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SUMMARY

Minimum Energy Design (MED) is a recently proposed technique for generating

deterministic samples from any arbitrary probability distribution. The idea originated

from space-filling designs in computer experiments. Most space-filling designs look

for uniformity in the region of interest. In MED, some weights are assigned in the

optimal design criterion so that some areas are preferred over the other areas. With

a proper choice of the weights, the MED can asymptotically represent the target

distribution.

In this dissertation, we improve and extend MED in three different aspects. The

dissertation consists of three chapters. In Chapter 1, we propose an efficient approach

that uses MED to construct proposals for an independence sampler in a Monte Carlo

Markov chain, which integrates MED with Monte Carlo techniques. The MED crite-

rion is generalized and a fast algorithm for constructing MEDs is developed in Chapter

2. Finally, in Chapter 3, we propose a new type of MEDs and a new modeling method

for robust parameter design in computer experiments.

Monte Carlo (MC) and Markov Chain Monte Carlo (MCMC) methods have

found wide application in studying and analyzing complex systems, among which

Metropolis-Hastings algorithm is commonly used. Traditional Metropolis-Hastings

proposals, which move locally, are not efficient to sample from complex distributions

with multiple modes. Existing tempering methods generate multiple chains at differ-

ent temperatures, but how to efficiently transfer the mixing information from high

to low temperature chains is unknown and is a challenging problem. In the first
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chapter, we propose a new approach to construct proposals for independence sam-

pler using the idea of MED. Between two adjacent temperatures, MED points are

selected to keep and transfer the mixing information. Final samples are generated

by independence sampler with the exploratory proposals constructed by the selected

MED points. Simulations and a real data example show that the proposed approach

is more stable and efficient than existing tempering methods, which can save a large

number of function evaluations.

When evaluations on the posterior distribution become expensive, traditional

MC/MCMC methods are infeasible because of the requirement of large samples. MED

is a good way to overcome this problem. It can be viewed as a “deterministic” sam-

pling method that avoids repeated sampling in the same places, which dramatically

decreases the number of required samples. However, MED has two limitations, which

are improved in this chapter. One is its efficiency in integration. The integration

error rate using MED points is low and can be worse than MC in high dimensional

cases. In Chapter 2, we define a generalized distance and use it to generalize the

MED criterion. With a proper choice of the tuning parameter, the efficiency of the

generalized MEDs is greatly improved. The other limitation is the construction al-

gorithm. An MED is constructed by a one-point-at-a-time greedy algorithm, where

a global optimization is required in each iteration. The function evaluations are too

many to make MED competitive to MC/MCMC methods. In Chapter 2, we develop

a fast algorithm for constructing MEDs with much less function evaluations. In each

iteration, the algorithm constructs simplexes to search the optimal MED point while

keeping all the evaluated points as a candidate list for finding good starting points

in the next iteration. The proposed algorithm is shown to have better performance

with much less function evaluations.

Space-filling designs, commonly used in computer experiments try to spread out

points uniformly in the experimental region. However, in robust parameter design,
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when the objective is to achieve robustness against noise factors, uniformity is no

longer needed in the space of noise factors. This is because noise factors usually

follow non-uniform distributions such as normal distribution. It makes more sense

to place points in the high probability regions where more “actions” take place. In

Chapter 3, we develop new design and modeling methods for robust parameter design

experiments. In the design part, a new design based on the generalized MED criterion

is proposed, where different tuning parameters are used for control and noise factors.

Since the design points are not equally-spaced, stationary covariance functions can

lead to numerical instability in computation and tend to perform poorly in prediction.

In the modeling part, we propose a simple but efficient nonstationary Gaussian process

that takes into account of the experimental design structure to solve this potentially

difficult problem. Both the proposed design and model are demonstrated to improve

the performance over conventional methods using simulated examples and a real

example on Procter and Gamble packaging process.

xii



CHAPTER I

EXPLORATORY PROPOSALS FOR INDEPENDENCE

SAMPLER

1.1 Introduction

Monte Carlo (MC) methods have found wide application in studying and analyzing

complex systems. They simulate probability distributions and use the random sam-

ples to make statistical inference numerically. Markov Chain Monte Carlo (MCMC)

methods, constructing Markov chains with the equilibrium distribution being the tar-

get distribution that we want to sample from, are solid and efficient tools to sample

from complex distributions. Popular MCMC methods include Metropolis-Hastings

(MH) algorithm (Metropolis et al., 1953; Hastings, 1970), Gibbs sampler (Geman

and Geman, 1984; Gelfand and Smith, 1990), and their numerous extensions. See

Brooks et al. (2011) for a review.

