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SUMMARY

Very Low Frequency (VLF, 3-30kHz) and Low Frequency (LF, 30-300kHz) radio waves

are useful due to their ability to travel around the world in the Earth-Ionosphere waveguide

and excellent skin depth penetration into conductors. However, generation of these waves

is limited due to the fact that their wavelengths are hundreds of meters to kilometers long.

A recently proposed antenna concept known as VAIPER involves an antenna with time-

varying conductivity. The antenna’s properties need to be varied at nanosecond timescales.

This time-varying concept can be realized at low power with COTS components, but high

speed switches cannot handle high power. A plasma is a conducting media with electri-

cal properties that can be varied rapidly while handling high current flow. Antennas made

from plasma have been constructed and tested in the past, but not with rapidly time-varying

conductivity in mind. To determine a plasma’s viability as an antenna, its electromagnetic

properties must be measured. Conventional plasma analysis techniques do not resolve

variations in plasma at the desired speeds. The objective of the research in this thesis is

to develop techniques to analyze a plasma column’s electric properties as it is ionized and

de-ionized on the nanosecond timescales. Optical techniques are used to determine the

time-varying conductivity of rapidly pulsed plasma. The conductivity measurements fed

into a basic propagation model to determine whether the experimental plasma columns can

support the VAIPER scheme.

xii



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 VLF and LF Electromagnetic Waves

Very Low Frequency (VLF, 3-30 kHz) and Low Frequency (LF, 30-300 kHz) waves have

the ability to travel around the world with low loss, guided by reflections from the D-

region of the ionosphere (60−90 km altitude) and the Earth, which form a waveguide.

Waves at these frequencies also penetrate seawater via the skin effect, allowing signals to

be received by submerged submarines. Additionally, they propagate deep into the ground

and can be used for subterranean sensing. Although VLF and LF waves are quite useful,

these longwave frequencies are exceedingly difficult to generate efficiently due to their long

wavelengths (1-100 km). Efficient radio antennas are often comparable to their operating

frequencys wavelength in size, such as a half-wave dipole. For higher frequency (UHF,

SHF) applications such as consumer electronics, antenna size isn’t a limitation because

wavelengths are typically less than a meter long. For VLF/LF frequencies, building an

antenna comparable to the operating wavelength difficult. The US Navy as well as others

have generated these frequencies successfully utilizing heavily engineered electrically short

antennas, with length far less than the operating wavelength. Electrically short antennas

have highly reactive input impedances due to the reflection of the signal at the end of the

antenna. The fundamental reason for this is that at low frequencies, in the time it takes

voltage to travel down, reflect, and arrive at the antenna feed, the feed current has barely

changed, so the reflected current virtually cancels out the feed current while the voltage

adds up. The effects of this reflection can be dealt with via top loading, which is described

in depth in [1]. This frequency-domain matching technique introduces a resonance to the

antenna, so it only operates efficiently in a narrow range of frequencies. An example of
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a pair US Navy VLF antennas is located in Cutler, Maine, transmitting 1 MW at 24 kHz,

corresponding to a wavelength of 12.5 kilometers. These antennas are shown in Figure 1.1.

The top hat of one of the Cutler antennas is 1.87 km in diameter, requiring a large footprint.

The sheer size of one of these top loaded antennas make them difficult to maintain and

effectively impossible to transport.

Figure 1.1: VLF transmitter NAA at Cutler, Maine [1].

The bandwidth of existing US Navy transmitters is ∼200 Hz. Changing the operating

frequency also requires a redesign and overhaul of the array as its components are designed

and tuned specifically for its operating range. A portable and more adaptable VLF transmit-

ter with a wider bandwidth is highly desirable. A new concept was recently proposed [2] to

generate LF waves with electrically short antennas via time-domain reflection suppression

in lieu of frequency-domain matching techniques. Rather than feeding the antenna with a

pure sinusoid, it is fed with a series of extremely short (<10 ns) voltage pulses with peaks

that follow the envelope of the sinusoid. As each pulse reaches the tip of the antenna, the

antenna’s conductivity is lowered at a point close to the tip, attenuating the pulse and elimi-

nating the reflection. Therefore, the charge is deposited at the tip, and the returning current

does not flow back to cancel out the injected current. Because this matching technique

is done in the time domain, in principle it works at frequency, leading to full broadband

2



capability. The lack of need for a top hat enables an antenna built as such to be potentially

portable. Some efficiency is lost when a sinusoidal signal is converted into a train of pulses.

To mitigate this effect, the pulses should be as close to one another in time as possible to

maximize efficiency. At the same time, the pulses must be shorter than the propagation

delay from the antenna’s feed to its tip. If the antenna is 3 meters long, and propagation is

at the speed of light, the pulse duration must be noticeably less than 10 ns. During the 10 ns

period, the antenna must be highly conductive to allow high power pulses. This concept can

be realized using high speed switching electronics, but those electrical components cannot

handle the high power needed for long range transmission. As such, the focus of this thesis

is using a rapidly pulsed, segmented plasma column in lieu of electronics. The length and

frequency of pulses will be limited by the plasma’s ionization time, de-ionization time, and

conductivity. Our aim is to define the methodology to measure pulsed plasma column’s

parameters and compare these to benchmarks that we will establish: fast rise and fall, and

high conductivity.

1.2 Plasma Generation Basics

This thesis involves the generation, manipulation, and diagnosis of plasmas in a laboratory

setting. Plasmas are bodies of gas whose molecules have been excited to the point that

a reasonable number of them ionize, or separate into ions and electrons. One can think

of a plasma as the fourth state of matter beyond solid, liquid, and gas. In this research,

the plasmas generated will be weakly ionized, meaning only a small fraction of the gas

particles have been ionized, so mostly neutral particles are present. An ionized plasma is

by definition a neutral body, meaning the number of free electrons is equal to the number

of ions. The presence of free electrons and ions make it electrically conductive.

Plasma is the most abundant state of matter in the universe: stars are bodies of ionized

gas. Fire, lightning, and the ionosphere are other naturally occurring plasmas. Fluorescent

lighting is a common man-made plasma. Plasma is important in many areas of research,
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and can be a dangerous phenomenon that must be accounted for or eliminated. Upon re-

entry, the glow around a spacecraft is actually a plasma generated by the friction of the

vessel in the atmosphere. Special heat-dissipating tiles are used on space shuttles to protect

the airframe from the plasma’s high temperature. High potentials in power distribution

systems can generate plasma similar to lightning in explosive arc discharges. Equipment

must be carefully installed to avoid this problem. Fusion reactors generate extremely hot

plasmas that are difficult to contain. Strong magnetic fields are used to confine fusion-

generated plasmas. A few examples of plasmas, along with their temperatures, are shown

in Figure 1.2

Figure 1.2: Types of plasma and their parameters from [3].

There are many possible means by which a plasma can be generated and maintained.

In a laboratory setting, the most straightforward way is to generate an electric field high

enough to create conventional breakdown. A gas at a given pressure can be assigned a

dielectric strength. When the electrical field applied to a gas overcomes this dielectric

strength, the molecules begin to ionize. The electric field in this research will be generated
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between two electrodes. The law describing the minimum electric field between electrodes

at which breakdown occurs is known as Paschen’s law. The presumption is that the electric

field is generated by two parallel-plate electrodes with a certain distance d, embedded in a

gas with a certain pressure, which therefore has a minimum voltage that must be applied

betwen the two plates in order to induce breakdown, first described in [4]. The Paschen

curve is a graphical representation of Paschen’s law, describing the breakdown threshold

voltage as a function of pressure and electrode gap distance. The horizontal axis is in units

of Torr-cm, so increasing the pressure by a factor of two is roughly equivalent to halving the

separation between the plates. Example Paschen curves are shown in Figure 1.3, including

the curve for Argon, which will be the gas used in this study. This idealized law presumes

electrodes that are essentially infinite parallel plates, so for a different geometry, the curve

will generally be different.

Figure 1.3: Paschen curves for a selection of gases using fit parameters from [5].

