Evaluating and Extending a Novel Course Reform of Introducbry
Mechanics

A Thesis
Presented to
The Academic Faculty

by

Marcos Daniel Caballero

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

School of Physics
Georgia Institute of Technology
December 2011

Copyright© 2011 by Marcos Daniel Caballero



Evaluating and Extending a Novel Course Reform of Introducbry

Mechanics

Approved by:

Prof. Michael Schatz, Advisor Prof. Richard Catrambone
School of Physics School of Psychology

Georgia Institute of Technology Georgia Institute of Technology
Prof. Andrew Zangwill Prof. Mark Guzdial

School of Physics College of Computing

Georgia Institute of Technology Georgia Institute of Technology

Prof. Jennifer Curtis
School of Physics
Georgia Institute of Technology

Date Approved: July 28, 2011



For Tata and Juniper

My favorite teachers



ACKNOWLEDGEMENTS

| want to thank my advisor, Mike Schatz, for granting me thearnunity to perform research in
physics education. | had became disenchanted with gradclad®! around the middle of my second
year. The work was not flicult; | just found some of it unrewarding. When | went to Mikéhw
guestions about my future, he gave me the chance to work ifdalfi& | have come to truly enjoy.
For that, | am extremely grateful.

| also want to thank all the friends that | have made whilenlivin Atlanta. Without their ever
present distractions, | might have finished earlier, buteitainly would not have been so much
fun. | want to thank Ed Greco, Matt Kohlmyer and Alex Wiener feading a number of drafts of
different chapters of this thesis and giving helpful commentdsd want to thank the rest of the
coffee crew, Daniel Borrero, Domenico Lippolis and Chris Malacdt least one hour of distraction
a day.

| would not have been able to get here without my family. Theyags provided with me with
love and support when | have needed it most. They know thash Wwivere closer, but | hope they
also know that | am always thinking about them.

| certainly would have never finished this work if had not béanmy loving wife, Jamie. She
has been supportive and understanding, especially in shée weeks that | have spent writing
this beast. | am very lucky to have her as my partner and myfliest.

Finally, | want to thank my two favorite teachers: Dan Cadyal] my late grandfather and
Juniper Jane Caballero, my daughter. One helped me to betenperson | hoped to be and the

other helps me stay that way. It it to them that this thesisttichted.



CONTENTS

DEDICATION . . . iii
ACKNOWLEDGEMENTS . . . . . . e e iv
TABLES . . . viii
FIGURES . . . . e Xii
SUMMARY . XX
I INTRODUCTION . . . . e e e e e e e 1

1.1 The Goals of Introductory Physics . . . . ... ... .. ... . . «..... 1

1.2 Instructional Challenges in Introductory Physics . ...... . .. ... ... .. 2

1.3 Approaches to Reforming Physics Instruction . . . . . . ...... .. ... .. 3

1.4 Measuring thefiectsof Reform . . . . . . . . ... ... .. .. .. ... ... 4
15 ResearchQuestions . . . . . . . . .. . .. .. i, 6
I BACKGROUND AND MOTIVATION . . . . . . e e e 9
2.1 Course ReforminPhysics . . . . . . . . . . . . ... . 9
2.1.1 Matter & Interactions . . . . . ... ... o 13
2.2 Computationin Physics Courses . . . . . . . . . . i i e 14

2.2.1 The Case for Teaching Computation . . .. .......... ... 14
2.2.2 Distinguishing Tools for Computational Instruction

2.2.3 Samples of Computational Environments Used in Inictmy Physics . 18

2.3 Student Epistemology . . . . . . . . ... e 31
Il EVIDENCE OF CURRICULAR EFFECTS ON PERFORMANCE IN MECHAN -
ICS . e 36
3.1 Introduction . . . . . . .. e 37
3.2 Introductory Mechanics at GeorgiaTech . . .. .. .. ... . .......... 38

3.3 Summary of Results from In-class Testing . . . . ... ... ........... 39

3.4 ltemAnalysisofthe FCI. . . . . . .. .. .. .. ... .. .. .. .. ... 43
3.5 Origins of the Performancefbérences . . . . . . .. .. .. .. ... .. .... 47
3.6 ClosingRemarks. . . . . . . . . . . . . . . . . e 50



v

\%

IMPLEMENTING AND ASSESSING COMPUTATION IN INTRODUCTORY  ME-

CHANICS . . . 53

4.1 Introduction . . . . . . ...
4.2 Approaches to implementing computation
4.3 Design and Implementation of Computational Homework..... . . . . .. ..
4.4 Evaluating computational modeling skills . . . . .. ... ... ... .....
4.5 Systematically unfolding students’ errors . . . . . . . ... L.
4.6 Frequency of errors in students’ programs
4.6.1 |Initial Condition Errors . . . . . . .. ... e
4.6.2 Force Calculation Errors . . . . . . . . ...
4.6.3 Newton's Second LawErrors . . . . . . ... ... oL
4.7 Common Error Patterns in Students’ Programs . . . . . .. ... .. .. ..

4.8 Closingremarks . . . . . . . . .

TOWARDS CHARACTERIZING STUDENT EPISTEMOLOGY IN COMPUTAT  ION

78
5.1 Introduction . . . . . . . . . . .. e
5.2 Guiding Principles . . . . . . . e
5.3 Survey Design and Validation . . . . .. .. .. .. ... .. ... ...,
5.4 ScoringtheSurvey . . . . . . . . . . . . . e e e
5.5 Results from Mechanics Students at GeorgiaTech . . . ... ... ... ..
5.5.1 Possible Influences of Students’ Backgrounds on thIRASS . . . . .
5.6 Searching for Robust Dimensions . . . . . . . . .. .. ... . e
5.6.1 Measurements across Dimensions . . . .. ... ... ... ....
5.7 Performance by ferent Populations . . . .. ... ... ... ........
5.7.1 Honors Mechanics Students at Georgia Tech
5.7.2 Electromagnetism Students at Georgia Tech . . . . . ... .. ...
5.7.3 Mechanics Students at North Carolina State Uniyersit. . . . . . . . .
5.8 Epistemological Signatures in Computational ModeRegformance . . . . . . .
5.9 Possible Applications . . . . . ...
5.10 ConcludingRemarks . . . . . . .. . . . . . . . .. e e

Vi



VI CONCLUDING REMARKS . . . . . . e 113

6.1 SuMmMaAry . . . . . . e e e e e e e 311

6.2 Future Research Directions . . . . . . . . . . . . .. .. 114

6.3 FinalRemarks . . . . . . . . . . ... 116
APPENDIXA — MORE DETAILS ON THE EVALUATIONCODES . . .. .. .. 117
APPENDIXB  — ADDITIONAL DETAILS ABOUT COMPASS DIMENSIONS .. 121
APPENDIXC — COMPUTATIONAL MODELING ATTITUDINALSTUDENTSU R-

VEY (V2.3) . o oo o o e e e 125
APPENDIXD — ADDITIONAL FIGURES FOR COMPASS DATA . . . .. .. .. 131
APPENDIXE  — STATISTICALTECHNIQUES . . .. .. .. ... ... ...... 142
VITA 169

Vii



Table 1

Table 2

Table 3

Table 4

Table 5

TABLES

Traditional course activities of introductory picgsstudents are contrasted with
activities of professional physicists. Course activit@@e characteristic of most
introductory physics courses and stem from a focus on spltifrack-of-the-
book” style problems. Redish and Wilson aimed to addressrtisenatch be-
tween course preparation and professional practice by leongmting their in-
troductory courses with computation. Note that the finalvagtrefers to “using

a computer for solving a science problem” not casual usagecomputer (which

is commonplace now). This table is reproduced from Redishvditson. . . . . 15

Georgia Tech FCI test results are shown for twentyttaditional sections (T1-
T22) and six Matter & Interactions sections (M1-M6). fIerent lecturers are
distinguished by a unique letter in column L. The average $&0kel % for N,
students entering the course are indicated. In those seaiibere data are avail-
able, the average FCI sco@®b for No students completing the course is shown
for all sections.Ny, is the number of students in a given section who took the FCI
both at the beginning and at the end of their mechanics course . . . . . .. 40

The averageftierence in item gains between courses are computed for the ite

in each FCI force and motion conceptg.. EachAg is positive, indicating
better average item gains for traditional students acrtydsCd force and mo-

tion concepts. Concepts with high&g. are those for which traditional students
achieve higher normalized gains than M&I students. Tradél students achieve
the highest values @fg. on the Kinematics and Force Identification concepts and
lowest on Newton's 1stLawconcept. . . . . ... ... .. ... ... ... 46

An estimate of the fraction of homework questionscog a particular FCI con-
cept in the two mechanics courses is compared. Subtopidhdee homework
guestions were not mutually exclusive. The relative frattof homework ques-
tions covering FCI force and motion concepts and some iddali FCI concepts
(i.e., Kinematics, Newton’s 2nd Law, Newton’'s 3rd Law, anaré¢e Identifica-
tion) is greater in the traditional course. This is consisteaditional students’
superior overall performance (Figs. 12, 13, 14) and thdieb@erformance on
particular FCl concepts (Fig. 17). . . . . . . . . . .. . . . .. e, 49

An estimate of the fraction of lectymeading topics in the two mechanics courses

is compared. Subtopics for these lectyresdings were not mutually exclusive.

The relative fraction of lecturggadings in the traditional course is greater for

the Kinematics, Newton’s 3rd Law, and Force Identificatiopi¢s which is con-

sistent with their superior performance in those concepthe FCI. However, on
Newton’s 1st and 2nd Laws, the relative fraction of lectiregslings are roughly
similar. . . . . . e e e 50
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Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

As part of a final proctored lab assignment, studemtspteted a partially con-
structed program that modeled the motion of an object udteinfluence of a
central force. The partially written program defined theegl§, some constants
and the numerical integration loop structure. Deliverétidhconditions, the sign

(+) and distance dependencé)(of the force and object names were randomized
on a per student basis. Slightly modified versions (Ver. hdf assignment were
given at the end of threeftierent semesters. Modifications were made to stream-
line delivery (Version 1 to Version 2), minimize transcriut errors and improve
presentation (Version 2 to Version 3). Students’ perforoeaon Version 1 was
likely inflated because some students were allowed to walptbblem on two
separate OCCaSiONS. . . . . . v v v i e e e e e e 3

Incorrectly written programs were subjected to aadyesis using a set of codes
developed from common student mistakes. The codes focustdar procedu-

ral areasusing the correct given valu€kC), implementing the force calculation
(FC) andupdating with the Newton’s second I4®L). We reviewed each of the
incorrectly written student programs for each of the fesduisted below. These
codes are explained in detail in AppendixA. . .. .............. 64

Only seven of the fourteen distinct code patternghferlC category (Table 7)
were populated by more than 3% of the students. The pattiErs dre given by
atfirmatives (Y) and negatives (blank) in the code columns (IT#E percentage
of students with each pattern is indicated by the last col(#n These 7 patterns
accounted for 88.8% of students with erroneous programs. . . . . . .. .. 66

Only six of the nine distinct code patterns for the B@egory (Table 7) were
populated by more than 3% of the students. The patterns (Bfexyiven by
atfirmatives (Y) and negatives (blank) in the code columns (FTHE percentage

of students with each pattern is indicated by the last col(#n These 6 patterns
accounted for 98.8% of students with erroneous programs. . . . . . .. .. 68

Only four of the nine distinct code patterns for thec&tegory (Table 7) were
populated by more than 3% of the students. The patterns (8iexpiven by
atfirmatives (Y) and negatives (blank) in the code columns (STH§E percentage

of students with each pattern is indicated by the last col(#n These 4 patterns
accounted for 95.7% of students with erroneous programs. . . . . . .. .. 70

Only seven of the thirty clusters with an inter-tdugdistance of less than 0.3
were populated by more than 3% of the students. The bottomus8cs were
populated by less than 1% of students each. These sevearslastounted for
86.5% of students. The percentage fifrenatives for each code (Table 7) within
any given cluster (A-G) is given to the nearest whole peagat Codes with
affirmative percentages greater than 60% are bolded. Theserslhad very few
students € 1%) with any dfirmatives in the ‘Other” category, hence the results
from this category are not reported. The percentage of stade each cluster is
indicated in the last column (%). . . . .. .. .. .. ... ... ...... 77



Table 12

Table 13

Table 14

Table 15

Table 16

Each of the six working categories were subjecteal reduced basis principal
component analysis. The outcome of that analysis (Colun@AiPsuggested
that two categories might be robust dimensions (PL), threre\quite weak (WL)
and one category might have multiple dimensions (ML). $tatets were sys-
tematically added or removed from the categories and a neéuceel basis PCA
performed. The outcome of those results (Column rPCAf)akmderobust dimen-
sions. Some dimensions contained roughly the same statememhe working
categories (BQ). Others were formed from dissections ofkvagamultidimen-
sional categories (NF). . . . . . . . . . . . e e 97

For each of the eight robust COMPASS dimensionsep@t average linear cor-
relation component between all the statemenjistite average linear correlation
component between all the statements and the first eigemfectthe subsetl],
the diference between the fraction of the variance attributededitst to second
eigenvectors minus the average fractional drop betweesesuient eigenvectors
normalized by number of statements in the subgeE|(N) and the fraction of
the variance accounted for by a linear fit to the scR®, (the nearly linear drop
off in variance attributed to the rest of the eigenvectors. . ...... ... ... 98

Pre- and post-instruction COMPASS scores aretexptor non-honors students

(N = 316) who took an introductory mechanics course. Scoressaated with
a 95% confidence interval estimated from tk&atistic in parentheses. Overall
COMPASS scores for non-honors mechanics students weralesable. Favor-
able post-instruction scores decreased on most dimensibmemained the same
within error on Perceived Ability, Expert Behaviors and Aliag Rote. Unfavor-
able post-instruction scores increased on all dimensixcept for Avoiding Rote
which remained the same withinerror. . . . . . .. ... ... ... ... 99

Pre- and post-instruction COMPASS scores aretexptor non-honors students

(N = 238) who took an introductory electromagnetism (E&M) ceuss Geor-

gia Tech. Scores are reported with a 95% confidence intestahated from
thet-statistic in parentheses. Overall COMPASS scores for E&Ments were
less favorable. Favorable post-instruction scores deetkan most dimensions
but remained the same within error on Perceived Ability, &xBehaviors and
Avoiding Rote. Unfavorable post-instruction scores iased on most dimen-
sions but remained the same with error on Perceived AbRBal-World Con-
nections and Avoiding Rote. . . . . . . . . . ... ... 104

Pre- and post-instruction COMPASS scores are texgpéor studentsN = 168)

who took an introductory mechanics course at NCSU. Scoresegiorted with

a 95% confidence interval estimated from tkeatistic in parentheses. Overall
COMPASS scores for NCSU mechanics students were less fgoféavorable
post-instruction scores were lower for Avoiding Novice Belor. and unfavor-

able scores were lower for Perceived Ability, Sense-mak#giding Novice
Behavior. All other dimensional scores remained the santi@mwerror. . . . . . 108



Table 17

Pre- and post-instruction COMPASS percentagedblescores are reported for
non-honors students who completed a final computationdli@ian (Sec. 4.4).
Students were divided into two groups, those that complgtessignment suc-
cessfully (Passedy = 210) and those who did not (Faileld,= 129). Scores are
reported with a 95% confidence interval estimated front-tatistic in parenthe-
ses. Students who passed the evaluation earned more fievovaall scores on
both the pre- and post-test than students who did not passingastudents also
had more favorable scores on nearly all dimensions on bsth. tEor “Avoiding
Rote” on the pre-test and “Sense-making” on the post-testes were indistin-

guishable. . . . . . . ..
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A sample item from a force and motion concept inwgntéigure reproduced
fromHestenes. . . . . . . L

[Color] - A question from detailed problem solvirtgdy about interpreting mo-
tion diagrams and graphing kinematic quantities. Studesti® presented with
the stroboscopic image of a ball (A) rolling on level grountl @another ball (B)
rolling down a slight incline. Students were asked to draspfs of the position
and velocity of each ball versus time for each situation. Tdwilts from this
study formed the basis for a section on kinematics develémettie Washington
Tutorials in Physics, an instructional aid for introdugt@hysics used by instruc-
tors at a large number of institutions. Figure reproducednfRosenquist and
McDermott. . . . . . . . e e

A M.U.P.P.E.T. program that models the one dimeriootion of an object
moving under the influence of the gravitational force suigj@do turbulent drag

in one dimension. The Turbo Pascal code that generates &z @f the vi-
sualization can be seen clearMakeDataScreen, GraphSetUp, PlotIt). Stu-

dents filled in the section of code that performed the nurakiitegration (i.e.,
StepEuler). Once compiled students worked with the user interfacevehia

Fig. 4, entering initial conditions and parameter values.... . . . . .. .. .. 20

[Color] - A compiled M.U.P.P.E.T. program (Fig. 3pbduces this user interface
with which students interact when modeling the motion of bject falling with

air resistance. On the left, students view the model (ite,forces acting on

the particle), the relevant parameter values (e.g., massliaay coéicient) and

the initial conditions. The program produces plots of thgeols position and
velocity versus time ontheright. . . . . . . .. .. ... .. .. oL, 21

A graphical STELLA program that models the motioranfobject falling with
turbulent air drag. STELLA programs were connected (uppagrdm) using
structural elements that represent constants (open jirdienctional relation-
ships (arrows, curved or straight); rates of change (valu#sarrows) and quan-
tities that accumulate over time (boxes). Once compiled,itiput equations
became available for modifying initial conditions (lowaagram). This figure
was reproduced from Schecker. . . . . . ... .. oL 22

The visual output of the STELLA program (graph ofederation vs. height
fallen) illustrated in Fig. 5 is shown for three sets of ialitconditions. After the
program was compiled the user might input any number ofaingétenarios and
view output in the form of graphs. Due to hardware and sofwamnitations,
visual output was limited to plots and two dimensional ariiores. This figure

was reproduced from Schecker. . . . .. . ... ... o o 23
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Figure 7 A BOXER program that models the motion of an objeckaurthe influence of the
gravitational force in two dimensions. In lower half of thguie, the user inputs
the initial conditions and parameters (i.e., within the t&aoxes), sets up the
model and drawing (i.e., within the upper and lower “Doit’Xes respectively.
The visualization is a two dimensional drawing in the uppaif bf the figure
(i.e., in the upper “Data” box). This figure was reproducemhfiDiSessatal... 24

Figure 8 [Color] - A PhET that models the motion of an objectemnthe influence of
the gravitational force, which could be subjected to twehtlair drag, in two
dimensions. Users may select from a variety of projectilesd et a number of
parameters including the projectile’s mass and initiaksphéhe launch angle and
the drag cofficient. This simulation is highly visual, including a mobttrget
and tape measure, but students have no access to the ungleniydel. . . . . . 25

Figure 9 [Color] - TheModelview of an Easy Java Simulation (EJS) that models the mo-
tion of an object moving near the surface of the Earth sulbgettirbulent air drag.
The Evolutiontab is shown to highlight how EJS handles modeling the dynam-
ics. Users simply type the ODEs that govern the dynamicsi@ells under the
Evolutiontab and then select one the integrators. In this case, wededweted
4 order Runge-Kutta. Once compiled, the program producesutput shown
iNFig. 10. . . . . . e 27

Figure 10 [Color] - The graphical output from the compiledsigdava Simulation shown
in Fig. 9. Here the vertical position of the object is plottesl a function of
time. Other plots may be selected in by altering the Ei#vview. In addition
to plotting a variety of quantities, it is also possible t@ UsJS to produce an
animation of the system asitevolves. . . .. ... ... ... ... ... 28

Figure 11 [Color] - A VPython program and visualization thabdels the motion of a ball
moving near the surface of the Earth subject to turbulerdraiy. Objects and ini-
tial conditions are defined outside the calculatiehi(le) loop. Over the course
of the semester, students write several VPython programs$hé activities focus
on translating the physical model to VPython code using fapriate syntax
and on updating the object's momentum and position. . . .. ... .... 30

Figure 12 Average pre- and post-instruction FCI scores atgi& Tech. The average FCI
post-test scores are shown for students who have completed-semester me-
chanics course with either the traditional (TRAD) or Ma&dnteractions (M&I)
curriculum. Additionally, the average FCI pre-test scare shown for students
before instruction in either the TRAD or M&I course. The nwnlof students
(N) tested for each course is indicated in the figure. The ewands represent
the 95% confidence intervals (estimated from the t-sta}isin the estimate of
the average SCore. . . . . . . . . i i e e e e 9 3
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Gain in understanding of mechanics as measuretlieb¥€l. The increase in
student understanding resulting from a one-semestetitnagli (TRAD) or Mat-

ter & Interactions (M&I) course is measured using (a) therage raw gains

and (b) the average normalized gainThe average gains in FCI post-test scores
are shown for students who have completed a one-semestéraniex course

with either the traditional (TRAD) or Matter & Interactiorfis1&l) course. Only
students with matched scores were used for this figure (dele 2» The error
bounds represent the 95% confidence intervals (estimatedtfre t-statistic) on

the estimate of (a) the raw gain and (b) the normalized gain.. . . . . .. .. 41

FCI score distributions by course. (a) The digtitm of FCI test scores for
students before completing a mechanics course with eittradéional (dashed

line) or M&I course (solid line) are shown for data from GT) {the percentage

of students with a given FCI test score is plotted for stuslarito have completed

a mechanics course with either a traditional (dashed lin@)l&I course (solid

line) at GT. The total number of students tested in each eosrhe same as in

Fig. 12. The plots are constructed from binned data with hbidths equal to
approximately 6.7% of the maximum possible FCI score (100%) . . . . . . 42

The normalized item gaig;{ achieved by traditional students is shown for each
guestion on the FCI. Positive (negativg)indicates better (worse) performance

on the post-test. The numerical labels indicate the cooredipg question num-

ber in order of appearance on the FCI. The items are groupgdher into one

of five concepts: Kinematics, Newton’s first law, Newton's@ed law, Newton’s

third law, and Force Identification. The horizontal linegdaillustrates the value

of g, the average itemgain. . . . . . . . . ... ... ... ... ... 43

The normalized item gaig  achieved by M&I students is shown for each ques-

tion on the FCI. Positive (negative) indicates better (worse) performance on

the post-test. The numerical labels indicate the corredipgnquestion number

in order of appearance on the FCI. The items are groupediegietto one of five
concepts: Kinematics, Newton'’s first law, Newton’s secaad, INewton’s third

law, and Force Identification. The horizontal line (dashisirates the value @,

the averageitemgain. . . . . . . . . . . ... e 4 4

Diterence in performance for individual FCI items and mectwoancepts. The
difference in performancgg; between traditional and M&I students is shown for

each question on the FCI. Positive (negatixg) indicates superior performance
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Figure 18 [Color] - Under the guidance of their TAs, studemtste the VPython program
above in the laboratory. This program modeled the motion @bét (size exag-
gerated for visualization) orbiting the Earth over the seuof one “virtual” year.

To construct this model, students must create the objectsassign their posi-
tions and sizes (lines 4-6), identify and assign the othemgvalues and relevant
initial conditions (lines 8-10, 12—13 and 15-17), calcaildite net force acting on
the object of interest appropriately (lines 21-23) and tgdlde momentum and
position of this object in each time step (lines 25-26). . ...... .. .. ... 59

Figure 19 [Color] - Non-honors studentf\ (= 316) percentage of favorable and unfavor-
able responses to COMPASS statements given (a) before paflgbinstruction
in a introductory calculus-based mechanics course whiel asmputer model-
ing homework (Ch. 4) are plotted (black x’s). The distributiof responses in
both figures is highlighted using a colored contour map ofpdeentage of stu-
dents lying at each ‘x’. The mean percentages for both pre-past-instruction
COMPASS results are shown by abold red square. . . ... ........ 89

Figure 20 [Color] - The shiftin the mechanics students’ mME&MPASS scores are shown.
Colored arrows indicate the magnitude and direction of ti#& fom pre- to
post-instruction. Mean scores are shown for students base@) their Z-scored
(standard deviations from the mean) overall GPA, (b) thescdred (standard
deviations from the mean) grade in the mechanics cours#)€u)classification
and (d) the college of their declared major college. Architee, liberal arts
and management majors (Other) are included for completdngghese students
represented less than 5% of the total population. . . .. .. ... ..... 92

Figure 21 [Color] - The fraction of the overall variance @igalue) from an exploratory
principal component analysis are plotted as a function@éttiracted component
(eigenvector). The shape of the diagram (scree plot) itekdtere are at least six
significant eigenvectors to consider. The first six eigetorscaccount for more
than 40% of the total variance. The red line indicates a tifiet the eigenvalues
of the last 30 components (the scree). A good linear fit hatigates the rest of
the components could be neglected. For this linear fit, #netitrn of the variance
accounted for by the fit is 99%:¢=0.992). An alternative method indicates that
up to fourteen eigenvectors could be considered. The biedddicates the level
above which an eigenvector accounts for more than the avdractional variance. 94

Figure 22 [Color] - The shift of students’ percentage of fame and unfavorable to subsets
of COMPASS statements is shown for non-honors studentagad introduc-
tory calculus-based mechanics course which uses compuotilimg homework.
Students tend to shift away from expert opinion on all dinrams though three
were not statistically significant (Perceived Ability, Eetp Behavior and Avoid-
ing Rote). Only scores from students who took both the prd-est-instruction

COMPASS Were used. . . . . . . o o o e 100
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Figure 23
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Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

[Color] - The shift of students’ percentage of fame and unfavorable to sub-
sets of COMPASS statements is shown for honors studentsgtaki introduc-
tory calculus-based mechanics course which uses compuotilimg homework.
Honors students maintained their scores on all dimenskfamggh on two dimen-
sions were significantly more favorable (Perceived Abdityl Expert Behaviors).
Only scores from students who took both the pre- and postdictton COMPASS
wereused. ... L 101

[Color] - StudentsN = 238) percentage of favorable and unfavorable responses

to COMPASS statements given (a) before and (b) after insvrun a introduc-

tory calculus-based electromagnetism course at Georgia diee plotted (black

X's). The distribution of responses in both figures is higiied using a colored
contour map of the percentage of students lying at each ‘Re mean percent-

ages for both pre- and post-instruction COMPASS resultsshosvn by a bold
redsquare. . . . . . . . e e e e 103

[Color] - StudentsN = 164) percentage of favorable and unfavorable responses
to COMPASS statements given (a) before and (b) after insbruén a intro-
ductory calculus-based mechanics course at NCSU are glgiitack x’s). The
distribution of responses in both figures is highlightechgsa colored contour
map of the percentage of students lying at each ‘x’. The meaceptages for
both pre- and post-instruction COMPASS results are showaligld red square. 106

[Color] - The distribution of the percent changerti pre to post) in COMPASS
scores for non-honors mechanics students at Georgia Testtovgn. Students
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SUMMARY

The research presented in this thesis was motivated by #m toeimprove introductory
physics courses. Introductory physics courses are généralfirst courses in which students learn
to create models to solve complex problems. However, mamdests taking introductory physics
courses fail to acquire a command of the concepts, methatisoals presented in these courses.
The reforms proposed by this thesis focus on altering theeobof introductory courses rather than
content delivery methods as most reforms do.

This thesis explores how the performance on a widely usadfesonceptual understanding
in mechanics compares between students taking a courseupdtited and modified content and
students taking a traditional course. Better performancgdulitional students was found to stem
from their additional practice on the types of items whiclpegred on the test. The results of this
work brought into question the role of the introductory phgsourse for non-majors.

One aspect of this new role is the teaching of new methods asidomputation (the use of
a computer to solve numerically, simulate and visualizesjal problems). This thesis explores
the potential benefits for students who learn computatiopagisof physics course. After students
worked through a suite of computational homework problemany were able to model a new
physical situation with which they had no experience.

The failure of some students to model this new situation miglve stemmed from their un-
favorable attitudes towards learning computation. In thissis, we present the development of
a new tool for characterizing students’ attitudes. Prelamy measurements indicated significant

differences between successful and unsuccessful students.

XX



CHAPTER |

INTRODUCTION

Each year more than 35% of American college and universityestts enroll in a physics course [1].
Only a small fraction of these students ultimately compéetiegree in physics; many are pursuing
another science or engineering degree [2]. The majorityuafents students who enroll in a col-
lege physics course take introductory calculus-basediggy$hese courses serve nearly 175,000
students every year [3]. However, many of these studentofacquire &ective understanding of
concepts, principles, and methods from these introduatotyses. The purpose of this thesis is to

explore ways in which instruction in these introductory gilcg courses may be improved.

1.1 The Goals of Introductory Physics

Introductory calculus-based physics courses are fundiierthe development of future scientists
and engineers. These courses provide the foundationall&dger that students studying science
or engineering will use in their advanced coursework antimately, in their post-baccalaureate
careers. Moreover, the methods, tools and thinking whigdesits learn in introductory physics
serves them well beyond their completion of the course.

Introductory physics courses are often the first in whicldetis develop their abilities to solve
problems. Students learn to translate physical descniptto mathematical equations, represent
physical phenomenon through figures and graphs, organzeanny out the solving of detailed
problems and articulate the solutions of such problems itingr The development of these skills
is crucial to students’ success in their future work.

Courses in introductory physics are also those in which imgdscientists and engineers begin
learning the tools of science. While taking these courseglesits learn to set up and operate
experimental equipment, acquire and manipulate data ssifiggare programs and, in some cases,
learn to make models of physical phenomena using compu€insaining experience with these

tools strengthens and diversifies students’ problem spskills beyond simply working with pencil



and paper.

Introductory physics courses can shape how students thioktascience, how they believe
science is done and, perhaps most importantly, can influéribey continue to pursue science
or engineering in the future. Students’ attitudes towagatdag physics, their beliefs about what
it means to learn physics and their sentiments about theection between physics to the “real
world” can play a strong role in their performance in introthry physics courses. This performance

can dfect their decision to continue studying science or enginger

1.2 Instructional Challengesin Introductory Physics

Instructors of introductory physics courses aim to prostieents with sfficient opportunities to
develop their problem solving skills with access to the saafl science and with information about
how science is done. Each of these goals faces unique apedien

While introductory physics courses aim to develop studprmblem solving flexibility, many
students fail to transition from naive “equation hunteis’ekpertly flexible problem solvers. Re-
search into this subject has shown that students retaingathysisconceptions even after instruction
[4] and are unable to solve even basic introductory probleftes completing the course [5].

The core content of most introductory physics coursesfetilises on 19 century phenomena
even though the modern world of science and engineeringriogsgssed well into the 24century.
Many modern scientists and engineers are exploring phgsite nano-scale, and yet, it is still rare
for an introductory physics textbook to mention the atomgr@menological models of solids or
the interaction of electromagnetic fields with matter [6].

Furthermore, the problem solving tools taught in most mhiiciory physics courses have not
kept pace with the best professional practices 8f@&intury science and engineering. For example,
computation (the use of the computer to solve numericatiyiate or visualize a physical problem)
has revolutionized scientific research and engineeringtipess. In modern science and engineering,
computation is widely considered to be as important as thaod experiment [7]. However, com-
putation is virtually ignored in most introductory physimsurses. By contrast, computers are used
frquently in physics courses to handle administrativegdskg., the delivery and grading of course

assignments [8, 9]), perform experiments (e.g., collgctind producing plots of data [10, 11]) and



deliver content (e.g “clicker” questions [12]).

Many introductory physics courses neglect student epsiegy. A student’s success in a
physics course might have more to do with her negative sentisrabout the course and its content
than her ability to learn [13]. Understanding such sentimamight help mitigate issues related to
the number and diversity of students studying science agiheering [14].

Developing new instructional strategies that strengthablpm solving abilities, blend those
skills with modern content and tools, and address issuseddiy student epistemology is necessary

to develop the next generation of scientists and engineers.

1.3 Approachesto Reforming Physics I nstruction

The approach taken by educational researchers to impretre@tion in science mirrors the process
used in scientific research. That igfcets to improve education in the sciences generally follow
the process of experimental design: development, tesisggssment and refinement [15]. Further-
more, theseféorts should be informed by results from cognitive scienseaech [16], the science
that explores human learning.

Physics Education Research (PER) is a field of study whicls éanaddress instructional chal-
lenges across a wide range of courses from the introduaddhetgraduate level. These challenges
might include overcoming students’ misconceptions abautiqular phenomena, making content
relevant to the modern world or addressing students’ owrnvatidn to learn. Workers in PER have
made some improvements to address these challenges. (Betleeae improvementsizcted two
broad areas of instruction: (1) the delivery of course ni@teand (2) the content of those materials.

Most work has focused on altering the delivery of content dtptstudents overcome physi-
cal misconceptions. Traditionally, introductory physasurses have been taught in large lecture
classrooms with passively delivered content that focusederivations (i.e., traditional lecture).
McDermott, Halloun and others found that students maiethiphysical misconceptions and had
not developed strong qualitative reasoning skills eveer afistruction [17, 18, 19, 20, 4, 21]. The
shortcomings of the traditional lecture have been adddedsgehanges to content delivery methods
that included a greater amount of qualitative content ancerimberaction with students [22, 23, 24].

Interactive student engagement with a focus on qualitathaerstanding has been shown to have a



positive dfect on student learning [25].

Some researchers have made fundamental changes to thatcafintiee introductory physics
course in an fort to make the course more relevant in the modern era [26, 2F]an example,
which will be discussed in later in detail (Sec. 2.1.1), Ghaland Sherwood altered the scope
and sequence of topics in the introductory course in ordprésent modern content [28, 29] and
introduce students to computational modeling [30], a ta#diby most practicing scientists and
engineers. Fundamental alterations of the introductouyseare rarely implemented at large scale,
hence, the impact of such changes on student learning isshetell understood.

A number of educational researchers have worked to chaisettudents’ attitudes and beliefs
about learning physics. These epistemological studies héstorically addressed the nature of
scientific knowledge [31, 32], but, more recently, Adamsletd@veloped a survey meant to help
instructors address issues related to students’ motivamaol interest as well as their thoughts about
learning and knowledge [14]. Results from surveys suchessetimight be helpful to instructors who
choose to present topics that increase a students’ pelisterast in the course and their motivation

to learn the material.

1.4 Measuring the Effects of Reform

When trying to understand thefects of an adopted reform in introductory physics, it is nayo
important to evaluate how students approach, reason abdyteaform on problems, but also to in-
vestigate how students think about the tasks, tools andigeaaf science. Characterizing students’
attitudes provides insight into the type df@t they put forth in learning new material. To measure
students’ performance after adopting some reform, we reguset of instruments to probe students’
abilities and compare those skills to students who took aseowithout any reform, a “traditional”
course. A wide spectrum of tools exists; for example, we migle students’ own coursework, a
concept inventory, a detailed problem solving study or aeumstrument.

