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SUMMARY 

The genetic disorder sickle cell anemia causes hemolytic anemia and sickle pain 

crisis, episodes of microvascular occlusion resulting in painful ischemic tissue damage.  

Pain crisis is thought to occur when sickle erythrocytes adhere in the post-capillary 

venule, partially occluding the vessel.  The resulting slowed blood flow causes more 

extensive cell adherence and entrapment of rigid, deoxygenated erythrocytes until the 

vessel is entirely occluded.  It was hypothesized that the inflammatory mediators 

histamine and tumor necrosis factor-α, factors known to cause endothelial expression of 

adhesive ligands, might significantly increase sickle erythrocyte adhesion, and thus be 

capable of initiating sickle pain crisis.  It was also hypothesized that the perfusion shear 

stress environment of the endothelium, known to be oscillatory and reduced in sickle cell 

patients, was a significant mediating factor of sickle cell adhesion.  An in-vitro flow 

chamber using cultured endothelial cells and erythrocytes from blood samples of sickle 

cell anemic patients was used to quantify sickle erythrocyte adherence to stimulated and 

unstimulated endothelial cells under shear stresses from 1.0 to 0.1 dyne/cm2.  Results 

showed that both endothelial stimulation and reduction of the perfusion shear stress 

increased sickle erythrocyte adherence.  In combination, the use of inflammatory 

stimulation with reduced shear stress resulted in further increased adhesion, but only 

when above the range of 0.1 – 0.2 or 0.4 dyne/cm2, depending on the inflammatory 

mediator.  Adhesion below this level of shear is not significantly increased by endothelial 

stimulation.  The mechanism by which histamine mediates adhesion was investigated, 

and found to involve the endothelial H2 and H4 receptors and expression of the P-

selectin ligand.  These data suggest that irregular flow, typical of sickle 

microvasculature, may act in conjunction with the pro-inflammatory state of sickle 

vasculature and the histaminergic nature of some pain treatments to initiate or propagate 
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sickle vaso-occlusion.  Findings concerning histamine, tumor necrosis factor α, and 

shear stress effects on adherence are discussed in relation to their possible applicability 

to patient health, future studies are outlined to confirm the relation of in vitro data to in 

vivo patient condition, and proposals are made for applying these methodologies to 

other potential mediators of sickle erythrocyte adhesion. 
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CHAPTER I 

Introduction and Rationale 
 
 
 

1.1  Introduction 

The genetic disorder sickle cell anemia is characterized by homozygous 

inheritance of the gene for the production of hemoglobin S.  The gelation of sickle 

hemoglobin when deoxygenated leads to the distortion or “sickling” of the sickle red 

blood cell (SSRBC) shape, increases cell rigidity, and damages the exterior membrane, 

altering blood flow dynamics and altering the red blood cell population.  The clinical 

complications of sickle cell anemia are related to the sickling of red blood cells, either 

directly through erythrocyte changes that alter hemodynamics, or indirectly through its 

effect on blood chemistry, activation of thrombotic, inflammatory, and immune pathways.  

These complications include hemolytic anemia and pain crises that are self-limited 

episodes of diffuse, reversible pain in the extremities, back, abdomen, or chest.  These 

are thought to be caused by microvascular occlusion, resulting in painful oxygen 

starvation and tissue damage.  Although some of the effects of sickling on blood 

chemistry are understood, the detailed connection between genetics, external 

environmental effects, and clinical manifestations has not been fully defined.  

 Adhesion of sickle erythrocytes to endothelial monolayers likely contributes to the 

pathophysiology of sickle pain crises.  Adhesion of erythrocytes in the microvasculature 

may cause a general slowing of blood flow by partly occluding vessels.  Slower blood 

flow leads to a cascade of additional adhesion, sickling of red blood cells, entrapment of 

irreversibly sickled cells, and complete obstruction in the capillaries.  The post-capillary 

venules are thought to be the site of the initial adhesion event. 

 The high levels of inflammatory cytokines, immune response mediators, and 

thrombotic mediators found in patient plasma may also induce endothelial activation, 
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causing expression of adhesive ligands that are known to elevate sickle erythrocyte 

adhesion.  Known adhesive pathways include TNF-α or IL-8 up regulation of adhesive 

ligands, and von Willebrand factor or platelet thrombospondin bridging of endothelial 

sickle erythrocyte ligands.  This may explain why infection, inflammation, and trauma are 

followed by a pain crisis in sickle patients.   

 Despite extensive investigation, initiation of sickle cell pain crisis is not yet fully 

understood.  This thesis investigates histamine as a potentially powerful adhesion 

pathway in the microvasculature by examining capacity for promotion of sickle 

erythrocyte adhesion under conditions of flow, and determining the receptors and 

ligands involved in the promotion of sickle erythrocyte adhesion.   

 

1.2  Rationale 

 It was hypothesized that histamine may initiate sickle complications by promoting 

the adhesion of SSRBC in the sickle microvasculature.  Histamine is an inflammatory 

mediator known to cause the expression of adhesive ligands on endothelial monolayers.  

Highly specific histamine receptors H1, H2, H3, or H4 are involved in histamine's biological 

effects (Gantner et al., 2002; Morse et al., 2001; van der Werf & Timmerman, 1989; 

Heltianu et al., 1982).  Histamine and TNF-α cause endothelial activation and promote 

adherence of sickle erythrocytes to vascular endothelium (Gee & Platt, 1995; Swerlick et 

al., 1993; Vordermeier et al., 1992).  The dynamics of endothelial cell adhesion molecule 

expression induced by histamine are much more rapid, requiring minutes instead of the 

hours of stimulation characteristic of TNF-α activation (Sugama et al., 1992). Studies 

also show that histamine plasma levels are typically elevated during patient steady-state 

(asymptomatic), increase during pain crisis (Enwonwu & Lu, 1991), and increase after 

some typical treatments of sickle pain (Friedman & Dello Buono, 2001; Chaney, 1995; 
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Fuller et al., 1990; Muldoon et al., 1984).  This thesis examines the adhesion of sickle 

erythrocytes to endothelium induced by histamine and characterizes the dynamics and 

mediators involved. 

Blood flow in the microcirculation of sickle patients is known to be periodic and 

reduced over time (Kennedy et al., 1988; Lipowsky et al., 1987; Rodgers et al., 1984).  

Because sickle erythrocyte adhesion to the endothelium in vivo must take place under 

microvascular flow conditions, proposed adhesive interactions studied in vitro need to be 

evaluated over a range of flow conditions corresponding to that encountered in sickle 

patient microvasculature.  Adhesive ligands incapable of promoting adhesion at normal 

vascular flow may have a profound effect at the reduced flow conditions typical of sickle 

patients. 

 Based on the known endothelial cell responses to histamine stimulation, the 

following hypothesis is explored:  Histamine promotes sickle erythrocyte adherence to 

endothelium in a shear-dependent manner under physiologic flow.  This is mediated by 

binding to endothelial histamine receptors inducing expression of adhesive ligands. 

 This hypothesis is explored through studies designed with the following specific 

aims: 

 

(1)  Use histamine receptor agonists and antagonists to characterize the endothelial 

histamine receptors involved in sickle adherence and demonstrate the dependence of 

sickle cell adherence on expression of specific ligands. 

 

(2)  Quantify sickle cell adherence levels in response to histamine stimulation under 

shear stress in the range of 1.0 to 0.1 dyne/cm2.  
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 These studies were designed to characterize important additional pathways that 

potentially act as triggering mechanisms of occlusive complications.  Understanding the 

characteristics of sickle red blood cell adhesion promoted by histamine to endothelial 

monolayers will aid in evaluating the potential of this pathway causing vascular 

obstructions in sickle complications.  Understanding the endothelial cell signaling 

pathways and ligand expression mechanisms may potentially be exploited to prevent 

sickle obstructive complications by blocking activation pathways or expressed ligands. 

 

1.3  Chapter Guide 

Chapter II reviews relevant literature and background information.  Materials and 

methodology are presented in Chapter III.  Chapter IV directly examines the 

mechanisms of histamine-mediated adhesion of sickle erythrocytes to cultured 

endothelial cells, addressing specific aim #1.  In these experiments, cultured endothelial 

monolayers are exposed to a range of histamine concentrations both prior to and during 

perfusion with sickle erythrocyte suspensions while under a perfusion shear stress of 1.0 

dyne/mm2 in a parallel plate flow chamber.  In addition, the mechanism promoting sickle 

erythrocyte adherence is examined through the use of blocking agents to determine the 

endothelial receptors and ligand expression involved in the histamine signal propagation. 

The next section of this thesis (Chapter V) examines the effect of prevailing 

shear stress on the adhesion of sickle erythrocytes through the use of a linear shear 

chamber.  Decreased flow rates affect the dynamics of sickle erythrocyte adhesion in the 

microvasculature, because the associated shear stress determines the contact time and 

frequency of endothelial cell / erythrocyte interactions.  Shear also stresses any bonds 

formed between erythrocytes and endothelial cells.  Thus the flow rate is an important 

variable to consider in properly modeling erythrocyte adhesion in the sickle 

microvasculature.  In these studies, flow is examined over a shear rate range from 0.1 to 
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1.0 dyne/cm2 to examine the role of hemodynamics on sickle cell adherence.  Tumor 

necrosis factor α (TNF-α) is used as an agonist in this section because the effect of 

TNF-α to promote sickle erythrocyte adherence is well characterized.  

Specific aim #2 is addressed in Chapter VI, bringing the two previous chapters 

together by testing the shear stress dependence of the newly characterized histamine-

mediated sickle erythrocyte adhesion.   

The final results chapter of this thesis (Chapter VII) collects additional 

experiments which explored subjects related to the previous chapters, but proved 

inconclusive, methodologically unfeasible, or only partially completed as preliminary 

investigations for future work.  These studies include an examination of the role of eNOS 

in sickle cell adherence promoted by histamine, investigation of alternate endothelial cell 

sources to attain a more physiologically-relevant endothelial model, and examination of 

bond strength through detachment studies.  An overview of the entire thesis is provided 

in the final chapter (Chapter VIII).   

 

 

 

 

 

 

 

 

 

 

 

 5



                                                         

CHAPTER II 
 

BACKGROUND AND LITERATURE REVIEW 
 
 
 

2.1  Sickle Cell Anemia 

 

2.1.1  Disorder Etiology and Effect 

The term “sickle cell anemia” designates a group of genetic disorders resulting 

from a mutation that produces an alternate form of hemoglobin known as “sickle 

hemoglobin.”  (HbS)  This mutation is the substitution of valine for glutamic acid at the 

sixth amino acid from the N-terminus end of the coding sequence for the β-hemoglobin 

chain (INGRAM, 1956; PAULING et al., 1949).  Sickle cell anemia resulting from this 

mutation is characterized by vascular obstruction, causing pain, tissue damage, and 

organ failure throughout the patient's life. 

Homozygous inheritance of the sickle cell gene leads to the complete sickle cell 

anemia disorder.  Heterozygous inheritance leads to the benign sickle cell trait that is a 

genetic carrier state (Stark et al., 1980).  The reason for the difference in severity of 

these disorders is the relative amount of sickle hemoglobin in patient's erythrocytes.  

Patients with sickle cell anemia produce erythrocytes that contain HbS with small 

amounts of fetal hemoglobin.  Patients with sickle trait typically produce less than half 

hemoglobin S, the majority of their hemoglobin being of the normal "A" type (Hiruma et 

al., 1995).  Additional hematological disorders are caused by the combination of the 

sickle gene and other independent hemoglobin mutations.  For example, sickle β-

thalassemia results from inheriting a gene for sickle cell anemia with a thalassemia gene 

mutation that greatly reduces the production of the β hemoglobin chains (Greenwalt & 

Zelenski, 1984).  Other hemoglobin disorders compounded with sickle cell anemia 
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comprise the remainder of these sickle disorders, known collectively as “sickle cell 

disease.”  These include HbSC, HbSDLos, and HbSO, named after the mutant 

hemoglobin co-inherited with sickle cell anemia (Bunn, 1997; Bunn & Forget, 1986; 

Greenwalt et al., 1984). 

The homozygous form of sickle hemoglobin related anemia (here referred to as 

SCA), is the central focus of the studies conducted in completion of this thesis.  For 

simplicity, only homozygous SCA was studied and only blood samples from patients 

exhibiting homozygous sickle cell anemia were employed in these studies.  

Nevertheless, techniques or discoveries concerning sickle cell anemia in this thesis may 

provide useful direction for research to define causes of complication and methods of 

treatment of these related hemoglobinopathies. 

 

2.1.2  Origin 

Sickle cell anemia originated in at least four different mutational events in three 

different areas of Africa, those being Benin, Senegal, and the Central African Republic 

(Pagnier et al., 1984), and once in India (Trabuchet et al., 1991; Labie et al., 1989), as 

indicated by studies showing regional similarities in genetic haplotypes.  A fourth, 

independent African origin has also been proposed (Lapoumeroulie et al., 1992) in 

Cameroon.  Anthropological studies employing current migration theories suggest 

simultaneous appearance of the African mutations approximately 2,000 years ago. An 

alternate theory proposes a single originating mutation that acquired widely variant 

haplotypes via gene conversion and then were distinguished by genetic drift and 

selection (Flint et al., 1993).  Other heritable hemoglobin mutations are known, but sickle 

cell anemia has remarkably high prevalence in world population for originating from 

these few mutations.   
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The multiple origins of the sickle hemoglobin mutation do not alone explain the 

number of individuals with the sickle gene.  In the US, sickle cell anemia affects 

approximately 72,000 people.  Sickle cell anemia occurs in nearly 1 in 500 African 

American births and 1 in 900 Hispanic American births.  Approximately 2 million 

Americans, or 1 in 12 African Americans and 1 in 16 Hispanic Americans carry the sickle 

cell trait (American Sickle Cell Anemia website, 2006).  The gene's proliferation in 

specific regions of the world with a tropical climate is believed to be an effect of sickle 

hemoglobin production which protects individuals with sickle trait against infection by the 

Plasmodium falciparum parasite responsible for the disease malaria (Williams et al., 

2005a; Williams et al., 2005b; Williams et al., 2005c; ALLISON, 1954).  Malaria is a 

frequent cause of death in these tropical regions, so an inherited protection against this 

deadly disease results in environmental selection for those with sickle trait.  Although 

malaria treatment has improved in these regions, the malaria parasite still has an 

influence in maintaining the high frequency of HbS in patients (Williams et al., 2005c). 

 

2.1.3  Sickle Hemoglobin 

 The principle way in which sickle hemoglobin differs from non-sickle hemoglobin 

involves its response to changes in oxygen tension.  Sickle hemoglobin has a decreased 

oxygen affinity in comparison to non-sickle hemoglobin (Young, Jr. et al., 2000).  More 

importantly, when sickle hemoglobin looses oxygen in the low-oxygen tension 

environment of the vasculature, sickle hemoglobin molecules aggregate reversibly into 

long, twisted, rods (Danish & Harris, 1983; Noguchi et al., 1983; Magdoff-Fairchild et al., 

1976; ALLISON, 1957).  Individual strands then associate into thick, rigid bundles of 14 

strings (Dykes et al., 1979; Dykes et al., 1978).  Literature on the subject frequently 

refers to this process as “polymerization” because of the ordered assembly of 

"monomer-like" sickle hemoglobin molecules into long chains.  Although the formation of 
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these chains appears similar to the process of polymerization, deoxygenated sickle 

hemoglobin molecules do not form covalent bonds.  Instead, the chains are held 

together via a strong hydrophobic interaction that arises from the changed charge 

distribution on sickle hemoglobin.  Technically this is an aggregation or "gelation," not a 

polymerization. 

The net result of this low-oxygen-tension response is that the "polymer" 

aggregates distort and deform the shape of the sickle erythrocyte.  Typically, the cell 

distorts from the normal biconcave disk to an elongated sickle-like shape for which the 

disorder is named (Herrick, 1910).  The presence of rigid “polymerized” sickle 

hemoglobin greatly decreases the cell’s flexibility (Itoh et al., 1995),  and results in an 

increased viscosity of blood from sickle patients, which increases with increasing 

polymer fraction (Hiruma et al., 1995).  Upon exposure to high oxygen tension, the sickle 

hemoglobin aggregation reverses (Hahn et al., 1976; Messer & Harris, 1970), and the 

sickle erythrocyte relaxes back to normal from its distorted form.  As the cycle 

continuously repeats over the lifetime of the erythrocyte, this "sickling" distortion can 

become irreversible, leading to the formation of "permanently sickled" erythrocyte 

fractions (discussed in section 2.4.2), whose presence in sickle patient blood increases 

blood viscosity even when blood is oxygenated (Chien et al., 1970).  This alteration of 

sickle hemoglobin results in diverse clino-pathological problems for patients that 

frequently leads to reduced life expectancy and organ damage.  

 

2.2    Sickle Cell Pathology 

Although sickle cell anemia has far-reaching consequences affecting every organ 

and system in the body either directly or indirectly, the primary effects of the disorder can 

be grouped into two distinct categories, namely hemolytic anemia and altered or reduced 

blood flow. 
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2.2.1  Hemolytic Anemia  

Chronic hemolytic anemia in sickle cell patients is caused by sickle erythrocyte 

lysis.  Lysis occurs through repeated gelation and un-gelation of hemoglobin as the 

blood passes through the pulmonary system (high oxygen tension) and the 

microvasculature (low oxygen tension).  For the sickle erythrocyte, this is an endless 

cycle of “sickling” and “unsickling,” repeatedly distorting and flexing the outer membrane.  

Sickling further damages the red cell membranes through complex internal interactions 

believed to result from the abnormal binding of spectrin to other membrane proteins 

such as ankyrin or protein 3 (Platt & Falcone, 1995; Liu et al., 1991; Lux et al., 1976).  

Also, denatured hemoglobin can associate with the cell membrane and free iron in the 

cell can cause specific membrane protein aggregation (Kannan et al., 1988; Low et al., 

1985).  Similar protein aggregation is seen during the standard aging process of 

erythrocytes approaching senescence, reflecting the severity of membrane damage on 

the sickle erythrocytes.  Decreased deformability also means that sickle erythrocytes are 

more susceptible to mechanical stresses of flow through the microvasculature 

(Messmann et al., 1990).  The narrow confines of the microvasculature contain capillary 

vessels only half the diameter of an erythrocyte, and require flowing erythrocytes to bend 

and distort in order to pass.  This deformation of erythrocytes with altered membrane 

rigidity in combination with the sickling / unsickling cycle applies greater mechanical 

stress to the outer membrane (Weed, 1975), resulting in cell damage and a drastic 

decrease in longevity.  Sickle erythrocytes have a lifespan of only 8-25 days, as 

compared to the lifespan of as long as 120 days for most non-sickle erythrocytes 

(Solanki et al., 1988). The spleen in sickle patients is often engorged as a result of 

accumulation of these short-lived erythrocytes, which is an especially dangerous 

condition in the first five years of life (Topley et al., 1981).   
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 The resulting hemolysis in this chronic anemia is compensated for in patients by 

an increased erythropoesis (Ballas & Marcolina, 2000).  As the demand for increased 

erythropesis is chronic during the life of the patient, there is an expansion of active 

marrow in the patient’s bones (Mentzer, 2000; Mann et al., 1975).  The population of 

very young erythrocytes, termed “reticulocytes” is increased to 5-16% of erythrocyte 

populations (Kaul et al., 1989b) as opposed to the more typical 1% in non-sickle 

patients.  “Stress reticulocytes”, even younger erythrocytes released prematurely from 

the bone marrow, and typically released in non-sickle patients only in the case of severe 

blood loss, are also present in increased numbers in the blood of sickle patients (Chang 

& Kass, 1997; Browne & Hebbel, 1996a).  Unless properly accounted for in the patient's 

diet, this increased erythropesis may lead to the patient exhibiting nutritional deficiencies 

and slowed growth because of increased demand for calories, proteins, and folic acid 

(Serjeant, 1993; Enwonwu, 1988).   

 Constant hemolysis of the sickle erythrocyte population has effects that spread 

beyond the bone marrow and vasculature.  The high turnover rate of erythrocytes leads 

to elevated levels of free hemoglobin and iron in the blood (Reiter et al., 2002), that may 

cause problems in the liver, kidneys, and heart, where excess free iron accumulates 

(Pippard, 1987).  In patients where the iron overload condition is further exacerbated by 

the need for repeated transfusion, chelating agents are often required to clear excess 

iron from the blood and tissue (Kwiatkowski & Cohen, 2004; Pippard, 1987).  Otherwise 

iron accumulates at toxic levels in the liver, heart, and endocrine organs.  

 

2.2.2  Vaso-Occlusive Crisis 

 Vaso-occlusive crisis, a painful ischemic event caused by microvascular 

blockage, is a common pathology associated with sickle cell anemia.  This effect occurs 

commonly in patients homozygous for sickle cell anemia, less severely in compound 
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heterozygotes, and very rarely in heterozygous patients under extreme conditions (Kerle 

& Nishimura, 1996).  Vaso-occlusive events present as a self-limited episode of diffuse, 

reversible pain in the extremities, back, abdomen, or chest resulting from oxygen 

starvation of tissues with microvascular blockage (Platt et al., 2002; Platt et al., 1991; 

Platt & Eckman, 1989; Baum et al., 1987).  These episodes typically lasts 4 to 6 days, 

but may last weeks.  Vaso-occlusion is frequently associated with fever and the passage 

of dark or red urine.  The localized tissue oxygen starvation resulting from the vaso-

occlusion causes ischemic tissue damage and intense musculoskeletal pain.  Recurrent 

ischemia over the lifetime of the patient leads to tissue dysfunction, organ failure, and 

death.  Vaso-occlusion is the most serious pathological feature of sickle cell anemia, and 

is likely the primary cause of morbidity and mortality in older children and adults.  Other 

clinical complications of vaso-occlusive events include recurrent infection, pulmonary 

infarction, stroke, splenic pathology, priapism, and retinopathy (Francis, 1991). 

 Sickle pain crises are thought to result from ischemia and infarction in the bone 

marrow (Milner & Brown, 1982; Lutzker & Alavi, 1976).  The hyperplasic (over-

cellularized) and expanded nature of blood-producing bone marrow in sickle patients, 

developed in response to the chronic anemia, results in higher bone marrow blood flow 

(Thrall & Rucknagel, 1978) making it especially susceptible to this ischemic damage and 

resulting pain-causing inflammation (Hammel et al., 1973).  Increased intermedullary 

pressure from the inflammatory response following ischemic damage is believed to be 

the source of the pain. 

 A wide range of conditions are known to precipitate painful crisis episodes (Baum 

et al., 1987), including conditions arising from other pathologies; infection, fever, 

hypoxia, acidosis, and dehydration, patient physical or psychological condition; 

pregnancy, exhaustion, stress, anxiety and depression, or environmental conditions; 

extremes of cold, heat, or high altitude.  Many pain crises occur without apparent 
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precipitant (Platt et al., 1989) highlighting the complexity of interacting factors leading to 

vaso-occlusive pain episodes. 

 

2.2.3  Inflammation and Sickle Pain Crisis 

 Inflammation is one of the major precipitants of crisis, often arising directly from 

infection or injury.  Pain episodes are often precipitated by or coincide with bacterial or 

viral infection (Wierenga et al., 2001; Goldstein et al., 1987; Winkelstein, 1977; Barrett-

Connor, 1971).  Cytokines associated with inflammation have also been found in 

elevated levels in patient plasma (Taylor et al., 1999; Taylor et al., 1995; Francis, Jr. & 

Haywood, 1992) as have other inflammatory mediators such as substance P (Michaels 

et al., 1998), especially during crisis (Duits et al., 1998).  These elevated levels of 

inflammatory mediators lead many researchers to conclude that, even in the absence of 

infection, the sickle cell patient exists in a pro-inflammatory state capable of triggering 

inflammation with less stimulation than non-sickle patients (Wun, 2001).  A similar pro-

inflammatory state is found in transgenic sickle mouse models (Holtzclaw et al., 2004), 

and evident in sickle cell patients from examination of circulating endothelial cells 

(Solovey et al., 1998; Solovey et al., 1997).  This delicate pro-inflammatory state may 

lead to initiation of pain crisis through activation of adhesive ligands on vascular 

endothelium.  For example, the endothelial response to infection with the double-

stranded RNA of many pathogenic viruses includes the expression of VCAM-1 

(Offermann et al., 1995).  This adhesive ligand may interact with sickle erythrocytes, 

causing adhesion that triggers pain crisis via a mechanism detailed below (2.4.1).  Other 

adhesive ligands similar to VCAM-1 that may interact with sickle erythrocytes are 

expressed or activated upon initiation of an inflammatory response.  The pro-

inflammatory state of sickle patient vasculature may therefore be a key factor of vaso-
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occlusion, with expressed adhesive ligands mediating sickle erythrocyte adhesion and 

initiating pain events. 

 

2.2.4  Acute Chest Syndrome 

 Another severe pathology of sickle cell anemia arising as an indirect result of 

sickle hemoglobin production is a pulmonary complication referred to as “Acute Chest 

Syndrome” or ACS.  This pathology is characterized by a new pulmonary infiltrate in 

combination with chest pain, a temperature of more than 38.5oC, tachypnea, wheezing 

or cough, and/or hypoxia in a sickle patient (Haupt et al., 1982).  ACS is the second 

most common complication of sickle cell anemia (Castro et al., 1994) and the most 

common condition at the time of death (Platt et al., 1991), being responsible for up to 

25% of sickle-cell related deaths (Platt et al., 1994).  The course of ACS may progress to 

neurological events (most likely involving sudden decreases in oxygenation in the 

vascular bed of the central nervous system (Vichinsky et al., 2000)) and respiratory 

failure.  The specific causes or mechanism of ACS are incompletely understood, but are 

known to include pulmonary fat embolisms, pneumonia, pulmonary infarction, and acute 

pulmonary infection (Vichinsky et al., 2000).  The mechanism driving ACS may be a 

more severe or organ-specific version of the mechanisms driving sickle pain crisis.  The 

conditions listed that are suspected catalysts of ACS are also conditions known to 

precipitate sickling, regional hypoxia, and ischemic damage (Aldrich et al., 1996; 

Smolinski et al., 1995; Hebbel et al., 1987).  Thus, while ACS is not fully understood, 

ACS and vaso-occlusive events may both arise from similar pathological conditions of 

the vasculature.   
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2.2.5  Sickle Cell Stroke 

 A further clinical complication of sickle cell anemia is the increased incidence of 

stroke.  Strokes are a significant cause of morbidity and mortality in people with sickle 

cell disease, although the connection between the genetic disorder and increased 

incidence of stroke is not well understood.  The dramatically increased incidence of 

stroke in very young children with sickle cell anemia is a source of great concern, and 

has been the subject of a recent large clinical study named the Stroke Prevention Trial 

on Sickle Cell Anemia (STOP) (Adams et al., 1998).   The overall risk of stroke in sickle 

cell anemia is difficult to summarize due to age dependence and the loose definition of 

stroke (confused by the occurrence of "silent infarcts" detailed below) but incidence of 

cerebral infarction in sickle patients approaches 10% in North America, and varies 

between 1% and 18% in other regions around the world (Powars, 2000; Ohene-

Frempong et al., 1998; Goncalves et al., 1994; Perrine et al., 1978).  Of sickle patients 

who experience a cerebral infarction, 20-30% will have recurrent episodes (Adams et al., 

2001), and nearly two-thirds of children who experience a stroke will have a recurrent 

clinical stroke (Powars et al., 1978).  Neurological incidents involve lesions of an 

ischemic or hemorrhagic nature in specific cerebro-vascular territories resulting in effects 

ranging from the loss of tactile sensibility, to slight paralysis of one side of the body, 

visual field deficits, impaired communication skills, and/or cranial nerve paralysis 

(Ohene-Frempong, 1991).   

 Factors used to evaluate the risk of stroke in sickle patients include a high white 

blood cell count, high reticulocyte count, low hemoglobin, and low fetal hemoglobin level.  

Further, when measuring cerebral artery blood flow velocities via Transcranial Doppler 

(TCD) Ultrasound, high readings (> 200 cm/s) correlate with development of a stroke 

(Seibert et al., 1998; Adams et al., 1998; Adams et al., 1997; Adams et al., 1992).  The 

correlation is theorized to apply because the high TCD velocity may represent flow past 
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partially stenotic arteries.  Irregular TCD in addition to the presence of an abnormal 

magnetic resonance angiograph image are the best predictors of sickle stroke (Adams et 

al., 2001). 

In contrast to the vaso-occlusive sickle pain crisis, the nature of stroke in sickle 

cell disease has been convincingly shown to be both a large-vessel and small-vessel 

cerebral arterial disease (Russell et al., 1976; Stockman et al., 1972).  Histopathologic 

study of stenotic cerebral arteries show intimal proliferation, smooth muscle cell 

hyperplasia, mural thrombosis, and fragmentation / disruption of the internal elastic 

lamina (Rothman et al., 1986; Wilimas et al., 1980).  Sickle-patient stroke is apparently 

initiated by the proliferation of cerebrovascular intima (hyperplasia) that narrows specific 

arteries; the internal carotid, anterior and middle cerebral arteries. Thrombosis at the site 

follows, resulting in distal thromboembolism and cerebral infarction (Rothman et al., 

1986; Merkel et al., 1978).  The cause of the initiating intimal thickening is not fully 

understood, but is thought to derive from endothelial injury and dysfunction, indicating 

that the genesis of the stroke risk may lie in some unique cranial vessel pathology 

developed as a result of sickle cell anemia.  Supporting this theory, the STOP study 

found a 8-14% incidence of central nervous system abnormalities in children (Adams et 

al., 2001).  Our lab has studied the related dysfunction of abnormal cerebral endothelial 

response to shear stress when exposed to sickle plasma.  In flow chambers similar to 

those used in this thesis, cerebral endothelium did not align or extend in the direction of 

flow (Lola Brown, unpublished data).   

A high incidence of thromboembolism and intimal hyperplasia at arterial 

bifurcations (where blood flow turbulence is common) (Rothman et al., 1986) supports 

the theory of stroke dependence on high blood flow turbulence.  Stroke caused directly 

by sickle erythrocyte adhesion in the cerebral vesicles has been largely dismissed 

(Hebbel et al., 1980a), due to lack of correlation between sickle erythrocyte adhesivity 
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and stroke risk.  In the long term, sickle stroke disease may advance to moyamoya 

disease (Jones et al., 2001; Kugler et al., 1993; Prohovnik et al., 1989), which causes 

the formation of abnormal netlike vessels and transdural anastomoses.  Also, 

aneurysms are known to result from similar intimal and smooth muscle cell phenotypic 

changes, resulting in smooth muscle layer atrophy and fragmentation of the internal 

elastic lamina (Seeler et al., 1978; Merkel et al., 1978).   

A further concern for sickle cell anemia patients is the possibility of “silent 

infarcts,” infarction of brain tissue found on imaging studies in the absence of a history of 

neurological symptoms (Wang et al., 1998; Armstrong et al., 1996).  As the occurrence 

of cerebral vessel damage greatly increases the chances of stroke reoccurrence, 

presence of "silent infarcts" is an indicator of high risk for more severe stroke. 

Fortunately, preventative treatment for sickle cell stroke has been found, as 90% 

of strokes in the high risk group (as defined by high TCD values) can be prevented by a 

chronic red blood cell transfusion program, as detailed through the STOP study (Adams 

et al., 1998).  Unfortunately, chronic transfusion carries with it patient tolerance problems 

and severe risks of complication, as outlined in 2.7.2.  Alternately, bone marrow 

transplantation has been found to partially reverse the abnormalities in cerebral vessels 

in addition to reversing other pathologies of sickle cell anemia. (Walters et al., 2000; 

Mehta & Marks, 1992).  There is also some new evidence that the use of hydroxyurea 

prophylactically greatly reduces the chances of repeated stroke incidence in children 

(Ware et al., 2004). 

 

2.2.6  Additional Clinical Pathologies 

 Sequestration of sickle erythrocytes in the spleen is another major clinical 

difficulty in sickle cell anemia.  The high rate of erythrocyte turnover in patients results in 

acute splenetic enlargement, due to trapping of excessive red cell mass (Topley et al., 
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1981).  This results in a drop of hemoglobin level and peripheral circulatory failure.  In 

turn, this may lead to further splenic enlargement and hypersplenism. 

 Priapism is another complication of sickle cell anemia, resulting from obstruction 

of venous drainage of the penis (Gillenwater et al., 1968).  This complication presents in 

both "stuttering" attacks which are brief (<3 hours) and major attacks which persist 

longer than 24 hours and may be followed by impotence (Fowler, Jr. et al., 1991). 

 Microvascular occlusion in the arterioles of the eye by vaso-occlusion causes 

very specific ocular complications, resulting in ischemia of the retinal vasculature (Talbot 

et al., 1982).  Extensive peripheral vascular remodeling results from this complication, 

causing abnormally developed vessels through a process known as the "proliferative 

sickle retinopathy."  Vitreous hemorrhage with periodic visual impairment or retinal 

detachment and permanent blindness may result (Condon & Serjeant, 1980). 

 

2.2.7   Clinical Pathology Summary 

 These widely varied organ and tissue complications of sickle cell anemia are all 

results of the substitution of a single amino acid in the synthesis of hemoglobin.  

Although the most direct effect of sickle hemoglobin suffered by patients, chronic 

hemolysis, may be well tolerated in most patients, the vascular occlusion pathology, an 

indirect effect of sickle hemoglobin synthesis, causes most of the mortality and morbidity 

in patients through organ and tissue damage (Serjeant, 1993).  Vaso-occlusion is thus 

one of the most serious pathological results of the mutated sickle hemoglobin, 

prevention of which would have the greatest positive effect on patient lifespan and 

quality of life.  Reviewing the known aspects, theorized mechanism, and potential 

determinants of vaso-occlusion as well as the variables that affect its frequency, 

duration, and initiation is thus necessary for any thorough treatment of the aspects of 

sickle cell pathology. 
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2.3   Adhesive Nature of Sickle Vasculature 

 

2.3.1   Vaso-Occlusion and Sickle Erythrocyte Adherence 

 Sickle cell pathology is driven by an event at the molecular level during the 

deoxygenation of sickle hemoglobin.  The “polymerization” of sickle hemoglobin into 

long, rigid strands gives rise to the cellular level of the disorder:  morphologically 

distorted, rigid sickle erythrocytes.  The low deformability of these cells, in addition to 

erythrocyte membrane damage and erythrocyte population redistribution resulting from 

hemolytic anemia, manifest pathologically at the tissue-level as vaso-occlusive 

complications, the most common of which is the sickle vaso-occlusive event.  Changes 

in the characteristics or activation states of erythrocytes, platelets, leucocytes, 

endothelium, or vaso-muscular and rheological characteristics of patient vasculature 

have, both individually and in concordance, all been theorized to determine the 

frequency and duration of sickle cell pain crises.  This speculation arises largely from 

observed changes in these factors and states during the onset of sickle pain crisis.  

Unfortunately, the precise mechanism driving vaso-occlusive events have yet to be 

isolated.  Rather than any rigid set of initiating factors, vaso-occlusion may even be 

caused by a set of biological state variations changing from occurrence to occurrence, 

triggering pain crisis in a synergistic manner.  Studies, however, have isolated several 

possible key determinants.  It is unlikely that any single one of these mechanisms is 

solely responsible for all sickle cell pain crises, but it is likely that several of these 

factors, acting in combination, precipitate many incidents of vaso-occlusion. 

 

2.3.2   Sickle Hemoglobin "Polymerization" 

 The pathology associated with sickle cell anemia derives from the deoxygenation 

and subsequent “polymerization” of sickle hemoglobin.  This gelation is strongly 
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dependent on the cellular concentration of sickle hemoglobin in the sickle erythrocytes.  

Sickle hemoglobin gelation rate is dependent to the 30th power on intracellular sickle 

hemoglobin concentration (Ferrone et al., 1985; Hofrichter et al., 1974),  explaining why 

there are few pathologies present in sickle trait individuals (Stark et al., 1980).  Sickle 

cell pathologies, including hemolytic anemia severity and risk for acute chest syndrome, 

are more severe in patients with higher sickle hemoglobin fractions, whereas patients 

with sickle trait are usually entirely asymptomatic, as they have only have around 40% 

sickle hemoglobin in their blood (Montgomery et al., 1983). 

 Although sickle hemoglobin concentration is strongly correlated with patient 

clinical condition and frequency of vaso-occlusive pain crisis (Lande et al., 1988; 

Brittenham et al., 1985), the precise mechanism whereby hemoglobin sickling results in 

vaso-occlusion has yet to be determined.  The rigid nature of sickle erythrocytes as a 

result of hemoglobin “polymerization” would suggest a simple "log-jam" mechanism.  

Cells incapable of bending to pass through the capillaries would become stuck, 

accumulate, and result in vaso-occlusion.  This would suggest that patients with high 

numbers of the most inflexible (or readily sickled, thus becoming inflexible) erythrocytes 

would experience increased incidence of pain crisis.  However, there is no positive 

correlation between pain crisis frequency and the rigid “irreversibly sickled cell” (ISC) 

fraction (Ballas et al., 1988; Lande et al., 1988; Billett et al., 1986).  Instead it is evident 

that pain crisis involves alternate mechanisms that may or may not require the presence 

of inflexible erythrocytes, but are not solely dependent on them.  Surprisingly, the most 

flexible erythrocyte fraction, referred to as “reticulocytes,” correlate strongly with 

incidents of sickle pain crisis (Ballas et al., 1988).  The nature of these erythrocyte 

fractions is explained at length in section 2.4.2. 
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2.3.3   Thrombotic Activation 

 The occurrence of sickle pain crisis superficially resembles, in some aspects, the 

occurrence of thrombotic clot formation within the microvasculature.  Both can result in 

ischemic tissue damage and the rate of thrombin generation and fibrin formation are 

increased in steady-state sickle patients (Hagger et al., 1995; Peters et al., 1994; 

Francis, Jr., 1989).  Further, naturally occurring clotting inhibitors, such as antithrombin 

III, protein C, and free protein S, are decreased in sickle patients (Karayalcin & 

Lanzkowsky, 1989; Cacciola et al., 1989; Francis, Jr., 1988; Green & Scott, 1986).  

Direct evidence of platelet activation in sickle patients is shown through elevated β-

thromboglobulin, (Green et al., 1986) thromboxane B2, platelet factor-4 (Westwick et al., 

1983), and depletion of platelet adenosine diphosphate during pain episodes (Beurling-

Harbury & Schade, 1989).  Additionally, there are increased platelet counts in older 

children and adults (Westwick et al., 1983; Haut et al., 1973), and reduced platelet 

survival during pain episodes (Alkjaersig et al., 1976; Haut et al., 1973).  These factors 

point to a state of constant hypercoagulative potential in sickle patients (Francis, Jr., 

1991), characterized by constant activation of the coagulation system, rather than an 

over-response to standard signals.  Additional studies have drawn a correlation between 

disease severity and coagulation state (Westerman et al., 2002).  This thrombotic state 

has the greatest potential for contributing to vaso-occlusion at sites where the intima of 

blood vessels have been damaged, exposing subendothelial surfaces and smooth 

muscle tissue.  These sites are especially vulnerable to thrombus formation, and partial 

occlusion of the vessels by platelet accumulation at these sites may directly result in 

more favorable conditions for pain crisis initiation. 

 Alternately, thrombospondin (TSP), either derived from activated platelets or as 

an exposed matrix protein, is known to promote adhesion of sickle erythrocytes (Brittain 

et al., 1993).  Adhesion occurs via CD36 on microvascular endothelial cells (Leung et al., 
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1992) in an interaction not seen with non-sickle erythrocytes (Brittain et al., 1993) .    It is 

theorized that increased sickle erythrocyte adhesion could result from the 

hypercoagulative state of sickle cell anemia by causing endothelial activation and 

retraction due to elevated thrombin levels, resulting in matrix thrombospondin exposure 

(Manodori, 2001).  Adhesion of platelets or other cells at this site would then result in 

partial vascular occlusion.  Thrombin, another procoagulant factor, also has increased 

expression in blood from sickle cell patients (Setty et al., 2001), possibly in response to 

increased expression of phosphatidylserine on sickle erythrocytes.  Thrombin is a strong 

activator of endothelial cells, inducing expression of P-selectin, a ligand that also 

promotes platelet, leukocyte, and sickle erythrocyte adhesion (Matsui et al., 2002; 

Matsui et al., 2001). 

 During pain episodes, sickle cell patients also exhibit highly activated platelet 

subsets, shown to be degranulated platelets or platelet microparticles (Tomer et al., 

2001; Wun et al., 1998).  Microparticles are small, membrane-derived vesicles released 

from cell bodies upon activation or apoptosis.  Platelet-derived microparticles are at 

slightly elevated levels in sickle patients both during patient steady-state (non-crisis) and 

crisis (Shet et al., 2003). The presence of platelet-derived microparticles during pain 

crisis further suggests a link between vaso-occlusive events and thrombosis.  Other 

studies have found tissue-factor expression on some of these microparticles, indicating 

that some are also monocyte or endothelial-derived (Shet et al., 2003).  Monocyte-

derived microparticles in particular are significantly elevated in sickle patients at steady 

state, and further elevated during crisis.  Presence of these tissue-factor expressing 

microparticles significantly shortened clotting time in plasma assays (Shet et al., 2003), 

indicating a possible interaction between the pro-inflammatory (monocyte microparticle 

expression) and pro-thrombogenic state of the vasculature in sickle patients. 
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2.3.4   Immune Response 

 Sickle cell patients exhibit elevated levels of leukocytes while in steady-state (not 

experiencing pain crisis) (Asakura et al., 1996; West et al., 1992), which become further 

increased during pain crisis (Serjeant, 1985).  A correlation has been found between 

elevated leukocyte counts and frequency of pain crisis (Charache, 1997; Platt et al., 

1994) as well as other sickle cell complications such as ACS (Miller et al., 2000) and 

hemorrhagic stroke (Ohene-Frempong et al., 1998).  There is also some evidence 

linking a prolonged rate of recovery from sickle pain crisis to elevated leukocyte counts 

(Lipowsky & Chien, 1989; Lipowsky et al., 1987).  In addition, decreases in neutrophil 

and monocyte counts in response to hydroxyurea treatment may be one reason for the 

improvement after treatment with this drug (Wun, 2001; Charache et al., 1996).  These 

correlations, and the known aggregation of leukocytes in response to inflammation, 

suggest that leukocytes may play a role in the initiation of sickle vaso-occlusion.   

 The deformability of leukocytes is less than that of normal erythrocytes (Chien et 

al., 1984), so the previously mentioned concerns about decreased flexibility of 

erythrocytes also apply to the presence of elevated levels of leukocytes in the blood, and 

adhesion of leukocytes in the vasculature is a major cause for concern.  A primary 

function of leukocytes during inflammation is adhesive interaction with ligands expressed 

on the endothelial surface to initiate trans-endothelial passage (Suffredini et al., 1999).  

Dysfunction of this interaction either through endothelial damage, excessive expression 

of inflammatory mediator, or leukocyte dysfunction could lead to excessive adhesion and 

partial vessel occlusion, initiating sickle pain crisis (see section 2.4.1).  Leukocytes may 

also act as a mediating factor to increase other cell type adhesion (Frenette, 2002) as 

recently demonstrated in the sickle mouse model (Turhan et al., 2004; Turhan et al., 

2002).  Adherent leukocytes in the postcapillary venules of transgenic sickle mouse 

microvasculature were seen to adhere to circulating sickle erythrocytes.  Sufficient 
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accumulation of sickle erythrocytes in this manner may occlude the microvessels and 

initiate pain crisis. 

 Leukocytes also reflect the general pro-inflammatory state of sickle vasculature, 

as adhesion of leukocytes from sickle patients to fibronectin correlates with plasma 

levels of cytokines in sickle patient blood (Kasschau et al., 1996).  Neutrophil adhesion 

to endothelial cells cultured in vitro has also been found to increase significantly when 

taken from patients in painful crisis (Fadlon et al., 1998; Lachant & Oseas, 1987).  The 

typically elevated levels of cytokines in sickle plasma both during pain crisis and steady-

state, therefore, translate into a state of constant heightened activation for leukocytes 

and monocytes, with leukocytes and other immune cell fractions themselves being 

further sources of cytokines (Suffredini et al., 1999; Wathelet et al., 1992).    Aspects of 

the proinflammatory state as exhibited by leukocytes and neutrophils in sickle cell 

anemia include enhanced respiratory burst (Hofstra et al., 1996), increased Mac-1, L-

selectin, and CD64 expression (Okpala et al., 2002; Lard et al., 1999; Fadlon et al., 

1998), as well as an overall greater potential for response to inflammatory stimulus (Lum 

et al., 2004) in the form of up regulated and activated CD18 ligand levels.  Similar pro-

inflammatory activation was detected in monocytes, with increased expression of IL-1β, 

TNF-α, and CD11b (Belcher et al., 2000).  Although monocytes are known to adhere to 

platelets in sickle cell patients (Wun et al., 2002), the danger of monocytes is more in the 

subsequent activation of the endothelium than vascular obstruction caused by them 

alone.  A further monocyte contribution to vaso-occlusive events is the microparticles 

mentioned above in section 2.3.3. 