Among MCMC methods, MH-type algorithms play a fundamental role. They

make use of a transition proposal function P . Consider to sample from a target

distribution f . Given the current sample x, a new sample y is drawn from P (x,y),

and is accepted with the probability

min

{
1,
f(y)P (y,x)

f(x)P (x,y)

}
. (1.1.1)

A common choice of the proposal is P (x,y) = P (y−x), that is, y = x+ ε, where ε

is a random variable with mean zero. It is called Random Walk Metropolis (RWM)

algorithm . Since the scale of the proposal in MH-type algorithms is in general small

compared to that of the whole distribution, in every local region, the distribution

becomes simple and can be well simulated by the proposal. Most of MH proposals

are considered to be local moves.
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Because of the local mechanism, MH proposals are easily trapped into a local

mode. When the target distribution has multiple modes and there are apparent gaps

between these modes, it is not easy for MH proposals to jump freely from one mode

to the others. Tempering, which was first proposed in Parallel Tempering (PT) by

Geyer (1991), is a popular idea for simulating multimodal distributions. In tempering

methods, a decreasing series of temperatures is first defined. Multiple chains are

generated at all the temperatures. The initial temperature is high enough so that

the target distribution is flattened, and the proposals can move freely and provide

better mixing between the modes. Note that what we want is only the samples at

temperature one. One chanllenge in tempering is how to efficiently transfer the mixing

information from high to low temperature chains, thus connecting multiple chains. It

can be handled in different ways. PT draws multiple chains simultaneously and swaps

two samples in a neighbor pair of chains occasionally. Evolutionary Monte Carlo

(Liang and Wong, 2001) extended PT by adding mutation and crossover operators.

Kou et al. (2006) proposed Equi-Energy (EE) sampler that generates the current

chain partially by selecting the existing samples from the previous chain at the higher

temperature, and partially by drawing from the proposal. Other tempering methods

include Marinari and Parisi (1992), Geyer and Thompson (1995), and so on.

Apart from local proposals in MH-type algorithms, there is an exception where

the proposal is not local. In independence sampler, the proposal is P (x,y) = P (y),

that is, a new sample is drawn independently with the current sample. A good P (y)

should be able to approximate f well. See more discussions in Tierney (1994) and Liu

(1996). The proposal for independence sampler is global rather than local. However,

it is always difficult to choose an appropriate proposal before sampling, which prevents

the application of independence sampler.

In this chapter, we propose a new approach for independence sampler to construct

a proposal that is able to explore the target distribution before final sampling, which

2



is called exploratory proposal. Independence Sampler with the Exploratory Proposal

(ISEP) works for all distributions, and especially for multimodal distributions. The

idea of exploratory proposals stems from Minimum Energy Designs (MEDs), which

was recently proposed by Joseph, Dasgupta, Tuo and Wu (2015), for generating deter-

ministic design points from any arbitrary distributions. MED points are obtained by

optimizing the energy criterion, which is quite different from existing MC and MCMC

methods in which samples are generated by random sampling. Based on the deter-

ministic viewpoint on sampling, MED points can be used in tempering to transfer

the mixing information from high to low temperature chains efficiently. The mixing

information of the current samples is stored in the MED points, and the subsequent

chain is generated based on it.

The rest of the chapter is organized as follows. MEDs are briefly reviewed in

Section 1.2. An exchange algorithm is presented in Section 1.3 for selecting MED

points. In Section 1.4, we propose the main algorithm for constructing exploratory

proposals. Several examples are given in Section 1.5 to illustrate ISEP.

1.2 Minimum Energy Designs

The idea of MEDs is to analogy the electric field with charged particles. Consider n

design points D = {z1, . . . ,zn}. Let q(zi) be the positive charge of the particle at

the ith design point zi. Given that the electric potential energy is proportional to

the charges of the particles and inversely proportional to the distance of the particles,

the energy of a pair of two particles zi and zj is defined by

q(zi)q(zj)

d(zi, zj)
, (1.2.1)

where d(zi, zj) is the Euclidean distance between zi and zj. An MED is a design

that minimizes the maximum energy

min
D

max
i 6=j

q(zi)q(zj)

d(zi, zj)
. (1.2.2)
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The key feature of MEDs is that if we take q(z) = f(z)1/(2p), where f is the target

distribution, the limiting distribution of the MED points is f . A theoretical proof for

uniform distributions was given in their paper. Tuo and Lv (2016) proved that the

limiting distribution holds for arbitrary distributions.

Note that the optimization on (1.2.2) can be done no matter whether the nor-

malizing constant is known or not. MEDs clearly show some potential on sampling

from target distributions. However, the potential use can be restricted by the opti-

mization algorithm. A greedy algorithm was used for sequentially generating MED

points in Joseph, Dasgupta, Tuo and Wu (2015). It is easy to implement, but is still

time-consuming to run n times of global optimization in the p-dimensional space.