This curve varies with the type of gas used, and its fit parameters are determined em-
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pirically. The range of test pressures in this study is limited due to the effects of Paschen’s

law and the ionizing voltage source’s maximum output. A comparison of pulsed ionization

data and the Paschen curve will be made in Section 3.2.3.

1.3 Plasma Antennas

The envisioned application for the work here relates to plasma antennas, but ours is not the

first effort to consider a plasma as a conductor used for radio wave generation. Conven-

tional antennas utilize metal as the conducting medium. At the simplest level, if the metal

in a conventional antenna is replaced with a plasma column of the same size and shape, it in

principle will exhibit the same radiation capability. An example of a basic plasma antenna

used as an FM radio receiver is shown in [6]. A fluorescent bulb was used to generate the

plasma, with a capacitive sleeve feed to couple the waves received in the antenna to the

feed cable. This antenna is shown in Figure 1.4.

Figure 1.4: Fluorescent FM Plasma Antenna from [6].

The feed cable was connected to an FM radio tuner and a speaker. When fluorescent

bulb was turned on, the gas inside is ionized. The FM signal was received by the antenna,
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demodulated by the tuner, and music played through the speakers. When the bulb was

turned off, the signal was no longer received, and only static played through the speakers.

Plasma antennas have a few advantages over conventional antennas. They can be rapidly

reconfigured, filter out high frequencies, and are electromagnetically invisible when de-

ionized [7, 8]. Unfortunately, the complexity of plasma antennas render them impractical

for many applications, namely that they require vacuum equipment, ionization circuitry,

and glass tubes to contain the plasma.

1.4 Plasma Parameters

There is an incredibly rich history of laboratory experiments to demonstrate the electrical

properties of plasmas, which we cannot adequately describe here, but we now proceed to

give a basic description of plasma physics. To understand how a plasma reacts to an applied

electric field, let us define its conductivity. It should be noted that we will be exclusively

discussing plasmas that are isotropic, and do not have a significant static magnetic field

affecting the electrical properties. This assumption cannot be made for most space plasmas

[3]. Conductivity for a metal can typically be assumed to be a constant over a huge range

of frequencies. For a plasma, however, that is not the case. This will be discussed in depth

in Section 1.5. Let us first examine the key parameters that dominate plasma conductivity.

1.4.1 Electron Density

For a medium to conduct electricity, it must have free electrons present. The number of

free electrons in a material per unit volume is referred to as electron density, Ne, measured

in electrons/m3. Copper, a common conductor, has an electron density of 8.49x1028. Other

metals have electron density values within the same order of magnitude. Glow discharge

plasmas, such as those in fluorescent light bulbs used in basic plasma antennas, have an

electron density on the order of 1014 [3]. It is beneficial for a plasma antenna’s electron

density to be as high as possible to support voltage propagation with low power dissipation.
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Benchmarks for electron density will be set in Chapter 2.

1.4.2 Electron Temperature

The energy of a plasma’s electrons is defined by their temperature, which is proportional

to the average kinetic energy, or the square of the average velocity. Not all electrons are at

the same kinetic energy. Electrons in a plasma travel at a wide range of velocities that, in

many plasma studies, can be described by a Maxwellian distribution:

f(v) = 4π(
m

2πkT
)
3
2v2e−

mv2

2kT .

Where m is electron mass (often denoted me), me, and T is electron temperature (often

denoted Te). The shape of a Maxwellian distribution for electron velocity is set by elec-

tron temperature, with the average velocity 〈v〉 =
√

8kTe
πme

. The average velocity is not the

most probable velocity as the Maxwellian distribution is skewed positive. Examples of

Maxwellian velocity distributions are shown in Figure 1.5.
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Figure 1.5: Electron velocity distribution of two electron temperatures. Note that 1 eV =

11,600 K.

Particle temperature can be measured in units of Kelvin, but for studies of charged

particles such as those in plasma, the electronvolt is standard. One electronvolt is the

energy an electron gains when accelerated through a potential difference of 1V, equivalent

to 11,600 K [3]. The plasma generated in this research is a non-thermal, or cold plasma at

low pressure. In this type of plasma, the electrons are at a much higher temperature than the

ions and neutrals [9]. Even if the electrons are many thousands of Kelvin in temperature,

you could still in principle put your hand in the plasma and not get burned. For this reason,

non-thermal plasma is being explored as a possible method of sterilization. Low pressures

mean less particles are present, so electrons are less likely to collide with neutrals and lose

energy, resulting in higher temperature. While the overall temperature of the plasma may

be near room temperature, the electron temperature can be expected to be much higher, on

the order of 1 eV.
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1.4.3 Collision Frequency

Collision frequency in a plasma, denoted ν, is the number of times per second a given

species (neutrals, ions, or electrons) collides with another species. In fully ionized plasmas,

collisions only occur between charged particles: ions to ions, electrons to electrons, or

ions to electrons. The plasma generated in the lab experiments for the purposes of this

research are weakly ionized, thus electron-neutral collisions are the dominant collision

process, because there are many fewer charged particles than there are neutral particles.

Although there are an equal number of ions and electrons, the ions are substantially heavier

and thus have much lower velocity even at the same temperature, and thus collide very

rarely compared to electrons. In weakly ionized plasmas, neutral particles impede electron

motion, resulting in electrons losing some or all of their momentum during collisions [3].

The likelihood of one of these collisions is a factor of three things: gas density, the cross

section of neutral particles, and the average velocity of electrons. Electron-neutral collision

frequency is expressed as νen = Nσ〈v〉, where N is gas number density, σen is the neutral

particle cross section, and 〈v〉 is the average electron velocity. Gas number density N can

be described as a pressure using a form of the ideal gas law: N = P
kT

, where P pressure

is in Pascals, T is ambient temperature, and k is the Boltzmann constant. In this research,

we use Torr as pressure units, so a conversion factor of 133.322 Pa/Torr is included in the

calculations. Next, electron cross-section σ is calculated using the radius r of the neutral

particle, argon, which is 71 pm. Cross-section is simply calculated as σ = πr2. Finally,

average electron velocity is 〈v〉 =
√

8kTe
πme

as described in section 1.4.2. Another conversion

factor of 11,600 K/eV is added here so the plasma temperature can be expressed in eV.

Finally, all of these equations and conversion factors can be combined and simplified into

a useful form:

νen =
40614r2P

T

√
πTe
kme
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where the experimetal inputs to this equation are vessel pressure P , ambient temperature

T in Kelvin, and electron temperature Te in electronvolts. For brevity, since only one type

of collision dominates, the frequency will be expressed as ν, dropping the subscripts.

1.5 Plasma Conductivity

For an isotropic (unmagnetized) plasma, the AC conductivity is

σ =
Neq

2
e(ν − jω)

me(ν2 + ω2)

as shown in [3]. Conductivity in a plasma is dependent on a plasma’s collision frequency

and electron density, as well as wave frequency ω. The dependence on wave frequency

means that a plasma column for use as an antenna must be carefully designed so that it will

conduct at the operating frequencies of interest. In this case, the frequencies of interest are

not VLF/LF, but much higher frequencies as we will discuss later. A common metric of a

plasma’s ability to conduct an electromagnetic frequency is plasma frequency:

ωp =

√
Neq2e
ε0me

.