 These increases in polymorphonucleocyte fractions, numbers, and various 

activation states can affect the vasculature through either direct adhesion or through the 
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induced expression of adhesive ligands following cytokine release.  Adhesion may then 

result in partial vessel occlusion and subsequent full occlusion, initiating pain crisis. 

 

2.3.5   Vascular Condition / Tone 

 As the key determinant of hemodynamic flow through the microcapillary system, 

the vaso-muscular condition of sickle microvasculature is of interest in the examination 

of sickle pain crises.  Capillary transit time, the amount of time it takes for individual 

erythrocytes to pass through capillaries, is a measure of microvascular blood flow rate, 

and an essential factor in the theorized mechanism of sickle vaso-occlusion detailed in 

section 2.4.  The capillary transit time can be altered by the relaxation or contraction of 

pre-capillary arterioles.  A loss of vasorelaxing ability or increase in constriction would 

thus be consistent with increased incidence of vaso-occlusion in SCA.  In accord with 

this theory, the vasomotor response in sickle patients is distinctly different from that in 

non-sickle patients, exhibiting a distinct instability which may be key in the causation of 

sickle pain crises (Ballas & Mohandas, 2004).  Overall microvascular tone is the result of 

a balance of interactions provoking contraction and relaxation.  The signals are received 

and interpreted via the endothelial layer coating the vasculature interior, and acted upon 

by the underlying muscle cells compromising the structure of the vessels.  Damage to 

the endothelial layer and exposure of the subendothelial matrix (discussed in 2.3.6) may 

result in dysfunctional response to these signals (Belhassen et al., 2001). 

 Several signaling factors related to vaso-constriction and vaso-relaxation are 

altered in patients with sickle cell anemia.  The endothelial-derived relaxing factor 

prostacyclin (Weksler et al., 1978) is released from cultured endothelial cells in response 

to sickle erythrocyte exposure (Wautier et al., 1986), and, in patients, is found in levels 

both elevated (Buchanan & Holtkamp, 1985) and decreased (Longenecker et al., 1992) 

in relation to non-sickle controls.  Irregular expression levels of a vaso-relaxing factor 
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may indicate irregular vasomotor tone, and thus badly controlled or uncontrolled variable 

microvascular flow. 

 The vasoactive agent of the greatest interest in sickle cell anemia is the 

endothelial-derived vasorelaxing factor nitric oxide (NO).  Nitric oxide, constitutively 

expressed in endothelial cells by endothelial NOS (eNOS) (Alderton et al., 2001), is a 

contributor to basal coronary vasodilator tone and blood flow (Quyyumi et al., 1995).  

While eNOS is normally associated with vasodilation and various “vaso-protective” 

actions of the endothelium (Albrecht et al., 2003), it is also known that inactivation of 

eNOS prevents neutrophil adhesion (Schaefer et al., 1998) and that histamine, a vaso-

constricting inflammatory mediator, activates NOS (Li et al., 2003; Yan et al., 1994).  

Thus NOS production of NO is strangely contradictory in that it seems largely anti-

inflammatory, but is also involved in mechanisms that are part of inflammation, such as 

neutrophil adhesion and histamine response.   

 NO appears to be a regulating factor of importance in numerous vascular 

mechanisms and protective functions, including regulation of oxidative enzyme activity 

and intracellular oxidative stress (Niu et al., 1994; Clancy et al., 1992).  NO also 

regulates flow-dependent expression of VCAM-1 (Tsao et al., 1996) and adhesion of 

leukocytes (Kubes et al., 1991) and both sickle and non-sickle erythrocytes (Space et 

al., 2000) to endothelial cells.  However, sickle vasculature complicates NO signaling in 

that sickle vasodilation is blunted and requires much higher levels of NO to elicit a full 

response (Eberhardt et al., 2003; Belhassen et al., 2001; Aslan et al., 2001).  Blood from 

sickle patients is in a state of constant oxidant stress (Steinberg & Brugnara, 2003; 

Osarogiagbon et al., 2000) caused in part by the overproduction of reactive oxygen 

species (Aslan et al., 2001; Dias-Da-Motta et al., 1996).  In addition to oxidatively 

damaging the endothelium, these reactive oxygen species react with NO, quickly 

removing it from circulation, thus requiring further increased levels of NO before eliciting 
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the normal vasodilatory response. Also asymmetric dimethylarginine (ADMA), an 

endogenously produced inhibitor of nitric oxide synthase, has been detected in 

increased levels in sickle patient plasma, and may further distort NO signaling by 

blocking the means of its production (Schnog et al., 2005).    

 Reduced levels of NO metabolites (Morris et al., 2000; Stuart & Setty, 1999; 

Enwonwu et al., 1990), NO bio-availability, and NO vaso-relaxing effectiveness (Gladwin 

et al., 2003; Reiter et al., 2002) are all typical of sickle cell anemia.  Treatments 

addressing this NO imbalance have had some success in improving sickle patient 

condition.  In vivo dosing of patients with L-arginine is known to promote NO production 

(Morris et al., 2003; Romero et al., 2002; Vichinsky, 2002; Morris et al., 2000) and has 

been proposed as a potential treatment for pulmonary hypertension in sickle cell anemia 

(Morris, 2006).  Also, directly inhaled doses of NO have been used to treat acute sickle 

vaso-occlusive crisis (Weiner et al., 2003), resulting in reduction of pain and reduced 

hospital stays, and treatment of the acute chest syndrome pathology (Sullivan et al., 

1999; Atz & Wessel, 1997) has found reductions in pulmonary arterial pressure and 

pulmonary vascular resistance.  Treatments designed to increase nitric oxide levels in 

sickle patients may thus reduce severity of sickle-related pathologies and improve 

clinical outcomes. 

     

2.3.6   Endothelial Dysfunction. 

 The deleterious effect of the sickle mutation influences many organs and 

systems in the body.  Of those affected, the vasculature itself is of particular interest.  It 

is affected not only by ischemia following vaso-occlusion, but also by exposure of the 

endothelium to sickle erythrocytes and altered inflammatory, thrombotic, and immune 

factor expression.  This contact leads to morphologic and functional changes in the 
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endothelial bed through the influence of elevated levels of cytokines, free sickle 

hemoglobin levels, and the sickle erythrocytes themselves. 

 Morphological differences in sickle patient endothelium have been directly 

observed in the arterioles and sinuses of sickle cell patient spleen (Klug et al., 1982).  

The morphologic changes take the form of microfilament formation, cellular edema, 

nuclear degeneration, and basal lamina thickening, bearing some resemblance to the 

endothelial dysfunction mentioned in 2.2.5 indicating risk of sickle stroke.  Functional 

changes in the endothelium are also implied by the tenfold increase in circulating 

endothelial cells (CEC) in sickle patient blood (Solovey et al., 1997).  Whereas the shed 

endothelial cells usually number around 2.0±0.8 cells/ml in blood from non-sickle 

patients, the circulating endothelial cells in asymptomatic sickle patients are an average 

of 13.2±11.8 cells/ml, and increase further to approximately 22.8±18.2 cells/ml observed 

when the patient is in crisis.  Lack of apoptotic markers in these circulating cells 

indicates that the increase in cells was not due to an increased rate of apoptosis, but 

detachment of viable cells from the endothelial monolayer.  This is a strong indicator of 

widespread endothelial damage (Mutin et al., 1999), and the primarily microvascular 

phenotype of the cells (Solovey et al., 1997) suggests the microvasculature as the site of 

chronic injury.  Further investigations of these circulating endothelial cells has found 

them to be in a chronic state of activation (Solovey et al., 2001a; Solovey et al., 1999; 

Solovey et al., 1998; Solovey et al., 1997).  Activation and lack of apoptosis indicates a 

damaged or perturbed endothelial monolayer as their source, endothelial cells detached 

from the endothelium mechanically or through some non-apoptotic endothelial 

pathology, possibly arising from their constantly activated state.  Further, the presence of 

activation markers on the CECs may indicate a direct link between adhesive activation 

and endothelial injury.  Unfortunately, direct examination of the potentially altered sickle 

microvascular endothelium has not been possible outside of the circulating endothelial 

 28



                                                         

cell model until the recent development of an animal model in transgenic mice (detailed 

in 2.8). 

 Morphological alterations of endothelial cells may result from influences of sickle 

erythrocytes and sickle patient plasma.  Chronically elevated cytokine presence, or cell 

fragments and free iron resulting from hemolysis may be acting on the endothelium and 

affecting endothelial processes beyond the vasodilatory suppression already mentioned.  

The proliferation of human vascular endothelial cells is known to be decreased when 

exposed in culture to sickle erythrocytes (Weinstein et al., 1990).  The lack of 

proliferation stemming from the reduced endothelial DNA synthesis persists for at least 

six hours after a one-minute incubation.  Similar phenotypic alteration was found in the 

suppression of proper cellular alignment, wherein a five-minute incubation of bovine 

brain endothelial cells with sickle erythrocytes prevented normal shear-induced 

elongation and alignment of those cells in the direction of flow for several days (Lola 

Brown, unpublished data).  The lack of alignment suggests a cytoskeletal dysfunction in 

the endothelial cells brought about by contact with sickle erythrocytes. 

 These endothelial alterations in response to sickle erythrocytes could be 

contributing factors to vaso-occlusive events.  Endothelial dysfunction in sickle 

vasculature could lead to reduced capacity for signal response, possible detachment, 

and a subsequent formation of adhesive junctions or thrombus formation on the exposed 

subendothelial matrix.  In fact, the retraction of endothelium under conditions prevalent 

in sickle vasculature is a possible initiating factor of sickle erythrocyte adhesion which, in 

turn, would lead directly to sickle pain crisis (Manodori, 2001; Manodori et al., 2000). 

 

2.4   Pain Episode Initiation by Adhesion 

  The process of vaso-occlusive initiation on a molecular or cellular level is not 

known (Embury et al., 1994), but certain tissue conditions or patient symptoms are 
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known to increase pain event likelihood.  These conditions include infection, fever, 

hypoxia, acidosis, dehydration, pregnancy, exhaustion, high altitude, stress, anxiety, 

anger, and depression.   

 It is proposed that increased adherence of sickle erythrocytes to the endothelium 

in response to some of these conditions may initiate or propagate microvascular 

occlusion (Hebbel et al., 1980a; Hoover et al., 1979).  Erythrocytes adherent in the post-

capillary venules would partially obstruct the vessel, slow blood flow rate, and increase 

capillary transit time (Hebbel, 1997a; Wick & Eckman, 1996; Kaul et al., 1989b).  This 

drop in blood flow rate, in addition to allowing for more sickle erythrocyte adhesion, 

would cause sickling of sickle erythrocytes within the inter-capillary space.  The 

increasingly rigid erythrocytes would be incapable of traversing the capillary under the 

reduced shear conditions, and accumulate sickled erythrocytes in a "log-jam" like 

mechanism, the process propagating to full microvascular occlusion.  This initiation via 

sickle erythrocyte adhesion is especially likely as sickle patients exhibit abnormalities of 

blood and endothelium, resulting in elevated levels of adhesion receptors and 

dysfunctional endothelium.  In this mechanism, preventing erythrocyte adherence would 

be an obvious way to interrupt the cascade of events leading to microvascular occlusion.  

Thus, this thesis focuses on the phenomenon of abnormal sickle erythrocyte adherence 

to the endothelium, examining two inflammatory-mediator-driven mechanisms of 

adhesion in particular.   

 In vitro and in vivo studies have found that sickle erythrocytes are much more 

adherent to both stimulated and unstimulated endothelial cells than erythrocytes from 

non-sickle patients.  This has been demonstrated through the use of cultured endothelial 

cells (Hebbel et al., 1981; Hebbel et al., 1980b; Hoover et al., 1979), perfused rat 

cremaster muscle endothelium (Kaul et al., 1989b), and examination of the newly 
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created sickle mouse model which found elevated adhesion of different blood cell 

fractions (Embury et al., 2004; Kalambur et al., 2004; Wood et al., 2004b). 

 

2.4.1   Sickle Hemoglobin Sickling and Microvascular Entrapment 

 Red blood cells in the microvascular circulation need to be flexible to pass 

through the narrow capillary system.  Hemoglobin sickling distorts sickle erythrocytes, 

increases their rigidity (Itoh et al., 1995), and impedes capillary transit.  However, the 

dynamics of sickling following erythrocyte hemoglobin deoxygenation show there is a 

significant delay (Hofrichter et al., 1974; Malfa & Steinhardt, 1974) of approximately one 

second in hemoglobin aggregation, a delay which ensures the escape of erythrocytes 

into the venous circulation without sickling under normal conditions (Hebbel, 1997a; 

Mozzarelli et al., 1987).  A kinetic model of sickle vaso-occlusion is based on the 

importance of this delay time (Mozzarelli et al., 1987; Hofrichter et al., 1974).  Longer 

gelation delay times and shorter capillary transit times decrease the chances of 

erythrocytes being trapped in the capillary or among adherent cells in the post-capillary 

venules.  Conditions which decrease gelation delay times (erythrocyte dehydration, high 

hemoglobin density, increased temperature, and lowered pH) or extend capillary transit 

times (reduced blood flow, increased blood viscosity, and partial obstruction of 

microvascular flow) allow inter-capillary sickling, increasing the possibility of entrapment 

and vaso-occlusion (Wick et al., 1996; Fabry et al., 1992; Kaul et al., 1989b). 

The dependence of microvascular occlusion on capillary transit time means that 

sickling rate is not the sole trigger of vaso-occlusion caused by sickle cells.  Clinically 

there is no correlation between frequency of patient pain events and the presence of the 

densest (most-quickly sickling) fraction of red blood cells in patient erythrocyte sub-

populations (Billett et al., 1986).  Also, microvascular perfusion experiments with the 

densest sickle cell fractions (Fabry et al., 1989) have not shown a high incidence of 
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vaso-occlusive events. However, the denser erythrocyte fractions do become trapped 

more readily, leading to depletion of the densest red cell fraction in patients during pain 

events, and indicating entrapment or sequestration of the fastest-sickling cells after 

initiation of vaso-occlusion (Fabry et al., 1984).  Therefore, fast sickling erythrocyte 

fractions may not initiate pain events, but their rigid nature leading to obstruction of 

slowed post-capillary venules could propagate an event initiated by other means. 

 

2.4.2   Sickle Erythrocyte Subpopulations 

 As this thesis is to be a study of sickle erythrocyte adherence to endothelial 

monolayers, attention must be directed to the characteristics of blood from sickle 

patients, particularly the certain sub-populations of sickle erythrocytes most noted for 

their adhesive properties.  The cycle of sickling and unsickling resulting from the 

production of sickle hemoglobin has a marked effect not only on the lifespan of individual 

sickle erythrocytes, but also produces a heterogeneity in the shape and density of even 

viable sickle erythrocytes, creating a number of different subpopulations.  These 

subpopulations are best categorized by their sickling characteristics, and include 

reticulocytes, discocytes, and irreversibly sickled cells. 

 Reticulocytes 

 Reticulocytes are very “young” red blood cells; erythrocytes that have been 

recently released from bone marrow.  This subpopulation of erythrocytes are 

characterized as being slightly larger than the mature sickle erythrocyte (discocyte), and 

will still contain some ribosomal RNA (Gilmer, Jr. & Koepke, 1976).  Individuals with 

sickle cell anemia compensate for the stress of hemolytic anemia by requiring higher 

production of red blood cells (Kaul et al., 1989a).  This increased production, combined 

with a decreased red blood cell life span, results in a much higher proportion of this 

subpopulation than in non-sickle patients.  Sickle patients can have from 5-16% of all 
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erythrocytes be reticulocytes, with this increase correlating strongly with pain crisis 

frequency (Baum et al., 1987) while non-sickle patients typically have approximately 1% 

reticulocytes. 

 The increased erythrocyte production brought on by anemia and pain crisis 

causes the production of even younger reticulocyte cells (Westerman & Bacus, 1983) 

called “stress” reticulocytes (Chang et al., 1997; Browne et al., 1996a; Coulombel et al., 

1979).  Stress reticulocytes are physiologically different from normal reticulocytes in that 

they exhibit a multilobulated outer cell membrane and contain dense aggregates of 

reticulum granules (Coulombel et al., 1979).  They are less dense than normal 

reticulocytes (Browne et al., 1996a).  Stress reticulocytes derive from emergency release 

of underdeveloped erythrocytes from the bone marrow in response to a sudden demand 

for red blood cells.  These cells are in evidence in normal individuals only after rapid loss 

of large amounts of blood (Chang et al., 1997; Browne et al., 1996a).   

 There is significant evidence for direct participation of sickle reticulocytes in the 

propagation of pain crises.  The presence of reticulocytes in sickle patient blood 

increases and then drops over the course of a pain crisis event (Ballas & Smith, 1992) 

indicating their involvement.  Another characteristic of reticulocytes is that they express 

an excess of adhesive ligands on the surface of the cell, such as αIIbβ3, α4β1, and 

transferrin (Swerlick et al., 1993; Joneckis et al., 1993; Leung et al., 1992; Okumura et 

al., 1992; Seligman et al., 1983).  These receptors and ligands are shed as the cell 

matures (Stone et al., 1996), meaning that mature erythrocytes are less capable of 

interacting adhesively with other cells.  If the mechanism of vaso-occlusion were as 

proposed in 2.4, with erythrocyte adhesion in the microvasculature partially occluding the 

capillary system, then selective adhesion of sickle reticulocytes to the endothelium via 

the excess of endothelial receptors and ligands during pain crisis would account for the 

sudden reduction in their numbers. 
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 Discocytes 

 Discocytes are the subpopulation of erythrocytes with sickle hemoglobin that 

have reached full maturity.  These cells are analogous to mature non-sickle erythrocytes 

(Mohandas & Evans, 1985), and are nearly identical in all biological and mechanical 

respects while oxygenated.  Discocytes are very similar in all viscoelastic properties to 

mature non-sickle cells (Nash et al., 1984), except for deformability, which is slightly 

impaired (Itoh et al., 1995; Havell et al., 1978).  This is likely due to either the presence 

of polymerized HbS (Noguchi et al., 1983) or initial damage to the structure of the cell 

membrane (detailed in section 2.2.1).  Upon deoxygenation, the deformability of these 

cells decreases as sickle hemoglobin aggregates within the cell (Itoh et al., 1995).  A 

transition between regular discocytes and irreversibly sickled cells, described below, are 

discocytes which maintain their regular shape, but have irregular, damaged surface 

contours (Mohandas et al., 1985).  Repeated deformation of this erythrocyte type by the 

constant cycle of sickling will gradually transform this cell type into the irreversibly 

sickled cell type by increasing the polymerized HbS content of the cells (Noguchi et al., 

1983) and further damaging the erythrocyte membrane.  The rate at which this 

transformation will occur is highly variable, however, and is strongly dependent on the 

amount of fetal hemoglobin present in the cell (see below). 

 Irreversibly Sickled Cells 

 Irreversibly sickled cells (ISC) maintain the abnormal, distorted shape into which 

the constant sickling-unsickling cycle has forced them (Mohandas et al., 1985).  These 

cells usually have an elongated, distorted shape even when the cells have been fully 

oxygenated, often taking the classic “sickle” shape for which the disorder has been 

named.  While the formation of the elongated strands of "polymerized" sickle hemoglobin 

dictate the shape into which the cells are eventually forced, the cells hold this shape due 

to extensive damage wrought on the cell cytoskeleton through a spectrin-ankyrin 
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cytoskeleton rearrangement (Lux et al., 1976), and hemoglobin binding to the membrane 

(Evans & Mohandas, 1987; Fischer et al., 1975).  This causes the cells to have a rigid 

membrane (Nash et al., 1984; Evans et al., 1984), and an elevated hemoglobin 

concentration through dehydration of the cells (Browne et al., 1996a; Bertles & Milner, 

1968).  These cells are unique to patients with sickle cell anemia.  ISC levels vary widely 

from patient to patient, but a positive correlation of clinical condition with ISC 

concentration has not been found (Ballas et al., 1988; Billett et al., 1986), indicating that 

the mere presence of inflexible, elongated and distorted cells is insufficient to initiate 

pain crisis. 

 As mentioned above, the irreversibly sickled cell fraction of sickle cell blood has 

the lowest levels of adhesive ligand expression.  In addition, the rigid membrane of ISCs 

may lead to a reduced cell surface area available for interaction with the endothelium 

(Mohandas et al., 1985).  It is thus unlikely that standard adhesive interactions with ISCs 

drive the vaso-occlusive process.  Further, there is a reduction in average blood cell 

flexibility in sickle patients during the advent of sickle pain crisis, suggesting that more 

flexible fractions of sickle blood cells are sequestered during initiation (Ballas et al., 

1992), excluding ISCs from the early adhesion process. 

Red Blood Cell Density 

 The changes wrought on erythrocytes by the presence of sickle hemoglobin and 

the constant sickling / unsickling process results in the formation of the erythrocyte 

subpopulations detailed above.  One factor in which these cells strongly differ is in 

cellular density (Rodgers et al., 1985).  Thus the formation of these erythrocyte 

subpopulations results in formation of a heterogeneous density distribution within a 

blood sample.  Density of an erythrocyte is dependent upon ion and water content of 

individual cells.  The sickling process is known to interfere with cation balances within 

the cells, resulting in ion (specifically potassium) loss and ion-gradient-driven 
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dehydration (Brugnara et al., 1985; Luthra & Sears, 1982; Clark et al., 1978).  In simple 

centrifugation separations, discocytes and stress reticulocytes are found predominantly 

among the lightest fractions, whereas irreversibly sickled cells are found predominantly 

in the densest fractions (Mohandas et al., 1985; Nash et al., 1984).  The separations are 

not perfect, however, as each cell subpopulation actually fills a distribution curve about 

the average density, complicating any strict density-based division.  Generally speaking, 

density for sickle erythrocytes progresses from lowest to highest as “stress” 

reticulocytes, reticulocytes and discocytes, and irreversibly sickled cells (Browne et al., 

1996a).  

 Other factors affect the rate of increase in sickle erythrocyte density by 

dehydration effects over the lifespan of the cell.  Individual sickle erythrocytes may 

increase in density at drastically different rates, dependent upon the presence of fetal 

hemoglobin in the cell.  Fetal hemoglobin levels are elevated in sickle reticulocytes due 

to an unbalanced synthesis of the γ-globin chain at birth (Rogers et al., 1981) which is 

used instead of the β chain in the construction of hemoglobin.  For non-sickle patients, 

fetal hemoglobin is replaced by adult hemoglobin a few months after birth, but sickle 

patients often retain some expression of this hemoglobin throughout their lives as a side 

effect of their hemolytic anemia.  As fetal hemoglobin (HbF) does not posses the 

β−globin chain for sickle cell anemia, it does not “polymerize” under decreased oxygen 

tension and directly disrupts hemoglobin aggregation (Levasseur et al., 2004; Brittenham 

et al., 1985; Noguchi et al., 1983).  Further, the very high dependence of sickle 

hemoglobin sickling rate on the concentration of sickle hemoglobin in the cell (Ferrone et 

al., 1985; Hofrichter et al., 1974) means that any HbF presence dilutes the HbS 

concentration and dramatically slows the sickling process.   
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 Decreasing cell sickling decreases the rate of dehydration in individual cells 

(Evans et al., 1984; Bertles et al., 1968), enabling erythrocytes to maintain lower 

densities and experience longer viability.  Therefore, sickle erythrocytes containing some 

HbF exhibit extended lifespan and decreased density, while dense cells form quickly if 

fetal hemoglobin levels are low.  Improved viability dictates that HbF-containing cells will 

become over-represented in the sickle microvasculature as non-HbF-containing 

erythrocytes are removed from circulation.  As a result of increasing HbF-expressing red 

blood cells, hemolytic anemia and all associated pathologies are reduced in severity.  In 

fact, fetal hemoglobin levels have a strong inverse correlation with clinical severity and 

frequency of sickle pain events (Schechter & Bunn, 1982; Serjeant, 1975; Wrightstone & 

Huisman, 1974; Jackson et al., 1961).  Many sickle cell anemia treatments attempt to 

ameliorate symptoms by increasing the fraction of fetal hemoglobin in the sickle patient 

vasculature, including treatments involving 5-azacytidine, myleran, hydroxyurea, 

erythropoietin, and butyrates (Steinberg, 2003; Yang & Pace, 2001) detailed in section 

2.7.2. 

 

2.5   Sickle Erythrocyte Adhesiveness 

 The initiation of sickle pain crisis is theorized to involve adhesion of blood-borne 

cells to the post-capillary venular endothelial layer.  Adhesion of cells in that region 

would partially obstruct the post-capillary venules, and subsequently slow capillary blood 

flow.  Propagation of the vaso-occlusion would then follow by additional adhesion under 

lowered shear stresses and simple entrapment of other flowing blood cells, especially 

the rigid irreversibly sickled erythrocytes in a process colloquially referred to as a "log-

jam mechanism." (Hebbel, 1997a; Wick et al., 1996; Kaul et al., 1989b) 

Involvement of erythrocyte adhesion in sickle pain crisis is supported by a 

correlation between adhesivity of sickle red blood cells and patient vaso-occlusive 
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severity (Ballas et al., 1988; Lande et al., 1988; Hebbel et al., 1980a).  The reticulocyte 

fraction expresses the largest number of erythrocyte adhesion receptors (Swerlick et al., 

1993; Joneckis et al., 1993) because these less mature cells express receptors (Hillery 

et al., 1996; Swerlick et al., 1993; Joneckis et al., 1993; Sugihara et al., 1992) lost or 

reduced during maturation (Hebbel, 1997b; Okumura et al., 1992; Patel et al., 1985).  

α4β1 (Swerlick et al., 1993), α11β3 (Okumura et al., 1992), CD36 (Wick et al., 1993), 

aggregated band 3 (Thevenin et al., 1997), phosphotidylserine (Manodori et al., 2000), 

sulfated glycolipids (Joneckis et al., 1996), and sialic acid (Montes et al., 2002) are all 

adhesive factors expressed on sickle erythrocytes which may promote adhesion to 

endothelial cells.  Participation of reticulocytes in vaso-occlusive events is also indicated 

by a sharp drop in their circulating numbers during a pain episode (Ballas et al., 1988; 

Lande et al., 1988), suggesting that reticulocytes have been sequestered at the sites of 

occlusion.  While this does not prove their participation in initiation, their selective 

removal from the system the positive correlation between their increased expression and 

vaso-occlusive frequency strongly implicates them in the propagation of pain crisis.   

 

2.5.1   Sickle Erythrocyte Membranes 

 Although most studies theorize that the more adhesive nature of sickle 

erythrocytes adhesion is due largely to the adhesive receptors expressed on 

reticulocytes, as observed in flow assays (Wick et al., 1993; Barabino et al., 1987a; 

Barabino et al., 1987b) and animal perfusion studies (Kaul et al., 1993; Fabry et al., 

1992) , other studies have shown significant adhesivity in the high density subpopulation 

(Smith & La Celle, 1987; Wautier et al., 1985; Hebbel et al., 1980b).  Dense sickle 

erythrocytes that are more adherent under some conditions than adhesive-factor 

expressing reticulocytes would indicate adhesion derived from irregularities in sickle 

erythrocyte membrane surface instead of adhesive ligand expression.  However, this 
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increase of dense erythrocyte adhesion (2.4.2) has been seen primarily under static 

conditions.  This indicates that the adhesive mechanisms for receptor driven adhesion 

and the non-receptor driven adhesion are profoundly different.   

 In previous studies (Montes et al., 2002; Montes, 1999) the different types of 

observed in vitro cellular adhesion were categorized according to fluid flow conditions.  

Those mechanisms predominant under venular flow (at approximately 1.0 dyne/cm2), 

acting through the stimulated endothelial monolayer interaction with erythrocyte 

membrane receptors, were termed “high affinity” adhesion mechanisms.  Those 

mechanisms which drove adhesion independent of endothelial activation, but act only at 

greatly reduced “sludging” flow (approximately 0.1 dyne/cm2) or under static conditions 

were termed “low affinity” adhesion.  The determining factor between these mechanisms 

appears to be the duration of erythrocyte-endothelial cell contact.  “High affinity” is 

capable of initiating adhesion during the brief contact driven under “high” shear, whereas 

“low affinity” requires significantly longer contact, implying either low-shear or entirely 

static conditions, in order to initiate adhesion. 

 The sites of the adhesive interaction of “low affinity” mechanisms likely derive 

from the afore-mentioned membrane abnormalities in sickle erythrocytes.  These include 

changes in the orientation of membrane phospholipids (Manodori et al., 2000), 

autologous immunoglobulin, band 3 clustering (Thevenin et al., 1997), and changes in 

the charge of the surface membrane (Montes et al., 2002).  

 The normal erythrocyte outer membrane consists of a bilayer of phospholipids 

oriented so that the hydrophobic ends of each phospholipid are turned inward, to the 

center of the bilayer (Op den Kamp, 1979).  Composition of the two leaflets of the bilayer 

are different (Verkleij et al., 1973), the outer one being rich in phosphatidylcholine (PC), 

sphingomyelin, and glycolipids, while the inner leaflet is high in phosphatidylserine (PS), 

phosphatidylethanolamine (PE), and phosphatidylinositol (PI).  This asymmetry is 
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maintained by the action of the enzyme flipase which actively transports specific 

phospholipids (phosphatidylserine and phosphatidylethanolamine) from the outer to the 

inner monolayer if they become mixed during the life of the cell (de Jong et al., 2001; 

Kuypers et al., 1998; Kuypers, 1998; Devaux & Zachowski, 1994). 

 Sickle erythrocytes exhibit abnormalities in their membrane lipids.  The act of 

sickling affects the phospholipid composition asymmetry, increasing the amount of PE 

and PS present in the outer leaflets, while increasing the amount of PC in the inner 

leaflet (Kuypers et al., 1996; Wood et al., 1996; Tait & Gibson, 1994; Chiu et al., 1981).  

In mature, deformable erythrocytes this change is reversed upon oxygenation (Lubin et 

al., 1981), but is not reversed in the more thoroughly damaged ISC, alluding that the 

asymmetry in ISCs results from cumulative damage to the erythrocyte membrane over 

many iterations of the sickling process, although PS exposing cells are found both in 

very young and mature erythrocytes (de Jong et al., 2001).  Dysfunction of the "flipase" 

(aminophospholipid translocase) enzyme, possibly through interference of reactive 

oxygen species in sickle microvasculature (Hebbel, 1991), has been proposed as a 

reason for the PS asymmetry persisting on older erythrocytes in the sickle mouse model 

(Banerjee & Kuypers, 2004).  Exposed erythrocyte PS correlates with increased blood 

cell adhesivity (Setty et al., 2002) although it is blocked with the phospholipid-"cloaking" 

protein Annexin V.  Exposed phosphatidylserine is known to serve as a site of 

endothelial adhesion (Setty et al., 2002) and may act as a catalytic site for thrombotic 

response (Marcus, 1966), through interaction with thrombospondin (Manodori et al., 

2000; Closse et al., 1999).  It may also become targeted by the immune system through 

adherence to cultured human phagocytic monocytes (Schwartz et al., 1985).  Targeting 

by the immune system suggests a mechanism designed to remove from circulation and  

break down senescent sickle cells, attesting to the hemolytic nature of SCA. 
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 Increased levels of cell-bound immunoglobulin may also be important in the 

destruction of sickle erythrocytes. Erythrocyte aging studies have found that cell-bound 

autologous immunoglobulin, factors designed to remove old erythrocytes from 

circulation, are found on normal cells after aging 120 days, while they act on sickle 

erythrocytes within 10-40 days of their release from the bone marrow (Green et al., 

1985).  It is possible that the action of sickling and unsickling damages and artificially 

"ages" the sickle erythrocyte membrane by causing the exposure of signaling sites for 

the autologous immunoglobulin.  Further, ISCs are known to be targeted by 

macrophages (Hebbel & Miller, 1984), and the presence of the autologous 

immunoglobulin may provide the signal necessary for such targeting. 

 The accumulation of cell-bound immunoglobulin may be partially driven by the 

presence of band 3 clustering in the sickle erythrocyte membrane.  Transmembrane 

protein band 3 co-clusters with Heinz bodies; portions of denatured hemoglobin from the 

cytoplasm, which then copolymerize with the cytoplasmic domain of band 3, resulting in 

the formation of a band 3 cluster (Kannan et al., 1988; Schluter & Drenckhahn, 1986; 

Waugh et al., 1986).  In addition to co-localization of these Hienz bodies with 

phosphatidylserine and phosphatidylcholine (Liu et al., 1996), the bodies are the signal 

of an aged erythrocyte to be removed from circulation (Lutz, 1992).  Therefore, the 

unusual targeting of ISCs by macrophages noted above may alternately be in response 

to the formation of these Heinz bodies.  Band 3 may also be directly involved in sickle 

erythrocyte-endothelial cell adhesion, though the mechanism is unclear (Thevenin et al., 

1997). 

 Lastly, the sickle erythrocyte membranes experience atypical charge distribution.  

The charge distribution on erythrocytes is determined by the presence of surface 

glycoproteins containing derivatives of a neuraminic acid called sialic acid.  These sialic 

acids carry a negative charge, imparting an overall negative charge to the surface of the 
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erythrocyte (EYLAR et al., 1962).  Sickle erythrocytes, however, possess less sialic acid 

than non-sickle red blood cells, resulting in a more positive charge (Ekeke & Ibeh, 1988; 

Aminoff et al., 1980; Hebbel et al., 1980b), and what they do have is clustered atypically 

on the surface of the sickle erythrocyte membrane (Wise et al., 1987).  As the negatively 

charged surface has insufficient charge to repel other close-approaching cells, this may 

provide opportunity for a closer approach to the endothelium, as low-charged portions of 

the membrane would not be repelled as strongly from the surface (Hebbel et al., 1980b).  

There is also some indication that the sialic acid aids in sickling recovery (Ekeke et al., 

1988), although the mechanism is unknown.   

 

2.5.2   Hemodynamic Differences of Sickle Vasculature 

Thus far, the background has discussed primarily cellular aspects of sickle 

erythrocyte adhesion, concerning receptors and membrane factors mediating the cell-

cell interaction of sickle erythrocytes with other cell types.  However, the mechanism of 

sickle pain crisis is likely also strongly dependent upon the localized hemodynamics of 

the sickle microvasculature.  As outlined in section 2.4, adherent cells in the post-venular 

microvasculature would create additional resistance to blood flow, slowing erythrocyte 

capillary transit time and providing sufficient opportunity for additional adhesion and 

inter-capillary “sickling” of the sickle erythrocytes as they deoxygenate.  Thus the flow 

rate of blood through the microvasculature is of key importance in the propagation of 

sickle pain crisis.  Of further importance is that, as the blood flow hemodynamics are 

responsible for the delivery of sickle erythrocytes to the endothelial cell monolayer, flow 

rate of the blood through the microvasculature also determines the cell-cell contact 

frequency and duration, effectively changing key factors in the mechanics of sickle 

erythrocyte adhesion.   
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Due to this involvement of blood flow rate in adhesive interactions, 

hemodynamics have to be carefully considered in the construction of any system 

modeling the processes of sickle cell anemia.  For non-sickle vasculature, this presents 

a fairly straightforward problem.  Microvascular blood flow rate is normally regulated and 

maintained by an elaborate system of signals to the vascular muscle cells.   Blood flow is 

normalized by dilation and contraction of the blood vessels, resulting in an associated 

shear stress of approximately 1.0 dyne/cm2 in post-capillary venules.  Under these 

conditions blood, while being a non-Newtonian shear-thinning fluid, can be treated as a 

Newtonian fluid with constant viscosity, as the shear stress would not change throughout 

any test of blood-substitute flowing through at a constant steady state.  Unfortunately, 

the same cannot be said of the flow rate and rheological properties of blood in sickle 

patient microvasculature.   

Laser-Doppler measurements of blood flow in sickle dermal microvasculature 

show intermittent or periodic large, local oscillations in flow, and periods of general 

reduced flow (Rodgers et al., 1990; Kennedy et al., 1988; Rodgers et al., 1984).  Studies 

visualizing blood flow in nail fold capillaries also detected a higher occurrence of slowed 

and stopped microcirculatory flow in sickle subjects compared to controls (Lipowsky et 

al., 1987).  Even in patients with mild sickle cell disease, conjunctival blood flow velocity 

is approximately 20% lower than that measured in non-sickle patients (Cheung et al., 

2002), while during painful crisis, a further decrease in vascularity (caused by flow 

stoppage in small vessels) was observed and a 36.7% +/- 5.2% decrease in large vessel 

(mostly venular) diameter resulted. In addition, the conjunctival red cell velocities either 

slowed significantly (6.6% +/- 13.1%; P <.01) or were reduced to a trickle (un-

measurable) during crisis. These microvascular changes during crisis were transient and 

reverted to steady-state baseline after resolution of crisis.  Flow variation between 

subjects is high, with some sickle cell anemic patients exhibiting a greater than 90% 
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reduction in microvascular blood flow (Cheung et al., 2002).  Studies measuring the 

tissue flow rate of blood in sickle patients concluded that the blood flow rate regularly 

approaches 50% of typical flow during oscillations (Rodgers et al., 1984), giving an 

associated shear stress of approximately 0.5 dyne/cm2.   

 Several theories exist to account for this variation in microvascular flowrate, 

including the generally dysfunctional nature of sickle endothelium as reflected in 

circulating endothelial cell samples (2.3.6), and the blunted effect of some vasodilators 

on sickle endothelium (2.3.5).  Another possible cause is an unrelated loss of normal 

response to mechanical stimulation in the patient’s muscular arteries (Belhassen et al., 

2001).  As the shear environment is an important hemodynamic endothelial signal, the 

altered hemodynamics of sickle microvasculature may exacerbate a chronic elevation of 

cytokines, and low microvascular blood flow may thus be a source of widespread 

endothelial damage (Croizat, 1994; Embury et al., 1994; Francis, Jr. et al., 1992).  High 

levels of expressed cytokines in the blood of sickle cell patients may also have 

destroyed some vasodilator receptor sensitivity, and damaging of the endothelial 

monolayer (2.3.6), may adversely affect the system by exposing the vascular lumen, 

directly damaging the smooth muscle layer.   

Further altering the hemodynamic properties of blood in sickle patients is the 

nature of the blood itself.  The rheology of blood from sickle cell anemic patients is 

different from that of non-sickle patients.  Plasma viscosity is increased, largely due to 

higher total protein content (Chien et al., 1982), but whole blood viscosity, when 

oxygenated, is decreased, due to the anemic aspect of the disorder (Chien et al., 1982; 

Chien et al., 1970).  During deoxygenation, however, the increasing rigidity of the sickle 

erythrocytes eventually results in a 10-fold increase in viscosity at high shear rates 

(Danish et al., 1983).  Simple extrapolation of this trend in an ischemic tissue site 

highlights the importance of this variable, increasing viscosity in vivo. 
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 Thus the pain crises of sickle cell anemia are known to have a strong 

hemodynamic aspect.  The blood flow through the microcapillaries dictates several of 

the key mechanisms driving pain crisis, but aspects of both the vascular condition and 

the blood itself alter the blood flow and the vascular response to that flow in vivo.  This 

results in periodically variable, reduced flowrate that may be more disadvantageous, as 

it may drive the initial adhesion of sickle erythrocytes resulting in pain crisis initiation and 

propagation. 

 

2.6   Signaling Mechanisms Responsible for the Expression of Adhesive Ligands 

 Adhesion as a possible initiating factor in the occurrence of sickle cell pain crisis 

and as a major difference between the behavior of erythrocytes in sickle and non-sickle 

microvasculature has been recognized by the scientific community since first reported in 

1980 (Hebbel et al., 1980a).  However, while the general inflammatory conditions known 

to often promote sickle cell adhesion and pain crisis are widely agreed upon, research 

has been unable to isolate a sole cause of vaso-occlusion, instead uncovering numerous 

mechanisms which may be responsible for in vivo pain-crisis initiating adhesion.  As the 

inflammatory response triggers many cell adhesion mechanisms in the vasculature it is 

likely that multiple adhesion mechanisms work in concordance in the pathology of sickle 

pain crisis.  This thesis proposes to study two mechanisms in particular, and a brief 

review of the known characteristics of these mechanisms is provided, in addition to a 

brief review of plasma factor-derived mechanisms and inflammation in general. 

 

2.6.1   Plasma Factors 

 Plasma separated from sickle patients is known to induce adhesion when 

incubated with endothelial layers (Mohandas et al., 1985; Mohandas & Evans, 1984), 

promoting adhesion of subsequently introduced sickle erythrocytes or normal 
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erythrocytes above unstimulated levels.  The precise factor responsible for this 

cytoadhesive effect in sickle plasma is unknown but likely derives either from signaling 

agents within the plasma typical of the sickle patients’ chronically activated 

thrombogenic and inflammatory system, or some change in the long-chain proteins that 

make up the denser sickle plasma fraction.  Interestingly, it has also been shown that the 

mere presence of sickle erythrocytes (washed of their plasma) is sufficient to cause 

expression of adhesogenic factors on endothelial layers (Shiu et al., 2000). 

 Studies have employed purified fractions of possible adhesion-promoting plasma 

factors in an attempt to discern which factors in sickle cell plasma are responsible for the 

increased adhesion.  Thrombospondin (TSP), a large adhesive glycoprotein discussed in 

brief above (2.3.3) derived from either platelets (Lawler et al., 1978) or endothelial cells 

(Kramer et al., 1985), is known to interact with microvascular and umbilical vein 

endothelial cells via the integrin αvβ3 (Natarajan et al., 1996; Brittain et al., 1993; Charo 

et al., 1987), and interacts with sickle erythrocytes via cell receptor CD36 on reticulocyte 

fractions (Browne et al., 1996a; Sugihara et al., 1992).  Due to the elevated levels of 

reticulocytes in blood from sickle patients, the elevated levels of TSP observed in sickle 

patients during crisis (Browne et al., 1996a), and the chronic thrombotic state discussed 

above, TSP may be a strong initiating factor in the occurrence of sickle vaso-occlusive 

crisis.  Further, TSP is expressed in the subendothelial matrix, and treatments which 

cause cellular retraction, exposing TSP, may promote adhesion, although this adhesion 

is apparently dependent upon glycosaminoglycans, and not CD36 interaction (Joneckis 

et al., 1996; Hillery et al., 1996). 

 von Willebrand Factor is another potentially adhesive plasma factor found in 

elevated levels in sickle patients (Mackie et al., 1980).  Stored in Weibel-Palade bodies 

of endothelial cells (Lynch et al., 1986), its release is triggered by histamine, thrombin 

(van Mourik et al., 2002), vasopressin (Mannucci et al., 1975), or fibrin (Ribes et al., 
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1987), implicating its irregular expression in sickle cell anemia to both the result of 

altered vasomotor state and the chronically thrombogenic nature of the disorder.  Assays 

in vitro have shown the ability of the high molecular weight fraction of this glycoprotein 

(Ruggeri & Zimmerman, 1987) to promote sickle erythrocyte adherence to HUVECs both 

under flow (Wick et al., 1993; Wick et al., 1987) and statically (Walmet et al., 2003) 

although adherence was relatively weak.  The mechanism of adhesion is unknown but 

antibody blocking of platelet vWF receptor glycoprotein complexes GPIIb/IIIa (Weiss et 

al., 1993; Lombardo et al., 1985) or GPIb (Handa et al., 1986) in assay inhibits von 

Willebrand Factor-mediated adherence (Wick et al., 1993). 

 Interaction with GPIIb/IIIa receptors is also a characteristic of fibrinogen (Ikeda et 

al., 1991), which has also been shown to increase sickle erythrocyte adherence to 

endothelial cells (Wautier et al., 1983; Hebbel et al., 1981) under static conditions.  

Fibrinogen normally mediates platelet adhesion and aggregation, so the elevated levels 

of this factor in sickle patients during infection (Hebbel et al., 1981) or during acute pain 

crisis (Lawrence & Fabry, 1986) may be a further reflection of the pro-thrombotic state of 

sickle cell anemia, and its ability to promote erythrocyte adhesion may contribute to 

vaso-occlusion. 