Coursework (e.g., exams, quizzes and projects) is normaby to evaluate what students have
learned in a given course, however, performance on comnsks tgiven to students in both a
reformed and a “traditional” course can also be comparedse&ehers often use common final

exams to compare how students solve detailed problems [S8th comparisons are relatively



A stone dropped from the roof of a single story building to the surface
of the earth:

(A) reaches a maximum speed quite soon after release and then falls
at a constant speed thereafter.

(B) speeds up as it falls because the gravitational attraction gets
considerably stronger as the stone gets closer to the earth.

(C) speeds up because of an almost constant force of gravity acting
upon it.

(D) falls because of the natural tendency of all objects to rest on
the surface of the earth.

(E) falls because of the combined effects of the force of gravity
pushing it downward and the force of the air pushing it downward.

Figure 1: A sample item from a force and motion concept inventory. Feguweproduced from
Hestenes.

straight-forward to perform but are generally limited toyguaring students within a single insti-
tution. Others have used coursework to determine whichrmefdo a single course have most
positively dfected students’ performance [34].

A widely used tool to evaluate and compare performance sc@sesters [35], courses [36] or
institutions [37] is a concept inventory; a instrument casgd of a set of multiple-choice questions
that is designed to probe performance on a particular tapseof topics. Concept inventories are
used for comparison more often than students’ coursewariuse they are simpler to administer
and provide a common baseline from which to measure perfizemdn mechanics, concept inven-
tories exist to measure performance on qualitative forceraation concepts [38, 39, 40], energy
concepts [39, 41], the relationships between graphs ofikatie quantities [42], and “expert-like”
approaches to solving problems [43, 44]. A sample item frdor@e and motion concept inventory
[38] is shown in Fig. 1.

Detailed problem solving studies are equally useful tousata student performance on prob-
lems which they have not encountered in their courseworkes@&lstudies are typically designed
to probe a particular concept in greater detail than is ptes$iy using easy-to-administer instru-
ments such as concept inventories. In these studies, studenasked by a researcher to verbal-
ize their thinking while solving the problem. Figure 2 reguces a problem from a classic study

by Rosenquist and McDermott on interpreting motion diagramd graphing kinematic quantities
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Figure 2: [Color] - A question from detailed problem solving study abdnterpreting motion
diagrams and graphing kinematic quantities. Students pregented with the stroboscopic image
of a ball (A) rolling on level ground and another ball (B) infj down a slight incline. Students were
asked to draw graphs of the position and velocity of eachvgalius time for each situation. The
results from this study formed the basis for a section onrkatécs developed for the Washington
Tutorials in Physics, an instructional aid for introdugtgrhysics used by instructors at a large
number of institutions. Figure reproduced from Rosencanst McDermott.

[45]. Studies such as these led to the development of sonfe afuestions that appear on a num-
ber of concept inventories [38, 39, 41] and problems thatamedlable in some instructional aids
[22, 23, 24]. Other detailed problem solving studies hawnhesed to compare student populations
[46] and investigate students’ problem solving flexibiliy].

Surveys have generally been used by educational researnchenderstand the role that stu-
dents’ epistemological beliefs play in their learning. Whemtering the course, many students have
naive expectations about the nature of physics and howagi@mgeneral, is done. These surveys
have been designed to probe the attitudes and views whidrtexgxpect students might acquire
after completing the course [31, 32, 14]. It is believed thake views fiect how students prepare
for the course [48] and carffact how much they learn [49]. Moreover, certain aspectsetturse

might alter students’ epistemological beliefs [50, 13,.51]

1.5 Research Questions

The work presented in this thesis has been performed in thedbof Physics at the Georgia In-
stitute of Technology (Georgia Tech, GT). Georgia Tefflers two distinct large lecture introduc-
tory physics courses. Both courses are largely indistsigable with respect to content delivery
methods; all sections of both courses utilize reformedrattiive engagement techniques such as
“clicker” questions with similar intensity. These two ceas are separated by their content. One

course uses the textbook by Knight [52] and follows the scape sequence of topics that has



remained largely unchanged in introductory physics caufsedecades. Furthermore, this “tradi-
tional” course does not introduce students to modern taaih as computation. The other course
uses theMatter & Interactions(M&l) textbook by Chabay and Sherwood [28] which presents up
dated and reorganized content. M&[dirs from the traditional course in its emphasis on the gen-
erality of fundamental physical principles, the introdantof microscopic models of matter, its
coherence in linking dierent domains of physics and its use of computation to prelé& mo-
tion of sundry dynamical systems and compute and displayaiiations of electric and magnetic
fields due to charges [6, 26, 30]. Georgia Tech hésred M&I to one half of the total mechanics
enrollment for a number of years.

With two introductory calculus-based mechanics coursBeyed concurrently, the opportunity
to compare learning outcomes arises. One might ask: How dquamtify the éectiveness of this
content reformed course, taken as a whole, with regard ttestuearning? What measurements
can be made to compare students’ performance on matertahpipaars in both courses? What
information can be gleaned aboufextive instructional strategies from these measurements?

Some of the content of M&I overlaps with the content of thaliianal course. However, a
significant portion of M&I content is absent from the tradital course. For example, students in
the M&l mechanics course learn to apply iterative methodzréalict the motion of objects subject
to non-constant forces both analytically and using a coempiithe value of learning this algorithmic
approach to solve dynamics problems is still largely unkmoWhat benefits do students obtain by
learning this new material? How do we implement the teacbiniis tool at a large scale? How
do we evaluate thefiects of learning this new material?

We have learned that what students think about learnings@ayle in their success in physics
courses. In a physics course in which students are learmngpgtational modeling, we should
attempt to understand what role student epistemology playsarning this new tool. How can
we measure what students think about learning computatinoadeling in an introductory physics
course? Do our measurements suggest a role that motivatienest or ability play in learning
computation?

The rest of this thesis is presented as follows: We deschib@ttcomes of previous works in

reforming physics courses, the history of computation irostuctory physics and results from work



in student epistemology in physics in Chapter 2 to set thkdracnd for the current work. The ef-

fectiveness of our reformed mechanics course (M&I) was nmealsusing student performance on
a standard concept inventory (FCI). These results were aedpto the performance by students
from our traditional course. In Chapter 3, we describe thmsasurements, discuss their impli-
cations and outline possible modifications to instructiorour reformed course. In the reformed
course, we have taught computation as part of the laboraféeyimplemented a new instructional

strategy to extend the teaching of computation beyond therddory. We discuss the benefits of
teaching computation, the issues associated with impletien this new strategy in a large lecture
setting and an evaluation of the learning outcomes fromdtrstegy in Chapter 4. This use of

this new instructional strategy to teach computation hagdaguestions about the role of student
epistemology in learning computation. In Chapter 5, wewdisadhe design of and the preliminary
results from a new survey on students’ epistemologicalefselbout learning computation. We

make concluding remarks and outline possible future rekedirections in Chapter 6.



CHAPTERIII

BACKGROUND AND MOTIVATION

Improvements of student learning in introductory physicsrees have generally resulted from re-
forms of the delivery methods, namely, increasing activelent engagement. Measurements of
performance dierences as a result of changes in content are still lackingordvide the context
for comparative measures between courses with markeéigrelit content (Ch. 3), we discuss
previous &orts to reform introductory physics courses and their autes (Sec. 2.1). Thelatter

& Interactionscourse (Sec. 2.1.1) is highlighted because it providesahedation for the current
work. Matter & Interactionsintroduces computation as one significant modification éodbintent

of the introductory physics course. As it was not the firstreeuo do so, we present a historical
overview of the sundry attempts to introduce computatiomtwductory physics students (Sec.
2.2) in order to distinguish them from our approach (Ch. 4ydSnts have expressed a lack of self-
confidence and a considerable amount of anxiety when leacomputation. These sentiments
are somewhat similar to what many students experience wiegnstudy science. We present an
overview of the work done to understand students’ epistegylin science (Sec. 2.3) to provide
the background for the development of a new instrument (Ctvhich helps characterize students’

attitudes towards learning computation.

2.1 Course Reformin Physics

Challenges to student learning in physics have generadiy bddressed by modifications to content
delivery methods. Many institutions have adopted resebased instructional aids [24, 22] and
some have developed introductory physics courses thas fmtdiscovery and experiential learning
[53, 54, 55, 56]. However, the core content of these coursé®dguently little changed from the
courses fiered a century ago.

Historically, reforms of physics instruction have focusedcreating a more active environment

for learning. These reforms stemmed from a series of nowablem studies in which students



solved problems which they had not seen in class. Studendshati completed a course in me-
chanics were invited to solve problems and view demonsetratielated to kinematics [17, 18, 57],
dynamics [19, 4] and the work-energy theorem [58]. Aftedgarstudents were asked to explain
their work or discuss the phenomenon that they had just ebderResearchers found that stu-
dents were often unable to discuss the problem or phenomersgatisfactory way. In fact, many

students had strong misconceptions and reverted to pirergtisn notions about the nature of the
phenomenon [4].

Students’ challenges with conceptual understanding inhar@cs led to the development of
research-based instructional aids (e.g., University osiWeagton Tutorials in Physics [22] and
Mazur’s Peer Instruction [24]) that can be used in largeulecenvironments. These teaching tools
are now used widely in introductory physics courséered at high schools and colleges. In addi-
tion, a series of concept inventories were designed (dg.Fbrce Concept Inventory (FCI) [38],
the Mechanics Baseline Test (MBT) [43] and the Force and dhoionceptual Evaluation (FMCE)
[39]) using some of the questions and activities from previstudies. These assessments are typ-
ically given before and after instruction (pre-test andtytest, respectively) to compare student
learning on qualitative concepts.

An active learning environment was shown to be instrumeintdielping to build students’
conceptual understanding of mechanics. Across a widetyawsfanstructional levels, mechanics
students taught in an active learning environment usingKet” questions (i.e., short, usually qual-
itative, questions posed to the class) performed significaigher on a qualitative force and motion
assessment (FCI) than those who took traditional lectuneses [25].

The success of interactive instructional methods in meckatourses drove content delivery
improvements to be adopted in a broad spectrum of physiasesu Similar content delivery re-
forms have been made in introductory electromagnetism (E&€4, 60, 61, 62]. More recently,
these reforms have percolated up to middle and upper-divisburses: sophomore-level classical
mechanics [63], junior-level E&M [64, 65, 66], senior-lévgiantum mechanics [67, 68], graduate
courses [69] as well as to other STEM (Science, Technologgirteering and Mathematics) courses
beyond physics [12]. Preliminary results comparing thégrerance of students who took reformed

upper-division courses to those who took traditionallygtaiicourses suggest better performance by

10



students in reformed courses [37, 70].

Some research-based courses have made sweeping chartgeketoriing environment. Some
of the more well-known reconfigurations of the instructioaavironment are Workshop Physics
[53], the Investigate Science Learning Environment (I.B.L[55], the Arizona State modeling cur-
riculum [71] and the Student-Centered Active Learning Emwvinent for Undergraduate Programs
(SCALE-UP) project [54].

Workshop Physics is an instructional environment that rdseon and experiment-driven. Stu-
dents follow semi-sd®olded experiments to discover how physical principles aiger Workshop
Physics students make heavy use of data collection tectsiipat would be necessary for practicing
scientists and engage in kinesthetic activities to obtainscle memory” of phenomena. Activities
in the Workshop Physics course emphasize transferable ekicientific inquiry [72].

I.S.L.E. is an experiment-driven instructional envirommne which students engage in exper-
imental design and execution to explore physical prinsipleS.L.E. students have demonstrated
some ability to transfer experimental design skills (ecgnsidering assumptions, evaluating the
effect of uncertainties, etc.) betweerttdrent experiments and between courses frafierdint do-
mains [73, 74, 75].

The Arizona State modeling curriculum places a strong eiptan the practice of construct-
ing and applying conceptual models of physical phenomehanakes extensive use of student
discussion and reporting of findings. Students of the modedurriculum use their own ability to
construct knowledge through observation, inquiry andesgntation [76].

Workshop Physics, I.S.L.E. and the modeling curriculundtenfollow a traditional sequence
of topics: kinematics, constant force motion, and energyst B9" century concepts such as phe-
nomenological models of solids are absent. In additiordesits’ use of the modern tools of science
is limited to collecting and displaying data using softwaregrams and interacting with simula-
tions (visualizations of physical phenomena). These esud® not make use of modern problem
solving tools such as computational modeling.

The SCALE-UP project is slightly étierent from the others, because it is generally “content
neutral”; it attempts not only make courses hands-on bt sdgial. SCALE-UP students collab-

orate in large groups (up to 9) to explore physical phenome3@ALE-UP has been used by a
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number of traditional [77] and content reformed [78] phgstourses. SCALE-UP has also been
utilized by instructors in other domains such as calculbenustry and biology [79].

These reformed learning environments have transformed giowics is taught but the core
content of most of them has remained unchanged. Fundamdrdabes to the core content of
an introductory physics course are rare, often, becausadbpted text is remains “traditional”.
Moreover, it is not yet understood how student learningfiected by courses which make use of
drastically diferent texts. Three textbooks that have made significantéties to the scope and
sequence of topics in the introductory physics course arer&®Six Ideas That Shaped Physics
Huggins’sPhysics 200@&nd Chabay and Sherwoodvatter & Interactions(M&l).

Six ldeas That Shaped Physi@&0] completely reorganizes the introductory course. Moor
structures his texts around six “grand ideas” in physickc¢hservation laws constrain interactions,
(2) the laws of physics are universal, (3) the laws of phyaresframe-independent, (4) electric and
magnetic fields are unified, (5) particles behave like wa{@ssome processes are irreversible.
Students learn about ideas 1-3 in their first semester anith4h@ir secondSix Ideas That Shaped
Physicshas been positively reviewed and has been adopted, typicadimall enroliment courses,
by a number of institutions. Furthermore, post-instrutt&valuations have so far been limited to
course-instructor reviews [81] rather than comparisonkkafing outcomes with students taking
other courses.

Physics 200(82] is example of a radical transformation of the introdugtphysics course.
Students usin@hysics 2000ollow a course that emphasizes expert-level problem sglsbphisti-
cation (e.g., Lorentz transformations) and advanced @xgetal tools (e.g., Fourier analysis). No
research has yet been performed to assesdfaieeness of usinghysics 200@r compare it with
other reformed courses. Furthermore, it is not cle&hiysics 2000s widely used.

Matter & Interactions(M&l) [28] is a reformed text that is being increasingly adeq for large
lecture calculus-based introductory physics courses.t flays an important role in the present

work, we present a detailed overview of M&I in the next sect{§ec. 2.1.1).
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2.1.1 Matter & Interactions

Matter & Interactions(M&lI) is an innovative and modern textbook [28, 29] which Hasdamen-
tally altered the core content and sequencing of topics timdiictory physics to emphasize the
“modeling” process. Modeling is the practice of creating applying physical models of complex
phenomenon. This practice includes the use and justificaficimplifications and approximations
that make such phenomena tractable either analyticallysiogicomputation. The M&l mechan-
ics course emphasizes the modeling process through itsfusduwctionism. M&I students learn
to construct models of complex systems and simplify anglggistarting from a few fundamental
principles. The “momentum principle” relates a change immanotum Ap) experienced by a sys-
tem in a short timeAt) to the external net forceF)) applied to the system in that timap = FAt.
The “energy principle” relates the change in the total epdrE) of a system to the workW)
that is done by or on the system’s surroundings and the l@@athét the system exchanges with
its surroundingsAE = W + Q. The “angular momentum principle” relates the change irukarg
momentum 4L) of a system in a short time\f) to the net external torqué)applied to the system
in that time, AL = ?At.

M&I's emphasis on the generality of these fundamental ptalgirinciples is well represented
by its introduction of the iterative prediction of motion.tuflents learn to apply the impulse-
momentum relationship iteratively over short time stepgraalict motion of a variety of dynamical
systems. This general applicability of the impulse-momentelationship (i.e., Newton’'s Second
Law) is further reinforced by the solving of dynamics prab&eusing numerical computation. Stu-
dents begin by constructing a physical model of the systethdatermining what information is
applicable to the physical principles, namely, the momenpuinciple. Students then translate their
physical model to a numerical model using VPython [83], a ntedleveloped for the Python pro-
gramming language. The relevant kinematic, dynamic andyetie information can be extracted
from this model and displayed as graphs, if desired. An ar@cheisualization gives students visual
feedback on their model and the program may be refined. Studpply this technique to a number

of different dynamical systems over the course of the semester.
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M&I has been adopted by a variety of institutions (i.e., hsghools, two-year colleges and uni-
versities) including a number of institutions that use M&large-lecture sections [84]. Evaluations

of student learning in M&I have begun [36] and continue inphesent work (Chs. 3 & 4).

2.2 Computation in Physics Courses

Whether they are writing lab reports, solving online homekyceading a textbook or pursuing less
scholarly activities, computer usage permeate every agpetudents’ lives. However, it is rare
for students to know how to use a computer to solve scienceeagiheering problems. Teach-
ing students computation can provide complementary iostn to regular analytic tasks and help

students acquire the skills to be successful iff @dntury science and engineering.
2.2.1 The Case for Teaching Computation

Several educational researchers discussed how computatiobe beneficial to the development of
215 century scientists and engineers. By using computatiompéex problems become tractable
at lower levels. This can be leveraged to engage studentsrik similar to professional scientists
and engineers, which includes the modeling process [85,18@& use of a programming language
itself constrains users to certain syntactic structuresns@ucting programs requires students to
contextualize the problem in order to produce a preciseesgmitation [87]. More recently, model
animation and the visualization of abstract quantities tikomentum, angular momentum and field
vectors in three dimensions have been cited as potentigfitef30]. The algorithmic approach
for predicting the motion of physical systems, which comapion &fords, is quite general and is
applicable to a broad number of complex problems. It is fdesdhat by learning computation,
students might be able to solve problems related to physisiems with which they have had no
exposure.

Redish and Wilson developed the Maryland University PitajeEhysics and Educational Tech-
nology to help resolve the filerences between the activities in which their physics rsaagaged
and those in which professional physicists engage [85].leTak{reproduced from [85]) summa-
rizes some of these fiierences. In redesigning their course, Redish and Wilsordim develop

their students’ professional modeling skills; the skiliattare necessary to solve the type of broad,
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Table 1: Traditional course activities of introductory physicsdstnts are contrasted with activities
of professional physicists. Course activities are charatic of most introductory physics courses
and stem from a focus on solving “back-of-the-book” stylelppems. Redish and Wilson aimed
to address the mismatch between course preparation anesgiaial practice by complementing
their introductory courses with computation. Note thatfthal activity refers to “using a computer

for solving a science problem” not casual usage of a comgutieich is commonplace now). This

table is reproduced from Redish and Wilson.

Students Physicists
Solve narrow, pre-defined problems of pé&olve broad, open-ended and often self-
personal interest discovered problems

Work with laws presented by experts. Do no¥Work with models to be tested and modifigd.
“discover” them on their own or learn whyKnow that “laws” are constructs.
we believe them. Do not see them as hy-

potheses for testing.
Use analytic tools to get “exact” answers |tdJse analytic and numerical tools to get ap-
inexact models. proximate answers to inexact models.
Rarely use a computer. Use a computer often.

open-ended problems that professional scientists andesig encounter. Some skills were already
addressed in their traditional course such as translatorg wroblems to physics equations and al-
gebraically solving a variety of equations. However, theeltgpment of other skills was nearly
absent: making estimations and approximations, explgiaimd summarizing procedures and re-
sults and numerical modeling skills.

Niedderer and Schecker used STELLA, a commercially aviailgbaphical programming en-
vironment, with high school physics students to extend tiseussion of physical principles to
problems that could not be solved in analytic closed-for@.[&8checker opined that topics pre-
sented in most high school physics courses were chosen thematical convenience and that by
using a computer to perform the more mathematically sophisid operations, one could highlight
physical relationships. He found that students’ use of agatfpnal models could decrease their
overuse of special case analytic solutions and increadéajive analysis.

DiSesseet al. used the Berkeley BOXER project (BOXER) in a high school pdg/gourse
because, as a programming language, it required studeptsdace precise representations of the

problem and contextualize abstractions [87]. Precisioreessary when relating physical concepts
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to mathematical statements. But unlike hand-written wia&gdback from imprecise program state-
ments in a computational model is instantaneous. For ex@rtip visualization of an imprecise
program is completely wrong. Abstractions like the compectric field patterns are contextual-
ized using not only programmatic representations (e.gratitve calculations to superpose source
fields) but also through visualization (e.g., field vect@presented by arrows in space). DiSessa
et al. also noted that programming languages’ constraint on syartd causal realtionships makes
constructing computational models a useful mechanismegeting physics [88].

Sherwood and co-workers developed VPython which aimed lp inoductory physics stu-
dents improve their conceptual understanding of the phygiinciples addressed in the course,
produce a visualization of the problem that was not possihile static pictures and provide the
tools to model complex real-world situations [30]. The desirs of VPython sought to leverage
the development of high-level, object-oriented programgrianguages to make the construction of
highly visual simulations accessible to introductory pbystudents [89].

Any of these environments could help introductory studeatge problems that would normally
be intractable to them. For example, consider the mainstaytgpical introductory mechanics
course, an object thrown into the air near the surface of #mhBwith negligible air resistance.
Students taking a typical introductory course would leawesal equations to predict the motion
that emphasizes kinematics, a way of describing the motitimowt explicitly connecting changes
in the motion to forces (dynamics). Hence, these studentddame significantly challenged if air
resistance were not negligible. Moreover, these studeigbtrbe inclined to use models or equa-
tions that are inappropriate for this new problem [47]. Bytcast, students who learn computation
learn dynamics first. This initial introduction of Newtor8econd Law facilitates the teaching of
the iterative prediction of motion early on. For the compiotal student, predicting the motion
of the object with air resistance requires a simple programgnchange to add air drag to their

computational model.
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2.2.2 Distinguishing Tools for Computational Instruction

The tools used for computational instruction have a numbealiféerent characteristics: environ-
ment, programming language, limits on visualizatieh,cetera Arguably, one of the most im-
portant characteristics is the nature of the environmdrat; is, whether or not students can gain
access to the underlying model or modeling algorithnffols to introduce computation in intro-
ductory physics courses have produced environments inhwdticdents have little or no access to
the underlying model, alosedcomputational environment, and others that allow studentgew
and modify this model, anpencomputational environment. We further explicate closed gpen

environments below.

Closed Computational Environments Some educational researchers [90] have focused on cre-
ating closed computational environments. These are envients in which the user has little or no
access to the underlying model or modeling algorithm (actblaox” environment). Closed compu-
tational environments are analogous to “canned” codesi@msfic research. Users can set up and
operate the canned programs but did not construct them. ibteeaction in closed computational
environments is often limited to setting or adjusting paggers and interactions with the mouse or
keyboard. The advantages of using closed computation@lo@ments are that they typically re-
quire no knowledge of computation to operate, run similarlya variety platforms with little more

than an Internet browser and produce highly visual sinamati

Open Computational Environments Others [85, 91, 92, 30, 93] have created open environments
in which students can construct computational models. @pearputational environments are anal-
ogous to “user-developed” codes in scientific research.destis who learn to use one of these
environments have the advantage of peering into the “blaek to view and alter the underlying
algorithm on which the model depends. Moreover, studentdezan to develop their own compu-
tational models that solve new problems (Ch. 4). It is pdeditr students to interact with open
environments as if they were closed; users can be resti(fiadally or informally) from viewing

or altering the underlying model of any simulation develbpean open environment.

All historical attempts to introduce computation used opamironments because the level of
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sophistication to program interactive closed environmexiceeded technological resources at the
time. Most of these environments had limited visualizattapabilities as well; output was limited
to graphs [85] or, perhaps, two dimensional line animat[84s92]. More modern implementations
of computation take advantage of high-level, object-aggdrnprogramming languages, cheap and
available hardware andfient video cards not only making possible the developméictased
environments [90] but also the rendering of three dimeradigraphical environments [30, 93].

It is true that to use an open computational environmentiestis must devote additional time
and cognitive &ort to learning syntax and procedures of the language thieosmeent supports.
Depending on the environment that is used, students migtelenore time and cognitivetert to
the details of constructing a working simulation (e.g., sagg handling, drawing graphics, garbage
collection) than to modeling the physics behind it. It isrifore, important to consider students’

experience (or lack thereof) with computation when chapsitomputational environment.
2.2.3 Samples of Computational Environments Used in Introdctory Physics

Constructing computational models can be beneficial toestisdlearning physics, not only by en-
gaging them in the modeling process but also by reaping sdrtieemther benefits listed in Sec.
2.2.1. Several notable attempts have been made since thlepeent of small and inexpensive mi-
crocomputers with visual displays. Each has tried to engagients constructively in the modeling
process. Some attempts to use open computational envirasnmvere limited to small classes. The
program statements written by students in these attemptswiaimal, if written by students at all
[85, 86, 92]. Others have been successful with using a cleseidonment to introduce computation
to students in a variety of class environments includingddecture sections [90]. One open envi-
ronment developed for teaching computation has béfecterely used like a closed one in a variety
of settings [93]. There has been one successful attempaehitey computation to introductory
physics students in a large lecture setting which uses amepgronment [30].

We present a short chronological discussion of these attenvghen possible, we have high-
lighted their use to solve a problem that is not analytictifictable for introductory students in a
traditional setting, i.e., the prediction of motion of arjets subjected to turbulenE(~ v4) air drag

in one or two dimensions.
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2.2.3.1 Maryland University Project in Physics and Educaél Technology

The Maryland University Project in Physics and Educatiofed¢hnology (M.U.P.P.E.T.) was de-
signed as part of a complete rewrite of the sequence of inttody physics courses taken by fresh-
man physics majors [94]. Between 1986 and 1989, these coaesged around 25 students at a
time. M.U.P.P.E.T. provided a platform to broaden the saafggroblems which were addressed in
the introductory physics sequence. Over the course of theesee, students solved a variety of
problems (e.qg., turbulent air drag in two dimensions, lagplitude pendulum and billiard dynam-
ics) in class and on their homework. Not all students weregegprogrammers; two-thirds of these
students had some familiarity with a programming language.

A M.U.P.P.E.T. program that models the one dimensional anatif a particle near the surface
of the Earth subject to turbulent drag is shown in Fig. 3. NP.B.E.T. programs were written
using Turbo Pascal because it was believed that by using®PLE.T. students might learn skills
that were transferable to other professional languagesr (BORTRAN) which they would use
in their future careers [85]. This program handles variatksation and assignmentQNST and
VAR sections of Fig. 3), the physical model and numerical irggn Physics Procedures
andMathematics Procedures section of Fig. 3), and the screen and graphics procedDeas (
Screen Procedures andGraphics Procedures section of Fig. 3). Most of this program was
constructed by experts; students were only responsiblglling in the algorithm needed to model
the system (i.e., the Euler step proced@nespEuler). After the program was compiled, the result-
ing simulation was seeded with initial conditions and pagtenvalues. The solution was plotted
(Fig. 4). Due to hardware and software limitations at theetimutput was limited to graphs and
tables.

Redish and Wilson report that M.U.P.P.E.T. was used suftdlsi introductory physics and
sophomore level classical mechanics courses [94]. Chllgsiechanics students selected complex
open-ended problems to explore analytically and using coatipn. A large fraction of students
were reported to have produced “valuable and interestimgjepts which might have helped them
in future research with faculty. However, little is said abthe challenges that students experienced

with learning and using M.U.P.P.E.T., and nothing is memgib about how M.U.P.P.E.T. helped
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PROGRAM ProjectilelD; { projld.pas }

ko ok KKk ok ok Kk ok ok ok Kk ok ok K Kk ok ok Kk ko K Kk ok ok K Kk ok ok Kk kR K K kR K )

* *}
{* Program to calculate motion of *}
{* a particle in 1D with gravity *}
{* and air resistance using RK2. *}

{* *}

%k ko ok ok ko ok ok ok ok ko Kk ok Kok Kok ok Kk K ok ok K ok ko Kk Kk Kk )

i : Integer;
IC : Screen;

loop variable
data screen

USES Crt, Dos, Graph, Printer, MUPPET;
CONST
numData Integer = 200; {Number of points to plot}
g : Real = 9.8; {m/sec/sec}
VAR
t, x DataVector; { time, position }
v, a DataVector; { velocity, accel }
%0, vO0 Real; { initial conds. }
m : Real; { mass }
b : Real; { air resis. coeff. }
dt : Real; { time step }
{ }
{ }
{ }

act Char; control character
{ The types "DataVector" and "Screen" }
{ are defined inside the unit MUPPET. }

Physics Procedures

FUNCTION Force(x, v, t: Real) Real;
BEGIN
Force := -m*g - b*v*abs(v)
END;
{Fmmmm = Mathematics Procedures ----------- *}
PROCEDURE StepEuler (xIn, vIn, tIn, aln,tStep:

Real; VAR xOut,vOut,tOut,alOut: Real);
BEGIN
{STUDENT TO FILL IN THIS PROCEDURE}

END;

{fmmmmm Data Screen Procedures —--—---———-—----— *}
PROCEDURE MakeDataScreen;

BEGIN

DefineInputport(0,0.45,0,0.9);
_A[01]:=""M.U.P.P.E.T." ';
_A[02] '""University of Maryland" '
A '
_A "PROJECTILE PROGRAM: 1D" ';
_A "F = -mg - bv*abs(v)" '
_A i
A "PARAMETERS" '
_A "Mass m = " l+++++ "kg" '
A '
_A "Air Resistance" '
_A "Coefficient, b = " O+++++ "kg/m" '
_A i
A "Time step, dt = " 0.050+ "sec" '
A '
A '"INITIAL CONDITIONS" '
_A "Position: x0 = " O++++ "m" '
_A[17]:=" "Velocity: v0O = " 40+++ "m/sec" '
LoadScreen (IC,17);

END;

PROCEDURE GetScreenData
(VAR m,b,x0,v0,dt:Real);

BEGIN
ClearMUPPETport;
OpenInputPort;
PutDate; {puts date on data screen}
Message ('Press <ENTER> to plot,
<ESC> to quit');
Accept (IC); {displays screen}
m := Valu(IC,1);
{puts 1st entry on IC into m}
b := Vvalu(IC,2);
{puts 2nd entry on IC into b}
dt := Valu(IC,3);

x0 := Valu(IC,4); {etc...}
v0 := Valu(IC,5);
END;

PROCEDURE GraphSetUp;

BEGIN
GraphBackColor:=DarkGray;
DefineViewport(l, 0.55,1, 0.5,0.9);
DefinevViewport (2, 0.55,1, 0.05,0.45);
DefineScale (1, 0, 10, -75.0, 75);
DefineScale(2, 0, 10, -75.0, 75);

END;

PROCEDURE PlotIt (viewPort,
x,y: DataVector;

color: Integer;
namelabel: BigStr);

BEGIN
Setcolor (color);
SelectScale (viewPort);
OpenViewport (viewPort) ;
Axis (0,0,1,20);
PlotData (x,y,numData) ;
PutLabel (Inside, namelLabel) ;
END;

-- Main Program -------—-——----- *}

BEGIN

MUPPETinit;

MakeDataScreen;

GraphSetUp;

REPEAT
GetScreenData (m,b, x0,v0,dt) ;
IF EscapedFrom(IC) THEN EXIT;

t[1l] := 0; {initializes firststep}
x[1] := x0;

v[1l] := vO0;

a[l] := -g - b*v0*abs (v0) /m;

FOR i := 2 to numData DO {solve the equation}
StepEuler (x[i-1],v[i-1],t[i-1],a[i-1],dt,
x[1i],v[i],t[i],alil]);

Message ('Press <ENTER> for new data,
<ESC> to quit');

PlotIt(l, lightGreen, t, x, 'X vs T');
PlotIt(2, lightRed, t, v, 'V vs T'");
MUPPETdone;
END.

Figure 3: AM.U.P.P.E.T. program that models the one dimensional anatf an object moving un-
der the influence of the gravitational force subjected tbulent drag in one dimension. The Turbo
Pascal code that generates each piece of the visualizatiobe seen clearlyMékeDataScreen,
GraphSetUp, PlotIt). Students filled in the section of code that performed thaerical integra-
tion (i.e.,StepEuler). Once compiled students worked with the user interfacevehia Fig. 4,
entering initial conditions and parameter values.
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Press {ENTER» for new data, {ESC»> to quit |

MH.U.P.P.E.T.

University of Maruland

PROJECTILE PROGRAM: 1D

F = -na - buxabs({u}

PARAMETERS

MHass

Air Resistance

Coefficient, b

Tine step. dt

INITIAL CONDITIONS
Position: =0 = 1]

Velocity: vh = 30

Figure 4. [Color] - A compiled M.U.P.P.E.T. program (Fig. 3) produdbss user interface with
which students interact when modeling the motion of an dldgbng with air resistance. On the
left, students view the model (i.e., the forces acting onpheicle), the relevant parameter values
(e.g., mass and drag d@ieient) and the initial conditions. The program producedspluf the
object’s position and velocity versus time on the right.

develop students’ conceptual understanding. It is paséiitat the success of M.U.P.P.E.T. might be
attributed to its use by physics majors in small class siZes liad some programming experience.
Most introductory students were less computationally éepeed than these physics majors. Future

efforts would aim to reduce the cognitive@t devoted to learning traditional programming syntax

and semantics.
2.2.3.2 STELLA

Students who learned to use STELLA to model physical sysigere not burdened by the addi-
tional cognitive load of learning a programming languads] [$TELLA's low-level of sophistica-
tion and intuitive graphical programming environment médeccessible to high school students.

In the late 1980's, Niedderer and Schecker taught a clads\afreth grade German physics students
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height

velocity

mass

momentum
net force

3

F weight

O

air density

shape factor

g mass cross section

O height (t) = height (t - dt) + (velocity) * dt

INIT height = 1000 {m, drop height}

INFLOWS:

velocity = momentum/mass
0 momentum(t) = momentum (t dt) + (net_force) * dt
INIT momentum = - 100 {m/s; initial velocity}*mass (kg; object mass}
INFLOWS:
net_force = F_weight+F_drag

acceleration = net_force/mass (m/s"2}
F_drag = -1/2*cross_section*air_density*shape_ factor*velocity*ABS (velocity)
{air friction: F~v"2, anti-parallel to velocity}

o o

F_weight = mass*g {N; approx constant}

g = -9.81 {m/s”2 (at zero height)}

mass = 500 {kg}

cross_section = 10 {m"2}

shape_factor = 2

air density = 1.2 {kg/m"3, near zero height}

0o0o0o0oO0O0

Figure 5. A graphical STELLA program that models the motion of an objadling with turbu-
lent air drag. STELLA programs were connected (upper diayjnasing structural elements that
represent constants (open circles); functional relakignss (arrows, curved or straight); rates of
change (valves with arrows) and quantities that accumuohage time (boxes). Once compiled, the
input equations became available for modifying initial difions (lower diagram). This figure was
reproduced from Schecker.

with no programming experience to construct STELLA progsdhat modeled kinematics and dy-
namics problems as well as work-energy problems. The pnagjr@ere constructed in small groups
or as part of a large class activities.