Compared to MCMC methods that can generate hundreds of thousands samples in

seconds, the computation time of generating an MED increases approximately at the

rate of p1.5N2.25. For instance, 50 MED points in two dimensions can take ten seconds.

On the other hand, it is sensitive to the choice of the starting point.

Wang et al. (2016) generalized the MED criterion using the following generalized

distance

ds(u,v) =

(
1

p

p∑
l=1

|ul − vl|s
)1/s

, (1.2.3)

where s ∈ (0, 2]. When s→ 0, the generalized distance becomes

d0(u,v) =

p∏
l=1

|ul − vl|1/p. (1.2.4)

They demonstrated that the best performance in terms of the limiting distribution

can be obtained when s → 0. In addition, the proof in Tuo and Lv (2016) holds for

any s ∈ (0, 2]. As they suggested, we use the generalized MED criterion given by

min
D

max
i 6=j

q(zi)q(zj)

d0(zi, zj)
(1.2.5)

which is equivalent to

max
D

min
i 6=j

1

2
log f(zi) +

1

2
log f(zj) +

p∑
l=1

log |zil − zjl|. (1.2.6)
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The main advantage of this criterion is that taking the logarithm of f and the

distance can improve the numerical stability, which is very important since f can be

very small in cases of high dimensions.

1.3 Exchange Algorithm

Instead of directly optimizing the MED criterion, we need an algorithm for selecting

MED points from finite candidate points.

In the field of computer experiments, several stochastic optimization algorithms

have been proposed for constructing optimal Latin Hypercube Designs (LHDs), such

as local search (Li and Wu, 1997; Ye, 1998), simulated annealing (Morris and Mitchell,

1995; Joseph and Hung, 2008), and stochastic evolutionary (Jin et al., 2005) algo-

rithms. See Fang et al. (2006) for a review. Note that the number of candidate

points, np, are finite in LHDs, while searching MED points requires continuous op-

timization. They cannot be directly used for finding optimal MEDs, but inspired us

to select MED points from finite candidate points.

We apply the simulated annealing algorithm to select MED points from finite

candidate points, which will be used in the construction of exploratory proposals.

The basic idea is that in each iteration, the worst MED point in the current design

is replaced, with a probability, by another possibly better point in the candidate set.

We called it exchange algorithm because two points are exchanged in each iteration.

The details are described below.

Define the energy matrix of D by E, which is an n× n matrix with entry

{E}ij =
1

2
log f(zi) +

1

2
log f(zj) +

p∑
l=1

log |zil − zjl|. (1.3.1)

Define a function φ of maximum energy on both D and zj as follows: φ(D) =

mini,j,i6=j{E}ij and φ(zj) = mini,i 6=j{E}ij. Note that for computing φ on either D or

zi, E needs to be computed first, and then the smallest one can be chosen.

Denote the given N candidate points by C = {x1, . . . ,xN}.
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1. Randomly pick n distinct points {z1, . . . ,zn} from C as the initial D.

2. For each point zi ∈D, compute the maximum energy φ(zi). Find z∗ such that

z∗ = arg max
zi∈D

φ(zi). (1.3.2)

It follows that z∗ is the worst MED point in D. Note that there is a pair of

points that share the same value of φ, and it does not matter which one to be

chosen.

3. Randomly pick another point znew in C. Compute φ(Dnew), where Dnew =

D \ z∗ ∪ znew.

4. With the probability of π = min{exp(φ(Dnew)−φ(D)/t), 1}, D = Dnew, where

t is a temperature parameter and gradually decreases to zero as the procedure

goes; with the probability of (1− π), keep D.

5. Go to Step 3 until it converges.

We have some remarks for the exchange algorithm. First, for computing φ(Dnew)

in Step 3, Enew, which is the energy matrix of Dnew, needs to be re-evaluated in each

iteration, which leads to slow computation. Instead of evaluating all the (n − 1)2/2

entries in Enew, it can be simplified as follows. For z∗ being the i∗th point in D, we

can compute the energy between znew and all the points in D expect z∗, and update

the i∗th row and i∗th column of E, where the number of evaluations is only (n− 1).

Second, in Step 4, based on the comparison between φ(Dnew) and φ(D), a rule is

set to decide if D is updated by Dnew. The rule can vary from different stochastic

optimization algorithms. Here, we adopt the simulated annealing rule in the algo-

rithm. The choice of the temperature parameters is referred to Fang et al. (2006).

Other rules can be applied similarly.
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1.4 Exploratory Proposals

We split the construction of exploratory proposals into two steps: exploration and

selection. Multiple MCMC chains are run to explore the target distribution at the

current temperature. Then, representative points based on the MED criterion are

selected to keep the mixing information at the next temperature. The two steps

iterate several times as the temperatures decrease to one. An exploratory proposal

is finally constructed based on the MED points at temperature one. A flow chart for

constructing exploratory proposals is shown in Figure 1.