 Fibronectin is another high molecular weight glycoprotein produced by human 

endothelial cells and released into the supernatants (Ruoslahti et al., 1981).  Although 

levels of fibronectin are not significantly elevated in sickle patients, they are reduced 

during sickle pain crisis (Bolarin & Adenuga, 1986), suggesting sequestration of the 

factor and involvement in the mechanism of vascular occlusion.  Similar to fibrinogen, 

fibronectin promotes sickle erythrocyte adhesion in static attachment studies either to 

cultured endothelial layers (Wautier et al., 1983) or surfaces pre-coated with fibrinogen 

(Kasschau et al., 1996; Patel et al., 1985).  The adhesion, once formed under static 

conditions to endothelial layers, is sufficient to maintain adhesion under physiologic flow 
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for normal microvasculature (Wick et al., 1987), but is not maintained for immobilized 

fibronectin without the endothelial monolayer (Joneckis et al., 1996).  Also, neutrophils 

from sickle patients, when activated by IL-6 or IL-8, exhibit increased adhesion to 

fibronectin (Assis et al., 2005). 

 

2.6.2   Cytokine Agonist-Induced Receptor-Ligand Interactions 

 Adhesion of sickle erythrocytes to the endothelium is not necessarily 

accomplished via bridging factors in the plasma.  Alternately, the vascular endothelium, 

when stimulated with specific cytokines, can express a variety of adhesion receptors that 

directly mediate cell adhesion.  Presence of these cytokines drives the thrombogenic, 

inflammatory, or immune response mechanisms, initiating such actions as localization of 

flowing leukocytes for transport out of the vasculature into the tissue.  The pro-

inflammatory, pro-thrombogenic state of sickle microvasculature is reflected in increased 

levels of circulating cytokines both during pain crisis and at steady state.  Chronic 

cytokine levels determine the chronically activated state of the vascular endothelium 

(Solovey et al., 1998; Solovey et al., 1997), expressing, or readily expressing, adhesive 

receptors in excess of normal functionality and likely initiating pain crisis through 

excessive cell adherence.  Supporting this theory is the fact that infection, a trigger of 

inflammation and associated cytokine expression, has been identified as one of the 

precipitants of painful crisis, and is a major cause of morbidity and mortality in sickle cell 

patients (Barrett-Connor, 1971). 

 Inflammatory events in sickle cell anemia are closely associated with increased 

incidence of pain crisis.  Increased levels of cytokines and inflammatory mediators such 

as tumor necrosis factor-α (TNF-α), interleukin1 (IL-1), interleukin-6 (IL-6), and 

histamine found in increased levels in sickle plasma (Kasschau et al., 1996; Malave et 

al., 1993; Francis, Jr. et al., 1992) are believed to contribute to this association by driving 
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vaso-occlusion initiating cellular adhesion.  As this thesis intends to investigate the 

specific intercellular interactions of VCAM-1/α4β1, and P-selectin as mediated by TNF-α 

and histamine exposure respectively, these cellular interactions will be reviewed at 

length. 

 

2.6.3   Tumor Necrosis Factor - α  Mediated Adherence 

 TNF-α is known to cause expression of vascular adhesion molecule-1 (VCAM-1) 

on cultured endothelial cells (Osborn et al., 1989).  TNF-α shares this ability with a 

number of other inflammatory cytokines including interleukin-1, interleukin-4 (IL-

4)(Masinovsky et al., 1990), interleukin-1β (Natarajan et al., 1996), bacterial endotoxin 

(Carlos et al., 1990), and viral-like double stranded RNA (Smolinski et al., 1995).  

Interestingly, long-term incubation with sickle erythrocytes (Brown et al., 2001) is also 

known to cause expression of VCAM-1.  VCAM-1 expression is relatively slowly 

developed, as the adhesive ligand is expressed as a result of synthesis following 

cytokine stimulation.  Synthesis reaches maximal levels at about 2.5 hours (Hession et 

al., 1991; Osborn et al., 1989) and binding mediated by VCAM-1 is typically maximal 

after 4-6 hours of stimulation (Carlos et al., 1990; Osborn et al., 1989). 

 The receptor for interacting with VCAM-1 is the integrin (cell-surface heterodimer 

adhesion receptor for cell ligands) α4β1, also known as very late antigen-4 (VLA-4).  

Typically this receptor is expressed on leukocytes (Elices et al., 1990; Osborn et al., 

1989) where VCAM-1/α4β1 interactions mediate adhesion of leukocytes to the 

endothelium as part of standard long-term inflammation response.  However, the α4β1 

receptor is also expressed on sickle reticulocytes (Swerlick et al., 1993; Joneckis et al., 

1993), and thus sickle erythrocytes can adhere to endothelial cells expressing VCAM-1 

after stimulation with TNF-α (Gee et al., 1995; Swerlick et al., 1993; Vordermeier et al., 
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1992) or similar factors (Natarajan et al., 1996; Smolinski et al., 1995).  Thus, the 

standard inflammatory response of the vasculature to events like inflammation 

inadvertently promotes the detrimental adhesion of sickle erythrocytes and possibly 

initiate sickle pain crisis. 

 Further, even at steady-state (non-pain crisis state) VCAM-1 is at increased 

levels in sickle patient plasma in comparison to non-sickle controls (Duits et al., 1996), 

and is further increased during pain crisis.  Thus, even in the absence of inflammatory 

incidents, VCAM-1 is expressed in sickle vasculature. 

 

2.6.4   Histamine Mediated Adherence 

Histamine, an early inflammatory agent mechanistically and kinetically different 

from TNF-α, is also elevated in sickle patients both during asymptomatic periods and 

further elevated during pain events (Enwonwu et al., 1991).  Histamine mediated 

adherence is of clinical interest because opioid analgesics used for treatment of vaso-

occlusive events are known to result in histamine expression, and histamine-related side 

effects such as itching (Friedman et al., 2001; Chaney, 1995; Fuller et al., 1990; 

Muldoon et al., 1984).  Recent studies have highlighted an even more severe danger 

associated with the opioid derivative morphine, as orally administered morphine appears 

to increase the likelihood of the potentially lethal sickle complication ACS (Kopecky et 

al., 2004) (section 2.2.4), which may be related to the histaminergic effect of the drug.  

Histamine is responsible for a number of systemic responses in addition to 

inflammatory mediation.  It is know to control allergic response (Smit et al., 1999), 

control pepsin release in the digestive system (Ash & Schild, 1966), act as a feedback 

inhibition loop in neural pathways (Arrang et al., 1983), and is also involved in immune 

response (Gantner et al., 2002).  Histamine-driven cellular signaling mechanisms are 

similarly varied, including an increase in the tight-junction permeability of endothelial 
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cells (Ratcliffe et al., 1999), rapid upregulation of IL8 (Utgaard et al., 1998), promotion of 

neutrophil adhesion, (Schaefer et al., 1998; Ley, 1994; Watanabe et al., 1991) and nitric 

oxide mediated relaxation in some arteries (Suzuki et al., 2000).   

These varied responses to histamine in different tissues are caused by histamine 

interaction with one or more of the H1, H2, H3, and H4 receptors.  Endothelial cells 

express different levels of histamine “H” receptors (Gantner et al., 2002; Morse et al., 

2001; van der Werf et al., 1989; Heltianu et al., 1982) depending upon their phenotype, 

and binding to these receptors initiates a variety of intracellular signaling responses 

(Smit et al., 1999; Del Valle & Gantz, 1997; Leurs et al., 1995).   Attempts to assign 

individual receptors to specific signal pathways have lead to ambiguous results. 

Evidence of interactions between receptor mechanisms at the level of second 

messengers allows for more elaborate mechanisms of activation.  There may be 

independent methods of activating the same system, systems requiring simultaneous 

activation of multiple receptors for a single outcome, or negative feedback control of a 

system by activation of an alternate receptor.  Known second messenger interactions 

are both tissue and species specific, including H1 (Ayajiki et al., 1992) or H2 (Kostic & 

Petronijevic, 1995) receptor-mediated synthesis of nitric oxide, allowing for the same 

system to be activated by alternate mechanisms.  H2 receptor mediated release of Ca2+ 

(Mitsuhashi et al., 1989; Chew, 1986) or alteration of receptor mediated signal 

transduction (Mitsuhashi & Payan, 1989) are known examples of cross-effects of one 

histamine-mediated system on the relative activity of another histamine-mediated 

system.  Understanding the mechanism that drives sickle erythrocyte adherence induced 

by histamine may prove similarly complicated. 

Histamine promotes expression of P-selectin by translocation of the ligand from 

intercellular Weibel-Palade storage granules (Datta & Ewenstein, 2001; Utgaard et al., 

1998) to the membrane surface (Barkalow et al., 1996; McEver et al., 1989; Stenberg et 
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al., 1985).  In general, P-selectin acts to increase the specificity of endothelial cell 

interactions with platelets and leukocytes during inflammation, coagulation, and 

atherosclerosis (Varki et al., 1999; Varki, 1997; Rosen & Bertozzi, 1996; Furie & Furie, 

1995; McEver et al., 1995; Springer, 1994; Rosen & Bertozzi, 1994).  The formation of 

long P-selectin “tethers” to neutrophils and platelets has also been well established and 

their dynamics extensively studied (Schmidtke & Diamond, 2000; Utgaard et al., 1998).  

Expression of factors stored in the Weibel-Palade bodies requires only minutes, but 

expression of P-selectin peaks at 10 minutes of cytokine exposure and falls to non-

stimulated levels by shedding or re-internalization of receptors between 45 and 60 

minutes (Sugama et al., 1992).  This is a relatively rapidly response of the endothelium 

to cytokine presence, in comparison to other inflammatory mediators, such as TNF-α, 

which may require hours of stimulation.  The difference is largely due to P-selectin being 

expressed from stores, whereas high VCAM-1 levels need to be synthesized on demand 

(Vordermeier et al., 1992).  Note that the short lifetime of P-selectin expression 

compared to the long duration of pain events does not eliminate P-selectin as a key 

interaction.  Histamine mediated adhesion could act as an initiator only, halting individual 

erythrocytes in the post-capillary venules.  Once the erythrocyte was stationary, slower-

acting adhesive pathways could independently immobilize the red blood cell (Solovey et 

al., 1998; Solovey et al., 1997; Duits et al., 1996).   

Erythrocytes were once thought incapable of interacting with P-selectin, because 

they do not posses a complimentary ligand (Matsui et al., 2001; Varki et al., 1999).  

Specifically, the primary complimentary ligand P-selectin glycoprotine-1 (PSGL-1) has 

not been found on sickle erythrocytes.  However, evidence for a sialic acid-containing 

ligand which interacts with P-selectin and is markedly enhanced on SSRBC has been 

discovered, although the exact nature of the ligand has not been defined (Matsui et al., 

2001), and the involvement of P-selectin participating in erythrocyte adhesion in vivo in a 
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sickle mouse model has recently been observed (Embury et al., 2004; Wood et al., 

2004b).  Alternately, adhesive interactions between endothelial P-selectin and sickle 

erythrocytes might occur via exposed phosphatidylserine (PS) on the sickle erythrocytes 

(Setty et al., 2002; de Jong et al., 2001).  PS expression is a result of damage from 

repeated sickling, as noted above in section 2.5.1, creating a subpopulation of PS-

expressing cells (de Jong et al., 2001; Kuypers et al., 1996; Wood et al., 1996).  

Externally expressed membrane PS is normally corrected by the enzyme flipase 

(Kuypers et al., 1998; Kuypers, 1998).  Sickle erythrocytes expressing PS in patient 

blood indicate a disabled or overwhelmed flipase function, implying severe red cell 

damage.  Whichever erythrocyte factor interacts with P-selectin, thrombin has caused 

both non-sickle and, to a greater extent, sickle erythrocyte adherence to endothelium via 

this ligand (Matsui et al., 2001).  As histamine is also known to cause P-selectin 

expression, it is likely that adherence induced by histamine may cause adhesion by a 

similar mechanism. 

P-selectin is not the only adhesive factor released by histamine from storage in 

the Weibel-Palade bodies.  von Willebrand Factor, which has also been shown to 

promote sickle erythrocyte adherence, as noted above in section 2.6.1, is also 

expressed (van Mourik et al., 2002).  However, this mechanism does not promote 

adherence to certain phenotypes of endothelial cells (Brittain et al., 1992).  Recent 

studies have also pointed out that ultra-large von Willebrand Factor multimers interact 

with P-selectin, P-selectin anchoring the long chain protein under shear (Padilla et al., 

2004) to facilitate ultra-large vWF cleavage to less active forms (ULvWF).  If the factors 

driving thrombogenic adherence of platelets to von Willebrand Factor are also the 

mechanisms promoting sickle erythrocyte adherence to vWF, then von Willebrand 

Factor-mediated sickle erythrocyte adherence is also highly dependent upon P-selectin 
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expression for anchoring, further emphasizing P-selectin’s importance in sickle pain 

events.   

 

2.7   Sickle Cell Anemia Therapy 

 Sickle cell anemia is a severe, debilitating disorder whose recurrent clinical 

complications require repeated hospitalization during the lifetime of patients.  A study 

conducted in 1997 found that there were 75,000 annual hospitalizations between 1989 

and 1993, while the average direct cost per hospitalization in 1996 was estimated at 

$6,300, for a total cost of $475 million per year (Davis et al., 1997).  While much of this 

cost is covered by governmental programs, patients suffer further costs in the form of 

lost work or school time which can greatly impact their livelihood, and the impact of 

financial costs felt by patients and their families are further destructive to the overall 

reduction in quality of life and well being of patients with sickle cell anemia. 

 While deriving from a single point mutation in the genetic code for hemoglobin 

synthesis, the resulting complications spread throughout multiple organ systems of the 

sickle patients and have complex and interacting effects.  Such a disorder requires not 

only study of treatments capable of addressing the source of the disorder, but treatments 

capable of alleviating or reversing damage and pain caused by the myriad clinical 

complications, and preventative treatments to blunt the damage caused by these 

complications.  Therefore, research into long term treatments and cure, such as bone 

marrow transplants, research into prophylactic preventative treatments, such as anti-

adhesion regimes, hydroxyurea, and transfusion therapy, and research into short-term 

treatments, such as pain management, are all needed to best improve the prospects of 

patients with sickle cell anemia.  While research into a genetic treatment capable of 

completely curing this disorder is in progress and has met with some success, the small 

population of patients to whom this is a viable option indicates many hurdles that must 
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be passed before such treatments can be applied to the entire patient population, and 

thus demands development of more short-term treatments. 

 

2.7.1  Genetic Treatments and Cure  

 Currently the only curative therapy for sickle cell anemia involves the use of a 

bone marrow transplant.  Successful use of this therapy has resulted in replacement of 

sickle hemoglobin expression with non-sickle (AA-type), or sickle trait (AS-type) 

hemoglobin, followed by complete secession of vaso-occlusive episodes and hemolytic 

anemia (Vermylen, 2003; Walters et al., 2001; Ferster et al., 1995b; Johnson et al., 

1994; Vermylen et al., 1988).  However, the morbidity and mortality risks involved with 

the bone-marrow-ablative processes used in the standard bone marrow transplant 

procedure, as well as the possibility of sickle cell disease recurrence (Walters et al., 

1997), and various other complications like post-transplant infection (Kalinyak et al., 

1995; Johnson et al., 1994) and neurologic complications observed post-transplant 

(Ferster et al., 1995a) mean that it is considered only for those patients suffering the 

most severe sickle cell complications (Walters et al., 2000).  Further, the current 

limitations of pharmacologic immunosuppression post-transplant to prevent the onset of 

graft-vs.-host disease (Ferster et al., 1995b; Johnson et al., 1994) mean that bone 

marrow transplant is available only to those patients with a full HLA-matched donor, 

requiring the donor be an identical sibling.  Unfortunately, these limitations translate to 

only approximately 1% of the sickle cell population for whom bone marrow transplant is 

a viable option (Walters et al., 2000).  Further developments in immunosuppression, 

allowing patient-donor matches with fewer HLA-factors in common, would considerably 

increase the number of candidates for bone marrow transplant, as would improvements 

in myeloablative treatments. 
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 Because of these severe limitations on standard bone marrow transplant, 

alternate therapies have been sought.  Hematopoietic stem cells derived from umbilical 

cord blood (Kelly et al., 1997) are proposed to address donor scarcity.  A more complex 

form of bone marrow transplant may act as a final genetic "repair" to the point mutation 

at the root of sickle cell anemia.  Patient bone marrow would be removed and retroviral 

vectors would be employed to "re-code" the genetic code for the sickle β-globin as the 

normal (AA-type) β-globin.  Standard myeloablative treatments would follow, and the "re-

coded" hematopoietic cells would be used to re-populate the patient's ablated marrow.  

While still employing the myeloablative treatments, this would completely eliminate HLA-

matching limitations, as the patient allograft would already be a perfect match.  

Alternately, use of a non-myeloablative technique designed to induce mixed 

hematopoetic chimerism, expression of two compatible genotypes of hematopoietic stem 

cells in patient bone marrow, has been sought to avoid the dangers of myeloablation 

(Walters et al., 2001).  Despite encouraging results observed in patients with acquired 

chimerism (Walters et al., 2001; Walters et al., 2000), and in murine models (Kean et al., 

2003), bone marrow transplant is likely to remain an option only for pediatric patients 

due to treatment intolerance in the form of chronic end-organ diseases in adults 

(Vermylen, 2003). 

 

2.7.2   Prophylactic Treatments and Preventative Care 

 One of the most direct forms of preventative care for sickle patients is the use of 

regular transfusions.  Replacement of a substantial quantity of a patient's sickle-

hemoglobin blood with transfusion blood temporarily dilutes the remaining blood of 

sickling cells, relieves anemia symptoms, drastically improves oxygenation and provides 

relief from pain crisis occurrence and hemolysis (McIntire et al., 1980). However, as 
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mentioned above (2.2.1) chronic transfusion therapy also carries a number of risks, 

including the possibility of iron overload (Davies et al., 1984; Sarnaik et al., 1979) 

requiring treatment with chelating agents (Kwiatkowski et al., 2004), alloimmunization 

(Wenz et al., 1982), and infection risk (Francis, 1991).  As a result, transfusion therapy is 

typically used only as a preventative measure in patients exhibiting symptoms of severe 

sickle cell anemic complications such as stroke (Adams et al., 2004; Pegelow, 2001; 

Adams et al., 1998) and acute chest syndrome (Emre et al., 1995). 

 Alternate therapies for sickle cell anemia include the application of agents to 

prevent, minimize, and/or delay the sickling process when sickle hemoglobin is 

deoxygenated.  One alternate form of hemoglobin from both normal “AA” and sickle “SS” 

hemoglobin that is present in sickle patients is "fetal" hemoglobin.  So named because of 

its presence in fetuses, it is necessary for the transmission of oxygen from the mother’s 

bloodstream.  In normal human development, the production of fetal hemoglobin drops 

to negligible levels within weeks following birth (Rogers et al., 1981).  However, the 

pernicious nature of the hemolytic anemia in sickle cell patients usually results in 

elevated levels of fetal hemoglobin in patient blood.  Because fetal hemoglobin inhibits 

gelation of sickle hemoglobin (Rogers et al., 1981; Nagel et al., 1979; Moffat, 1974), and 

because it thus improves erythrocyte longevity, there is a strong inverse correlation 

between fetal hemoglobin levels and the vaso-occlusive complications of sickle cell 

anemia (Powars et al., 1984; Stevens et al., 1981).  Techniques that could further raise 

this proportion could be applied to improve patient condition by reducing the incidence of 

pain crisis and the severity of patient anemia. 

Hydroxyurea (Hu), a ribonucleotide reductase inhibitor and a cancer treatment for 

use against leukemias, is a drug capable of reducing the incidence of sickle pain crisis 

and other severe sickle complications (stroke, ACS) in highly symptomatic patients 

(Vichinsky, 2002; Charache et al., 1995).  Use in treating sickle cell anemia has resulted 
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in a 40% decrease in mortality within a high-risk subset of sickle patients (Steinberg, 

2003).  A large multi-center study of the drug (Charache, 1997; Bunn, 1997) found that 

regular oral administration of hydroxyurea resulted in 44% decrease in mean painful 

crisis incidence, as well as decreases in the number of acute chest occurrences and 

reduction in the number of transfusions required in patients.  The action of hydroxyurea 

believed to be responsible for the long-term improvement of sickle patient condition is 

the increase in HbF production promoted by the drug (Ware et al., 2002), but the clinical 

improvements resulting from hydroxyurea treatment before HbF increase is observed 

(Ballas et al., 1989) is not fully understood.  The improvement may occur through 

improved erythrocyte hydration, anti-sickling effects of the drug, rheologic improvements 

in blood flow, or reduction of neutrophil and leukocyte counts (Wun, 2001; Charache, 

1997; Charache et al., 1992; Kaufman, 1992; Goldberg et al., 1990).  Hu use is 

considered relatively safe and effective in preventing sickle crisis, although major 

complications during treatment may still occur.  Further, it's efficacy is limited, in that a 

sizeable proportion of patients (~40-60%) do not respond at all to hydroxyurea treatment 

(Amrolia et al., 2003; Steinberg et al., 2003).  Side effects of the drug can be serious as 

well, leading to myelosuppression and leg ulceration, in addition to concerns about the 

unknown risks of long-term exposure to the drug (Amrolia et al., 2003; Chaine et al., 

2001; Hanft et al., 2000; Steinberg, 1999).  Alternate treatments intended to induce 

production of fetal hemoglobin include short-chain fatty acids such as four-carbon-chain 

butyrate-derived compounds (Liakopoulou et al., 1995; Faller & Perrine, 1995), 5-aza-2'-

deoxycytidine (Saunthararajah et al., 2003) and hydroxyurea analogs such as Zileuton 

(Haynes, Jr. et al., 2004), in attempts to avoid some of hydroxyurea's cytotoxic side 

effects (Atweh et al., 2003). 

Hydration of sickle erythrocytes is also a potential sickling-prevention treatment.  

Hydration of the erythrocytes will act to dilute the sickle hemoglobin within the 
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erythrocytes and greatly reduce their sickling rate (Ferrone et al., 1985) and subsequent 

cellular damage.   Several drugs designed to address erythrocyte dehydration do so 

through the blocking of potassium egress from the cells.  Calcium-mediated potassium 

ion channels in the erythrocyte membrane called "Gardos" pathways (GARDOS, 1958) 

provide one potential route, and drugs known to block these channels include 

charybdotoxin (Ohnishi et al., 1989; Wolff et al., 1988), quinidine and nitrendipine (Ellory 

et al., 1992), clotrimazole, and similar imidazole antimycotics (Stuart et al., 1994; Alvarez 

et al., 1992), with numerous variations of these drugs under investigation. 

Finally, rheologic effects serve as another target for the prevention of sickle pain 

crisis.  Aside from simple observance of proper transfusion protocol to prevent excessive 

accumulation of red cell beyond 35 volume percent, where blood viscosity increases and 

worsens existing infarctions (Jan et al., 1982), a number of treatments have been used 

to alter the rheologic conditions present in sickle vasculature.  It is hoped that by 

reversing the flow abnormalities (2.5.2) arising from complex interactions between sickle 

erythrocytes, endothelium, platelets, and mediators of inflammation and 

thrombogenesis, as well as improving flow conditions by improving erythrocyte flexibility 

and reducing blood viscosity, microvascular occlusion incidents can be reduced. The 

ability of corticotrophin and pentoxifylline to reduce blood viscosity and improve sickle 

cell deformability have been investigated (Keller & Leonhardt, 1979).  Similar results 

have been seen with the use of a perfluorochemical (Fluosol-43) (Reindorf et al., 1985), 

a polyol nonionic surfactant (Pluronic F-68) which acts as a dispersing, wetting and 

defoaming agent (Smith et al., 1987) and also abolishes sickle erythrocyte adherence, 

and the nonionic block copolymer surfactant RheothRx (Adams-Graves et al., 1997).  

Unfortunately, several of these treatments have toxicity problems (Vercellotti et al., 1982; 

Endrich et al., 1979; Yokoyama et al., 1975) or operate via mechanisms only partially 

understood (Toth et al., 1997). 
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2.7.3   Short-Term Treatment and Care 

The most common and widespread complication experienced by patients with 

sickle cell anemia is the pain crisis associated with vaso-occlusion.  Unfortunately, there 

are currently no treatments available for administration during pain crisis which will 

quickly reverse the condition or shorten the duration of the vaso-occlusion, although 

there is promising research in the field of inhaled nitric oxide therapy recently that may 

significantly shorten vaso-occlusion duration and additionally aid in acute chest 

syndrome (Weiner et al., 2003).   

Current patient care techniques during pain crisis are symptomatic treatments, 

and include antibiotic treatment for patients whose pain crises may have been initiated 

as a result of infection-related inflammation, hydration, administration of analgesics for 

the treatment of associated pain, and counseling on avoidance of conditions likely to 

initiate pain crisis (Benjamin, 1982).  Studies (Chapter V & VI) conducted in this thesis, 

however, have highlighted the importance of proper analgesic selection, as associated 

inflammatory mediator release in response to certain opioid analgesics may initiate or 

further exacerbate patient pain crisis.  This is further emphasized by the correlation 

drawn between increased incidence of severe sickle cell complication acute pain crisis 

and the use of morphine in treatment of sickle cell patients (Kopecky et al., 2004).   

 

2.8   Animal Models 

 Special note needs to be made of a recent development in the study of sickle cell 

anemia.  The development of an animal model for the study of sickle cell anemia has 

long been an objective of the field because of its immense potential for explaining and 

illustrating the many factors in action during pain crisis, and for examining and devising 

treatments for the resulting organ damage.  With an animal model, invasive observation 

techniques impossible with human subjects could be conducted and the efficacy of anti-
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vaso-occlusive event drugs could be observed directly, offering immense insight into the 

pathophysiology of sickle cell anemia and quickly advancing the development of sickle 

cell treatments.  Unfortunately, no other animal naturally carries the gene for sickle 

hemoglobin, so an animal model had to be transgenically developed. 

 Before the current sickle mouse model, several other mouse models were 

developed and had some success in expressing different amounts of sickle-patient like 

blood.  These models included the SAD-1 mouse (Trudel et al., 1994), the Constantini-

Fabry-Nagel (NYC1) mouse (Roy et al., 1993), and the S+S-Antilles model (Fabry et al., 

1995) all of which exhibited some pathologies useful for the study of sickle cell anemia.  

However, the recent advances in the field of transgenics have resulted in a transgenic 

sickle mouse model expressing exclusively human globin chains (Paszty et al., 1997; 

Ryan et al., 1997) and given scientists a model more useful than any previous attempt.  

Although there are some notable differences (Manci et al., 2006), such as low 

expression of HbF, evaluation of the transgenic model found remarkable similarities 

between the pathologies exhibited by the mice and those seen in sickle patients.  

Studies evaluating the vascular characteristics of these mice have found the similar loss 

of vaso-motor tone and the blunted response to vaso-relaxing agents like nitric oxide 

(Nath et al., 2000; Kaul et al., 2000b).  Further similarities were the presence of pro-

inflammatory state cytokines, increased leukocyte-endothelium interaction, endothelial 

oxidant generation, and significant flow abnormalities (Nath et al., 2000; Kaul & Hebbel, 

2000a).  TNF-α driven microvascular occlusion via blood cell adhesion (Turhan et al., 

2002), increased expression of adhesive ligands like E -selectin and P-selectin (Wood et 

al., 2004a; Wood et al., 2004b), and well documented organ and blood vessel pathology 

(Manci et al., 2006; Chang et al., 1998; Paszty et al., 1997; Ryan et al., 1997) were 

observed.  Current studies involving these transgenic models cover a wide range of 

sickle-related topics, from examination of brain vasculopathy (Wood et al., 2005; Wood 
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et al., 2004b), pain crisis initiation (Belcher et al., 2005), cure variants on bone marrow 

transplant and chimerism (Kean et al., 2003), or genetic treatments (Chang et al., 2006). 

 

2.9   Summary 

 The inherited genetic disorder of sickle cell anemia is the most common heritable 

hematological disease.  Although a proven cure has been found in bone marrow 

transplantation, this cure carries with it additional risks and an inherently limited 

population applicability, due to a lack of appropriate HLA-matched donors for sickle cell 

anemic recipients.  Other current treatments, such as chronic transfusion or 

hydroxyurea, while temporarily alleviating the pathology associated with sickle cell 

anemia, also have long-term risk factors and complications that make their continuous 

use undesirable.  Attempts to pharmacologically address the clinical complication of 

vaso-occlusive pain crisis, the painful, ischemically damaging microvascular occlusion 

believed to be initiated by sickle erythrocyte adhesion and leading to tissue damage, 

organ dysfunction, and death, should thus be continuously developed in parallel with 

those studies designed to address the disorder at the genetic level.  The aim of pain 

crisis studies should be the development of a safe therapeutic agent administered during 

crisis for lessening the vaso-occlusive severity, or, alternately, administered 

prophylactically for the prevention of pain crisis. 

 The complex nature of vaso-occlusive crisis requires a thorough understanding 

of the altered nature of sickle microvasculature and the altered blood cells with which it 

is interacting.  Studies have pointed to profoundly altered blood cell membranes, 

activated and chronically damaged endothelium, and irregular blood flow in sickle 

patients.  Extensive in vitro and more recent in vivo studies have focused on the 

adhesive interaction between various blood fractions and the endothelial layer, 

characterizing many potential inflammatory, thrombogenic, or immune-response related 
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mechanisms now known to promote the adhesion of sickle erythrocytes to stimulated 

endothelial cells.  Despite extensive investigation, a comprehensive, accurate model of 

sickle pain crisis has yet to emerge.  This implies that there are yet factors unaccounted 

for in previous examinations of sickle pain crisis. 

 One potential missing piece in the understanding of sickle pain crisis is the 

inflammatory mediator histamine.  Capable of causing rapid expression of adhesive 

ligands from endothelial monolayers, histamine is of special interest because of the 

histaminergic nature of several standard treatments for sickle pain crisis. 

 Further missing from the current model of sickle pain crisis is an accounting for 

the altered blood flow found in sickle patient microvasculature.  Blood flow in sickle 

microvasculature is known to be oscillatory and decreased, which, as a primary factor in 

determining cell-cell interaction frequency and duration, is a key factor for understanding 

the progression of sickle erythrocyte adherence.  However, few studies address this 

atypical blood flow, examining adhesion under non-sickle flow rates or statically. 
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CHAPTER III 

MATERIALS AND METHODS 
 
 
 

3.1   Endothelial Cell Culture 

 

3.1.1  Cell Sources 

Human umbilical vein endothelial cells (HUVECs) was the primary endothelial 

cell type used in these studies.  Human dermal microvascular endothelial cells (dMECs) 

was a second cell type used in a few controls.  HUVEC cells were purchased as variable 

cultures at first or second passage from the Emory Skin Diseases Research Center 

(Atlanta, GA) in either confluent T-75 flasks or frozen ampules.  In some experiments 

HUVECs frozen at first passage from Clonetics (East Rutherford, NJ) were used.  No 

phenotypic difference was observed in cultures between the two cell sources during cell 

adhesion assays, but the cells from the Emory Skin Diseases Research Center were 

preferred as they displayed faster proliferation up to the target passage. 

dMECs were purchased at 2nd or 3rd passage from the Emory Skin Diseases 

Research Center at Emory University School of Medicine.  Cells were received as frozen 

cryovials of cell suspension or T-75 flasks with confluent endothelial monolayers of 

endothelial cells. 

 

3.1.2  Cell Thawing and Culture Protocol 

Adhesion assays used HUVECs at passage 6-7.  To reach this passage, cells 

stored in frozen form were plated to T-75 flasks (Corning, Corning, NY) by the following 

protocol:  A T-75 flask was pre-coated with 6 ml of a 0.1% porcine gelatin (Sigma-

Aldrich, St. Louis MO) solution in Delbecco’s Phosphate Buffered Saline Solution 

(DPBS, Sigma) and incubated overnight (minimum of 5 hours) at 37°C.  The gelatin 
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solution was then aspirated from the flask and a cryovial of cells, thawed in a water bath, 

was added.  Ten ml of warmed, complete HUVEC growth media (defined in detail below) 

was then added dropwise over ten minutes to reduce the effects of any sudden osmotic 

imbalance which might otherwise damage the endothelial cells.  While adding the 

HUVEC media, the T-75 was rocked by hand to ensure even distribution of the cell 

suspension over the culture surface.  A further 5 ml of complete media were added after 

ten minutes for a total suspension volume of 15 ml.  A second technique for thawing of 

cells was later employed when a decline in quality of cell proliferation and confluency 

was noted in several newly-thawed cell cultures (which, as a result, were not employed 

for adhesion studies).  Suspecting that the extended initial exposure of the cells to traces 

of dimethylsulfoxide (DMSO, Sigma-Aldrich) from the freezing solution was affecting 

growth, the thawed cryovial was instead transferred to a 15 ml centrifuge tube and 

centrifuged for 10 minutes at 100 g.  The DMSO-containing supernatant was aspirated, 

the cell pellet resuspended in 15 ml HUVEC media, and the solution was placed directly 

in a pre-coated T-75 culture flask. 

HUVECs were fed every 48 hours following thawing with 15 ml of fresh, warmed 

(37°C) complete HUVEC growth media, and grown to 90-95% confluency prior to 

passaging.  The complete HUVEC growth media used to feed the cells consisted of the 

basal media M199 reconstituted from powder (Sigma-Aldrich), supplemented with 20% 

heat-inactivated fetal bovine serum (FBS) (Sigma-Aldrich or Atlanta Biological, Atlanta, 

GA), ~2 mmol/L L-glutamine, 90 U/ml penicillin, 90 µg/ml streptomycin, 17 U/ml cell-

culture grade heparin (all from Sigma-Aldrich), and 25 µg/ml endothelial cell growth 

factor (Roche Biologicals, Indianapolis, IN).  Media was made only in ~300 ml batches to 

avoid denaturing of growth factors that would follow repeated warming and cooling 

cycles during standard feeding protocols. 
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Cells were grown out to fifth passage by culture in a sequence of T-75 flasks.  

After reaching 90-95% confluency (which took from 3-5 days, depending on the cell 

passage), cells were split 1-3 into either new T-75 flasks and cultured or into 3 cryovials 

and frozen down for storage in liquid nitrogen.  Passaging was accomplished by the 

following protocol:  The endothelial monolayer was washed twice with 6 ml of warmed 

M199 basal media in order to remove long-chain proteins from the heat-inactivated FBS, 

which would otherwise interfere with the action of trypsin.  4 ml of trypsin/EDTA solution 

(0.05%, GIBCO Laboratories, Grand Island, NY) was then added to the T-75 flask and 

incubated for one minute.  The flask was inspected under the microscope and agitated 

as necessary to remove endothelial cells from the surface.  6 ml of complete growth 

media (either HUVEC or dMEC growth media, depending on the culture) was added to 

the flask to neutralize the trypsin, the solution transferred to a 15 ml centrifuge tube, and 

then centrifuged at 100 g for 10 minutes.  Following centrifugation, the supernatant 

solution was aspirated and discarded.  If being prepared for transfer to culture flasks, the 

cell pellet was re-suspended in 3 ml of complete growth media, and divided equally into 

three gelatin pre-coated T-75s as detailed above.  If the cells were to be frozen down for 

storage, the cell pellet was resuspended in 3 ml of an ice-chilled  “freezing solution” 

consisting of 90% (by volume) heat-inactivated FBS and 10% DMSO (Sigma-Aldrich).  

This cell suspension is then divided into three sealed cryovials (Nalge-Nunc 

International, Rochester, NY), placed in an isopropanol-filled cell holder (Nalge-Nunc 

International), and cooled in a -70 freezer for 24 hours before being placed in long-term 

storage within a liquid nitrogen dewar.  Cells were typically stored at 3rd and 5th passage 

for later use. 

dMECS were similarly passaged, cultured, and stored with identical protocols 

and feeding schedules, but microvascular endothelial growth media was substituted for 

HUVEC media in all cases.  Microvascular endothelial growth media (EGM-MV) was 
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purchased from Cambrex (East Rutherford, NJ).  The precise makeup of the media is a 

proprietary formula maintained by Cambrex.  Hydrocortisone supplements provided by 

Cambrex as part of the media formulation were not added to the media as they might 

have affected adhesion-based studies. 

 

3.1.3  Endothelial Cell Culture for Adhesion Assays 

HUVEC cells intended for adhesion assays were thawed and cultured in T-75 

flasks as detailed in 3.1.2.  Cells were trypsinized at fifth passage and resuspended in 3 

ml of complete media, again as described in 3.1.2.  The numbers of endothelial cells 

were determined by staining a sample of cell suspension with trypan blue (Sigma-

Aldrich) for viability and counting unstained cells in a hematocytometer.  Cells were 

plated on Labtek® permanox single-well chamber slides (Nalge Nunc International) that 

had been coated overnight with 2 ml of the 0.1% porcine gelatin solution in the same 

manner as preparation of the T-75 flasks detailed in 3.1.2.  The number of plates and the 

total volume of media used in the cell suspension were adjusted such that the cells were 

plated at approximately 15,000 cells per single-well chamber.  The number of cell 

chambers prepared was determined by the anticipated flow assay for that week, with 3-4 

additional plates prepared in case of contamination or uneven confluency.  To ensure 

even cell distribution on the rectangular slides, a custom protocol was developed.  The 

single-well chambers were tilted (~10°) by positioning one end of the plates on a 1 ml 

pipette, placed lengthwise along the row of single-well chambers.  The cell suspension 

(2 ml apiece) was then placed in each chamber slide and incubated for five minutes.  

Afterwards, the cell suspension was aspirated and pooled.  The plates were tilted in the 

other direction, and the cell suspension added to each plate for another five-minute 

incubation.  Finally, the plates were aspirated and re-filled with the plates lying flat.  This 

technique ensured that cells populated the entire surface of the chamber slide, rather 
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than selectively populating one side or the center only.  These cells were then grown to 

full confluency on the slides before use in adhesion assays.  Confluency was typically 

reached within 2-4 days, and media was changed every 48 hours. 

dMEC cells were treated identically as HUVEC cells, except that complete MEC 

growth media was used in place of complete HUVEC growth media, and at each stage 

of the single-well chamber slide culture process, the cell suspension was allowed to 

settle for 6, not 5 minutes within the slides.  In addition, media for dMECs in chamber 

plates was first exchanged within 12 hours of plating.  These changes were part a 

custom protocol developed in response to apparent differences in the two endothelial 

cell culture growth and attachment characteristics. 

 

3.1.4  Alternate Endothelial Cell Culture for Adhesion Assays 

In a limited number of experiments, the single well chamber slides were not 

available.  As a substitution, plates of the appropriate dimensions were cut from the cell-

culture surface of T-75 flasks by scoring it with a heated scalpel and fracturing the 

surface along the scored lines.  The plates were carefully trimmed and filed to fit the flow 

chamber, and then sterilized using a UV sterilizer, 1 hour of exposure to each side.  

Plates were pre-coated with the gelatin solution by placing 4-5 cut plates in 75 mm Petri 

dishes, culture treated side up, and careful addition, without spilling into the Petri dish, of 

~ 1.75 ml of the gelatin solution from 3.1.2 to the culture surface, for overnight 

incubation.  Addition of the cell suspension was accomplished similarly, the gelatin 

solution being aspirated and replaced with the cell suspension, being sure not to spill the 

cell suspension from the cell culture surface.  Subsequent feedings every other day were 

accomplished by filling the Petri dish until all the plates were submerged (~20 ml of 

complete media), and being careful to ensure that the plates did not rest on top of one 

another.  All other protocols for these plates were identical. 

 68



                                                         

3.2   Erythrocyte Suspension 

 

3.2.1  Blood Sample Acquisition 

Whole blood was collected from asymptomatic volunteers with homozygous 

sickle cell anemia by means of venipuncture during regular clinic visits to the Georgia 

Comprehensive Sickle Cell Center at Grady Memorial Hospital in Atlanta, Georgia.  

Study subjects were screened by the center staff to be sure they were not taking 

hydroxyurea, had not recently received transfusions, and were not pregnant, 

thromboembolic, nor exhibiting signs of infection or liver disease. 

Blood was drawn into heparin anticoagulant-charged Vacutainer tubes (VWR, 

West Chester PA) provided to the center.  Written informed consent was obtained from 

each subject before sample collection, in accordance with protocols approved by the 

investigational review boards of the Georgia Institute of Technology, Emory University 

School of Medicine, and the Research Oversight Committee of Grady Memorial Hospital, 

and also in accordance with the principles of the Declaration of Helsinki.  Blood samples 

given to our lab through these protocols had all patient-specific identifiers removed, as 

per IRB requirements, thus “blinding” the samples and preventing the tracing of blood 

samples back to specific patients.  As such, it is unknown the frequency with which 

blood was received from specific patients or the total number of different patients 

studied, only the total number of samples. 

Blood samples collected at the hospital were retrieved for laboratory work within 

4 hours of drawing, and kept refrigerated both at the hospital and within the lab before 

use in experiments.  (Exception to this schedule is noted below.) 
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3.2.2  Erythrocyte Preparation for Adhesion Assays 

Within 1 hour of beginning adhesion assays, whole blood was transferred to a 15 

ml centrifuge tube and centrifuged at 100 g for 10 minutes at room temperature.  (For 

blood sample volumes smaller than 1 ml, a microcentrifuge tube was substituted for the 

15 ml centrifuge tube, and a microcentrifuge was employed at the same 100 g for the 

same period of time.  This was necessitated by the difficulty in handling and separating 

very small volumes of blood, and the smaller diameter of the microcentrifuge tube aided 

in discerning the different layers of the blood sample.)  The plasma supernatant was 

then removed by Pasteur pipette aspiration and discarded, taking care to also remove 

the buffy coat.  The erythrocyte fraction was then washed twice with 3-4 ml of a DPBS 

solution (or 1 ml in the case of samples smaller than 1 ml), supplemented with 0.2% 

(w/v) human albumin, 5 µg/ml human transferrin and 5 µg/ml of bovine insulin (all from 

Sigma-Aldrich).  Erythrocyte washing diluted the heparin anti-coagulant to prevent its 

effect on sickle cell adhesion (Embury et al., 2004; Matsui et al., 2002; Barabino et al., 

1999).  It also removed most leukocytes and essentially all platelets from the sample, but 

some minor leukocyte contamination likely remained (Brown et al., 2001). 

Washed red cells were reconstituted to approximately 20% hematocrit by 

addition of a serum-free medium, consisting of MCDB-131 (GIBCO) supplemented with 

87 U/ml penicillin and 87 µg/ml streptomycin (GIBCO), 0.01 µg/ml epidermal growth 

factor (Clonetics, San Diego, CA), 0.292 mg/ml L-glutamine, 0.277 mg/mL cyclic 

adenosine monophosphate (AMP), 0.2% wt/vol) human albumin, 5µg/mL human 

transferrin, and 5 µg/mL bovine insulin (all from Sigma-Aldrich).  The ~20% hematocrit 

solution is reconstituted by resuspending the erythrocyte solution in SFM to its original 

volume + 1-2 ml.  All erythrocyte solutions were warmed to 37°C for use in flow assays.  

The hematocrit of resuspended erythrocyte solutions was determined by using a 
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hematocrit microcapillary tube (GIBCO), hematocrit centrifuge, and microcapillary reader 

(both from Damon/IEC division).  This measurement was used in determining mixing 

proportions for erythrocyte perfusion solutions.  

A 0.22% hematocrit washed sickle erythrocyte suspension was reconstituted with 

serum-free media (SFM) from the 20% hematocrit stock solution immediately before use 

in adherence assays.  The 20% solution was used as a “stock solution” to avoid 

degradation of the blood sample (Montes, 1999) over the duration of the experiments (as 

much as 14 hours).  

 

3.2.3  “Day Old” Blood Samples 

In a limited number of cases, blood samples were not available immediately after 

drawing them from the patient.  In some cases, these blood samples were not available 

for use until 24 hours following phlebotomy.  The samples belonging to this “day old” 

group were carefully distinguished during experimentation, but the data were compiled 

into the same set with “fresh” blood samples.  A comparison of data between “day old” 

blood and “fresh” blood for the applicable experiments (sickle erythrocyte adherence 

induced by histamine stimulation, Chapter IV) found the response in all cases where 

“day old” blood was used to be qualitatively similar to that for “fresh” blood.  However, 

total adhesion was quantitatively reduced for the baseline (unstimulated) adhesion for 

“day old” blood. (Figure 3.1)  Upon analysis, this difference was not found to be 

statistically significant for either unstimulated (P=0.193), or histamine stimulated 

(P=0.984) adhesion. 
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Figure 3.1:  Sickle Erythrocyte Adhesion is not Significantly Altered by 24 hour 
Storage  Sickle erythrocyte adherence following 40 minutes of perfusion with or without 
100 µM histamine stimulation after erythrocyte storage as whole blood for ~4 (“Fresh”) or 
~24 (“Day Old”) hours.  Data are mean ± standard deviation for n=14 (“Fresh) or n=29 
(“Day Old”) blood samples.  No significant difference found between “Fresh” and “Day 
Old” samples for either “Histamine stimulated” or “Unstimulated” data. 
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3.3   Stimulation Protocols 

 

3.3.1  Endothelial Cell Stimulation with TNF-α 

 Cytokine treatments applied to endothelial cells differed according to the desired 

effect and the cytokine employed.  The cytokine tumor necrosis factor α (TNF-α) 

requires a relatively long incubation time with the endothelial cell monolayer to promote 

the desired adhesive ligand expression (Montes et al., 2002; Swerlick et al., 1993).  The 

protocol used to promote the expression of vascular cell adhesion molecule -1 (VCAM-1) 

in a time-dependent manner is as follows:  Cell cultures were grown to confluence at 

sixth passage in individual single-chamber Labtek® Permanox cell-culture plates.  The 

plates were then rinsed twice with 2 ml warmed basal medium M-199, and incubated 

with 2 ml of TNF-α (Sigma-Aldrich) solution for a fixed duration.  Concentrations of TNF-

α used in these studies were 100, 200, and 500 U/ml in fresh HUVEC media for an 

incubation time of 6 hours.  Alternately, the TNF-α solution was kept constant at 500 

U/ml, and the exposure time was varied, used at 2, 4, 6, or 8 hours.  In each case, the 

individual slides were stored in the incubator for the duration of the stimulation.  