Plasma frequency is a measure of the degree of ionization in a plasma. When ω <<

ωp, plasma a good conductor, while when ω >> ωp, plasma is a poor conductor and is

invisible to electromagnetic waves [6]. For a plasma antenna to behave like a good low-

loss conductor, its operating frequencies must be well below the plasma frequency. This

is apparent in Figure 1.6, where we have plotted the conductivity (vertical axis) against

frequency (horizontal axis), for a plasma with electron density of 1018. The hypothetical

plasma in the figure has a plasma frequency of 56.4 GHz, shown with the vertical dashed

black line. Its real conductivity is approximately constant until 1 MHz, when it starts

rolling off. Its imaginary conductivity is approximately zero until it reaches a resonance

null around 20 MHz. The peak in imaginary conductivity occurs in the middle of the
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real conductivity’s rolloff. The change in the imaginary component of conductivity can

be interpreted as a change in its permittivity value ε. A change in permittivity causes

a change in wave velocity as seen in the wave velocity equation: vp = 1√
µoε

. At the

plasma frequency, the plasma is clearly non-conductive. To minimize loss and distortion,

the operating frequency should be in the range where the real part of conductivity is flat,

and the imaginary part of conductivity is approximately zero. For this particular example,

the conductivity is fairly constant with frequency until 2 MHz. This is substantially less

than the 56.4 GHz plasma frequency, and demonstrates that collisions effectively reduce

the apparent plasma turnover frequency.

Figure 1.6: Real and imaginary components of conductivity for a theoretical plasma

(Ne=1018 and ν=108) vs. frequency.

Compared to conventional metal conductors, this hypothetical plasma’s conductivity is

quite low. Its maximum real conductivity value is 281.7 S/m, while copper’s conductivity

is 5.96x107 S/m. For a 1 cm radius column of this plasma, resistivity is 11 Ω/m. Ohmic

losses are negligible over a few meters with this resistivity.
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1.6 Measuring Plasma Parameters

To determine a plasma’s conductivity, its electron density and collision frequency must be

measured. Collision frequency is difficult to measure directly, so it can be calculated from

the plasma’s electron temperature as discussed in Section 1.4.3. These parameters can

be measured directly by inserting probes into the plasma, or through noninvasive optical

emissions analysis.

1.6.1 Langmuir Probes

The easiest diagnostic tool to implement is the Langmuir probe. A Langmuir probe is a wire

immersed in the test plasma. Various voltages are applied to the wire while current flow

is measured. Plotting the measured current against the applied voltages yields a current-

voltage, or I-V curve, which is analyzed to determine the plasma’s parameters. An ideal

example of an I-V curve is shown in Figure 1.7.

Figure 1.7: I-V Plot of a Langmuir probe, from [10].

The explanation of the regions of an I-V curve below comes from [11]. The current

measured by the probe is the sum of ion current Ii and electron current Ie (J, current den-

sity, is used in lieu of I, current, in the figure). The floating potential Vf is the point at which
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electron and ion currents are equal. At voltages below Vf , the probe is repelling electrons

and collection ions. At voltages far below Vf where the all electrons have been repelled,

the curve has reached Iist: ion saturation. At voltages just above Vf , the curve enters the

transition region in which electrons are only partially repelled by the probe’s potential.

If the plasma has a Maxwellian velocity distribution, the transition region is exponential.

At even higher probe voltages the curve begins to flatten out, entering the electron satu-

ration region, Iest. In this region, electron current increases slowly as voltage increases

due to plasma sheath expansion. Hiden Analytical summarizes the Orbital Motion Limited

(OML) Technique for Langmuir probe I-V curve analysis in [12]. To infer the density and

temperature of the plasma’s electrons, its electron current Ie must first be isolated from

its ion current Ii. First, the section of the I-V curve in the ion saturation region is plotted

as I2 vs. V, and a line is fit to the modified data. The square root of this fit line is taken

and subtracted from the original I-V curve, leaving only Ie. The natural logarithm of Ie is

plotted against V as shown in Figure 1.8.

Figure 1.8: Natural logarithm of electron current, from [12].

The plasma parameters can be inferred from this plot. A line is fit to the section of the
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plot corresponding to the transition region, which gives electron temperature in eV as

Te =
1

Slope
.

Another line is fit to the electron saturation region. The intersection of the electron satu-

ration fit line and the transition region fit line yields ln(Iest), which is easily converted to

Iest. Finally, electron density is calculated as

Ne = 3.73x1013
Iest(amps)

Ap(m2)
√
Te(eV )

where Ap is probe surface area.

1.6.2 Optical Methods

When a plasma is excited, its atoms’ electrons transition from ground state energy lev-

els to higher order energy levels. De-ionization processes begin immediately as a plasma

is ionized, resulting in electron transitions from higher energy levels to lower or ground

state energy levels. These transitions cause photon emission at a species-specific set of

wavelengths following the equation

λ =
hc

Eh − El

where Eh and El are the higher and lower order energy levels. A given atom has a unique

set of emission wavelengths based on its energy levels. The intensity of light at each wave-

length is primarily a function of the plasma’s electron temperature and gas pressure [13]. As

a plasma becomes more energetic, higher energy photons are emitted, and line intensities

vary. Optical emission spectroscopy (OES) is used to measure a plasma’s line intensities

over a range of wavelengths. The line ratio method is commonly used to analyze OES

data by comparing measured line intensities to calculated intensities via a Collisional Ra-
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diative model (CRM) [14]. The CRM used in this research is PrismSPECT, which will be

discussed in Chapter 4.
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CHAPTER 2

VOLTAGE PULSE ATTENUATION IN PLASMA

At a high level, we need to establish what kind of plasma properties will enable the reflec-

tion suppression antenna described in Chapter 1 to work efficiently. One key benchmark is

the conductivity, which must be high enough to support voltage pulse propagation across

the plasma column. In this chapter, we will quantify this benchmark by simulating the

plasma properties and wave attenuation. In any real antenna, the conductor will be imper-

fect, leading to some resistive losses. The frequency-varying resistance of plasmas result

in higher than normal loss when compared to metal antennas at high frequencies. Our goal

in this chapter is to set the requirements for a plasma to have high enough conductivity that

it conducts the voltage pulses with little to no attenuation. To quantify the plasma require-

ments, we will now describe a model of voltage attenuation along a plasma column as a

function of key plasma parameters. We will assume that the pulses fed into the antenna

are approximately Gaussian. A Gaussian pulse has a wide band of frequency content. For

example, a Gaussian pulse with 1 ns standard deviation has frequency content that extends

in the 100s of MHz to GHz range. Because a plasma is not a good conductor above the

plasma frequency, pulses with frequency content above the plasma frequency will be at-

tenuated and distorted. As such, our goal of conducting short pulses requires a fairly high

plasma frequency, and therefore a high electron density. We will utilize transmission line

theory to determine how well a given plasma column will conduct a pulse with a certain

duration.

2.1 Transmission Line Wave Propagation

Our approach is to consider the plasma channel as a transmission line, which is a conductor

that is capable of propagating both voltage and current from one end to another, with a

17



nonzero and quantifiable delay. A transmission line can be thought of as a chained series of

inductors and capacitors, each of which impede and slow down the transmission of voltage

and current as shown in Figure 2.1.

Figure 2.1: Transmission line as circuit components [15].

The Telegrapher’s equations uses the circuit component model to predict voltage and

current wave propagation down a transmission line as functions of line parameters, spatial

position, and time:
∂zV (z, t)

∂z
= −(R + L

∂

∂t
)I(z, t)

∂zI(z, t)

∂z
= −(G+ C

∂

∂t
)V (z, t).

The equation for a waves traveling on a transmission line is derived from the Telegrapher’s

equations as

V (z) = V +e−γz + V −eγz

where V + is the initial magnitude of a forward traveling wave, V − is that of a backward

traveling wave, and z is position in meters. We consider only the forward traveling wave

here. The propagation constant γ combines transmission line parameters as

γ =
√
(jωL+R)(jωC +G)
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where L is inductance (H/m), C is capacitance (F/m), G is conductance (S/m), and R is

resistance (Ω/m) [16]. For a lossless transmission line, conductance and resistance by def-

inition are set to zero. However, a plasma column is modeled as a lossy transmission line

due to its low conductivity. Conventional lossy transmission lines are run in the time do-

main since the resistance R is constant with frequency. However, in our case, the plasma

resistance is frequency-dependent. Thus, we will have to apply this model in the frequency

domain. Conductance is set to zero in our model, as ohmic losses will be the dominant

source of attenuation. The propagation constant can be separated into real and imaginary

terms as γ = α + jβ. α is an exponential decay constant, describing voltage wave attenu-

ation due to resistive loss. The imaginary part of the propagation constant β describes the

wave propagation properties such as phase and group velocity. The velocity of a wave on a

transmission line is controlled by line inductance (H/m) and capacitance (F/m), following

the relationship

vp =
1√
LC

,

measured in meters per second. The focus of this study is on the effects of line resistance,

so the inductance and capacitance are chosen so that vp is equal to vacuum speed of light

propagation.