Figure 1: Flow chart for constructing exploratory proposals.

1.4.1 Construction Algorithm

The exploration step begins with n given points, {z1, . . . ,zn}. Considering each zi to

be a starting point, we generate an m-sample chain by an MCMC method. In total,

we have n chains with N = nm samples. Denote them by {x1, . . . ,xN}.

Next step is selection. Let the candidate set C be {x1, . . . ,xN}. Apply the

exchange algorithm to select n MED points from C. Denote them by {z1, . . . ,zn}.

7



In the exploration step, all the MCMC chains run freely and independently with

distinct starting points, which enables the exploration step to visit every local region

of the target distribution. The performance, of course, highly depends on the choice

of the starting points. We obtain {z1, . . . ,zn} in the following ways. An initial

design with good space-filling properties is reasonable for the first iteration, since the

knowledge of the target distribution is completely zero at this stage. We generate n0

points from low discrepancy sequences (e.g., Sobol sequences) or space-filling design

points (e.g., maximin LHDs). Sobol sequences are adopted throughout the chapter.

The points that have nearly zero values of the distribution are screened out. So n0

should be large enough so that at least n points can be left after the screening.

For the following iterations, {z1, . . . ,zn} are selected in the previous selection

step. They are representatives of the target distribution at the current temperature

and become the starting points for the next exploration step. As a comparison,

Gelman and Rubin (1992) used multiple chains to monitor the convergence and to

make better inference, where the modes were considered to be the starting points.

Since MED points mimic the whole distribution, besides the modes, the selection step

will also provide a few points proportionally to the distribution, for guaranteeing the

performance on other local regions.

The two steps iterate with tempering. Define a decreasing series of temperatures

T0 ≥ · · · ≥ TL = 1. Instead of sampling directly from the target distribution f ,

in iteration l, the exploration step draws samples from f 1/Tl−1 , and the subsequent

selection step works on f 1/Tl .

The high temperature in the first iteration flattens the distribution, so that the

proposals can move freely from one local region to another, and mix in all the re-

gions. As the temperature gradually decreases, the distribution is cooling and be-

comes spiky. The MED points selected in the following iterations will shrink and

concentrate around each local region, from which multiple chains are able to explore
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every local region. Because MED points are representative, all the mixing informa-

tion in {x1, . . . ,xN} at Tl−1 is stored in {z1, . . . ,zn} at Tl. Note that f 1/TL returns

to be f since TL = 1.

In final sampling, given the n selected MED points {z1, . . . ,zn} at temperature

TL = 1, an independence sampler is employed with the exploratory proposal

1

n

n∑
i=1

N(zi, sΣi), (1.4.1)

where s is a scale parameter and Σi, depending on the local information around zi,

differs from each other. The details of choosing the parameters will be given in Section

1.4.3.3. We call the sampling procedure Independence Sampler with the Exploratory

Proposal (ISEP).

The scheme of ISEP is summarized in the Table 1.

Table 1: Scheme of ISEP

Independence Sampler with the Exploratory Proposal
Set T = T0
Generate n initial points {z1, . . . ,zn}
for l = 1, 2, . . . , L
Draw n m-sample chains {x1, . . . ,xN}, starting from each zi
Set T = Tl
Select n MED points {z1, . . . ,zn} from {x1, . . . ,xN}
endfor
Draw N samples with proposal (1.4.1)

1.4.2 Remarks

In inference, tempering methods are sometimes considered inefficient for not utiliz-

ing samples at temperatures {T2, . . . , TL}. One way to improve the efficiency is in

estimating expectations, combining all samples at all temperatures based on impor-

tance sampling weights. Optimal weights were discussed in Gramacy et al. (2010).

However, such a framework does not apply to the samples generated in exploration

steps for constructing exploratory proposals. Because of the usage of multiple chains,
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we cannot claim that samples at each temperature can shortly converge to the true

distribution, which is used in the computation of weights. Nevertheless, this is in fact

flexibility of exploratory proposals. The convergence of samples from multiple chains

at each temperature is not required at all. The samples at the current tempera-

ture are used only for exploring the target distribution and for selecting MED points

at the next temperature to store the mixing information. As long as the samples

can well spread out and explore the distribution, the performance on MED points

is guaranteed. Finally, ISEP can correctly generate samples. This gives exploratory

proposals flexibility that much less samples at each temperature are required in each

exploration step, which improves the efficiency as well.

It is worth mentioning that for complex but unimodal distributions, tempering is

not required. We can set L = 1 and T0 = T1 = 1, so that the exploration step and the

selection step will iterate only once where the temperature keeps one. Thanks to one

iteration of exploration and selection, ISEP can still improve on these distributions,

compared to MH-type algorithms. See Section 1.5.1.