Following stimulation, the slides were disassembled, rinsed with basal media, and 

placed in the appropriate flow chamber as detailed below.  As the duration of TNF-α 

stimulation stretches over so many hours, the stimulation schedule is structured such 

that multiple plates are being stimulated simultaneously during the experiment. 

 

3.3.2  Endothelial Cell Stimulation with Histamine 

The histamine signaling cascade leading to the expression of adhesive ligands is 

active within minutes, and not hours, of initial exposure (Lorenzon et al., 1998).  As a 

result, the time required to assemble the flow chamber, as well as the time required for 
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sickle erythrocyte adhesion to reach an equilibrium level, is a significant delay following 

histamine stimulation.  During this delay, the expressed adhesive ligands might be shed 

or retracted by the endothelial cells, due to their relatively short expression time (Easton 

& Dorovini-Zis, 2001; Lorenzon et al., 1998; Sugama et al., 1992).  As such, the protocol 

for histamine-mediated adhesion of sickle erythrocytes required stimulation and sickle 

erythrocyte perfusion through the flow chamber system to be simultaneous.  The 

histamine (Sigma-Aldrich) solution (1 to 1000 µM in SFM) was included in the same 

perfusate solution as the 0.22% hematocrit for erythrocyte perfusion.   

A limited number of control histamine experiments were conducted with a pre-

stimulation schema, where endothelial cells were stimulated with histamine independent 

of erythrocyte perfusion.  This required a more specialized protocol.  Endothelial cells 

were rinsed twice with warmed basal media, and the appropriate level of histamine in 2 

ml of complete media was added.  Where appropriate, the endothelium was incubated in 

this solution until 20 minutes before the completion of scheduled histamine stimulation.  

The slide was then assembled into the appropriate flow chamber, which was also filled 

with the same histamine / complete media solution.  This assembly took place during the 

10 minutes designated as “assembly time” for standard parallel plate flow chamber 

assembly, thus constituting an additional 10 minutes of histamine stimulation.  The 

normal 10 minute SFM rinse described below (section 3.4) is replaced by a 10 minute 

perfusion with histamine in SFM to maintain the pre-stimulation of the endothelium with 

histamine for a final 10 minutes.  Finally, at the conclusion of histamine stimulation, the 

chamber is rinsed with SFM at the standard flowrate (given in section 3.4.1) for 1.5 

minutes (to remove residual histamine from the chamber) and sickle erythrocytes 

suspended in SFM (without histamine) are then perfused.  Thus, for the 40 minute pre-

stimulation with histamine, cells are histamine incubated for 20 minutes before chamber 

assembly, for 20 minute pre-stimulation the cells are stimulated during chamber 
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assembly and “rinse” perfusion only, and for 10 minute pre-stimulation, the endothelium 

is stimulated during the “rinse” perfusion only. 

 

3.3.3  Stimulation and Blockade of Specific Histamine Receptors 

To further characterize the effect of histamine on sickle cell adherence, histamine 

receptor agonists and antagonists, chosen for their specificity towards individual 

histamine receptors, were used in the sickle erythrocyte suspension.  Antagonists 

included mepyrimine (Sigma-Aldrich) (an H1 receptor antagonist) (Hide et al., 1988; 

Vickers et al., 1982), famotidine (H2) (Sigma-Aldrich) (Shepherd-Rose & Pendleton, 

1984), and thioperamide (H3/H4) (Sigma-Aldrich) (Arrang et al., 1987).   Agonists used 

were amthamine (Tocris, Ellisville, MO) (an H2 receptor agonist) (van der Goot & 

Timmerman, 2000), and (R)-(-)-α-methylhistamine (Sigma-Aldrich) (H3/H4) (Schaefer et 

al., 1998).  Histamine H3 and H4 receptors are highly homologous and most reagents 

target both receptors (Hough, 2001).  Clobenpropit (Sigma-Aldrich), an H3 receptor 

antagonist and an H4 receptor agonist (Gantner et al., 2002; Oda et al., 2000) was used 

to determine the involvement of H3 and H4 receptors in histamine-induced sickle cell 

adherence, because no other H4 specific agonists are available.  Stimulation with 

histamine receptor agonists was identical to histamine stimulation in all studies, except 

that different concentrations were required for efficacy.  (See individual graphs for 

concentration details.)  For histamine receptor antagonist studies, the endothelial cells 

were pre-stimulated with the antagonist in SFM for a total of 30 minutes, and then 

included in the erythrocyte perfusion to maintain the antagonist presence throughout the 

erythrocyte perfusion.  Prestimulation with the antagonist was accomplished by the 

same technique detailed in 3.3.2, adjusted for 30 minute exposure instead of 40 minute. 

 

 

 75



                                                         

3.3.4  Erythrocyte Stimulation 

A series of controls were run in order to determine the effect, if any, of histamine 

on sickle erythrocyte adhesion during the inclusion of histamine in the sickle erythrocyte 

perfusate.  Sickle erythrocytes were reconstituted from the stock solution to 0.22% 

hematocrit solution, and histamine was added at 100 µM.  The solution was then 

incubated for the indicated time, minus fourteen minutes.  The remaining fourteen 

minutes of exposure, carefully timed, occurred while the solution was centrifuged at 100 

g for 10 minutes, and the time it took for supernatant aspiration and travel to and from 

the centrifuge.  The sickle erythrocytes were then resuspended to 0.22% hematocrit for 

immediate perfusion through the flow chamber.  As the additional centrifugation (as well 

as residual histamine presence) might have damaged or otherwise altered the surface 

chemistry of the sickle erythrocytes, these samples were compared against a “blank” 

sickle cell suspension:  a suspension which had also been reconstituted to 0.22% 

hematocrit, incubated for the appropriate time, then centrifuged and resuspended, but 

without the presence of histamine. 

 

3.3.5  Blockade of Adhesive Ligands 

Adherence to VCAM-1 was inhibited by adding 10 µg/ml anti-VCAM-1 IgG1 

mouse antibody (Immunotech, Marseille, France) to the TNF-α solution during 

endothelial-cell activation.  After 6 hours of exposure the endothelial monolayer was 

rinsed with Hank’s balanced salt solution (HBSS) (Sigma-Aldrich) and added to the 

linear shear stress flow chamber as detailed in section 3.4 and 3.4.2.  A mouse IgG1κ 

myeloma protein antibody from a mouse tumor line (MOPC-21) (Sigma Aldrich) used 

under identical conditions served as a negative control for the anti-VCAM-1 antibody.   
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Sickle erythrocyte binding mediated by the expression of P-selectin in response 

to endothelial histamine stimulation was inhibited by the inclusion of an anti-P-selectin 

antagonist (EWVDV) in the perfusate, a high affinity peptide previously shown to block 

P-selectin mediated adherence (Appeldoorn et al., 2003; Molenaar et al., 2002).  

Treatment with the peptide was accomplished by pre-stimulating the endothelium for 30 

minutes with the peptide at 100 µM concentration (employing the same technique 

detailed in 3.3.2, and including it in the sickle erythrocyte suspension at the same 

concentration).  Control for this peptide was an alternate peptide with no affinity for P-

selectin (EWVKV), used in the same manner (Appeldoorn et al., 2003; Molenaar et al., 

2002).  Involvement of P-selectin in sickle cell binding was confirmed in experiments 

substituting blocking anti-P-selectin antibodies (Ancell, Bayport MN) at 5µg/ml 

concentration for the peptide.  Anti-P-selectin antibodies could not be used for all P-

selectin blockade experiments, as the requirement that the blocking agent be included in 

the sickle erythrocyte perfusate required unmanageably large quantities of antibody for 

each plate. 

Inhibition resulting from these blockade tactics is calculated as follows:   

Percent Inhibition = 
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   (Equation 3.1) 

In the case of shear-stress levels for which an increase in adherence was 

observed with the inflammatory stimulant, percent sickle cell adherence induced by the 

stimulation was calculated as:  Percent Inducible Adherence = 
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3.3.6  Blocking of Nitric Oxide Synthase Activity 

 To verify the involvement of nitric oxide synthase (NOS) in sickle cell adherence 

elevated by histamine, specific NOS-blocking agents diphenyleneiodonium chloride 

(DPI) at 30 nM (Sigma) (Wang et al., 1993; Stuehr et al., 1991) or Nω-nitro-L-arginine 

methyl ester at 100 µM (L-NAME, Sigma) (Albrecht et al., 2003) were added to 

endothelial cells for 30 minutes prior to assembly of the perfusion chamber.  eNOS 

blocking agents were also maintained at the given concentration in the perfusate 

solution both during the rinse stage and during the sickle erythrocyte perfusion, in a 

manner similar to that used for the histamine receptor antagonists. 

 

3.4  Flow Chamber Assays 

Conducting flow chamber assays with different styles of flow chamber (Figure 3.3 

and 3.4) and different stimulation regimes requires subtle alterations in the standard 

assay protocol.  The general protocol is given here, with specific alterations to the 

system for each particular case following. 

The chamber slide is prepared by assembling the polypropylene flow director 

with entrance and exit stopcocks / spigots and sealing any unused holes with plugs.  The 

assembly is lubricated and sealed with vacuum grease at the assembly joints.  The 

surface of the polypropylene flow director is then lightly coated with vacuum grease 

where the gasket will rest, while carefully avoiding any surface that will be exposed to 

flowing media or through which the microscope will focus.  The gasket is pressed hard 

into place, eliminating any bubbles trapped beneath the gasket and removing any 

excess vacuum grease in the central flow chamber.  Another thin layer of vacuum 

grease is applied to the top side of the gasket.  The assembled chamber is then 

repeatedly rinsed with warmed basal media.  The half-assembled chamber has the 
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stopcock adjusted to point its open port upwards and is filled at either end with warmed 

complete media (or a SFM + agent solution in those experiments involving 

prestimulation with an agonist or blocking agent), care being taken not to allow bubbles 

to form within the stopcock or flow director.  Enough complete media is added to the 

empty space defined by the gasket to form a “bubble” of media. 

A confluent endothelial cell monolayer on a Labtek® chamber slide is then rinsed 

twice with basal media solution (M199 or HBSS) and filled with 2 ml of complete media 

(or SFM solution with or without stimulation factors, depending on the protocol), at which 

point a timer is set for 10 minutes.  The thumb-hold of the slide is removed to fit the flow 

chamber.  The outer walls of the chamber slide and the silicon gasket that holds the 

chamber walls in place are removed.  Media remaining on the slide is poured into the 

half-assembled flow chamber, and the slide is inverted and pressed into place atop the 

flow chamber gasket.  Being sure to eliminate bubbles and to not shift the permanox 

slide, the chamber is inverted and placed into the aluminum brackets (Figures 3.3 & 3.4).  

The stopcock position must be rotated 180° to properly fit.  Spacers are added to hold 

the chamber in place, and the upper bracket is secured with six screws.  The chamber is 

held together with sufficient force to keep the slide from slipping or the chamber from 

leaking, but over-tightening results in bending of the permanox slide, bowing it and 

distorting the flow fields within the chamber. 

The solution intended to flow through the chamber for 10 minutes prior to 

erythrocyte perfusion is next constituted in a 15 ml centrifuge tube, a solution of either 

SFM or SFM with some stimulant or blocking agent added.  The chamber is positioned 

in a specially-built holder on the stage of a Nikon Diaphot-TMD inverted phase-contrast 

microscope (Southern Micro Instruments, Atlanta GA) to visualize adherence.  An air-

curtain incubator (Nicholson Precision Instruments, Bethesda MD) was used to direct 

warm air across the flow chamber and microscope stage, maintaining the chamber 
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temperature at 37°C.  The centrifuge tube of rinse solution is placed in a water bath at 

37°C adjacent to the flow chamber (water bath is elevated to stage level).  Tubing with 

leuer-lock connectors attached to the stopcock on the flow chamber (the stopcock was 

used to easily change perfusion between the serum-free media and the erythrocyte 

suspension flows) are run from the rinse solution (tubing is taped in place), again being 

careful not to allow bubbles to form in the tubing or flow chamber.  The exit spigot of the 

flow chamber is connected via pre-filled tubing to a 60 ml syringe locked in a syringe 

pump (Model 33;  Harvard Apparatus, South Natic, Mass).  After the 10 minute assembly 

time expires, the 10 minute “rinse” phase begins and the warmed rinse solution is 
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Figure 3.2:  Rough Schema of Flow Experiment During Perfusion.  Schema of 
experiment in progress.  Arrows indicate direction of flowing hematocrit, dashed box 
indicates position of perfusion flow chamber. 
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perfused through the chamber by the syringe pump set at “withdraw” at a rate 

appropriate to the shear stress level desired.  During the rinse stage, the chamber is 

positioned upside-down in the path of the air curtain incubator in order to prevent settling 

of the few sickle erythrocytes left from previous experiments.  The purpose of the rinse 

stage is both to further rinse the chamber and to pre-condition the system, so that 

changes to endothelial monolayer in response to applied shear, such as detachment or 

peeling of sections, occur separately from those changes brought about by the 

introduction of cytokines or sickle erythrocytes.  Endothelial monolayers that do peel or 

detach are discarded, and data from those monolayers is not recorded. 

During the “rinse” stage, the sickle erythrocyte suspension is formulated.  The 

formulation is timed to minimize the time the erythrocytes spend as a 0.22% solution in 

order to minimize the effects of dilution on the blood.  The sickle erythrocyte suspension 

is attached to the flow chamber as was the rinse solution, using the other stopcock 

spigot.  At the finish of the “rinse” stage, the flow chamber is righted and repositioned, 

the entrance spigot switched and erythrocyte perfusion begun.  Flow is always begun 

within two minutes of attachment to the erythrocyte reservoir in order to minimize the 

effect of sickle erythrocyte settling in the tubing (Fig 3.2). 

Each experiment is viewed under 400X total magnification through a CCD-72 

series camera (Dage-MTI, Michigan City, IN) and recorded on VHS videocassette.  

Perfusion time for the experiment is kept with an inline VTG-33 video timer (FOR-A, 

Boston Mass).  The “perfusion time” officially begins with the observation of an influx of 

erythrocytes at the furthest upstream field resolvable.  Field sampling and cell counting 

protocols depended on the flow chamber employed. 

For each field, the endothelial monolayer was inspected via the display monitor.  

In the case of uneven confluency or some localized cell detachment leading to uneven 

cellular monolayers (as might happen during a flow experiment), data was only collected 
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over confluent regions of the plate, to avoid confusing adhesion to the endothelial 

monolayer with adhesion of cells to exposed basal matrix or cell culture plastic. 

Following the completion of a flow assay, the system is halted, and the flow 

chamber removed to the biological safety hood.  There, the permanox plate is discarded, 

and all parts (excepting the exit tubing attached to the syringe pump) were rinsed twice 

with warmed SFM or basal media to remove residual cytokine or sickle erythrocyte 

contamination.  A cotton swab soaked in SFM was used to scrub the exposed areas of 

the flow chamber to further remove sickle erythrocytes.  The chamber was then refilled 

with complete media for the next run as previously detailed. 

In a limited number of experiments, detachment assays followed sickle 

erythrocyte adherence assays to measure the adherence strength of attached cells 

(Walmet et al., 2003).  For detachment assays, the additional “rinse” solution was 

formulated during flow chamber assembly.  Following the 30 or 40-minute assay, the 3-

way stopcock was turned to once again perfuse the chamber with “rinse” solution without 

sickle erythrocytes.  Flow was allowed to continue for 5 minutes, at which point standard 

data collection resumed, counting 4 to 5 fields.  Media flowrate was increased so that the 

applied shear increased by 0.5 dyne/cm2, flow was allowed to continue for 5 minutes, 

and another 4 to 5 fields were examined.  This process continued until no sickle 

erythrocytes remained adherent to the endothelial surface or 3.0 dynes/cm2 was 

reached. 
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3.4.1  Parallel Plate Flow Chamber 

The shear stress experienced by an endothelial monolayer placed in the parallel 

plate flow chamber (Figure 3.3) is determined by the following formula: 

( )22
6

bw
Qµτ =   (Equation 3.3) 

Where τ is the shear stress in dynes/cm2

µ = the viscosity of the media at the running temperature (37° C) (0.75 cp) 

Q = the flowrate of the perfusing solution (ml/min) 

w = gasket cut-out width (1.060 cm) 

b = gasket half-thickness (0.0055 cm) 

 Flowrate for the thickness of the gasket and the width of the flow field defined in the 

standard parallel plate flow chamber is 1.71 mL/min.  After flow chamber assembly, the 

endothelial monolayer is rinsed with serum free media for 10 minutes at 1.0 dyne/cm2 

shear stress and then perfused with erythrocytes for 30-40 minutes, depending on the 

assay.  Erythrocyte adherence to endothelium is counted in 4-5 randomly selected 

microscopic fields (excluding those fields within 4 mm of the entrance and exit where 

entrance and exit effects might interfere) per minute continuously for the first 11 minutes, 

and then for three minutes at each ten minute interval following.  Data were pooled in 1-

10 minute intervals and reported as adherence after 1, 3, 5, 10, 20, 30 and/or 40 

minutes erythrocyte perfusion.  Cell counts for each time point were averaged and 

normalized to adherent cells per square millimeter.  

In early experiments, data was collected from the videocassette recordings made 

of each plate, but in later experiments adherent cells were counted and recorded during 

the run itself.  Videocassette recordings are still made of the experiments in case 

specific data fields needed to be reviewed. 
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Figure 3.3:  Parallel-Plate Flow Chamber.  Schematic of parallel-plate flow chamber 
components.  The arrow indicates flow direction from inlet to outlet. 
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3.4.2  Linear Shear Stress Flow Chamber 

 The shear stress experienced by an endothelial layer in the linear shear chamber 

(Figure 3.3) is determined, as derived by Usami et al (Usami et al., 1993) by the 

following formula 

⎟
⎠
⎞

⎜
⎝
⎛ −=

L
z

wh
Q

w 16

1
2

µτ   (Equation 3.4) 

 Where τw = the shear stress (dyne/cm2) 

µ = the viscosity of the media at the running temperature (37° C) (0.75 cp) 

Q = the flowrate of the perfusing solution (ml/min) 

h = the gap height (0.024 cm) 

 w1 = is the entrance width (0.195 cm) 

 z = the coordinate measured from the channel entrance (cm) (see Figure 3.4) 

 L = the characteristic length in the plane of the plates (4.20 cm)  

 A linear shear stress flow chamber (Usami et al., 1993) was used to quantify 

sickle cell adherence at different shear stresses simultaneously in a single experiment.  

Flow for most experiments were kept constant at a rate of 0.156 mL/min, which dictated 

a shear range of 1.0 dyne/cm2 at 2 millimeters from the entrance point for the chamber. 

These few millimeters were necessary to avoid the entrance effects altering the flow 

dynamics driving sickle erythrocyte adherence.  A few experiments were conducted at 

half this rate to examine a reduced range of shear.  As this flow chamber is significantly 

narrower at the entrance than the parallel plate flow chamber, especial care was taken 

to remain at or near (within 1 microscope field) the center of the chamber, so that edge 

effects would not interfere with the flow dynamics and adhesion data.  
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Figure 3.4:  Linear Shear Stress Flow Chamber  (A)  Schematic diagram of flow-
channel geometry used to achieve 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 dyne/cm2 shear stress 
at the approximate locations indicated on the basis of Hele-Shaw flow (Usami et al., 
1993) and an inlet flow rate of 0.154 mL/min.  Flow chamber height is constant at 0.24 
mm, defined by the gasket shown in (B).  (B)  Schematic of flow chamber components 
arranged for assembly.  The arrow indicates flow direction from inlet to outlet. 
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To acquire data at specific shear rates, the microscope had to resolve fields at 

specific, pre-assigned positions down the length of the chamber.  This was done by 

measuring the positions on the permanox plate of the fully assembled flow chamber with 

a microcaliper and scoring the position on the underside of the plate with a 12-gauge 

needle.  This step was preformed during the rinse or assembly stage of each run.  

During the assay, these marks appear as a bold black line (due to diffraction of the 

microscope light) and were used to orient the position of each field.  Initially, another line 

was scored down the length of the chamber to mark the center line, but this proved both 

difficult (as it needed to be perfectly straight) and unnecessary once the operator got 

used to the system. 

Data for the linear shear system was collected continuously for the duration of 

the experiment, starting 30 seconds after erythrocyte perfusion initiation.  Data was 

collected first at 4-6 fields at the 1.0 dyne/cm2 position, then proceeded down the length 

of the chamber in the direction of flow to similarly collect data at each marked shear rate.  

Once data was collected at the 0.1 dyne/cm2 position, the objective was returned to the 

1.0 dyne/cm2 mark to repeat the process.  Data was not collected in fields where the 

endothelial cells had detached from the surface, and cells were not counted when 

obviously adhering to exposed sections of permanox plate.  In those cases, other fields 

within the same range of shear rate were selected for data collection. 

As the collection of data for the linear shear system covered six times the shear 

rates as that examined in the parallel plate flow chamber, fields were selected and 

sampled at a much faster rate.  This additional speed made it impossible to count and 

mark the adherent cells visible in each resolved field by hand during the experiment.  For 

each linear shear assay run, the entire experiment was recorded on videocassette, and 

it was from this recording that the count of adherent cells was tallied. 
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Erythrocyte adherence was recorded in 4-6 microscopic fields at 0.1, 0.2, 0.4, 

0.6, 0.8, and 1.0 dyne/cm2 shear stress (at the locations indicated in Figure 3.4) at 

approximately 1, 3, 8 ,13, 18, 23, and 30 minutes of erythrocyte perfusion for VCAM-1 

studies and the same shear set at 3, 8, 13, 18, 23, 30, 34 and 39  minutes of erythrocyte 

perfusion for histamine studies.  Erythrocyte adherence values were averaged and 

normalized to adherent red cells per square millimeter for each level of shear stress and 

pooled at the perfusion times listed above.  Adherence was quantified visually to 

distinguish sickle erythrocytes from any contaminating white cells, although leukocyte 

contamination was infrequent (~1 adherent white cell in 10-15 microscopic fields). 

 

3.5  Experimental Design 

To minimize the effect of donor-to-donor variability on the level of red cell 

adherence, each donor sample served as its own control.  Experiments were performed 

with blood samples from different donors and sickle cell adherence is reported as the 

average adherence level (adherent cells/mm2) for all donors.  These individual plates 

were tested serially in a set order for a single blood sample.  For each set of 

experiments the order was reversed or mixed at least once to be certain that the 

sequence was not affecting results. 

 

3.6  Statistical Analysis 

 Testing of significance through analysis of variance (ANOVA) with repeated 

measures (Minitab Inc., 2000) was accomplished with Minitab statistical software, 

version 13.31 (Minitab Inc., State College, PA).  Pair-wise comparisons were made 

between data sets at the specific times or conditions indicated.  Differences in 

adherence were considered statistically significant when P ≤ 0.05.  Formulas for percent 

inhibition and percent inducible adhesion given above under 3.3.5. 
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CHAPTER IV: 

HISTAMINE INCREASES SICKLE ERYTHROYCTE ADHESION TO ENDOTHELIUM 
 
 

 
4.1  Abstract 

 Complications of sickle cell anemia include vascular occlusion triggered by the 

adherence of sickle erythrocytes to endothelium in the post capillary venules.  

Inflammatory mediators that promote endothelial cell adhesion molecule expression and 

arrest flowing erythrocytes can induce adherence.  This study characterized the effect of 

histamine stimulation on the kinetics of sickle cell adherence to large vessel and 

microvascular endothelium under venular flow.  Increased sickle cell adherence was 

observed within minutes of endothelial activation by histamine and reached a maximum 

value within 30 min.  At steady state, sickle cell adherence to histamine-stimulated 

endothelium was 47 ± 4 adherent cells/mm2, 2.6-fold higher than sickle cell adherence to 

unstimulated endothelial cells.  Histamine-induced sickle cell adherence occurred rapidly 

and transiently.  Studies using histamine receptor agonists and antagonists suggest that 

histamine-induced sickle cell adhesion depends on simultaneous stimulation of the H2 

and H4 histamine receptors and endothelial P-selectin expression.  These data show that 

histamine release may promote sickle cell adherence and vaso-occlusion.  In vivo 

histamine release should be studied to determine its role in sickle complications and 

whether blocking of specific histamine receptors may prevent clinical complications or 

adverse effects from histamine release stimulated by opiate analgesic treatment. 
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4.2  Introduction 

The etiology of the microvascular occlusion and episodic pain typical of sickle cell 

anemia is multifactorial and complex.  Literature reports suggest that understanding the 

cytokine-driven pro-inflammatory state evident in sickle cell anemia (Wun, 2001; Chies & 

Nardi, 2001; Platt, 2000) can contribute to understanding of mechanisms of pain 

episodes.  Thrombosis (Brittain et al., 1993), inflammation (Walmet et al., 2003), 

endothelial activation (Solovey et al., 1998; Solovey et al., 1997; Duits et al., 1996) and 

sickle erythrocyte adherence to endothelium (Hebbel et al., 1980a) may contribute to 

these episodic vaso-occlusive pain episodes (Francis & Johnson, 1991).  Unusually-

large von Willebrand factor multimers (Wick et al., 1993; Wick et al., 1987), 

thrombospondin (Brittain et al., 1993), thrombin (Matsui et al., 2001), cytokines (Makis et 

al., 2000), and chemokines (Kumar et al., 1996) all increase sickle cell adherence to 

endothelium in vitro.   Prothrombotic and proinflammatory  factors (Brown et al., 2001; 

Makis et al., 2000; Duits et al., 1998; Duits et al., 1996; Vordermeier et al., 1992), 

activated monocytes and granulocytes (Belcher et al., 2000), and activated platelets 

(Tomer et al., 2001; Wun et al., 1998; Brittain et al., 1993) are typically elevated in sickle 

patients, and may contribute to endothelial cell activation and sickle erythrocyte 

adherence in vivo.  Thus, chronic inflammation, immune system activation, and 

thrombogenicity evident in sickle cell patients would contribute to sickle cell anemia 

severity by increasing sickle erythrocyte adhesion to activated endothelial cells.  

Inflammation, therefore, is both causative in the vaso-occlusive damage of sickle pain 

crises, and a principle, chronic aspect of the patient’s condition.  Understanding different 

aspects of inflammation in sickle patients may provide techniques for better treatment of 

the disorder. 

Histamine is a powerful inflammatory agent stored in mast cells and basophils 

that is rapidly released by degranulation in response to pro-inflammatory stimuli or some 
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drug treatments (Muldoon et al., 1984).  Histamine causes rapid expression of P-selectin 

and von Willebrand factor on endothelial cells by translocation from intracellular Weibel-

Palade bodies (Datta et al., 2001; Utgaard et al., 1998; Hattori et al., 1989).  P-selectin 

expression increases the specificity of endothelial cell interactions with platelets and 

leukocytes during inflammation, coagulation, and atherosclerosis (Varki et al., 1999; 

Varki, 1997; Kansas, 1996; Furie et al., 1995; McEver et al., 1995; Springer, 1994)  P-

selectin expressed on endothelial cells also increases sickle erythrocyte adhesion, 

although the precise ligand interaction involved is not known (Matsui et al., 2001).

Endothelial cell P-selectin expression increases within minutes of histamine 

stimulation, peaks within 10-20 minutes, and returns to baseline within approximately 40 

minutes; although endothelial cells show phenotypic variability in the expression rate 

(Easton et al., 2001; Lorenzon et al., 1998; Sugama et al., 1992).  One or more of the 

histamine-specific H1, H2, H3, and H4 receptors may mediate histamine-induced P-

selectin expression.  Endothelial cells show differential expression of these receptors 

(Gantner et al., 2002; Morse et al., 2001; van der Werf et al., 1989; Heltianu et al., 

1982), and histamine activation of these receptors initiates different intracellular 

responses (Smit et al., 1999; Del Valle et al., 1997; Leurs et al., 1995).   

Plasma histamine levels are elevated in sickle patients both during pain episodes 

and during asymptomatic periods (Enwonwu et al., 1991).  Clinically, opioid analgesics 

such as morphine, often used to treat sickle cell pain episodes, cause histamine release 

(Barke & Hough, 1993; Casale et al., 1984).   

The current study quantifies sickle cell adherence kinetics under venular flow 

conditions in response to endothelial cell stimulation with histamine.  The results 

demonstrate that histamine promotes sickle erythrocyte adherence, defining a novel 

adhesive mechanism that may respond to receptor pathway blockade, reducing in vivo 

sickle cell adherence.  Determining the adhesion kinetics and biochemical factors 
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involved in histamine-mediated adhesion may provide insights into new therapeutic 

strategies for inhibiting or reversing sickle cell adherence that is thought to occur during 

vaso-occlusive pain episodes. 

 

4.3  Materials and Methods 

 These experiments employed cultured HUVEC and dMEC on single-well 

Labtek® permanox plates in parallel-plate flow chambers.  Blood samples used were 

both “fresh” blood samples and “day old” samples from discard blood.  Data from both 

“fresh” and “day old” blood samples were pooled.  Straightforward stimulation protocols 

were used, as well as the modified protocols necessary for blocking experiments.  The 

detailed protocols for these experiments are covered in full in sections 3.3.1-3, 3.2.1-3, 

3.3.2-5, 3.4, 3.4.1, 3.5, and 3.6. 

 

4.4 Results 

 

4.4.1 Histamine Mediated Adhesion to Endothelium at 1.0 dyne/cm2  

Adherence of sickle red blood cells to unstimulated endothelium was low during 

40 minutes of erythrocyte perfusion at 1.0 dyne/cm2 (Figure 4.1A).  In the presence of 

100 µM histamine, sickle cell adherence to endothelium increased within 1-3 minutes of 

stimulation and reached steady-state within 30-40 minutes of erythrocyte perfusion.  At 

steady state, sickle red cell adherence to histamine-stimulated endothelium (47±4 

adherent cells/mm2, average ± SEM) was significantly higher than sickle cell adherence 

to unstimulated endothelium (18±3 adherent cells/mm2, Figure 1A).  Sickle cell 

adherence increased with histamine stimulation for all 37 different patient samples 

tested, with increases between 1.2 to 9.6-fold baseline (unstimulated) adherence.  The 

maximum increase in sickle cell adherence was observed at a histamine concentration 
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Figure 4.1:  Histamine Stimulation Promotes Sickle Erythrocyte Adherence  For 
continuous stimulation conditions, endothelial monolayers were exposed to (A, C, & D) 0 
or 100 µM histamine or (B) 0, 10, 25, 100, and 1000 µM histamine stimulation starting at 
time 0, simultaneous with perfusion of washed sickle erythrocytes.   Figure C represents 
direct comparison of sickle erythrocyte adhesion to histamine-stimulated HUVEC and 
dMEC monolayers.  Figure D shows unstimulated (open) and histamine-stimulated 
(open + filled) red cell adhesion levels for individual experiments following 40 minutes 
perfusion, arranged in order of increasing unstimulated adherence.  In three 
experiments, different blood samples were analyzed on the same day over endothelial 
cultures derived from the same 5th passage culture.  These results are marked “I,” “II,” 
and “III” respectively.  Unlabeled data sets were collected with endothelial cells derived 
from different 5th passage cultures.  *P≤.001 and +P≤.050 versus unstimulated (0 µM 
histamine) adherence at the same time point in all figures.  Data are mean ± SEM for (A) 
& (D) n=37, (C) n=4, and (B) n=4, except n=3 at 1000 µM and n=2 at 25 µM histamine. 
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of 100µM (Figure 4.1B).  Direct comparison of sickle cell adherence to umbilical vein 

(HUVEC) and microvascular (dMEC) endothelial cells demonstrate a similar effect of 

histamine stimulation on sickle erythrocyte adherence (Figure 4.1C).  Steady-state (e.g. 

after 40 minutes perfusion) and histamine-stimulated adherence levels for individual 

blood samples are shown in Figure 4.1D.   

 

4.4.2  Induced Adhesion Acts by Time-Dependent Stimulation of the Endothelium 

Treatment of endothelial cells with histamine for 20 (but not 10 or 40) minutes 

prior to sickle erythrocyte perfusion (Figure 4.2) replicates the kinetics of sickle cell 

adherence induced by the continuous exposure of endothelial cells to histamine (Figure 
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Figure 4.2:  Histamine Stimulated Adhesion is Time Dependent  Endothelial 
monolayers were prestimulated with 100 µM histamine for the indicated time, rinsed for 1 
min with SFM alone, and then perfused with sickle erythrocytes for 40 minutes without 
histamine.  “Continuous Stim” indicates continuous stimulation of endothelium with 
histamine solution beginning at time zero during erythrocyte perfusion as described in 
the Materials and Methods.  * P≤.043 versus continuous histamine stimulation for 
prestimulated runs.  Data are mean ± SEM for n=5 blood samples, except n=4 at 10 min 
pre-stim. 
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Figure 4.3:  Histamine Stimulated Adhesion is Endothelium Dependent  Sickle 
erythrocytes suspended in SFM were prestimulated with 100 µM histamine for 40 
minutes.  The cells were then centrifuged, resuspended without histamine and perfused 
over unstimulated endothelium.  “Histamine (endothelium)” and “unstimulated” 
treatments have identical protocols to Figure 4.1 and 4.2.  “Sham” indicates treatment 
identical to “Histamine (erythrocyte),” without the histamine, as described in 3.3.4.  No 
significant difference was found between either erythrocyte stimulated and unstimulated 
data.  Data are mean ± standard deviation for n=7 (except n=5 for "Sham") blood 
samples over (A) full perfusion time and (B) values after 40 min perfusion only.  
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4.1A).  In control experiments, incubation of sickle erythrocytes with histamine without 

endothelial stimulation did not increase sickle cell adherence to endothelium (Figure 

4.3).  Additional controls observed no endothelial retraction during histamine stimulation 

of the endothelium (n=3 data not shown).  Taken together, these results suggest that the 

effect of histamine stimulation is primarily localized to the endothelium. 

 

4.4.3  Activation and Blockade of Endothelial Receptors   

Additional experiments explored possible adherence mechanisms induced 

through histamine stimulation by investigating the roles of histamine H1, H2, H3, and H4 

receptors and endothelial cell P-selectin expression.  Mepyramine, an H1 antagonist, did 

not significantly alter adherence of sickle erythrocytes to cultured endothelial monolayers 

induced by histamine (Figure 4.4A) at concentrations up to 25µM (data beyond 10 µM 

not shown).  In contrast, endothelial treatment with famotidine, an H2 antagonist, or 

thioperamide, an H3/H4 antagonist, inhibited sickle cell adherence induced by histamine 

essentially 100% (Figures 4.4B-C).   

Experiments with histamine receptor agonists demonstrated that endothelial cell 

stimulation with either amthamine (H2 agonist) or (R)-(-)-α-methylhistamine (H3/H4 

agonist) alone does not promote sickle cell adherence above baseline, even at agonist 

concentrations up to 25 µM.  However, simultaneous endothelial stimulation with 

amthamine (10 µM) and (R)-(-)-α-methylhistamine (10 µM) induced sickle cell adherence 

comparable to that induced by histamine (Figure 4.5).  Distinguishing between activation 

of the highly homologous H3 and H4 receptors was accomplished by treating endothelial 

cells with clobenpropit, a reagent that simultaneously acts as a histamine H3 receptor 

antagonist and an H4 receptor agonist (Gantner et al., 2002; Oda et al., 2000).  

Endothelial cell stimulation with either 10 µM clobenpropit (Figure 4.6B) or 10 µM 
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Figure 4.4:   Receptor Antagonism Inhibits Histamine-Induced Sickle Cell 
Adherence  Endothelial monolayers were pretreated with the indicated receptor 
antagonist for 30 minutes prior to sickle erythrocyte perfusion in the presence of 100 µM 
histamine and (A) 10 µM mepyramine (H1 antagonist), (B) 10 µM famotidine (H2), or (C) 
10 µM thioperamide (H3/H4).  Data are mean ± SEM for (A) n=5, (B) n=4, and (C) n=5 
blood samples.    * P≤.040 (B) or P≤.019 versus histamine-stimulated adherence at the 
same time point.   
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Figure 4.5:  Adhesion Induced by the Presence of Histamine Requires Binding to 
Histamine H2 and H3 / H4 Receptors  Endothelial monolayers were continuously 
stimulated with (A) 10 µM amthamine (H2 agonist), (B) 10 µM (R)-(-)-α-methylhistamine 
(H3/H4 agonist) or (C) 10 µM amthamine + 10 µM (R)-(-)-α-methylhistamine during 
erythrocyte perfusion.  Data are mean ± SEM for n=3 blood samples.  Significance not 
noted due to low n value. 
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Figure 4.6:  Adhesion Induced by the Presence of Histamine Requires Binding to 
Histamine H2 and H4 Receptors  Endothelial monolayers were continuously stimulated 
with (A) 10 µM amthamine (H2 agonist), (B) 10 µM clobenpropit (H4 agonist) or (C) 10 
µM amthamine + 10 µM clobenpropit during erythrocyte perfusion.  Data are mean ± 
SEM for (A) n=5, (B) n=7, and (C) n=5 blood samples.  * P≤.049 versus baseline 
(unstimulated) adherence at the same time point. 
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amthamine (Figure 4.6A) alone did not increase sickle erythrocyte adherence.  In 

contrast, endothelial stimulation with both amthamine and clobenpropit together 

increased sickle cell adherence of 50±8 adherent cells/mm2, a level similar to that 

observed with histamine stimulation (56±6 adherent cells/mm2, Figure 4.6C). 

 

4.4.4  Activation and Blockade of P-selectin Adhesive Ligand 

Peptide blocking of P-selectin activity on histamine-stimulated endothelial cells 

reduced sickle cell adherence induced by histamine between 69-100% (Figure 4.7).   
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Figure 4.7:  P-selectin Peptide Antagonist Prevents Histamine-Induced Adhesion   
The endothelium was pre-stimulated with 100 µM P-selectin blocking peptide (EWVDV) 
for 30 minutes prior to sickle erythrocyte perfusion and histamine stimulation (100µM).  
Blocking or non-blocking peptide (EWVKV) at 100 µM concentration was also included in 
the erythrocyte perfusion media during the adhesion assay.  Data are mean ± SEM for 
n=6 blood samples, except for “Non-Blocking Peptide” (n=5).  *P≤.004 versus histamine 
mediated adhesion at the same time point. 
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Figure 4.8:  P-selectin Antibody Blocking Prevents Histamine Mediated Adhesion 
to Microvascular Endothelium (dMEC)  The dMEC monolayer was pre-stimulated with 
10 µg/ml blocking or nonspecific antibody for 30 minutes prior to sickle erythrocyte 
perfusion and histamine stimulation (100µM).  Blocking or non-specific antibody at 10 
µg/ml concentration was also included with red cell perfusion media during the adhesion 
assay.  Data are from single experiments. 
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Figure 4.9:  P-selectin Antibody Blocking Prevents Histamine Mediated Adhesion 
to HUVEC The HUVEC monolayer was pre-stimulated with 10 µg/ml blocking antibody 
for 30 minutes prior to sickle erythrocyte perfusion and histamine stimulation (100µM).  
Blocking antibody at 10 µg/ml concentration was also included in the erythrocyte 
perfusion media during the adhesion assay.  Data are from single experiments.  See 
Chapter III for similar antibody blocking. 
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The control peptide did not significantly affect sickle cell adherence to histamine 

stimulated endothelium.  P-selectin involvement was confirmed in two experiments with 

monoclonal anti-P-selectin antibody, where sickle cell adherence induced by histamine 

was entirely inhibited, (Figure 4.9).  Similarly, incubation of histamine-stimulated dMECs 

with anti-P-selectin antibody reduced sickle erythrocyte adherence essentially 100% in 

two separate experiments (Figure 4.8). 

 

4.5  Discussion

Sickle erythrocyte adherence to endothelium likely contributes to sickle cell 

vascular complications.  This study was designed to evaluate the possible contribution of 

histamine to sickle erythrocyte adherence and to examine the mechanisms of histamine 

signaling which promotes sickle cell adherence.  The results demonstrate that histamine 

mediates sickle erythrocyte adhesion to venous (HUVEC) and microvascular (dMEC) 

endothelium in vitro under venular flow conditions.  Sickle cell adhesion occurs rapidly 

following histamine exposure; reaching a plateau within 30-40 minutes of stimulation.  

Elevated sickle cell adhesion correlates with stimulation of histamine H2 and H4 

receptors and with expression of P-selectin on the surface of the endothelium.  

P-selectin as a mediator of sickle erythrocyte adhesion is particularly interesting, 

in part, because of its rapid expression kinetics.  Endothelial expression of P-selectin is 

increased within minutes of histamine stimulation, reaches a maximum in 10-20 minutes, 

and returns to baseline levels within 30-40 minutes of histamine stimulation (Lorenzon et 

al., 1998).  To capture the dynamics of sickle cell adherence to endothelium based on 

the known kinetics of P-selectin expression, experiments were designed to allow 

continuous histamine stimulation during erythrocyte perfusion through the flow chamber.  

Consistent with P-selectin expression kinetics, adhesion results demonstrate that sickle 

cell adherence increases within minutes of histamine stimulation and reaches steady-
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state values within 30-40 minutes of erythrocyte perfusion (Figure 1A).  After 

establishing the kinetics of sickle cell adherence under continuous histamine stimulation, 

subsequent experiments quantified adherence kinetics under conditions where 

endothelial cells were prestimulated with histamine and histamine was not present 

during erythrocyte perfusion.  Under these conditions, increased sickle cell adherence 

occurs after 20 minutes of histamine prestimulation.  Prestimulation 40 minutes before 

perfusion showed no increase in adhesion, possibly because 40 minutes of stimulation 

allows sufficient time for downregulation of P-selectin (Lorenzon et al., 1998).  Taken 

together, these data demonstrate that sickle cell adherence induced by histamine 

stimulation is rapid. 

The primary complimentary adhesive ligand for P-selectin is P-selectin 

glycoprotein-1 (PSGL-1).  Previous studies have not found this ligand on the surface of 

sickle erythrocytes (Matsui et al., 2001) but evidence for a sialic acid-containing ligand 

which interacts with P-selectin and is markedly enhanced on SSRBC has been 

discovered, although the exact nature of the ligand has not been defined.  It has further 

been observed both that platelets and platelet-derived microparticles (both capable of 

interaction with P-selectin) are elevated in sickle patient blood (Wun et al., 1997).  

Considering the known ability of platelets to adhere to sickle erythrocytes (Wun et al., 

1997), we can speculate that P-selectin mediated erythrocyte adhesion might occur 

through adhesion of platelet-derived microparticles possessing PSGL-1 to the sickle 

erythrocyte.  Similarly, PSGL-1-expressing monocyte-derived microparticles (detailed in 

section 2.3.3) may become associated with sickle erythrocytes.  The elevated PS on 

sickle erythrocytes could cause this association, and PSGL-1 expressed on the 

microparticle could adhere to P-selectin. 

The rapid increase in sickle cell adherence following histamine stimulation is in 

contrast to the kinetics of adherence reported for stimulation with cytokines like tumor 
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necrosis factor α or interlukin-1β that upregulate cell adhesion molecule expression and 

sickle cell adherence after several hours (Natarajan et al., 1996; Swerlick et al., 1993).  If 

adherence of sickle erythrocytes precipitates vascular complications, histamine could 

initiate complications by brief changes in tissue condition, compared to pathways 

requiring more time to express ligands.  However, the subsequent rapid downregulation 

of P-selectin below levels necessary for erythrocyte adhesion would make these effects 

transient and, therefore, may be difficult targets for therapy.  However, consideration of 

these rapidly-expressed ligands could be important in designing preventive strategies for 

reduction of sickle pain crisis.   