2.2 Plasma Resistance Function

Once the conductivity is known, the resistance of a plasma is found from equation

R =
1

σA

with units of Ω/m, where A is the cross sectional area of the plasma column in m2. A

large cross section reduces resistance, therefore the diameter of the plasma column should

be as high as possible. Because plasma conductivity is in general a complex number, its

resistance is complex as well. The imaginary component of the resistance contributes to β
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in the wave equation, which affects the propagation velocity. The real component of resis-

tance contributes to the attenuation constant. Here, the real component of resistance is our

primary focus due to its contributions to ohmic loss. Similar to the conductivity plot from

Chapter 1, resistance vs. frequency is plotted in Figure 2.2 for plasma parameters Ne=1018

and ν=108. As the wave frequency nears the plasma frequency, resistance increases sharply.

Figure 2.2: Resistance of a theoretical plasma (Ne=1018 and ν=108) vs frequency.

2.3 Pulse Frequency Content

To model how a pulse is attenuated and distorted in a plasma, its spectral content is found

via Fourier transform methods. Through Fourier analysis, any time-domain signal can be

treated as a sum of sinusoidal signals at many different frequencies, with a combination

of amplitudes and phases. The Fast Fourier Transform is a simple numerical method to

implement that yields the magnitude and phase of the frequency components of a signal.

A Gaussian signal’s spectral content depends on its length in time. The equation for a

20



Gaussian pulse centered around zero is

v(t) = e
t2

2σ2

where σ is the standard deviation, which sets the width of the curve. Throughout the

thesis, we define pulse duration as the length of time an input pulse’s voltage is greater than

zero, with the Gaussian standard deviation set equal to one-eighth of the pulse’s duration.

Examples of Gaussian pulses 1 nanosecond and 5 nanoseconds wide and their frequency

content are shown in Figure 2.3.

Figure 2.3: Gaussian pulses at multiple widths (left) and their frequency content (right).

The resistance function for the theoretical plasma is shown in Figure 2.2 and resembles

a lowpass filter, but the turnover frequency increases as pulse duration is reduced.

2.4 Pulse Attenuation Modeling

We can now describe our pulse propagation mode in detail. The wave propagation equation

is applied at each frequency component of the pulse to determine how much power is

dissipated as it travels through the antenna. First, the frequency components of the pulse are
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calculated by the FFT. The plasma’s parameters (electron density and collision frequency)

are then used to calculate the plasma resistance as a function of frequency, which is used

to find the propagation constant γ for each frequency. The propagation constants are used

in the equation for a forward traveling wave to determine the degree of attenuation of

each frequency component when the pulse reaches the end of the antenna. The attenuation

function is applied to the original pulse’s spectral content. The inverse FFT is applied to the

pulse’s attenuated spectral content, ultimately yielding the pulse’s shape at the end of the

antenna. The pulses can be assigned a physical width according to their duration and the

propagation velocity. For the reflection suppression concept to be realized, a pulse must be

able to fit entirely in one of the antenna’s sections. A 1 nanosecond long pulse traveling at

the speed of light is 30 centimeters long in space. The physical length of the pulses imposes

a minimum length restriction on the plasma cells. To increase antenna efficiency, multiple

voltage pulses need to be traveling down the antenna concurrently, so short plasma cells

are desirable, once again relying on the plasma’s conductivity. The plots below show the

output of the pulse propagation code for a variety of pulse widths and theoretical plasmas.

2.4.1 Model Run Examples

A collision frequency on the order of 1 GHz is calculated for the range of test pressures

and electron temperatures. The antenna length is set to 3 meters long with a radius of 2

centimeters. Pulse lengths of 1 ns and 5 ns propagating through plasma modeled below.

The vertical axis is voltage, while the horizontal axis is time. The blue curve is the Gaussian

pulse at the antenna feed before propagation. The red curve is the pulse after it has traveled

three meters down a plasma column with Ne=1019 /m3 and ν=108 /s. As expected, the 1 ns

long pulse is attenuated more than the 5 ns long pulse. The higher frequency content in the

shorter 1 GHz pulse is above the plasma frequency, causing more lossy propagation.
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Figure 2.4: Attenuation of 5 ns pulse in a plasma column with theoretical parameters.

Figure 2.5: Attenuation of 1 ns pulse in a plasma column with theoretical parameters.
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2.4.2 Model Applications

Having now established a model for a voltage pulse’s behavior as it propagates down a

plasma channel with certain properties, the next step in subsequent chapters is to determine

actual measured plasma parameters. We will then feed these more realistic measured val-

ues into this model to determine the shortest pulse the plasma can conduct with minimal

attenuation.
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CHAPTER 3

MEASUREMENTS

To apply the pulse attenuation model to real data, a plasma column must be generated and

analyzed. In this chapter, we discuss the details of the plasma generation equipment, mea-

surement instrumentation, and measured results. The first type of measurements discussed

are taken with a photodetector. These are used to determine the plasma’s speed as test

pressure and voltage are varied. The plasma’s ionization and de-ionization speed are im-

portant for the pulse-blocking matching technique. Next, Langmuir probe measurements

are used to analyze the plasma’s electron temperature and density. Finally, spectrometer

measurements are used to record the plasma’s emissions. Langmuir probe measurements

and spectrometer measurements both yield electron temperature and density.

3.1 Experimental Setup

3.1.1 Plasma Generation Equipment

The details of the plasma chamber’s design and previous versions are detailed in [17]. The

chamber consists of a Pyrex glass tube between two 4.5 inch ConFlat (CF) crosses. The

plasma generating electrodes are placed in the tube for testing. One end of the chamber

is used for vacuum pumping, and the other for gas flow. An Adixen 2121SD roughing

pump on the vacuum control end of the chamber is used to evacuate the system to around

10 mTorr. Chamber pressure is monitored by a KJLC 375 gauge controller and KJLC

257 Pirani tube. Once the chamber has been evacuated, the plasma’s background gas is

introduced to the system. Gas flows from a tank of ultra-high purity argon through an

Airgas Y11-215D pressure regulator to a custom flow control manifold. The manifold

uses an MKS 1179A mass flow regulator and an MKS 247D control unit to guarantee a
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consistent flow rate into the chamber. These control units are set to provide their maximum

gas flow rate. Pressure is controlled manually on the vacuum control end of the chamber. A

bellows valve used to isolate the vacuum pump from the chamber is used to restrict vacuum

until the gauge reaches the desired test pressure.

Two different power supplies are used to ionize the plasma. The Lambda (GEN600-

2.6) DC power supply is used to generate steady state DC plasma. This unit can supply up

to 600 V and 2.6 A. The FID (FPG 1-50NM100A) high voltage pulse generator is used to

generate nanosecond pulsed plasma. This unit can supply pulses from 500 to 1000 V with

FWHM widths from 5 to 100 ns and up to 50 kHz repetition frequency. The pulses from

this unit are designed to approximate square waveforms, but at these speeds the rise and

fall of the pulses are noticeable. Figure 3.1 shows a 1 kV, 10 nanosecond long pulse trace

from the unit’s manual.

Figure 3.1: 1 kV, 10 ns pulse from FID pulser manual.

Electrode shape and spacing affects a plasma’s behavior. Rectangular anodized alu-

minum electrodes (2.54 x 3.81 cm) were used for the light curve style measurements.
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These were initially mounted with a 1.778 cm gap on custom fabricated epoxy laminate

(G10) mounts. The gap length was reduced to 0.5 cm for later tests on custom ceramic

(MACOR) mounts. The most recent electrodes are fashioned from aluminum round-top

rivets set in MACOR mounts with a 1 cm gap. This mount is designed to hold a Langmuir

probe in the body of the plasma for analysis. The rectangular electrodes in the 0.5 cm gap

configuration are shown in Figure 3.2, and the rivet electrodes are shown in Figure 3.3.