1.4.3 Implementation Details

Some details in practical implementation are given below.

1.4.3.1 Exploration Step

The number of starting points and the number of MED points in each iteration are

not necessarily identical. One can decrease the number of MED points gradually as

we know more and more about the distribution to make computation faster. For

simplicity, we take the same n. The choice of n depends on the complexity of the

target distribution. Based on prior knowledge, if each local region is simple, say

spherical, c1p points that are supposed to be assigned for each one local region are

enough, where c1 ∈ [1, 3]. If some local regions are more complex, more points will be

needed. Since the points with nearly zero values will be screened out, for the initial
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design in the first exploration step, n0 = c2n is appropriate, where c2 ∈ [5, 10].

Both low discrepancy sequences and space-filling design points have a pre-specific

range (usually a hypercube [0, 1]p). They need to be transformed to the range of

the target distribution, which brings up the question on how to define the range of

the target distribution. A rough estimation of the range can be obtained from prior

knowledge. Then, an adjustment may be needed based on the evaluations on these

points. We can expand the range if the points near the boundary have high values, or

narrow it if those have near zero values. Since the points serve as the starting points

of multiple chains, which can move freely within each of the local regions, the range

does not need to be exactly accurate, as long as it overlaps all the local regions.

The choice of the MCMC method for multiple chains is flexible. It should be able

to explore the local regions. It can be RWM algorithm for simplicity, Gibbs sampler

when the dimension is high, or other sampling methods that are suitable for the target

distribution at the current local region. The only criterion is that the acceptance rate

of the sampler can be slightly lower than the typical one, because the objective in

the exploration step is to widely explore the target distribution, rather than getting

more samples for inference.

For each chain, the length m is not necessarily the same. But except that we have

already known some local regions are much more complex than the others, there is

no particular benefit for choosing a different m. A good choice is simply m = N/n.

1.4.3.2 Tempering

The initial temperature T0 should be large enough so that all the chains can move

freely across all the local regions. It can be found after some preliminary trials. We

should conservatively choose a large T0 in order to guarantee all the local regions are

connected. The series of temperatures is decided by a rough guideline that log Ti are

equally spaced (Kou et al., 2006). The decreasing temperatures reflect the shrinkage
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rate of the target distribution. Because of the deterministic way to choose representa-

tive points, the shrinkage rate can be larger than that of existing tempering methods,

which is an advantage of ISEP.

The number of temperatures L depends on the complexity of the target distribu-

tion. We need more temperatures if the target distribution has higher dimensions or

more modes. L can start from the number of dimensions and is increased if some

clear discrepancies are found between two adjacent temperatures.

1.4.3.3 Final sampling

The parameters in the exploratory proposal (1.4.1) are decided based on the principle

that the proposal for the independence sampler should be close to the target distri-

bution. An optimization on minimizing the error between the exploratory proposal

and the target distribution over all the parameters is appropriate.

Note that Σi has p × p unknown parameters, and optimizing n of Σi can be

troublesome. However, since {z1, . . . ,zn} are MED points that already represent the

target distribution, it is easy to define a good Σi based on the local information around

zi. A straightforward idea is that Σi = diag(minj(zi1 − zj1)2, . . . ,minj(zip − zjp)2),

but it does not perform stably.

For a more stable result, we use the average of the 2p closest points as follows.

For any i = 1, . . . , n, l = 1, . . . , p, rank (zil − zjl)
2 in ascending order for all

j = 1, . . . , n, j 6= i, so we have that (zil−[z1l])
2 ≤ (zil−[z2l])

2 ≤ · · · ≤ (zil−[z(n−1),l])
2.

The diagonal terms of Σi are defined by

(Σi)ll =
1

2p

2p∑
j=1

(zil − [zjl])
2. (1.4.2)

Note that these dimension-wise distances are necessary since different dimensions may

have very different scales.

After Σi is defined, s can be obtained by optimization. Consider least squares of
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the error

min
c,s

N∑
j=1

{
f(xj)−

c

n

n∑
i=1

N(xj; zi, sΣi)

}2

, (1.4.3)

where c is a normalizing constant. It is easy to see that in order to minimize (1.4.3),

c can be written as a function of s given by

ĉ(s) =

∑N
j=1

1

n

∑n
i=1N(xj; zi, sΣi)f(xj)∑N

j=1

(
1

n

∑n
i=1N(xj; zi, sΣi)

)2 . (1.4.4)

Then, the objective function becomes

min
s

N∑
j=1

{
f(xj)−

ĉ(s)

n

n∑
i=1

N(xj; zi, sΣi)

}2

, (1.4.5)

which is one dimensional w.r.t. s.