Histamine interacts with cells through activation of one or more of four specific 

Gαi/o receptors, named H1-H4, whose effects are strongly tissue-dependent.  Although the 

H2 receptor is known to mediate gastric acid and mucus production in the stomach (Hill, 

1990), it has also been shown to mediate leukocyte rolling and adhesion on endothelial 

cells (Yamaki et al., 1998) as well as endothelial cell adhesion molecule expression and 

tumor cell adhesion (Tang et al., 2004).  The other three histamine receptors exhibit 

similarly diverse functionalities.  H1 receptors are commonly associated with allergic 

inflammatory response, for example, increasing vascular permeability, edema, and 

vasodilation in cutaneous response (Owen et al., 1980).  It is not clear whether H1, H2, or 

the two working synergistically are responsible for driving cell adhesion (Torres et al., 

2002; Tang et al., 1998; Yamaki et al., 1998).  H3 receptors are best known as neural 

receptors (Hill et al., 1997), that mediate histamine levels via feedback control.  The 

recently discovered H4 receptor appears to be responsible for aspects of immune 

response, as well as recruitment of effector cells to sites of inflammation (Ling et al., 

2004; Buckland et al., 2003).   
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The present data (Figures 4.4-4.6) indicate that sickle cell adhesion induced by 

histamine occurs through simultaneous stimulation of both H2 and H4 receptors, but not 

through stimulation of H1 receptors.  H3 receptors were shown to be unnecessary for 

initiation of histamine mediated adhesion, but complete lack of involvement could not be 

proven due to the cross-reactivity of most H3 receptor agents with H4 receptors.  Lack of 

participation of the H3 receptor, however, is likely because H3 receptors do not appear in 

significant numbers on umbilical vein endothelial cells (Gantner et al., 2002).  The effect 

of simultaneous H2 and H4 agonist stimulation is not a simple concentration effect, as H-

receptor agonists were tested individually in increased concentrations (data not shown).  

A requirement for simultaneous H2 and H4 histamine receptor stimulation to promote 

cellular action has a precedent in the histamine-induced release of interleukin-16 from 

human CD8+ T cells where activation of both receptors is required to elicit an effect 

(Gantner et al., 2002).  Similarly, in vivo, activation of both H1 and H2 receptors is 

necessary for the accumulation of neutrophils following intraperitoneal injection of 

histamine or the neutrophil accumulation at the site of biomaterial implantation in mice 

(Tang et al., 1998).  Further studies are necessary to elucidate the mechanism of 

signaling in H2 and H4 receptor mediated adhesion.  Nevertheless, in contrast to the 

treatment suggested by the P-selectin studies above, these data identify H-receptors as 

targets for more effective prevention of histamine-induced sickle erythrocyte adhesion. 

Histamine in sickle patient plasma is elevated even during asymptomatic periods.  

Histamine levels are further increased during morphine administration and have been 

reported to be within the nanomolar range in blood plasma (Withington et al., 1993; 

Enwonwu et al., 1991).  This level may not be representative of tissue histamine 

concentrations due to localized histamine release from mast cells and basophils that 

accumulate at sites of inflammation (Bochner & Schleimer, 2001).  Animal studies 

demonstrate that intraperitoneal sequestration of polymorphonuclear leukocytes, part of 
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a common inflammatory response, requires direct injection of histamine to the site in 

millimolar levels (Yamaki et al., 1998).  Similarly, inflammatory response induced by 

biomaterial implantation in a mouse stimulates the release of nanomoles of histamine 

within the first two hours of implantation, presumably at the implantation site (Tang et al., 

1998).  The comparatively low increase in plasma histamine concentration despite high 

tissue-localized increases is consistent with histamine infusion experiments, showing 

that infusion of large quantities of histamine causes only small elevations in blood 

plasma histamine (Kaliner et al., 1982).  This observation is likely due to a combination 

of dilution and the relatively short half-life of histamine in the circulation (Irman-Florjanc 

& Erjavec, 1994; Beaven et al., 1982; Ferreira et al., 1973).  Therefore, histamine 

release occurring in tissues may lead to localized concentrations much higher than 

levels observed in blood plasma. 

The present experiments found that 100 µM histamine promotes the highest level 

of sickle erythrocyte adherence.  Concentrations of 10, 25, and 200 µM histamine show   

lower levels of adherence and 1mM shows little or no response.  The present studies 

were designed with 100 µM histamine concentration, because this concentration elicits 

the largest and clearest effect of histamine stimulation on sickle erythrocyte adhesion.  

Reduced adherence at 200 or 1000 µM (compared to 100 µM) histamine concentration 

may occur because of receptor desensitization through internalization or other 

mechanisms attenuating adhesive ligand activity (Del Valle et al., 1997; Smit et al., 

1995; Smit et al., 1994).  A recent study found direct evidence for internalization and 

desensitization of the H4 receptor (Ling et al., 2004).  The in vitro endothelium of sickle 

patients, however, is unlikely to have histamine receptors remain in a desensitized state.  

The increased levels of histamine found in sickle plasma (Enwonwu et al., 1991) are on 

the order of nanomolar increases.  Histamine is a short-term, localized inflammatory 
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mediator that quickly disappears from circulation (Irman-Florjanc et al., 1994; Beaven et 

al., 1982; Ferreira et al., 1973), and thus would attain receptor-desensitization levels 

only for a short time in a localized tissue region, and be incapable of widespread 

receptor desensitization.  Increased plasma levels of histamine are significant only in 

that it is a generalized indication of frequent histamine release within the system.  Thus 

the sickle patient endothelium likely remains responsive to the presence of histamine. 

Exposure of endothelial cells to high concentrations of histamine (10,000 µM, a 

concentration 100-fold higher than that used in the present experiments) is known to 

induce endothelial cell retraction and sickle cell adhesion to newly exposed 

subendothelial thrombospondin (Manodori et al., 2000).  Endothelial retraction of 

HUVECs in the presence of 100 µM histamine is also observed, but only when the 

endothelial cell monolayer is minimally confluent (confluent ≤ 18 hours) (Andriopoulou et 

al., 1999).  Under these conditions endothelial cells exhibit gap formation, but 

endothelium confluent for longer (confluent ≥ 48 hours) shows no similar gap formation.  

Controls in the current studies observed endothelial cell cultures exposed to 100 µM 

histamine in the absence of sickle erythrocytes for up to 50 minutes with or without flow, 

but endothelial cell retraction was not observed (n=3, data not shown).  Since 

endothelial monolayers in the current studies were cultured to full confluence (remaining 

confluent for over 1-2 days) before adhesion assays, it is not surprising that intercellular 

gap formation was not observed.  In addition, adherent sickle erythrocytes were 

uniformly distributed across the endothelial cell surface and not localized to the cell 

edges, suggesting little if any involvement of exposed subendothelial matrix in 

adherence for the present study.  Taken together, these results indicate that the effects 

of histamine on endothelial cell phenotype and sickle cell adherence are complex and 
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dependent upon histamine concentration, exposure time, and endothelial cell monolayer 

maturity. 

Histamine was the focus of these studies because sickle patients have plasma 

histamine levels that are elevated both during pain crisis and at steady state (Enwonwu 

et al., 1991).  Furthermore, some clinical treatments given to patients in crisis are known 

to stimulate acute histamine release.  Opiates like morphine are analgesics of choice in 

treating severe pain episodes.   Many opioids are highly histaminergic (Barke et al., 

1993; Casale et al., 1984).  Itching, vasodilation, airway constriction and urticaria from 

histamine release may occur in patients after administration of opiates (Muldoon et al., 

1984; Moss & Rosow, 1983; Beaven, 1981).  Also, a recent study suggested that 

excessive histamine blood levels after oral administration of morphine may lead to an 

increase in the incidence of acute chest syndrome (Kopecky et al., 2004).   

Antihistamines that bind to the H1 receptors are commonly administered as 

adjuvant pharmacological interventions to improve treatment of pain episodes and to 

reduce side effects of histamine release by opiates (Ballas, 2002; Platt et al., 2002).  

Further, pharmacologic blocking of histamine receptors is used as an over-the-counter 

treatment for prevention of the seasonal allergen response associated with H1 activation 

or control of gastric acid secretion by blockade of the H2 receptor.  More recent work has 

suggested the use of multiple antihistamines in blocking synergistic effects of adhesion, 

including blocking H1 and H4 receptors for better treatment of allergic reactions 

(Daugherty, 2004), or H1 and H2 receptor antagonism to prevent  neutrophil 

accumulation at sites of inflammation (Tang et al., 1998; Yamaki et al., 1998). 

This demonstration that histamine stimulates adhesion of sickle erythrocytes to 

endothelial cells suggests that H2 and/or H4 antagonists in combination with those 

analgesics that promote histamine release may prevent some complications of treating 

sickle pain episodes.  As full activation requires activity of both receptors (Figures 4.4-
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4.6), blocking of either individually may be effective in reducing sickle cell adherence in 

vivo and the associated clinical complications.  Further, use of either H2 or H4 

antihistamines in combination with H1 antihistamine may prevent adhesion via P-selectin 

expression and limit pain episodes by blunting other inflammatory processes.  However, 

proof of P-selectin involvement and histamine-mediated adhesion in vivo requires further 

validation before clinical recommendations can be made.  This proof may be 

forthcoming, as some very recent studies have underlined the importance of P-selectin 

in the vasculature of the sickle mouse model (Embury et al., 2004; Wood et al., 2004a) 

both as indicative of a pro-inflammatory and pro-thrombogenic vascular environment, 

and in direct observed in mediating sickle erythrocyte adhesion. 

The present data demonstrate that histamine increases adherence of sickle 

erythrocytes to vascular (HUVEC) endothelium via simultaneous activation of H2 and H4 

receptors leading to expression of P-selectin in a time and dose dependent manner.  

Further, the increase in adherence and involvement of P-selectin in histamine-stimulated 

sickle erythrocyte adhesion was also demonstrated on microvascular (dMEC) 

endothelium.  Activation of sickle endothelium by histamine, occurring directly or from 

opioid administration to patients suffering from pain episodes, may play an important role 

in initiating or propagating microvasculature occlusion during pain episodes.  This study 

shows that selective blockade of the associated receptors or expressed ligands prevents 

a histamine-mediated increase in sickle erythrocyte adhesion.  These results suggest 

that selectively blocking specific histamine receptors may also prevent endothelial 

adherence occurring from inflammatory stimulation caused by opiate-induced histamine 

release. 

These data, excepting those shown in Figures 4.3, 4.5, 4.8, and 4.9 have been 

previously published in the British Journal of Haematology, February 2006 (Wagner et 

al., 2006). 
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CHAPTER V 

SICKLE CELL ADHESION DEPENDS ON HEMODYNAMICS AND ENDOTHELIAL 

ACTIVATION 

 
 
 

5.1   Abstract 

The venular microvascular circulation of patients with sickle cell anemia exhibits 

reduced and episodic blood flow.  Sickle erythrocyte adhesion to post-capillary venular 

endothelium is postulated to initiate and propagate vaso-occlusive pain episodes.  

Hemodynamics likely mediate sickle cell adherence to the endothelium, controlling 

delivery of potentially adherent erythrocytes and removal of loosely adherent 

erythrocytes.  This study found high shear dependence of sickle erythrocyte adhesion to  

vascular cell adhesion molecule-1 (VCAM-1) on endothelium stimulated by tumor 

necrosis factor -α (TNF−α).  Shear stress varied from 1.0 dyne/cm2 (microvascular 

venular flow), where VCAM-1 ligand interactions induced by TNF-α primarily controlled 

adherence, to 0.1 dyne/cm2 (low flow), where stimulation had little effect on adherence.  

At shear stresses analogous to in vivo velocities from laser Doppler studies (0.8 and 0.6 

dyne/cm2), TNF-α induced 1.9- and 2.7- fold increased adhesion compared to 

unstimulated (baseline) adherence.  These findings suggest a dynamic vaso-occlusive 

process, dependent on both receptor expression and shear stress.  These results 

indicate that in the microvasculature in vivo slightly reduced inflow rate and/or increased 

endothelial cell adhesion molecule expression may result in large increases in sickle 

erythrocyte adhesion. 
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5.2   Introduction 

Sickle hemoglobin gelation and adherence of sickle erythrocytes to endothelium are 

thought to initiate sickle vaso-occlusive pain episodes (Bunn, 1997; Mozzarelli et al., 1987; 

Hebbel et al., 1980a; Hoover et al., 1979; Hofrichter et al., 1974).  Adherent sickle erythrocytes 

alter microvascular hemodynamics (Hebbel, 1997a; Wick et al., 1996) which delays erythrocyte 

transit time through the microvasculature.  This delayed transit allows the hemoglobin in 

erythrocytes sufficient time to polymerize after oxygen depletion while the red cells are still in 

the capillaries.  The gelation then, in turn, enables rigid and morphologically sickled red cells to 

be trapped, causing complete occlusion (Fabry et al., 1992; Kaul et al., 1989b).  Compensatory 

mechanisms, including an increased pressure drop in response to obstruction, tend to restore 

tissue blood flow (Lipowsky et al., 1987; Rodgers et al., 1984).  Therefore, changes in local 

shearing forces may promote endothelial adherence and detachment of sickle erythrocytes.  

The effects are complex because increased shear stress determines delivery of potentially 

sticky erythrocytes but also exerts forces that detach loosely adherent cells. 

Shear stresses studied in this work ranged from 1.0 dyne/cm2 (venular 

microvascular venular flow) to 0.1 dyne/cm2 (“low “ flow), where adhesion is “affinity 

controlled,” and “transport controlled,” respectively (Montes et al., 2002).  Affinity controlled 

sickle cell adherence (Pries et al., 2001; Turitto, 1982) is adhesion requiring high-affinity 

receptor-ligand binding (Montes et al., 2002) strong enough to resist venular blood shearing 

forces and increased reperfusion pressures (Walmet et al., 2003).  Transport-controlled 

adherence occurs under conditions of reduced flow (Rodgers et al., 1990; Kennedy et al., 

1988; Rodgers et al., 1984), causing extensive, if relatively weak (Walmet et al., 2003; 

Lipowsky et al., 1987) adherence even in the absence of high-affinity interactions (Montes 

et al., 2002).  Presumably, low shear stress enables adherence via low-affinity binding 

mechanisms (Walmet et al., 2003; Montes et al., 2002; Hebbel, 1997a; Embury et al., 

1994) incapable of initiating or maintaining adhesion at higher shear rates.  Lower shear 
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allows for longer cell-cell contact time between flowing sickle erythrocytes and the 

endothelium, and applies less pressure to established bonds, meaning that weaker, slower-

initiating bonds are viable only under these reduced shear conditions. 

Blood flow in sickle microcirculation is periodic (Kennedy et al., 1988; Rodgers et 

al., 1984), and reduced (Kennedy et al., 1988; Lipowsky et al., 1987; Rodgers et al., 

1984), even during pain free periods.  It is theorized that this variability is due to the 

damaged nature of the sickle vascular endothelium (Solovey et al., 1999; Solovey et al., 

1998; Solovey et al., 1997; Hebbel & Vercellotti, 1997) or loss of microvascular tone 

most noticeable in the reduced responsiveness to NO as exhibited in transgenic sickle 

mice (Kaul et al., 2000b).  Thus, studies modeling sickle erythrocyte adhesion in vitro 

over the range of shear stresses directly observed in post-capillary venules are likely 

relevant to understanding adherence and vaso-occlusion in the microvasculature of 

patients with sickle cell anemia.  In the present study, sickle cell adherence via 

α4β1/vascular cell adhesion molecule-1 (VCAM-1) interactions induced by stimulation of 

the endothelium with the inflammatory cytokine tumor necrosis factor-α (TNF-α) 

(Swerlick et al., 1993) was quantified under steady flow conditions at shear stresses 

between 0.1 and 1.0 dyne/cm2.  These studies demonstrate that both flow conditions 

and endothelial activation modulate sickle cell adherence over shear stresses 

physiologically relevant to sickle microvascular blood flow. 
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5.3   Materials and Methods 

 These experiments employed HUVEC cultures on single-well Labtek® chamber 

slides in the linear-shear flow chamber.  Stimulation of the endothelium employed 

primarily TNF-α, a cytokine known to promote VCAM-1 expression in endothelial cells 

over a period of hours.  The long stimulation time required for TNF-α meant that the 

more elaborate perfusion protocols were unnecessary except during antibody blockade 

experiments, and that the cytokine did not need to be included in the perfusate solution.  

The effect of TNF-α on sickle erythrocytes is thus irrelevant to this study.  The protocols 

for these experiments are covered in detail in sections 3.1.1-3, 3.2.1-2, 3.3.1, 3.3.5, 3.4, 

3.4.2, 3.5, and 3.6. 

 

5.4   Results 

 

5.4.1  Sickle Erythrocyte Adhesion is Time and Shear Dependent 

 For all shear and TNF-α activation conditions studied, sickle cell adherence 

increased with time and reached a steady-state level after 30 minutes of red-cell 

perfusion.  Maximal adherence values depend on both shear stress and TNF-

α stimulation levels (Figure 5.3, 5.4, 5.1).  Consistent with previous results (Montes et 

al., 2002), sickle cell adherence is highest at the lower shear stresses (0.1, 0.2, and 0.4 

dyne/ cm2) and not significantly increased by TNF-α stimulation (Figure 5.3, A, B, and C, 

Figure 5.4 A, B, and C, and Figure V1 A and B ).  Similar results were seen when TNF-

α concentration was kept constant at 500 U/ml and exposure time varied over 0-8 hours 

(Figure 5.3, 5.4), and when TNF-α concentration was varied for a constant stimulation 

time of 6 hours (Figure 5.1).  Six hours of TNF-α treatment at 500 U/ml yielded the  
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Figure 5.1:  TNF-α Concentration Stimulation Dependence of Sickle Red Cell 
Adherence Under a Range of Shear  Data are mean ± standard error of the mean 
(SEM) sickle erythrocyte adherence (A) 0.2, (B) 0.4, (C) 0.6, (D) 0.8, and (E) 1.0 
dyne/cm2 shear stress after endothelial stimulation for 6 hours with TNF-α at 0, 100, 
250, or 500 U/ml concentration (n=6). 
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Figure 5.2:  Steady State Sickle Cell Adherence Across a Range of Shear is a 
Function of TNF-α  Activation Level  Data are expressed as mean ± SEM sickle 
erythrocyte adherence at 30 minutes of perfusion at the indicated shear stress following  
endothelial cell stimulation for 6 hours with 0, 100, 250, or 500 U/ml of TNF-α (n=6).  
*Statistically significant increase in sickle cell adherence with TNF-α stimulation (P ≤ 
0.05) compared with adherence without TNF-α stimulation at the same shear stress.  
+Statistically significant increase in sickle cell adherence for the indicated TNF-α 
stimulation time compared with adherence for the same TNF-α stimulation at the next-
lowest shear increment (P ≤ 0.05).  
 
 
 
 
 
 
 
 

 116



 

 
 
 

A:  0.1 dyne/cm2

0
50

100
150
200
250
300
350
400

0 10 20 30
Endothelial Perfusion Time (min)

Ad
he

re
nt

 C
el

ls
/m

m
2

0HR
4HR
6HR

B:  0.2 dyne/cm2

0
50

100
150
200
250
300
350
400

0 10 20 30
Endothelial Perfusion Time (min)

Ad
he

re
nt

 C
el

ls
/m

m
2

   

C:  0.4 dyne/cm2

0
20
40
60
80

100
120
140
160
180

0 10 20 30
Endothelial Perfusion Time (min)

Ad
he

re
nt

 C
el

ls
/m

m
2 D:  0.6 dyne/cm2

0
20
40
60
80

100
120
140
160
180

0 10 20 30
Endothelial Perfusion Time (min)

A
dh

er
en

t C
el

ls
/m

m
2

E:  0.8 dyne/cm2

0
20
40
60
80

100
120
140
160
180

0 10 20 30
Endothelial Perfusion Time (min)

Ad
he

re
nt

 C
el

ls
/m

m
2 F:  1.0 dyne/cm2

0
20
40
60
80

100
120
140
160
180

0 10 20 30
Endothelial Perfusion Time (min)

A
dh

er
en

t C
el

ls
/m

m
2

 
Figure 5.3:  Endothelial Stimulation and Shear Stress Regulate Sickle-Cell 
Adherence   Data are mean ± standard error of the mean (SEM) sickle erythrocyte 
adherence at flow locations corresponding to (a) 0.1, (B) 0.2, (C) 0.4, (D) 0.6, (E) 0.8, (F) 
1.0 dyne/cm2 shear stress after endothelial stimulation with TNF-α for 0, 4, or 6 hours 
(n=7).  Adherence data for 2 and 8 hours of TNF-α stimulation omitted here and included 
separately in Figure 5.4 for clarity. 
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Figure 5.4:  Endothelial Stimulation and Shear Stress Regulate Sickle-cell 
Adherence   Data are mean ± standard error of the mean (SEM) sickle erythrocyte 
adherence at flow locations corresponding to (a) 0.1, (B) 0.2, (C) 0.4, (D) 0.6, (E) 0.8, (F) 
1.0 dyne/cm2 shear stress after endothelial stimulation with TNF-α for 0, 2, or 8 hours 
(n=7).  Adherence data for 4 and 6 hours of TNF-α stimulation omitted here and included 
previously in Figure 5.1. 
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Figure 5.5:  Steady-State Sickle Cell Adherence is a Function of Shear Stress and 
Endothelial Cell Activation  Data expressed as mean ± SEM sickle erythrocyte 
adherence at 30 minutes of perfusion at the indicated shear stress following  endothelial 
cell stimulation with 500 U/ml TNF-α for 0, 2, 4, or 6 hours (n=7).  Data for 8 hours TNF-
α stimulation presented separately *Statistically significant increase in sickle cell 
adherence with TNF-α stimulation (P ≤ 0.05) compared to adherence without TNF-α 
stimulation at the same shear-stress rate.  + Statistically significant increase in sickle cell 
adherence for the indicated TNF-α stimulation time compared with adherence for the 
same TNF-α stimulation at the next-higher shear increment (P ≤ 0.05).  
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Figure 5.6:  TNF-α stimulation beyond 6 hours does not further increase adhesion  
Data expressed as mean ±  SEM sickle erythrocyte adherence at 30 minutes of 
perfusion at the indicated shear stress following  endothelial cell stimulation with 500 
U/ml TNF-α for 0, 6 or 8 hours (n=7).  No significant difference was found between 
adhesion following 6 hours or 8 hours of stimulation at any shear rate.  (Minimum P 
value = 0.118) 
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maximal endothelial adhesion in all data sets.  No significant further increase was found 

when the TNF-α stimulation was extended to 8 hours, as shown in Figure 5.6.  As shown 

in Figure 5.5 and 5.2, the effect of TNF-α stimulation on sickle cell adhesion is 

statistically significant after 30 minutes of perfusion for 0.6, 0.8, and 1.0 dyne/cm2 shear 

stress.  Statistically significant differences between 2 shear increments are mostly 

confined to shear rates between 0.1 and 0.4 dyne/cm2.   

 

5.4.2  Stimulation and Blockade of VCAM-1 Ligand 

 Adherence-inhibition studies with anti-VCAM-1 monoclonal antibody show that 

the increased sickle cell adherence induced by TNF-α stimulation is blocked between 90 

to 100% in the range of 1.0 to 0.4 dyne/cm2 shear stress (Fig 5.7 A inset).  At 0.2 and 

0.1 dyne/cm2 shear stress, anti-VCAM-1 antibody did not significantly reduce sickle cell 

adherence, in part because TNF-α stimulation did not significantly increase sickle cell 

adherence beyond unstimulated adherence at these lower shear-stress levels (Fig 5.7).  

The high-affinity mechanism of VCAM-1/α4β1 adhesion dominated sickle cell adherence 

at higher shear-stress levels (0.6, 0.8. 1.0 dyne/cm2) and thus could be significantly 

suppressed by the anti-VCAM-1 antibody (Fig 5.7 B). 
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Figure 5.7:  Sickle cells bind to endothelial VCAM-1 receptors  (A) Data are 
expressed as mean ± SEM for steady-state sickle cell adherence after 30 minutes of 
erythrocyte perfusion at the indicated shear stress for unstimulated, TNF-α -stimulated 
(6 hours 500 U/ml), and TNF-α -stimulated endothelium incubated with anti-VCAM 
antibody or nonspecific control antibody (isotype matched IgG) (n=5).  *Statistically 
significant (P ≤ 0.05) increase after TNF-α stimulation with the listed antibody at the 
given shear rates.  Data for shear stress values between 0.4 and 1.0 dyne/cm2 are 
replotted in inset to clearly show the effect of anti-VCAM-1 antibody on adherence at 
higher shear stresses.  (B)  Data from Figure 5.3 (black square) or Figure 5.7 A (black 
circle), plotted in accordance with equation 3.2 to demonstrate the large contribution of 
endothelial VCAM-1 to adherence mechanisms at higher shear-stress levels. 
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5.5  Discussion 

Abnormal adherence of sickle erythrocytes to vascular endothelium is a well 

established phenomenon and is considered an important factor regulating the 

microvascular occlusion that causes sickle pain episodes (Hebbel, 1997a; Wick et al., 

1996).  Adherence of sickle erythrocytes to the endothelium in post-capillary venules of 

sickle microvasculature is thought to initiate vaso-occlusive complications by two 

complimentary mechanisms.  Erythrocytes adherent in the post-capillary venules 

partially obstruct blood flow and increase residence time of individual erythrocytes within 

the capillary.  When the capillary clearance time exceeds the delay time for hemoglobin 

gelation following deoxygenation, sickling occurs within the capillary and the suddenly 

rigid cells become trapped (Wick et al., 1996).  Alternatively, sickle erythrocytes adhering 

in the post-capillary venules may directly trap irreversibly sickled erythrocytes there 

(Kaul et al., 1989b).  Under venular flow conditions (1.0 dyne/cm2 shear stress) high 

levels of this initiating adherence do not occur without endothelial activation by 

inflammatory mediators or the presence of adhesive proteins (Walmet et al., 2003; 

Montes et al., 2002).  High-affinity adherence is fast enough to initiate during brief cell-

cell contact and strong enough to withstand elevated shear stresses (Walmet et al., 

2003), thus maintaining formed bonds.  In contrast, under lower flow conditions (static to 

0.2 dyne/cm2 shear stress) greater adhesion occurs even in the absence of activation or 

adhesive proteins (Montes et al., 2002; Hebbel et al., 1980b; Hoover et al., 1979).  

However, these low affinity interactions are weaker and unable to withstand increased 

perfusion pressure (Walmet et al., 2003).  Thus, both shear conditions and endothelial 

activation regulate sickle cell adherence.   

Previous studies have demonstrated the increased sickle erythrocyte adhesion 

under low shear (Montes et al., 2002) or static incubation conditions (Lipowsky et al., 

1987).  However, those studies represented only the most severe case of flow reduction.  
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The work presented here quantifies sickle cell adherence over a range of shear stresses 

with greater in vivo significance, representing progressively reduced microvascular flow 

(Lipowsky et al., 1987; Rodgers et al., 1984; Turitto, 1982) using a linear shear flow 

chamber.   Here it was shown that, at shear stresses representing moderately 

depressed flow (0.6 & 0.8 dyne/cm2), sickle cell adherence is significantly increased, 

both with and without TNF-α stimulation (Figure 5.1-5.7).  With progressive reduction in 

shear stress from 1.0 to 0.6 dyne/cm2, sickle cell adherence following TNF-α stimulation 

increases approximately 2-3 fold (Figure 5.5, 5.2, and 5.7, final column at each shear 

rate).  Note that this is a relatively slow climb, and adhesion to TNF-α stimulated 

endothelium is almost stable for certain shear ranges (Figure 5.5:  0.4-0.6 dyne/cm2; 

Figure 5.2 & B.7:  1.0-0.8 dyne/cm2).  This is in contrast to adherence without TNF-α 

stimulation, which progressively increases in response to reduced shear in all cases 

(Figures 5.5, 5.2, & 5.7 first column at each shear rate) within this range.  These two 

trends acting together mean that, as shear decreases within this range, erythrocyte 

adhesion induced by TNF-α grows, but becomes a less significant portion of the overall 

adhesion, as seen in Figure 5.7 B.  Despite this trend, moderate reduction in shear rate 

and introducing TNF-α stimulation results in a greater increase in adhesion than either 

factor individually.   

When shear is depressed from 0.6 to 0.4 dyne/cm2 (Figure 5.5, 5.2, & 5.7) 

adherence in the absence of TNF-α begins to rapidly rise in a trend that continues to 0.1 

dyne/cm2.  This sudden increase may indicate a transition between different 

mechanisms of adherence, the increase being the contribution of some lower-affinity 

mechanism incapable of initiating or maintaining a bond at higher shear, or an 

interaction with different fractions of sickle erythrocytes as individual red cells experience 

longer endothelial contact at lower shear, thus increasing the likelihood of bond 
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formation.  The increased adherence with TNF-α stimulation observed in the shear 

range of 6.0-1.0 dyne/cm2 may indicate selective recruitment of a particular fraction of 

blood, such as the reticulocytes, which are known to express α4β1 receptors and bind to 

endothelial cell VCAM-1 (Swerlick et al., 1993; Joneckis et al., 1993).  Adhesion at high 

shear in these experiments was shown to be largely mediated via VCAM-1 activity, and 

thus TNF-α is likely selectively adhering young reticulocytes, due to their retention of 

α4β1 ligand expression.  Adhesion at low shear, however, depends largely on the nature 

of the bonds formed.  If sickle erythrocytes adhere through interaction of specific ligands, 

then reticulocytes, as they retain more membrane ligand expression, would still be 

primary targets.  However, the low-shear interactions are likely a combination of factors 

including abnormal membrane charge interactions due to altered sickle erythrocyte 

membrane sialic acid distribution (Montes, 1999; Hebbel et al., 1980b), erythrocyte 

interactions with endothelial fibronectin (Montes, 1999; Patel et al., 1985; Wautier et al., 

1983) or interaction of sickle erythrocyte membrane phosphatidylserine and 

phosphatidylethanolamine (Choe et al., 1986; Lubin et al., 1981; Chiu et al., 1981) 

interacting with unknown endothelial ligands.  If the adhesion at low shear arises through 

endothelial interaction with erythrocyte membrane characteristics typical of a 

dysfunctional membrane, then the denser, more damaged ISC fraction is likely 

becoming selectively adhered under low shear.  Future studies characterizing the nature 

of adherent erythrocytes, could determine the contribution of specific red cell fractions 

responsible for the observed increases in adherence, possibly indicating them for 

targeted treatment. 

At 0.2 dyne/cm2 shear stress and above, TNF-α stimulation increases adherence 

of sickle erythrocytes to vascular endothelium, although this increase is only statistically 

significant for 0.6 to 1.0 dyne/cm2 (Figure 5.5 & 5.2) or 0.4 to 1.0 dyne/cm2 (Figure 5.7).  
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The effect of TNF-α below 0.6 or 0.4 dyne/cm2 is no greater than the standard variance 

at these shears.  Adhesion at 0.1 dyne/cm2 is so little affected by TNF-α stimulation that 

standard variance in erythrocyte adhesion assays can make it appear to both increase 

(Figure 5.5) and decrease (Figure 5.2 & 5.7) adhesion, though never to a significant 

degree.   

The increase in sickle cell adhesion due to endothelial stimulation is 

predominantly to endothelial cell VCAM-1 receptors, as adherence induced by TNF-α is 

blocked 90-100% by a VCAM-1 specific antibody in the range of 0.4 to 1.0 dyne/cm2 

(Figure 5.7).  This is consistent with the results of previous work by our group which 

found 90 to 100% blocking of sickle cell adherence induced by TNF-α in the presence of 

anti-VCAM-1 antibody at 1.0 dyne/cm2 shear stress (Walmet et al., 2003; Gee et al., 

1995; Swerlick et al., 1993).  Below 0.4 dyne/cm2 shear stress, the increase in sickle cell 

adherence by endothelial cell stimulation is small and not statistically significant (Figure 

5.5, 5.2, & 5.7), the suppression of this effect by the presence of an anti-VCAM-1 

antibody is similarly not statistically significant (Figure 5.7), though decreased adhesion 

was seen for all VCAM-1 blocking experiments at the shear rates of 0.2 and 0.1 

dyne/cm2. Thus the relative contribution of endothelial cell VCAM-1 expression to sickle 

cell adherence decreases rapidly below approximately 0.6 dyne/cm2 shear stress (Figure 

5.7 A, inset & Figure B), and suggests that, at these lower shear stress values, sickle 

cell adherence is dominated not by the high-affinity VCAM-1/α4β1 interaction induced by 

TNF-α, but some weaker ‘low affinity’ interactions.  Previous studies by our group 

suggest that at 0.1 dyne/cm2 shear stress, these low affinity interactions depend partially 

on the presence of sialic acid residues on sickle erythrocytes and on the presence of 

fibronectin on the endothelium (Montes et al., 2002).  These data demonstrate that the 

known effect of endothelial inflammatory activation on sickle erythrocyte adhesion is 
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strongly determined by the shear stress conditions.  Both endothelial activation and 

microvascular hemodynamics have an important influence on sickle cell adherence and 

are consistent with the hypothesis that modest reduction of venular blood flow over 

activated endothelium could result in increased retention of highly adherent erythrocytes, 

possibly initiating vaso-occlusive episodes. 

Laser-Doppler measurements of blood flow in sickle dermal microvasculature 

support the in vivo significance of these results.  In vivo measurements show intermittent 

or periodic large, local oscillations in blood flow, and periods of general reduced flow 

(Rodgers et al., 1990; Kennedy et al., 1988; Rodgers et al., 1984).  Studies visualizing 

blood flow in nail fold capillaries also detect a higher occurrence of slowed and stopped 

microcirculatory blood flow in sickle subjects compared to controls (Lipowsky et al., 

1987).  Even in patients with mild sickle cell disease, conjunctival blood flow velocity is 

approximately 20% lower than that measured in non-sickle patients (Cheung et al., 

2002).  Flow variation between subjects is high, with some sickle cell anemia patients 

exhibiting a greater than 90% reduction in microvascular blood flow (Cheung et al., 

2002).  Because those in vivo studies were designed to measure microvascular flow rate 

and not shear stress, it is unclear whether venular shear stresses reach the 0.1 

dyne/cm2 previously reported (Montes et al., 2002).  However, those studies concluded 

that the blood flow rate regularly reach 50% of typical flow during oscillations (Rodgers 

et al., 1984), giving an associated shear stress of approximately 0.5 dyne/cm2, which 

directly supports the in vivo significance of these studies.  Indeed, the range of 0.4 to 0.6 

dyne/cm2 shows a sudden increase in unstimulated erythrocyte adhesion and a rapidly-

reduced significance of TNF-α activated erythrocyte adhesion to the VCAM-1 ligand, 

which may be key to the adhesion-initiated pain crisis mechanism.  Sickle erythrocyte 

adhesion under stimulation, therefore, needs to be evaluated within the range of shear 
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rates defined here in order to determine the in vivo significance of a particular adhesion 

mechanism. 

The present data reinforce the importance of interactions between two factors; 

the availability of high affinity adherence pathways and reduced shear stress, rather than 

a single factor, in modulating sickle cell adherence in the microcirculation.  This 

interaction may also account for the variability of some sickle cell pain events in vivo.  

Moderately elevated cytokine levels, typical of sickle patient plasma (Tomer et al., 2001; 

Duits et al., 1998; Duits et al., 1996; Browne et al., 1996b; Vordermeier et al., 1992), 

would be capable of promoting sufficient ligand expression for microvascular occlusion if 

the patient’s blood flow were moderately depressed.  Alternately, a sudden increase in 

expression of pro-adhesive cytokines might alone be sufficient in a patient who is not 

experiencing reduced microvascular flow.  With a larger decrease in microvascular flow, 

sickle cell adherence may be sufficient to initiate or exacerbate microvascular occlusion 

and pain events independent of endothelial activation.  Further studies should examine 

the influence of shear stress on the effectiveness of other adhesive mechanisms to 

promote sickle erythrocyte adherence.  Correlation of these activation and shear stress 

effects to in vivo conditions should further aid in identifying dangerous vascular states for 

sickle patients, and help target treatments for pain crisis prevention. 

This data (excluding figures 5.4, 5.6, 5.1, and 5.2) has been published as “Sickle 

cell adhesion depends on hemodynamics and endothelial activation” in the Journal of 

Laboratory and Clinical Medicine, November 2004 (Wagner et al., 2004). 

 

 

 

 

 

 128



 

CHAPTER VI: 

SICKLE CELL ADHERENCE INDUCED BY HISTAMINE IS SHEAR DEPENDENT 
 

 
 

6.1 Abstract 

  The episodic and reduced nature of venular microvascular circulation in patients 

with sickle cell anemia is thought to mediate the inflammation-driven adhesion of sickle 

erythrocytes to the microvascular endothelium by hemodynamically altering the contact 

conditions.  This adhesion, in turn, is thought to initiate and propagate vaso-occlusive 

pain episodes.  This study investigated the strong shear dependence of the in vitro 

interaction of sickle erythrocyte adhesion to endothelial monolayers when induced by the 

inflammatory mediator histamine.  Adhesion was also strongly shear dependent in the 

absence of histamine.  Shear stress was studied in a range from the standard post-

venular microvascular flow of 1.0 dyne/cm2, where P-selectin ligand interactions induced 

by histamine primarily controlled adherence, to the extreme case of 0.1 dyne/cm2, where 

stimulation did not increase adhesion.  Within this range, analogous to in vivo 

microvascular flow rates of sickle patients which are typically reduced and oscillatory, 

histamine was found to further increase adhesion (2.6, 2.0, and 1.9 fold for 0.8, 0.6, and 

0.4 dyne/cm2 respectively) compared to unstimulated conditions (baseline).  These 

findings re-affirm the importance of considering shear rate as an active factor in the 

vaso-occlusive process, and the importance of shear in the adhesive interactions of 

inflammation-induced ligands.  As reflected by our in vitro model, slight reductions of 

shear in vivo may be sufficient to increase adhesion rates and drive the vaso-occlusion 

mechanism forward. 

 

 

 129



 

6.2 Introduction 

 Adhesion of sickle erythrocytes to the post-capillary venules initiates or 

propagates vaso-occlusive pain episodes in sickle cell patients (Francis et al., 1991; 

Hebbel et al., 1980b).  Activation of the endothelium with inflammatory mediators and 

expression of cell adhesion molecules increases sickle erythrocyte adherence to 

cultured endothelium (Makis et al., 2000; Wick et al., 1993).  Under venular flow 

conditions (at a wall shear stress of 1.0 dyne/cm2), histamine, a potent inflammatory 

mediator, increases sickle erythrocyte adherence to endothelium in a time and dose 

dependent manner that is strongly dependent on P-selectin expression (Wagner et al., 

2006).  This response is relatively rapid; endothelial activation and P-selectin expression 

occurring within minutes of histamine stimulation (Easton et al., 2001; Lorenzon et al., 

1998), in accord with histamine’s status as a localized, early-response inflammation 

mechanism.  Histamine release in vivo may be relevant to clinical complications in sickle 

cell anemia since some analgesics, including morphine, which are used to treat vaso-

occlusive events in sickle patients are known histaminergic agents (Barke et al., 1993; 

Casale et al., 1984) associated with other sickle cell complications (Kopecky et al., 

2004). 

 Physiological blood flow in venules results in a shear stress of approximately 1.0 

dyne/cm2 (Montes et al., 2002).  However, blood flow is periodic and reduced in sickle 

microcirculation even during pain-free periods (Kennedy et al., 1988; Lipowsky et al., 

1987; Rodgers et al., 1984).  Microvascular blood flow variation between sickle patients 

is high.  Reductions in tissue perfusion frequently approach 50% (Rodgers et al., 1984) 

with some sickle cell patients exhibiting a microvascular flow reduction of greater than 

90% (Cheung et al., 2002).  Sickle erythrocyte adhesion is dependent on shear stress 

and endothelial cell activation (Wagner et al., 2004; Montes et al., 2002).  Under venular 

flow conditions sickle cell adherence requires the presence of high-affinity receptor 
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ligand interactions (Wagner et al., 2004; Montes et al., 2002).  Under low flow conditions 

(on the order of 0.1-0.4 dyne/cm2 shear stress) sickle erythrocyte adherence is high and 

essentially independent of endothelial cell activation or the presence of adhesive 

proteins (Wagner et al., 2004; Montes et al., 2002).  At shear stress levels below venular 

(i.e. 0.6-0.8 dyne/cm2), sickle cell adherence is a function of both blood flow rate and cell 

adhesion molecule expression (Wagner et al., 2004).  This transition likely arises due to 

complex interactions between receptor-ligand bond strength and hydrodynamics that 

regulate cell adherence.  Transport of cells to the endothelial surface, and thus the 

frequency of cell-cell contact, is greater at venular shear stress, but higher shear 

reduces the duration of erythrocyte-endothelium contact times and applies greater stress 

on formed bonds, requiring higher-affinity, faster-forming, stronger cell-cell bonds to 

resist blood shearing forces (Walmet et al., 2003).  At lower shear stresses, cell-cell 

contact time is longer and hemodynamic forces opposing adherence are weaker, 

allowing red cells to bind to endothelium via low-affinity non-specific interactions 

(Wagner et al., 2006; Montes et al., 2002).  Therefore, at low shear stresses erythrocyte 

binding appears to depend primarily on cell transport to the endothelium.   It is this 

interaction between cell transport and cell-cell affinity that locally controls the level of red 

cell binding to the endothelium (Montes et al., 2002).  Thus, over a range of shear 

stresses in sickle microvasculature suggested by laser Doppler and intravital 

microscopic measurements (Kennedy et al., 1988; Lipowsky et al., 1987; Rodgers et al., 

1984), sickle cell adherence, microvascular occlusion, and pain episodes in vivo may be 

regulated by both blood flow rate and availability of high-affinity receptor-ligand 

adherence interactions.   

 Since both blood flow rate and cell adhesion molecule expression contribute to 

sickle cell adherence, the adhesive potential of specific inflammatory mediators under a 

range of shear stress relevant to sickle microvascular blood flow should be evaluated to 
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better understand the mechanisms of vaso-occlusive events.  The present study tested 

the hypothesis that at shear stresses typical of the sickle microcirculation, shear stress 

regulates the degree to which histamine stimulation increases sickle cell adherence.  

This hypothesis was tested in flow adherence experiments at shear stresses between 

1.0-0.1 dyne/cm2 (Kennedy et al., 1988; Lipowsky et al., 1987; Rodgers et al., 1984) to 

characterize the conditions under which shear stress and endothelial cell adhesion 

molecule expression regulate sickle cell adherence. 

 

6.3 Materials and Methods 

 Experiments in this section employed HUVEC cultures on single-well Labtek® 

Permanox cell- culture plates in a linear-shear flow chamber.  The expected short-term 

expression time of the ligands up-regulated in response to the presence of histamine 

requires the more elaborate flow chamber protocol use.  These protocols are 

summarized in sections 3.1.1-4, 3.2.1-3, 3.3.2&5, 3.4, 3.4.2, 3.5, and 3.6. 

 

6.4   Results 

 

6.4.1  Histamine Mediated Adhesion is Shear Dependent  

 Under all conditions of shear stress studied, sickle cell adherence to endothelial 

cells increases from zero adherent cells/mm2 to a steady-state adherence level within 

30-40 minutes of the onset of sickle cell perfusion.  This trend is observed for both 

unstimulated (Figure 6.1A) and histamine-stimulated (Figure 6.1B) conditions.  At shear 

stresses in the range of 0.1-0.2 dyne/cm2, sickle erythrocyte adherence is largely 

dependent upon shear stress, with histamine stimulation leading to little, if any, 

additional increase in sickle cell adherence (Figure 6.1D).  In contrast, at shear stresses 

between 0.4 and 1.0 dyne/cm2, sickle cell adherence was significantly increased when 
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stimulated with histamine (Figure 6.1C).  Steady-state sickle cell adherence is a function 

of shear stress, with the highest adherence observed at the lowest shear stress (Figure 

6.2).  At shear stress levels of 0.2 dyne/cm2 and 0.1 dyne/cm2, steady state sickle cell 

adherence to endothelial cells is high even in the absence of endothelial stimulation with 

histamine (Figure 6.2), and is not significantly increased by histamine stimulation.  In 

contrast, for shear stresses between 0.4 dyne/cm2 to 1.0 dyne/cm2, steady-state sickle 

cell adherence is a function of both histamine stimulation and media perfusion shear 

stress.  At venous shear stress levels (0.8 and 1.0 dyne/cm2) increased sickle cell 

adherence is observed only when endothelial cells are stimulated with histamine (Figure 

6.2).   