A STELLA program that models the motion of a particle fallimgthe Earth experiencing tur-
bulent air drag is shown in Fig. 5 (reproduced from [91]).d&futs interacted with STELLA using
a graphical programming environment; programs were “amittoy making connections between
various structural elements. These structural elemeptesented constants likass andg (open
circles in Fig. 5), functional relationships like the pratlof mass andg givesF weight (arrows,
curved or straight in Fig. 5), rates of change liket force (valves with arrows in Fig. 5) and

guantities that accumulate over time likementum (boxes in Fig. 5). After compiling this program,
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Figure 6: The visual output of the STELLA program (graph of accelematis. height fallen) illus-
trated in Fig. 5 is shown for three sets of initial conditioAdter the program was compiled the user
might input any number of initial scenarios and view outputhie form of graphs. Due to hardware
and software limitations, visual output was limited to pland two dimensional animations. This
figure was reproduced from Schecker.

a set of input equations were made available with which stisdeould define initial conditions and
parameter values (lower diagram in Fig. 5). Visual outpus wanerated after running the model
using these inputs. Output was limited to graphs and sonmeadiun (Fig. 6).

Schecker believed that a graphical environment (Fig. 5)e¢hgphasized functional relation-
ships, rates of changes and methods of accumulation madeshe structural features of the dy-
namics more explicit than a laundry list of formulas. By emghking mechanism, that is, how
state variables change, it was thought that this tool coaldd®d to develop students’ conceptual
understanding and help students to connect key concepts/gsigs at a younger age. After two or
three introductory examples, Schecker noted that studests able to work with the software or,
at least, contribute to class discussion using the modeth&umore, he found that class discussion
shifted from “back-of-the-book” problems to open-endedjuiiry-based problems which increased

student-student and student-instructor interaction.[91]
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-25.399999999939962 6 40 -9.8 .01
resetall]

clearscreen

penup

change y-position -50
change x-position -200
change vy 50

pendown

ade

resetall

repeat 300
change vy vy + ay 7 dt

change y-position y-position + vy % dt
change x-position x-position + wvx * dt
Ptz

Figure 7: A BOXER program that models the motion of an object under tiflesénce of the grav-
itational force in two dimensions. In lower half of the figutee user inputs the initial conditions
and parameters (i.e., within the “Data” boxes), sets up tbdehand drawing (i.e., within the upper
and lower “Doit” boxes respectively. The visualization isng dimensional drawing in the upper
half of the figure (i.e., in the upper “Data” box). This figurasweproduced from DiSessaal. .

2.2.3.3 The Berkeley BOXER Project

The Berkeley BOXER project (BOXER), an outgrowth of the wydased Logo language, was
designed to make programming more accessible. Develofanset that BOXER was not a pro-
gramming environment but a “reconstructable medium” [92je BOXER group experimented in
the early 1990’s with using BOXER to teach introductory naaths to eight private high school
physics students with no programming experience [87]. @vien week period, students learned
the syntax and structure of the BOXER language, programraet of their own simple models
and, eventually, modeled the motion of thrust-driven spaeft. The space craft model was de-
veloped through group discussion using a program templatehwwvas filled in on the blackboard.
After the program was completed to the students’ satigfacthe instructor typed the program into

the computer exactly as it appeared on the blackboard. Sitteen experimented with the model.
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Figure 8: [Color] - A PhET that models the motion of an object under thituence of the gravi-
tational force, which could be subjected to turbulent aaggliin two dimensions. Users may select
from a variety of projectiles and set a number of parameterhiding the projectile’s mass and
initial speed, the launch angle and the dragfiicient. This simulation is highly visual, including a
mobile target and tape measure, but students have no aodéssunderlying model.

A BOXER program that models the motion of an object under fleence of the gravitational
force in two dimensions is shown in Fig. 7. BOXER crossed the between text-based and
graphical programming environments. While users wroteguares and subroutines line-by-line,
much of BOXER'’s organizational structure was graphicale Tpper half of this BOXER program
(“Data box”) displays a graph of the x-y position of the olbjet“virtual” time. Additional data
boxes contain the parameters (ed&), and initial conditions (e.gvy). Two “Doit” boxes control
the drawing of the graph and the numerical integration neutirhe absolute position of these boxes
has no bearing on the program. If subroutines were necesbarythe relative position of boxes
(i.e., which box is contained by which other box) becomesartant [96].

The use of BOXER in introductory physics facilitated studimuiry of physics principles.
Furthermore, students were able to successfully confrashicantextualize abstractions and reason
through issues related to precision to build a working paiogrDiSesseat al. noted challenges with
this approach that included the overhead of learning BOX$Res and students’ manipulation of

programming statements without understanding.
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2.2.3.4 Physics Education Technology Simulations

The University of Colorado at Boulder's Physics Educati@thiinology (PhET) group has devel-
oped a suite of JAVA and Adobe Flash simulations which coveride variety of physical phe-
nomenon and are used at all levels of physics and physi@ici[97]. Each PhET was carefully
studied in focus groups and through student interviews haece functionality and maximize stu-
dent engagement [90, 98]. PhETs can be used to promote ehgegleration into science in ways
similar to professional scientists [99].

Fig. 8 shows a PhET that models the motion of an object neasutiace of the Earth with (red
curve) or without (blue curve) the influence of turbuleft< v2) air drag. Students may select from
a variety of projectiles, input parameters, and initial ditions. The simulation includes a target
which students may try to strike with the projectile and a&tapeasure to determine the range of the
projectile. This simulation is a highly visual, researcétéel tool, but students have no access to the
underlying model. In fact, a description of the PhET’s maafedir resistance was not indicated in
the PhET; it appeared in supporting documentation.

Because PhETSs are a closed computational environmentdthept provide the type of edu-
cational support that is possible with open computationalrenments; see Redigt al. [85] or
Schecker [86, 91]. PhETSs, like other closed environmeiigs, fail to take advantage of the useful
demands that a programming language imposes, namelynssugescision with the relationships
between variables and their contextualization of abstnastiike physical equations; see DiSessa
al. [87]. However, PhETs are accessible to students at neayhalarevels of instruction, require
next to no training to operate and, used appropriately, bae& shown to befiective at promoting

students’ conceptual understanding [100].
2.2.3.5 Easy Java Simulations

Esquembre developed Easy Java Simulations (EJS) to pravititform for creating JAVA simu-

lations of physical phenomena [93]. EJS was intended fagnaramers and novices alike to easily
prototype, test and distribute their own simulations [10Ellly constructed EJS programs have
been used at a variety of levels including upper-divisioarqum mechanics [102]. EJS has made

authoring high quality simulations so straight-forwarattiEsquembre and others have proposed
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Figure 9: [Color] - TheModelview of an Easy Java Simulation (EJS) that models the moti@m o
object moving near the surface of the Earth subject to terfiwdir drag. Thé&volutiontab is shown

to highlight how EJS handles modeling the dynamics. Usenplgitype the ODEs that govern the
dynamics into the cells under ti®rolutiontab and then select one the integrators. In this case, we
have selected®order Runge-Kutta. Once compiled, the program producestkgut shown in
Fig. 10.

teaching upper-divison science majors to construct sitiomg using EJS [103, 104].

An EJS program that models the motion of particle near thiaserof the Earth with the in-
fluence of turbulent air drag appears in Fig. 9. Users hawsethirews in an EJS program. The
Descriptionview contains arHTML document about the program. TModel view contains all
the necessary variables and functions for modeling theugwgal of the system. In Fig. 9, we have
highlighted theEvolutiontab within theModelview because it contains, in a set of cells, the ordi-
nary diterential equations (ODESs) that govern the dynamics of tlséegy. OtheiEvolutiontabs
contain the variables, initialized quantities and theti@fships between quantities that are not gov-
erned directly by the ODEs. Théewview describes the visualization of the EJS program. After
simulation is compiled, it can be run and it produces the wuspown in Fig. 10.

It is possible to use Easy Java Simulations to engage eagh stahe modeling process (Sec.

2.1.1) and reap each of the benefits of learning computdtiondeling (Sec. 2.2.1). However, it
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Figure 10: [Color] - The graphical output from the compiled Easy Javai8ation shown in Fig. 9.
Here the vertical position of the object is plotted as a fiomcof time. Other plots may be selected
in by altering the EJ¥iewview. In addition to plotting a variety of quantities, it ilsa possible to
use EJS to produce an animation of the system as it evolves.

appears that EJS have been largely used as a closed compait@invironment to create “black
box” simulations (similar to PhETs). Students might intraith the program without peaking
at the underlying model [101]. However, all the featureshaf physical model are available (the
Modelview in Fig. 9); EJS is an open environment. Usage that woalddngruent with previous

implementations of open environments with introductondsits [85, 91, 87] appears to be limited

to upper-division students [103, 104].
2.2.3.6 VPython

In the mid 1980’s, significantfiorts were made by Sherwood and co-workers to develop the cT
programming language, an outgrowth of the TUTOR languagtenrfor the PLATO computer-
based education system [105]. Initially, cT was an open agatjpnal environment designed for
instructors who had little or no programming experiencedmtted to construct physics simulations
for use in their classes. In 1997, Chabay and Sherwood taugfiiall class of introductory physics
students at Carnegie Mellon University, most of whom hadenexitten a program before, a subset
of cT’s capabilities. Students were able to create simutatiof physical systems [106]. The cT
language was simple and intuitive but still lacked threeatisional graphics.

VPython succeeded cT as a simpler open environment basedpaofessional language in
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Python. Furthermore, it extended the visual experiencadlyding full three dimensional graphics.
VPython has been used to teach computation to large sectidgmsoductory physics students with
no background in computer modeling or programming for a nemdd years [30]. It contains
features that make writing programs to simulate physicstesys straight-forward [83].

A VPython program that models the motion of a ball moving rtkaisurface of the Earth subject
to turbulent air drag is shown in Fig. 11. The program cretite=e objects (the ground, a ball and a
curve which follows the ball); assigns a few initial condits and parameters (the ball’s position and
momentum and the mass of the ball); and integrates numlgriddPython is open computational
environment; students write all the program statementessecy to model the physical system
(e.g., creating objects, assigning variables and nunes@daulations). The additional details of
simulation construction (e.g., drawing graphics, creptiindows, mouse interactions) are handled
by VPython and are invisible to the students. They can focuthe core details of the physical
(and computational) model. The visualization producedHhegyinterpreted VPython code appears
at the top of Fig. 11. VPython supports full three dimensiagraphics and animation without the
additional burden to students of learning object-orieqemramming [89].

If the activities are framed appropriately, constructimmputational models using VPython
engages each stage of the modeling process (Sec. 2.1.18amslgach of the benefits of learning
computational modeling (Sec. 2.2.1) . Students can engagfeeimodeling process by writing
programs to explore broad, open-ended problems in a highlyalyopen environment. Moreover,
by learning to use a professional language, it is possitdé students will develop transferable
skills that could be used in their future work [85]. We notattit is possible, as with any open
computational environment, to use VPython as a closed@mvient in which students do not access
the underlying model. In this case, the added benefits tailggicomputational modeling are not
realized.

With the introduction of changes to courses as significaé@®ing computation, it becomes
important to consider what students think about this newnlag this new tool. In particular, it is
important to understand what role student epistemologyhbhptay in their learning of and success

with computation.
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~ future  import division
visual *

ground = box(pos=(0,-.25,0), size=(30,0.5,5))
ball = sphere(pos=(-13,0.6,0), radius=0.5))
trail = curve(color=ball.color)

g = 9.8
mball = 0.4 .. ..
b = 0.03 Initial Conditions

vball
pball

vector (20,20,0)
mball*vball

deltat = le-4
t =20

while ball.pos.y > 0.5:

Fgrav = vector (0, -mball*g,0)
Fdrag = -b*mag (pball/mball)**2*pball/mag (pball) Force Calculation
Fnet = Fgrav + Fdrag

pball = pball + Fnet*deltat Momentum Update

ball.pos = ball.pos + (pball/mball)*deltat Position Update

trail.append (pos=ball.pos)
t = t + deltat

Figure 11: [Color] - A VPython program and visualization that models thotion of a ball moving
near the surface of the Earth subject to turbulent air dragje&s and initial conditions are de-
fined outside the calculatiomlfile) loop. Over the course of the semester, students write &ever
VPython programs, but the activities focus on translativgghysical model to VPython code using

the appropriate syntax and on updating the object’'s momeand position.
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2.3 Student Epistemology

Students entering university-level physics courses aréhtank slates” onto which we can impress
what it means to learn and understand physics. Their expersewith the natural world shaped
their views far before they entered a classroom. Studentsttehave views about physics that are
divergent from those that instructors expect [32, 14]. Maigyv physics as a set of disconnected
ideas and a collection of formulas. In fact, they have a dwapectrum of views. More fluent
students might understand, as experts do, that physicscisrace with overarching themes and in-
terconnected concepts [107]. Epistemology is importanabse the views that students hofteat
their success in their science courses [31, 49]. Theseadsttinfluence how students prepare for
the course [13]. Student epistemology is a diverse subjébtresearchers working to understand
and measure the role of students’ beliefs about knowleddéeamning.

Hammer [107] proposed a framework aimed at understandirdgest epistemology in physics.
His framework contained three dimensiorisdependengeCoherenceand Concepts Hammer’s
Independencelimension focused on students’ beliefs about learning ipbys whether students
thought that learning is simply receiving information oathearning involved the active practice
of constructing their own understanding. Hisherencalimension was aimed at students’ beliefs
about the structure of knowledge in physics — whether stisdmmsidered physics to be a coherent
system of knowledge or, naively, believed physics is a cobba of facts. TheConceptgdimension
considered students’ beliefs about the content of physicsviedge — whether students thought
content knowledge in physics is simply knowing which foramito use or, more expertly, that
physics knowledge includes knowing how physical conceptiedie these formulas.

Hammer interviewed a number of students over the courseecddimester to refine his frame-
work. Using a variety of interview activities, he discovgreonsistent patterns in each student’s
beliefs across a number of topics in mechanics. Moreovemrhlar found that the students’ be-
liefs (whether novice or expert) suggested whether or ney tietained physical misconceptions
or conceptual misunderstandings. He found that studertsmare fragmented knowledge, those
who felt physics was a collection of facts, were more likalythink that conceptual understanding

was unnecessary and that they should not work to createaiweiunderstanding [108]. Hammer’s
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data, though rich, was limited to a small number of studedéseral survey instruments have been
developed to compare student and expert epistemology scteaces at much larger scales.

Halloun’s Views About Sciences Survey (VASS) [31] providaake of the first assessments of
students’ views about the nature of science and what it miealesirn science. VASS is a 33 item
survey with a contrasting alternatives design. VASS statémasked students to select how often
they perform one action compared to another (i.e., only @sen mostly vs. rarely, equally, etc.).
VASS'’s complicated design was meant to deal with validity aeliability issues. However, its
contrasting alternatives design made completing the gumweifficult task. Furthermore, validity
issues were not probed.

Initially, VASS was given to~300 college students and2500 high school students before in-
struction in their introductory physics courses. VASS sifisd students by the number of responses
that they selected which demonstratedeapertview. The number oéxpertresponses was used
to place students in one of four profiles. These profiles, orefesing order of VASS performance,
wereexpert high transitiona] low transitional andfolk.

A majority of both college and high school students achideedVASS scores and were classi-
fied as havindgolk or low transitionalviews. Between the college and high school populationsethe
was no significant dierence in the fraction of students that appeared in eachedbtlr profiles.
Because many college students had taken physics in higbls¢tadloun concluded that instruction
had no practical féect on VASS profiles. However, within groups (i.e., collegel &igh school),
students’ VASS scores correlated weakly with level of imstion, course grade, and gain on the
Force Concept Inventory [38]. Halloun argued that studeiitls a greater interest in physics, that
is, those who took higher (college and high school) levelrsesi and who earned better grades,
were more likely to achieve higher VASS scores and were iledsas havinghigh transitionalor
expertviews.

Developed by Redish, Saul and Steinberg at nearly the sameds VASS, the Maryland
Physics Expectations (MPEX) survey [32] explored how stisiattitudes and beliefs about physics
changed as a result of instruction. The MPEX is a 34 item Likeale (agree-disagree) survey. The
designers of the MPEX drew upon previous work [108] to cartdta survey which probed not only

student epistemology but students’ expectations abouihisics course as well.
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The framework for the MPEX was based Hammer's original wdr®7]] but included three
additional dimensionsReality link Math link and Effort. Redishet al’s Reality linkdimension
focused on how students perceive that physics is relatduetosal world — whether students think
that physics is related to their experiences outside thesiam or not. TheiMath link dimension
considered the role of mathematics in learning physics -thenetudents think about mathematical
formalism as simply a way to compute numbers or if matheradgia way of representing physical
phenomena. ThEffort dimension explores what kinds of activities students tlir&k necessary to
make sense out of physics — whether they think carefully aatliate what they are doing or not.

The MPEX’s statements were carefully crafted to reflectatsimensions and its wording was
validated through interviews with students. Redislal. placed statements into one or more of six
subsets (i.e., MPEX categories) that they believed reflettte dimensions the MPEX was meant
to probe. “Expert” responses were selectegriori. These responses were validated through a
calibration of the survey. The MPEX was given to several gsoef respondents ranging from engi-
neering students to high school teachers to college faclitty average fraction of overall alignment
with thesea priori responses (i.e., the percentage of favorable respons&siy@ly correlated with
experience. Positive correlation with experience was als®erved on each of the six subsets of
statements.

To measure how students’ views changed, the MPEX was giveri 500 students at six in-
stitutions both before and after instruction in introdugtphysics. At all institutions, students’
percentage of favorable responses decreased after i@mtru©n each of the MPEX categories,
students’ responses became less expert-like at all itistisisave one. This school used an in-
novative hands-on curriculum [53], and students’ expéawtatincreased on all dimensions except
Effort.

The largest drop in students’ MPEX expectations occurredtatements in th&ffort dimen-
sion. Redistet al. suggested that this might stem from a mismatch in the amdetffart students
initially expected to exert in order learn the material vagld the amount they actually put forth to
do “well” (i.e., earning good marks) in the course. They pas$ithat such courses might reward
students who had lower expectations, students who prdferenorizing to constructing their own

understanding and evaluating their progress. Reelisth. warned against neglecting epistemology
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in course design; doing so might unnecessarily drive awagestts who would excel in science if
given a stronger support structure [32].

Adams, Perkins and others developed the Colorado Learnitigides about Science Survey
(CLASS) [14] to improve upon VASS and MPEX. The CLASS is a 48ritLikert scale (agree-
disagree) survey. Statements on the CLASS were subjeciatetoiew studies to ensure abstrac-
tions (that appeared on VASS and MPEX statements) like “dohzand “concept” were removed,
wording was clarified and students’ interpretations ofestagnts were predictable. These additional
considerations made CLASS suitable for use in lower leviisstruction [109] and easily modified
to other domains [110].

Adamset al. used a pragmatic design approach to determine the undgdsamework of
CLASS. A reduced-basis principal component analysis méat bya priori categorization ensured
that scores on subsets of statements (i.e., categorice¢miefavorable) were statistically robust
[111]. Eight robust categories emergedeal World ConnectignPersonal InterestSense Mak-
ingEffort, Conceptual Connectionépplied Conceptual Understandingroblem Solving General
Problem Solving Confidenand Problem Solving SophisticationStudents’ overall and category
scores on CLASS tended to decrease or remain the same afterction. This &ect was not
surprising given similar results were observed on the MPHMwever, Adamset.al. noted that
students CLASS scores were positivefieated by instructors who specifically addressed his or her
beliefs about the nature and learning of physics in thessda [14].

Demographic factors were found to be important when ingipg results from CLASS. Older
students tended to earn higher marks inRieal World ConnectiorsndPersonal Interestategories
while younger students did so on tlieoblem Solvingcategories. Women generally responded
less expert-like than men to statements infRe&al World Connections$ersonal InterestProblem
Solving ConfidencandProblem Solving Sophisticatiarategories but responded more expert-like
to statements in th&€ense Makingffort category. An &ect of major was clearly evident in the
Personal Interestategory [14].

Perhaps more notable than demographic influences was ttedatimn of CLASS scores with
conceptual understanding as measured by the Force andrv@toceptual Evaluation (FMCE)

[39]. FMCE scores correlated strongly with overall CLASSfpemance as well as scores on the
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Conceptual Understandingategory [49].

In lab studies, students’ epistemological expertise wasdao correlate with academic per-
formance in math and science even after controlling foroi@csuch as socioeconomic status [112,
113]. In classroom environments, directly addressingesited epistemology has been shown to
have an &ect on students’ performance, specifically, on their con@@pnderstanding. Elby [13]
developed a high school physics curriculum that addressetbists’ attitudes and beliefs through
epistemological lessons. Students were asked to confruhtresolve dierences between their
intuition and results from problem solving on their classvand labs. Class discussion helped
students refine their intuition and highlight epistemotagjinsights. Elby also assigned homework
guestions that asked students to reflect on the nature oflkdgerin physics and the acquisition of
that knowledge.

Having students expend this extidicet to develop their epistemological beliefs produceddarg
overall and subset gains on the MPEX. Furthermore, studelitby’s classes achieved high gains
on the Force Concept Inventory [38]. According to Elby, thessults demonstrated that a curricu-
lum that directly addressed the nature of knowledge helpei@velop better learners. However, the
additional time devoted to address students’ attitudesbafidfs limited the content that could be
covered in these courses; Elby had to leave out quite a felstéim the traditional course [13].

Student epistemology appears to play an important role i $tadents learn physics. When
making curricular changes that require students to leaditiadal tools (i.e., computation), it is
important to consider how students think about learning ti@w tool. An instrument similar to
VASS, MPEX, and CLASS has not yet been developed for studentsare learning new tools in
science courses such as computation. Surveys about canspigrce [114, 115] are too domain
specific and surveys about computer usage [116, 117] arprioppate for such purposes. In de-
signing a new epistemological survey about computatiorciense (Ch. 5), much can be gleaned

from previous work in the sciences [32, 14].
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CHAPTER Il

EVIDENCE OF CURRICULAR EFFECTS ON PERFORMANCE IN
MECHANICS

This chapter presents the performance by over 5000 studeimgroductory calculus-based me-
chanics courses on a standard concept inventory. Resuitistivo courses using fierent textbooks
were compared: a course using a traditional text [52] andcaimeed course using the Matter & In-
teractions (M&l) mechanics textbook [28]. Th&extiveness of the M&I course is quantified using
student performance on the Force Concept Inventory (FQ@in@arative measures find that M&I
students are less prepared than traditional studentsute @ types of problems appearing on the
FCI even though students of M&l tend to solve more sophittitgproblems on their homework.
Further exploration of these results suggest that perfocediterences were due to an instructional
mismatch. Students in the traditional course solved siarifly more problems like those that ap-
pear on the FCI than M&I students. This work raises questarmit how the context of learning
and how the role of practice within that context can improeefgrmance in a particular domain.
We comment on how performance improvements, within the ésaonk of the M&I course, on the
types of problems that appear on the FCI might be made. Wedadsass the importance of the

broader goals related to students’ success on novel prgblem
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3.1 Introduction

Many students taking introductory physics courses faildquire dfective understanding of con-
cepts, principles, and methods from these courses. Ratkslwk and withdrawal from these
courses are often high and research into this subject hasnstiat students’ misconceptions in
physics persist after instruction [4]. To address shoriogsin introductory physics courses, re-
searchers have developed and tested modifications to toleterery methods (pedagogy) designed
to improve student learning [22, 23, 24]. There have alsm leferts to improve student learning
by modifying the content of introductory physics coursese @rominent example is Matter and
Interactions (M&I) [28]. M&I revises the learning progréss of the first semester introductory
mechanics course by reorganizing and augmenting theitmagditsequence of topics. M&I fiers
from the typical traditional course where the early emghasion kinematics before introducing
dynamics; M&l places relatively little emphasis on kinefogtas such.

Because such major changes in introductory physics coarseare, the impact of such changes
on student learning is not well understood. Given tHeedences between the M&I course and the
traditional course, the question arises as to how well M&tsnts might fair on standard assess-
ments of mechanics knowledge which have long been usedassapsrformance in the traditional
curriculum. The current “gold standard” of assessment ésRbrce Concept Inventory (FCI), a
widely used instrument for measuring and comparing perémce in introductory physics courses
[38]. The FCI has been used to assess, at Georgia Tech, &tudatetterstanding of force and motion
concepts in M&I [28] and a traditionally sequenced coursd.[5

The questions appearing on the FCI probe performance ondmswin of the mechanics cur-
riculum (force and motion) and do so using multiple-choicmaeptual questions. In designing
the FCI, the authors prepared questions aimed at drawingamimon misconceptions and naive
notions about the nature of force and motion. To review thestions that appear on the FCI, the
reader is directed to [38]. The nuances of interpretingesttiggerformance on the FCI have been
well-documented [118, 119, 120, 121, 122]. Hereafter, ierite the content of and concepts cov-
ered by the FCI aBCl force and motion concept§Ve distinguish between FCI force and motion

concepts and broader force and motion concepts (e.g.,itataet mechanics problems) presented
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in both courses.

The description of our study is presented below as followsSéc. 3.2, we describe the or-
ganizational structure of the Georgia Tech mechanics esurSec. 3.3 summarizes the results of
the in-class testing. In Sec. 3.4, we present an analysi€bpérformance by individual item and
concept. Sec. 3.5 examines possible reasons for perfoerdifierences observed in Secs. 3.3
and 3.4. In Sec. 3.6, we provide more insight into the peréoroe diferences, make concluding

remarks, and outline possible future research directions.

3.2 Introductory Mechanics at Georgia Tech

The typical introductory mechanics course at Georgia Tedhught with three one-hour lectures
per week in large lecture sections (150 to 250 students pgosgand three hours per week in small
group (20 student) laboratories godrecitations. In the traditional (TRAD) course, each stud
attends a two-hour laboratory and, in a separate room, &ouerecitation each week. In the M&l
course, each student meets once per week in a single roonsifogla three-hour session involving
both lab activities (for approximately 2 hours on averag®) aeparate recitation activities (for
approximately 1 hour on average). The student populatidheomechanics course (both traditional
and M&lI) consists of approximately 85% engineering majord 85% science (including computer
science) majors.

Table 2 summarizes the FCI test results for individual sesti In most traditional (T6-T22)
and all M&l sections,Np students in each section took the FCI during the last weekaskat
the completion of the course. In all of the traditional semsi and in the majority of M&I sections
(M2-M6), N, students in each section took the FCI at the beginning of dliese during the first
week of class. For a given sectidd, is approximately equal to the number of students enrolled in
that section.No is usually smaller thailN,, sometimes substantially so (e.g., T12, T13 and T20).
M&I students took both the pre- and post-test during thejuneed laboratory section. Students of
the traditional course typically took the pre-test durihg first lecture or lab section. Traditional
students were asked to attend an optional section duringdhening testing period to take the
post-test. Students become busy with other courseworktheand of the semester, hence fewer

traditional students attended this optional evening sactin each section, only tho$&, students
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Figure 12: Average pre- and post-instruction FCI scores at Georgi&.Tébe average FCI post-
test scores are shown for students who have completed aeamester mechanics course with either
the traditional (TRAD) or Matter & Interactions (M&I) cuulum. Additionally, the average FCI
pre-test score are shown for students before instructiastier the TRAD or M&I course. The
number of studentd\)) tested for each course is indicated in the figure. The ewonds represent
the 95% confidence intervals (estimated from the t-stefisin the estimate of the average score.

who took the FCI both on entering and on completion of the smarre considered for the purposes
of computing any type of gain (Sec. 3.3). The FCI was adnenest using the same time limit
(30 minutes) for both traditional and M&I students. M&I serds were given no incentives for
taking the FCI; they were asked to take the exam seriouslyaddhat the score on the FCI would
not dfect their grade in the course. Traditional students takiegRCI were given bonus credit
worth up to a maximum of 0.5% of their final course score, ddpgnin part on their performance

on the FCI. This incentive flierence between the two courses has no bearing on the penicema

differences we observe in our data (see Sec. 3.6).

3.3 Summary of Results from In-class Testing

The FCI pre-test scores for Matter & Interactions (M&I) amdditional students did not fiier
significantly (mean FCI score, 48.9% for TRAD vs. 47.4% for N&By contrast, on the FCI
post-test, traditional students significantly outperfedM&I students (mean FCI score, 71.3% for

TRAD vs. 59.3% for M&I). In Fig. 12, these mean scores havenbreported with 95% confidence
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Table 2: Georgia Tech FCI test results are shown for twenty-two ti@aual sections (T1-T22) and
six Matter & Interactions sections (M1-M6). Berent lecturers are distinguished by a unique letter
in column L. The average FCI scol&o for N, students entering the course are indicated. In those
sections where data are available, the average FCI &¥%réor No students completing the course
is shown for all sectionsNy, is the number of students in a given section who took the F@i &b

the beginning and at the end of their mechanics course.

ID L 1% N, 0% No | Nm
T1 || A | 49.95:3.05| 194 N/A N/A | N/A
T2 || A | 52.13:2.80| 208 N/A N/A | N/A
T3 B | 51.76:2.88 | 207 N/A N/A | N/A
T4 B | 51.3%2.91 | 196 N/A N/A | N/A
T5 C | 46.39t2.69 | 205 N/A N/A | N/A
T6 D | 45.83t3.53 | 139 || 70.13:3.60 | 103 | 97

T7 C | 47.2#2.86| 182 || 64.0k3.05| 158 | 139
T8 C | 42.03t2.55| 194 || 61.26:3.14 | 140 | 133
T9 || A | 52.16:2.99 | 182 || 73.44:2.97 | 127 | 122
T10 || A | 48.12:2.72| 188 || 73.942.92 | 116 | 113
T11 || B | 49.82:2.88 | 182 || 75.35:3.48 | 104 | 98

T12 || B | 49.568:3.43 | 168 || 72.04:4.06 | 93 | 88

T13 || E | 52.83.25| 141 || 77.20:t3.38 | 88 | 84

T14 || E | 40.36:2.65| 183 || 67.33:3.53 | 140 | 132
T15 || F | 46.39:3.05| 180 || 69.59:3.36 | 131 | 120
T16 || F | 40.74:2.84 | 194 || 65.22:3.60 | 115 | 108
T17 || E | 48.02:3.17 | 160 || 71.82:3.57 | 121 | 109
T18 || A | 50.19:3.05| 175 || 74.05:3.44 | 107 | 105
T19 || A | 53.49:3.37 | 174 || 72.1G:3.52 | 103 | 94

T20 || E | 53.36:£3.27 | 143 || 78.52:3.68 | 97 | 89

T21 || B | 49.43:3.00| 180 || 75.79:3.12 | 121 | 115
T22 || B | 51.48:3.09 | 182 || 79.92:2.81 | 119 | 116
M1 || G N/A N/A || 35.715.62 | 28 | N/A
M2 || H | 54.12:3.86 | 127 || 64.68t4.16 | 116 | 111
M3 || G | 45.0k3.11 | 145 || 56.49:t3.38 | 148 | 133
M4 || H | 45.5A43.51 | 143 || 62.2#3.37 | 141 | 128
M5 | | 45.35:3.61 | 134 || 62.7Q:3.44 | 132 | 110
M6 || J | 44.83:t2.50 | 214 || 54.15:3.06 | 196 | 180
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Figure 13: Gain in understanding of mechanics as measured by the FElirthease in student
understanding resulting from a one-semester traditiohRIAD) or Matter & Interactions (M&I)
course is measured using (a) the average raw @aamd (b) the average normalized gain The
average gains in FCI post-test scores are shown for studdidshave completed a one-semester
mechanics course with either the traditional (TRAD) or Ma# Interactions (M&I) course. Only
students with matched scores were used for this figure (dde Za The error bounds represent the
95% confidence intervals (estimated from the t-statistic)he estimate of (a) the raw gain and (b)
the normalized gain.

intervals estimated from the t-statistic for each distiifu[123]. A common measure of the change
in performance from pre-test to post-test [25] is the avenggrcentage gaig = (O — 1) « 100%,
wherel is the average fractional FCI score for students enteringeehamics course, ar@ is the
average end-of-course fractional FCI score. We also repodverage normalized gady where
g=(O-=1)/(1-1), and where (X |) represents the maximum possible fractional gain thatdcoul
be obtained by a class of students with an average incomaugidnal FCI score of. For the
gains reported in Fig. 13, 95% confidence intervals have begmated from the t-statistic for the
distributions ofG andg. The data are shown fdt,, students (Table 2).

FCI pre-test score distributions were found to be statifliiandistinguishable between the two
courses, which is evident from Fig. 14(a). By contrast,ritistions of post-test FCI scores were
dissimilar; the traditional distribution was shifted tawa higher scores (Fig. 14(b)). This is con-

sistent with the finding that the mean score achieved bytioadil students were higher than their
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Figure 14: FCI score distributions by course. (a) The distribution @fl Fest scores for students
before completing a mechanics course with either a trawitigdashed line) or M&I course (solid
line) are shown for data from GT. (b) The percentage of stisdesith a given FCI test score is
plotted for students who have completed a mechanics coutkeeither a traditional (dashed line)
or M&l course (solid line) at GT. The total number of studetgisted in each course is the same as
in Fig. 12. The plots are constructed from binned data withwidths equal to approximately 6.7%
of the maximum possible FCI score (100%).

M&l peers on the post-test (Fig. 12). Because the distrimgiof FCI pre- and post-test scores
were non-normal, the similarity of the distributions wasngared using a rank-sum test [124, 125].

An examination of measures of student performance enterawy course suggests that the
incoming student population of both courses were identi¢# obtained and examined students’
grade point averages (GPA) upon entering the mechanicse¢2193 for TRAD vs 2.97 for M&l),
SAT Reasoning Test (SAT) scores (1336 for TRAD vs 1339 for Mé&id the grades earned in
the mechanics course (2.47 for TRAD vs 2.46 for M&l); we fourasignificant diference in the
distributions of any of these metrics using a rank-sum test.

Mean scores dliered between one or more sections within a given course asuneehby a
Kruskal-Wallis test [125]. Given this sectiorffect, we compared the three lowest performing tra-
ditional sections (T7, T8, & T16) to the three highest parfmg M&I sections (M2, M4, & M5) to
determine if this sectionfiect enhanced the overall observeftfatiences in the normalized gains.