1.5 Examples

1.5.1 Mixture of Bivariate Normal Distributions

We first check the performance of ISEP without tempering. Consider a mixture of

three bivariate normal distributions (Gilks et al., 1998). The target distribution is

f(x) = 0.34N(x, (0, 0)T ,Σ1) + 0.33N(x, (−3,−3)T ,Σ2) + 0.33N(x, (2, 2)T ,Σ3),

(1.5.1)

where

Σ1 =

 1 0

0 1

 , Σ2 =

 1 0.9

0.9 1

 , and Σ3 =

 1 −0.9

−0.9 1

 .

In this example, although the three modes are connected and not far away from each

other, since the covariance matrices are very different, sampling is still a difficult task

for MH-type algorithms. See Figure 2a for an illustration of the target distribution.

We compared ISEP to RWM algorithm and Adaptive Metropolis (AM) algorithm

(Haario et al., 2001). AM algorithm is an efficient method to adaptively choose ap-

propriate proposals, where the current proposal is updated based on the information
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(a) Target distribution (b) Samples of ISEP

Figure 2: Mixture of bivariate normal distributions.

of the previous samples. The total number of samples was N = 10, 000 after 2,000

samples burn-in. The proposal of RWM algorithm was a scaled standard normal

distribution for the 23.4% optimal acceptance rate. For AM algorithm, R package

“MHadaptive” (Chivers, 2012) with default parameters was used. For ISEP, n0 = 300

initial points were generated from the Sobol sequence. The number of MED points

was n = 50. A RWM algorithm was used for multiple chains in the exploration step.

Because the target distribution is relatively simple, we chose only one temperture

T0 = 1. Because of the use of independence sampler, there is no need to burn-in. The

result of one simulation of ISEP is shown in Figure 2b.

Sample mean and covariance matrix were compared. The Mean Square Errors

(MSEs) with 100 replications are summarized in the Box plots shown in Figure 3.

We can see that ISEP always give the most accurate estimations for all the three

quantities. Moreover, the variance of ISEP is significantly lower than the other two

methods, which is due to the deterministic way to choose representative points.
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Figure 3: MSEs for the mixture normal distribution.

1.5.2 Multimodal Distribution

A multimodal example was presented in Liang and Wong (2001). It was also studied

in Kou et al. (2006). The target distribution is

f(x) =
1√
2πσ

20∑
i=1

ωi exp

{
− 1

2σ2
(x− µi)T (x− µi)

}
, (1.5.2)

where σ = 0.1 and ω1 = · · · = ω20 = 0.05 and µi are given in Table 2. In the

target distribution, 20 normal distributions with the same spherical covariance are

mixed with the same weight. Some of the modes are far from others, which make the

proposal difficult to jump. Tempering is widely used in this example. We compared

ISEP to PT and EE sampler. Note that different from the other two methods, ISEP

draws the current chain based on the multiple proposals, of which the centers are the

MED points selected from the previous higher temperature chain.

The same settings of PT and EE sampler in Kou et al. (2006) were applied. The

total number of samples was N = 50, 000 after burn-in. The temperature parameters

were T = {60, 21.6, 7.7, 2.8, 1}. So the results can be directly compared. For ISEP,
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(a) Exploration (b) Selection after temperature decreasing

Figure 4: Multimodal distribution. Black dots denote the samples and Red dots the
MED points.
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Table 2: Means of the 20 modes of the multimodal distribution.

i µi1 µi2 i µi1 µi2 i µi1 µi2 i µi1 µi2
1 2.18 5.76 6 3.25 3.47 11 5.41 2.65 16 4.93 1.50
2 8.67 9.59 7 1.70 0.50 12 2.70 7.88 17 1.83 0.09
3 4.24 8.48 8 4.59 5.60 13 4.98 3.70 18 2.26 0.31
4 8.41 1.68 9 6.91 5.81 14 1.14 2.39 19 5.54 6.86
5 3.93 8.82 10 6.87 5.40 15 8.33 9.50 20 1.69 8.11

the number of initial points were n0 = 200 generated from the Sobol sequence, and

n = 50 MED points were selected at each temperature. A RWM algorithm was used

in the exploration step. The temperature parameters were T = {60, 15.3, 3.9, 1}. As

an illustration, we can see from Figure 4 that multiple chains have explored the dis-

tribution under the current temperature T0 = 60, and MED are good representatives

for the distribution under the next lower temperature T1 = 15.3. The two steps are

iterated two more times until the temperature reduces to one.

Table 3: MSEs for the multimodal distribution.