 

6.4.2  Stimulation and Blockade of P-Selectin Ligand 

  A subset (7 of 11) of patients studied in Figures 6.1 & 6.2 was further examined 

to characterize the role of P-selectin expressed by histamine stimulated endothelial cells 

in sickle cell adherence.  For shear stresses where histamine significantly increased 

sickle cell adherence, blockade of P-selectin with a highly specific P-selectin antagonist 

peptide inhibited sickle cell adherence induced by histamine stimulation 69±15% - 

95±5% (Figure 3) (Average ± SEM).  Blockade at lower shear, where no effect of 

histamine stimulation was observed, produced no significant effect.  Similarly, in two 

experiments using P-selectin blocking antibody, sickle cell adherence induced by 

histamine was inhibited 73-100% at those shear ranges where histamine produced a 

significant rise in erythrocyte adhesion.  At all shear stresses where histamine increased 

adhesion, blockade of endothelial cell P-selectin with P-selectin antagonists reduced 

sickle cell adherence to the level measured on an unstimulated endothelial cell 

monolayer at the same shear stress. 
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Figure 6.1:  Time-dependence of histamine-mediated sickle erythrocyte adhesion 
Data are mean ± SEM adherent red cells per mm2 (n=11)  for (A) unstimulated or (B) 
histamine stimulated endothelium (100 µM) at 3, 7, 11, 16, 21, 26, 32, and 40 minutes 
after the onset of erythrocyte perfusion.  Unstimulated and histamine stimulated data are 
replotted for direct comparison in the (C) low (0.1 to 0.4 dyne/cm2) and (D) high (0.6 to 
1.0 dyne/cm2) shear stress ranges. 
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Figure 6.2:  Histamine-mediated equilibrium sickle erythrocyte adhesion is 
controlled by endothelial cell stimulation and shear stress  Data are mean ± 
SEM adherent red cells/mm2 following 40 minutes of perfusion for n = 11 
asymptomatic sickle patients at 0.1, 0.2, 0.4, 0.6, 0.8, or 1.0 dyne/cm2 shear 
stress.  *Statistically significant change in sickle erythrocyte adherence with 
histamine stimulation compared to unstimulated adherence at the same shear 
stress (p ≤ 0.05). 
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Figure 6.3:  Histamine Mediates Sickle Cell Adhesion to P-selectin    Data are mean 
± SEM adherent red cells per mm2 (A) following 40 minutes of erythrocyte perfusion at 
the indicated shear stress for unstimulated endothelial cells, endothelial cells stimulated 
with 100 µM of histamine during perfusion, and endothelial cells both prestimulated for 
30 minutes before erythrocyte perfusion and continuously stimulated during perfusion 
with 100 µM anti P-selectin peptide or non-specific peptide control (n=7).  These data 
represent a further analysis for 7 of the 11 samples studied in Figures 1 & 2.  (B) Data 
for shear stress values between 0.4 to 1.0 dyne/cm2 are replotted to more clearly show 
the effect of the anti-P-selectin peptide on sickle cell adherence at these higher shear 
stresses.  *Indicates a statistically significant (p ≤ 0.05) change in adherence compared 
to unstimulated values for the same shear stress.  (C&D) Two individual experiments 
using 5 µg/ml anti-P-selectin antibody or control non-specific antibody to block 
histamine-mediated sickle erythrocyte adherence. 
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6.5  Discussion 

 Adherence of sickle erythrocytes to endothelium in the microvasculature 

contributes to microvascular blockage and sickle cell vaso-occlusive pain episodes.  

Sickle erythrocyte adherence is a complex function of shear stress and endothelial cell 

activation.  Adherence is increased by either an inflammatory challenge that promotes 

endothelial cell adhesion molecule expression to support high-affinity receptor-ligand 

interactions or by a reduced tissue blood flow rate that facilitates low-affinity interactions 

even in the absence of endothelial cell activation (Wagner et al., 2004; Montes et al., 

2002).  The data presented here demonstrate that histamine stimulation or reduced 

shear stress (even in the absence of histamine stimulation) can significantly increase 

sickle cell adherence.  At the lowest and highest shear stress levels investigated, sickle 

cell adherence depends almost entirely on red cell-endothelial cell contact time and high 

affinity receptor-ligand interactions, respectively.  Most interestingly, in the intermediate 

range of shear stresses (e.g. 0.4-0.8 dyne/cm2), the combined effect of shear stress and 

endothelial cell activation is apparent.  This observation is clinically relevant because 

sickle patients exhibit increased levels of plasma histamine (Enwonwu et al., 1991) and 

experience oscillatory and reduced microvascular flow conditions (Kennedy et al., 1988; 

Lipowsky et al., 1987; Rodgers et al., 1984).  Confirmation of a role for endothelial cell P-

selectin in sickle cell adherence increased by histamine under both venular and 

moderately reduced shear stresses further illustrates the relationship between vascular 

activation and local hemodynamics in regulating sickle cell adherence contributing to 

microvascular occlusion and pain episodes. 

 The presence of histamine affects sickle cell adhesion, but does so differently at 

venular (1.0 dyne/cm2) and reduced (0.1 dyne/cm2) shear, indicating that the mechanism 

of adhesion changes with shear stress.  In the shear range between 0.4 and 1.0 

dyne/cm2, total sickle cell adhesion is a function of both shear stress and histamine 
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stimulation, with histamine stimulation accounting for ~50-80% of the observed 

adherence (Figure 6.2).  In contrast, at 0.1 or 0.2 dyne/cm2 shear stress, sickle cell 

adhesion is higher than that observed at 0.4 dyne/cm2 and above, but is largely 

independent of histamine stimulation, suggesting that adhesion mechanisms other than 

the high-affinity ligands dominate at lower shear stresses.  These low affinity adhesive 

interactions either require more time to form or have weaker bond strength when formed.  

The low-shear interactions, as detailed previously in Chapter V, are likely a combination 

of factors including abnormal membrane charge interactions due to altered membrane 

sialic acid distribution on sickle erythrocytes (Montes, 1999; Hebbel et al., 1980b), 

erythrocyte interactions with endothelial surface fibronectin (Montes, 1999; Patel et al., 

1985; Wautier et al., 1983) or interactions between phosphatidylserine and 

phosphatidylethanolamine on the outer leaflet of the sickle erythrocyte membranes 

(Choe et al., 1986; Lubin et al., 1981; Chiu et al., 1981) interacting with unknown 

endothelial ligands.  With low-affinity bonds dominating sickle cell- endothelial cell 

adherence at low shear, the addition of histamine causes no further increase in 

adhesion.

 Sickle erythrocyte adhesion to histamine-stimulated endothelium under a range 

of physiologically relevant shear stresses is qualitatively similar to adhesion seen 

previously for TNF-α stimulated endothelium (Wagner et al., 2004).  However, the sickle 

cell adherence upregulated by these inflammatory mediators is mechanistically and 

kinetically different.  TNF-α stimulation increases endothelial cell VCAM-1 expression 

and α4β1/VCAM-1 binding (Montes et al., 2002; Gee et al., 1995; Swerlick et al., 1993) 

whereas sickle erythrocytes bind to endothelial P-selectin induced by histamine 

stimulation (Figure 6.3).  Furthermore, sickle cell adherence induced by TNF-α requires 

hours of endothelial stimulation, whereas sickle cell adherence occurs within 20 minutes  
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Table 6.1: Comparison of Sickle Cell Adherence  
Data are fold increase in sickle cell adherence for agonist-stimulated endothelium 
compared to unstimulated endothelial cells at the indicated shear stress.  NS=No 
statistical significance between unstimulated and agonist stimulated adherence 
at this shear stress.  * Indicates statistical significance, defined as p≤0.05. 
 

 

Shear Stress (dyne/cm2)  
1.0 0.8 0.6 0.4 0.2 0.1 

Histamine *3.6 *2.6 *2.0 *1.9 NS (0.8) NS (0.7) 
TNF-α (16) *4.9 *3.4 *2.8 NS (1.6) NS (1.1) NS (1.2) 

of histamine stimulation.  A more subtle difference between the effect of TNF-α and 

histamine is related to the interaction between the shear stress and agonist stimulation 

on sickle cell adherence.  Histamine stimulation significantly increases sickle cell 

adherence at 0.4 dyne/cm2 shear stress and higher whereas TNF-α stimulation only 

increases sickle cell adherence at 0.6 dyne/cm2 and above (Table 1).  A smaller 

increase in adhesion at the highest shear stress may reflect lower bond strength for 

histamine stimulated adherence or that bond formation may require a longer cell-cell 

contact time unavailable at higher shear stresses.  Significant increases in adhesion at 

lower shear rates both support the hypothesis of an adhesion mechanism able to take 

advantage of longer cell-cell contact times or lower bond strengths, and indicate 

recruitment of erythrocytes that are not otherwise recruited by the "low affinity" adhesion 

mechanisms significant at that shear.   

 This comparison between adhesive mechanisms encourages speculation as to 

whether histamine and TNF-α are even promoting the same subpopulations of sickle 

erythrocytes to adhere.  TNF-α, acting through promotion of the well-characterized 

adhesive ligand of VCAM-1, is likely selectively promoting the adherence of 

reticulocytes, as they retain many adhesive ligands lost upon later maturation.  It is likely 

that many more matured erythrocytes, which have retained some α4β1 ligand 
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expression, are also adhering, but reticulocytes would be overrepresented.  Histamine, 

however, may act through very different mechanisms.  It may also be primarily retaining 

the very young, highly adhesive reticulocytes if P-selectin is acting through the 

expression of some sialic acid-based ligand that, similarly to VCAM-1, is shed during 

erythrocyte maturation.  However, if P-selectin adheres to erythrocytes through exposed 

PS, it is likely that histamine is promoting the adhesion of the more damaged ISC 

erythrocyte fraction, as those cells are more likely to have the dysfunctional membrane 

necessary for PS expression.  In the event of microparticle-mediated sickle erythrocyte 

adhesion, as detailed in 2.3.3, adhesion would also likely be selective for ISCs, as the 

platelet or monocyte derived microparticles might be more readily bound to dysfunctional 

membrane than the fully functional membrane of very young erythrocytes.  Finally, if 

adhesion is leukocyte mediated as outlined in section 2.3.4, adhesion would once again 

likely selectively target the damaged, PS expressing membrane of ISCs or similarly 

damaged erythrocytes, as this dysfunctional membrane may accumulate autologous 

immunoglobulin (as outlined in 2.5.1) which could serve as a targeting factor for 

adherent leukocytes. 

 As shown in the results, histamine stimulation requires a greater reduction in 

blood flow velocity than TNF-α before histamine stimulation and P-selectin expression 

can exert a strong effect on adhesion.  Quantitative comparison is somewhat misleading, 

however, as the stimulation level for each factor was chosen not for direct in vivo 

relevance, but rather for maximal increase in sickle erythrocyte adhesion.  Unfortunately, 

the localized and short-lived nature of histamine in the circulation (Irman-Florjanc et al., 

1994; Beaven et al., 1982; Ferreira et al., 1973) has made estimation of in vivo 

stimulation levels very difficult.  However, the results show that sickle cell adherence is 

dependent upon degree of endothelial activation, the specific mechanism activated, and 

local hemodynamics that dictate the interaction of sickle erythrocytes with the 
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endothelium.  Relatively subtle changes in any of these factors can lead to large 

increases in sickle cell adherence.  As a result of these complicated interactions, sickle 

patients may exhibit different time-dependent susceptibility to various inflammatory 

mediators depending on microvascular hemodynamic conditions.   

 The in vitro data presented here suggest that histamine stimulation combined 

with modest reduction in local blood flow rate leads to rapid and extensive adherence in 

sickle microvasculature following histamine release.  If applied to in vivo conditions of 

sickle microvasculature, these data demonstrate that histamine release would have the 

greatest risk of initiating a pain crisis when release occurs in combination with a 

reduction of microvascular blood flow that reached 0.6 dyne/cm2 or 0.4 dyne/cm2.  A 

pain crisis initiated by histamine-mediated adhesion would be dependant both on the 

intensity of histamine stimulation and a reduced prevailing shear stress.   

 The rapid and transient nature of histamine-mediated increase in sickle 

erythrocyte adhesion also suggests the possibility of involvement in alteration of 

microvascular flow in sickle patients.  We can speculate that localized histamine tissue 

stimulation would cause upregulation of P-selectin expression on the endothelium.  

Resulting adhesion, both of sickle erythrocytes and leukocytes, would partially obstruct 

vessels of the microvasculature and slow the prevailing blood flow.  Then, widespread 

weak (Walmet et al., 2003) adhesion of sickle erythrocytes via low-affinity adhesion 

mechanisms could take place, further reducing the prevailing shear stress.  At this point, 

the process recalls the kinetic theory of vaso-occlusive events, initial adhesion leading to 

vaso-occlusion through reduced flow and increased capillary transit time.  However, the 

transient expression of P-selectin means that it could be down-regulated in expression 

before vaso-occlusion occurs.  Sickle erythrocytes and leukocytes would begin to detach 

and re-enter the bloodstream, enabling increased blood flow, and detachment of those 

cells adherent via low-affinity mechanisms.  Thus the microvasculature could go through 
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a temporary cycle of reduced blood flow without vaso-occlusion in response to histamine 

stimulation.  This is interesting because it resembles the oscillatory and reduced blood 

flow typical of sickle microvasculature.  The rapid and transient expression of P-selectin 

in response to histamine stimulation may, therefore, cause, contribute to, or exacerbate 

the irregular microvascular flow known to occur in sickle cell patients. 

 Because histamine induces a rapid inflammatory response independent of 

longer-term inflammatory responses, it appears capable of contributing to sickle cell 

adherence and vaso-occlusion within minutes of exposure as a response to a localized 

inflammation, allergic response, or administration of a histaminergic drug. Other 

inflammatory mediators, such as TNF-α require hours to induce endothelial cell 

adhesion molecule expression.  Given the potential for rapid increases in sickle cell 

adherence following histamine stimulation, use of antihistamines to prophylactically 

prevent endothelial cell activation and sickle erythrocyte adhesion may be a safe 

measure to manage histamine-related pain crisis.  The data presented here have 

demonstrated the possible involvement of histamine in the mechanism of vaso-occlusive 

crisis when present under conditions of reduced microvascular flow.  Further 

investigation of histamine-mediated sickle erythrocyte adhesion needs to be conducted 

with in vitro models to better evaluate the risk posed by histamine release in sickle 

patients. 
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CHAPTER VII 

ADDITIONAL STUDIES 
 
 
 

7.1  Nitric Oxide Synthase Study 
 

7.1.1  Intent and background 

Nitric Oxide and Sickle Erythrocyte Adhesion 

During studies of histamine mediated sickle erythrocyte adhesion, an attempt 

was made to more thoroughly identify the progression of signal cascade leading from 

activation of endothelial histamine receptors to adhesive ligand expression.  Our own 

studies and those of the literature showed the potential involvement of numerous 

inflammatory, thrombotic, and immune-response related pathways in promoting the 

adhesion of sickle erythrocytes, and the chronically activated nature of sickle patient 

vasculature hinted at simultaneous action of many adhesive mechanisms in the 

propagation, if not the initiation, of sickle pain crisis. 

It was hypothesized that different intercellular processes leading from endothelial 

activation to adhesive ligand expression might have common mechanisms in the 

pathways for signal propagation.  Identification of these common signaling mechanisms 

would offer good targets for treatment, enabling simple suppression of several adhesive 

mechanisms at once, and perhaps reducing pain crisis incidence by providing a blanket 

reduction in sickle erythrocyte adhesion.  Such a reduction could act as a preventative 

measure in small doses, or, in large doses, a treatment for de-escalation of a patient 

experiencing inflammatory symptoms leading to pain crisis.  Without signaling pathways 

in common, anti-adhesion treatments for patients with sickle cell anemia would involve 

use of multiple pharmacologic suppression treatments, or guessing at individual 
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adhesion pathways for treatment, while vaso-occlusive crisis might be triggered by still 

other unblocked pathways. 

Assays were designed to determine the signaling pathway employed by the 

endothelium to propagate the histamine signal into the expression of adhesive ligand P-

selectin.  Even if common connections with other adhesive pathways weren’t found, 

histamine itself is a fast-acting inflammatory mediator, and the expressed P-selectin 

ligands are known to be expressed and downregulated relatively quickly, making 

unfeasible any attempts in vivo to either remove released histamine from the blood 

plasma or block the adhesive ligand after expression.  This left only systemic prevention 

of histamine expression (discussed in Chapter IV in relation to histaminergic analgesics) 

or prophylactic blockade of the intercellular signaling as viable targets for prevention of 

sickle pain crisis as mediated by histamine. 

After examination of the endothelial histamine receptors (Chapter IV), 

intercellular signaling mechanisms were investigated, seeking a potentially controllable 

mediating factor for expression of P-selectin during histamine stimulation.  The vascular 

signaling molecule nitric oxide (NO), and the enzyme responsible for its production, nitric 

oxide synthase (NOS), were found to be of particular interest, because histamine is 

known to increase the activity of endothelial nitric oxide synthase (eNOS) (Kostic et al., 

1995; Yan et al., 1994; Ayajiki et al., 1992).  It is also known that inactivation of eNOS 

prevents histamine mediated neutrophil adhesion (Schaefer et al., 1998).  Processes 

similar to this may drive sickle red cell adhesion increased in the presence of histamine. 

NO is a soluble gas constitutively synthesized in endothelial cells from the amino 

acid L-glutamine by endothelial NOS (eNOS), and is a critical endogenous vasodilator 

(Palmer et al., 1988; Ignarro et al., 1987; Palmer et al., 1987).  While NO is normally 

associated with vasodilation and various “vaso-protective,” anti-adhesive actions of the 

endothelium (Albrecht et al., 2003; Gewaltig & Kojda, 2002; Bolli, 2001), its involvement 
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in the mechanism of histamine and neutrophil adhesion indicate an involvement in 

inflammatory promotion.  This apparently contradictory involvement makes NO control 

and mechanistic participation multifaceted and complex.  Further complicating control of 

NO production, is the unusual response of sickle vasculature to nitric oxide.  The 

vasodilation of sickle vasculature is blunted and requires much higher levels of NO to 

fully vasodilate (Belhassen et al., 2001; Aslan et al., 2001).  This may occur because 

sickle plasma is a “sink” for NO, the plasma’s increased levels of oxidative molecules 

can react with NO, removing it from the signaling system (Aslan et al., 2001; Dias-Da-

Motta et al., 1996) while possibly oxidatively damaging the endothelium.  These changes 

may alter the effect of NO signaling within the systems of ligand expression. 

 Nitric oxide is likely involved in mediating the previously examined (Chapter IV) 

interaction of histamine-mediated adhesion of sickle erythrocytes.  Nitric oxide's clearly 

dysfunctional state in sickle microvasculature further implicates its involvement in 

microvascular occlusion.  Control of this mechanism may enable prevention of sickle 

pain event-initiating erythrocyte adhesion as mediated by histamine and other adhesive 

mechanisms. 

 

7.1.2  Materials and Methods 

To verify the involvement of nitric oxide synthase (NOS) in sickle cell adherence 

elevated by histamine, specific NOS-blocking agents diphenyleneiodonium chloride 

(DPI) at 30 nM (Sigma) (Wang et al., 1993; Stuehr et al., 1991) or Nω-nitro-L-arginine 

methyl ester at 100 µM (L-NAME, Sigma) (Albrecht et al., 2003) were added to 

endothelial cells in a manner detailed in section 3.3.6 during parallel-plate adhesion 

assays.  These concentrations have been reported previously to (DPI) inhibit the activity 

of nitric oxide synthase in endothelium-dependent vasodilation and partially inhibit the 
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relaxation elicited by acetylcholine in rabbit aortic rings (Stuehr et al., 1991), or (L-

NAME) cause progressive and irreversible inhibition of NO synthase following initial 

competitive binding (Albrecht et al., 2003) and completely abolish endothelial-dependent 

relaxation of rat aorta induced by acetylcholine (Rand & Li, 1993).   

 

7.1.3  Partial Results  

Histamine-induced sickle erythrocyte adherence observed in 1.0 dyne/cm2 

parallel-plate assays is blocked by specific NOS-blocking agent diphenyleneiodonium 

chloride (DPI) or Nω-nitro-L-arginine methyl ester (L-NAME) antagonist treatment of 

endothelial cells (Figure 7.1).  DPI, a NOS inhibitor, decreases sickle cell adherence 

induced by histamine an average of 80% from 41±6 red cells/mm2 to 21±3 red cells/mm2 

(Figure 7.1A).  Additional tests with DPI concentrations as high as 3 µM did not further 

reduce adherence.  Direct examination of the endothelium following assays with these 

higher concentrations found signs of endothelial damage (data not shown), but no 

endothelial cell damage was seen at lower DPI concentrations or with 100µM histamine 

alone.  Similarly, NOS inhibition by the eNOS-specific inhibitor L-NAME decreases sickle 

cell adherence induced by histamine an average of 98% from 46±4 to 14±3 (Figure 

7.1B, P < .01 for all time points beyond 10 minutes). 

 

7.1.4  Discussion 

The participation of NO in histamine-stimulated adhesive ligand expression was 

supported by these studies in which endothelial nitric oxide synthase (NOS) activity was 

halted by two independent blocking mechanisms.  This blocking resulted in sickle 

erythrocyte adhesion under histamine stimulation being reduced to unstimulated levels.  

Blocking NOS activity by flavoprotein inhibition (DPI) and, independently, by competitive  
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Figure 7.1:  Blocking of Nitric Oxide Synthase Activity Inhibits Sickle Cell 
Adherence Induced by Histamine  Endothelial monolayers were pretreated for 30 
minutes with 30 µM  diphenyleneiodonium chloride (DPI) (A) or 100 µM  Nω-nitro-L-
arginine methyl ester (L-NAME) (B) before histamine stimulation (100 µM) and sickle 
erythrocyte perfusion at 1.0 dyne/cm2, maintaining this stimulation throughout the entire 
40 minute erythrocyte perfusion.  Data are mean ± SEM for n=7 (A) or n=9 (B).               
* Indicates statistically significant difference (p<0.05) from histamine stimulated 
adherence level at the same timepoint. 
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inhibition with an L-arginine analog (L-NAME) was necessary to be certain that NOS 

inactivation was the disabled mechanism reducing sickle erythrocyte adhesion, and not 

some secondary cellular process.  Due to the broad action of the NOS blocking agents, 

it is conceivable that L-NAME might have reduced sickle erythrocyte adhesion through 

interaction with other cellular processes that are affected by L-arginine.  Similarly, DPI, 

as a flavoprotein inhibitor, could conceivably have altered other cellular processes as 

well as interfering with the regulation of NOS.  However, the intersection of these two 

inhibitor mechanisms in the eNOS system is unique.  The fact that identical results are 

seen after inhibiting NOS activity by flavoprotein inhibition and after competitive inhibition 

with an L-arginine analog demonstrates that NOS inactivation is what causes the 

decrease in adherence, not secondary effects on another signaling pathway. 

Nitric oxide, found here to be a key signaling mechanism in histamine mediated 

adhesion, is constitutively expressed in endothelial cells by endothelial NOS (eNOS) 

(Alderton et al., 2001).  While normally associated with “vaso-protective” actions of the 

endothelium, as noted above, interpretation of the role of NO is greatly complicated by 

the prevention of neutrophil adhesion (Schaefer et al., 1998) by eNOS inactivation, and 

histamine's activation of NOS as seen in the literature (Li et al., 2003; Yan et al., 1994) 

and demonstrated in these results.  Thus NOS production of NO is strangely 

contradictory in that it seems largely anti-inflammatory, but is also involved in 

mechanisms that are part of inflammation.  The further complications offered by sickle 

vasculature in particular, the blunted vasodilatory response and sickle plasma acting as 

an NO "sink", only serve to make proposed NO-based treatments more problematic.  

And yet, some success has been had with in vivo administration of L-arginine to 

patients, a factor known to promote NO production (Morris et al., 2003; Romero et al., 

2002; Vichinsky, 2002; Morris et al., 2000), or with directly inhaled doses of NO (Weiner 
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et al., 2003; Cannon, III et al., 2001; Gladwin & Schechter, 2001) which have shown 

potential for possibly reducing the severity and duration of acute sickle pain crisis.   

This histamine and NO-dependent data suggest alternate or additional 

treatments for the decrease of pain crisis severity and frequency.  Control of the 

signaling mechanism activated in response to adhesion-inducing reagents is promising, 

as this would preempt the signal before ligand expression, and halting the expression 

mechanism instead of trying to block each adhesive ligand as it is expressed.  Further, 

inactivation of the intracellular signaling mechanism may inactivate multiple ligand 

expression mechanisms with a single treatment. Results in Chapter IV, elaborating the 

part played by the specific H2 and H4 receptors, suggest a simple pharmacologic 

blockade for prevention of initiating adhesion.  Unfortunately, NO blocking is a more 

difficult prospect.  The involvement of NO mechanisms in the control of numerous 

systems, including normal vascular tone, and the incomplete current understanding of 

these mechanisms, prevents considering pharmacologic blocking of NOS activity as a 

preventative therapy for pain crisis.  However, the knowledge that histamine promotes 

adherence of sickle cell erythrocytes to stimulated endothelium via a NOS-dependent 

pathway may prove useful when more is known about NO vascular regulation. 

 

7.1.5   Experimental Challenges 

The data presented in this section proved to be highly problematic in several 

respects.  Initial investigations of the nitric oxide literature led to the hypothesis that, as 

large doses of nitric oxide had led to an improvement in patient condition (Belhassen et 

al., 2001; Gladwin et al., 2001), the blockade of NOS and thus drastic reduction of NO 

(due to it’s short in-vitro lifespan (Aslan et al., 2001; Dias-Da-Motta et al., 1996)) would 

lead to increased sickle erythrocyte adhesion.  This increase might be even greater 

when in the presence of histamine, as NO was initially thought to be a mediating factor 
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to blunt the pro-adhesion histamine response.  However, upon the discovery that our 

techniques for blocking the formation of NO in the cell led to a decrease in sickle 

erythrocyte adhesion, the literature was studied in much greater detail.  A surprisingly 

complicated and apparently contradictory system of interactions and interrelations was 

found in relation to NOS, as detailed in 7.1.1 and 7.1.4. 

From these limited results, the status of NOS and eNOS in relation to sickle 

erythrocyte adhesion increased in the presence of histamine would seem best 

interpreted as a regulatory factor.  When the system is flooded with NO or made to 

enormously over-produce NO with the addition of L-arginine, the endothelium responds 

with drastic decreases in adhesive factors.  However, when NO production is completely 

halted, sickle erythrocyte adhesion is similarly halted.  When NO production is allowed to 

respond normally to the presence of histamine, adhesion is increased.  Thus it seems 

that NOS acts as a messenger in the propagation of sickle erythrocyte adhesion via 

histamine stimulation, propagating the signal when active, incapable of propagating the 

signal when pharmacologically blocked, and when flooded with NO, alternate cellular 

systems respond to the high dose of the vaso-relaxer.  Thus, small regulatory quantities 

of NO are required for normal cellular response, while large influxes of NO constitute an 

overwhelming signal that the endothelial cells deal with differently. 

Further in-depth studies of NO and NOS to evaluate these points would require 

adhesion assays employing widely varied levels of nitroprusside, an NO donor, to test 

the level at which NO becomes severely anti-adhesion.  ELISA studies could be 

employed for detection of intracellular NO production in the presence of histamine, as 

well as H2 and H4 agonists and antagonists to determine if the NOS activation is 

receptor-dependent.  However, it is difficult to conceive of applying an NO blockade in 

vivo for potential patient treatment, especially in the face of other successful treatments 

acting in direct opposition to this proposed treatment.  In light of the acknowledged 
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complexity of the NO system uncovered here, it seems unlikely that NO blocking 

treatments will soon acquire the degree of control necessary to fine-tune the NO 

signaling system and make prevention of sickle erythrocyte adhesion in patients via this 

method a viable alternative. 

 

7.2  Alternate Endothelial Cell Sources 

 

7.2.1  Intent and Background 

 The vasculature of sickle cell patients, specifically the endothelial monolayer of 

the microvasculature, is exposed to a hemodynamic and cell signaling environment very 

different from non-sickle patient vasculature.  The shear environment is significantly 

reduced and oscillatory in comparison to non-sickle patient vasculature; likely as a result 

of blunted blood flow regulatory response (such as the blunted response to nitric oxide 

mentioned in section 7.1.1) or apparent loss of vaso motor tone.  Further, sickle 

microvascular endothelial cells are under constant exposure to inflammatory, thrombotic, 

and immune-response mediating factors that are typically found at elevated levels in 

sickle patients (covered in detail in sections 2.2.3, 2.3.3, and 2.6).  These conditions are 

supported by examination of circulating endothelial cells (CECs) from patients with sickle 

cell anemia.  CECs are found in increased numbers and in a viable but activated state 

(Solovey et al., 1999; Solovey et al., 1997) implying both a mechanical trauma (Mutin et 

al., 1999) to the sickle endothelium and a response to a chronically activated vascular 

signaling system.  Further, studies of the transgenic sickle mouse model have found 

similar vascular dysfunctionalities in this animal model as a result of its expression of 

sickle hemoglobin, including cytokine-mediated pro-inflammatory (Belcher et al., 2003) 

and pro-thrombotic (Wood et al., 2004b) states, and otherwise demonstrating a range of 

vascular instabilities (Nath et al., 2000; Kaul et al., 2000b).  Thus it is believed that the 
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endothelial monolayers in sickle patient vasculature are chronically damaged and 

constantly exposed to a chronically pro-inflammatory, pro-thrombotic, and pro-immune 

responsive (and thus pro-adhesive) environment. 

 Importantly, this implies that sickle endothelium is phenotypically different from 

endothelial cells harvested from non-sickle patients.  Endothelial cells constantly 

exposed to chronically elevated levels of activation factors, growing in a mechanically 

damaged environment, and perfused with altered shear dynamics, are likely to 

subsequently respond differently to further elevation of these factors or changes in shear 

when compared to standard endothelial cultures.  As such, the altered endothelium of 

sickle microvasculature is likely a key factor in the adhesion that initiates and propagates 

incidents of sickle pain crisis.  Yet this consideration is largely ignored in current in vitro 

modeling of sickle erythrocyte adhesion. 

Two separate sets of studies were designed to acquire an endothelial culture for 

use in flow chamber assays that would be more physiologically relevant to sickle 

erythrocyte adhesion in vivo.  These studies attempted to derive endothelial cell cultures 

from (7.2.2) circulating endothelial cells from sickle patient blood samples or (7.2.4) the 

lungs of the "sickle mice" animal model. 

 

7.2.2  Circulating Endothelial Cells:  Materials and Methods 

 The number of circulating endothelial cells found in blood samples from patients 

with sickle cell anemia are notably elevated (Solovey et al., 1997), with an average of 

tenfold more cells per milliliter of blood.  Further, these cells show a much higher than 

normal degree of viability (Solovey et al., 1997), making them a target for both 

separation and culture. Several different techniques were employed by both an 

undergraduate REU assistant supervised by me, Chen Yang, and myself in an attempt 

to separate and culture these endothelial cells for use in perfusion chamber studies.   
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Two primary techniques were employed in attempting to culture circulating 

endothelial cells.  The first involved collection of the ordinarily discarded buffy coat from 

patient blood samples.  The buffy coat was then resuspended in complete MEC media, 

and plated in 10 cm Petri-dishes pre-coated overnight with 2 ml of 0.1% gelatin solution.  

(The number of dishes and volume of media used was varied experimentally.)  This 

technique, derived from the experimental techniques of Dr. Hanson (protocol formulated 

from in-person conversation) of the Yerkes National Primate Research Center, was 

attempted both with 2-5 ml blood samples collected normally for adhesion studies (see 

section 3.2.1), and from large (~900 ml) discard blood samples.  With the transfusion 

blood samples, large amounts of buffy coat were collected, and were repeatedly re-

centrifuged to remove sickle erythrocyte fractions.  After two hours, supernatant was 

gently aspirated from the Petri dishes, and fresh complete media was added, being sure 

to agitate the plated buffy coat into a suspension again.  After a further eight hours, the 

Petri dishes were thoroughly rinsed to remove non-adherent cells and buffy coat, and 

fresh media was added.  Dishes were fed regularly every other day following. 

The second technique used an endothelial-targeted antibody coupled with 

magnetic beads used to specifically attack the CECs.  The following protocol was 

derived from the literature (Solovey et al., 2001b; Lin et al., 2000; Solovey et al., 1997; 

George et al., 1992).  A supply of Dynabeads® M-450 Goat anti-mouse IgG, a set of 

monosized, superparamagnetic, polystyrene beads with 4.5 µm diameter and affinity 

purified Goat anti-mouse IgG covalently bonded to their surface was acquired 

(Invitrogen, Carlsbad, CA.).  Blood samples were then incubated with the mouse anti-

human monoclonal antibody to P1H12 (Chemicon, Temecula, CA).  In blood, this 

antibody reacts exclusively with CD146, a receptor only on endothelial cells.  A 

concentration of 10 µg/ml of the monoclonal antibody was used.  A Dynabead solution 
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was then added to and incubated with the blood sample.  After incubation, the 

endothelial cells tethered to the paramagnetic polystyrene beads were drawn out of 

solution through the use of a strong magnet embedded in a centrifuge tube holder 

(Dynal A. S.), and the remainder of the blood solution was decanted away.  Antibody 

and Dynabead® concentration as well as the incubation time for both were widely varied 

in an attempt to improve the technique’s efficiency.  After the supernatant blood was 

decanted away, the centrifuge tube was removed from the magnetic holder, the 

remaining cells were resuspended in complete MEC media, and the solution was plated 

in Petri dishes similarly prepared as in the first technique.  The cells were allowed to 

attach overnight, then fed with fresh media 12 hours later, and every two days following. 

 

7.2.3   Circulating Endothelial Cells:  Partial Results 

 Unfortunately, despite exhaustive repetition (detailed below), none of these 

techniques resulted in viable cultures.  On several occasions, dispersed individual cells 

or small clusters of endothelial cells were visually identified and attempts were made to 

culture them, but the cultures exhibited extremely slow growth, where growth was seen 

at all, and all eventually became contaminated or apoptotic and detached.  The primary 

reason for the failure of these techniques was the scarcity of the endothelial cells sought.  

Although viable circulating endothelial cells are elevated in comparison to those found in 

blood from non-sickle patients, 12-22 cells per ml would give <100 cells per normal 

blood sample received.  Even with 100% efficiency of cell harvesting, this is still an 

exceedingly small number of cells for culture.  Further, endothelial cell proliferation is 

partially motivated by contact with other endothelial cells, naturally unavailable in such a 

small, dispersed culture.  Although a culture was never attained, there is also some 

question as to whether CECs passaged the multiple times necessary to reach the 
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volume needed for repeated perfusion chamber assays would still retain the altered 

phenotypic nature of sickle endothelium.   

 Extensive alteration was made to the centrifugation technique outlined in section 

7.2.2 in an attempt to increase the efficiency of endothelial cell separation and/or culture 

viability.  Separation based on simple centrifugation was based on the work of Dr. 

Hanson, who had successfully separated circulating endothelial cells from baboon blood.  

Our concern with this technique focused on endothelial viability during the “plating” 

stage.  The endothelial cells were plated along with concentrated portions of buffy coat, 

including leukocytes and platelets, whose response to centrifugation, separation, and 

incubation likely included large releases of cytokines and thrombotic factors adversely 

affecting endothelial cell adhesion and proliferation.  Further, the small but significant 

fraction of erythrocytes captured with the buffy coat could lyse if retained in the media for 

a long time, releasing similarly detrimental heme, iron ions, and oxidative factors into 

solution.  With this in mind, a range of incubation times and wash protocols were used in 

an attempt to allow endothelial cells maximum time to attach while balancing against the 

minimum exposure time to the other fractions of the buffy coat.  These techniques 

included aspiration of excess media when the buffy coat had settled to the surface, 

followed by resuspension in fresh media to dilute released factors, as well as roughly 

washing-out buffy coat fractions once endothelial monolayers had been allowed to 

attach.  Including all culture and plating variations, this technique was employed with a 

total of 21 blood samples, and produced only two potential cultures, one of which 

showed some growth (~250 cells) before becoming apoptotic and detached. 

In an attempt to address the low quantity problem of circulating endothelial cells, 

much larger blood samples were employed on two different occasions in identical 

centrifugation separations.  For each occasion, approximately 900 ml of discard blood 

from a single sickle-cell transfusion patient, acquired from the Georgia Comprehensive 
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Sickle Cell Center at Grady Memorial Hospital with the assistance of Dr. Hsu were 

employed in these studies.  This, however, only compounds the difficulty of dealing with 

the excess buffy coat during the plating stage, as the total volume of buffy coat reached 

30 to 40 ml, with considerable overlap with the lightest erythrocyte fractions.  

Unfortunately, this variation also did not result in viable sickle endothelial cell cultures, 

likely due to the high concentration of platelets and leukocytes activated by 

centrifugation.   

Similar difficulties were encountered in the use of the paramagnetic polystyrene 

beads in imitation of the work of Dr. Lin (Lin et al., 2000) who had successfully 

separated, cultured, and characterized endothelial cells from human blood samples.  

These studies were conducted primarily by Chen Yang under my supervision.  Despite 

extensive variation in the antibody and polystyrene bead concentration and the 

incubation time, both above and below that recommended by the manufacturer’s 

protocol (Dynal, 2001), separation via the technique described in 7.2.2 was unsuccessful 

in isolating sufficient endothelial cells for a viable culture.  The techniques upon which 

the magnetic separation protocols were based were designed for separations of many 

more cells than our 10~20 per milliliter of blood.  Our protocol variations on this 

technique were thus a balance between sufficient paramagnetic beads and sufficient 

incubation time for the polystyrene beads to distribute and attach to the circulating 

endothelial cells, but keeping the number of beads and incubation time low enough that 

excessive numbers of paramagnetic beads don’t attach to the cells and hinder their 

ability to attach to the cell culture surface and proliferate.  This is an especially delicate 

manipulation considering that circulating endothelial cells have already been severely 

stressed by the mechanical damage that led to their circulating status.  Further 

technique adjustments were also attempted.  Approximately 19 attempts were made to 

separate viable circulating endothelial cells from individual blood samples.  Of those 
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attempts, six yielded adherent endothelial cells.  Culture attempts of up to six weeks 

were made with these cells, but were unsuccessful, as three were lost to bacterial 

contamination (a cumulative hazard of long-term culture), and only one showed 

significant growth, reaching approximately 500 cells (estimated by extrapolation of 

random microscopic fields) before becoming apoptotic and detaching.  None of the 

protocol adjustments attempted with this technique resulted in viable cultures. 

 

7.2.4  Sickle Mouse Derived Endothelial Cell Cultures:  Materials and Methods 

 Recent advances in genetic engineering and improvements in the technique of 

breeding the notoriously delicate human-sickle-hemoglobin-expressing mice have 

provided researchers with a viable animal model for the study of sickle cell anemia in 

vivo (Paszty et al., 1997; Ryan et al., 1997).  Studies evaluating the vascular 

characteristics of these mice have found many characteristics in common with sickle cell 

anemia in humans. These characteristics include loss of vaso-motor tone and blunted 

response to vaso-relaxing agents like nitric oxide (Nath et al., 2000; Kaul et al., 2000b), 

presence of pro-inflammatory state cytokines, increased leukocyte-endothelium 

interaction, endothelial oxidant generation, and significant flow abnormalities (Nath et al., 

2000; Kaul et al., 2000a), TNF-α driven microvascular occlusion via blood cell adhesion 

(Turhan et al., 2002), expression of adhesive ligands like E -selectin and P-selectin 

(Wood et al., 2004a; Wood et al., 2004b), and well documented organ and blood vessel 

pathology (Paszty et al., 1997; Ryan et al., 1997).  These symptoms all combine to make 

an excellent animal model of sickle cell anemia that is likely to be extremely helpful in 

modeling sickle pain crisis in humans.  The endothelium from sickle mice is likely to be 

similarly to that in sickle patients, since, in addition to the endothelial-dependent 

dysfunctions mentioned above, it is also exposed to elevated inflammatory and 

thrombotic factors, and altered shear dynamics.  As such, these sickle mice represent a 
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promising alternate cell source for the endothelial cell cultures used in in vitro flow 

adhesion assays.  Use of sickle-mouse-derived cell cultures should give at least 

preliminary answers to the question of whether or not endothelium from sickle patients 

will interact with sickle erythrocytes differently than endothelial cells cultured from 

standard cell lines.  However, standard MECs from the sickle mice are very difficult to 

harvest in significant quantities.  Only the mouse lungs, with their heavily vascularized 

enormous surface area for oxygen / carbon dioxide exchange, provide sufficient 

endothelial cells to form a full culture.   

 Endothelial cells derived from the lungs of the sickle mouse model (Birmingham 

model) were generously provided after isolation and culture by the lab of Dr. Lou Ann 

Brown, Scientific Director of the Emory Alcohol and Lung Biology Center at Emory 

University, who maintains a dissection and cell culture lab for similar sickle-mouse model 

experiments at Emory University.  For each attempt, four sickle mice were sacrificed by 

Dr. Brown’s lab and their lungs excised under sterile conditions.  The lungs were then 

cut into small pieces and immersed in a trypsin solution similar to that used during 

standard cell culture protocols as mentioned in 3.1.2.  The trypsin was thus able to 

detach the endothelial cells from the underlying lung tissue with minimal cellular 

contamination.  After gentle agitation to suspend the sickle mouse lung endothelial cells, 

the trypsin was neutralized by addition of complete lung endothelial cell media (also 

generously provided by Dr. Archer’s lab), pooled, and plated into 4-5 Labtek® single-well 

chamber slides.  Confluent plates were cultured by Dr. Archer’s lab with this technique 

for our use in standard sickle cell adherence flow chamber assays.  Plates seeded in this 

manner required only 2-3 days to reach full confluence. 
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7.2.5  Sickle Mouse Derived Endothelial Cell Cultures:  Partial Results 

 Sufficient endothelial cells were readily derived from the harvested lung tissue.  

Four mice were sacrificed at each attempt, endothelial cells were harvested from their 

lungs, the cells were pooled, and then plated into chamber slides.  Unfortunately, 

bacterial contamination struck the endothelial cell cultures on the three occasions this 

technique was attempted, causing mass detachment and cell culture death in all but one 

of the culture plates.  The study was cancelled following this contamination in light of the 

number of sacrificed mice needed for the cultures.  It was later found that the mouse 

subjects had contracted a mild respiratory infection prior to sacrifice, and it was 

hypothesized that, in the nutrient-rich culture media, the bacteria had blossomed into the 

observed contamination. 

The single surviving plate salvaged from these cultures was used in a simple 

parallel-plate assay (as defined in 3.4 & 4.1) without stimulation.  The results of this 

single experiment are presented in Figure 7.2.  Of course, as the endothelial cells were 

pooled, this plate was likely also affected by the bacterial contamination, and, in any 

case, little can be derived from a single experimental run.  However, taking those flaws 

into account, the dynamics of adhesion seen in Figure 7.2 seem to follow the same 

general rise to an equilibrium observed in our other experiments, indicating that sickle 

mouse-derived endothelial cultures employed in adhesion assays exhibit similar 

dynamics and thus are a viable subject for investigation. 
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Figure 7.2:  Adhesion Assay With Sickle Mouse Derived Endothelial Cells  
Transgenic sickle mouse lung-derived endothelial monolayer was used in a standard 
parallel-plate perfusion chamber adhesion assay with human sickle erythrocyte 
suspension.  Endothelium was not pre-treated with inflammatory mediators.  n=1 

 

7.3  Sickle Erythrocyte Detachment Assays 

 

7.3.1  Intent and Background  

 Detachment studies are a technique for judging the durability of the bonds 

holding adherent cells to a surface (Walmet et al., 2003).  In these studies, adhesion is 

first induced via the selected bond either under low flow or static incubation of the target 

cell with ligands or other adherent structures secured to a stationary surface.  After 

sufficient adhesion has developed, the perfusion rate is increased in a stepwise manner, 

perfusing cell-free media through the chamber at increasingly greater rates (Walmet et 

 160



 

al., 2003).  After each stepwise increase, the number of adherent cells is allowed to 

reach a new equilibrium, whereupon cell adhesion is counted, and the flow rate is 

increased once more.  The point at which particular fractions of adherent cells detach 

provides qualitative and quantitative information about the relative strength and nature of 

the bonds securing the adherent cells.  Specific to the case of sickle cell anemia, 

detachment studies also have relevance in that the increased flowrate can be said to 

replicate the increased reperfusion pressure effect thought to eventually reverse the 

vaso-occlusive pain crisis in sickle microvasculature (Lipowsky et al., 1987; Rodgers et 

al., 1984).  Consequently, adhesion of sickle erythrocytes by significantly stronger bonds 

is of special significance to the initiation of pain crisis.  We hypothesized that those 

bonds capable of resisting higher reperfusion pressures would be the same bonds more 

capable of maintaining cell adhesion under increased shear and thus more capable of 

initiating pain crisis. 