Post-test FCI scores were statistically indistinguisbdidtween these subsets (65.7% for TRAD
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Figure 15: The normalized item gairg() achieved by traditional students is shown for each ques-
tion on the FCI. Positive (negativg) indicates better (worse) performance on the post-test. The
numerical labels indicate the corresponding question murmborder of appearance on the FCI.
The items are grouped together into one of five concepts:ifaties, Newton'’s first law, Newton’s
second law, Newton’s third law, and Force Identification.eHorizontal line (dash) illustrates the
value ofg, the average item gain.

vs 63.2% for M&I) when compared using a rank-sum test. Howevaditional students in these
sections had significantly lower pre-test FCI scores (43@&%3 RAD vs 48.2% for M&l). Hence,

students in these lower performing traditional sectionsies®d significantly higher normalized
gains (0.43 for TRAD vs 0.21 for M&l). We also compared the FObkt-test scores achieved by
the three traditional sections with lowest normalized gdifil4, T18, & T22) to the M&I sections

with the highest normalized gains (M3, M4, & M5). Pre-testliSCores were significantly higher
for the M&I subset (44.0% for TRAD vs 48.5% for M&I) while peggst scores were higher for

the traditional subset (66.3% for TRAD vs 63.7% for M&I). Thnormalized gains achieved by

traditional students in this subset were higher (0.40 foADR/s 0.22 for M&I).

3.4 Item Analysisof the FCI

Student performance on individual questions or groups e$tjons was used to determine on which
FCI force and motion concepts students in the traditionafsmoutperformed M&I students. Ques-

tions on the FCI were sorted into concept categories usirsigies’ original conceptual dimensions
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Figure 16: The normalized item gairg() achieved by M&I students is shown for each question on
the FCI. Positive (negative) indicates better (worse) performance on the post-testniiheerical
labels indicate the corresponding question number in atl@ppearance on the FCI. The items are
grouped together into one of five concepts: Kinematics, Metstfirst law, Newton’s second law,
Newton'’s third law, and Force Identification. The horizdniae (dash) illustrates the value gf
the average item gain.

[38], but we required that each question be placed in onlyoategory. In our work only five con-
cept categories were used: Kinematics, Newton’s 1st Lawgtbl®s 2nd Law, Newton’s 3rd Law,
and Force ldentification. The first four of these categoriesewdentical to Hestenes’ dimensions
and Force ldentification was a renamed category which awedaguestions from Hestenes’ Kinds
of Forces dimension. In Figs. 15 and 16 the items that comgaeh category are listed. Note that
this was ara priori categorization based on our judgment of the concepts cdvmsrehe items; it

is not the result of internal correlations or factor anaysased on student data.

We used the normalized gain in performance on a per quesésis ko quantify item perfor-
mance. We define an item gaig, = (fposti — forei)/(1 — forei) Where fyrei and fosti are the
fraction of students responding correctly to tfdtem on the pre- and post-test respectively. This
measure normalizes the gain in performance on a single ifetieblargest possible gain given the
students’ pre-test performance on that itegnis essentially the Hake gain for a single item. The
sign of g; is important; a positive (negativg) corresponds to an item on which students’ perfor-
mance was better (worse) on the post-test. To discern whiektipns have large item gains, we

compareg; for each question to the mean item gains Ei’\‘(gi/N) whereN is the number of items
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Figure 17: Difference in performance for individual FCI items and meclsaonancepts. The dif-
ference in performancag; between traditional and M&l students is shown for each dgoiesin
the FCI. Positive (negative)g; indicates superior performance by traditional (M&I) stotseon
individual questions. The numerical labels indicate theegponding question number in order of
appearance on the FCI. The items are grouped together iatofdive concepts: Kinematics, New-
ton’s first law, Newton’s second law, Newton'’s third law, dporce Identification. The horizontal
line (dash) illustrates the value af the mean dference in the item gains between courses.

on the FCI.

The plots ofg; for each course (Fig. 15 for TRAD, Fig. 16 for M&Il) provide asual repre-
sentation on which items and concepts students in eachecaahseved large gains. Students in the
M&I course had positive gains for 27 of the 30 items. By costirraditional students had positive
gains for all items. On 18 of the questions, M&I students eehd item gains higher than= 0.21.
Traditional students achieved item gains higher tgaa 0.45 on 12 questions. Looking across
FCI force and motion concepts, M&I students achieved thiginést item gains (compared ¢ on
1st Law and Force Identification questions, while tradiiostudents did so for 3rd Law and Force
Identification questions.

It is important to note that the average item gains different from the usual Hake gaig, The
Hake gain overweights (underweights) questions wheresstsdnitially performed worse (better)
than their average performance. By contrast, all questiwatsyield the same relative improvement
(regardless of initial performance) are given equal weiglihe computation o)

To illustrate the diferences between courses more succinctly, we compufémtetice in nor-

malized item gains between the two courses. We define fiierelice in normalized item gain,
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Table 3: The average dlierence in item gains between courses are computed for the iteeach
FCI force and motion concepAg.. EachAg. is positive, indicating better average item gains for
traditional students across all FCI force and motion cotsceponcepts with highexg, are those for
which traditional students achieve higher normalized gj#tian M&I students. Traditional students
achieve the highest values af); on the Kinematics and Force Identification concepts and owe
on Newton’s 1st Law concept.

FCI force and motion concepts AQe
Kinematics 0.32
Newton’s 1st Law 0.16
Newton’s 2nd Law 0.22
Newton’s 3rd Law 0.22
Force Identification 0.28

Ag = g - g" whereg' andgM are the normalized gain for th# item achieved by traditional

and M&I students respectively. The sign&dj is important; a positive (negativég; corresponds

to an item on which the traditional students achieved a mifjberer) gain than M&I students. We
discovered on which questions students’ item gains in eaalse difered the most by comparing
the Ag; of each item to the meanftrence in the item gains between courges= ZiN (Agi/N).

The plot of Ag; illustrates better performance by traditional studentssgall concepts on the
FCI (Fig. 17). We observed thalg; is positive for almost all questions, and 45% of the question
had values of\g; greater tham\g = 0.238. The grouping of the FCI questions by category permits
one to visualize which concepts contributed most stronglthe diference in performance. For
example, the dierence in performance on the Force Identification conceptsiviking, where 5 of
the 7 questions in this category hag; > Ag.

The grouping of the questions by concept helps one to deterrmn which concepts fer-
ences in item gains were greatest. We computed tliereince in the average concept gaige =
3i.o(Agi/N) whereN; is the number of items covering conceptConcepts with higheAg. were
those on which traditional students achieved higher namedlgains than M&I students. The Kine-
matics and Force Identification concepts had the highesesaifAg. (shown in Table 3). By con-
trast, we foundAg. for Newton’s 1st Law which was well belowg. The remaining two concepts

had values ofg. slightly belowAg.
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3.5 Originsof the Performance Differences

We turn now to the examination of factors that might lead tghkr FCI post-test scores by tradi-
tional students, including grade incentivesfaliences in pedagogy, andfdrences in instruction
(e.g., homework and lecture topics).

The incentive given to traditional students to take the F@swoo small to account for the
marked diferences in performance indicated in Figs. 12, 13, and 14{s).mentioned earlier
(Sec. 3.2), traditional students were provided with annitige to take the FCI while M&I students
received no incentive. In principle, Siciently large incentives can impact FCI outcomes [126].
To check for this incentivefBect, we dfered similar incentives (i.e., a maximum of 0.5% bonus to
overall course grade) to both traditional and M&I studentooviook the FCI post-test at Georgia
Tech in the Fall of 2009. During this term, we found the perfance diterences for M&I and
traditional students were similar to those reported in thiesis. FCI data from Fall 2009 was
not included in this paper because instructional changdsbhan made to the M&I course; M&lI
sections M1-M5 had similar homework exercises, lectuned,laboratories.

The performance étierences cannot be attributed tdfeliences in pedagogy. It is well-known
that using interactive engagement (i.e., “clicker” quassi ConceptTests, Peer Instruction, etc.) can
improve students’ conceptual understanding in introdycémd advanced courses [25, 127, 65].
However, all sections (both traditional and M&l) were ldygmdistinguishable with respect to in-
teractive engagement: all sections used similar methadisKer” questions) with similar intensity
(3-6 “clicker” questions per lecture period).

We examined whether fiierences in coursework (homework) could be connected tmiperf
mance diferences on the FCI. We categorized the 575 traditional hameguestions and the 756
M&I homework questions. Questions were placed into one orentategories depending on the
topical nature of the problem and the principles needed $wanthe question. Categories included
the five FCI force and motion concepts discussed in Sec. 3wlelisas several other concepts
which do not appear on the FCI (e.g., Angular Momentum). Kieematics categoryncluded

guestions about the relationships between position, itgland acceleration that did not refer to
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the underlying dynamical interactions that cause changtdsese quantities. Questions in thew-
ton’s 1st Law categoryncluded qualitative questions which discussed the doeaif motion and

its relationship to applied forces. TiNewton’s 2nd Law categoiincluded questions with a heavy
emphasis on contact forces and resolving unknown forcasexmluded open-ended questions in
which the prediction of future motion is the goal (e.g., gsiterative methods to predict the motion
of an object). Questions in tHéewton’s 3rd Law categorincluded questions in which Newton’s
3rd law was treated as an isolated law, that is, where theseenwareference to the underlying
reciprocity of long range electric interactions which ceag. Generally, it was applied to contact
forces and gravitational interactions. TRarce Identification categorincluded questions in which
the direction and relative strength of forces acting on aybmdset of bodies were represented by
diagrams (i.e., force-body diagram). The aforementioregdgories represent those concepts that
are covered extensively in the first half of a traditional §ibg course and were heavily represented
on the FCI.

The diference in the relative fraction of homework questions dageFCl force and motion
concepts between the courses (Table 4) correlated with/éralbperformance dierences observed
in Figs. 12 - 14. Furthermore, theffirences in the relative fractions of homework questions cor
responding to individual FCI concepts were consistent wighresults from our item analysis (Fig.
17). The relative fraction of homework questions was comglly first categorizing questions, then
counting the number of questions covering the conceptsefaat and dividing by the total number
of homework questions given in a course. The relative foactf homework questions covering
FCI force and motion conceptstiired by more than a factor of 2 in favor of the traditional caur
(0.57 for TRAD vs 0.26 for M&l). On individual FCI concepts,edound a lower relative fraction
of homework questions in the M&I course compared to the ti@ul course on four of the five
concepts: Kinematics (0.26 for TRAD vs 0.10 for M&l), Newt®2nd Law (0.25 for TRAD vs
0.15 for M&I), Newton’s 3rd Law (0.04 for TRAD vs0.01 for M&l), and Force Identification
(0.11 for TRAD vs 0.01 for M&I). On most FCI questions aboutsle concepts traditional students
outperformed M&I students (Sec. 3.4 & Fig. 17). We found titet relative fraction of Newton'’s
1st Law questions were similak(.01 for both). This signature was also observed in our item

analysis (Fig. 17); the Newton’s 1st Law FCI concept had thallestAg. (Sec.3.4).

48



Table 4. An estimate of the fraction of homework questions coverirgadicular FCI concept in
the two mechanics courses is compared. Subtopics for tleeseviork questions were not mutually
exclusive. The relative fraction of homework questionserog FCI force and motion concepts and
some individual FCI concepts (i.e., Kinematics, Newtomrrisl 2aw, Newton’s 3rd Law, and Force
Identification) is greater in the traditional course. ThEgonsistent traditional students’ superior
overall performance (Figs. 12, 13, 14) and their betterquarénce on particular FCI concepts (Fig.
17).

Est. Fraction of HW Questions | M&l | TRAD
FCI force and motion concepts | 0.26 0.57
HW Subtopics (not exclusive)

Kinematics 0.10 0.26
Newton’s 1st Law <0.01| <0.01
Newton’s 2nd Law 0.15 0.25
Newton’s 3rd Law <0.01| 0.04
Force Identification 0.01 0.11

The diterence in the relative fraction of force and motion lectiresglings between the courses
(Table 5) was consistent with the overall performandiedinces observed in Figs. 12, 13, & 14(b).
However, the diferences in the relative fractions of lectyreadings corresponding to individual
FCI concepts did not completely correlate with the resutismfour item analysis (Fig. 17). Lecture
and reading topics were examined and categorized for easbecasing the same categories as our
homework question analysis. The relative fraction of leefieadings which cover FCI force and
motion concepts was greater by nearly a factor of 2 for thdittcaal course (0.44 for TRAD vs
0.26 for M&I). This result is consistent with theftirence in the relative fraction of homework
guestions (Table 4). However, theffdirences in the relative fraction of lectyiresdings which
cover individual FCI concepts were mixed. The relative fiats for three of five concepts were
greater for the traditional course: Kinematics (0.21 forADRvs 0.07 for M&I), Newton’s 3rd Law
(0.03 for TRAD vs 0.01 for M&l), and Force Identification (Q.for TRAD vs 0.06 for M&l). But
on two concepts, the relative fractions of lectyireadings were roughly similar: Newton’s 1st Law

(0.01 for TRAD vs 0.02 for M&I) and Newton’s 2nd Law (0.09 foRRAD vs 0.08 for M&l).
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Table 5: An estimate of the fraction of lectyreading topics in the two mechanics courses is
compared. Subtopics for these lectyireadings were not mutually exclusive. The relative fractio
of lecturegreadings in the traditional course is greater for the KintraaNewton’s 3rd Law, and
Force Identification topics which is consistent with theiperior performance in those concepts
on the FCI. However, on Newton’s 1st and 2nd Laws, the raddtiaction of lectureseadings are
roughly similar.

Est. Fraction of Lecture Topics | M&l | TRAD
FCI force and motion concepts | 0.26 | 0.44
Lecture Subtopics (not exclusive)

Kinematics 0.07 0.21
Newton’s 1st Law 0.02 0.01
Newton’s 2nd Law 0.09 0.08
Newton’s 3rd Law 0.01 0.03
Force Identification 0.06 0.11

3.6 Closing Remarks

We have found that students who completed an introductomghar@cs course which employs the
Matter & Interactions course earned lower post-test FCiexcthan students who took a tradition-
ally sequenced course. Thefdrences in performance were significant and were suppoytéukeb
number of students involved in the measurement. We denatedtthat these flerences cannot
be explained by dierences in the incoming population of students betweendbeses (i.e., SAT
scores, GPA, etc.). The overall performancéealences between the courses on the post-test corre-
lated with instruction within each course. The relativectian of FCI force and motion concepts
that appeared on students’ homework and in their lecturesrazghly twice as large for the tra-
ditional course (Tables 4 & 5). We observed this signaturéh@enditerences of the means and
distributions of FCI scores (Fig. 12, 13, & 14(b)) as well las &verage item gaig, The average
item gain for traditional students was roughly twice asdanghen compared to M&I students (Sec.
3.4).

Furthermore, we found that traditional students outperfat M&I students across all subtopics
on the FCI (Fig. 17) and that thesdfdrences correlated with instruction on individual FCI #rc
and motion concepts that appeared on students’ homewadoke(Fa In terms of decreasing average
topical gain,Ag, students of the traditional course outperformed M&I shideon: Kinematics,

Force Identification, Newton’s 2nd Law, Newton’s 3rd Lawgdaddewton’s 1st Law (Sec. 3.4). The
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difference in the relative fraction of homework questions daogeFCl force and motion concepts
followed a similar order with Kinematics and Force Identfion having the largest fierence,
Newton’s 2nd and 3rd Laws next, and Newton’s 1st Law last.hEaurse had, roughly, the same
relative fraction of homework questions covering Newtdrss Law.

The relatively poor performance of M&l students on the FChhtiappear surprising given
the sophistication of some of the mechanics problems asiglleis the M&I course, for example,
planetary motion, ball-and-spring models of solids, mpérticle systems, etc. From a physicist’'s
perspective, M&l students should be able to successfullyesthe sorts of problems appearing
on the FCI; yet, apparently they were unable to extend (ransfer) what they had learned, for
example, in the context of the momentum principle, to qoestion the FCI. Two inter-related
factors are operating here: first, the context of learning] second, the role of practice within
that context. In general, students, especially at the doictory level in physics, are ficiently
challenged to learn what they have to learn and tend not bestmrcessful in generalizing their
skills to novel situations with which they have had littleptice [128, 129].

We believe that the flierences in instruction, how much and how long students labout
particular mechanics concepts, had a dirdfat on their performance on the FCI. The relative
fraction of homework questions and lecture topics coveR@ force and motion concepts pro-
vides a connection to the time students’ devoted to learpangjcular concepts and the depth to
which concepts are covered in their respective courses t{imee-on-task). It is well-accepted that
increased time-on-task will generally improve learningngan the topics for which more time is
devoted [130, 131]. While an accurate measure of studem-d¢imtask requires interviewing in-
dividual students, our results suggest that students ofrélaitional course devoted more time to
learning FCI force and motion concepts than students of M&l.

As we have shown, traditional students had much greatetigedan the sorts of problems the
FCI presents and their relative performance shows the ir@poe of that practice. It is possible that
additional exposure to FCI force and motion concepts waulorove M&I students’ performance
on the FCI. However, making changes to the course in this eramquires instructors to reflect on
the learning goals for their course. The M&I course was naigied to improve performance on

the FCI. As mentioned previously, the M&I course includemicant changes to the content of the
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introductory course, not just pedagogy, and the goals abitsent might not align with those of the
traditional course. For example, traditional studentskvextensively with kinematics equations and
constant force motion — a staple of the FCI. Students of M&teabout motion from a dynamical
perspective, that is, they use the net force to derive thatams of motion or predict the motion
iteratively. The amount of time in a semester is finite andliding additional practice on FCI force
and motion concepts might require the instructor to leaveother M&I topics (e.g., elementary
statistical mechanics) arat tools (i.e., computation). These changes would be indarby a single
measurement of a subset of mechanics concepts and prolges ty

One might not want to use the results from an FCI post-teshasole measurement to in-
form where improvements to a physics course should be made.have recently completed a
think-aloud study which demonstrates better performandd&l students compared to traditional
students when solving mechanics problems informed by thé dd&irse [46]. Traditional students
in this study were found to be unable to express the reasdse¢hind their correct responses to
the FCI. M&I students worked from fundamental principlesstive these problems. While stu-
dents might always perform best on problems similar to oheg studied in class or solved for
homework, the goal is to help them achieve a good level ofessgon novel problems. To com-
pare students’ problem solving abilities between coursesprehensively additional metrics are
needed, including measures of performance on other tapicgechanics (e.g., energy and angular
momentum), complex problems, and non-traditional probkleifhe net sum of all these measure-
ments would provide a more complete picture of the nuandéereinces between these two courses.
These detailed comparisons would inform where improvemmboth courses could be made to

help introductory physics students to become flexible gnobsolvers.
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CHAPTER IV

IMPLEMENTING AND ASSESSING COMPUTATION IN
INTRODUCTORY MECHANICS

In this chapter, we present the design and implementaticoraputational homework problems for
students taking the reformed introductory mechanics eof28]. These problems were designed to
engage students in the modeling process by exploring thergiéy and utility of certain physical
principles [85, 91], provide a platform for students to @xttialize problems into novel tasks [87]
and develop students’ abilities to use a new problem soligngin computation [30]. Over three
different semesters, nearly 1400 students taking this couhgedsthis suite of problems. Their
proficiency was evaluated in a proctored environment usingraputational problem which they
had not solved before, a novel problem. The majority of sttslé60.4%) successfully completed
the evaluation. Analysis of erroneous student-submittedyrams indicated that a small set of
student errors explained why most programs failed. Ernodécated that students would benefit
from additional exposure to computation that focused orlitgtise analysis rather than rigorous
training. This work raises questions about instructionedigh, knowledge transfer and student
epistemology. We also discuss the broader implicationeathing computational modeling in

STEM courses.
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4.1 Introduction

Computation (the use of the computer to solve numericalilyukate or visualize a physical prob-
lem) has revolutionized scientific research and engingepiactice. In science and engineering,
computation is considered to be as important as theory aperiexent [7]. Systems that are too
difficult to solve in closed-form are probed using computatiotpeements that are impossible
to perform in a lab are studied numerically [132, 133]. Yatsharp contrast, most introductory
courses fail to introduce students to computation’s proldelving powers.

Using computation in introductory physics courses hasrs¢petential benefits. Students can
engage in the modeling process to make complex problem&lttac This use of computation
can be leveraged to explore the generality and utility ofsid®l principles. In a way, students
are participating in work that is more representative of twhay will do as professional scientists
and engineers [134, 85, 86, 91] . When constructing simarati students are constrained by the
programming language to the certain syntactic structusesce, they must learn to contextualize
problems in a way that produces a precise representatidre gittysical model [92, 87]. Arguably,
one of computation’s key strengths lies in its utility inwadizing and animating solutions to prob-
lems. These visualizations can improve students’ coneéptuderstanding of physics [100].

We have used computation in a large enrollment introduataigulus-based mechanics course
at the Georgia Institute of Technology to develop studamisdeling and numerical analysis skills.
We have built upon previous attempts to introduce compridti introductory physics laboratories
[30, 135] by extending its usage to other aspects of studeotssework. In particular, we have
taught students to construct models that predict the matigrhysical systems using the VPython
programming environment [83]. We describe the design apdeimentation of homework problems
to develop students’ computational modeling skills in anreégroliment foundational physics course
(Sec. 4.3). We also provide the first evaluation and exptinadf students’ skills when they attempt
individually to solve a novel computational problem in agioyed environment (Secs. 4.4-4.7). We
discuss implications for instructional design, consitlers regarding student epistemology and the
assessment of knowledge transfer as well as the broadeicatiphs of teaching computation to

introductory physics students (Sec. 4.8).
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4.2 Approachesto implementing computation

Since the development of inexpensive modern microcomgutith visual displays, there have been
a number of attempts to introduce computation into physitsses. We review these attempts by
decomposing them along two dimensiosg¢ of intended populaticendopenness of the environ-
men) to illustrate how our approach fits with previous work.

Some have worked closely with a small number of studentsuelde computational models in
anopen computational environmenrtlistorical examples include the Maryland University leadj
in Physics and Educational Technology, [134, 85] STELLA,[8&] and the Berkeley BOXER
project [92, 87]. Open computational environments areagmls to “user-developed” codes in sci-
entific research. Students who learn to use an open envirtrtmge the advantage of viewing and
altering the underlying algorithm on which the computagilomodel depends. Moreover, students
might learn to develop their own models that solve new proklelt is true, however, that students
must devote time and cognitivéfert to learning the syntax and procedures of the programitaimg
guage that the open environment supports. Students mightigpore time and cognitiveffert to
the details of constructing a working simulation (e.g., sagge handling, drawing graphics, garbage
collection) rather than to developing the physical modéiihe it. It is, therefore, important to con-
sider students’ experience (or lack thereof) with compomaivhen choosing an open computational
environment.

Others have developedlosed computational environmerfts use at a variety of instructional
levels. These environments have been deployed in a numlssttoigs ranging from a few stu-
dents to large lecture sections. Examples of closed envieoits include Physlets [136] and the
University of Colorado’s Physics Educational Technologygations [90, 98]. Closed computa-
tional environments are analogous to “canned” codes imsfieresearch. Students can set up and
operate the program but do not construct it; nor do they hewess to the underlying model or mod-
eling algorithm (“black box” environment). User interawtiin closed computational environments
is often limited to setting or adjusting parameters. Closachputational environments are useful
because they typically require no programming knowledgaptrate, run similarly on a variety of

platforms with little more than an Internet browser and picalhighly visual simulations.
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It is possible for computational models created in any opefrenment to be used as if they
were developed for a closed one. Users can be restricteahdfiyr or informally) from viewing
or altering the underlying model. Models developed usingyEkava Simulations [93] (EJS) have
been used in a closed manner at a variety scales and ingtraickevels [101, 102]. However, all the
features of the physical and computational model in an Ed8lation are available as it is an open
environment. Furthermore, EJS has made authoring higlitgjgsahulations accessible to students
with some (but not much) programming experience. Some heygoped teaching upper-divison
science majors to develop computational models using EHI§.[1

VPython, [83] an open computational environment, has bsed to teach introductory physics
students to create computational models of physical phenanB0]. Typically, students write all
the program statements necessary to model the physicansystg., creating objects, assigning
variables and numerical calculations). The additionahitlebf model construction (e.g., drawing
graphics, creating windows, mouse interactions) are legnbly VPython and are invisible to the
students. VPython supports full three dimensional graphind animation without the additional
burden to students of learning object-oriented progrargni@®]. Given its roots in the Python
programming language, VPython can be a powerful founddtorstudents to start to learn the
tools of their science or engineering trade. Moreover, WBytis an open-source, freely available
environment that is accessible to users of all major compgutlatforms.

The Matter & Interactions (M&I) textbook [28] introduces roputational modeling as an in-
tegral part of the introductory physics course. Many of tbeoapanying laboratory activities are
written with VPython in mind and a number of lecture demamtiins are VPython programs. In
the traditional implementation of M&l, the practice of ctmgting computational models is limited
to the laboratory. In a typical lab, students work in smadiugrs to complete a computational activ-
ity by following a guided handout. They pause periodicatiycheck their work with other groups
or their teaching assistant (TA). Students’ computationatieling skills are evaluated by solving
fill-in-the-blank test questions in which they must writetllie VPython program statements missing
from a computational model.

Our approach to teaching computation uses an open envirgnfneVPython) and builds on

our experience with M&I to extend the computational expsreebeyond the laboratory. We chose
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to use an open environment to teach computation in ordeptog® students with the opportunity to
look inside the computational “black-box” and alter or doast the model. Furthermore, we aimed
to teach students how to develop solutions to non-analytiblems. We chose VPython (e.g.,
instead of Java, C or Matlab) because it has a number of hégztures for novice programmers,
can be used to construct high-quality three-dimensiomaliksitions easily and is freely available to
our students. VPython is also conveniently coupled to M&bwing us to leverage our years of
experience with teaching M&I. While our implementation Idgion our M&I experience, it is not

limited to it. We describe our implementation philosophyhe next section.

4.3 Design and I mplementation of Computational Homework

We aimed to develop an instructional strategy that helpspeation permeate the course but does
not require that students have previous programming expeti Furthermore, this implementation
had to be easily deployable across large lecture sectibessdtting in which most introductory
calculus-based courses are taught. Our philosophy wassthdénts should learn computation
by altering their own lab-developed programs to solve #ljgmodified problems. This design
philosophy was informed by what research scientists deaften; they write a program to solve
a problem and then alter that program to solveféedent problem that is of interest to them. We
envisioned developing computational activities that wiaihrt with guided inquiry and exploration
in the laboratory followed by independent practice on hooréw Students would work with TAs
in the laboratory to develop a program that solves a probf&tiudents would then use that program
individually to solve a diterent problem on their homework by making any modificatidvad were
necessary.

The class of problems that becomes available to studentshate learned computation is
large and diverse; we chose to focus offiogs on teaching students to apply Newton’s second law
iteratively to predict motion. Students taking a typicaraductory mechanics course would learn
several equations to predict the motion that emphasizesratics, a way of describing the motion
without explicitly connecting changes in the motion to fes¢dynamics). These kinematic formulas
are quite limited; students can only apply them to problemstich the forces are constant. This

can confuse students when they are presented with a situatiere such formulas do not apply

57



[47]. Furthermore, the special case of constant force masousually the capstone of motion
prediction in an introductory mechanics course. We ackadgg that some courses might teach
students to determine the velocity as a function of time flatlang object subjected to lineaF(~ v)

or turbulent € ~ V4 air drag in one dimension analytically, but this hardly @estrates the full
predictive power of Newton’s second law. Furthermore, spicdblems are in the upper-range of
tractability for introductory students and it is not tyditlaat such problems are carried through to
the prediction of motion. By contrast, computation allowstiuctors to start first and foremost with
Newton’s second law and emphasize its full predictive poBéndents can numerically model the
motion of a system as long as they are able to develop a physm@el of the interactions and
express it in the computational environment. The numeiidagration technique used to predict
motion is a simple algorithm.

As a concrete example of our design, we show a mid-semestera@ry activity and home-
work problem in which students modeled the gravitationtriaction between two bodies. In this
example, students develop a VPython program that modetadtien of a craft as it orbits the Earth
(Fig. 18). Students later make a number of modifications iglogram to solve a new problem
on their homework. This example is useful because it ilaies not only the level of sophistication
we expect of students but it also illustrates the types efations that students are asked to make
on their homework.

In groups of three, students wrote a program in the labgratomodel the motion of low-mass
craft as it orbits the Earth (Fig. 18). In VPython, they cesbthe objects (lines 4-6), assigned the
constants and initial conditions (lines 8-10, 12-13 andl¥%-and set up the numerical integration
loop (lines 19-29). The program statements in this loopuihetl those that calculated the net
force (lines 21-23) and updated the momentum (using Newecond law) and position of the
craft (lines 25-26). When developing their physical modeidents discussed that while the Earth
experiences the same (magnitude) force as the craft, thegehia the Earth’s velocity due to this
force is negligible. Hence, students did not model the nmatiche Earth in their VPython program.
When writing this program in the lab, students could seefg freim TAs at any time. The accuracy
of the students’ completed code was checked by their TA®r&tbmpleting the lab, students had

written a VPython program that modeled the motion of thetaraving around the Earth for any
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1 __future  import division

2 visual *

3

4 craft = sphere(pos = vector(10e7,0,0), color color.white,

5 Earth = sphere(pos = vector(0,0,0), color = color.blue,

6 trail = curve(color = craft.color)

7

8 6.67e-11

9 mcraft = 1500

10 mEarth = 5.97e24 Initial Conditions
11

12 vcraft = vector(0,2400,0)

13 pcraft = mcraft*vcraft

14

15 0

16 deltat = 60

17 365*24*60*60

18

19 t < tf:

20

21 r = craft.pos-Earth.pos

22 rhat = r/mag(r) Force Calculation
23 Fgrav = -G*mEarth*mcraft/mag(r)**2*rhat

24

25 pcraft = pcraft+Fgrav*deltat Newton's Second Law
26 craft.pos = craft.pos + pcraft/mcraft*deltat Position Update
27

28 trail.append(pos = craft.pos)

29 t =t + deltat

30

31 print 'Craft final position: ', craft.pos,

Figure 18: [Color] - Under the guidance of their TAs, students wrote\iython program above
in the laboratory. This program modeled the motion of a (isifte exaggerated for visualization)
orbiting the Earth over the course of one “virtual” year. Tnstruct this model, students must
create the objects and assign their positions and sizes @in6), identify and assign the other given
values and relevant initial conditions (lines 8-10, 12—h8 45-17), calculate the net force acting
on the object of interest appropriately (lines 21-23) andiatg the momentum and position of this

object in each time step (lines 25-26).
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arbitrary amount of time.

In the week following the lab, students solved a computalidtomework problem in which
they used the computational model that they had writtenkiridesolve a problem that fiered only
slightly from the lab problem. Students were asked to alieirtinitial conditions to predict the
position and velocity of the craft after some integratiandi To solve this problem successfully,
students had to identify and make changes to their initiadimns (lines 4, 6, 9-10 & 12) and
integration time (line 17). In addition, students had to addadditional print statement (after line
31) to print the final velocity of the craft.

Computational homework problems were deployed using theA&&ign course management
system, which facilitated the weekly grading of studentduons. To create the homework prob-
lem, we numerically integrated several hundred initialdibons and stored the solutions, including
final quantitative and qualitative results. Each studerg assigned a random set of initial condi-
tions corresponding to a particular set of results. Randation ensured that each student received
a unique realization with high probability. Students udsalrtassigned initial conditions and wrote
additional statements to answer the questions posed irrtidem. Students entered numeric an-
swers into answer blanks and selected check-boxes to atswgeralitative questions. On these
weekly assignments, only students’ final results were ghatiheeir code was uploaded for verifica-
tion purposes, but not graded. Grading programs for strei@nd syntax at this large scale requires
additional work by TAs who are already charged with a numibetizer teaching and grading tasks.
Computational homework problems were generally complatéde week that followed the asso-
ciated laboratory activity.

To facilitate student success and help them learn to debeig phograms, each assignment
contained dest case- an initial problem was posed for which the solution (i.eg tesults from
the numerical integration) was given. When writing or alttgrany computer program, making
programming errors (bugs) is possible. Learning to debugnams is part of learning how to
develop computational models. This test case ensured thiatdant’s program worked properly
and helped to instill confidence in students who might otlisavinave been uncomfortable writing
VPython programs without the help of their group membersAs. TAfter a student checked her

program against thiest caseshe completed thgrading casea problem without a given solution.
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In keeping with our overall design philosophy, most homéwaoblems that students solved
had similar designs as the aforementioned example. Incp&t] students built a computational
model in the laboratory and independently used that fulhcfioning model to solve a modified
problem on their homework. On the first four homework assignts, of which the previous exam-
ple is the fourth, students made few modifications to thegpams; altering their initial conditions
and adding a new print statement. In the next several labdests learned to model more com-
plicated systems (e.g., three body gravitational probsring dynamics with drag) while learning
new algorithms such as decomposing the net force vectargaiial and tangential components.
Students also learned to represent these force comporseatows in VPython. On the homework
problems associated with these labs, students still usadidi-developed programs to solve new
problems by changing initial conditions and representieqy quantities with arrows but also made
some of their earlier programs more sophisticated.

The last two homework problems which students solved wetrealated to the laboratory; we
intended to emphasize the utility of learning to predict imtusing Newton’s second law. To
solve these problems, students wrote all the statementngifrom a partially completed code
to predict the motion of two interacting objects. These wateractions which students had not
seen before (e.g., the anharmonic potential and LennarelsJmteraction). In these problems,
we omitted the appropriate initial conditions and the stegiets that numerically integrated the
equations of motion. Students had to contextualize the woodlem into a programming task and
produce a precise representation of the problem in the \@Rypinogramming environment. With
regard to programming tasks, students had to do no more tleamify and assign variables and
implement the motion prediction algorithm for these twolpeons. A similarly designed problem

was used as an evaluative assignment and is discussediirird8ec. 4.4.

4.4 Evaluating computational modeling skills

Students performed as well on computational modeling hamepwroblems as they did on their
analytic homework; we found no statisticaligrence in students’ performance using a rank-sum

test (Analytic 84.6% vs Computational 85.8%) [124]. Howevhis result did not indicate what
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fraction of students solved these computational homewarklpms without assistance (e.g., text-
book, notes, study partners, etc.). Randomizing the Irdbaditions for each student’s realization
ensured that students’ solutionstdred with high probability. This might appear to handle éssu
related to cheating, but working programs could be disteitiueasily from student to student by
email. We note that the distribution of students’ programghtnnot be deleterious; students who
receive these programs must still read and interpret thgrano statements to enter in their initial
conditions, make changes to the force law or print additigu@ntities. This is a more complex
interaction than simply plugging numbers into a algebralation that they discovered online. In a
sense, students who work with shared code are using a “¢losetputational environment.