MSE Ex1 Ex2 Ex2
1 Ex2

2

PT 0.03244 0.080765 3.318025 8.324277
EE 0.01202 0.020834 1.307429 2.194599

ISEP 0.00092 0.001155 0.095324 0.117447

First and second moments on each dimension were compared. The MSEs with 20

replications are given in Table 3. We can see that ISEP improves the performance a

lot over the two existing methods on all the moments. Besides, PT and EE sampler

used five temperatures, while we used four in ISEP. For the computation time, the

evaluation times on the target distribution were 250, 000 in PT and EE sampler, and

200, 200 in ISEP.

1.5.3 Galaxy Data

The galaxy example was first presented in Postman et al. (1986), and has been studied

by several statisticians (Chib, 1995; Neal, 1999; Liang and Wong, 2001). The galaxy

dataset comprises the velocities of 82 galaxies from six well-separated conic sections
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of the corona borealis region. Denote them by y = (y1, . . . , yny), where ny = 82. The

objective is to find a Gaussian mixture model that can fit the data well. Consider a

Gaussian mixture model of d components. The likelihood function is

L(y|x) =

ny∏
i=1

d∑
j=1

ωjφ(yi|µj, σ2
j ), (1.5.3)

where φ(yi|µj, σ2
j ) is the probability density function of the normal distribution with

mean µj and variance σ2
j , ωj is the mixing proportion. Denote all the parameters by

x = (ω1, . . . , ωd−1, µ1, . . . , µd, σ
2
1, . . . , σ

2
d). All the components are mutually indepen-

dent and with the prior distributions

µj ∼ N(µ0, σ
2
0); (1.5.4)

σ2
j ∼ IG (ν0/2, δ0/2) ; (1.5.5)

(ω1, . . . , ωd) ∼ Dirichlet(α1, . . . , αd), (1.5.6)

where µ0 = 20, σ2
0 = 100, ν0 = 6, δ0 = 40, α1 = · · · = αd = 1, which follows the same

setting in Chib (1995). Denote the prior distribution by π(x).

The quantity of interest is the marginal likelihood function

m(y) =

∫
L(y|x)π(x)dx, (1.5.7)

which has no analytical form. From Liang and Wong (2001), it can be evaluated

using bridge sampling (Meng and Wong, 1996). Consider two distributions that are

known up to normalizing constants, that is, f1(x) = g1(x)/c1 and f2(x) = g2(x)/c2,

where g1 and g2 are known. In this example, let g1 = L(y|x)π(x) and g2 = π(x).

Bridge sampling can be used to iteratively estimate the ratio r = c1/c2 by

r̂(t+1) =

1

n2

∑n2

j=1

l2j
s1l2j + s2r̂(t)

1

n1

∑n1

j=1

l1j
s1l1j + s2r̂(t)

, (1.5.8)

where for i = 1, 2 and j = 1, . . . , ni, si = ni/(n1 + n2), lij = g1(xij)/g2(xij),

{xi1, . . . ,xini
} are the samples drawn from gi, and r̂(t) is the estimated value of r
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in the iteration t. r̂ can be iteratively computed starting from any initial value larger

than zero. Note that throughout all the iterations, sampling is required only once.

Then, in the galaxy example, since c1 =
∫
L(y|x)π(x)dx and c2 =

∫
π(x)dx = 1,

the marginal likelihood m(y) can be estimated by r̂.

Following the bridge sampling, samples are required from both g1 and g2. g2 is

easy to directly sample from. The challenge is on g1, which is a complex multimodal

distribution because the components in the Gaussian mixture model can be randomly

permuted. We apply ISEP to draw samples from g1. The target distribution is

fi(x) ∝ {L(y|x)}Ti π(x), (1.5.9)

where Ti is the temperature.

We ran simulations on the mixture models with two to five components. So the

dimension is up to 14. For each model, 20 simulations were replicated. In each one

simulation, the total number of samples was N = 25, 000. The temperature parame-

ters were chosen as T = {20, 14.4, 10.3, 7.4, 5.3, 3.8, 2.7, 1.9, 1.4, 1}, 10 temperatures in

total. The number of initial points was n0 = 200p, and the number of MED points was

n = 20p. A RWM algorithm within Gibbs sampling was used in the exploration step.

It is easy to find that the conditional distribution on each parameter is proportional

to the likelihood times its prior.

Table 4: Marginal log-likelihoods for the galaxy data.

Model Chib Neal EMC ISEP
2E -240.464 (.006) -239.764 (.005) -239.744 (.015) -240.143 (.001)
3E -228.620 (.008) -226.803 (.040) -226.828 (.061) -226.796 (.017)

3UE -224.138 (.086) -226.791 (.089) -226.780 (.058) -226.788 (.019)
4UE -226.629 (.061) -226.684 (.020)
5UE -226.394 (.062) -226.503 (.027)

Figure 5 shows the samples on (µ1, . . . , µd) in one simulation of the Gaussian

mixture model with three components, where we can see that all the multiple modes

have been visited. The results on the marginal log-likelihood are summarized in Table
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Figure 5: Samples on the means of the Gaussian mixture model for the galaxy data.