 

7.3.2  Materials and Methods 

 Detachment studies were performed in assays where adhesion had been up-

regulated with standard histamine or TNF-α stimulation, as the methodology merely 

required further perfusion following the endpoint of any standard adhesion assay.  The 

methods for these detachment assays are covered in section 3.4. 

 Assessment of results is done through the evaluation of the τ50, the shear rate at 

which half of the adherent cells become detached, which is a general measure of bond 

strength.  This calculation is made by a line fit to a graph of shear (dyne/cm2) vs. 

remaining adherent cells (% of total at 1.0 dyne/cm2 -baseline).  The line fit is begun with 

data collected at the 40 minute mark, and the data is fit to the following formula (Walmet 

et al., 2003; Garcia et al., 1998):   
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    (Equation 7.1) 

  Where: 

  f = fraction of adherent cells 

  τ = surface shear stress (dyne/cm2) 

  τ50 = surface shear stress (dyne/cm2) when f = 0.50 

  b = inflection of the slope 

 τ50 is then derived directly by setting f = 0.50 and solving for τ. 

 

7.3.3  Partial Results 

 A selection of data from these studies is presented in Figure 7.3.  It includes (A) 

a summary of selected standard histamine mediated adhesion detachment assays 

comparing bond strength with or without histamine in the rinse media, (B) a comparison 

of bond strength formed by histamine and TNF-α both separately and in combination, 

and (C) a detachment assay following a standard amthamine / methylhistamine 

histamine receptor agonist experiment (see Chapter IV).  These represent standard 

experimental trials involving detachment assays.  Calculation of τ50 showed values of 

1.637 dyne/cm2 and 1.835 dyne/cm2 for the detachment techniques in Figure 7.3 A.  In 

Figure 7.3 B, the τ50 of adhesion for histamine is 1.809 dyne/cm2, while the τ50 of 

adhesion for TNF-α is 2.873 dyne/cm2.  In combination, the τ50 is further increased to 

3.460 dyne/cm2.  In Figure 7.3 C, the τ50 changed from 1.705 dyne/cm2 to 2.239 

dyne/cm2 dependent upon whether adhesion is mediated via histamine or combined 

specific H-receptor agonists.   

 
 

 162



 

A

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60
Perfusion time (min)

A
dh

er
en

t C
el

ls
 / 

m
m

 2

Unstimulated
100 uM Histamine, Unstimulated rinse
100 uM Histamine, Histamine stimulated rinse

 1.
5 

dy
ne

s/
cm

2
 

 1.
0 

dy
ne

s/
cm

2
 

 2.
0 

dy
ne

s/
cm

2
 

/c
m

2
 

 3.
0 

dy
ne

s/
cm

2
 

 2.
5 

dy
ne

s

 

B

0
20
40
60
80

100
120
140
160
180
200

0 10 20 30 40 50 6
Perfusion time (min)

A
dh

er
en

t C
el

ls
 / 

m
m

 2

0

100 uM Histamine

500 U/ml TNF

100 uM Histamine
+ 500 U/ml TNF

 

C

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Perfusion Time (min)

A
dh

er
en

t C
el

ls
 / 

m
m

 2

100 uM Histamine
Unstimulated
10uM Methistamine
10uM Amthamine
H2 + H3-H4 Agonist

 2.
0 

dy
ne

s/
cm

2
 

 2.
5 

dy
ne

s/
cm

2
 

 3.
0 

dy
ne

s/
cm

2
 

 1.
5 

dy
ne

s/
cm

2
 

 1.
0 

dy
ne

s/
cm

2
 

 2.
0 

dy
ne

s/
cm

2
 

 2.
5 

dy
ne

s/
cm

2
 

 3.
0 

dy
ne

s/
cm

2
 

 1.
5 

dy
ne

s/
cm

2
 

 1.
0 

dy
ne

s/
cm

2
 

 
Figure 7.3:  Sample Detachment Assay Data Sets for Histamine  Data in (A) are 
mean ±  SEM sickle erythrocyte adherence for n=4.  Data in (B) and (C) are both n=1.  
Arrows in all panels indicate timepoint at which detachment phase of adhesion assay is 
begun, indicating an increase in media only perfusion rate.  τ50 calculated for factors that 
increased adhesion.  (A)  τ50 = 1.637 for Unstimulated rinse, 1.835 for Histamine 
stimulated rinse, (B)  τ50 = 1.809 for Histamine stimulated, 2.873 for TNF stimulated, 
3.460 for Histamine + TNF, (C)  τ50 = 1.705 for Histamine stimulated, 2.239 for H2 + 
H3/H4 Agonists.  Shear stress at each point past 40 min. noted on the figures. 
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7.3.4  Discussion 

 Strong conclusions cannot be drawn from these studies due to their limited 

nature, but calculation of τ50 showed some interesting preliminary results.  In Figure 7.3 

A, it is evident that the presence or absence of histamine in the detachment perfusate is 

largely irrelevant.  This would seem to support the conclusions reached in Figure 4.2 that 

histamine stimulation beyond a certain time no longer promotes new bond formation, nor 

reinforces bonds already formed.  Surprisingly, the change in Figure 7.3 C from 1.705 

dyne/cm2 to 2.239 dyne/cm2 dependent on histamine or combined specific H-receptor 

agonist adhesion promotion seems to indicate a difference in bond strength between the 

two different promotion techniques.  This may indicate further strengthening of the bond 

would be achieved by further simultaneous activation of the H1, or H3 receptors with H2 

and H4, but the change is more likely due to an inherent increase in inaccuracy of the 

line fit due to the decreased scale of adhesion (due to a less adherent blood sample).  

Further tests would be required to evaluate this point. 

 Most interesting is Figure 7.3 B, as it directly compares the strength of bonds 

formed with histamine and TNF-α mediated adhesion.  The difference in τ50 indicates 

that bonds formed via the VCAM-1 pathway appear to be notably stronger than those 

formed via P-selectin.  In combination, the two adhesion mechanisms result in a τ50 that 

is further increased to 3.460 dyne/cm2, indicating an somewhat additive effect of the two 

bond formation mechanisms, which furthers the theory that multiple inflammatory effects 

could act in concordance to strengthen adhesive interactions in the initiation of vaso-

occlusive events.  This does not eliminate histamine as a potential initiator of pain 

events, however, as cells immobilized by P-selectin at lower shear by stimulation with 

histamine could then become adherent to the endothelial surface via the formation of 

other slower-forming bonds present on the chronically activated sickle endothelium. 
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 Detachment assays, even from the preliminary studies completed here, allow a 

straightforward evaluation of the strength of bonds formed under shear during the course 

of flow assays.  As the initiating event in sickle pain crisis, bond strength is exceedingly 

important in assessing the relative risk particular sickle erythrocyte adhesion 

mechanisms may present in vivo.  Detachment assays, therefore, are simple techniques 

that allow the initial assessment, singly and in combination, of potential pain-crisis-

initiating adhesion-causing inflammatory responses. 
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CHAPTER VIII 
 

CONCLUSIONS AND FUTURE WORK 
 
 
 

8.1  Conclusions 

 The adhesion of sickle erythrocytes to the endothelium of post capillary venules 

in the microvasculature of patients with sickle cell anemia is theorized to be the initiating 

factor in the vaso-occlusive event known as a sickle cell pain event.  This vaso-occlusive 

event leads to severe pain and ischemic damage which, over time, can cause tissue and 

organ damage.  In this thesis I showed, using flow assays, that the inflammatory 

mediator histamine promotes sickle erythrocyte adhesion to endothelium in a shear-

dependent manner, suggesting histamine may promote sickle cell adhesion and pain 

crisis in patients.  In the first part of this thesis, histamine was shown to promote 

increased sickle erythrocyte adhesion to cultured endothelial monolayers under steady 

shear stress of 1.0 dyne/cm2.  The signaling mechanisms induced by histamine to 

increase adhesion were investigated through the use of highly specific receptor agonists 

and antagonists as well as highly specific peptides for the blocking of ligands.  It was 

shown that sickle erythrocyte adhesion was dependent upon the simultaneous activation 

of the H2 and H4 endothelial receptor, and the expression of P-selectin ligand on 

endothelial cells.  Additional studies also suggest that the histamine signaling pathway 

requires active nitric oxide synthase.  These studies both strongly suggest the 

importance of histamine in sickle cell pain event-initiating adhesion of sickle 

erythrocytes, and indicate possible targets for prevention of sickle cell adhesion by 

pharmacological interference with the histamine receptor, ligand expression, or 

histamine signal pathway. 
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 In the second part of this thesis, the effect of reduced shear stress on the 

adhesion of sickle erythrocytes to stimulated endothelium was explored.  Shear stress is 

especially significant to the mechanism of sickle erythrocyte adherence due to the 

chronically depressed and oscillatory nature of blood flow in the microvasculature of 

patients with sickle cell anemia.  Tumor necrosis factor α, a well-characterized 

inflammatory mediator capable of promoting strong sickle erythrocyte adhesion by the 

expression of vascular adhesion molecule 1, was used in this initial evaluation of shear 

effect on sickle erythrocyte adhesion.  Results show that both lower shear stress and 

inflammatory stimulation increases sickle erythrocyte adhesion.  When used in 

combination, TNF-α further increases adhesion elevated by depressed shear, so long as 

adhesion is not depressed below approximately 0.6 dyne/cm2.  Below this range, TNF-α 

stimulation quickly looses its efficacy, and in the low shear range, shear stress becomes 

the dominant controlling factor of sickle erythrocyte adhesion.  These studies indicate 

the interaction of two different adhesion mechanisms dictating the adhesion of sickle 

erythrocytes.  At high shear stress, adhesion is dominated by the expression of high-

affinity bonds up regulated by stimulation with TNF-α.  At low shear stress, adhesion 

occurs independent of the expression of high-affinity bonds.  These studies demonstrate 

that the chronically depressed and oscillatory nature of microvascular blood flow in sickle 

patients likely interacts with the chronically pro-adhesive nature of their blood chemistry 

to further increase the risk of pain-crisis-initiating sickle erythrocyte adhesion. 

 In the third part of this thesis, having established shear stress as an independent 

variable that controls sickle cell adhesion induced by inflammatory mediators, and 

having established the capacity of histamine to promote sickle cell adhesion, the two 

preceding parts were combined in a study of histamine stimulation on erythrocyte 

adhesion under a range of shear stresses.  This study was conducted to evaluate the 
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effect of reduced shear stress on histamine's ability to promote adhesion.  As in the 

study of TNF-α, the intent was to evaluate adherence in a model of sickle vasculature, 

while accounting for the oscillatory and depressed nature of blood flow typical to sickle 

microcirculation.  Sickle erythrocyte adherence was found to be increased both for 

depression of shear rate and for stimulation with histamine.  In combination, histamine 

stimulation produced a further elevation in sickle erythrocyte adhesion under moderately 

depressed shear (0.8-0.4 dyne/cm2).  In the lowest shear range, however, histamine 

stimulation lost its efficacy, not contributing to adhesion in the shear stress range of 0.1 

to 0.2 dyne/cm2.  In comparison with TNF-α results, histamine stimulation was less 

effective at promoting sickle erythrocyte adhesion at high shear stresses (1.0-0.8 

dyne/cm2), but roughly similar in promoting adhesion at 0.6 dyne/cm2.  Further, 

histamine was still effective at promoting adhesion at 0.4 dyne/cm2, a range where TNF-

α looses effect.   

The difference in the degree of increased adhesion in the different ranges of 

shear stress is likely a result of differences in mechanisms of adhesion.  Differences in 

bond type, strength, or cell-cell contact requirements for bond initiation may account for 

this difference, and the lower adhesion at high shear displayed by histamine stimulation 

could be due to lower bond strength or a requirement for longer cell-cell contact for bond 

formation.  The faster rise in adhesion following a moderate reduction in shear further 

supports this evaluation.  These results show that, similarly to TNF-α stimulation, 

histamine is more likely to initiate sickle cell adhesion, and thus sickle pain events, 

during periods of reduced flowrate in the microvasculature of patients with sickle cell 

anemia, but severe reduction to the range of 0.1 and 0.2 dyne/cm2 results in high levels 

of adhesion independent of inflammatory activation.  The potential risk of histamine to 

patient condition is further emphasized by the elevated levels of histamine known to 
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exist in sickle patient blood during both pain crisis and non-pain crisis periods (Kasschau 

et al., 1996; Malave et al., 1993; Francis, Jr. et al., 1992; Enwonwu et al., 1991), and 

due to the known histaminergic effects of some treatments for sickle pain (Chaney, 

1995; Fuller et al., 1990; Muldoon et al., 1984). 

 The final part of this thesis presented preliminary studies in three fields tangential 

to the central aims of this thesis.  Although the results are incomplete, they do raise 

interesting questions and highlight areas for further investigation.  A study of NO and 

eNOS mediation of adhesion under histamine stimulation found an unexpected 

dependence of adhesion on having active NOS in the endothelial layer.  This discovery 

implies a complex and problematic role for NO in regulating adhesion, implying that 

small regulatory amounts of NO are necessary for adhesion under histamine stimulation, 

but that large doses act as a blanket adhesion suppressant.  In a second study, the likely 

phenotypic difference between the microvascular endothelium of sickle and non-sickle 

patients led to extensive attempts to acquire both human sickle and transgenic sickle 

mouse-derived endothelial cultures.  Data from an adhesion assay employing a 

transgenic sickle mouse-derived culture are promising, and suggest that the mouse-

model lung endothelial cells should be examined for phenotypic differences in mediating 

sickle erythrocyte adherence.  Finally, preliminary detachment assays were run on sickle 

erythrocyte adherence formed under TNF-α and histamine.  In a limited number of 

experiments, TNF-α mediated adherence was found to form stronger bonds than 

histamine, but the two factors used together caused cellular adherence stronger than 

either individually.  Furthering these studies may reveal the basis of the differences 

observed between TNF-α and histamine-mediated adhesion under different shear 

stresses. 
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8.2  Recommended Future Studies 

 

8.2.1  Sickle Mouse Model 

The studies presented here could have their physiological relevance reinforced 

by demonstration of the illustrated adhesion mechanisms in the newly developed 

transgenic sickle-mouse models expressing human βs and α globin.  As elaborated in 

section 7.2.1, our perfusion flow chambers lack a completely appropriate endothelial cell 

model, since the endothelium of sickle patients is likely to be phenotypically different 

from cell cultures due to the constant exposure to pro-inflammatory, pro-thrombotic, pro-

immune active factors and exposure to the reduced and oscillatory blood flow rate 

typical of sickle endothelium.  The endothelium of sickle mice, while not yet fully 

characterized, is likely to more directly mirror these conditions due to a similarly-affected 

vascular environment.  Many of the details of the sickle mouse model are presented in 

section 2.8 and 7.2.4.  The most directly relevant study using the mouse models to 

confirm the demonstrated histamine mechanism would be to show histamine promoting 

sickle erythrocyte adhesion and causing microvascular occlusion in the sickle mouse 

capillary system.  Cremaster muscle visualization could be employed to visualize 

microvascular blood flow in vivo, and offers a simple protocol for direct addition of 

histamine or histaminergic treatments to the surface of the cremaster muscle in order to 

observe subsequent adhesion.  This technique could be used to confirm that histamine 

promotes sickle erythrocyte adhesion to endothelium of sickle patients by microscopic 

observation during stimulation of the tissue with a histamine solution.  Similarly, use of 

specific H-receptor agonists in solution could be used to confirm the receptors involved 

in histamine-mediated adhesion.  Further, simple observation could show whether the 

histamine-mediated adhesion involves leukocytes or not, as in vitro P-selectin 
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expression will likely result in extensive leukocyte localization in the cremaster.  

Differences in histamine response between sickle and non-sickle mouse endothelium 

could be explored via similar assays with non-sickle controls.  However, it would be 

necessary to characterize the transgenic sickle mouse microvascular endothelium in 

comparison to human endothelium.  Phenotypically different human endothelial cells are 

known to have different levels of specific histamine receptor expression (Gantner et al., 

2002; Morse et al., 2001; van der Werf et al., 1989; Heltianu et al., 1982).  It is 

conceivable that mouse microvascular endothelium may be phenotypically different from 

human, and will require characterization, possibly via RT-PCR assay (Ling et al., 2004), 

to evaluate the suitability of the model.   

The cremaster visualization technique is well established (Baez, 1973) and has 

been demonstrated in many other studies, including examination of sickling (Kaul et al., 

1995) and cytokine-induced sickle erythrocyte adhesion (Liu et al., 1998) in earlier sickle 

mouse models.  Fortunately, the relative speed with which histamine was shown to 

promote adhesion in this thesis (20-40 minute expression) simplifies many of the time-

dependent difficulties involved with microvascular blood flow studies in animal models.  

Pharmacologically suppressing the animal’s own histamine response would be 

necessary, as mast cell activation by the trauma of exposing the cremaster muscle 

would alter results and need to be controlled.   

 

8.2.2    Comparative adhesion mechanisms studies 

 Tumor necrosis factor α and histamine are only two of the many mechanisms 

known to promote sickle erythrocyte adhesion in vitro which have been found to be 

upregulated in the vasculature of patients with sickle cell anemia.  Many other potential 

adhesion pathways are detailed in Chapter II.  In vivo, the mechanism of sickle pain 
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crisis propagation is likely dependent on multiple adhesion mechanisms acting in 

parallel.  However, it is possible that the initiating mechanism, the adhesion of the first 

few sickle erythrocytes that begin the process, is acting through individual high-affinity 

adhesion pathways.  Identifying those pathways most likely to initiate sickle pain crisis 

may allow for focused anti-adhesion therapies for the prevention of pain crisis in 

patients.  As established in this thesis, the chronically depressed and oscillatory flow rate 

of blood in the sickle microvasculature may act to further amplify the effect of stimulated 

adhesion.  Adhesion mechanisms that have little effect at a venular shear stress may be 

greatly amplified by a slightly decreased shear rate, and thus be more likely to initiate 

vaso-occlusive events than a factor that uniformly increases adhesion by a moderate 

amount over the same range.  The linear shear chamber, as in the present studies, can 

be used to evaluate different adhesion mechanisms, highlighting those mechanisms 

most amplified by decreased shear.  Those most amplified would present the greatest 

likelihood of initiating adhesion in vivo, and afford the most promising targets for 

treatment.  Further comparison can be made between the strength of the bonds formed 

as a result of different stimulatory factors by employing a simple detachment assay as 

outlined in section 7.3.   

The requirement of reduced shear for bond formation is no assurance that the 

bond is weaker than one formed under high shear.  A particular adhesion mechanism 

may require the longer cell-cell contact time afforded by the reduced flowrate, but the 

bond formed may be strong enough to maintain integrity at shear rates far above those 

where more quickly formed bonds fail.  In the sickle microvasculature, a transient 

reduction in blood flow might acquire sufficient adherent blood cells to initiate pain crisis 

even if blood velocity returns to normal before the event begins.  Thus it becomes 

essential to evaluate not only the frequency of a particular bond formation, but the 
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frequency of that bond at reduced shear and the strength of that bond as well, marking 

any adhesion mechanisms with high bond strength that form readily under reduced flow 

as targets for potential treatment.  Results would need to be confirmed via animal model 

or clinical study, but the use of the linear shear chamber as outlined in this thesis should 

provide an adequate first comparison of different adhesion mechanisms. 

 

8.2.3  Signal Interruption of Histamine Mediated Sickle Erythrocyte Adhesion 

 As outlined in section 7.1, the rapid increase in sickle erythrocyte adhesion in 

response to histamine stimulation makes it a difficult process to interrupt once triggered, 

and expressed ligands are present for such a relatively short time that their blockade 

while expressed would be difficult and of limited utility.  A promising alternative is to 

prophylactically interrupt the signaling cascade whereby histamine promotes the 

expression of the adhesive ligand P-selectin.  If the signaling cascade is preemptively 

disabled, then the histamine-driven adhesion will not take place in response to histamine 

release.  Although the inactivation of nitric oxide synthase in pursuit of this particular 

objective has proven to be a problematic for in vivo consideration, it is entirely possible 

that alternate approaches may be more specific to the adhesion mechanisms, making 

them more promising targets of regulation.  Possible approaches include disabling the 

expression of the H4 histamine receptor, as we have shown that sickle erythrocyte 

adhesion requires activation of both the H2 and H4 endothelial receptors.  Alternately, 

expression of the P-selectin ligand might be hindered.  As P-selectin evidently has a 

time-dependent expression, understanding the signaling control of the “shedding” or re-

internalization of this ligand may provide possible regulatory approaches to shorten its 

expression time. 
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8.2.4   Summary 

 The data presented in this thesis suggest extension of current sickle cell 

studies in several specific directions.  The first is in the use of a particular animal 

model, a transgenic sickle cell mouse, to confirm the in vitro observed potential of 

histamine to promote sickle erythrocyte adherence and to initiate sickle vaso-

occlusive events.  The second is to employ techniques outlined in this thesis to 

evaluate other sickle erythrocyte adhesion pathways under a range of shear 

stresses, in order to account for the unusual hemodynamics of sickle 

microvasculature.  Doing so will give more accurate insight into the potential of 

any particular mechanism to initiate sickle vaso-occlusive events.  The third is to 

investigate the feasibility of preemptively deactivating the ligand expression 

mechanism of histamine mediated sickle erythrocyte adhesion through blockade 

of histamine receptors, intercellular signaling mechanisms, or altering the 

expression dynamics of P-selectin.  As a potential initiator of sickle pain crisis, 

application of these studies to patient care may lead to a decrease in sickle pain 

crisis incidence and associated ischemic damage. 
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APPENDIX 

 

 

KEY DATA TABLES 

 

 

 

 Data presented in graphic form in the preceding chapters are included in 

expanded form here, in the order in which the referenced graphs appear in the main text.  

Refer to the referenced graphs and sections for details of data collection, agent 

concentration, and formulas.  Data presented here are pooled data taken from adhesion 

assays, and not raw data, which are too extensive to include. 

 Frequently used notation: 

 Data sets are designated by the date of the assay.  When more than one assay 

was conducted on one day, the data sets are distinguished by "A" and "B". 

 Histamine stimulation, unless otherwise stated, is at 100 µM, continuous for the 

duration of the assay. 

 TNF-α stimulation, unless otherwise stated, is a 6-hour stimulation at 500 U/ml 

preceding the assay. 

 In all cases, the normalized value "cells/mm2" refers to sickle erythrocytes. 
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Table A.1 Comparison of Adhesion for Fresh vs. "Day Old" Blood Samples  
Data for Figure 3.1 

Status Date Histamine Unstimulated
Fresh 1/8/2003 45.9 12.8
Fresh 1/16/2003 26.5 8.0
Fresh 1/23/2003 46.7 17.1
Fresh 2/5/2003 17.8 17.1
Fresh 2/12/2003 140.3 118.3
Fresh 2/20/2003 31.2 16.0
Fresh 3/12/2003 42.7 32.1
Fresh 3/19/2003 43.7 35.8

Day Old 5/15/2003 80.0 17.3
Day Old 5/29/2003 36.4 16.0
Day Old 6/12/2003 72.0 32.0
Day Old 6/19/2003 50.1 12.2
Day Old 7/18/2003 100.3 10.4
Day Old 7/31/2003 49.2 10.9
Day Old 8/13/2003 66.0 28.0
Day Old 8/21/2003 34.3 10.9
Day Old 9/5/2003 35.3 4.4
Day Old 9/11/2003 A 33.1 7.0
Day Old 9/11/2003 B 51.3 8.4
Day Old 9/18/2003 45.9 16.0
Day Old 10/16/2003 A 21.1 17.1
Day Old 10/16/2003 B 43.4 16.0
Day Old 10/23/2003 44.3 5.6
Day Old 10/30/2003 55.4 26.4
Day Old 11/6/2003 51.4 13.7
Day Old 1/29/2004 53.3 17.1
Day Old 2/19/2004 40.0 11.6
Day Old  3/05/04 49.9 24.4
Day Old 3/11/2004 37.1 14.5
Day Old 3/18/04A 41.6 26.5
Day Old  3/18/04B 35.0 13.6
Day Old 5/07/04 41.0 16.0
Day Old 5/13/2004 38.7 18.6
Day Old  5/27/04 34.0 6.7
Day Old  6/18/04 37.3 12.0
Day Old 8/27/2004 43.7 9.1
Fresh  9/20/04 32.0 7.0
Fresh 11/20/2003  A 35.7 15.3
Fresh 11/20/2003  B 35.7 8.3
Fresh 4/2/2004 54.4 15.3
Fresh 4/30/2004 30.4 11.1
Fresh 10/20/2004 76.0 32.8
Fresh 1/11/2005 41.7 14.3  
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Table A.5  Prestimulation Histamine Trials   
Data for Figure 4.2 
Time Delay Histamine Dataset
time No Histamine Stimulation

4/30/2004 5/7/2004 5/13/2004 8/27/2004 1/12/2005 AVERAGE SEM
cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2

1 7.4 4.0 4.4 7.3 8.0 6.2 0.7
3 4.0 4.9 6.4 4.6 8.0 5.6 0.6
5 7.7 9.9 13.3 10.4 8.0 9.9 0.9

10 12.5 7.7 23.0 9.5 10.7 12.7 2.4
20 10.1 14.5 21.6 9.9 20.2 15.3 2.2
30 11.6 19.4 21.1 10.9 8.3 14.2 2.2
40 11.1 16.0 18.6 9.1 14.3 13.8 1.5

Histamine Stimulation at t=0
1 8.7 5.8 10.7 12.0 6.9 8.8 1.0
3 14.7 13.3 18.3 13.3 16.0 15.1 0.8
5 32.0 22.1 26.4 21.1 26.9 25.7 1.7

10 36.2 32.0 34.1 26.4 25.0 30.7 1.9
20 27.6 25.3 40.4 37.7 36.7 33.5 2.7
30 40.0 34.1 40.7 45.7 40.4 40.2 1.6
40 30.4 41.0 38.7 43.7 41.7 39.1 2.1

Histamine Stimulation at t=10 min
0

10 0.0 0.0 0.0 0.0 0.0 0.0
11 0.0 1.2 9.6 4.4 3.8 1.7
13 5.3 3.7 16.0 8.0 8.3 2.1
15 12.8 8.0 16.0 10.7 11.9 1.3
20 22.5 14.0 21.9 14.8 18.3 1.8
30 24.0 16.0 30.9 14.5 21.3 2.9
40 21.6 16.0 24.0 11.1 18.2 2.2
50 26.4 16.0 23.2 12.0 19.4 2.5

Histamine Stimulation at t=20 min
0

20 0.0 0.0 0.0 0.0 0.0 0.0 0.0
21 9.3 8.7 2.5 13.1 8.7 8.5 1.5
23 16.0 6.2 12.3 18.5 12.3 13.0 1.9
25 31.1 15.4 20.6 21.9 27.8 23.4 2.5
30 22.9 22.7 39.7 33.6 28.4 29.4 2.9
40 29.0 33.7 46.3 30.9 43.8 36.7 3.1
50 30.4 32.8 44.4 34.1 29.0 34.1 2.4
60 26.5 35.4 46.2 24.7 40.8 34.7 3.7

Histamine Stimulation at t=40 min
0

40 0.0 0.0 0.0 0.0 0.0 0.0 0.0
41 5.8 3.7 4.4 5.3 6.7 5.2 0.5
43 5.3 8.0 5.7 10.2 14.9 8.8 1.6
45 10.2 7.7 14.0 9.3 17.3 11.7 1.6
50 17.7 9.7 10.9 14.3 10.2 12.6 1.3
60 17.5 10.4 18.1 8.0 11.3 13.1 1.8
70 13.7 10.1 25.4 9.4 11.5 14.0 2.6
80 19.2 9.5 18.2 10.9 19.5 15.5 1.9  
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Table A.6  Erythrocyte Stimulation Trials   
Data for Figure 4.3 
Erythrocyte Stimulation

8/27/2004 Hist (endo) none Hist (SS) Sham
time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2

1.2 12.0 1.2 7.3 1.2 8.0 1.2 9.6
2.9 13.3 3.1 4.6 3.0 4.3 3.1 3.4
5.8 21.1 5.7 10.4 5.6 10.1 5.7 6.3
9.4 26.4 9.3 9.5 9.2 12.2 9.3 9.0

19.7 37.7 19.7 9.9 19.7 10.4 19.7 12.8
29.5 45.7 29.5 10.9 29.6 8.0 29.6 10.9
38.6 43.7 38.7 9.1 38.7 10.4 39.0 13.2

5/27/2004 Hist (endo) none Hist (SS) Sham
time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2

1.3 17.8 1.2 4.9 1.2 2.5 1.3 0.0
3.0 11.1 3.0 3.4 3.1 6.2 3.0 5.6
5.8 18.5 5.7 5.3 5.7 7.3 5.7 4.7
9.3 18.2 9.2 6.2 9.3 5.7 9.2 6.4

19.5 32.9 19.6 10.4 19.7 11.4 19.6 8.7
29.5 30.4 29.7 10.9 29.6 7.0 29.4 10.7
38.5 34.0 38.5 6.7 38.2 10.3 38.5 9.5

Hist (endo) none Hist (SS) Sham
6/18/2004 time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2

1.2 16.0 1.2 10.7 1.2 2.5 1.2 7.4
2.9 9.3 2.9 5.7 3.0 6.0 3.0 6.4
5.8 22.9 5.7 8.8 5.7 9.0 5.7 8.0
9.4 26.7 9.4 13.2 9.3 9.2 9.4 11.8

19.7 28.2 19.5 13.5 19.7 10.7 19.6 14.0
29.7 40.9 29.5 22.4 29.6 19.6 29.6 19.2
38.6 37.3 38.0 12.0 38.7 11.6 38.7 16.0

Hist (endo) none Hist (SS) Sham
4/30/2004 time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2

1.2 8.7 1.2 7.4 1.3 6.4 1.3 2.9
3.0 14.7 3.0 4.0 3.1 6.4 3.0 8.0
5.6 32.0 5.8 7.7 5.7 6.1 5.7 11.5
9.4 36.2 9.2 12.5 9.2 10.0 9.2 10.1

19.7 27.6 19.4 10.1 19.5 9.5 19.7 12.2
29.4 40.0 29.5 11.6 29.7 10.4 29.5 11.4
40.0 30.4 38.7 11.1 39.0 12.0 38.8 13.6

Hist (endo) none Hist (SS) Sham
4/2/2004 time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2

1.3 11.2 1.2 6.2 1.2 4.0 1.2 6.2
3.0 20.9 3.0 8.5 3.0 7.5 3.0 9.4
5.8 28.4 5.8 11.3 5.6 10.4 5.7 8.5
9.2 28.0 9.2 12.1 9.2 13.0 9.4 17.9

19.7 33.8 19.6 13.2 19.6 18.2 19.4 23.3
29.8 49.0 29.7 15.3 29.6 10.7 29.4 23.5
38.6 54.4 38.2 15.3 38.6 11.8 38.6 12.9  
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Table A.6   Continued 
Erythrocyte Stimulation

11/20/2004 A Hist (endo) none Hist (SS)
time cells/mm2 time cells/mm2 time cells/mm2

1.2 14.4 1.2 4.6 1.2 3.7
2.9 7.3 3.0 6.4 3.0 9.6
5.6 22.9 5.8 10.0 5.8 7.7
9.3 26.1 9.2 13.2 9.3 14.5

19.6 41.8 19.7 16.9 19.7 17.7
29.8 28.8 29.7 11.6 29.9 14.4
39.7 35.7 38.6 12.0 38.9 14.9

11/20/2004 B Hist (endo) none Hist (SS)
time cells/mm2 time cells/mm2 time cells/mm2

1.2 11.2 1.2 1.3 1.2 6.7
2.8 14.4 3.0 6.9 3.0 7.5
5.7 16.8 5.7 10.4 5.8 3.3
9.4 36.0 9.3 11.2 9.2 11.1

19.7 42.0 19.6 10.9 19.6 12.0
29.8 28.6 29.6 8.8 29.6 10.1
39.5 35.7 39.1 8.3 39.1 14.8

AVERAGES Hist (endo) none Hist (SS) Sham
13.0 6.0 1.2 4.8 1.2 5.2
13.0 5.6 3.0 6.8 3.0 6.6
23.2 9.1 5.7 7.7 5.7 7.8
28.2 11.1 9.3 10.8 9.3 11.1
34.9 12.1 19.6 12.8 19.6 14.2
37.6 13.1 29.7 11.5 29.5 15.1
38.8 10.6 38.8 12.2 38.7 13.0

SEM Hist (endo) none Hist (SS) Sham
3.1 2.9 2.2 3.8
4.4 1.8 1.7 2.3
5.3 2.1 2.5 2.6
6.3 2.6 2.9 4.3
5.9 2.6 3.6 5.4
8.4 4.5 4.3 5.9
8.0 2.9 1.9 2.3  
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Table A.7  Thioperamide, Famotidine, Pyrilamine H-Receptor Antagonists 
Data for Figure 4.4 
Famotidine and Thioperamide

5/15/2003 5/29/2003 6/12/2003 6/19/2003 7/18/2003 9/4/2003
Histamine 100 uM 

time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2
1.2 4.8 1.1 6.0 1.3 9.3 1.2 8.7 1.1 16.0 1.1 12.0
3.0 19.7 2.9 11.1 3.1 16.0 3.0 21.7 2.9 48.0 3.0 20.2
5.1 16.0 5.7 25.2 5.6 21.6 5.8 27.2 5.7 68.2 5.8 24.1
9.5 32.0 9.4 19.0 9.2 20.4 9.2 32.8 9.1 75.3 9.4 22.6
19.4 64.8 19.4 43.6 19.7 51.2 19.6 26.1 19.8 99.0 19.5 25.6
29.6 78.2 29.6 43.4 29.8 72.0 29.5 33.8 29.7 84.3 29.6 44.5
38.6 80.0 38.3 36.4 38.9 72.0 38.5 50.1 38.8 100.3 39.0 35.3

Unstimulated
time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2
1.2 7.1 1.2 3.7 1.2 5.3 1.2 8.6 1.2 4.9 1.2 4.4
3.0 4.6 3.2 6.2 3.0 3.0 3.0 8.0 3.0 6.2 3.0 6.2
5.0 4.9 5.7 5.3 5.6 6.5 5.6 5.9 5.6 8.0 5.8 9.1
10.1 5.3 9.2 9.7 9.4 11.6 9.3 8.8 9.1 6.9 9.3 5.1
20.0 11.0 19.6 9.5 19.6 19.2 19.6 9.0 19.7 16.0 19.6 15.2
29.9 11.6 29.7 10.4 29.7 22.6 29.7 16.0 29.8 11.6 29.6 8.0
37.8 17.3 38.7 16.0 39.1 32.0 38.8 12.2 38.7 10.4 38.6 4.4

Hist 100 uM  + 3 uM Thioperamide
time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2
1.3 1.8 1.2 1.5 1.2 0.0 1.3 6.9 1.1 8.7
2.9 6.2 3.0 7.4 3.0 5.3 3.1 10.0 3.1 5.3
5.3 10.3 5.7 8.0 5.6 4.7 5.8 9.8 5.7 6.0
9.4 12.0 9.3 8.0 9.3 7.6 9.2 11.0 9.4 9.6
19.6 16.0 19.6 15.1 19.7 5.6 19.8 6.5 19.8 13.3
29.5 16.0 29.7 8.0 29.7 8.4 29.7 8.4 29.7 13.5
38.6 30.1 38.6 12.2 38.7 16.8 38.6 13.7 38.7 7.0

Hist 100 uM  + 3 uM Famotidine
time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2

1.2 7.3 1.3 0.0 1.1 1.2 1.2 6.2
3.0 4.6 3.6 6.9 2.9 3.6 3.0 9.4
5.0 9.3 5.7 7.7 5.6 4.7 5.7 7.0
9.6 16.8 9.2 13.1 9.2 8.7 9.3 6.7
19.8 20.9 19.6 12.6 19.6 8.8 19.8 8.4
29.6 28.2 29.6 11.3 29.8 8.8 29.7 10.1
38.5 25.3 38.6 11.4 38.7 16.0 38.9 8.9

10 ⎠ M Pyrilamine, 100 uM Hist
time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2
1.2 3.2 1.2 8.0 1.2 9.6 1.2 16.0 1.2 14.4
3.0 5.7 3.0 13.7 3.0 26.7 2.9 17.1 3.0 11.2
5.0 27.4 5.7 16.9 5.7 25.5 5.7 17.9 5.8 24.5
10.2 39.5 9.3 26.4 9.3 34.9 9.2 18.7 9.4 25.6
19.7 50.1 20.0 30.5 19.8 70.9 19.8 32.0 19.6 34.7
29.5 84.4 29.6 32.0 29.8 89.8 29.8 36.3 29.5 37.0
38.9 94.1 38.7 32.0 38.7 107.1 38.7 41.4 38.8 37.3  
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Table A.7   Continued 
AVERAGES

AVERAGE Thiop AVERAGE Famotidine Average Pyril
Histamine 100 uM Histamine 100 uM Histamine 100 uM 

time cells/mm2 SEM time cells/mm2 SEM time cells/mm2 SEM
1.2 9.0 1.9 1.2 7.2 1.1 1.2 8.2 1.3
3.0 23.3 6.4 3.0 17.1 2.3 3.0 17.7 1.9
5.6 31.6 9.3 5.6 22.5 2.5 5.6 22.8 1.9
9.3 35.9 10.3 9.3 26.1 3.7 9.3 25.4 2.9

19.6 56.9 12.2 19.6 46.4 8.1 19.5 42.3 7.5
29.6 62.3 10.0 29.6 56.9 10.8 29.6 54.4 8.7
38.6 67.8 11.2 38.6 59.6 10.0 38.7 54.8 9.1

Unstimulated Unstimulated Unstimulated
time cells/mm2 SEM time cells/mm2 SEM time cells/mm2 SEM
1.2 5.9 0.9 1.2 6.2 1.1 1.2 5.8 0.9
3.0 5.6 0.8 3.0 5.4 1.1 3.0 5.6 0.8
5.5 6.1 0.5 5.5 5.7 0.4 5.6 6.4 0.7
9.4 8.5 1.1 9.5 8.9 1.3 9.5 8.1 1.3

19.7 12.9 2.0 19.7 12.2 2.4 19.7 12.8 1.9
29.8 14.4 2.3 29.8 15.1 2.8 29.7 13.7 2.6
38.6 17.6 3.8 38.6 19.4 4.3 38.6 16.4 4.5

10 mM Thioperamide no hist
time cells/mm2 SEM
1.2 3.8 1.7
3.0 6.8 0.9
5.6 7.8 1.1
9.3 9.7 0.8

19.7 11.3 2.2
29.7 10.8 1.6
38.6 16.0 3.9

10mM Famotidine, + Hist
time cells/mm2 SEM
1.2 3.7 1.8
3.1 6.1 1.3
5.5 7.2 1.0
9.3 11.3 2.3

19.7 12.7 2.9
29.7 14.6 4.6
38.7 15.4 3.6

10 mM Pyrilamine, Hist
time cells/mm2 SEM
1.2 10.2 2.3
3.0 14.9 3.5
5.6 22.4 2.1
9.5 29.0 3.7
19.8 43.6 7.7
29.6 55.9 12.8
38.7 62.4 15.8  
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Table A.8   Amthamine and Methylhistamine, H-Receptor Agonists 
Data for Figure 4.5 

1/8/2003 1/16/2003 2/20/2003 AVERAGES
Histamine 100 mM Hist

time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2 SEM
1.3 12.0 1.2 7.6 1.2 12.4 1.2 10.7 1.3
2.9 15.8 3.0 11.7 3.0 8.6 3.0 12.0 1.7
5.6 20.0 5.7 16.7 5.7 13.6 5.7 16.8 1.5
9.4 34.0 9.2 14.3 9.2 26.2 9.3 24.8 4.7
19.6 35.6 19.6 16.5 19.5 37.5 19.6 29.8 5.5
29.6 36.7 29.7 24.0 29.5 38.0 29.6 32.9 3.6
38.8 45.9 38.8 26.5 38.8 31.2 38.8 34.5 4.8

Unstimulated No Stim
time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2 SEM
1.1 4.8 1.2 2.9 1.2 5.3 1.2 4.3 0.6
2.9 8.0 3.0 2.8 2.9 5.8 2.9 5.5 1.2
5.7 10.2 5.8 4.3 5.8 3.4 5.8 6.0 1.7
9.2 10.9 9.4 8.3 9.4 8.0 9.3 9.1 0.8
19.5 8.0 19.6 8.7 19.4 5.6 19.5 7.4 0.8
29.6 12.2 29.6 9.0 29.7 16.8 29.6 12.7 1.8
38.7 12.8 38.5 8.0 38.8 16.0 38.7 12.3 1.9

10 mM Methistamine 10 mM Methistamine
time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2 SEM
1.2 6.7 1.2 2.5 1.1 8.0 1.2 5.7 1.4
3.0 6.2 2.9 5.6 3.0 9.3 3.0 7.0 0.9
5.7 8.0 5.7 8.3 5.7 12.6 5.7 9.6 1.2
9.3 12.0 9.3 10.5 9.3 15.2 9.3 12.6 1.1
19.5 10.7 19.6 9.3 19.4 19.4 19.5 13.1 2.6
29.6 14.2 29.3 13.6 29.6 20.7 29.5 16.2 1.9
38.7 16.0 38.6 10.2 38.8 20.6 38.7 15.6 2.4

10 mM Amthamine 0.1 10 mM Amthamine
time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2 SEM
1.4 3.6 1.2 2.5 1.3 3.6 1.3 3.2 0.3
3.1 18.7 3.1 4.3 3.0 8.0 3.1 10.3 3.5
5.8 12.8 5.7 9.0 5.6 4.7 5.7 8.8 1.9
9.3 16.8 9.5 8.7 9.2 7.2 9.3 10.9 2.4
19.5 22.4 19.6 9.3 19.4 13.8 19.5 15.2 3.1
29.5 25.6 29.6 19.2 29.5 10.1 29.5 18.3 3.7
38.6 29.0 38.6 19.6 39.0 18.1 38.8 22.2 2.8

10 mM Amthamine+10 mM Methistamine Amthamine+Methistamine
time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2 SEM
1.3 8.0 1.2 2.9 1.2 3.6 1.2 4.8 1.3
3.0 17.1 3.0 4.0 3.0 10.2 3.0 10.4 3.1
5.8 22.1 5.7 10.7 5.8 13.6 5.8 15.5 2.8
9.3 23.3 9.3 12.0 9.3 16.0 9.3 17.1 2.7
19.5 34.8 19.4 23.6 19.4 27.3 19.5 28.6 2.7
30.3 43.6 29.6 15.3 29.4 34.8 29.7 31.2 6.8
38.5 44.2 38.7 18.8 38.6 44.0 38.6 35.7 6.9  
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Table A.10  Peptide Blocking of Histamine-Mediated Adhesion  
Data for Figure  4.7 
time Unstimulated Unstimulated

3/4/2004 3/11/2004 3/18/2004 3/18/2004 B 1/29/2004 2/19/2004 AVERAGE
cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 SEM

1.2 4.4 5.3 1.1 1.2 5.8 2.9 3.5 0.8
3.0 9.3 1.0 5.6 6.4 11.1 5.7 6.5 1.4
5.9 22.2 5.5 7.7 5.3 13.8 10.4 10.8 2.6
9.3 21.6 12.1 12.7 9.3 9.6 10.2 12.6 1.9
19.7 20.2 18.2 15.3 9.7 16.9 9.6 15.0 1.8
29.7 28.8 12.5 23.2 17.4 15.2 10.9 18.0 2.8
39.1 23.2 14.5 26.5 13.6 17.1 11.6 17.8 2.4

Histamine Histamine
5/4/2004 5/11/2004 5/18/2004 3/18/2004 B 1/29/2004 2/19/2004 AVERAGE

cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 SEM
5.8 6.0 5.3 1.5 7.1 5.3 5.2 0.7

13.3 4.3 6.9 5.3 12.3 14.9 9.5 1.7
28.0 10.9 16.0 16.8 29.0 21.6 20.4 2.7
30.6 28.8 23.6 24.0 32.0 18.1 26.2 2.0
32.9 36.8 35.2 37.3 45.9 35.4 37.3 1.7
51.0 44.4 37.6 40.0 44.8 46.1 44.0 1.8
34.3 37.1 41.6 35.0 53.3 40.0 40.2 2.6

Blocking Peptide Blocking Peptide
5/4/2004 5/11/2004 3/18/2004 3/18/2004 B 1/29/2004 2/19/2004 AVERAGE

cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 SEM
5.3 2.5 0.0 0.0 5.3 5.8 3.2 1.0