Nevertheless, we wanted to measure hfeaive students were at individually solving compu-
tational problems. We delivered a proctored laboratorigassent during the last lab of threefldir-
ent semesters to evaluate students’ computational skillndndividual basis. Students received a
partially completed program that created two objects (omerhass and one high-mass), initialized
some constants and defined the numerical integration loogtste. We aimed to evaluate students’
engagement of the modeling process by contextualizing aighyproblem into programming task.
Furthermore, certain programming skills were being asskssamely, students’ abilities to identify
and assign variables and implement the numerical integrafigorithm. The assignment was deliv-
ered using WebAssign in a timed mode (30 minutes), and TAgs wet permitted to help students
debug their programs. A timed assignment opens with a pagialpg box that informs the student
of the time limit. After the student acknowledges the linfiy (clicking the “OK” button) the full
assignment opens with a countdown clock in the upper corhirecbrowser window. When the
time runs out, the answers that have been selected or erssreditomatically submitted and the
student is locked out of the assignment. The format of thggassent was identical to students’
final two homework problems; students were given a test casleeck their solution before solving
the grading case.

For this assignment, students modeled the motion of thenhass object as it interacted with
the high-mass object through a central force. The natureedfdrce (attractive or repulsive) and its
distance dependence' were randomized on a per student basis. We also randoninee af the

variable names in the partially completed program to hirmdgrying. After adding and modifying
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Table 6: As part of a final proctored lab assignment, students comegblatpartially constructed
program that modeled the motion of an object under the infleaf a central force. The partially
written program defined the objects, some constants andutmenical integration loop structure.
Delivered initial conditions, the sigr-fj and distance dependencé)(of the force and object names
were randomized on a per student basis. Slightly modifiesioes (Ver.) of this assignment were
given at the end of threefiierent semesters. Modifications were made to streamlineedgl{\Ver-
sion 1 to Version 2), minimize transcription errors and ioy@ presentation (Version 2 to Version
3). Students’ performance on Version 1 was likely inflateddose some students were allowed to
work the problem on two separate occasions.

Ver. Correct Incorrect % Correct

1 303 168 64.3

2 201 193 51.0

3 316 176 64.2
Overall 820 537 60.4

the necessary program statements, students ran theirapragnd reported the final location and
velocity of the low-mass object. During the assignmentdsiiis did not receive feedback from
the WebAssign system about the correctness of their saluliot they were given three attempts
to enter their answers. Similar to students’ online homé&wonly the final numerical answer was
graded.

Performance varied from semester to semester (Table 6udethe assignment was modified
slightly between each semester in order to streamline efgliersion 1 to Version 2), reduce
transcription errors and improve presentation (Versiom\&trsion 3). In the first semester, students
were permitted to attempt Version 1 of the assignment twigetd a logistical issue with the initial
administration of the assignment. The majority of studédis3%) were able to model the grading
case successfully on the second administration of therasgigt. Students’ performance on Version
1 was likely inflated because some students were able to Wwerproblem twice! Students solved
Version 2 only once, and student performance dropped. A eumbstudents were confused by
the randomized exponent on the units of one of their initbalditions (Sec. 4.6). About half of the
students (51.0%) were able to model the grading case staihgsStudents were more successful

on Version 3 of the assignment; 64.2% modeled the grading aasectly.

1The first administration of this assignment was during aleeguwour exam. Roughly, 40% of the students modeled
the motion correctly. However, students used their owrojagbmputers which created several logistical challenges.
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Table 7: Incorrectly written programs were subjected to an analysisg a set of codes developed
from common student mistakes. The codes focused on threedumal areasusing the correct
given valuegIC), implementing the force calculatigirC) andupdating with the Newton’s second
law (SL). We reviewed each of the incorrectly written studerdgoams for each of the features
listed below. These codes are explained in detail in AppeAdi

Using the correct given values (IC)

IC1 Used all correct given values from grading case

IC2 Used all correct given values from test case

IC3 Used the correct integration time from either the grgdiase or test case
IC4 Used mixed initial conditions

IC5 Exponent confusion witk (interaction constant)

Implementing the force calculation (FC)

FC1 Force calculation was correct

FC2 Force calculation was incorrect but the calculatiorcgdoire was evident
FC3 Attempted to raise separation vector to a power

FC4 Direction of the force was reversed

FC5 Other force direction confusion

Updating with Newton'’s second law (SL)

SL1 Newton'’s second law (N2) was correct

SL2 Incorrect N2 but in an update form

SL3 Incorrect N2 attempted update with scalar force

SL4 Created new variable fqu;

Other (O)

o1 Attempted to update (forgmomenturposition) for the massive particle
02 Did not attempt the problem

Overall, roughly 40% of the students were unable to modelgttaeling case. To determine
exactly what challenges they faced while completing thsigasnent, we reviewed the program
of each student who failed to model the grading case. Threugf0% bonus on the proctored
assignment, we encouraged all students to upload theirgregto the WebAssign system. We

limited our review to the programs submitted for Versions @ 8 of the assignment.

4.5 Systematically unfolding students' errors

Students must perform several tasks to successfully wrdesaecute the program for the proctored
assignment. Students must interpret the problem statemhents, they must contextualize a word
problem into a programming task. They must review the pgart@mpleted program and identify

the variables to update. Students need to apply their krgelef predicting motion using VPython
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to the problem. They must identify that the force is non-tamisand then write the appropriate
programming statements to calculate the vector force. édtigscheed to then complete the motion
prediction routine by writing a statement to update the mutoma of the low-mass object.

Using an iterative-design approach, we developed a sehafyp{dfirmativgnegative) codes to
check which tasks students performed correctly and whiatrethey made. An initial review of
students’ uploaded programs yielded the mistakes that meade most often. These common mis-
takes formed the basis for the codes. The codes were dedetoppirically and several iterations
were made before they were finalized. Two raters tested ttescby coding a single section of
student submitted programi & 45). The raters resolved theirfiirences which further explicated
the codes and then recoded the section. The final codes (Mabkre used by both raters indepen-
dently to code the remaining sectiors € 324). The final codes had high inter-rater reliability;
both raters agreed on 91% of the codes.

We classified the codes into one of three procedural areasg the correct given valugiC),
implementing the force calculatiofrC) andupdating with the Newton’s second Ig®L). These
areas were congruent with the broad range éialilties which students exhibited through their
erroneous programs. Each code is explained in greatel oefgpendix A.

Determining where students encounterefiiailties with these tasks might help explain how
students learn this algorithmic approach to use Newtorcers law to predict motion. Because
we reviewed students’ programs after they were written, rgauaable to comment directly on stu-
dents’ challenges with contextualizing the problem. Ourkmeas limited to analyzing students’
procedural &orts (i.e., identifying variables and implementing the muital integration algorithm).
However, some information about students’ thoughts aridractould be inferred from this analy-

Sis.
4.6 Freguency of errorsin students’ programs

We measured the frequency of students’ errors within eatdgosy (IC, FC and MP) by mapping
binary patterns extracted from our coding scheme to comrhmfest mistakes. The number of
possible binary patterns that we could observe in our daigecfrom nine for MP to seventeen for

FC with 13 possible for IC. Not all the codes within a givenecmiry are independent, hence, the
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Table 8: Only seven of the fourteen distinct code patterns for thedt@gory (Table 7) were popu-

lated by more than 3% of the students. The patterns (ICx)ieea tpy dfirmatives (Y) and negatives

(blank) in the code columns (IC#). The percentage of stisdeiith each pattern is indicated by the
last column (%). These 7 patterns accounted for 88.8% o&stgdvith erroneous programs.

Initial Condition Codes
Pattern IC1 IC2 IC3 IC4 IC5 %

ICa Y Y 27.6
ICb Y Y 16.0
ICc | Y Y 14.4
ICd Y Y [138
ICe Y 7.9
ICT Y 5.2
ICg | Y 3.8

number of possible binary patterns is much less tHarVthin a given category, we found that a
large percentage of students could be characterized by jigst error patterns (between four and
seven).

The errors we observed were not necessarily unique to catigodl problems. The most
notable errors involved calculating forces or updatingntteenentum. Most of these errors appeared
to be physics errors reminiscent of those made on pencil apdrgproblems. Many of them could
have been mitigated by qualitative analysis. Some errore wrique to computational models
and the iterative description of motion because they coubdlyce a program that ran but did not
model the system appropriately. Still others (e.g., raptamitial conditions) appeared to be simple

careless mistakes, but, when investigated, highlightedrtgility of students’ knowledge.
4.6.1 Initial Condition Errors

Students had to identify and update a total of eight givenesl the interaction constark)( the
“interaction strength” 1), the mass of the less massive particle, the position aratiglof both
particles and the integration time. Most students with irext programs (88.8%) fell into one
of seven IC patterns (Table 8). Students in ICa (27.6%) ifledtand correctly replaced all the
initial conditions with those from the test case (IC2), uihg the integration time (IC3). Those
in ICb (16.0%) mixed up the initial conditions (IC4), but dsthe correct integration time (IC3).

Students in ICc (14.4%) identified and correctly replacédha initial conditions with those from
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the grading case (IC1), including the integration time )lC3udents who appeared in ICd (13.8%)
were confused by the exponent on the units of the interactmstant (IC5), but used the correct
integration time (IC3). Students in ICe (7.9%) used a vgridtinitial conditions and given values
(IC4). Those students in ICf (5.2%) and ICg (3.8%) used irexirinitial conditions (IC3) or the
wrong integration time (IC1), respectively. Most studemigiht have simply forgotten to update
one or more of the initial conditions from either the defauate or the test case (ICb, ICe, ICf and
ICg). A small fraction of students with mixed initial conidihs had values from all three cases.

Students in ICa were most likely stuck on the test case bediey had trouble with another
aspect of the problem. These students were unable to ob&iotutions provided in the test case
and kept working on it. It is possible a number of these sttedeam out of time while trying to
debug their programs.

It is difficult to say definitively if students with mixed initial conidins (ICb and ICe) were
unable to identify the appropriate values, as we reviewedesits’ programs only after they were
submitted. Itis possible that these students were justesar&zhen making changes, but they might
have been unable to identify and update these quantitiemeStudents could have been in the
process of updating these quantities when they ran out efainad uploaded their programs.

Identifying and updating variables in a program is not adtitask for students. In fact, their
challenges with updating variables highlights the fragitf their computational knowledge. As
an example, consider the students who confused the exponehe length unit of the interaction
constantk) for the exponent in scientific notation kfvhen they defined it in their programs (ICd).
The distance dependence of the central force was randongimddhence the units of the interaction
constant k) were dependent on a student’s realization. In Version Beassignment, the exponent
on the length unit ok was colored red (WebAssign’s default behavior for randolaes). A student
in ICd would reack = 0.1 Nm?® to meank = 100 rather thark = 0.1 Newton times meters cubed
In Version 3 of the assignment, we changed the exponentisctdar to black like the rest of the

non-random text. The overall frequency of this mistake geapfrom 30.5% to 9.1%.
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Table 9: Only six of the nine distinct code patterns for the FC catgd®able 7) were populated

by more than 3% of the students. The patterns (FCx) are giyaatiibmatives (Y) and negatives

(blank) in the code columns (FC#). The percentage of stedeitih each pattern is indicated by the
last column (%). These 6 patterns accounted for 98.8% o&stgdvith erroneous programs.

Force Calculation Codes
Pattern FCl1 FC2 FC3 FC4 FC5 %

FCa Y Y 23.9
FCb Y 22.2
FCc Y 15.7
FCd Y Y 14.6
FCe 14.0
FCf Y Y 8.4

4.6.2 Force Calculation Errors

Students were given the magnitude of the force as an equ&ierkr") and told that their (attractive
or repulsive) force acted along the line that connected wedbjects. In solving this problem,
students had to correctly calculate the magnitude of theaeorce and identify the unit vector)(”
and sign £) for their own realization. Almost all students (98.8%) apped with one of five FC
patterns (Table 9). Students in FCa (23.9%) implementedbtice calculation algorithm correctly
(FC2), but reversed the direction of the net force (FC4).sEhia FCb (22.2%) performed the force
calculation correctly (FC1). Students in FCc (15.7%) impdated the procedure correctly (FC2)
but were likely to include a force irrelevant to the probldra.( gravitational or electric interactions)
or compute only the magnitude of the net force. Students wpipeared in FCd (14.6%) attempted
to raise the separation vector to a power. Students in FCYd4showed no evidence of an
appropriate force calculation procedure; the procedure either completely incorrect (e.g., used
the diferential form of the Impulse-momentum theorem) or was d¢aled outside the numerical
integration loop (i.e., a constant force). Those studemtSGf (8.4%) had an appropriate force
calculation procedure (FC2) but invented a unit vector lierret force (FC5).

The dificulties that students’ faced when numerically computirggrtat force could stem from
a weak grasp of the concept of vectors. Students in FCa mael&idnal mistakes (e.g., changing
the sign of one of lines 21-23 in Fig. 18) that could have besil\eidentified and rectified by

drawing a sketch of the situation, a problem-solving stpatthat is practiced in the laboratory.
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Those who raised the separation vector to a power (FCdylikehscribed the central force equation
(replacingr by F) without thinking that this operation was mathematicafhpbssible F' ~ k(P)"vs.

F ~ kII"f). We have found that students attempt a similar operatiopemil and paper problems;
raising components of a vector to a power (e.g)} & (ry,ry,ry)). However, in the pencil and
paper case, students are not immediately directed to thsteke as they are in a programming
environment. VPython raised an exception error when thisatjpn was attempted. These students
appeared to be unable to parse this error into any usefuhirdiion. Students who make this type of
error might be helped by additional exposure to transldtinge equations to precise programmatic
representations [87]. Some students invented a unit véetl) for the net force. This was most
likely because they had computed a scalar force and triedidoaascalar impulse to the vector
momentum. VPython raised affirent exception error if an attempt to add a scalar to a vedsr
made. These students were able to parse this error, buvedsbincorrectly.

Other students (FCc) might have incorrectly contextudlittee problem by including an irrele-
vant force (i.e., gravitational or electric interactionEhe problem clearly stated that the two objects
were far from all other objects. It did not explicitly staterteglect the gravitational interaction be-
tween the objects. However, the gravitational interactonld be safely neglected for the range
of masses and distances we had chosen. Furthermore, nathiing the charge of the objects was
mentioned in the problem statement. It is surprising thadests included these interactions in their
models. One possible explanation for the inclusion of thetsactions is that students had mem-
orized how to solve the gravitational and Coulomb probleersalise these problems had appeared
on their homework several times and on an exam. They migle paxicked and simply wrote all
possible forces they could remember.

A number of students (FCe) did not employ the force calomtasilgorithm at all. Some of these
students computed the net force (e.qg., lines 21-23 in Figod®ide the numerical integration loop
(e.g., before line 19 in Fig. 18). In this case, the net fores @ectively constant and therefore only
correct att = 0 . A program with correct syntax will run regardless of the/gibal implications.
This error is unique to computational problems in which motis predicted iteratively. Students in

introductory physics rarely use Newton’s second law to jgtadotion due to non-constant forces.
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Table 10: Only four of the nine distinct code patterns for the SL catgddable 7) were populated
by more than 3% of the students. The patterns (SLx) are giyestfismatives (Y) and negatives
(blank) in the code columns (SL#). The percentage of stsdeith each pattern is indicated by the
last column (%). These 4 patterns accounted for 95.7% o&stgdvith erroneous programs.

Second Law Codes
Pattern SL1 SL2 SL3 SL4 %

SLa Y 69.7
SLb Y Y 13.2
SlLc 7.9
SLd Y 4.9

Other students who fell into FCe wrote “creative” prograiienents. Students in this group ma-
nipulated some quantities in the loop but did not perform gimysically relevant calculations. The

number of students with “creative” program statements \eksively small.
4.6.3 Newton’s Second Law Errors

Students had to write a program statement similar to linenZ5g. 18 to properly update the mo-
mentum using Newton’s second law. Most students demoastrat dificulty in remembering the
formula for the momentum update but some met challenges matking that description precise
[87]. Nearly all students (95.7%) fell into one of four SL mahs (Table 10). Most students ap-
peared in SLa (69.7%) because they wrote the momentum ugolaitetly (SL1). A much smaller
number of students fell into SLb (13.2%) and attempted tcatgpdhe vector momentum with a
scalar force. Students in SLc (7.9%) were unable to write tideiw second law in any form that up-
dated (all codes negative). A small fraction (SLd, 4.9%)tafdewton’s second law in an iterative
form, but did so incorrectly (SL2).

Students who attempted to update the momentum with a saalee {SLb) might still face
difficulties with understanding vectors. The momentum updapedsented as a vector equation
(B: = P + FAt). These students might be unable to unpack that repreieniato a precise
programmatic description, but it was more likely that thejcalated a scalar force (FCc) and then
simply wrote the correct (vector) second law syntax. VPgttadsed an exception error if an attempt
to add a vector to a scalar was made. The students appeatad toparse this error into any useful

information.
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Students who were unable to write Newton’s second law in any that updated (SLc) might
have experienced filiculties with converting the second law formula into a pre@sd useful pro-
grammatic representation. Students in this category reitihete Newton’s second law in a non-
update form (e.g. writingleltap = Fnet*deltat or pf - pi = Fnet*deltat as line 25 in
Fig. 18) or wrote a number of program statements that maatipdlquantities but performed no
useful calculations. In either case, these students caert@fti from the precision required by a
programming language [87]. By forcing them to accuratefyresent Newton’s second law in their
programs, they might begin to distinguish between thetytidnd applicability of its various alge-
braic forms.

Students who wrote Newton’s second law in form that updatedriectly (SLd) either remem-
bered the formula for the second law incorrectly or made a.typhese students would gener-
ally leave dt the time step in the momentum update (epgs p + F) or divide by it = p +
F/deltat). Dividing by the time step is a particularly egregious efsecause it was quite small.
Hence, the impulse added in this case would be large. Stsigddm made this error were unable to

assess the state of the visualization (the particle fiéwodinfinity”) to debug this error.

4.7 Common Error Patternsin Students' Programs

The patterns within individual categories (IC, FC and Sldidgated the frequency of common mis-
takes students made when solving the proctored assignimérd, single student could make one
or more of these mistakes. Evaluating a student’s compt#teien requires an analysis using all
the codes (Table 7). In principle, the codes we developetidwave up to~ 4300 possible error
patterns using all sixteen codes. In fact, the intersestartode categories indicated that the num-
ber of distinct errors made by students across all categjovas relatively small; we found only
111 distinct binary patterns. It is possible to relate thasigue patterns in a manner that suggests
dominant common errors.

Cluster analysis, a technique borrowed from data miningpaigicularly well suited for this
application because it characterizes patterns in compéx sets [137, 138]. This technique has
been used previously to classify students’ responses tstiqne about acceleration and velocity

in two dimensions [139]. It was used here to determine theonfagtures in students’ incorrect
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programs which were responsible for their failure.

We applied the cluster analysis technique to the data gerkefeom our set of binary codes.
We used the Jaccard metric [140] to measure inter-clusstardies and linked clusters using their
average separation [141]. We tested several other met&igs Hamming, city block, etc.). The
Jaccard metric was chosen because it neglects negativepagde Both the Hamming and city
block metrics produced similar pairings at low levels, bighler order clusters were felcult to
interpret. We used average linkage to avoid tffeas of “chaining” that appeared when nearest
[142] and because useful clusters were mofgadilt to distinguish when farthest [143] neighbor
linkage was used. Additional information on cluster anialys available in Appendix E.1.

Thirty clusters with inter-cluster distances below 0.5 evezviewed in detail. This cutbwas
selected to minimize the number of unique clusters whilerstaidering clusters with useful inter-
pretations. Most students (86.5%) appeared in seven ofiittie ¢lusters (Table 11). These clusters
had very few students<(%) with dfirmatives in the “Other” category. Codes O1 and O2 were
dropped from Table 11 for this reason. Each of the other 28t@ts were populated by less than
3% (N ~ 10) of the students, and the bottom 18 clusters had less #hgiN 1k 3) each. Each of the
dominant clusters demonstrated a unique challenge thaddrsisifaced while solving the proctored
assignment (Table 11).

Students in cluster A (23.8%) tended to remain stuck on tsiecese (ICa) due to an error in
their force calculation. Reversing the direction of theceo(FCa) was the most common mistake,
followed by raising the separation vector to a power (FCdpsiMstudents in this cluster had no
trouble expressing Newton’s second law (SLa). These stadeorked diligently to solve the test
case but were unable to do so. As a result, they did not prdeebé grading case.

Cluster B (19.8%) contained students who made mistakegwgilacing the given values and
initial conditions (any IC code except ICa). Some of theselants worked with the grading case
(ICc and ICg). Others might have been working with eitheecasd had mixed conditions (ICb and
ICe) or simply incorrect ones (ICf). Still others might hameorrectly assigned the exponent on the
units ofk to the value ok (ICd). At any rate, most students in this cluster were ableotustruct a
working albeit incorrect program. Given their unfamiltgrivith general central force interactions,

these students might have believed their solutions wemeciorin fact, it is possible that students
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who were working with the grading case (ICc and ICg) had sbthxe test case correctly and simply
made a typo.

Students in cluster C worked with either the grading or tase@nd might have made a number
of mistakes with their initial conditions (any IC code extépa). The dominant error in cluster
C were students who computed the magnitude of the net foiCe)(&nd attempted to update the
vector momentum with this scalar force (SLb). This mathérally impossible operation would
have raised a VPython error. Students in this cluster weablerto parse this error into any useful
information.

Cluster D (10.8%), like cluster A, was populated by studevite tended to make errors in the
force calculation (FCa and FCd), but students in Cluster Bkea with the grading case (ICc).
The most common error in Cluster D was reversing the direatibthe net force (FCa) followed
by raising the separation vector to a power (FCd). Agairg tikuster A, most students met no
challenges when updating the momentum using Newton’s sde@n(SLb). These students might
have started working with the test case, but we think it isarlikely that they jumped right into
working with the grading case because the dominant erragaappn their force calculations.

Students in cluster E (7.6%) tended to raise the separagotonvto a power (FCd) and have
mixed initial conditions (ICb, ICd, ICe and ICf). These stuts generally had no feliculty with
writing Newton’s second law correctly (SLa). The dominane for students in cluster E was
raising the separation vector to a power (FCd). This mathieadly impossible operation would
have raised a VPython error. Students in this cluster weablerto parse this error into any useful
information.

Cluster F (7.1%) contained students who worked solely wWithtest case (ICa) and either had
no issue with their force calculation (FCb) or had no evidente calculation procedure (FCe).
Most of these students had ndfdiulty updating the momentum using Newton’s second law (SLa)
Students in cluster F were able to construct a program whickvithout raising any VPython errors.
Students who had no issue with their solution likely congaletest case but simply ran out of time
before turning to the grading case. Students with no evidettedure generally computed the net
force outside the numerical calculation loop, essentiaaking this force constant in time. Given

students’ unfamiliarity with general central force inteffans, it would not be surprising if students
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who treated the central force outside the loop believed swutions were correct.

Students in cluster G (4.1%) all invented an incorrect uadter for the force rather than using
f (FCf) regardless of the case with which they worked (ICc, &0d ICf). These students generally
had no dificulty updating the momentum using Newton’s second law (Sl\pst likely, these
students computed the magnitude of the force, similar tdestis in cluster C, but were able to
parse the resulting VPython error. Students in cluster Gected their mistake by assigning some

unit vector to the force before the momentum was updated.

4.8 Closing remarks

In large introductory physics courses, students can dpthbskills necessary to predict the motion
of different physical systems. After a solving a suite of compuaii homework problems, most
students £ 60%) were able to model the motion of a novel problem sucabgsStudents had no
previous experience with the physical system on this etialuaStudents transferred the algorith-
mic approach used to solve other problems to this problenoutrwork, we discovered that most
students who were unsuccessful encountered challengesoatoellating the net force acting on the
object in the motion prediction algorithm (Clusters A andh@ugh G in Table 11). By contrast,
there were fewer students whose primary challenge wasfiiagtand assigning variables (Cluster
B in Table 11). We acknowledge that we have limited the deuralent of our students’ computa-
tional skill set to contextualizing a word problem into agramming task, identifying and updating
input variables and applying a motion prediction algorithive believe that further development of
our homework problems and other novel deployments coulddmo the scope of the skills students
develop.

Procedural errors such as those we have documented (Sec& 47) could be corrected
through additional materials aimed at addressing each ertarn. However, the results from this
work indicate that instructionalfierts should be focused not only on correcting proceduralakes
but also on developing students’ qualitative habits of mificiining students to write programs to
predict motion might help them to be successful in a highlycttired environment, but they would
be better served by learning the practice of debugging. ,Hiet@igging includes identifying syntax

errors, of which we found few, and, more importantly, pariorg the type of qualitative analysis
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that is typically taught for solving analytic problems. &ts who could synthesize their analytic
and computational skills would be better prepared to sdieeopen-ended problems they will face
in their future work.

Developing the materials to teach these skills requiresvatuation of how students contex-
tualize computational problems. We do not claim to understhis presently, although we have
been able to glean some suggestive information based oargfictrrors. Some students’ weak
grasp of vectors is responsible for their inability to motihed motion in the evaluative assignment.
Others exhibit fragility with respect to identifying andsaging variables. Investigating what stu-
dents think about when solving computational problemsirequstructured student interviews (i.e.,
a think-aloud study). In the future, we plan to perform sustualy to not only characterize students’
abilities to contextualize but also to elucidate the mewdmarfor some of the errors we reported in
Secs. 4.6 & 4.7. We believe that such a study will demonstatember of students correcting
their errors by working the problem out loud in the absenca tifmed and stressful environment.
However, students who are unable to solve the problem pres@nthis study will most likely lack
the skills to systematically debug their own programs.

Research into skill development in math and science hasrshostrong correlations with stu-
dent epistemology [112, 113]. Epistemology is importarse the views that students holftbat
how they learn [13] and, utimately, how successful they ardnéir science courses [31, 49]. Itis
therefore crucial that we understand students’ sentinarast learning a new tool such as compu-
tation. Our students expressed anxiety and demonstratazk a1 self confidence, even with their
additional exposure to computational problems. We areldpirgy an attitudinal survey aimed at
exploring these and other beliefs in detail. Students whmléo use computational modeling and
are confident in their abilities will be better prepared ttvs@hallenging problems.

It is unlikely that computation will make students betteepdat solving analytical problems.
The mathematical skills needed to solve analytical problame directly addressed in most compu-
tational work. However, students who learn computationddevelop their qualitative reasoning
skills through the debugging of programs and their leartinigterpret the results of their program.
These predictions might be tested by comparing the sokitiormnalytic and qualitative problems

between students who received computational instructiohtfaose who do not. It is important that

75



only the instruction in computation fier between the two populations. The results from this study
could inform a balanced instructional approach which dgylanalytic, qualitative and computa-
tional skills and thereby better prepares students to agprand investigate challenging problems.
We have not claimed to have assessed a transfer of commatiakioowledge. We designed a
set of problems (Sec. 4.3) that students solved over theseairthe semester with an eye towards
a final assessment of their skills using a novel problem. Pphiblem (Sec. 4.4) was similar to
some of the homework problems students had solved preyiolidiocused on key skills that we
desired students to acquire: contextualizing a probleentifying and assigning variables in a pro-
gram and carrying out the motion prediction algorithm. Aalaation of transfer would require that
students apply these computational skills tofiedent domain (e.g., electromagnetism) or féeak
ent task (e.g., open-ended inquiry). A study in which stiglepply these algorithmic approaches
in a open-ended setting would likely find that students contitliel the selected system, but that
students would face challenges with interpreting the tesubemonstrating transfer of computa-
tional knowledge is a necessary step in developing studetddlexible problem solvers for the

215t century.
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Table 11: Only seven of the thirty clusters with an inter-cluster aste of less than 0.3 were populated by more than 3% of thergfudT he bottom
18 clusters were populated by less than 1% of students ed@seTseven clusters accounted for 86.5% of students. Tbenpage of firmatives
for each code (Table 7) within any given cluster (A-G) is gite the nearest whole percentage. Codes witaative percentages greater than 60%
are bolded. These clusters had very few student$%) with any dfirmatives in the ‘Other” category, hence the results frora tategory are not
reported. The percentage of students in each cluster iatedl in the last column (%).

Initial Conditions Force Calculation Second Law
Cluster IC1 IC2 IC3 IC4 IC5 FCl1 FC2 FC3 FC4 FC5 SL1 SL2 SL3 SL4 %

00O 68 93 18 15| 00 100 22 66 09 | 95 00 00 01| 238
21 01 86 37 41| 88 00 00 00 00| 97 00 00 00| 19.8
04 33 76 31 22| 00 94 00 08 00| 00 98 98 08 | 13.3
98 00 85 00 00| OO 85 18 50 00| 98 00 00 00| 10.8
00 00 57 75 36| 00 100 79 00 04| 8 00 O00 00| 7.6
00 100 96 00 00| 65 OO0 00 00 00| 73 19 00 04| 7.1
2r 00 93 53 07| 00 100 OO 07 100 93 00 OO0 00| 41
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CHAPTER YV

TOWARDS CHARACTERIZING STUDENT EPISTEMOLOGY IN
COMPUTATION

This chapter presents development of a new tool for charaictg how students think about learn-
ing computation. In developing this instrument, we wereedblleverage much from the work of
others in the physics [32, 14] and computer science [114¢&tibnal domains. In short, we have
composed a valid and statistically robust survey for charagng students with regard to a number
of epistemology features: their reasons for and interelgiaming computation, thefferts they put
forth to learn computation, their confidence with using catagion and a self-evaluation of their
aptitude with computation. Such an instrument is usefubmbt as a research tool but as a guide for
STEM instructors using computation in their courses. Stuépistemology and their performance
in science are interrelated [112, 113] and instructionalgiedtorts which leverage student episte-
mology not only &ect how students learn but how well they learn [13]. We pregendevelopment
and validation of this survey as well as preliminary measnets from three dlierent populations.
Results from these measurements paint an interesting@icfwhat students think about learning
computation and féer suggestions for teaching computation (similar to thasggsed in Ch. 4)
such as additional practice with the modeling process ané mx@eriential learning earlier. We dis-
cuss issues related to the survey’s robustness with othperdat@ns, its reliability and the validity

of its use before instruction.
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5.1 Introduction

Students’ ideas about learning cdteat how well they learn. In controlled studies, studentssep
temological expertise correlated with their performantenath and science even after controlling
for factors such as socioeconomic status [112, 113]. Irsobasn environments, directly addressing
students’ epistemology has been shown to have a posttiget®n their performance, specifically,
on students’ conceptual understanding in physics [13]. Miper of possible factors have been
proposed to explain thidlect including students’ beliefs about acquiring knowledge relevance
of course activities to their own lives and students’ mdioa and dfort to learn new material
[107, 108].

Several instruments have been created to characterizenssidpistemology in physics courses
[31, 32, 14]. These instruments compare students’ respdosexperts’ on the same set of state-
ments about the nature and learning of science. Resultsdemh instrument have indicated that
a significant rift exists between how students and how egghitk about science. It also appears
that students’ background and performance in science hasagurable féect on their alignment
with expert sentiments [144, 32, 49]. These instrument® lmen used to compare changes in
student epistemology betweenffdrent content delivery reforms [32, 13] and science diswgl
[145]. They are used at a variety of instructional levels918nd some have been adapted for use
in other STEM (Science, Technology, Engineering and Mati&s) courses [110].

One STEM area which has been largely ignored in all this iserical computation. While
observations of students using computation indicate tkpgreence considerable anxiety and a lack
of confidence, formal knowledge of students’ attitudes tolw@omputation is lacking. However, no
instrument yet exists for characterizing student epistegywith regard to learning computation.
Surveys about computer science [114, 115] are too domarifigpand surveys about computer
usage [116, 117] are inappropriate for such purposes.

To meet this need, we have designed and validated the CotigmatiaViodeling in Physics At-
titudinal Student Survey (COMPASS), a new instrument tllgiresses students’ attitudes towards

learning computation. In creating this survey, guidingigieprinciples (Sec. 5.2) were leveraged
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from previous work in physics [14] and computer science atlan [114]. After developing an ini-
tial draft of the COMPASS, discussions with both students experts were essential to ensure the
validity and clarity of the statements on the COMPASS (Se8).5The COMPASS was adminis-
tered (before and after instruction) to introductory phgsitudents taking a reformed calculus-based
physics course in which computation is introduced [28, ZXudents’ alignment with experts on
each statement were compared and used to compute ovenasd&ec. 5.4). Overall pre- and
post-instruction COMPASS scores were observed to be irdeebby student demographics (Sec.
5.5). Students’ responses on a number of statements wenglsticorrelated with each other which
gave rise to the construction of statistically robust disiens (Sec. 5.6). Olierences in students
scores on each of these dimensions suggest not only denmigiafluences, but also influences
of self-identification and academic preparation (Secs. &%.8). The COMPASS is still under
development, but these preliminary measurements suggasility to researchers and instructors
alike (Sec. 5.9). Furthermore, several avenues for fukstng and measurement, including usage

with a variety of populations and in controlled studies, @oesible (Sec. 5.10).

5.2 Guiding Principles

In developing the COMPASS, a number of design principlestvhiave been expressed previously
by the creators of the Maryland Physics Expectations SUMBEX) [32] and the Colorado Learn-
ing Attitudes about Science Survey (CLASS) [14] were fokalv The survey must be valid, the
wording clear and concise and the format simple to use ane.s¢bshould also be reliable and

informative.

Validity The COMPASS should be valid for the domain of interest; intipalar, statements
should be identified with the use of computation in sciencg ot with other computer related
domains such as computer science [114, 115] or the casugg womputers [116, 117]. Issues
related to domain validity are typically controlled by dission with domain experts. However,
this form of validity does not ensure item validity; it is masle for students to interpret statements
differently from experts. Hence, interviews with students asemtial to secure item validity. Both

students and experts must interpret statements similanyake any valid conclusions about the
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results. In Sec 5.3, the results of both domain and item ityalidr the COMPASS are discussed in

detail.

Clarity Wording of COMPASS statements should be clear and concitilitate usage at dif-
ferent instructional levels. Furthermore, statementailshbe constructed such that adapting the
COMPASS to other domains (e.g., computational biology,ireeying) is relatively straightfor-
ward. Designers of surveys in science invest a significardusmnof time casting and revising the
wording of their surveys to ensure their accessibility. @beain of the COMPASS makes this goal
somewhat more challenging; introductory STEM studentgcglly have little familiarity with the
vocabulary of computation. Issues related to the sele@mhwording of COMPASS statements

are discussed in Sec 5.3.