Figure 3.2: Rectangular electrodes at 0.5 cm gap length.
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Figure 3.3: Rivet electrodes at 1 cm gap length. The wire between the electrodes is a

Langmuir probe tip.

3.1.2 Plasma Analysis Instrumentation

Photodetector and spectrometer measurements are used to analyze the light emitted from

the plasma. A Thorlabs APD430A2 variable-gain avalanche photodetector is used to record

the plasma’s total optical output as the plasma is modulated. This unit detects photons

with wavelengths 200-1000 nm, outputting a voltage corresponding to the intensity of light

detected. The photodetector is connected to a Tektronix DPO5104B oscilloscope to record

voltage traces as a function of time. These traces, henceforth referred to as ’light curves,’

are recorded via a LabView program provided by Tektronix. An Ocean Optics HR4000CF-

UV-NIR asymmetric crossed Czerny-Tuner spectrometer is used to collect spectra data.

This spectrometer has a wavelength range from 200 to 1100 nm. Each day the spectrometer

is used, its wavelength and intensity axes are calibrated through the methods described in

[17]. Intensity axis calibration can be a relative or absolute calibration. Absolute calibration

provides a conversion between the analog-to-digital units used in a spectrometer to a power
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density, while a relative calibration accounts only for the spectral sensitivity [13]. An

absolute calibration provides more information about the plasma’s spectra, but is difficult

to perform. A relative calibration is sufficient for the line ratio method.

The Langmuir probes are built in-house from tungsten wire and ceramic tubing follow-

ing specifications in [11]. A Keithley 2410 source meter is connected to the Langmuir probe

to supply its bias voltage and measure the probe current. The source meter is controlled

via LabView to sweep through the range of desired bias voltages and quickly generate I-V

curves.

3.2 Photodetector Measurements

For the measurements in this section, the plasma is excited with the pulsed DC voltage

source, operating at 5 nanosecond pulse width and 10 kHz pulse repetition frequency. The

avalanche photodiode was used to record the plasma’s optical emissions as it ionized and

de-ionized, and to determine whether the plasma was extinguished between pulses.

3.2.1 Light Curves

To generate light curves, the plasma was monitored with the avalanche photodiode to track

its optical output over time. The photodiode was connected to the oscilloscope to generate a

voltage trace corresponding to optical emissions. Noise is introduced to the measurements

by the pulser, apparent in Figure 3.4. The vertical axis is the photodectector output voltage,

while the horizontal axis is time. Three parts of these light curves yield information about

the rapidly ionized plasma: peak optical output, rise time, and fall time. When optical

output is at its maximum, the plasma’s ionization is strongest, therefore its electron density

will be maximized. Rise and fall times for a curve are typically measured as the time it

takes a curve to go from 10% of its maximum amplitude to 90% of its maximum amplitude.

Here, we define rise time as the time it takes the light curve to go from 10% of its maximum

amplitude to its maximum amplitude, and fall time from the maximum amplitude to 10%
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of maximum. This change in definition is appropriate in this instance because we are

interested in how long it takes the plasma to reach its maximum electron density when a

pulse is applied. Smoothing must be applied to the decreasing section of the curves for

fall time analysis. Noise spikes in the measurements made fall time calculations difficult to

automate, so smoothing was applied to the falling edge of the curve. The processed version

of the curve is shown in Figure 3.4, with annotations to show timing points.

Figure 3.4: Raw and processed light curve from photodiode; response to 5 ns, 700 V pulse.

Ionizing voltage amplitude and background gas pressure affect a plasma’s speed and

electron density. To observe the effects of these variations, multiple light curves were

taken at various pressures and ionizing voltages. In the plots below, the electrode gap size

was 1.78 cm. Figure 3.5 shows the effects of varying voltage. As expected, higher ionizing

voltages yield higher optical output, similar to increasing the voltage applied to a light bulb.

Figure 3.6 shows the effects of varying background gas pressure. Varying pressure changes

both the fall and rise times as well as the maximum optical output. Higher pressures at this

gap size resulted in double peaks not seen at lower pressures. The double peaks were not
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present at the other gap size tested, 0.5 cm.

Figure 3.5: Light curves with fixed pressure, varying 5 ns ionizing voltage pulse amplitude.

Figure 3.6: Light curves with 5 ns, 800V ionizing voltage, varying pressure.
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3.2.2 Pressure-Voltage Sweeps

A pressure-voltage sweep is created by recording light curves at a range of pressures and

ionizing voltages. Maximum photodetector output voltage, rise time, and fall time are ex-

tracted from the light curves. In this analysis, rise and time are defined as the time periods

during which the photodetector output is between 10% of its maximum value and the max-

imum. For the sweep figures shown below, the ionizing pulse width was 5 nanoseconds

long. This sweep analysis was performed at two different electrode gap lengths: 1.78 cm

and 0.5 cm. Testing at the shorter gap length creates a stronger electric field, thus enabling

higher-pressure plasma generation.

Figure 3.7 displays the maximum photodiode output sweeps. As expected, peak optical

output always increases when ionization pulse amplitude increases. As pressure varies,

the peak optical output has different trends at the two different gap lengths. At 1.78 cm,

peak photodetector output is highest between 1500 and 2000 mTorr. At 0.5 cm, peak

photodetector output increases as pressure increases and there is no ideal pressure range.

Figure 3.8 displays the rise time sweeps. Like the peak output sweep, the 1.78 cm gap

rise times have a low rise time range. Higher pressures generally yield lower rise times,

but at past 2000 mTorr rise time increased. The increase in rise time was caused by the

double peak effect shown in the light curve plots. The double peak was only present in the

1.78 cm gap tests. The 0.5 cm gap rise times are generally lower as pressure is increased.

An interesting anomaly occurs at 800 mTorr for the 0.5 cm gap tests, seemingly a rise time

sweet spot at lower pressures.

Figure 3.9 displays the fall time sweeps. In both of these cases, the plasma fall time

decreased with increasing pressure. This behavior is expected due to the linear relationship

between pressure and collision frequency.

Figure 3.10 display the optical emission time. The time values here are dominated by

fall time, which is around ten times higher than rise time in most cases. For the reflection

suppression antenna to be efficient, combined ionization and de-ionization time needs to
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be 10 nanoseconds or shorter. The shortest total emission time measured was 136 nanosec-

onds, much higher than the 10 nanosecond benchmark. However, the plasma’s total optical

output intensity does not yield information about the plasma’s conductivity. As the plasma

is ionized and de-ionized, its electron density varies. It is likely that the plasma does not

need to be fully de-ionized to suppress a voltage pulse. The spectroscopic methods detailed

in sections 4.2.1 and 4.2.2 will be used to determine the plasma’s conductivity function as

it is ionized and de-ionized.

Figure 3.7: Peak optical output sweep with 5 ns ionization pulse at 1.78 cm and 0.5 cm gap

lengths.
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Figure 3.8: Rise time sweep with 5 ns ionization pulse at 1.78 cm and 0.5 cm gap lengths

Figure 3.9: Fall time sweep with 5 ns ionization pulse at 1.78 cm and 0.5 cm gap lengths.
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Figure 3.10: Total emission time sweep with 5 ns ionization pulse at 1.78 cm and 0.5 cm

gap lengths.

3.2.3 Paschen Curve Comparison

By multiplying the electrode gap distance by each test pressure, the pressure-voltage sweep

plots can be compared to the Paschen curve can be made as shown in Figure 3.11. The

equation for the Paschen curve is VB = Bpd
ln(Apd)−ln[ln(1+ 1

γSE
)]

, where VB is the breakdown

voltage. A and B are gas-specific fit parameters. γSE is the second Townsend coefficient,

which is dependent on electrode material [18]. The Townsend coefficient is often unknown

and can be combined with the A fit parameter, becoming A′, reducing the Paschen curve

equation to VB = Bpd
ln(A′pd)

. A′ and B are determined experimentally. Published values of A′

vary between 2.64 and 3.57 cm-Torr, and B between 133 and 320 V/cm-Torr for argon [5].