11.4 3.8 5.0 0.0 5.7 6.9 5.5 1.4
10.4 7.4 5.5 0.0 14.0 6.0 7.2 1.8
11.9 9.7 9.5 19.3 8.0 11.7 1.6
13.2 17.4 15.3 5.8 32.0 10.2 15.6 3.4
16.0 14.7 12.2 16.7 27.2 12.2 16.5 2.1
10.7 16.0 18.9 18.5 28.4 20.0 18.8 2.2

Non-Blocking Peptide Non-Blocking Pep
5/4/2004 5/11/2004 5/18/2004 3/18/2004 B 1/29/2004 2/19/2004 AVERAGE

cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 SEM
7.4 6.7 1.3 5.3 13.3 4.8 6.5 1.5

18.1 6.2 5.7 5.3 14.9 9.3 9.9 2.0
28.4 11.5 12.3 8.9 26.4 10.2 16.3 3.2
49.6 23.3 17.8 19.0 32.7 16.0 26.4 4.8
83.8 41.9 24.3 32.0 40.8 16.0 39.8 8.8
91.0 44.6 33.5 34.8 51.2 24.5 46.6 8.8
96.0 45.2 37.6 39.5 51.0 24.4 48.9 9.2  
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Table A.11  Antibody Blocking of P-Selectin Mediated Adhesion 
Data for Figure 4.9 

 

3/28/2002
Unstimulated Histamine Anti P-selectin Antibody
time SSRBC/mm2 time SSRBC/mm2 time SSRBC/mm2

1.5 5.5 1.5 24.0 1.6 3.6
3.3 10.7 3.3 27.1 3.2 7.4
4.9 17.3 5.2 31.0 5.1 10.7
9.5 24.3 9.8 42.2 9.7 18.2

19.7 28.2 19.6 48.6 19.9 27.8
29.6 33.3 29.8 56.3 29.5 28.8
38.7 26.5 38.5 57.6 38.8 27.4

4/3/2002
Unstimulated Histamine Anti P-selectin Antibody
time SSRBC/mm2 time SSRBC/mm2 time SSRBC/mm2

1.4 6.7 1.4 7.1 1.4 13.3
3.3 18.9 3.4 14.7 3.3 34.3
5.1 20.6 5.0 32.0 5.1 48.3
9.9 42.9 9.5 66.1 9.7 85.8

19.7 63.3 19.8 101.6 19.7 118.2
29.6 82.2 29.7 87.3 29.7 152.4
38.7 92.6 38.9 104.8 38.9 129.1
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Table A.12   Continued 
 
Shear Averages SEM

0 TNF 100 TNF 250 TNF 500 TNF 0 TNF  100 TNF  250 TNF  500 TNF  
cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2

0.1 102.7 57.3 74.7 60.0 24.5 15.1 30.6 12.7
316.7 186.7 199.3 238.7 52.6 38.2 39.1 43.9
414.7 246.7 305.3 308.0 110.8 46.3 41.4 68.7
440.0 246.7 271.3 420.8 38.6 68.5 23.3 73.7
395.0 384.0 344.0 490.7 51.5 36.6 25.3 65.4
462.7 242.7 318.7 428.0 103.7 59.5 43.0 108.1

0 TNF 100 TNF 250 TNF 500 TNF 0 TNF  100 TNF  250 TNF  500 TNF  
cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2

0.2 73.3 28.0 58.2 50.7 25.3 12.0 15.5 9.6
202.7 169.3 166.4 168.0 46.0 56.8 41.2 21.0
267.9 137.3 225.3 292.0 58.3 11.8 51.8 51.4
378.2 250.7 250.7 273.3 54.4 64.8 44.8 34.2
352.0 201.3 256.7 354.7 47.8 37.3 49.3 68.1
309.7 253.3 241.3 360.0 30.9 42.5 51.2 40.8

0 TNF 100 TNF 250 TNF 500 TNF 0 TNF  100 TNF  250 TNF  500 TNF  
cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2

0.4 38.7 32.0 36.7 38.7 7.8 9.0 11.0 7.3
80.7 53.3 73.3 113.3 28.4 8.7 16.1 19.0
70.9 84.4 120.9 140.0 10.9 17.2 31.9 29.9
76.0 132.0 124.4 164.0 7.1 34.1 23.5 18.6
98.7 118.7 174.7 212.0 36.2 26.3 29.8 52.9
132.7 138.7 131.6 194.7 36.0 31.4 28.0 43.4

0 TNF 100 TNF 250 TNF 500 TNF 0 TNF  100 TNF  250 TNF  500 TNF  
cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2

0.6 9.3 6.7 28.7 24.4 3.8 3.8 11.3 4.2
21.3 42.7 83.3 73.3 9.2 9.4 19.0 17.1
35.6 78.7 78.9 92.0 10.8 23.8 13.8 16.4
31.7 68.0 112.0 121.3 4.7 15.7 23.1 31.2
40.0 66.7 95.3 120.0 8.3 19.7 9.1 30.1
32.0 85.3 98.7 121.3 3.8 25.4 12.4 16.1

0 TNF 100 TNF 250 TNF 500 TNF 0 TNF  100 TNF  250 TNF  500 TNF  
cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2

0.8 4.0 12.0 20.0 25.3 2.7 5.4 6.5 8.6
16.0 24.0 45.3 69.3 0.0 4.1 9.6 14.7
13.8 40.0 61.3 65.3 5.2 13.9 14.4 7.6
14.4 37.6 62.0 86.7 2.7 13.5 9.7 11.8
13.3 29.3 56.7 74.7 5.3 6.4 13.0 10.0
13.3 23.6 70.0 73.3 3.4 4.8 11.4 13.1

0 TNF 100 TNF 250 TNF 500 TNF 0 TNF  100 TNF  250 TNF  500 TNF  
cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2 cells/mm2

1 7.3 4.0 13.3 11.6 2.2 2.7 4.8 7.4
14.0 16.0 32.1 28.0 5.8 4.1 13.9 8.5
12.0 20.9 31.3 34.7 4.5 2.6 4.9 6.7
14.0 16.0 54.7 40.0 3.5 3.6 15.6 13.5
16.7 20.0 36.0 58.7 5.1 7.9 5.0 13.5
12.7 20.9 46.7 81.3 4.9 12.8 10.6 24.5  
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Table A.14  Antibody Blocking of VCAM-1   
Data for Figure 5.7 
Shear 0.1

7/22/2004 6/21/2004 6/18/2004 7/22/2004 B 7/29/2004

Unstimulated 308.6 245.3 346.7 568.0 272.0
TNF 352.0 505.6 213.3 308.0 147.2
TNF, anti-VCAM-1 304.0 412.8 250.7 256.0 176.0
TNF non-Specific Antibody 259.2 544.0 163.2 229.3 66.7
Shear 0.2

7/22/2004 6/21/2004 6/18/2004 7/22/2004 B 7/29/2004

Unstimulated 252.8 106.7 117.3 183.1 58.7
TNF 282.7 197.3 140.8 144.0 60.8
TNF, anti-VCAM-1 244.0 122.7 136.0 140.8 38.9
TNF non-Specific Antibody 163.2 153.6 102.4 117.3 44.0
Shear 0.4

7/22/2004 6/21/2004 6/18/2004 7/22/2004 B 7/29/2004

Unstimulated 64.0 33.5 60.8 70.7 25.6
TNF 117.3 83.2 104.0 108.8 61.3
TNF, anti-VCAM-1 50.7 80.0 40.0 61.7 16.0
TNF non-Specific Antibody 92.0 82.3 64.0 78.0 53.3
Shear 0.6

7/22/2004 6/21/2004 6/18/2004 7/22/2004 B 7/29/2004

Unstimulated 19.2 36.0 26.0 35.2 16.0
TNF 58.7 80.0 78.0 70.9 38.9
TNF, anti-VCAM-1 30.2 24.0 32.0 44.0 5.3
TNF non-Specific Antibody 64.0 80.0 80.0 69.3 17.8
Shear 0.8

7/22/2004 6/21/2004 6/18/2004 7/22/2004 B 7/29/2004

Unstimulated 8.0 22.7 21.3 19.2 8.0
TNF 50.3 60.0 50.3 57.6 22.9
TNF, anti-VCAM-1 16.0 24.0 9.6 25.6 4.0
TNF non-Specific Antibody 51.2 51.2 73.1 48.0 28.0
Shear 1.0

7/22/2004 6/21/2004 6/18/2004 7/22/2004 B 7/29/2004

Unstimulated 16.0 10.7 12.0 10.7 0.0
TNF 41.6 34.3 77.3 57.1 20.8
TNF, anti-VCAM-1 16.0 11.4 24.9 12.8 6.4
TNF non-Specific Antibody 38.0 41.6 40.0 38.4 16.0
AVERAGE

Shear 0.1 0.2 0.4 0.6 0.8 1.0
Unstimulated 348.1 143.7 50.9 26.5 15.8 9.9
TNF 305.2 165.1 94.9 65.3 48.2 46.2
TNF, anti-VCAM-1 279.9 136.5 49.7 27.1 15.8 14.3
TNF non-Specific Antibody 252.5 116.1 73.9 62.2 50.3 34.8

Standard Error of the Mean
0.1 0.2 0.4 0.6 0.8 1.0

Unstimulated 57.6 33.7 9.0 4.1 3.2 2.7
TNF 61.5 36.6 10.1 7.6 6.6 9.7
TNF, anti-VCAM-1 39.0 32.6 10.7 6.3 4.1 3.1
TNF non-Specific Antibody 80.0 21.2 6.8 11.5 7.2 4.7  
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Table A.15  Shear Dependence of Histamine Mediated Adhesion 
Data for figure 6.1 and 6.2 
Date 11/16/2005
Stim Histamine Stimulation
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
3.6 52.4 2.6 23.1 2.1 10.7 1.7 19.2 1.1 8.0 0.6 8.0
8.6 85.3 8.0 82.7 7.1 49.6 6.1 22.9 5.5 13.3 4.8 16.0

13.2 96.0 12.6 112.0 11.7 66.7 11.1 29.3 10.3 26.7 9.5 16.0
18.0 112.0 17.2 99.2 16.4 56.0 15.7 26.7 14.8 18.3 14.0 16.0
23.8 106.7 23.0 96.0 21.7 84.8 20.7 61.7 19.8 24.0 18.9 16.0
29.1 131.2 28.2 88.0 27.3 73.6 26.2 61.7 25.3 19.2 24.6 12.8
34.4 172.8 33.6 137.1 32.7 78.2 31.7 43.2 30.9 29.3 30.2 22.4
40.1 189.3 39.2 126.5 38.1 80.0 37.3 48.0 36.4 32.0 35.4 16.0

Date 11/10/2005
Stim Histamine Stimulation
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
4.3 67.2 3.5 55.3 2.6 28.0 1.9 38.9 1.2 18.0 0.7 37.3
8.9 149.3 8.1 82.7 7.4 60.0 6.7 56.0 5.9 24.9 5.0 25.1

14.5 154.7 13.8 88.0 12.7 50.0 11.9 62.0 11.0 32.0 9.9 28.3
19.4 170.7 18.8 84.0 17.9 57.1 16.9 45.3 16.1 22.9 15.4 36.0
24.4 296.0 23.7 108.4 22.6 68.0 21.7 64.0 20.9 29.3 20.3 26.0
29.7 236.0 29.0 140.8 28.1 58.0 27.1 64.0 26.1 20.6 25.3 24.0
34.9 197.3 34.3 101.3 33.2 58.0 32.2 66.7 31.4 34.3 30.6 28.8
40.0 217.6 39.3 123.4 38.3 46.0 37.4 44.4 36.6 32.0 35.7 28.4

Date 10/26/2005
Stim Histamine Stimulation
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
3.9 136.0 3.3 80.0 2.5 56.0 1.7 11.2 0.9 12.0 0.5 0.0
8.9 148.0 7.6 344.0 7.2 152.0 6.3 41.6 5.5 27.4 4.7 20.6

12.4 576.0 11.9 448.0 11.1 152.0 10.5 28.8 9.7 24.0 9.2 13.3
16.4 576.0 18.0 390.0 15.1 165.3 16.5 48.9 15.8 45.9 15.2 21.0
21.1 472.0 25.0 460.8 19.7 186.7 23.5 80.0 22.8 30.0 22.0 16.0
28.1 480.0 29.9 410.7 26.7 216.2 28.4 56.0 27.7 30.2 26.7 24.9
35.5 549.3 34.6 524.0 33.9 244.0 33.2 58.7 32.5 46.2 31.6 30.0
39.9 490.7 39.3 384.0 38.7 276.0 38.0 80.0 37.1 48.0 36.4 18.3

Date 10/19/2005
Stim Histamine Stimulation
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
2.9 88.0 2.6 60.8 1.9 56.0 1.3 38.4 0.8 16.0 0.4 16.0
6.9 144.0 6.3 85.3 5.5 80.0 4.8 60.8 4.3 36.0 3.8 13.3

11.3 234.7 12.8 184.0 9.8 112.0 11.1 68.8 10.5 44.8 9.9 20.0
15.6 304.0 20.9 178.7 14.1 118.4 18.3 54.4 17.3 39.1 16.4 12.4
21.7 448.0 25.6 172.0 19.5 126.2 24.0 57.6 23.5 25.6 22.7 24.9
26.2 485.3 30.6 229.3 24.8 107.4 28.5 61.1 27.6 40.0 26.9 16.0
33.6 460.0 35.2 212.0 32.0 131.0 33.3 72.0 32.8 64.0 32.1 24.0
40.5 464.0 40.2 245.3 39.0 114.9 37.9 61.7 37.2 36.0 36.5 21.3

Date 6/1/2005
Stim Histamine Stimulation
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
4.1 96.0 3.4 42.7 2.5 25.1 1.8 29.3 1.3 5.3 0.7 9.6
8.0 101.3 7.2 73.1 6.4 51.2 5.8 44.8 5.4 16.0 4.8 13.3

13.3 112.0 12.4 74.7 11.4 53.3 10.6 48.0 9.7 20.6 8.8 12.0
19.0 106.7 18.0 84.0 17.1 56.0 16.2 57.1 15.3 17.6 14.1 13.7
24.3 134.4 23.4 100.6 22.3 54.9 21.5 58.0 20.8 19.2 20.1 24.0
30.2 144.0 29.4 94.0 28.4 64.0 27.6 50.7 26.8 24.0 26.0 13.3
35.5 144.0 34.5 176.0 33.3 68.4 32.3 70.9 31.6 26.7 31.0 16.0
40.3 148.0 39.8 128.0 39.0 57.1 38.3 58.0 37.5 25.6 36.7 24.0  
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Table A.15  Continued   
Date 3/25/2005
Stim Histamine Stimulation
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
4.3 69.3 3.7 61.3 2.8 22.0 2.1 18.7 1.5 13.7 0.9 4.6
8.9 122.7 8.1 74.7 7.2 66.3 6.4 50.0 5.7 10.7 5.0 16.0

14.0 240.0 13.2 136.0 12.4 93.3 11.6 64.0 10.7 40.0 9.9 10.7
19.4 268.0 18.5 192.0 17.7 106.7 16.6 72.0 15.8 50.3 15.0 18.7
24.2 192.0 23.6 220.0 22.9 117.3 22.1 50.7 21.3 58.0 20.5 21.3
29.8 256.0 28.8 130.3 27.6 122.0 26.5 76.0 25.5 56.0 24.9 28.0
35.9 282.7 35.0 198.9 33.9 120.0 32.9 82.7 32.1 44.4 31.3 34.7
40.2 272.0 39.9 152.0 39.3 121.6 38.5 86.9 37.7 57.1 36.9 22.0

Date 2/16/2005
Stim Histamine Stimulation
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
3.6 52.0 3.1 36.0 2.5 22.0 1.8 19.2 1.2 2.3 0.7 8.0
8.3 108.8 7.5 50.7 6.6 45.3 5.9 26.0 5.1 22.4 4.5 4.0

13.2 136.0 12.5 68.6 11.4 66.3 10.6 41.6 9.9 12.8 9.2 16.0
18.3 128.0 17.6 64.0 16.8 80.0 16.0 89.6 15.1 24.0 14.5 22.9
23.4 217.6 22.5 77.3 21.7 82.3 20.8 42.7 20.1 41.1 19.3 25.6
27.8 196.6 26.8 112.0 26.0 88.0 25.3 117.3 24.8 32.0 26.6 25.8
33.2 204.0 32.4 120.0 31.4 98.3 30.4 52.6 32.1 37.7 33.9 21.3
38.1 166.4 37.1 138.7 36.1 112.0 35.3 88.0 39.9 53.3 39.1 24.0

Date 3/9/2005
Stim Histamine Stimulation
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
4.3 32.0 3.6 32.0 3.0 24.0 2.4 18.7 1.6 2.7 0.9 4.8
9.2 42.7 8.4 26.7 7.6 24.9 6.8 22.9 6.0 9.1 5.2 9.6

14.3 74.0 13.2 52.0 12.3 35.6 11.5 20.6 10.7 13.7 10.0 11.4
19.6 73.1 18.7 57.1 17.9 53.3 17.2 19.2 16.2 16.0 15.4 12.8
25.7 118.0 24.7 58.0 21.7 82.3 22.9 34.7 22.0 25.1 20.9 18.9
27.8 196.6 30.9 94.0 23.8 57.1 28.7 22.9 27.7 26.0 26.8 21.3
31.8 85.3 32.4 120.0 29.8 80.0 34.7 32.0 33.8 20.6 32.9 18.0
37.1 98.7 36.3 73.1 35.5 48.0 39.9 20.0 39.2 28.4 38.2 28.8

Date 1/20/2005
Stim Histamine Stimulation
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
3.6 32.0 3.0 26.7 2.4 13.7 1.7 9.6 1.2 12.8 0.7 19.2
8.9 57.6 8.4 29.3 7.7 27.2 7.1 21.3 4.9 16.0 4.3 13.7

14.8 69.3 14.0 50.3 13.2 32.0 12.5 25.1 10.0 14.9 9.5 16.0
19.3 58.7 18.4 50.0 17.6 34.3 16.8 29.7 16.1 24.0 15.6 13.3
23.6 128.0 22.8 54.9 22.1 41.6 21.4 28.4 20.7 20.6 20.2 24.0
29.3 66.4 28.6 33.3 26.2 35.2 27.4 43.2 26.8 22.7 26.1 19.2
35.7 52.0 35.1 32.0 32.0 48.0 33.4 32.0 32.6 24.0 32.0 13.7
39.9 42.7 39.2 40.0 38.5 36.0 37.9 44.8 37.2 20.6 36.6 12.0

Date 10/13/2004
Stim Histamine Stimulation
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
3.5 16.0 2.9 26.7 2.3 16.0 1.7 10.7 1.2 12.8 0.7 0.0
7.7 68.0 7.0 19.2 6.1 30.0 5.5 26.7 4.8 20.6 4.3 8.0

12.0 56.0 11.2 18.7 10.4 28.0 9.7 28.0 9.0 24.0 8.5 32.0
17.1 54.9 15.7 48.0 15.0 21.3 14.3 34.7 13.6 25.1 12.9 19.2
22.4 40.0 21.7 28.8 21.0 34.7 22.6 38.2 21.9 24.0 21.1 11.2
26.7 34.7 26.3 57.6 25.6 54.4 29.4 21.3 28.6 20.6 27.8 14.0
31.6 61.7 30.9 41.1 30.1 54.9 34.6 38.4 33.6 32.0 32.8 20.0
37.2 66.7 38.2 65.2 37.5 64.2 38.9 16.0 38.6 26.7 38.1 8.0  
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Table A.15  Continued   
 
Date 9/9/2004
Stim Histamine Stimulation
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
3.7 96.0 3.2 16.0 2.5 17.8 1.9 16.0 1.4 13.7 0.9 0.0
7.6 35.2 6.7 13.3 6.1 34.7 5.6 19.2 5.0 9.6 4.4 9.1

12.0 37.3 11.5 29.7 10.7 43.4 9.8 28.4 9.1 16.0 8.5 2.0
16.0 72.0 17.6 32.6 14.8 49.6 16.1 24.0 15.3 19.4 14.7 22.7
22.4 56.0 23.9 35.2 21.1 44.6 22.6 29.3 21.8 24.0 21.0 9.6
28.6 80.0 28.0 66.7 27.2 66.7 26.5 34.7 25.8 27.4 25.0 10.7
33.0 69.3 34.3 53.3 31.6 52.6 32.8 30.9 32.1 26.8 31.5 17.5
38.5 56.0 40.1 56.0 37.5 57.6 38.6 40.0 37.9 36.0 37.4 21.3

AVERAGES
Histamine Stimulation

0.1 0.2 0.4 0.6 0.8 1
time adhere time adhere time adhere time adhere time adhere time adhere

3.8 67.0 3.2 41.9 2.5 26.5 1.8 20.9 1.2 10.7 0.7 9.8
8.3 91.5 7.6 80.2 6.9 59.1 6.1 36.5 5.3 18.7 4.6 13.5

13.2 162.4 12.6 114.7 11.6 66.6 11.0 40.4 10.1 24.5 9.4 16.2
18.0 174.9 18.1 116.3 16.4 72.6 16.4 45.6 15.6 27.5 14.8 19.0
23.4 200.8 23.6 128.4 21.5 84.1 22.2 49.6 21.4 29.2 20.6 19.8
28.5 211.0 28.8 132.4 26.5 85.7 27.4 55.4 26.6 29.0 26.1 19.1
33.9 222.7 34.0 159.6 32.2 93.9 32.9 52.7 32.3 35.1 31.8 22.4
39.3 201.1 39.0 139.3 38.0 92.1 38.0 53.4 37.7 36.0 37.0 20.4

Standard Error of the Mean
Histamine Stimulation

0.1 0.2 0.4 0.6 0.8 1
time adhere time adhere time adhere time adhere time adhere time adhere

10.6 6.0 4.7 3.1 1.6 3.3
12.8 27.7 11.1 4.8 2.5 1.8
46.1 36.3 11.6 5.3 3.2 2.5
47.3 31.5 12.7 6.6 3.6 2.1
44.3 39.3 15.0 4.9 3.4 1.8
50.6 31.9 15.1 8.1 3.3 1.8
49.7 45.3 17.1 5.6 3.8 1.9
46.4 29.9 20.5 7.4 3.6 1.9  
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Table A.15  Continued   
 
Date 11/16/2005
Stim Unstimulated
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
3.9 68.0 3.2 23.1 2.5 13.7 1.9 8.0 1.2 2.0 0.7 10.0
9.6 160.0 8.7 64.0 7.7 22.4 6.8 16.0 5.9 13.5 4.9 5.3

14.7 264.0 14.1 138.0 13.3 33.8 12.4 19.2 11.4 11.1 10.4 10.0
17.6 248.3 19.0 126.2 17.9 60.4 16.9 22.9 16.2 16.0 15.4 8.9
20.0 261.3 24.8 137.6 23.8 44.8 22.7 17.3 21.8 9.6 21.0 8.0
25.6 296.0 29.9 189.7 29.0 56.0 28.1 28.4 27.3 20.6 26.5 5.3
30.6 368.0 34.8 224.0 33.8 81.5 32.8 20.8 31.9 14.2 31.3 4.8
35.5 325.3 39.1 209.8 38.2 90.7 37.4 29.1 36.7 19.2 37.9 5.0

Date 11/10/2005
Stim Unstimulated
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
3.3 74.7 2.8 42.7 2.3 13.3 1.6 16.0 1.0 9.1 0.6 0.0
7.7 244.0 6.9 46.0 6.2 22.9 5.3 26.7 4.4 6.0 3.8 6.9

12.0 216.0 11.4 54.9 10.7 16.0 9.8 29.3 9.0 2.3 8.4 9.1
16.2 228.0 15.3 101.3 14.5 22.0 13.8 18.7 13.2 10.7 12.6 3.2
20.7 325.3 22.4 66.6 21.5 26.7 18.5 18.0 20.0 7.3 19.3 4.1
27.6 242.7 29.2 84.6 28.4 30.7 25.2 28.6 26.8 9.1 26.2 0.0
33.9 197.3 33.2 101.3 32.4 24.7 31.5 30.0 30.8 8.0 30.4 4.0
38.7 288.0 38.0 205.3 37.0 16.0 36.2 16.0 37.6 8.9 37.0 6.2

Date 10/26/2005
Stim Unstimulated
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
4.4 288.0 3.9 128.0 3.0 48.0 2.1 12.0 1.3 4.0 0.7 4.0
8.7 320.0 8.1 163.2 7.2 64.0 6.4 18.7 5.7 10.7 5.1 2.7

13.3 424.0 12.6 212.0 11.6 92.4 10.6 25.1 10.0 10.0 9.3 6.0
18.6 394.7 17.9 208.0 16.9 109.7 15.9 46.0 15.0 12.4 14.2 6.0
24.5 488.0 23.7 294.4 22.5 144.0 21.1 33.6 20.2 4.8 19.4 6.0
30.9 536.0 30.1 325.3 28.8 112.0 27.5 41.8 26.4 4.6 25.6 1.3
39.3 524.0 35.2 298.7 33.9 118.9 33.0 30.0 32.3 13.7 31.7 5.3
42.3 528.0 41.1 293.3 39.9 102.9 38.9 46.2 38.1 8.0 37.3 4.6

Date 10/19/2005
Stim Unstimulated
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
3.0 112.0 2.7 90.7 2.0 21.3 1.3 48.0 0.7 0.0 0.4 5.3
7.0 282.7 6.3 149.3 5.6 59.4 4.9 42.7 4.3 24.0 3.8 5.3

12.0 536.0 11.5 210.7 10.7 46.2 9.8 34.0 9.0 18.0 8.2 7.4
16.7 454.4 15.7 265.6 14.9 57.6 14.2 36.6 13.6 10.7 13.0 12.8
22.1 608.0 21.3 370.7 20.3 65.8 19.3 44.0 18.7 16.0 17.8 10.2
26.8 650.7 26.2 292.0 25.4 90.7 24.6 43.4 23.9 16.0 23.2 6.4
33.0 883.2 31.9 532.6 30.7 50.0 29.7 32.0 28.8 16.0 31.1 4.9
39.0 864.0 37.9 546.7 36.8 91.2 35.7 49.6 34.7 29.3 39.8 9.6

Date 6/1/2005
Stim Unstimulated
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
4.0 80.0 3.3 32.0 2.5 18.7 1.9 16.0 1.3 8.0 0.7 6.4
8.5 106.7 7.7 64.0 6.9 26.7 6.0 10.7 5.1 10.7 4.6 0.0

13.2 144.0 12.6 82.7 11.7 18.7 10.9 10.0 10.2 12.0 9.4 4.0
18.1 124.0 17.3 90.7 16.5 26.7 15.6 18.0 14.8 10.7 14.0 4.0
23.2 120.0 22.4 84.8 21.3 36.6 20.6 26.7 19.7 9.1 19.0 4.6
27.8 181.3 27.1 108.0 26.1 24.9 25.3 17.6 24.6 6.9 24.0 4.0
33.0 213.3 32.2 108.0 33.6 34.4 32.7 29.3 32.0 11.5 31.2 3.0
39.6 162.1 39.6 162.1 40.3 27.4 40.0 28.0 39.4 8.0 38.9 0.0  
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Table A.15  Continued   
 
Date 3/25/2005
Stim Unstimulated
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
4.3 128.0 3.6 57.6 2.9 13.7 2.2 22.0 1.4 6.9 0.8 6.9
8.3 256.0 7.6 72.0 6.7 29.3 6.0 36.0 5.5 21.3 4.9 4.6

12.9 256.0 12.3 120.0 11.6 27.4 10.7 39.1 9.7 9.1 9.1 6.9
17.6 352.0 16.8 144.0 15.9 30.2 14.9 32.0 14.1 12.0 13.5 3.2
22.3 261.3 21.5 121.1 20.6 68.6 19.8 36.6 21.4 12.8 18.5 9.1
26.5 260.0 25.8 118.4 27.4 60.6 26.5 36.6 28.1 21.3 25.3 8.6
31.6 384.0 33.3 177.7 35.0 80.0 34.2 59.4 33.3 22.0 32.5 4.6
38.5 352.8 40.1 214.4 39.5 56.0 38.8 30.2 38.1 26.7 37.4 6.0

Date 2/16/2005
Stim Unstimulated
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
4.2 71.1 3.5 27.4 2.9 16.0 2.4 8.0 1.8 6.0 1.0 10.0
8.8 128.0 8.2 72.0 7.5 48.0 6.7 37.3 6.0 13.7 5.2 2.3

13.9 73.6 13.0 81.8 12.1 61.3 11.1 33.2 10.3 2.7 9.7 8.0
18.3 92.0 17.6 105.1 16.8 66.3 16.0 35.6 15.2 8.0 14.7 16.0
22.9 179.2 22.1 130.0 21.3 56.9 20.5 32.0 19.8 23.1 19.1 8.0
27.8 160.0 27.1 88.0 26.4 61.3 25.4 20.6 24.5 12.4 23.8 8.0
33.2 268.8 32.2 148.6 31.3 85.3 30.2 24.7 29.2 12.0 31.3 7.8
37.9 240.0 37.1 157.7 36.2 66.0 37.6 33.0 37.0 17.3 38.6 4.6

Date 3/9/2005
Stim Unstimulated
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
4.8 48.0 4.2 13.3 3.5 11.4 2.7 19.2 2.0 10.0 1.1 3.2
8.8 83.2 8.2 28.4 7.3 11.4 6.7 24.0 6.0 0.0 5.5 0.0

13.6 80.0 12.7 38.0 11.8 17.5 10.8 24.0 10.1 8.0 9.5 5.3
18.3 92.0 18.2 59.2 17.2 35.2 16.4 20.0 15.6 6.0 14.8 5.3
19.5 94.4 24.0 70.9 23.1 45.7 22.2 18.0 21.4 4.6 20.7 0.0
25.0 94.0 30.2 59.4 29.2 32.0 28.3 30.2 27.3 0.0 26.4 5.3
31.0 93.7 32.2 88.0 35.0 49.8 33.9 13.7 33.0 8.0 32.2 2.3
36.9 104.0 36.0 59.4 39.8 40.0 39.2 27.4 38.5 9.6 37.9 0.0

Date 1/20/2005
Stim Unstimulated
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
3.4 16.0 2.9 5.3 2.4 13.3 1.8 16.0 1.3 8.0 0.7 5.3
6.9 44.8 6.4 18.7 5.8 18.7 5.2 13.7 4.6 8.0 4.0 4.0

11.8 26.7 11.2 21.3 10.6 24.9 9.9 12.8 9.2 9.1 8.4 8.0
15.4 40.0 16.8 24.0 16.2 20.3 13.7 24.0 15.1 18.7 12.5 8.0
21.3 54.0 22.4 13.7 21.6 22.9 19.3 15.6 20.5 10.7 18.3 6.4
27.2 51.2 26.7 32.0 26.0 34.3 25.3 18.0 24.5 11.4 23.9 10.0
33.6 61.0 33.0 40.0 32.4 21.6 31.6 14.0 30.9 11.4 30.3 6.4
39.1 40.0 38.4 28.0 39.2 24.5 38.8 17.7 38.6 10.7 38.0 7.0

Date 10/13/2004
Stim Unstimulated
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
4.0 21.3 3.5 10.7 2.8 11.6 2.0 10.0 1.3 12.8 0.7 2.7
8.5 18.3 7.6 20.0 6.9 11.6 6.2 3.2 5.7 12.8 5.2 1.8

13.9 34.0 13.2 13.3 12.3 28.8 11.5 14.4 10.8 3.2 9.9 9.6
18.9 35.8 17.6 27.4 16.6 16.0 15.6 6.4 15.2 16.0 14.8 8.0
25.2 58.0 24.3 45.3 23.6 22.4 22.8 13.7 21.8 13.5 20.6 7.1
30.0 41.3 28.8 28.4 28.1 24.9 27.3 5.3 26.7 10.7 26.2 10.0
34.6 41.1 33.7 32.0 33.0 13.7 32.4 10.7 32.0 6.9 31.4 10.7
39.6 42.2 38.9 38.9 38.0 19.2 36.8 2.7 36.3 6.4 35.8 10.7  
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Table A.15  Continued   
 
Date 9/9/2004
Stim Unstimulated
Shear 0.1 0.2 0.4 0.6 0.8 1

time adhere time adhere time adhere time adhere time adhere time adhere
3.9 48.0 3.1 17.8 2.4 8.0 1.8 26.7 1.2 24.0 0.6 12.0
7.6 117.3 6.9 18.0 6.3 19.2 5.8 14.0 5.0 11.4 4.4 9.6

11.5 74.7 12.8 37.3 12.2 12.8 9.6 12.4 10.7 17.0 8.3 12.8
17.1 76.0 18.4 51.2 17.7 26.7 15.1 19.4 16.5 9.1 14.0 12.8
23.4 85.3 22.8 9.6 22.1 21.3 21.2 16.0 20.2 6.9 19.5 6.9
26.8 100.0 27.7 35.8 27.1 8.0 26.6 11.9 26.0 6.7 25.7 8.0
32.2 70.0 33.6 53.3 32.9 29.7 32.1 20.6 31.6 4.6 30.9 11.4
38.1 68.0 37.4 19.2 36.8 12.0 37.9 11.5 37.4 6.4 36.9 8.8

AVERAGES
Unstimulated

0.1 0.2 0.4 0.6 0.8 1
time adhere time adhere time adhere time adhere time adhere time adhere

3.9 86.8 3.3 40.8 2.6 17.2 2.0 18.4 1.3 8.3 0.7 6.0
8.2 160.1 7.5 65.1 6.7 30.3 6.0 22.1 5.3 12.0 4.7 3.9

13.0 193.5 12.5 91.8 11.7 34.5 10.7 23.1 10.0 9.3 9.2 7.9
17.4 199.6 17.3 109.3 16.5 42.8 15.3 25.4 14.9 11.8 14.0 8.0
22.0 247.7 22.9 122.2 22.0 50.5 20.7 24.7 20.5 10.8 19.4 6.4
26.9 208.6 28.1 123.8 27.4 48.7 26.4 25.7 26.0 10.9 25.2 6.1
32.5 283.3 33.3 171.6 33.1 53.6 32.2 25.9 31.4 11.7 31.3 5.9
38.4 273.7 38.5 171.8 38.3 49.6 37.9 26.5 37.5 13.7 37.8 5.7

Standard Error of the Mean
Unstimulated

0.1 0.2 0.4 0.6 0.8 1
time adhere time adhere time adhere time adhere time adhere time adhere

22.5 11.4 3.3 3.4 1.9 1.1
30.4 15.1 5.6 3.7 2.0 0.9
50.2 21.3 7.2 3.0 1.6 0.7
54.2 22.6 8.5 3.3 1.1 1.3
58.0 34.3 10.7 3.1 1.6 0.8
53.6 31.0 9.4 3.7 2.0 1.0
76.5 48.3 10.1 4.0 1.5 0.9
74.7 46.4 10.1 4.2 2.5 1.0  
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Figure A.16  Blocking of Shear Dependent Histamine-Mediated Adherence   
Data for Figure 6.3 
 

10/26/2005 Shear Unstimulated Histamine Peptide Blocking Peptide, non-blocking
0.1 528.0 490.7 408.0 416.0
0.2 293.3 384.0 224.0 357.3
0.4 102.9 276.0 60.8 240.0
0.6 46.2 80.0 36.8 92.0
0.8 8.0 48.0 5.3 73.1
1 4.6 18.3 0.0 21.3

10/19/2005 Shear Unstimulated Histamine Peptide Blocking Peptide, non-blocking
0.1 864.0 464.0 522.7 560.0
0.2 546.7 245.3 284.0 196.6
0.4 91.2 114.9 140.8 128.0
0.6 49.6 61.7 36.6 96.0
0.8 29.3 36.0 8.0 28.4
1 9.6 21.3 5.3 18.3

11/16/2005 Shear Unstim Histamine P-block P-non-block
0.1 325.3 189.3 256.0 149.3
0.2 209.8 126.5 84.0 128.0
0.4 90.7 80.0 38.9 102.4
0.6 29.1 48.0 13.3 72.0
0.8 19.2 32.0 5.3 39.1
1 3.2 16.0 6.7 17.5

11/10/2005 Shear no stim contin. P-block P-non-block
0.1 288.0 217.6 180.0 208.0
0.2 205.3 123.4 104.0 91.4
0.4 16.0 46.0 32.0 43.4
0.6 16.0 44.4 18.0 57.6
0.8 10.7 32.0 5.3 18.3
1 6.4 28.4 2.3 16.0

6/1/2005 Shear Unstimulated Histamine Peptide Blocking Peptide, non-blocking
0.1 170.7 148.0 182.4 200.0
0.2 134.4 128.0 85.3 133.3
0.4 27.4 57.1 28.4 72.0
0.6 28.0 58.0 20.6 66.9
0.8 8.0 25.6 14.0 33.6
1 0.0 24.0 8.0 24.0
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Table A.16  Continued 
3/25/2005 Shear Unstimulated Histamine Peptide Blocking Peptide, non-blocking Antibody Block Non-specific

0.1 344.0 272.0 281.6 297.6 176.0 282.7
0.2 214.4 152.0 166.9 152.0 141.3 196.0
0.4 56.0 121.6 74.0 66.7 64.0 100.0
0.6 30.2 86.9 41.6 90.7 48.0 120.0
0.8 26.7 57.1 21.3 45.7 12.0 32.0
1.0 6.0 22.0 6.0 18.3 5.3 24.0

3/9/2005 Shear Unstimulated Histamine Peptide Blocking Peptide, non-blocking Antibody Block Non-specific
0.1 104.0 98.7 149.3 121.6 164.0 212.0
0.2 59.4 73.1 44.8 50.3 50.0 102.4
0.4 40.0 48.0 32.0 29.3 28.4 38.9
0.6 27.4 20.0 12.0 17.8 18.3 28.0
0.8 9.6 28.4 6.0 24.0 14.0 13.7
1.0 0.0 28.8 1.6 11.4 5.3 18.7

AVERAGES
Shear Unstimulated Histamine Peptide Blocking Peptide, non-blocking

0.1 374.9 268.6 282.9 278.9
0.2 237.6 176.1 141.9 158.4
0.4 60.6 106.2 58.1 97.4
0.6 32.4 57.0 25.6 70.4
0.8 15.9 37.0 9.3 37.5
1.0 4.3 22.7 4.3 18.1

SEM
Unstimulated Histamine Peptide Blocking Peptide, non-blocking

0.1 96.2 57.7 51.7 59.9
0.2 58.4 39.9 32.7 37.4
0.4 13.1 30.6 15.2 26.9
0.6 4.4 8.5 4.7 10.3
0.8 3.4 4.3 2.3 6.9
1.0 1.3 1.8 1.1 1.5  
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Table A.19  Sickle Mouse Cells Perfusion Assay  Data for Figure 7.2   (n=1) 
Unstimulated

time cells/mm2

1.1 7.1
3.0 20.4
5.8 24.4
9.2 20.0
19.6 31.1
29.7 29.7
38.7 30.0  

 
Table A.20  Preliminary Detachment Assay Data Data for Figure 7.3 A 
No Stimulation AVERAGE
Detachment 1A Detachment 1B Detachment 2A Detachment 2B No Stimulation

time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2 SEM
1.2 2.9 1.2 11.1 1.3 6.7 1.6 4.4 1.3 6.3 1.8
3.0 9.6 3.0 19.7 2.9 9.1 3.1 6.4 3.0 11.2 2.9
5.4 27.1 5.5 28.8 5.5 18.8 5.4 29.9 5.5 26.1 2.5
9.1 31.3 8.9 31.4 9.2 18.0 9.0 46.2 9.1 31.7 5.8
19.5 40.0 19.8 44.6 19.7 32.9 19.5 76.3 19.6 48.5 9.6
29.4 32.0 29.5 55.6 29.7 38.7 29.5 70.4 29.5 49.2 8.6
38.7 37.3 39.0 64.0 39.1 35.7 38.9 96.0 38.9 58.3 14.2
43.9 29.9 44.4 58.3 43.8 38.2 44.6 57.6 44.2 46.0 7.1
48.8 27.1 48.9 43.7 49.0 32.0 49.1 65.8 49.0 42.1 8.6
53.9 32.0 54.1 52.0 54.1 27.1 54.1 70.4 54.1 45.4 9.9
58.7 23.5 58.8 65.3 59.2 38.7 59.1 50.9 58.9 44.6 8.9

Histamine Stimulation, none in detachment Phase Hist Stim & not in Detach
time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2 SEM
1.3 14.2 1.3 9.6 1.4 6.0 1.5 10.7 1.4 10.1 1.7
3.0 23.1 3.0 20.4 2.9 18.7 3.2 27.4 3.0 22.4 1.9
5.6 55.3 5.4 22.0 5.6 51.2 5.7 38.9 5.6 41.8 7.5
9.0 48.8 8.9 34.8 9.3 36.7 9.1 59.7 9.1 45.0 5.8
19.5 76.3 19.7 58.7 19.7 73.8 19.3 161.3 19.6 92.5 23.3
29.2 82.3 30.0 86.7 29.8 97.3 29.6 179.2 29.6 111.4 22.8
38.7 119.1 38.9 104.0 39.1 106.7 38.9 190.0 38.9 129.9 20.3
44.1 83.6 44.0 72.9 44.6 70.0 43.8 162.0 44.1 97.1 21.8
48.7 59.1 48.9 47.0 49.0 76.0 48.9 120.9 48.9 75.7 16.2
54.0 33.1 54.3 45.5 54.1 42.7 54.2 112.0 54.1 58.3 18.1
58.8 16.0 58.8 38.0 58.4 43.4 58.8 114.5 58.7 53.0 21.3

64.0 118.0
Histamine Stimulation, Standard Histamine in Detachment Phase Hist Stim & in Detach

time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2 SEM
1.3 13.3 1.2 6.7 1.3 5.3 1.4 41.3 1.3 16.7 9.2
3.0 27.4 3.0 22.4 3.0 24.0 3.2 101.3 3.1 43.8 22.1
5.4 56.0 5.5 35.8 5.7 28.8 5.5 109.1 5.5 57.4 18.9
8.9 91.3 9.4 46.9 9.3 50.0 8.9 104.0 9.1 73.1 15.0
19.6 80.0 19.6 97.3 19.9 76.8 19.6 186.2 19.7 110.1 28.5
29.6 139.1 30.2 100.9 29.7 102.7 29.8 220.8 29.8 140.9 30.6
38.5 130.5 39.0 110.0 39.3 106.0 38.8 200.9 38.9 136.8 23.8
44.0 62.5 44.2 105.6 44.0 24.5 44.1 192.0 44.1 96.2 33.0
49.1 59.6 48.9 77.3 48.9 26.7 49.3 186.0 49.0 87.4 34.2
54.0 49.5 54.0 81.3 54.0 14.9 54.8 129.5 54.2 68.8 20.1
58.7 62.8 59.0 60.3 59.0 18.1 59.2 132.8 59.0 68.5 20.6  
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Table A.21  Mepyramine and Amthamine, TNF and Histamine Sample Detachment   
Data for Figure 7.3 B&C 

Figure B

Histamine TNF Histamine + TNF
time cells/mm2 time cells/mm2 time cells/mm2

1.2 20.9 1.1 14.5 1.1 26.2
3.0 69.8 2.9 32.0 3.0 46.4
5.4 110.8 5.8 91.4 5.7 92.8
9.1 141.0 9.4 108.6 9.2 122.2

19.9 185.1 19.6 123.6 19.8 133.8
29.9 152.0 29.8 144.0 29.8 144.0
39.5 140.4 39.1 176.0 39.3 182.4
44.0 116.8 43.7 134.4 43.7 152.7
48.9 50.1 48.9 136.9 48.6 152.0
53.8 32.0 53.8 107.2 53.8 131.2
58.8 26.9 58.8 77.5 58.7 89.3

Figure C

Unstimulated Methistamine Amthamine Amthamine + Methistamine Histamine
time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2 time cells/mm2

1.2 2.7 1.2 7.1 1.2 2.9 1.3 4.0 1.2 9.3
3.0 7.5 3.0 11.4 3.0 11.7 3.1 5.3 3.0 12.7
5.8 9.5 5.6 11.3 5.6 14.7 5.9 9.3 5.7 17.6
9.2 13.0 9.3 13.3 9.2 14.2 9.2 32.0 9.2 22.4

19.8 14.1 19.7 18.7 19.8 22.1 19.9 26.3 19.8 32.5
29.8 22.6 29.7 19.8 29.8 26.4 29.7 45.1 29.7 36.8
38.8 18.7 38.7 20.2 39.2 33.5 38.8 52.4 39.1 43.8
44.0 17.0 43.7 14.0 43.9 16.0 43.8 38.2 44.1 27.0
48.5 14.5 48.7 6.4 48.8 18.8 49.0 29.9 48.7 12.2
53.9 6.2 53.6 13.2 53.8 12.0 53.7 18.1 53.8 12.0
58.8 6.6 58.8 5.6 58.7 7.6 59.0 21.0 58.8 8.9  
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