Simple and Familiar Format The design of the COMPASS should simple enough to facilaate

automated administration. Moreover, students should ipdiga with its format so that they have

little trouble completing it. While a wealth of knowledge ghi be gained from using open-ended
surveys, there are significant administrative challengésasllecting and scoring such instruments.
Some surveys which are simple to administer have used ccagdi designs [31]. These designs
are unfamiliar to students and unnecessarily limit the sypieitems that can appear on the survey.
Others have adopted the more typical Likert scale (ddigmgree), a much simpler design with
which most students are familiar [32, 14]. Additional distaibout format and scoring this design

are discussed in Sec. 5.4.

Reliability Results from the COMPASS should be consistent for similgugations. Unreliable
instruments are useless because their outcomes are ndtdragepulation or treatmentftierences,

but simply on artifacts of a poorly designed survey. Thet#lity of attitudinal surveys is generally
checked through a modified test-retest scenario; the d¢ensisof results from students with similar
backgrounds taking the same course iffiedlent semesters are compared [14]. The latest version of
the COMPASS has been administered in only one semester. Wgawesults from the COMPASS

as it relates to dierent sections of the same course and students with singitkgbounds taking

the same course are discussed in Sec. 5.4. We also discul$s fresn diferent student populations
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in Sec. 5.7.

Interrelatedness of Statements Individual statements on the COMPASS are likely to be igterr
lated in some fashion. Selecting which statements arer@iéed (i.e., dimensions of the instru-
ment) has typically followed two distinct pathst priori selectionand emergent categorization
Selecting categories a priori provides the simplicity demreting the categories [32]. Emergent
categorization is statistically robust and can help to uac@onnections between concepts which
respondents make that designers did not [146]. A pragmppecoach to categorizing statements
on the COMPASS that balances the benefits of a priori seteatith the statistical robustness of
emergent categorization was borrowed from the design ofth&SS [14] and is discussed in Sec.

5.6.

Informative for Instructional Design  Results from the COMPASS should be useful for guiding
improvements to computational instruction. Epistemolbgyg been shown tdfact student learning
[112, 113]. Moreover, when students’ attitudes about liegrare addressed directly, student per-
formance improves [13]. Hence, some subset of COMPASSstattes should guide instructional

reforms. In 5.9, possible instructional improvements Hasepreliminary results are discussed.

5.3 Survey Design and Validation

The Computational Modeling in Physics Attitudinal Stud8ntvey (COMPASS) is a 36-item, five-
point Likert scale (strongly agree to strongly disagreeysythat was designed to be used in courses
that teach computation alongside science. This surveynt@sded to be used in science courses in
which computation is introduced, for example, introdugtphysics courses in which computation
is taught [28, 29], interdisciplinary courses in scienceé esmputer science [147], courses in which
knowledge about computation is assumed (e.g., nonlinéamee) [148, 149] or upper-division and
graduate level computational physics courses.

The COMPASS was designed to address several themes thattist in computation is meant
to communicate: (1) Computation is a useful tool for solhgagence and engineering problems. (2)
Computation is an algorithmic process, but new methods cae.a(3) Computational models

have limitations and users must be aware of them. (4) Anyamel&arn computation and use it
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effectively; but, they must be motivated and put forth ther to do so. (5) Memorizing the syntax

and structure of computational models is ifisient for developing solutions to new problems. (6)
Visualizing the solution of a problem through the use of a potational model can add another
dimension to one’s understanding of the problem.

In designing the COMPASS, the considerabfioes made by others in the physics and com-
puter science education communities were drawn upon. 8esgitudinal surveys in physics and
computer science were reviewed to find statements that &kleast tangentially, congruent with
the themes of the COMPASS. Some of the initial COMPASS statésnwere altered statements
from the CLASS [14]. Changes made to CLASS statements vdrged simple word replace-
ments (e.g., replacing “physics” with “computer modelipgd complete rewrites which altogether
changed the intent of the statement. For example, the CLA&G&sent, “When | solve a physics
problem, | explicitly think about which physics ideas appythe problem.”, was rewritten for the
COMPASS to read, “When | solve a computer modeling probleaxplicitly think about the limi-
tations of my model.” Others statements were borrowed fr@uraey on the utility and challenges
of computer programming [114]. All statements taken froms gurvey were rewritten to remove
references to “programming”, “programming languages” gmagrams” as these are somewhat
domain specific words. A small number of original statemevege written to cover all the themes
adequately. For example, the statement, “When | solve dgarohsing a computer, | have a better
understanding of the solution than if | solve it with pencibdgpaper.”, addresses, in part, the addi-
tional understanding to a problem that might be gained frolwvirsg it computationally. A complete
list of the latest version of COMPASS statements appearpjpeAdix C.

Regardless of their origin, each statement was subjectdidd¢assions of validity with a total of
twenty four faculty members and graduate students who veendi&r with computation in science.
Out of the twenty four experts, eleven were graduate stgdemd thirteen were faculty; nineteen
were male and five were female. These experts completed theysand provided feedback about
the intent and wording of each statement. Several expeantddad detailed comments about each
statement and the survey overall. Experts generally aghegdoverall, the statements probed the
domain of computation adequately but some raised a few ir@pbissues about the use of certain

words.
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Some experts raised serious questions about the claritgaphputer model” and “computer
modeling” as some might intend to give this survey to stusléting introductory science courses.
Experts pointed out that some students might not think abonstructing a computational model
when a statement referred to “using a computer model.” Tibtindtion between simply interacting

with a computer model and building one was crucial to undesour intent of certain statements.

As one expert noted,

I am concerned that you don't make a distinction up front leetwbuilding a com-
puter model and using a computer model (i.e., running a sitioul of someone else’s
model)...[flor example, [one of the original COMPASS staénts reads,] “To learn

how the computer model works, it is important to understdhtha statements.”

His comments were echoed by another,

| am concerned that the concept of “computer modeling” ischerrly defined...[w]hat
does “computer modeling” mean here? One might assume tdergs are simply

using pre-existing computer models rather than writingy then code.

Both suggested that we define “computer modeling” with therpretation that we intended stu-
dents to use at the beginning of the survey.

Other experts raised minor issues with switching the ofmerak definition of the word “model”
between statements. “Model” used in some statements meaupthiysical model of system (e.g.,
“After | solve a problem using a computer model, | feel thahtarstand how the model works”),
and in other statements, it meant the computer model (8/het | solve a computer modeling
problem, | explicitly think about the limitations of my mdtle These experts were concerned that
students might unable to distinguish between the two usages

In order to better understand the concerns of experts frenstildents’ perspective, five intro-
ductory physics students (three male and two female) wer¢hto take the survey while being
interviewed. These students were selected at random frooolaop volunteers enrolled in an in-
troductory electromagnetism course that teaches conmpuitas part of the laboratory [29]. Two

students had taken an introductory mechanics course irmvebimputation was used in the lab [28]
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and to solve homework problems (Ch. 4). The other three tankehanics course without compu-
tation [52]. Students were interviewed after they had cetegl two computational lab activities.

Discussions with these students helped to clarify issuategeto the use of the word “computer
modeling” and validate our operational definitions of therdvtmodel”. At the beginning of the
interview session, students were asked to define “computeiehmg” in their own words. Each
interviewee defined it similarly and quite narrowly as “ctasting computer programs using some
sort of programming language.” The fact that all interviewédentified “constructing programs”
as a key feature of computer modeling might not be surprigimgn their exposure to computa-
tion in the lab. This raises questions about the validity sahg this survey before instruction with
students who have had no computational experience. Howms&zd on the language used by inter-
viewees, introductory students’ definition of “computerdating” appears colloquial; they do not
distinguish between “programming” and “computer modé€linglence, defining the word “com-
puter modeling” on the COMPASS was not necessary. In theviet®, students were questioned
directly about the usage of “model” in certain statementwiffoperational definitions for “model”
changed appropriately depending on the statement, hdrecejarding of these statements was not
altered.

To make any valid conclusions about the results from the CAS8, students must interpret all
statements in the same way that experts would. During tkeevikivs, students were asked to briefly
discuss the intent of each statement. Their interpretstwoere generally congruent with those of
experts and consistent with each other. It is possible tiginight be attributed to our refactoring
of a number statements from previously developed and \elidsurveys [14, 114].

To help make the COMPASS easily modifiable for use in otheralos(e.g., computational
biology, engineering, etc.), we used the word “physics’ha statements sparingly. In fact, only
three statements use the word “physics” (i.e., items 16,2l 25 in Appendix C). In each of
these statements, the name of another domain might simphseeed in lieu of “physics” without

completely rewriting the statement. Such uses are “physigislems” and “physics ideas”.
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5.4 Scoring the Survey

A wealth of information might be gleaned from an instrumdke the COMPASS. In order to make
this information more manageable yet still useful, a dathucéon technique that has been used
previously was employed [32, 14]. The level of complexityoaf data was reduced by compacting
students’ responses from a five-point Likert scale (strprgiree to strongly disagree) to a three-
point Likert scale (agree to disagree). The alignment afestiis’ responses with experts’ were then
compared to obtain two scores, the percentage of respolig@sdawith experts’ and the percentage
anti-aligned. This methodology mitigates issues of vgligvith respect to a students’ conviction
about a particular statement.

The Likert scale attempts to measure not only directionif{ipesor negative responses) but also
magnitude (conviction). However, students’ interpretasi of magnitude are often not consistent.
A student who selects “agree” over “strongly agree” mightsdofor a number of reasons. That
same student might select “strongly agree” over “agree”hendame statement when asked at a
later time. This raises issues about the consistency of Hgnitude of a student’'s response when
interpreting data from a large population. Others [150,] T&le found that polarized responses,
the predilection to select responses from the ends of thetrsipe, reflect “liberalism” within a
population. The dferences in the distribution of responses make compariswveba populations
challenging without coarse graining.

On the COMPASS, students were presented with a five-poirgrt.gcale but for scoring pur-

poses their responses were collapsed to a three point scale.

Strongly Agree- Agree—Neutral— Disagree- Strongly Disagree

Generally Agree Generally Disagree

By reducing the level of complexity, issues related to resgovalidity were mitigated by measuring
only direction; measuring magnitude was sacrificed. Funtioee, data interpretation was simplified
by considering only if students generally agree, disagréesd neutral about individual statements.
Even though coarse grained scoring was performed, it wasriiaumt to maintain the five-point

scale. Others [14] have found, as we did in our student ir@es; that students are more likely to

select neutral responses if presented with a three-pcéte.sc
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To present compactly theftierences that exist between expert and novice epistemodggyd-
ing computation, the alignment of students’ responses esxiterts was compared. Students re-
ceived two overall scores on the COMPASS, the percentadewtiich their responses agreed with
experts on scored statements (“percent favorable”) angéheentage with which they disagreed

(“percent unfavorable™). Formulae for computing theseriti@s are shown in Eqn. 1.

# Align with Expert Opinion
# Scored Statements %
# Opposite of Expert Opinior>1<
# Scored Statements

% Favorable= 100 (1a)

% Unfavorable= 100 (1b)

The responses of the twenty four experts who provided feddiia COMPASS statements (Sec.
5.3) formed the pool of responses (“expert opinion”) agawtsich students’ responses were com-
pared. Expert responses to individual statements werewed to determine if experts generally
agreed, disagreed or were inconsistent (neutral) on thensémt. Expert responses to statements
for which we had selected the expert opinepriori as “agree” or “disagree” were quite consistent.
On these 30 statements, more than 75% of the experts agrégeourvjudgments. The rest generally
selected neutral responses on these statements. For gtatsiments on which we thought experts
would have varying opinions, expert responses were instargior neutral. Only the 30 COMPASS
statements with non-neutral expert opinions are scoredlewhe “expert neutral” statements were
not scored, students’ responses to these six statemenit$ stiilgbe informative (Sec. 5.9). If a
student skips a statement, that statement is not calculai@their score. The overall mean COM-
PASS scores are computed from the average of all studemi®sscStudents who skip more than

20% of scored statements (more than 6) are dropped from tha st®re calculation.

5.5 Resultsfrom Mechanics Students at Georgia Tech

The COMPASS has been administered to students before ardredtruction in both mechanics
and electromagnetism courses at Georgia Tech and to ssu@ditig mechanics courses at NCSU.
In each of these courses, students learned to create cdiopatanodels as part of the laboratory
component of the courses [28, 29] using the VPython progragiranvironment [83]. Students
in the Georgia Tech mechanics courses also solved weeklpwaitional homework sets (Ch. 4).

Delivery of the COMPASS was facilitated by the students’ earark system [9]. The version of the
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COMPASS (v2.3) for which we have checked validity (Sec. 5&) been given in only one semester
thus far. The results from Georgia Tech mechanics studeatseported in this section. These
results are later compared to those from students who tolGiprgia Tech electromagnetism
course (Sec. 5.7.2) and mechanics students at NCSU (5.7.3).

513 students took one of four sections of mechanics taugthirbg diterent instructors. Certain
students could register for a small honors section=(8l7) that met with a larger section taught by
one of the instructors. Students were encouraged to tak€ @dPASS through a small credit, a
bonus of 0.025% to their overall average. The responsesidésts who did not take the survey
seriously were dropped from the data set. A statement taldests to select “agree” to preserve
their answers; responses from students who selected asyagtion were dropped. Less than 10%
of Georgia Tech mechanics students who took the survey méggoto this statement incorrectly.
As a result of this filtering process, we were left with 480 hmatcs students who took the pre-
instruction COMPASS, 354 who took the post-instruction CRASS and 316 who took both. The
results of non-honors students are discussed before stingdhese results with honors students
(Sec. 5.6.1).

The mean favorable score for non-honors mechanics studecteased from pre- to post-
instruction while the mean unfavorable score increaseuh fopee- to post; students responded less
expert-like on the post-test. Students earned a mean faeosaore of 62.8% and an unfavorable
score of 12.2% on the pre-instruction COMPASS. On the pustiction COMPASS, these scores
shifted to 59.6% and 17.7%, respectively. The shifts indh&sores were statistically significant.
The characteristic drop in students’ expert-like respsrafeer instruction on instruments such as
the COMPASS is well-documented [32, 14]. This drop mightrsteom a number of issues includ-
ing students who have a more idealistic view of computatjponuentering the course, students who
regard computation highly in principle but not in practieécetera Mechanisms that underlie the
drop in COMPASS scores could be investigated through ey with students throughout the
semester or by delivering the COMPASS throughout the seamtsbbtain a temporal profile.

Plotting students’ percentage of unfavorable and faveredgponses on a two dimensional grid
permits one to visualize the distribution of students’ COAS scores (Fig. 19). On this grid, the

horizontal axis represents the percentage of unfavorabf@nses and the vertical, the percentage of
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Figure 19: [Color] - Non-honors students’N = 316) percentage of favorable and unfavorable
responses to COMPASS statements given (a) before and @) iaftruction in a introductory
calculus-based mechanics course which uses computer impdheimework (Ch. 4) are plotted
(black x’s). The distribution of responses in both figuredighlighted using a colored contour
map of the percentage of students lying at each ‘x’. The meaceptages for both pre- and post-
instruction COMPASS results are shown by a bold red square.

favorable responses. A point in this space in then given &y#ir of scores (e.g¢% unfavorable,

% favorable)). The plot is bounded by the negatively sloped line from that0, 100 to the
point (100, O corresponding to all favorable or all unfavorable respsnsspectively. A student’s
score might lie anywhere to the left and below this line. For given student, either the vertical or
horizontal distance to this line is her percentage of netgsponses. In Fig. 19(a), the mean overall
pre-instruction COMPASS score (bold red square) for nameh® students who took both the pre-
and post-test (mean scokd2.2, 62.8) is plotted along with individual student scores (black x’s
The density of student scores has been highlighted usingpeedocontour map. The approximate
percentage of students lying at a single point in a giveroreg represented by a color from blue
(0.2%, N~ 0.6) to red (1.6%, N~ 5). Students’ post-instruction COMPASS scores appear in
Fig. 19(b). The mean overall post-instruction COMPASS sdbold red square) for non-honors
students (mean scor,7.7, 59.6) is shown along with individual student scores (black x&yain,
the density of student scores is shown using a colored contap.

Typically, only the mean scores are shown in a plot like Fig.[32, 14] because comparisons
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are made between a number ofteient populations. Doing so for a single population obsture
interesting features of the distribution of student scoresFig. 19(a), there was a large peak in
scores (represented by the red color) in the region (&ar7 while the mean score was closer
to (12, 63. A broad and sparse tail below favorable scores of 50% shifte mean to lower
favorable and higher unfavorable scores. Apparently, gelaumber of students had near expert-
like responses on the COMPASS before instruction. The nshdt down and to the right of the
post-instruction mean score was the result of a largerargament of the distribution of scores.
Two peaks appeared on the post-test (Fig. 19(b)); a moredhlepeak centered ned0, 76 and

a less favorable one centered nébB, 53. It appeared that after instruction individual students
are subdivided into those whose responses remained rotighbame and others who selected less

favorable responses. The shift in the distribution of sedsénighlighted in Fig 26 in Appendix D.
5.5.1 Possible Influences of Students’ Backgrounds on the GOPASS

COMPASS scores might be distributedfdiently for students with flierent backgrounds; théfect

of background and performance in science appears on otfstemplogical assessments [32, 14].
An analysis of the variance (ANOVA) was performed to deteenvhat elements of a student’s
background mightféect her scores on the COMPASS. An ANOVA is a statisticallyusibmethod

of making simultaneous comparisons of mean scores féerdnt groups that are classified by a
number of “independent variables” [152]. The independemtables in an ANOVA are possible
influences (e.g., major, GPA, etc.) on the dependent variflwhich the ANOVA is performed
(e.g., COMPASS score). Variations in the dependent vaiabh demonstrate that mean scores
for some groups of (one or more) independent variables atistgtally diferent. If the means of
the dependent variableftir significantly between groups characterized by a singlependent
variable, this independent variable is a “matfteet”. Hence, the mean of the dependent variable
between one or more groups of that independent variabletatistisally diterent. If there exist
significant diferences in the means of the dependent variable betweensgohapacterized by
combinations of (more than one) independent variablesgtiiariables are said to be “confounded”.
In a sense, the confounding of one or more variables in thisisvhecause the variables were not

inherently independent in the first place. For our ANOVA detnits’ overall incoming grade point
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averages (GPAs), the grade they earned in the course, tassification and the college in which
their declared major isftered were the independent variables.

Only a student’s choice of college was observed as a nftéateon her overall pre-instruction
COMPASS scores. For the ANOVA of pre-instruction COMPASSrss, students’ course grades
were not used because they had not yet completed the coutsden& majoring in computing
(e.g., computer science and computational media) tendeavohighest pre-instruction COMPASS
scores followed by engineering students. Science (egody, chemistry, mathematics, etc.) stu-
dents tended to earn the lowest pre-instruction scoresleSts from other colleges (architecture,
liberal arts and management) made up less than 5% of thegimpulnd together earned roughly
the same scores as engineering students. Trheteof other independent variables (classification
and GPA) was not significant nor were there any confoundedhblas. The highly favorable scores
achieved by computing students are not surprising given streng interest in computer science.

While students’ pre-instruction COMPASS scores were thetrsignificant éect on their post-
instruction COMPASS performance, students’ choice of majas also a mainféect. We added
students’ final course grade and pre-instruction COMPAS®escas additional independent vari-
ables for the post-instruction ANOVA. The trend by major ¥emll COMPASS post-instruction
performance was similar to pre-instruction performanoceyputing students followed by engineer-
ing students followed by students in the sciences. Groupgether, students from other colleges
earned similar post-instruction scores to engineeringpreajThe &ect of other independent vari-
ables (classification, GPA and course grade) was not signtfinor were there any confounded
variables.

In Fig. 20, we have visually represented pre- and posttioBtm scores as well as the shift
in scores for students who took both the pre and post-instru€ OMPASS. In these diagrams,
students have been grouped by incoming GPA (Fig. 20(a)yseayrade (Fig. 20(b)), classification
(Fig. 20(c)) and college (Fig. 20(d)). The tail of the arrowvghese diagrams represent a group
of students’ mean pre-instruction COMPASS score; podttingon mean scores are located at the
arrow’s tip. The arrow representation helps to visualizeghift in the mean towards or away from
expert-like sentiments as well as demonstrate the changeutfal responses.

An arrow pointed upward or to the left indicates an increasexpert-like sentiments. An arrow
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Figure 20: [Color] - The shift in the mechanics students’ mean COMPAS&es are shown.
Colored arrows indicate the magnitude and direction of ki fsom pre- to post-instruction. Mean
scores are shown for students based on: (a) their Z-scoraddésd deviations from the mean)
overall GPA, (b) their Z-scored (standard deviations frbeniinean) grade in the mechanics course,
(c) their classification and (d) the college of their dedllaneajor college. Architecture, liberal arts
and management majors (Other) are included for completdnégshese students represented less

than 5% of the total population.

pointed to the right or downward indicates a decrease inrefige sentiments. Neutral responses
that shifted to favorable point upwards and unfavorableaeses that became neutral point to the
left. Neutral responses the shifted to unfavorable poirtheéoright and favorable responses that
shifted neutral point downwards. An arrow parallel to thgateely sloped boundary indicates
that the percentage of neutral responses remained unachdngehe overall responses became less
favorable (down and to the right) or more favorable (up anthéoleft). Arrows perpendicular to

this line indicates that responses became more (towarglsdirless (away from line) polarized.
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Most subgroups of students shifted from more favorableds favorable responses by convert-
ing both neutral responses to unfavorable and favorabfrsgs to neutral. Students could make
the shift from favorable to unfavorables by flipping theispense but thisféect accounted for less
than 3% of all changes. The vast majority of arrows shown gsFi20(a) — 20(d) are roughly
parallel to the boundary and point downward and to the rigjivo arrows indicated quite fierent
effects for two subgroups of students. Students who performedstandard deviation above the
mean in the mechanics course (black arrow in Fig. 20(b)) amoketo have slightly more polarized
responses after instruction. In fact, these high perfogrsindents’ pre- and post-instruction scores
are statistically indistinguishable; these students maird their sentiments. Senior students (pur-
ple arrow in Fig. 20(d)) had far less favorable response$empost-instruction survey. This might
be an artifact of the small number of seniors in this secomdesgéer freshman level mechanics
course.

Overall COMPASS scores indicated that students have |lgssrtelike sentiments about com-
putation after instruction. Some statements appearedtoilsote more to the shift than others. For
example, 74% students responses shifted unfavorable quosiidest for the statement, "I do not
spend more than 30 minutes stuck on a computer-modelinggonobefore giving up or seeking
help from someone else." On other statements, studentisnsems became more favorable. Fa-
vorable responses to the statement, "A significant probteleairning computer modeling is being
able to memorize all the information | need to know.", insesé by more than 30% on the post-
instruction COMPASS. The shift in percentage of favoral@eponses for each scored statement
from pre to post are summarized by Fig. 27 in Appendix D. Itegypd that a number of statements

on the COMPASS might be interrelated in some fashion.

5.6 Searching for Robust Dimensions

The COMPASS might have underlying dimensions that provididitenal information about the
mismatch between student and expert sentiments and chenifiese sentiments after instruction
in computation. To uncover these dimensions, a pragmagicoaph that balances the utility of se-
lecting dimensions a priori and the statistical robustréssmergent categorization was taken. The

pre-instruction responses of Georgia Tech mechanicsrtsitieall statements were investigated for
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Figure 21: [Color] - The fraction of the overall variance (eigenval@i®m an exploratory principal
component analysis are plotted as a function of the extlasienponent (eigenvector). The shape
of the diagram (scree plot) indicates there are at leastigmificant eigenvectors to consider. The
first six eigenvectors account for more than 40% of the taabnce. The red line indicates a linear
fit to the eigenvalues of the last 30 components (the scregpoél linear fit here indicates the rest
of the components could be neglected. For this linear fitfrdnetion of the variance accounted for
by the fit is 99% R?=0.992). An alternative method indicates that up to fourigenvectors could
be considered. The blue line indicates the level above wdnichigenvector accounts for more than
the average fractional variance.

correlations and groups of highly correlated statemerfitsrimed the formation of several working
categories. These categories were refined using the toels@fgent categorization, forming a new
set of clearly interpretable yet statistically robust dmsiens. This technique was borrowed from
the designers of the CLASS [14].

An exploratory principle component analysis (PCA) can figtermine the number offiierent
dimensions of the COMPASS. Principal component analysisathematical technique by which
a set of measurements or observations that might be cauetaie orthogonally transformed into
a set of uncorrelated variables, “principal componentseigenvectors. These eigenvectors tend
to describe some unique features about the data set. PCAegaerformed on the mean-centered
data set (singular value decomposition) or on the cormelathatrix of the data set (eigenvalue
decomposition). The extraction of the eigenvectors by thasformation is done in the order of
the eigenvectors’ eigenvalues, the amount of the variamdbe original data set for which each
eigenvector accounts. That is, the first eigenvector hakthbest eigenvalue, and hence, accounts

for the most variance in the data set. The next accounts éosgbhond most and so on. The number
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of significant eigenvectors in a principle component anslys usually much less than the total
number of variables in the original data set.

The Georgia Tech mechanics students’ pre-instructionoresgs were used in a PCA to de-
termine the number of useful working categories. We can hedraction of the total variance
(eigenvalue) accounted for by each of the components (egéor) to determine a range for the
number of working categorizes. In Fig. 21, we plot the eigdues determined by the PCA in order
of decreasing eigenvalue (fraction of the variance). Suulbtds a called a “scree plot”. Some argue
that the significant eigenvectors are those that accoumnéoe than the mean variance [153]. In
Fig. 21, this value (one over the number of components) isated using a blue line. The fourteen
eigenvectors with eigenvalues above this line accountdiaghly 67% of the total variance. Others
think that this technique overestimates the number of corapts to extract. They recommend us-
ing the characteristic linear drogfwf eigenvalues (the near-linear slope after the scree)][154
linear fit to the lowest lying eigenvectors was performedestpdly (adding the next eigenvector to
the fit each time) until the cdicient of determination for the fiR%) was maximized in the region
before the plot diverges. The linear fit (red line in Fig. 2idicated that as few as six eigenvectors
were significant. These six eigenvectors accounted foraxppately 42% of the overall variance.
Arguably, the number of significant eigenvectors and, heaseful working categories should lie
between six and fourteen.

The statements that were correlated strongly with eacheotdp fourteen eigenvectors were
reviewed to form the working categories. Only the first sigegivectors showed any coherence
between their most highly correlated statements. Statemwéth neutral expert opinions were not
among the highly correlated. From the highly correlatedeste@nts, six working categories were
deduced: (1) Perceived Ability, (2) Perceived Ultility, Real-World Connections, (4) Sophisti-
cation, (5) Personal Interest and (6) Learning. These odtesgwere constructed to be useful to
instructors (Sec. 5.2). As an example, the statements lioalds appear in the Perceived Ability
category as those for which students evaluated their owfonpeance or skill in order to select a
response. Instructors might find scores on this subset teéiUfeedback about students’ confi-
dence with using computation. These six categories weocecalsgruent with our original themes

that computational instruction was meant to communicage.(S.3). The aforementioned example
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is also related to the computational theme that all studearidearn to use computatioffectively.
A detailed discussion of each of these working categoridgfisrred to Appendix B.1.

Two raters placed COMPASS statements into one or more of @iking categories suggested
by the PCA. Each performed his initial categorization imdiially without discussion with the other.
Using a two-scale rating system, raters distinguished éatmstatements that were representative
of the category and those that could be. The raters disctiseegdsults of their categorizations and
any conflicts were resolved. In the final version of the woglkéategories, each category contained
between three and eleven statements.

While each of the initial categories was practical, theyeveot necessarily statistically ro-
bust. Two qualities may be used determine robustness of kingocategory: (1) statements in the
category should be well correlated with all other statemamnid (2) categories should be well rep-
resented by a single eigenvector in a reduced basis PCA duauntities were used to characterize
these two qualities: the average absolute value of therlioeaelation matrix for all the state-
ments in the category), the average absolute value of the linear correlatiorficbents between
each statement in the category and the first eigenvectoupeodirom a reduced basis PCI7)‘ the
difference between the fraction of the variance attributed éditht and second eigenvectors and
the average fractional drop between subsequent eigemsdotmrmalized by number of statements,
|AE|/N) and the fraction of the variance accounted for by this lifi¢é@o the screeR?).

Students’ responses to statements in the working categasmee subjected to a reduced ba-
sis PCA,; categories with well correlated statements ancesgmted by a single eigenvector were
statistically robust. Such categories were considerecenlyidg dimensions of the COMPASS.
The outcome of this analysis suggested that two categoligst tme robust dimensions (“properly
loaded”), three were quite weak (“weakly loaded”) and ontegary might have multiple dimen-
sions (“multiply loaded”). Two of the six categories (Péveel Ability and Perceived Ultility) were
found to be strong single dimensions, but with slight modifams (adding or removing a state-
ment) became stronger. The statements that were added vaseethat the raters had selectively
removed in their earlier categorization. Three categdiesal-World Connections, Personal Inter-
est and Learning) were weakly loaded. Generally, this wasaulme not all the statements in these

categories were well correlated with each other and, heheg, principal eigenvector. Statements
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Table 12: Each of the six working categories were subjected to a retibesis principal compo-
nent analysis. The outcome of that analysis (Column rPCégpssted that two categories might
be robust dimensions (PL), three were quite weak (WL) andoategory might have multiple di-
mensions (ML). Statements were systematically added oovethfrom the categories and a new
reduced basis PCA performed. The outcome of those resuitsif@® rPCAf) revealed robust di-
mensions. Some dimensions contained roughly the samenstatte as the working categories (BQ).
Others were formed from dissections of weak or multidimemsi categories (NF).

Working Category rPCAI Robust Dimension(s) rPCAf
Perceived Ability PL Perceived Ability BQ
Perceived Utility PL Perceived Utility BQ
Real-World Connections WL Real-World Connections BQ
Sophistication ML Sense-making NF
Expert Behaviors NF
Avoiding Novice Behaviors NF
Personal Interest WL Personal Interest BQ
Learning WL Avoiding Rote NF
PL — Properly loaded ML — Multiply loaded
WL — Weakly loaded NF — Newly formed

BQ — Better quality achieved by adding or removing statesent

were removed or added to strengthen weak categories Humsiiitain an interpretation similar
to the original working category. In the Learning categ@ayjumber of statements were removed
which changed the meaning of the category altogether. Oegay (Sophistication) appeared to
have several strong eigenvectors. This category was tisband, ultimately, it was split into three
robust dimensions. Table 12 summarizes the results of theceel basis PCA on the six working
categories and shows from which categories the robust diimes were formed. In Table 13, the
values used to quantify the robustness of each dimensjd)_nAE/N andR?) are reported.

Using this methodology, a total of eight practical and staally robust dimensions were uncov-
ered: (1) Perceived Ability, (2) Perceived Utility, (3) R&&lorld Connections, (4) Sense-making,
(5) Expert Behaviors, (6) Avoiding Novice Behaviors, (7y&mal Interest and (8) Avoiding Rote.
As the titles of the dimensions suggest, these dimensioagcterize students’ feeling towards
learning and using computation as well as a self-evaluaifdtheir abilities. Students’ scores on
each of these dimensions are useful to understand theirdemci with using computation (Per-
ceived Ability), their reasons for and interests in leagntomputation (Perceived Utility, Real-

World Connections and Personal Interests), how they cteiae the &orts they put forth when
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Table 13: For each of the eight robust COMPASS dimensions, we reperage linear correlation
component between all the statemends (he average linear correlation component between all
the statements and the first eigenvector for the subbgethé diference between the fraction of
the variance attributed to the first to second eigenvectansisrthe average fractional drop between
subsequent eigenvectors normalized by number of statermetiie subse{4E|/N) and the fraction

of the variance accounted for by a linear fit to the scR®, (the nearly linear dropfbin variance
attributed to the rest of the eigenvectors.

COMPASS Dimension r | |AE|/N R?

Perceived Ability 0.26| 0.30| 0.16 | 0.98
Perceived Utility 0.27| 0.35| 0.14 | 0.96
Real-World Connections | 0.35| 0.43| 0.11 | 0.99
Sense-making 0.32] 0.44| 0.12 | 0.97
Expert Behaviors 0.33| 0.40| 0.16 | 0.98
Avoiding Novice Behaviorg 0.34| 0.41| 0.16 | 0.96
Personal Interest 0.39| 0.44| 0.18 | 0.99
Avoiding Rote 0.35| 0.50| 0.10 | 0.97

learning computation (Sense-making and Avoiding Rote) aseélf-evaluation of their own apti-

tude with computation (Expert Behaviors and Avoiding Nevigehaviors). This purpose is quite
different from the intent of other surveys in science whose tibgscinclude what it means to have
acquired knowledge in science and how that knowledge argdriB1, 32]. A more detailed discus-
sion of each dimension is reserved for Appendix B.2 and theesglots for each of the dimensions

(the visual representation of their robustness) appeaiga8€ in Appendix D.
5.6.1 Measurements across Dimensions

Overall scores by non-honors mechanics students weredesgble after instruction; however,
scores on COMPASS dimensions might improve, fall or remaeé dame. Favorable scores on
dimensions for which students evaluated their own confidewith using computation (Perceived
Ability) or reported performing expert-like actions (Exp&ehaviors) remained steady after in-
struction. Based on their favorable scores, students appgamefer less #ort devoted to making
sense of problems (Sense-making) after instruction, &y thported the samedfert devoted to
rote memorization (Avoiding Rote). Their interest in cortgiion appeared to drop after instruction
(Perceived Utility, Real-World Connections and Persontgrest). These results are summarized in

Table 14. We can also visualize changes to scores on COMPg&Sisions using arrow diagrams
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Table 14: Pre- and post-instruction COMPASS scores are reported dorhonors studentd\(

= 316) who took an introductory mechanics course. Scoresegrarted with a 95% confidence
interval estimated from théstatistic in parentheses. Overall COMPASS scores for hmrers
mechanics students were less favorable. Favorable psistiition scores decreased on most di-
mensions but remained the same within error on PerceivelibyAkixpert Behaviors and Avoiding
Rote. Unfavorable post-instruction scores increased bdiraensions except for Avoiding Rote
which remained the same within error.

PRE POST
Dimension Favorable Unfavorable Favorable Unfavorable
Overall 63 (2) 12 (1) 59 (2) 18 (2)
Perceived Ability 57 (2) 14 (2) 57 (3) 19 (2)
Perceived Utility 59 (2) 13 (1) 52 (3) 22 (2)
Real-World Connections 77 (2) 8 (1) 69 (3) 13 (2)
Sense-making 71 (2) 8 (1) 57 (3) 16 (2)
Expert Behaviors 53 (2) 16 (2) 55 (3) 23 (2)
Avoiding Novice Behaviorg 67 (2) 12 (2) 61 (3) 21 (2)
Personal Interest 64 (3) 12 (2) 57 (3) 21 (3)
Avoiding Rote 57 (3) 18 (2) 58 (3) 19 (2)

to follow the shift in the mean (Fig. 22).

