some Bernoulli bandit processes.
7. "Leaving an interval in limited playing time," co-authored with David Heath (1986). Submitted for publication.

Abstract. A player starts at x in $(-G, G)$ and attempts to leave the interval in a limited playing time. In the discrete time problem, G is a positive integer and the position is described by a random walk starting at integer x, with mean increments zero, and variance increment chosen by the player from $[0,1]$ at each integer playing time. In the continuous time problem, the player's position is described by an Ito diffusion process with infinitesimal mean parameter zero and infinitesimal diffusion parameter chosen by the player from $[0,1]$ at each time instant of play. To maximize the probability of leaving the interval ($-G, G$) in a limited playing time, the player should play boldly by always choosing largest possible variance increment in the discrete-time setting and largest possible diffusion parameter in the continuous-time setting, until the player leaves the interval. In the discrete time setting, this result affirms a conjecture of Spencer. In the continuous time setting, the value function of play is also identified.
8. "Prophet problems in optimal stopping: results, techniques, and variations," (1986) Technical Report, School of Mathematics, Georgia Institute of Technology, Atlanta.

Abstract. This paper presents background, statements, techniques, and variations of prophet problems in optimal stopping. The main formulation of the prophet problem and equivalent formulations are given in sections one and two. Techniques of proof are given in sections three and four; these include reduction procedures, use of verification lemmas, use of moment theory, and other techniques. Variations of the prophet problem in optimal stopping are given in section five. Prophet-type stochastic control problems for transforms of processes are discussed in section six. Examples of prophet inequalities and prophet regions for many classes of processes are given. Proofs in section $5 b$ and in the appendix illustrate the techniques used to prove these results.
9. "Simulated annealing, diffusions, and large deviations for nonlinear programming," with Craig Tovey (1987), in preparation.
10. "Measures of perfect information in Bernoulli bandit processes," with Donald Berry (1987), in preparation.
11. "Comparisons between multi-choice gamblers and prophets, with application to optimal job assignment procedures," with Douglas P. Kennedy (1987), in preparation.
12. "Limit theorems for threshold-stopped random variables," with Douglas P. Kennedy (1987), in preparation.

Talks were presented at the following meetings, conferences, and universities by T. P. Hill.

1. Amer. Math. Society Annual Meeting, Anaheim

Jan 1985

Apr 1986
Apr 1986

Jun 1986
Jun 1986
Jun 1986

Aug 1986
Oct 1986

Talks were presented at the following meetings, conference, and universities by Robert P. Kertz.

1. Amer. Math. Society 91st Annual Meeting, Anaheim
2. Southeastern Meeting on Diff. Eqns., Atlanta
3. ORSA/TIMS 20th Joint National Meeting, Atlanta
4. Inst. of Math. Statist. 195th Meeting, Atlanta
5. Conference on Optimal Stopping and Gambling, Oberwolfach
6. Workshop on Probabilistic Problems Concerning Strategies, Göttingen
7. Statistical Laboratory, Cambridge Univ., Cambridge

Jan 1985
Oct 1985

Nov 1985

Mar 19.86
Jun 1986

Jun 1986
Jul 1986

The following professors were brought to Georgia Tech for research consultations with T. P. Hill and R. P. Kertz with partial assistance from NSF Grant DMS 84-01604.

1. Prof. Dr. Ulrich Krengel, Director, Institu für Mathematische Stochastik, Georg-August-Universität, Göttingen (August 1985).
2. Prof. Donald Geman, Department of Mathematics and Statistics, University of Massachusetts, Amherst (March 1986).
3. Prof. Douglas Kennedy, Statistical Laboratory and Trinity College, University of Cambridge (September 1986).