For the 1.78 cm gap, A′ = 3.1 cm-Torr and B = 320 V/cm-Torr provided the best fit. For

the 0.5 cm gap, A′ = 3.57 cm-Torr and B = 320 V/cm-Torr provided the best fit.

The experimental threshold voltages fell above the Paschen curve at most pressures.

For the 0.5 cm gap tests, ionization was observed below the Paschen curve threshold for

some of the lower pressures. Typical Paschen curve experiments are performed with DC
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ionizing voltages and low-capacitance pin electrodes. Here, nanosecond pulses powered

high-capacitance square electrodes. The differences in experimental design result in signif-

icant deviations from the typical Paschen curve. Here, nanosecond pulses powered higher

capacitance square electrodes. Oscilloscope readings of the ionization feed show the volt-

age pulses reflecting back and forth in the cable. Thus, the full potential of each pulse is not

utilized in the ionization process. This phenomena is seen in transmission line theory with

transient pulses. The voltage feed lines are terminated in a complex impedance load, with

both the capacitance from the square electrode design and the resistance from the anodized

layer on the electrodes contributing to the reflections. Performing this test with DC ioniz-

ing voltage should result in a Paschen curve fit coefficients similar to those seen in other

experiments, allowing steady-state conditions to be met. The sub-Paschen curve ionization

may be due to an inaccurate pressure gauge.

Figure 3.11: Paschen curve overlay at 1.78 cm and 0.5 cm gap lengths.
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3.3 DC Plasma Measurements

3.3.1 Langmuir Probe

The DC Langmuir probe measurements were meant to serve as a baseline comparison for

the PrismSpect line ratio methods. Unfortunately, the electrodes and power supply were

unable to support a plasma column with enough volume to fully immerse the Langmuir

probe tip. Ionization was induced with the DC power supply around 300 volts. The voltage

could be increased to around 450 V before the plasma became unstable. Past 450 V, the

electrodes arced uncontrollably. Figure 3.12 shows the plasma during a Langmuir probe

test.

Figure 3.12: DC argon plasma during Langmuir probe test.

The upper electrode in the image is the anode (+) and the lower electrode is the cathode

(-). The plasma is concentrated on the anode, extending only 2-3 mm from the rivet. Sheath

formation around the Langmuir probe causes it to glow as well. The probe could not be

adjusted to contact the main body of the plasma due to the plasma’s small size. If the probe

came into contact with the ionizing electrode, the source meter would have been destroyed.
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The lack of immersion in the plasma resulted in an uncharacteristic IV curve. Typically,

ion saturation current is close to zero, dwarfed in magnitude by electron saturation current.

With this plasma, we see the opposite. An IV curve from this plasma is displayed in Figure

3.13.

Figure 3.13: IV Curve from 450 V DC plasma Langmuir probe test.

This plasma’s uncharacteristic curve does not yield to the OML analysis method. The

test bed would need to be redesigned to support probe tests with full immersion in the

plasma for reliable results with DC ionization.

3.3.2 DC Spectrometer Measurements

Spectra from the plasma was measured at a variety of ionization voltages. A plasma from

the highest recorded test voltage (450 V) is analyzed here. For DC spectra measurements,

20 scans were taken and averaged. The integration time of each scan was 300 milliseconds.
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Figure 3.14: Measured spectra from 450 V DC, 1 Torr argon plasma.

In argon, the neutral lines (Ar I) are concentrated around 800 nm, while the singly-

ionized lines are in the 400 nm range. Figure 3.14 shows that for this case, the most intense

lines are generated by neutral argon, which is clearly the dominant species. Experimental

line ratios are simply calculated from the peak intensity of the selected lines. Parameter

determinations via the line ratio method will be discussed in Chapter 4.

3.4 Nanosecond Pulsed Plasma Measurements

3.4.1 Langmuir Probe

Langmuir probe measurements are typically performed on plasma columns that have reached

a steady state. The pulsed plasma does not reach steady-state at the nanosecond ionization

speeds: it is either ionizing or de-ionizing. Complex triggering systems can be designed

to support time-resolved probe measurements. Langmuir probe tests can be performed on

pulsed plasma and provide an approximation of the plasma’s parameters [19]. The pulsed
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DC supply generated a large enough volume of plasma to at least partially immerse the

probe, evident in Figure 3.15.

Figure 3.15: Plasma generated at 1 Torr with 1 kV, 5 ns pulses.

The measured IV curve has an ion saturation current magnitude comparable to its elec-

tron current magnitude. This is not the ideal IV curve shape, but applying OML meth-

ods yields curves and parameter values one would expect from a steady-state Maxwellian

plasma. The curve in Figure 3.16 was initially hidden by current spikes, likely caused by

arcing in the plasma. The major current spikes were removed prior to analysis, but some

are still apparent. The processed curve is displayed in Figure 3.17.
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Figure 3.16: Pulsed plasma IV curve.

Figure 3.17: Processed IV curve using OML technique.

Using the fit lines with the OML equations, the electron temperature is calculated to be
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1.558 eV and the electron density is calculated to be 2.88x1013 /m3. While these measured

values are close to the order of expected values, they should be approached with caution.

The effects of transients like ionization and de-ionization on Langmuir probe measurements

are not well defined. These probes are susceptible to plasma sheath effects, which may

play a role in the morphology of the measured IV curve. Additionally, the fit lines used to

analyze the data affect the calculated values. Finally, the probe tip surface area’s inclusion

in the electron density calculation adds more uncertainty. The total surface area was used

in the calculations, but a partial immersion would cause the calculated value to be lower

than the actual value.

3.4.2 Pulsed Spectrometer Measurements

The plasma analyzed here was generated by the FID pulsed voltage with 1 kV, 5 ns long

pulses at a pulse repetition frequency of 50 kHz. Because the spectrometer’s minimum

integration time is 30 ms long, it captures many pulses of light during each scan. The

integration time on the spectrometer is set to 150 ms for these tests to make the weak

ion lines stand out. This results in the averaged spectra of approximately 7500 pulses per

scan. 20 scans are taken and averaged for each test. The results from this measurement are

displayed in Figure 3.18.
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Figure 3.18: Measured spectra from 5 ns, 1 kV pulsed, 1 Torr argon plasma.

Similar to the DC plasma test, the strong lines are concentrated around 800 nm, mean-

ing that Ar I is the predominant species. As the plasma is ionized and de-ionized, it emits

light at wavelengths corresponding to its properties at each point in its lifetime. Thus, sin-

gle pulse emits light at a variety of spectra. While measuring the spectra at each point in

time would be ideal for determining the evolution of its properties, this is no easy task and

would require a much more sophisticated set of equipment than what was used. The spectra

measurements represent the average spectra over the plasma’s lifetime. Here, it is assumed

that the average optical spectra represent the plasma’s average parameters over a single

pulse. The average parameters will be applied to light curve data. Line ratio calculations

using this measured data will also be applied in Chapter 4.
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CHAPTER 4

COLLISIONAL RADIATIVE MODEL

In this chapter, we will utilize a theoretical model to infer the plasma properties (namely

electron temperature and density) based on the measurements presented in Chapter 3.

These properties can be inferred through analysis of the intensity of light emitted from

the plasma at individual wavelengths. The intensity of light at each of the wavelengths is

a function of gas density and the degree of ionization in the plasma. The peak intensity of

one line can be divided by another, yielding a ’line ratio.’ Line ratios vary with the degree

of ionization as well. Line ratios are calculated for experimental plasmas and compared to

models to determine experimental plasma parameters. Radiative models take a plasma’s

background gas and other experimental parameters into account to generate theoretical

spectra, calculating electron density concurrently. Experimental line ratio is compared to

that of a number of theoretical plasmas to determine the experimental plasma’s parameters.