5.7 Performance by Different Populations

We have so far limited discussion to results from non-homstusients who took an introductory
calculus-based mechanics course at Georgia Tech. The CGBIMas also given to honors in-
troductory calculus-based mechanics students, non-Bamwoductory calculus-based electromag-
netism (E&M) students at Georgia Tech and introductory Wak:based mechanics students at
North Carolina State University (NCSU). All courses taughmputation as part of the labora-
tory activities [135]; students did not solve computationemework problems (Ch. 4) either in
the E&M course or in the course taught at NCSU. The populatitighlight diferences due to
self-identification (honors mechanics), instruction (Ega&hd entirely diferent student populations

(NCSU).
5.7.1 Honors Mechanics Students at Georgia Tech

The COMPASS was administered to a small number of honorestsdvho were enrolled in a
separate introductory mechanics section. After the filgeprocess, 36 honors students took the

pre-instruction COMPASS, 21 took both the pre- and podt-tdhis section met with the same
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Figure 22: [Color] - The shift of students’ percentage of favorable amdavorable to subsets
of COMPASS statements is shown for non-honors studentagadm introductory calculus-based
mechanics course which uses computer modeling homewornkdeSts tend to shift away from
expert opinion on all dimensions though three were notsiiedilly significant (Perceived Ability,
Expert Behavior and Avoiding Rote). Only scores from stuslevho took both the pre- and post-
instruction COMPASS were used.

lecture section as a much larger non-honors section. Hatiodents received identical instruction
in computation and solved the same computational homewatk (€h. 4) as their non-honors
classmates. In fact, coursework, including exams, acrbfiseamechanics sections was identical.
Yet, honors students had more favorable responses to theR&SH after instruction than their
non-honors classmates.

COMPASS scores both overall and on individual dimensionseapto be fiected by self-
identification. Honors students achieved pre-instrucpencent favorable scores overall and on
each dimension were statistically indistinguishable leetvnon-honors and honors students. After
instruction, their post-instruction scores were more falte than their non-honors classmates on
all dimensions except Avoiding Novice Behaviors and AvogiRote, which were identical to non-
honors students. After instruction, honors students apgea exhibit more confidence (Perceived
Ability) and report to perform more expert-like behavioEsxpert Behaviors). However, this does
not mean that honors students abandoned novice like bebasares on the Avoiding Novice Be-

haviors dimension remained the same. Honors studentsairadttheir level of interest (Perceived

Utility, Real-World Connections and Personal Interest)l #me dfort they will put forth to learn
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Figure 23: [Color] - The shift of students’ percentage of favorable amfavorable to subsets of
COMPASS statements is shown for honors students takingtandirctory calculus-based mechan-
ics course which uses computer modeling homework. Honadests maintained their scores on
all dimensions though on two dimensions were significantbyerfavorable (Perceived Ability and
Expert Behaviors). Only scores from students who took ble¢hpre- and post-instruction COM-
PASS were used.
computation by making sense of problems or memorizing bg (8ense-making and Avoiding
Rote). These shifts are summarized in Fig. 23

Such diterences between non-honors and honors students did retarésresult of dierences
between instructors or student demographics. Honors stsideere taught in the same section by
the same instructor as some non-honors students. A compdrisinstructor, using a Kruskall-
Wallis test [125], indicated no fference in the mean percent favorable and unfavorable scores
among non-honors students in the three sections. We haeevelbisthat some demographic factors
influence COMPASS scores (Fig. 20). However, honors stgdeadl incoming GPAs and outgo-
ing course grades that were statistically indistinguigdtom non-honors students. Furthermore,
we observed no association between choice of major or titzgg8n and honors status using a
contingency table analysis [155, 156]. The honors sectias @omposed of essentially the same
(academically) student population as other sections.pibssible that the more favorable responses
by honor students on the post-instruction COMPASS migm$tem their personal identification

as honor students, additional research experience orapgrisome other experience outside the

classroom. Interviews with honors and non-honors studgmisid be carried out to determine the
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source of the dferences in epistemology.
5.7.2 Electromagnetism Students at Georgia Tech

We administered the COMPASS to two sections of noon-honareductory E&M students at
Georgia Tech taught by two ftierent instructors to a total of 364 students. E&M studentpee
rience with computation was limited to the laboratory; tlsyved no computational homework
problems (Ch. 4). The percentage of faithful E&M respondemas much lower than mechanics
studentsi~20% of students did not read the statements carefully. Aftefiltering process, we were
left with 293 students who took the pre-instruction COMPA3&L who took the post-instruction
and 238 who responded to both.

The COMPASS is a valid instrument for Georgia Tech E&M stugdemost COMPASS dimen-
sions remained robust for this population. A reduced baGia Bf E&M students pre-instruction
COMPASS responses showed that most of COMPASS dimensiagsiloed in Sec. 5.6 were still
robust. The values of the metrics used to measure robus(uﬁé_sA|E|/N andR?) were somewhat
different from those presented in Table 13, but still indicatdalistness for six dimensions. The
Personal Interest and Avoiding Rote dimensions appeassdrédust than they did for mechanics
students. Statements in these dimensions could be relvesiie, perhaps, reworded and retested.
However, as we note in Sec. 5.7.3, it is more important toecbliesponses from students with
varying backgrounds before constructing dimensions. eSplats that summarize these results are
reserved for Appendix D (Fig. 32).

It appears that the fierences in instruction, namely, mechanics students’ ctatipnal home-
work problems (Ch. 4), might have a small negatiffeet on some COMPASS dimensional scores
and no &ect on others. E&M students mean overall COMPASS scores statistically indistin-
guishable from Georgia Tech non-honors mechanics stude&fsl students earned pre-instruction
favorable and unfavorable COMPASS scores of 63.6% and 1@&%bold square, Fig. 24(a)). Af-
ter instruction, mean COMPASS scores were less exper{iliéegbold square, Fig. 24(b)), 57.8%
and 18.6% for percentage favorable and unfavorable ragelyctThe shift of E&M students’ mean
scores was significant. E&M students’ distribution of CONMEFE\scores appear quite similar their

mechanics colleagues before and after instruction (Fig. Béth had a number of students with
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Figure 24: [Color] - Students’ N = 238) percentage of favorable and unfavorable responses to
COMPASS statements given (a) before and (b) after instmdti a introductory calculus-based
electromagnetism course at Georgia Tech are plotted (fagk The distribution of responses in
both figures is highlighted using a colored contour map ofpeentage of students lying at each
‘X’. The mean percentages for both pre- and post-instrac@@MPASS results are shown by a

bold red square.

expert-like responses before instruction, peaked ardabd 76 for E&M students, and a long
sparse tail of students with more novice-like responseas. #(a)). On the post-instruction COM-
PASS, E&M students have appeared to split into two groupdgcamdchanics students. For E&M
students, one peaked aroutid®, 80 and the other was closer to the meéls, 60. The shift in
percentage of favorable responses for each scored statém@npre to post are summarized by
Fig. 28 in Appendix D.

Dimensional scores for E&M students generally became ksséble. Post-instruction favor-
able scores on three dimensions (Perceived Ability, Expenaviors and Avoiding Rote) remained
at their pre-instruction levels. One the other five dimensjd&&M students’ achieved lower favor-
able scores. Post-instruction unfavorable scores welehagross all dimensions expect Perceived
Ability, Real-World Connections and Avoiding Rote whichmained the same after instruction.
E&M students’ performance is summarized by Table 15.

Most E&M students’ dimensional scores were statisticailiyilar to those achieved by Geor-

gia Tech mechanics students both before and after ingirucilowever, Georgia Tech mechanics
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Table 15: Pre- and post-instruction COMPASS scores are reporteddiothonors studentdN(=
238) who took an introductory electromagnetism (E&M) ceuat Georgia Tech. Scores are re-
ported with a 95% confidence interval estimated fromtts&tistic in parentheses. Overall COM-
PASS scores for E&M students were less favorable. Favomideinstruction scores decreased on
most dimensions but remained the same within error on Rede\bility, Expert Behaviors and
Avoiding Rote. Unfavorable post-instruction scores iased on most dimensions but remained the
same with error on Perceived Ability, Real-World Conneati@nd Avoiding Rote.

PRE POST
Dimension Favorable Unfavorable Favorable Unfavorable
Overall 64 (2) 13 (1) 58 (3) 19 (2)
Perceived Ability 55 (3) 18 (2) 55 (3) 21 (2)
Perceived Utility 57 (3) 16 (2) 50 (3) 22 (3)
Real-World Connections 74 (3) 9(2) 66 (4) 13 (3)
Sense-making 69 (3) 10 (2) 54 (4) 17 (3)
Expert Behaviors 51 (3) 21 (3) 53 (4) 26 (3)
Avoiding Novice Behaviorg 69 (3) 12 (2) 60 (3) 21 (3)
Personal Interest 61 (4) 16 (3) 53 (4) 22 (3)
Avoiding Rote 61 (3) 15(2) 59 (4) 17 (3)

students had a significantly larger shift than E&M studemtghe unfavorable scores for three di-
mensions (Perceived Ability, Personal Interest and Expetaviors). The absence of a positive
effect due to mechanics students additional instruction ingegation might not be surprising given
considering the nature of that instruction; mechanicsesttel computational homework is prescrip-
tive rather than experiential. Generally speaking, imptbfavorable scores on instruments such as
the COMPASS have beerffected by content delivery methods such as facilitating espgal
learning [53, 32].

While students’ performance between E&M and mechanicsesiigdis fairly similar, the in-
fluences on E&M students’ COMPASS scores afféedent from their mechanics classmates. This
is likely because the population of students taking sopherevel E&M is somewhat dlierent.
Nearly all students at Georgia Tech are required to takedotory calculus-based mechanics.
By contrast, introductory E&M is only required by some eragiring departments; although, many
non-science students choose to take it as their secondedwgience credit. Furthermore, intro-
ductory E&M is typically a sophomore-level course. Freshmnstudents taking this course have
typically tested out of introductory mechanics and are Uggé&rong students. A contingency table

analysis (Appendix E.2) confirms that the distributions &MEstudents by major and classification
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are statistically dferent from mechanics course. The overall GPA of studentadgake E&M is
statistically indistinguishable from mechanics studeitewever, the mean outgoing course grade
for E&M is lower.

An ANOVA of pre-instruction COMPASS performance by E&M samds found scores were
strongly dependent on a student’s choice of major and, teseteextent, on her overall GPA. This
is different from mechanics students in which major was the onlyefect (Sec. 5.5.1). Students
taking E&M might not have lower GPAs, but their GPAs are maoidi¢ative of their performance at
Georgia Tech. Many students taking introductory mechasocsses are freshman with a significant
amount of Advanced Placement credit which is calculatenl timtir GPA. COMPASS performance
after instruction was found to depend strongly on pre-urtdion scores, but course grade, major,
GPA and classification, in that order, were also significaatmeffects. Classification and GPA are
confounded variables indicating that GPA and classificatice interrelated. Indeed, we find that
freshman taking E&M tend to have higher GPAs than other stisdend seniors tend to have lower
ones. Hence, course grade and college are the two main daphigfects on post-instruction
COMPASS performance. Students who perform better in thesecand those in majoring in com-
puting tend to have higher post-instruction scores. Thdse perform poorly and those majoring
in the sciences tend to have lower post-instruction scdneis.is not very diferent from mechanics
students; the trend of students’ performance by major wée gimilar (Fig. 20(d)) and students
who performed extremely well in the mechanics courses apdda maintain their pre-instruction
COMPASS scores (Fig. 20(b)). These results are summarigeatrbw diagrams (Fig. 35) in
Appendix D.

5.7.3 Mechanics Students at North Carolina State Universjt

At North Carolina State University (NCSU), a large enrolithengineering university, the COM-
PASS was administered to two sections of introductory ¢aszbased mechanics sections taught by
two different instructors to a total of 243 students. NCSU mechaticients experience with com-
putation was limited to the laboratory. After filtering rdug 20% of the respondents out, we were
left with 198 students who took the pre-instruction COMPAS&0 who took the post-instruction

and 164 who took both.
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Figure 25: [Color] - Students’ N = 164) percentage of favorable and unfavorable responses to
COMPASS statements given (a) before and (b) after instmdti a introductory calculus-based
mechanics course at NCSU are plotted (black x’s). The Higidn of responses in both figures is
highlighted using a colored contour map of the percentagstuafents lying at each ‘x’. The mean
percentages for both pre- and post-instruction COMPAS$tseare shown by a bold red square.

The COMPASS appears to still be a valid overall instrumentcfimparing NCSU students’
thoughts on computation. However, NCSU students selecteittal responses more often than
Georgia Tech students on almost all statements. On somagioms with a significant mismatch in
the number of neutral responses between NCSU and GeordiesTigents (e.g., Personal Interest,
Expert Behaviors and Avoiding Rote), the dimensions werakiyeloaded (Fig. 33 in Appendix
D). The weak loading of certain COMPASS dimensions mighigdpinto question their robustness.
However, this predilection to select neutral responseskadyl a reflection of the dierences in
the conservatism of the two populations of students [15Q]).1Brguably, the best methodology
for uncovering these dimensions is using data collectenh faovariety of students with fiering
backgrounds and experiences. A check of the robustnessmandions using all available data
(Fig. 34) found that robustness was generally preserved.

NCSU mechanics students’ mean overall COMPASS scores e&sddvorable than non-honors
mechanics students at Georgia Tech, possibly because déragadiferences. NCSU students

earned pre-instruction favorable and unfavorable COMP#&Bes of 57.1% and 18.9% (bold red

106



square in Fig. 25(a)). After instruction, mean COMPASS ssawere significantly less expert-
like (bold red square, Fig. 25(b)), 51.1% and 24.5% for patiange favorable and unfavorable
respectively. The distribution of NCSU scores appear to beemsparsely populated than those of
their Georgia Tech colleagues both before and after indruc This might be anféect of fewer
students responding to the survey or, perhaps, less divesponses. Additional data must be
collected to investigate this observation. The small pedpeilar shift of the distribution away
from the boundary line in Figs. 25(a) & 25(b) indicated th&$lU mechanics students’ responses
tended to be less polarized than responses from Georgiastedénts. However, some structural
elements of the shift in post-instruction distributionssetved for both Georgia Tech mechanics
students (Fig. 19(b)) and E&M students (Fig. 24(b)) appeéme NCSU students. Two peaks of
students appear in Fig. 25(a) n€ér 73 and(17, 63. The more favorable of these peaks is similar
to those observed in Georgia Tech, but the other appearsrtofsbm NCSU students’ responding
with more neutrals than Georgia Tech students. After icin, three peaks are visible in Fig.
25(b); a favorable one (ne&t3, 73) and two less favorable ones. One of the less favorable peaks
(near(20, 56) is similar to those observed in Georgia Tech post-inswactlata. The other (near
(10, 56) has significantly more neutral responses. The shift inggeege of favorable responses for
each scored statement from pre to post are summarized b2%ig.Appendix D. NCSU students’
dimensional scores tended to be significantly less favertii@n Georgia Tech mechanics students
both before and after instruction. On all dimensions expecteived Utility, NCSU students have
less expert-like responses than Georgia Tech students ewowstudents from NCSU have more
expert-like responses to statements concerning theyudilitomputation both on the pre- and post-
instruction COMPASS. Their performance is summarized byler46.

The less favorable performance by NCSU students might stemthe diferences in academic
preparation between students at Georgia Tech and those SityNEavorable scores on epistemo-
logical instruments for science scale with preparationTiiE8l courses [32, 14]. In a recent study
of E&M students [36], the mean SAT reasoning test score of N@®idents was near 1240 while
Georgia Tech students’ mean SAT score was closer to 1340le\Wbi a direct measure of féker-
ences in their preparation in STEM courses, these resdtsugygestive. Moreover, theflidirences

in COMPASS performance are likely not a result of instruaorcontent delivery methods. Both
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Table 16: Pre- and post-instruction COMPASS scores are reportediddests N = 168) who took
an introductory mechanics course at NCSU. Scores are egpaith a 95% confidence interval es-
timated from the-statistic in parentheses. Overall COMPASS scores for N@®thanics students
were less favorable. Favorable post-instruction scoras Vesver for Avoiding Novice Behavior.
and unfavorable scores were lower for Perceived Abilityyseemaking, Avoiding Novice Behavior.
All other dimensional scores remained the same within error

PRE POST
Dimension Favorable Unfavorable Favorable Unfavorable
Overall 57 (2) 19 (2) 51 (3) 25 (2)
Perceived Ability 45 (3) 14 (2) 44(3) 18 (2)
Perceived Utility 65 (3) 10 (2) 62 (4) 11 (2)
Real-World Connections 57 (4) 7(2) 52 (4) 10 (3)
Sense-making 37 (3) 10 (2) 36 (3) 13 (2)
Expert Behaviors 39 (3) 14 (2) 41 (3) 14 (2)
Avoiding Novice Behaviorg 60 (3) 20 (3) 43 (4) 28 (4)
Personal Interest 47 (3) 8(2) 45 (3) 9(2)
Avoiding Rote 47 (3) 7(2) 45 (4) 8(2)

mechanics sections were taught by instructors with as muatoce experience teaching this course
than Georgia Tech mechanics instructors and both usedatiiex engagement techniques in their
classes [157]. Theseftkrences are also not a results dfeliences in student demographics; for
example, fewer engineering majors at NCSU. The mechanigse@t NCSU predominantly serves
freshman and sophomore engineering majors and to a legset sgience (including computer sci-
ence) majors. A contingency table analysis (Appendix EaRfioms that both the distribution of
majors and the classifications of students in the NCSU méchaourse are statistically indistin-
guishable from Georgia Tech mechanics courses. The ow&PAllof students taking mechanics at
NCSU was unavailable.

While mechanics students’ scores at NCSU were less fawotabin their Georgia Tech col-
leagues, the influences on those scores were identicaingtraetion COMPASS scores at NCSU
were found to depend strongly on a students’ choice of maorguan ANOVA. This result was
similar to Georgia Tech mechanics students in which maja tlva only main ffect (Sec. 5.5.1).
However, computing students at NCSU have the least favenadsdponses; students in engineer-
ing and the sciences perform equally well and respond mewdhly the computing students on
the pre-test. Post-instruction performance is most gjosedl to pre-instruction performance; but

choice of major also plays a role. These influences are gintias to those for Georgia Tech
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mechanics students. An insignificant influence on postiogbon COMPASS scores is students’
performance in the course as it was for Georgia Tech’s méchatudents, but NCSU students who
earn the highest scores in the course are likely to maintedin bverall COMPASS score just as

Georgia Tech students. These results are summarized by dimgrams (Fig. 36) in Appendix D.

5.8 Epistemological Signaturesin Computational Modeling Performance

Student epistemology and performance in science are éfaged [112, 113] and suchfects are
measurable on attitudinal instruments for science [49].iI8Mfifferences in students’ COMPASS
scores were not observed between non-honors mechanics&dttidents at Georgia Tech, we
did find differences between non-honors mechanics students who dutigessmpleted a final
proctored evaluation assignment (Sec. 4.4) and those whe weble to do so. Students who
successfully solved the assignment had more favorablalbyee- and post-instruction COMPASS
scores than their unsuccessful classmates. Furthermareessful students had more favorable
responses on nearly all dimensions both pre and post. Scorége Avoiding Rote dimension on
the pre-test and Sense-making dimension on the post-testimgistinguishable between successful
and unsuccessful students.

Students who had more expert-like attitudes were moreylit@lsolve the proctored assign-
ment, likely, because they prepared for the assignméfardntly from unsuccessful students. As
mentioned in Sec. 4.4, students who solved computatiomakhmrk problems successfully might
attempt them individually, work with others or share saos. However, on the proctored assign-
ment, students must faithfully execute this problem withemy outside assistance. Students must
prepare for solving the problem on the proctored assignimgptacticing problems like it on their
homework. Diferences in students’ COMPASS scores, dissected in thisendregin to unfold the

role that students’ attitudes towards computation migay joh their learning to use computation.

5.9 Possible Applications

With these preliminary results, we have raised a numbersokis including how self-identification,

instruction and academic preparation migkteat what students think about learning and using
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Table 17: Pre- and post-instruction COMPASS percentage favoraldeesare reported for non-
honors students who completed a final computational evalugfec. 4.4). Students were divided
into two groups, those that completed the assignment ssiotlgs(PassedN = 210) and those
who did not (FailedN = 129). Scores are reported with a 95% confidence intervahastd from

the t-statistic in parentheses. Students who passed the dealledrned more favorable overall
scores on both the pre- and post-test than students who tjhes. Passing students also had more
favorable scores on nearly all dimensions on both tests."Awwiding Rote” on the pre-test and
“Sense-making” on the post-test, scores were indistimgiite.

Passed Failed

Dimension PRE POST PRE POST
Overall 66 (2) 61(3)| 58(3) 55(4)
Perceived Ability 60 (3) 59(3)| 50(4) 54(5)
Perceived Utility 62(3) 55(4)| 54@4) 444
Real-World Connections | 79 (3) 72(4)| 74 (4) 64 (5)
Sense-making 77(3) 58(4)| 67(4) 54(6)
Expert Behaviors 56 (3) 57(4)| 47(4) 51(5
Avoiding Novice Behaviors 69 (3) 63 (3)| 64 (4) 56 (4)
Personal Interest 66 (3) 60(4)| 61(4) 49(6)
Avoiding Rote 59(4) 61(4)| 54(5) 53(5

computation. Such questions might be answered in contralieclassroom studies in which the
COMPASS is used as the common instrument for researcheissésshow students learn com-
putation and what about learning computation they valueis Work might be foundational; for
example, making attempts to understand how self-identiificaaffects computational skills and
contrasting that with reported attitudes. The COMPASS, wessaarch tool, might also be used in
more practical studies; carefully unfolding what elemesftinstruction or student background in
computation fect scores overall and onftirent dimensions. Furthermore, some might be inter-
ested in contrasting attitudes of students who learn caatipatin introductory courses with more
advanced (but still novice) computational students.

Use of the COMPASS is not limited to research; instructorghihuse the COMPASS in their
classes to help provide more customized learning oppaigsrfor their students. In a subject like
computation, many introductory students have no practigperience with it. However, it is likely
that students have already formed attitudes about leaitihgptructors teaching computation could
use the results from a pre-instruction COMPASS to identifidents with low interest or, largely,

novice-like attitudes. The instructor might provide attditl support or a more active learning
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environment for these students. In addition, COMPASS cailsd identify students with more
expert-like attitudes. After initial instruction, the gients could be challenged with sophisticated
tasks and problems.

Instructors might use post-instruction COMPASS resulidé¢ntify areas to improve content or
content delivery methods. For example, instructors migldr@ss issues related to the connection
of computation with the real scientific world by changing theus of activities to more practical
examples or framing the activity in terms of a design taskid&mts following a design task learn
to build and explore computational models in a manner thdifisrent from following prescribed
activities. While completing design tasks, students perfspend more time making sense of the
problems they have posed for themselves. Moreover, stsideoiions about their abilities would
be challenged as memorization of program statements ifficisat for solving these types of prob-

lems.

5.10 Concluding Remarks

Before any such applications are sought, the COMPASS mugtdted in a number of fierent
populations, its reliability determined and the robusgnekits dimensions fully understood. The
previous discussion has been based entirely on one sariiq@# feom three diferent courses at two
institutions with slightly dissimilar populations. We lewmot provided a measure of reliability that
is typical of such instruments. We have also raised quesadiout the robustness of dimensions of
the COMPASS in dferent populations.

The COMPASS appears to be valid in a number of courses anartding clear, but additional
testing is needed. Our conclusions about item validity veaseed on discussions with a few students
taking a second semester course with computation (Sec. Be3h validity, particularly for use
before instruction, depends on students with no compuialtiexperience interpreting statements
and wording in the same manner as experts. Furthermorenat islear if the usage of COMPASS
in courses in which computation is taught using closed cdatjmnal environments such as PhETs
[90] is appropriate.

We have not demonstrated the reliability of the survey toetttent that is needed to call it “re-

liable”. Typically, reliability measurements involve sstaetest scenario. However, we have shown
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that demographic influences on COMPASS scores are reagsoaadbiconsistent among several dif-
ferent populations (Secs. 5.5 & 5.7). Furthermore, we hisgeshown how that performance might
be dfected by academic preparation and a slightly more consesvabpulation (Sec. 5.7.3).

The robustness of COMPASS dimensions should be revisited @fore data have been col-
lected. The selection of COMPASS dimensions was done usi@Aon data from a single pop-
ulation in a single semester (Sec. 5.6). The robustnessnoé stimensions became questionable
when reliability was checked using the responses by stademin other populations (Secs. 5.7.2
& 5.7.3). Such issues need to be explored more fully afteitiatidl data have been collected. The
broad robustness of dimensions is key for comparing howestisdrom diferent populations think
about diferent aspects of learning computation.

While a number of dierent avenues for improving COMPASS are possible, itstyigi clear
from the preliminary measurements that have been made. OMRASS can provide additional
information (e.g., about anxiety, confidence and senseangako explain students’ performance
with using computation. The COMPASS adds another dimersiamderstanding, beyond simply
performance, for researchers and instructors looking fwane instruction for the next generation

of scientists and engineers.
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CHAPTER VI

CONCLUDING REMARKS

6.1 Summary

The purpose of the work presented in this thesis has beendndthe understanding of how novel
content reforms to introductory physics coursée@ student learning. In this work, we presented
three complementary studies: a comparison of studentpeafuce by students in a reformed and
a traditional course on well-known concept inventory (FGhe development and evaluation of
students’ computational knowledge in a large lecturersgtind the assessment of reform students’
attitudes about learning computation.

With regard to course comparison, we discussed the confdeaming; how the choice of
content, even within the same domain, c#élieet what students learn. Students taking a traditional
course outperformed reform students on the FCI, a measwanoéptual knowledge in mechanics.
We found that the practice which traditional students rexgbiwvas more congruent with the items
that appeared on the inventory. However, this inventory ogpresents a small slice of mechanics,
and only one class of problems. We raised questions aboubltef introductory physics for non-
majors. Specifically, should a physics course for engingestudents focus on particular topics in
physics (i.e., kinematics, constant force motion) or stiovg aim to introduce other ideas, methods
and tools (i.e., computation)?

As a reexamination of that role, we highlighted a particalawice of content, computation, in
the reform course to examine the possible benefits of tegeteéw methods for solving problems.
We presented the first large scale implementation of tegatdmputation to introductory physics
students using computational modeling homework and thedualuation of students’ computa-
tional skills in this setting. The majority of students watde to apply general numerical problem
solving methods to new problems with some success; howavarmber of students were unsuc-
cessful.

Success in science is related closely to how students grédpamselves during the course, how
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much dfort they put forth to learning new material and what type fébe. As suggested by work
in physics education, we examined the role that studentiti@es towards learning computation
might play in their learning. We developed the first tool teess students’ attitudes about learning
computation and, in doing so, discovered students’ havela minge of attitudes about computation
both before and after instruction. These attitudes tenddx tess expert-like after instruction, but
this can be fiected by self-identification and academic preparationthieéamore, performance on

the final proctored and time assignment correlated with extixe attitudes.

6.2 Future Research Directions

Two courses that as markedlyfidirent as those we discussed could be compared on a number of
different dimensions (qualitative energy problems, quaiviggiroblem solving, etc.). However,
such comparisons will tend to favor the class of studentstiize had practice that is more closely
aligned with the evaluation as we have observed in our work.

Future work should focus on developing best practices forgusew tools (computation) to
develop students’ qualitative understanding in physkhusir &ability to create physical and computa-
tional models of new systems and strengthen their genepllgm solving skills. Students taking
these courses are likely to become the next generation enfitslis and engineers. As such, they
will need a grasp of these tools as success in their profesdives will be increasingly defined by
using new tools such as computation. To this end, we proguse tavenues for future research:
engaging students in the modeling process early, attegfuiionderstand where students encounter
difficulties with using computation and how students attitudésence their abilities to learn and
use computation.

Computation can help students engage in the modeling @ottesskills necessary to become
practicing scientists and engineers. Engaging studeitssiprocess early in their academic careers
is crucial for their success in later coursework and thedfgssional work. However, computation
is absent from most of these courses, especially from thageare conceptual or algebra-based.
The work in this thesis has presented the use of computatioalculus-based physics courses for
engineering majors, but it is worth considering how comgiatemight be introduced at lower lev-

els. We are presently working to teach computation to stisderking a conceptual high school
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physics course. The challenge in doing this has been reglticenlevel of detailed syntax needed
to build highly visual computational models while presagrithe syntax that engages the model-
ing process (i.e., the initial conditions, force calcwatand momentum update). To this end, we
have developed and tested a new Python module [158] thatesdhe need for complicated pro-
gramming statements. Preliminary results from our pilgthhéchool section have been positive.
Students are capable of creating computational models efaod two dimensional motion with
constant and non-constant (i.e., turbulent drag) forcesurE work in this area will be focused on
embedding computation within the Arizona State modelingiculum [76, 71]. The curriculum
emphasizes the use of physical models (e.g., constantityetoadel) in a variety of representations
(e.g., graphical, analytic, etc.). We aim to introduce tredjction of motion using computation as
another representation. Through theffer¢s, we aim to introduce young students to the practice of
science and strengthen their problem solving toolbox feir ttuture work.

To aid in the &orts of teaching computation at all levels, studies to ustded why students
have trouble using computation and if successful studesmstransfer computational knowledge
to new domains and tasks should be pursued in parallel. We pastulated why the errors we
observed in programs written for the proctored assignmgpeared. However, think-aloud studies
in which students solve such problems using a computer @esgpary to put these errors in context.
Moreover, such studies might be used to test if students vakie learned computation can apply
these algorithms to a new task in the same way that reseasstitists do with their own programs.

The influence of students’ attitudes towards learning cdatfmn appear, in part, tafect their
success when using it. Additional work is needed to commatepreliminary work on the COM-
PASS. While the COMPASS has been validated for use at enjigeschools, its reliability has yet
to be determined. No traditional (test-retest) measurésraireliability have been made, but some
are planned for future semesters. Moreover, response® tGAMPASS have come solely from
students at two engineering universities. In the near é)twe plan to adminster the COMPASS to
introductory physics students at other large enrollmegireering universities (e.g., Purdue Uni-
versity) to compare to Georgia Tech and NCSU students. Thestness of COMPASS dimensions
should be revisited after more data have been collectethellohger term, interviews with students

at lower academic levels should be conducted as such ietes\are central to securing item validity
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across all instructional levels. Item validity of the COM®3, particularly for use before compu-
tational instruction, depends on students with no comjmurtak experience interpreting statements

and wording in the same manner as experts.

6.3 Final Remarks

It is the goal of many reforms in physics education to devsloplents into flexible problem solvers
while exploring the practice of science. Yet, the developir@ generalizable problem solving
skills are relatively absent from most courses. Teaching centent such as computation along-
side physics can provide support develop the modeling psoadile also introducing students to
powerful tools for solving problems. By learning computati students learn the tools for doing
science while developing a qualitative understanding gsmal systems, exploring the generality
of physics principles and learning broadly applicable fobsolving methods. The acquisition of

these skills are necessary to develop' 2&éntury scientists and engineers.
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APPENDIX A

MORE DETAILS ON THE EVALUATION CODES

The codes shown in Table 7 were developed empirically. Theguture followed an iterative-design
approach. We reviewed student work for common errors anse@\a rough coding scheme. We
then tested the scheme on a new set of student submittecapregThe scheme was refined and
re-tested. This iterative procedure was repeated sevsras tuntil we captured the majority of

students’ mistakes. Each code is explained in detail below.

A.1 Usingthe correct given values (1 C) Codes

We reviewed the variables in each student’'s program. Thauttefalues had to be updated with
the values given in the problem statement in the partialm@eted program. We present the codes
used to categorize each student’s program with respecettifging and updating the appropriate

initial conditions for their realization.

IC1 — Student used all the correct given values from gradingase. A student must replace the
values of all the variables (mass, position, and veloaitigraction constark and the exponent in
the force lawn in F = kr") with those given in thgrading case This code excluded the integration
time. It was intended that the larger mass object was to remiaits location. This was made
explicit in the problem statement; the initial positi¢s 4,0y m and velocity{0, 0,0) m/s of the
larger mass of object were given in the problem statemeat) though these same values appeared

in the partially written program.

IC2 — Student used all the correct given values from test case A student must replace the
values of all the variables (mass, position, and veloaditigraction constark and the exponent in
the force lawn in F = kr") with those given in theest case This code excluded the integration

time. It was intended that the larger mass object was to reatats location (See IC1).
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IC3 — Student used the correct integration time from either e grading case or test case.
A student must replace the default integration time (1 shlie values given in the case with
which they intended to work (grading or test). A student whged initial conditions was given
an dlirmative on this code if the majority of their initial conditis were from the same case as the

integration time.

IC4 — Student used mixed initial conditions. A student who used some but not all of the initial
conditions from any of the cases (default, test, or gradwa3 given an fiirmative on this code.

This code excluded the integration time.

IC5 — Students confused the exponents on the units the exparmteof k (interaction constant).
Many students incorrectly thought the exponent on the lengit of the interaction constant was
the scientific notation exponent for the interaction comistiself. For example, a student thought

k = 0.1 Nm® meantk = 100 rather thaik = 0.1 Newton times meters cuhed

A.2 Implementing the force calculation (FC) Codes

We reviewed how the students employed the force calculatigarithm in each of the programs
written for the proctored assignment. The partially writfrogram given to the students left out all
statements related to the force calculation. Students regrered to fill in this procedure using the
appropriate VPython syntax. We present the codes useddgarite each student’s program with

respect to computing the vector force acting on the low-noagsct.

FC1 -The force calculation was correct. A student must compute the separation vector, its mag-
nitude, its unit vector, the magnitude of the force and tretareforce correctly. Each of these steps
may be combined as long as the final result computes the viecte acting on the less massive

particle at each instant. These steps must all appear irutnenical integration loop.

FC2 — The force calculation was incorrect, but the calculatn procedure was evident. In the
numerical integration loop, the student must perform atfmwsivector subtraction, a calculation of

the force magnitude and some attempt at combining magnitttteunit vector (any unit vector

118



was acceptable). If a student treated the problem using eoemis and had some force which is a
vector, it was coded as evident. If any part of the calcufatias performed outside the loop, it was

coded asotevident.