PrismSPECT is a commercially available radiative model used to synthesize spectra, which

will be used to apply the line ratio method for conductivity calculations.

4.1 PrismSpect Simulations

PrismSPECT generates emission simulations of a variety of gases and mixture ratios. The

background gas pressure, plasma geometry, and electron temperatures can all be varied in

testing. At the simplest level, a radiative model like PrismSPECT determines the density of

each excited state for a plasma of a given level of ionization and gas density. The intensity

of light emitted at a given wavelength is directly correlated to the population density of

the particle’s corresponding excited level [13]. Low pressure (10-2 Torr) plasmas can be

modeled with the Corona model, which takes into account only electron impact excitation

and radiation from excited electrons. For a plasma at our test pressures, the more compli-
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cated collisional radiative model (CRM) is more appropriate. CRMs account for processes

within the plasma such as electron impact excitation from both ground and metastable

levels, spontaneous radiation and radiation trapping, and chamber wall interactions [14].

These processes occur frequently in higher-pressure plasmas and affect the densities of ex-

cited states in a plasma, and therefore the plasma’s radiated spectra. These processes, along

with electron temperature and gas density, are plugged into a set of rate balance equations

used to determine the steady-state density of each species (Ar I, Ar II, etc.) in a plasma.

The density of each excited state is directly correlated to the intensity of light at that state’s

corresponding wavelength. Model spectra is calculated from the state densities.

PrismSPECT includes a variety of spectra modeling modes, but low-temperature spec-

troscopy will be used here. The other modes prove useful for ’hot’ plasmas seen in fusion

reactor experiments such as the ones in [20]. The gas temperature is set to the ambient

temperature of the testing, approximately 300 K. The plasma geometry is set to zero-width

for simplicity and simulation speed. For the line ratio method, pressure will be fixed and

electron temperature will be varied in the non-LTE simulation mode. When a simulation is

complete, the spectra and ionization information from each simulation is available, along

with individual line intensity information. Changes in electron temperature are apparent

in the spectra, shown below in Figure 4.1. The dominant lines in the 1 eV plasma are

neutral Ar I lines around 800 nm. As electron temperature is increased, the singly ionized

Ar II lines grow in intensity around 400 nm. The increase in intensity of the Ar II lines is

indicative of an increase in singly ionized species. To observe the effect of electron temper-

ature on the species present in the plasma, PrismSPECT tracks the fraction of the plasma’s

mean charge resulting from each species as shown in Figure 4.2. As the plasma’s electron

temperature is increased, more higher order species are ionized, resulting in an increase in

electron density, which is calculated by the software. Figure 4.3 shows electron density as a

function of electron temperature. By comparing simulated spectra to measured spectra, the

corresponding electron temperature and electron density can be found and used to calculate
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the plasma’s conductivity.

Figure 4.1: Optical emissions of 1 eV (left) and 1.5 eV (right) from argon plasma at 1 Torr

(PrismSPECT simulation).

Figure 4.2: Mean charge fraction of species vs. electron temperature at for argon plasma at

1 Torr (PrismSPECT simulation).
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Figure 4.3: Electron density vs. electron temperature for argon plasma at 1 Torr (Prism-

SPECT simulation).

4.2 Line Ratio Method

PrismSPECT’s built-in line intensity viewer tracks the optical emission resulting from a

given transition as plasma simulation parameters are varied. The ratio of one line inten-

sity trace to another yields the plasma’s line ratio as a function of electron temperature.

To determine the electron transitions generating the plasma’s optical emissions, measured

emission data was compared to the NIST atomic database [21]. The database displays the

know photon wavelengths generated from a given element when ionized. Examination of

argon’s lines presented an issue: many of the observed wavelengths with strong lines fall

within a nanometer of another strong line. The Ocean Optics HR4000 spectrometer used

for measurements has a wavelength resolution of 0.75 nm FWHM. A spectrometer’s lim-

ited wavelength resolution can cause peak overlap, obscuring the intensity measurement of

multiple lines by recording them as a single line with a summed intensity. This effect is

problematic for the line ratio method, which relies on peak values of individual lines. The
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list of candidate lines was narrowed down by selecting only isolated lines ( 2 nm away from

other lines) in the NIST data. Neutral (Ar I) and singly ionized (Ar II) lines were detected.

A comparison of line intensities between the two species is a good indicator of the plasma’s

degree of ionization, so three lines of each species is chosen for comparison to simulated

line ratios. The chosen wavelengths are listed below in Table 4.1.

Table 4.1: Detected isolated lines of Argon plasma.

Energy Level Vacuum Wavelength (nm) Photon Energy (eV)

Ar I 738.6014 1.6787

Ar I 763.7208 1.6234

Ar I 912.2967 1.3586

Ar II 454.6326 2.7271

Ar II 465.9205 2.6610

Ar II 476.4864 2.6013

Figure 4.4 shows the evolution of two line intensities as electron temperature is varied,

and Figure 4.5 shows the evolution of the ratio of the two selected lines. To determine the

electron temperature of the experimental plasma, its line ratio for a given pair of lines is

calculated and matched to the simulated data. Multiple ratios will be tracked, and their

resulting electron temperatures and densities will be averaged.

48



Figure 4.4: Argon line intensities vs. electron temperature.

Figure 4.5: Line ratio of Ar II line (454.6 nm) to Ar I line (738.6 nm) vs. electron temper-

ature.
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4.2.1 DC Plasma Line Ratio

In PrismSpect, a zero-width, non-LTE style simulation is run at the test pressure and tem-

perature, sweeping through electron temperatures. The peak intensity of the selected lines

is tracked, and the line ratios are calculated as a function of electron temperature. Two

PrismSpect simulations are run when calculating line ratios to account for computational

limitations. The first simulation covers a wide range of electron temperatures at a rela-

tively low resolution (0.1 eV). The second simulation covers the range of electron tem-

peratures determined by the first test at a higher resolution (0.01 eV). For the 450 V test,

PrismSPECT’s line ratio simulations indicate an electron temperature between 1.49 and

1.56 eV with a standard deviation of 0.031 eV. This low variation is a good indication

of PrismSPECT’s consistency in line ratio calculations. The mean electron temperature

is 1.5211 eV, and the average electron density is 3.099x1016 /m3. Figures 4.6, 4.7, and

4.8 display the experimental line ratios for each pair of line intensities plotted against the

PrismSPECT simulation results. Experimental line ratios are displayed as dashed lines,

while the simulation-generated line ratios are the solid curves.
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Figure 4.6: Ratios of Ar II line intensities to 738.3 nm Ar I line intensity, experimental DC

plasma comparison.

Figure 4.7: Ratios of Ar II line intensities to 763.5 nm Ar I line intensity, experimental DC

plasma comparison.
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Figure 4.8: Ratios of Ar II line intensities to 912.2 nm Ar I line intensity, experimental DC

plasma comparison.

4.2.2 Nanosecond Pulsed Plasma Line Ratio

The 763.5 nm line used in the DC analysis section was not present in the pulsed plasma

spectra analyzed below. For this test, PrismSPECT’s line ratio simulations indicate an

electron temperature between 1.27 and 1.35 eV with a standard deviation of 0.0341 eV.

The variation here is comparable to that in the DC measurements. The mean electron

temperature is 1.31 eV, and the average electron density is 2.6179x1016 /m3. Figures 4.9

and 4.10 display the experimental line ratios.
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Figure 4.9: Ratios of Ar II line intensities to 738.3 nm Ar I line intensity, 5 ns pulsed DC

plasma comparison.

Figure 4.10: Ratios of Ar II line intensities to 912.2 nm Ar I line intensity, 5 ns pulsed

plasma comparison.
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CHAPTER 5

ATTENUATION SIMULATIONS FOR EXPERIMENTAL PLASMA

In this chapter, the attenuation model described in Chapter 2 is applied using the experimentally-

inferred properties measured in Chapter 4. For a DC plasma, this is a straightforward ap-

plication, but for an AC or pulsed plasma, the plasma’s transient nature must be taken into

account. As before, the pulse length is the length of time an input pulse’s voltage is greater

than zero, with the Gaussian standard deviation set equal to one-eighth of the pulse’s dura-

tion.