FC3 — The student attempted to raise the separation vectorr] to a power. Students who

raised the separation vector to a power generated a VPyRoapion error:

unsupported operand type(s) for ** or pow(): ’vector’ and ’'int’.
This error told them that VPython cannot raise a vector tovegpoas it is a mathematically impos-

sible operation.

FC4 — The direction of the force was reversed. Students had to assign the correct unit vector
and sign to the force depending on whether their force weacsite or repulsive. This code was not
used if the student calculated the force as a magnitude @ibgdr to a power, or invented a unit
vector (e.g.{1,0,0y). Visual feedback (i.e., the lower mass particle flyirffjto infinity) indicated

a simple sign mistake.

FC5 — Student had some other force direction confusion. Some students used vectors other
than? or —P to computeF. Other students computed the force as a magnitude and thiiplied
it by an “invented” unit vector (e.g¢{1, 0,0), p). Both of these errors were given affianative for

this code.

A.3 Updating with the Newton’s second law (SL) Codes

We reviewed how the students employed the momentum updadacin of the programs written
for the proctored assignment. The partially written progmiven to the students left out the one
line of code necessary to update the momentum. Studentsreariged to fill in this line using the
appropriate VPython syntax. We present the codes useddgarie each student’s program with

respect to updating the momentum of the low-mass particle.

SL1 - Newton’s second law was correct. Correct Newton’s second law meant that it was “correct

as a physics principle” and also that it appeared “in the tgoftam”. This meant thapfinal =
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pinitial + Fnet*deltat alone in aloop did not fall under “correct Newton’s secona’ldt is

an incorrect update form.

SL2 — Newton’s second law was incorrect but in form that upda¢s. Newton’'s second law
updates the momentum, but not necessarily correctly., (@.g. p + Fnet,p = p + Fnet/dt,

pf = p + Fnet,etc.)

SL3 - Newton’s second law was incorrect and the student attgmied to update it with a scalar
force. Some students computed the magnitude of the force actingeoparticle and then used

this magnitude to update the momentum. Students who diddtsied a VPython exception error:

unsupported operand type(s) for +: ’vector’ and ’'int
This might have lead some to invent unit vectors in the momranipdate, for example,

p = p + vector(Fmag,0,0)*dtandp = p + Fmag*vector(l/sqrt2,1/sqrt2,0)*dt.

SL4 — Student created a new variable forgs. In computational modeling, the equal sign in a
update line means “add and replace”. Some students used aynewol for the final momentum
(e.g. pfinal) and then replaced the momentum in the next step (e.g. pfinal). Others only

did the former, that is, they did not replace the momenturh Wst updated value.

A.4 Other Codes

Two common errors were not included in the above codes bedaey do not reflect errors in the
procedure of modeling the motion of the low-mass particlee pkesent two miscellaneous codes

which were common enough to consider relevant.

O1 - Student attempted to update force, momentum or positiofior the massive particle. The

massive particle was intended to remain in place.

02 — Student did not attempt the problem. Some students uploaded plain text files to the receive

bonus credit for uploading their code. We assumed they didtt@empt solving the problem.
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APPENDIX B

ADDITIONAL DETAILS ABOUT COMPASS DIMENSIONS

In this appendix, we provide full descriptions of workingegories and emergent dimensions al-

luded to in Ch. 5.

B.1 Thelnitial Working Categories

The descriptions listed below were used by the rater to seleich statements should be classified
in which category. The descriptions are short and somewioaidb This was by design to give the
raters some flexibility in interpretation before discugdime results. Furthermore, some descriptions
have additional commentary about splitting categoriess Was not done until after the check of

category robustness described in Sec. 5.6.

Perceived Ability Statements placed in this category probe how comfortabtiests are with us-
ing computational models. It is possible that there mightverlap with statements in the Personal
Interest category, we should check for this. Statementshiclwstudents are asked directly about

their skill with using computational models are of partainterest.

Perceived Utility Statements placed in this category probe how useful stadhirnk computa-
tion is. This could include how well computational modelsclébe phenomena or how they see
computation fitting in to their future work. Statements inigthstudents are asked directly about

the utility of computation are of particular interest.

Real-World Connections Statements selected for this categoffepexplanations of the utility of
computation. In particular, statements should ask stsdambut its use in the professional world.
Of particular interest are statements in which studentasked specifically about how computation

connects to real-world phenomena.
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Sophistication Statements selected for this category contrast studettisewpert with respect to
usage of computation. Statements should ask students abweuhey use computation and when
it is appropriate to do so. Statements in which students skedadirectly about their usage of

computation outside of class or their behaviors when usimypuitation are of particular interest.

Personal Interest Statements placed in this category are concerned with mgideersonal feel-
ings towards not only computation but also learning comparta The two ideas might be split
up later. Statements in which students must judge whetlegrhihve a vested interest in learning

computation are noteworthy.

Learning Statements placed in this category probe how students ¢sanputation. Of partic-
ular interest are the particular actions they take to leanm to write and develop computational

modeling programs.

B.2 TheRobust Dimensions

After checking the robustness of the original six categoreenumber of changes were introduced
(Sec. 5.6). Ultimately, statements appeared to have onem af eight statistically robust dimen-
sions. After reviewing the statements in each dimensiom foHowing descriptions were written
as the to described the common thread which appeared tdnktatements together. Some (e.g.,
Perceived Ability) were obvious because they were quitelairto the original categories. Others

(e.g, Avoiding Rote) had changed enough that the originsttilgions only weakly applied.

Perceived Ability Statements with this dimension are those on which studeititenake an as-
sessment of their own skills. This dimension is concerndti vow confident students feel about
using or learning computation. Statements that may be dieclicould ask students to make an
assessment of others ability to use or learn computationor&hble responses to these statements

indicate that students are confident in their abilities sorleor use computation.

Perceived Utility Statements with this dimension are those on which studeataae the utility

of learning computation for their future work or the utiliogf computation itself for helping the
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to understand science. This dimension does not make adfistinbetween these two ferent
aspects of utility; robustness is sacrificed if this is dddewever, it is relatively clear from reading
individual statements which statements imply which asgeatorable responses to these statements

indicate that students believe their is some utility toméag or using computation.

Real-World Connections Statements with this dimension connect students’ use opotetion

to their future career or the use computation in the “ReallWWaf science and engineering. This
dimension does not make a distinction between these twa&sas robustness is sacrificed when
statements are extracted. However, it is clear which seésnprobe which aspect. Favorable
responses to these statements indicate that studentswgemimputation is crucially connected to

science and engineering practice.

Sense-making Statements with this dimension describe tifer¢which students put forth to make
sense of a computational model or the physical model thasitiibes. In particular, many of the
statements asks students to evaluate how important to therthey understand how computational
models are constructed and how the physical model connedts Favorable responses to these
statements indicate that it is important to students to rgtded how computational models are

constructed from physical descriptions.

Expert Behaviors Statements with this dimension contrast what experts dowbang or devel-

oping computational models to what students might do. Tingedsion probes if students perform
different behaviors which experts use to construct computdtinodels of physical systems. Favor-
able responses to these statements indicate that studgsmtsatiopted expert-like behaviors when

using computation.

Avoiding Novice Behaviors Statements with this dimension also contrast what novitie or

do when using or developing computational models to expleotsghts and actions. This dimension
does not make the distinction between thoughts and actitwiisg so sacrifices robustness. Favor-
able responses to these statements indicate that stuldiektalbout computation or use computation

in a more expert-like manner by avoiding novice like thoggiit actions.
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Personal Interest Statements with dimension probe students own interesefoning computa-
tion. This dimension has a variety offlirent statements which either ask directly about students
interest in computation or do so somewhat tangentially. oFeMe responses to these statements

indicate that students have some personal interest inifgacomputation.

Avoiding Rote Statements with this dimension describe how students E@mputation. In par-
ticular, most of these statements asked students if itfic@nt to simply memorize details about
computation to learn it. Favorable responses to thesenstaiis indicate that students avoid learning

by rote and that they might be trying to construct their owdenstanding of computation.
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APPENDIX C

COMPUTATIONAL MODELING ATTITUDINAL STUDENT
SURVEY (V2.3)

In this appendix, we provide all the statements from the mestnt version of the COMPASS,

along with the dimensions into which they were classified.

Real-World Connections
Avoiding Novice Behaviors

Perceived Ability

Perceived Utility
Sense-making
Expert Behaviors
Personal Interest

Not Scored

X | Avoiding Rote

(1) A significant problem in learning con

puter modeling is being able to memorize a

the information | need to know.

(2) When using a computer to solve a prqgb- X
lem, | try to decide what would be a reasgn-

able value for the answer.

(3) It is useful for me to solve lots of X
computer modeling problems when learning

computer modeling.

(4) After | solve a problem using a computerX X
model, | feel that | understand how the model

works.

(5) I find that | can use a computer model thak X

I've written to solve a related problem.
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Perceived Ability

Real-World Connections

Sense-making

Expert Behaviors

Personal Interest

Avoiding Rote

Not Scored

(6) There is usually only one correct ap-

proach to solving a problem using a coim-

puter.

x | Perceived Utility

x | Avoiding Novice Behaviors

(7) I am not satisfied until | understand hg
my working computer model connects to

real world situation.

WX

(8) I cannot learn computer modeling if th

teacher does not explain things well in cla

(9) I do not expect computer modeling
help my understanding of the ideas; it is ju

for doing calculations.

[0

st

(10) If I get stuck on a computer modelin

problem my first try, | usually try to figure

out a diferent way that works.

gX

D

(11) Nearly everyone is capable of using
computer to solve problems if they work

it.

(12) To understand how to use a compute
solve a problem | discuss it with friends ar

other students.

nd
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Perceived Ability

Perceived Utility

Real-World Connections

Sense-making

Expert Behaviors

Personal Interest

Avoiding Rote

Not Scored

(13) | do not spend more than 30 minut
stuck on a computer-modeling problem b
fore giving up or seeking help from someo

else.

esS

ne

x | Avoiding Novice Behaviors

(14) If I want to apply a computer mode
ing method used for solving one problem
another problem, the problems must invol

very similar situations.

to

(15) In doing a computer modeling probler
if my calculation gives a result veryfiierent

from what I'd expect, I'd trust the calculatio

rather than going back through the problem.

=1

(16) It is important for me to understand hg
to express physics concepts in a compy

model.

W

ter

(17) 1 enjoy solving computer modelin

problems.

(18) To learn how to solve problems with

computer, | only need to see and to memor

a
ize

r.

examples that are solved using a computg
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Perceived Ability

Perceived Utility

Real-World Connections

Sense-making

Expert Behaviors

Avoiding Novice Behaviors

Not Scored

(19) Spending a lot of time understandir
how computer modeling methods work is

waste of time.

9

X | Personal Interest

X | Avoiding Rote

(20) | find carefully analyzing only a fey
problems in detail is a good way for me

learn computer modeling.

[0

(21) 1 can usually figure out a way to sol

physics problems.

eX

(22) If I have trouble solving a problem wit

pencil and paper, | will try using a compute

=

(23) Computer models have little relation

the real world.

o

(24) Reasoning skills used to understang
computer model could be helpful to me

my everyday life.

] a

(25) When | solve a computer modelin
problem, 1 explicitly think about which

physics ideas apply to the problem.

gX

(26) When | solve a computer modelin

problem, | explicitly think about the limita;

tions of my model.

gX
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Perceived Ability

Real-World Connections
Avoiding Novice Behaviors

Perceived Utility
Sense-making
Expert Behaviors
Personal Interest

Avoiding Rote

Not Scored

(XX) We use this statement to discard the

survey of people who are not reading the

questions. Please select agree-option D
strongly agree) for this question to preser

your answers.

not

Filter Statement — Not Scored

(27) If I get stuck on a computer modelin
problem, there is no chance I'll figure it ol

on my own.

gX

It

(28) When studying computer modeling,
relate the important information to what | g
ready know rather than just memorizing

the way it is presented.

it

(29) | would rather have someone give 1
the solution to a dficult computer modeling

problem than to have to work it out for my

self.

(30) | expect to have little use for solving X | X X
problems using a computer when | get qut

of school.

(31) I'll need to solve problems using a com- X | X X

puter for my future work.
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Perceived Ability

Perceived Utility

Real-World Connections

Expert Behaviors

Avoiding Novice Behaviors

Personal Interest

Avoiding Rote

Not Scored

(32) When my computer model does no

work immediately, | stick with it until | have

the solution.

X

X | Sense-making

(33) When | solve a problem using a com-

puter, | have a better understanding of the so-

lution than if | solve it with pencil and papey.

(34) Computer models are useful for solving

science and engineering problems.

(35) Watching a computer model helps me

understand the solution to a problem.

(36) The results of the computer model are

more important than the computer modeling

method.
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APPENDIX D

ADDITIONAL FIGURES FOR COMPASS DATA

Some figures were kept from the main text in Ch. 5 because tkeey two large or simply provided
another way of visualizing data that was already presemt¢ables. Those figures are provided in

this appendix.
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Figure 26: [Color] - The distribution of the percent change (from pregtst) in COMPASS scores
for non-honors mechanics students at Georgia Tech is sh8tudents tended to shift to less favor-
able scores on the post-test (red block near center). Adtihosome students moved to much more

favorable scores (red island in upper left corner).
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Figure 27: [Color] - The percentage of non-honors mechanics studehtsshifted the responses
to more ¢) or less (-) favorable on the COMPASS post-test
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Figure 28: [Color] - The distribution of the percent change (from pretst) in COMPASS scores
for non-honors E&M students at Georgia Tech is shown. Stisdemded to shift to less favorable
scores on the post-test (red block near center). Althougimesstudents moved to much more
favorable scores (red island in upper left corner) and &8 (eed island near lower right corner).
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Figure 29: [Color] - The distribution of the percent change (from prgtst) in COMPASS scores
for mechanics students at NCSU is shown. Students tendekiftac less favorable and more
neutral scores on the post-test (red block near centerhoidth, some students moved to much
more favorable scores (red island in upper left corner) andefss (red islands near lower right

corner).
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Figure 30: The eigenvalues for each component are plotted for the eigigets of statements se-
lected as robust dimensions of the COMPASS. For this plody@a Tech mechanics pre-instruction
data was used. The first eigenvalue for each representsatttefr of the total variance that can be
attributed to the first eigenvector (i.e., the first compandn each subset, the linear droff-of the
variance that can be attributed the other eigenvectors tti@ scree) in the subset is representative
of a strong single factor (i.e., a single dimension). We hitled the dimensions (a) Perceived
Ability, (b) Perceived Utility, (c) Real-world Connectien(d) Sense-making, (e) Expert behaviors,
() Novice behaviors, (g) Personal Interest and (h) AvajdRote.
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Figure 31: The eigenvalues for each component are plotted for the sigidets of statements

selected as robust dimensions of the COMPASS. For this fdeprgia Tech mechanics post-

instruction data was used. The first eigenvalue for eaclesepis the fraction of the total variance
that can be attributed to the first eigenvector (i.e., thé desnponent). In each subset, the linear
drop-dt of the variance that can be attributed the other eigenve¢i@r., the scree) in the subset is
representative of a strong single factor (i.e., a singleedision). We have titled the dimensions (a)
Perceived Ability, (b) Perceived Utility, (c) Real-worldo@nections, (d) Sense-making, (e) Expert
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Figure 32: The eigenvalues for each component are plotted for the sigidets of statements
selected as robust dimensions of the COMPASS. For this Gletrgia Tech E&M pre-instruction
data was used. The first eigenvalue for each representsatttefr of the total variance that can be
attributed to the first eigenvector (i.e., the first compapdn each subset, the linear droff-of the
variance that can be attributed the other eigenvectors i@ scree) in the subset is representative
of a strong single factor (i.e., a single dimension). We hitled the dimensions (a) Perceived
Ability, (b) Perceived Utility, (c) Real-world Connectien(d) Sense-making, (e) Expert behaviors,
() Novice behaviors, (g) Personal Interest and (h) AvajdRote.
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Figure 33: The eigenvalues for each component are plotted for the sigidets of statements
selected as robust dimensions of the COMPASS. For this NIBSU mechanics pre-instruction
data was used. The first eigenvalue for each representsatttefr of the total variance that can be
attributed to the first eigenvector (i.e., the first compapdn each subset, the linear droff-of the
variance that can be attributed the other eigenvectors i@ scree) in the subset is representative
of a strong single factor (i.e., a single dimension). We hitled the dimensions (a) Perceived
Ability, (b) Perceived Utility, (c) Real-world Connectien(d) Sense-making, (e) Expert behaviors,
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Figure 34: The eigenvalues for each component are plotted for the sigidets of statements
selected as robust dimensions of the COMPASS. For this gllofiGeorgia Tech and NCSU) pre-
instruction data was used. The first eigenvalue for eaclesepis the fraction of the total variance
that can be attributed to the first eigenvector (i.e., thé desnponent). In each subset, the linear
drop-dt of the variance that can be attributed the other eigenve¢i@r., the scree) in the subset is
representative of a strong single factor (i.e., a singleedision). We have titled the dimensions (a)
Perceived Ability, (b) Perceived Utility, (c) Real-worldo@nections, (d) Sense-making, (e) Expert
behaviors, (f) Novice behaviors, (g) Personal Interest(ahdvoiding Rote.
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Figure 35: [Color] - The shift in the E&M students’ mean COMPASS scores shown. Colored
arrows indicate the magnitude and direction of the shiftnffare- to post-instruction. Mean scores
are shown for students based on: (a) their normalized AQveRA, (b) their normalized score
earned in an introductory mechanics course, (c) thicial classification upon starting the E&M
course (typically, a sophomore level course) and (d) thextaded major college upon entering the
mechanics course. Architecture, Liberal Arts and Manageroempose the “Other” category, but

the majority of these students were Architecture majors.
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Figure 36: [Color] - The shift in the NCSU mechanics students’ mean C@ME scores are shown.
Colored arrows indicate the magnitude and direction of ki fsom pre- to post-instruction. Mean
scores are shown for students based on: (a) tligaia classification upon starting the mechanics
course, (b) their declared major college upon entering tbehanics course and (c) their normalized
score earned in an introductory mechanics course. All mgireering and non-science majors
were included for completeness but these students werdélyobgo of the total population.
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APPENDIX E

STATISTICAL TECHNIQUES

This appendix presents a bit more detail on some of the materés statistical techniques used in

this thesis, namely, hierarchical cluster analysis andicgancy table analysis.

E.1 Hierarchical Cluster Analysis

Cluster analysis aims to organize observations into ssltsat are similar in some fashion. In our
work, we are attempted to uncover subsets of students whe sii@iar errors as measured through
an empirically developed set of codes (Table 7). Using hihieal cluster analysis, we determined
which groups of students had similar binary code patternsthErmore, we can evaluate if these
subsets of students’ programs are characterized by som@aomnderlying error or set of errors.
In performing cluster analysis, one must prepare the datarfalysis, choose metric with which to
measure proximity or similarity of patterns and choose ehakbf linking groups of identical data
into clusters.

Cluster analysis is a robust and diverse data classificaticimique. This section is meant to
give the reader a sense for how we used cluster analysis wankrnot as a full introduction to it.
The interested reader is directed to the texts by Everi@],18aufmann [159], and Tan [137]. We
outline the procedures of cluster analysis first, discussaatérms, and then proceed to illustrate

with an example using our own data set.
E.1.1 A Rough Outline of Things to Come

Cluster analysis begins with a data set that the researdtievés has some underlying patterns
to it. This data set has some set of observations that camds a single event. Each event
might be connected to another event through similaritiehim observations. In our work, these
events were individual students’ programs and the obdensmtvere the codes used to classify

the programs. The patterns in the observations are compareds events using a metric. This
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metric dictates how the initial distance or similarity mesnents are made between all events
using their observations. In our case, the patterns of stadafirmative (1) or negative (0) codes
were compared and similarity measures computed. Thegd miéasurements are then scanned for
the lowest value between pairs of events. This value sethitbshold for the first cluster. All events
that are separated by this same value are fused into thedissbsclusters. The measurements are
then scanned for the next highest value; however, this isdifférent than the initial measurement
because clusters have been formed. Linkage functions arktascompute the distance between
clusters and other clusters or clusters and events. Thassgk functions might simple use the
closest distance or average them in some way. The next |lmaks is the next threshold used to
form the next set of clusters. This procedure continues alhgvents are in a single cluster. Cluster
analysis demands that eventually all events appear in &clusit this does not mean that these
clusters are useful or meaningful. Clusters are reviewted tifey are formed for their coherence or

utility.
E.1.2 Preparing the Data Set

Hierarchical cluster analysis works on the premise thatlaiities between observations can be
used to connect observations into groups. Hence, the dataust be organized to facilitate a
similarity comparison. Most major cluster analysis soft§l60, 161] requires that input data
be numeric. Hence, categorical variables should be cawéntsome manner to numeric values.
One can use binary codes where each categorical variabéprissented by a single code which
contains either anfirmative (1) or negative (0) value. It might be tempting to esene sort of
numeric rating system (e.g., Category: 1, Category Z 2, etc.). However, binary codes are more
appropriate because the distances measured betweenrizateygariables is meaningless. In our
work, the variables were already binary; no conversion vezessary.

An n x mbinary matrixF represents theflrmative nature o codes fom students.
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Fi1 -+ Fij -+ Fim
F=|Fi -~ Fj -~ Fim " (2)
g
o
®
=
»|:n1 oo Fpjoeee an_ n

The j" column ofF is a binary column vector; the elements of which represermthér or not a
student received arffamative (1) or a negative (0) on tH& code. We call this vectd® j, the code

vector. Each of then codes has a correspondi@y.
F1j

_)j = Fij (3)

[P
Thei® row of F is a binary row vector; the elements of which represent a eatemarked as
affirmative (1) or negative (0) for thi& student. We call this vectd;, the student vector. Each of

the n students has a correspondifig

§i=[Fi1...Fij...Fim (4)

Patterns can be compared between each c@ﬁeﬁs determine the similarity between codes.
That is, which codes were most often applied together. Hewdar our analysis, we chose to
compare the patterns of each studeSi'so determine which students had similar errors that were

picked up by the codes. We next compare the binary pattetmgebe pairs of student vectors to

identify which ones are most similar.
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E.1.3 Choosing a Distance Metric

For cluster analyzing data, there are several metricsadtail The literature recommends trying
a few to ensure that the resulting clusters are either iamtitb the metric chosen or easily inter-
pretable [138]. Some metrics that have been proposed aendésmeasures others are similarity
measures. In this section, we justify our use of the Jaccattierio determine the clusters of stu-
dent errors presented in Sec. 4.7. For now, we fix the linkagetion (i.e., average linkage) which

will be described later (Sec. E.1.4)
E.1.3.1 Common Metrics for Continuous Data

Metrics that are measures of distance are most often usashimaous data sets. However, such
metrics may be used with binary data if each cell in the bimpeatgern is an independent code. Dis-
tance metrics rely on the orthogonality of the dimensiorw. dhary data without such properties,
codes maybe collapsed to independent cell blocks theredrgegraining the data set. More notable
distance measures for continuous data include the Mamh&teclidean and Minkoswki distances.
The Manhattan (city-block) distance between two studeators is distance between two vec-

tors if the distance traversed was confined to a mesh.

m

D® = > (Ski - Sij) (5)

=1
This distance is simply how far apart two vectors are “asahedab drives”.

The Euclidean distance between two student vectors is gitn@lmagnitude of their separation.

DE =[S~ §| ©)

This distance is simply how far apart two vectors are “as towdlies”.
The Minkowski distance measures the distance between twlest vectors using a generaliza-

tion of both the Euclidean and Manhattan distancesptherm.

. 1/p
Dyi :{Z Skj - Sij) } (7)

=1
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(a) Clusters formed usin®¢® (b) Clusters formed usin®®

(c) Clusters formed usinp™? (d) Clusters formed usinp™*

Figure 37: [Color] - Clusters formed using fierent distance metrics are shown: (a) the Manhattan
distance, (b) the Euclidean distance, (c) the Minkowskiagise withp = 3 and (d) the Minkowski
distance withp = 4. Each cluster is structurally identical; the studentsaichecluster are the same.

The Minkowski metric has an extra degree of freed@mi-orp = 1 in Eq. 7, we get Eq. 5 and
for p= 2, we get Eq. 6.

In Fig. 37, we have plotted cluster diagrams (dendrogramsyhich each of the previous
metrics were used. Dendrograms are a visual representatitimee cluster procedure. In each
figure, 111 distinct binary patterns are compared (the cadrtines at the bottom of each figure).
Distances between each student vector are computed anépenn he closest student vectors are
grouped or “fused”. Binary vectors are usually joined airtt@vest possible value of the metric
(e.g., for binary data in any Minkoswki space, this is 1). Tbi@ing of vectors or clusters of
vectors is indicated by horizontal lines in the dendrogréfter the initial clusters are formed, the
properties of the students in the cluster are compared el clusters using a linkage function
(Sec. E.1.4). Again the lowest possible outcomes are fusadpairwise fashion. This procedure
is continued until no lone student vector exists. Followexhf the bottom to the top, the cluster
analysis procedure unfolds for any choice of metric andalgefunction.

Fig. 37 is simply meant to illustrate the similarity of clest produced using Minkowski dis-

tance metrics. Each cluster shown in Fig. 37 is structuiiditical; the students in each cluster
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are the same. However, we can easily see how the choipelictates the spacing between leaves.
Ultimately, clusters produced by these metrics were ndulibecause each element of the student
vectorSy was not independent. Hence, the components of the studetat veere not orthogonal.

The resulting clusters had student vectors which had (isides mathematically) to do with each

other.
E.1.3.2 Common Metrics for Binary Data

Metrics that are measures of similarity are used most ofsed in binary data sets. These metrics
generally do not rely on the orthogonality of the dimensidhise distances that measured with sim-
ilarity metrics are typically some scaling fraction of theraents that are similar between vectors.
More notable similarity measures for binary data are the iMarg and Jaccard distances.

The Hamming metric is the simplest choice for binary datadelines the distance between
student vector$y andS; as the proportion of codes (elements of the vector) for whtclentK
andL are inconsistent.

H_ G’ +Cof _ Ci’ +Cof
CocirCecyeCy  om

(8)

HereC,} represents the number of codes for which kifeand ™ student received some mark
x andy respectively. The superscriptgyf indicate whether the code was markédiirenative (1) or
negative (0). In the superscript, the first digit refers k¥ student and the second digit refers to
I™" student.

As an example, consider two student vecées [100101] and = [001101]. For these vectors,

the Hamming distance ig3. Using Eq. 8,

w_ CaptCh_1+1 1
ab n 6 3

(9)

Computing this pairwise distance between all pairs of sitelproduces @& x n symmetric
distance matrixP, with 0’s along the diagonal. The elements of this maﬂD’}g{,, give the propor-
tion of codes for which studentsand| agree. The extrema of any one element are 0 (completely

disagree) and 1 (completely agree).
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(a) Clusters formed using the Hamming metric (b) Clusters formed using the Jaccard metric

Figure 38: [Color] - Clusters formed using twoflerent binary metrics are shown: (a) the Hamming
metric and (b) the Jaccard metric. The Hamming metric trelisients of the student vectors as
independent. The Jaccard takes into account the identityeopatterns (i.e., vectors are identical
vs. vectors have the completely opposite pattern).

The Jaccard metric is also a valid choice for binary data $bmewhat similar to the Hamming
metric expect that it neglects codes for which both studestsived negatives (0). The Jaccard
metric defines the distance between student ve&pendS, as the proportion of codes for which
studentK andL are disagree compared to the total number of codes minue thas are both
negative.

Co+Ca  _Ca+Ca

D}, = = (10)
Cu +C’+C n-Cg

Using the same example vectoss,= [100101] andb = [001101], we find the inter-cluster
distance is 2. Generally speaking, inter-cluster distances are langerg the Jaccard metric.
Using Eq. 10,

g+ 141 1

Dy = = =z 11
M7 ThICo T6-2 2 (11)

An n x n symmetric distance matrix with 0’s along the diagorid, is formed by computing
this pairwise distance between all pairs of students. Thmehts of this matrixD[(’I, give Jac-
card distance betwedd and|™ students The extrema of any one element are 0 (identicalland
(completely opposite).

In Fig. 38, we have plotted dendrograms using our data anld efathe aforementioned bi-
nary metrics. The structural ffierences of the clustering events are quite apparent. Awenie

the clusters that were linked in each case found that the Haghmetric was undesirable for our
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work. The Hamming metric uses all possible similaritiegreats elements of the vector as if they
are independent. Hence, the resulting clusters were natniaitive. The Jaccard metric neglects
elements in which both are marked negative (0). This is a meeful feature because comparisons
now take into account the identity of the whole pattern (ivectors are identical vs. vectors have
the completely opposite pattern).

The choice of metric is made for a variety of reasons: contiisuvs binary data, presence
vs. lack of independence between elements, et cetera. Howausters should be reviewed for
coherence and utility no matter the choice of metric. We ehosuse the Jaccard metric for our
cluster analysis not only because it is a valid choice foahjirlata, but because of the coherence of

the resulting clusters.
E.1.4 Forming Clusters

Determining which student vectors (or clusters of studextars) are fused together to form new
clusters is an iterative pair-wise process. The interteludistance is used to determine at what
level clusters are fused. The distance between clustearputing using linkage functions; they
describe how “close” clusters are to each other. For theeptesxample, the Jaccard distanbél,,

is initially computed for each pair of student vectors theakies form an x n symmetric matrix,
DY. The matrix is searched for the lowest pair or pairs of valliéd®e s, student vectors separated
by this distance are fused at this level. The distance mattixen reduced to a— (s;1) x n— (s1)
matrix where distances have now been computed using thag@nkunction. This new matrix is
then searched again for the smallest element (corresppnalithe closest pair of student vectors,
newly formed cluster and student vector or pair of clustersjs value is then used to fuse the next
set of student vectors or clusters. Throughout the proegdve keep track of which student vectors
are fused at what inter-cluster distance.

To performing this iterative procedure, we must have chasenethod for recomputing the
distances between student vectors (and clusters). Lirfkag&ons determine how the inter-cluster
distances are computed. Several linkage functions exisgleslinkage [142], complete linkage
[143], and average linkage [141]. A visual representatibthe linkage functions appears in Fig.

39. Single linkage (Fig. 39(a)) compares the shortest miistdoetween two clusters and tends to

149



Cluster A
]
]
. /\
u Cluster B

Cluster A

u Cluster B

Cluster A

Cluster B

(a) Simple Linkage

(b) Complete Linkage

(c) Average Linkage

Figure 39: [Color] - Three common linkage functions used to computéadises between clusters
are illustrated graphically: (a) simple or nearest-nemHimkage, (b) complete or farthest-neighbor
linkage and (c) average linkage.

T W

(a) Clusters formed using simple linkage (b) Clusters formed using complete linkage

Figure 40: [Color] - Clusters formed using the Jaccard metric and ei(agsingle linkage or (b)
complete linkage. Single linkage is prone to long chainingngs typically render the analysis
useless. Complete linkage tends to form equal size clusters

be dfected largely by “chaining”; clustering events are someveleguential and give little useful
structure. Complete linkage (Fig. 39(b)) tends to form ¢gimed clusters . Average linkage takes
into account the structure of clusters (Fig. 39(c)) andiielatively robust [138].

We used each of these linkage functions and investigatedhareturned coherent and useful
clusters. Coherence and utility are both determined dfteabalysis is completed. Clusters formed
using the simple linkage function experienced severe aigifiFig. 40(a)). The coherence of this
clusters was not apparent. Student vectors in clusters bidihg but mathematical connections.
Complete linkage produced roughly equally populated ehgsivith some coherence (Fig. 40(b)),

although many of the useful connections that we believedldhtave appeared from this analysis

were lacking. Neither the simple nor the complete linkagecfions produced clusters that were
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(a) Clusters formed using average linkage (b) Same as (a) but collapsed

Figure 41: [Color] - Clusters formed using the Jaccard metric and threramye linkage function.
In (a), we highlight the fourteen clusters with more than angiue code. In (b), we collapse the
details for the additional leaves to highlight the thirtyistiers that were reviewed in detail (Sec.
4.7).

as coherent as those formed using average linkage. Theéoudusters which contained more
than one unique pattern are highlighted in color in Fig. X1\{ée reviewed each of the unique 111

student vectors contained within each cluster. Thesedeartlusters were reduced, ultimately, to

seven which had clear connections between student veb&ysontained (Sec. 4.7).

E.2 Contingency Tables

One can ask the question: is a group populated byfardnt set of students than another? Or more
directly, can we find an association between a demograpatarie and membership. Contingency
table analysis can describe whether an association betsomea demographic feature (e.g., major,
classification) and membership (e.g., class taken, hornatss3 exists and the confidence level of
that association. When using contingency table analysespaderstands that thpevalues obtained
are conservative as compared to its parametric analog$. [155

The approach is to form a table of events. An event can be ampeuof countable items.
An example might be the number of students withiatient majors taking two ffierent classes. By
separating the students into their given class, Class 1lass@, and counting each students with a
given major in each class, one has proposed a valid contiggeble. The requirement being that
no student is counted twice for a given set of events, heneecounld not “double major” or be in
both classes at once.

After counting the events, labeléd;, the column and row sums for table are computed. Sum-

ming down the column,
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Ni = Z Nij
i

is equivalent to counting the number of responders in eatrtrent. While summing across

the rows,

N, :ZN”
I

is equivalent to counting the total number of responderh @itjiven score regardless of treat-

ment. One can determine the total number of responders byggrall rows and columns,

N=>"Nj=> N =) Nj
i i j
We are able to compute an expected value for the number otssvgn and compare that
expectation value to the actual count. If there is nidedence in the fraction of students with a

particular major in the courses, we expect that the fraabibavents in a given row are the same

regardless of course. We can propose the null hypothesis,

nj _ N Ni.N j
Ho: — = —orn; =
N, NTUTTN
with the alternative hypothesis,
nj N Ni. N, j
Hy: — # —ornj # ——.
VN TN TR

A chi-square analysis is performed with this expectatiolue/an;j, where we sum over all
events,
2
(N )

X2=§:——]ﬁ——,

I
v=I1J-1-J+1

wherey is the number of degrees of freedom in the chi-square asalysmber of rowsl,, number
of columns,J). One can compare the reduced form of this statgfity, at a given confidence level,

a, to computed values given in relevant texts [156] or usingsatistical package [160, 162].
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After performing this analysis, we found no associatiorwasin choice of major and honor
status for mechanics students at Georgia Tech (Sec. 5Weljound ditferences in the population
(major and classification) of Georgia Tech mechanics and E&Mrses (Sec. 5.7.2), but no dif-
ference in the population (major and classification) betw@&eorgia Tech and NCSU mechanics

courses (Sec. 5.7.3).
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