5.1 DC Plasma Attenuation

The resistance function for a 1 cm radius plasma column is calculated using the line ratio

parameter calculations and is shown on the left Figure 5.1. This plasma has a resistance

of 1534 Ω/m for frequencies well below the plasma frequency. This resistance is too high

for use as a conductor if the length is any appreciable fraction of a meter (our goal is an

antenna on the order of meters long). To decrease resistance while keeping the plasma

parameters fixed, the plasma column’s radius may need to be increased. Increasing the

plasma’s radius to 10 cm would decrease the resistance by a factor of 10, but this would also

require an ionizing voltage that is 10 times higher, so practical considerations may preclude

this approach. Nonetheless, we will discuss the larger 10-cm plasma in our analysis here.

The resistance function is calculated for a 10 cm radius plasma column and is shown on

the right in Figure 5.1, with a resistance of 15.3 Ω/m in the low-frequency region. The

larger plasma will be used for analysis to show the effects of the ramp-up in resistance

near the plasma frequency. Increasing the plasma’s electron density would also lower the

resistance in the low-frequency regions. However, this increase would change the plasma

frequency. Fixing the plasma frequency allows the examination of the plasma’s ability to
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conduct a pulse’s high-frequency content. Figure 5.2 shows pulse attenuation in a 10 cm

radius plasma column with the experimental plasma’s parameters. A 5 ns long pulse and

a 1 ns long pulse are modeled. The 5 ns long pulse (left) is attenuated by a factor of 65%

as it travels a distance of 3 meters through the experimental plasma. The 1 ns long pulse

(right) is attenuated by a factor of 96% over the same distance.

Figure 5.1: Resistance of experimental DC plasma column with 1 cm radius (left) and 10

cm radius (right) vs. frequency.
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Figure 5.2: 5 ns pulse (left) and 1 ns pulse (right) attenuation in 10 cm radius, 3 meter long

plasma column with measured DC argon plasma properties.

Unfortunately, the plasma’s electron density is too low to support lossless propagation

at either of these pulse repetition frequencies. Methods to improve electron density will be

discussed in Chapter 6.

5.2 Pulsed Plasma Attenuation

The parameters calculated for the pulsed plasma can then be applied to a light curve to

infer the plasma column’s conductivity as a function of time. The light curves from the

photodetector are wavelength-integrated power measurements as a function of time. The

photodetector’s output voltage scales approximately linearly with total light detected over

its operating wavelength range, so they are useful in a relative sense even though these

measurements are not absolutely calibrated. To compare this data to simulations, ratios of

the values in the curve are taken relative to its average, shown in Figure 5.3.
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Figure 5.3: Light curve (upper) and light curve ratio-to-average (lower).

To determine conductivity as a function of time, the plasma’s parameters calculated via

the line ratio method are applied to the light curve. For this analysis, it is assumed that

the spectra produced by the plasma at the measured electron temperature is indicative of

the plasma’s average light output. While this assumption is imperfect, it allows the de-

velopment of an analysis technique that can be applied when time-resolved line intensity

measurements are taken. A plasma’s total optical output does not scale linearly with elec-

tron temperature. PrismSPECT’s line intensity tool can calculate wavelength-integrated

light output as a function of electron temperature. The spectra is integrated over the pho-

todetector’s wavelength operating range (200-1000 nm). The intensities are converted to

ratios corresponding to the intensity at the measured electron temperature, 1.31 eV. CRM-

calculated intensity and intensity ratio plots are shown in Figure 5.4.
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Figure 5.4: Integrated intensity vs. Te (upper); Integrated intensity ratio-to-average vs. Te

(lower).

The CRM-calculated intensity ratios are compared to the light curve ratios to determine

the plasma’s electron temperature and density evolution in time, plotted in Figure 5.5.
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Figure 5.5: Plasma electron temperature vs time (upper); electron density evolution in time

(lower).

The plasma’s conductivity and ability to conduct a pulse of a given width changes

in time according to these parameters. By running the pulse attenuation code with these

changing parameters at a variety of pulse repetition frequencies, the upper limit on pulse

length becomes apparent. Figure 5.6 shows this plasma’s pulse attenuation evolution, with

the cross sectional radius set to 10 cm.
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Figure 5.6: Voltage pulse attenuation in time-varying plasma at various pulse lengths.

The shortest pulse this plasma can sustain without loss is 10 μs long. With speed of

light propagation, a pulse of this time would be approximately 3 km long in space. For the

reflection suppression concept to be realized, pulses need to be less than 10 ns long.
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CHAPTER 6

CONCLUSION

6.1 Summary

In this thesis, we were able to implement optical analysis techniques to determine the elec-

tromagnetic properties of nanosecond pulsed plasma. Measured parameters were utilized in

a basic propagation model to determine the viability of test plasma columns as conductors

for the time-domain matching technique. Benchmarks have been set for future research:

electron density needs to be pushed to the order of 1018 or higher, and de-ionization time

needs to be decreased considerably. While the plasma columns generated in this research

did not reach quality benchmarks, the analysis methods developed will be applied to future

research as the experimental design is improved.

6.2 Future Work

6.2.1 Increasing Pressure

The plasma generated with the current experimental configuration does not have a high

enough electron density or fast enough quench time to support the desired pulse lengths.

Future work should focus on methods to increase electron density and speed up quench-

ing. Simulations with the pulse loss model show that the plasma’s electron density needs

to be on the order of 1018 or higher to support nanosecond timescale voltage pulse propa-

gation. Increasing the test pressure in the plasma chamber may increase electron density.

To determine a target test pressure for future experimentation, we turn to PrismSPECT,

running simulations at a variety of pressures and electron temperatures. The result is the

heat map style plot in Figure 6.1. The vertical axis is simulation pressure in Torr while

the horizontal axis is electron temperature. We estimate the that the desired density can be
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obtained at pressures as low as 50 Torr when ionized to electron temperatures near 1.5 eV.

Atmospheric pressure (760 Torr) can yield desired densities around 1.2 eV. While higher

pressure plasma don not need to be ionized as strongly as lower pressure plasmas, they are

much harder to generate. Setting the gap size to 1 cm, the Paschen curve predicts a 1.5

kV breakdown voltage at 50 Torr. At atmospheric pressure, breakdown voltage is approx-

imately 15 kV. Applied voltage would need to be higher than breakdown voltage to obtain

the highly-ionized plasmas necessary for high electron densities. Furthermore, ionization

pulse reflections cause breakdown to occur at voltages higher than the Paschen threshold

when pressure is increased. This inefficiency must be overcome with higher amplitude volt-

age pulses. Higher pressures also result in a faster de-ionization time, which is beneficial

for the pulsed antenna concept.

Figure 6.1: Electron density as a function of chamber pressure and electron density from

PrismSPECT data.
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6.2.2 High Speed Photometric Line Tracking

To properly apply the line ratio method as a time evolution analysis technique, individual

line intensities need to be tracked in time. The high-conductivity portion of the plasma

pulse is likely shorter than what is shown in the simulation output from Chapter 5. The

spectrometer’s integrating action over time hides time-varying light output characteristics

important to a fully-developed model. Individual lines can be tracked using a monochro-

mator and photomultiplier tube as in [20]. A monochromator is an optical device that is

used to mechanically isolate a narrow band of wavelengths. Individual line intensities were

tracked with 10 nanosecond resolution in the plot in Figure 6.2. The horizontal axis is time,

and the vertical axis is photocurrent, which is proportional to line intensity.

Figure 6.2: C III 97.7 nm line from Spheromak experiments [20].

A time-resolved line ratio can be calculated by tracking multiple lines through monochro-

mator testing. Applying PrismSPECT to the data will allow an accurate time-resolved

conductivity calculation.
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