4. In the column of “Model”, the number denotes the number of components, “E”

equal variance, and “UE” unequal variances. The results in ISEP are comparable

with those in the other three methods with similar settings, which indicates that the

mixture model with three components fits the data best, and those with four or five

components have similar marginal log-likelihoods but overfit the data.

The computation time is an advantage of ISEP, which is approximately propor-

tional to the evaluation times of the likelihood function. EMC used 20 temperatures,

where 12.5 evaluations were conducted in each iteration at each temperature. So in

total, it took 6.25 × 106 evaluations. For ISEP, we need to evaluate 25, 000 times

at each temperature. Since only ten temperatures were used, the total number of

evaluations was 2.5× 105.

1.6 Conclusions

In this chapter, we proposed a new approach to construct proposals for indepen-

dent sampler. By incorporating MEDs into tempering, the mixing information is
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transferred from high to low temperature chains much more efficiently than existing

tempering methods. The proposed ISEP works well for both complex distributions

(without tempering) and multimodal distributions (with tempering).

MED points are obtained by optimization for representing the target distribu-

tion. Compared to other stochastic tempering methods, MED points can store more

mixing information with less points, which means less temperatures are needed to

obtain a comparable performance. Note that samples of length N is needed for one

temperature. This dramatically decreases the number of function evaluations.
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CHAPTER II

BAYESIAN COMPUTATION USING MINIMUM

ENERGY DESIGNS

2.1 Introduction

The main challenge in Bayesian computation is the efficient evaluation of high di-

mensional integrals arising in Bayesian models. Monte Carlo (MC) and Markov

chain Mote Carlo (MCMC) methods are commonly used for this purpose. They

work by drawing samples from the posterior and then approximating the integrals

using sample averages. Efficient methods for MC/MCMC sampling are proposed in

the literature, see Brooks et al. (2011) for a review. However, these methods can be

costly in terms of the number of evaluations made on the posterior distribution. This

cost is often neglected, especially when the posterior is easy to evaluate. But when

the posterior is complex and expensive to evaluate, the cost becomes appreciable.

It is not uncommon for the researchers to wait several hours or even days for the

MCMC chain to converge and produce final results. This becomes frustrating for the

researcher when he/she has to go back and run the chains all over again when minor

tweaks are made in the models.

We can overcome the aforementioned problem if we can devise a method that

requires only few evaluations of the posterior. We propose to do this by replacing the

“random” sampling with “deterministic” sampling. To explain the concepts, let us

introduce some notations. Let f(x) be the posterior density of the parameters x given

the data. Consider two points in the parameter space a and b. If f(b)/f(a) = 10,

then MC/MCMC methods would require 10 times more samples in the neighborhood

of b than those in the neighborhood of a. This is clearly unnecessary because we
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know everything about f(x) in those two neighborhoods with just two evaluations

of it at a and b (assuming f(·) to be sufficiently smooth). Deterministic sampling

methods will try to achieve exactly this by avoiding repeated sampling in the same

places and making the samples as apart as possible. This is not a new concept

because the quadrature method does exactly the same thing, but of course, they do

not work in high dimensions. Quasi-Monte Carlo (QMC) techniques try to overcome

some of the limitations of the quadrature methods in high dimensions, but they

are also not as popular as MC/MCMC methods for a good reason. QMC methods

are mainly developed for sampling from hypercubes. Unfortunately, the posterior

distributions can be highly correlated and nonlinear making them occupy very little

space in a hypercube. Thus, most of the samples from QMC can get wasted. The

QMC samples can be saved if they can be pulled towards the high probability regions

of the distribution using inverse probability transforms. But this can be done only

when the distribution function is known, which is rarely the case in Bayesian problems.

The difficulty with the QMC can be avoided if we can deterministically and di-

rectly sample the points from the posterior distribution. One such method was pro-

posed by Joseph, Dasgupta, Tuo and Wu (2015) known as Minimum Energy Design

(MED). This method draws ideas from experimental designs in computer experiments.

Most experimental designs look for uniformity in the region of interest. The idea be-

hind MED is to assign some weights in the optimal design criterion so that some areas

are preferred over the other areas. Joseph, Dasgupta, Tuo and Wu (2015) showed

that by judiciously choosing the weights, the design points can be made to mimic the

target distribution. Unfortunately, this idea comes with a price. Choosing the weights

and finding the optimal experimental design require numerous evaluations of the pos-

terior distribution and tedious global optimizations making MED noncompetitive to

the random sampling-based MC/MCMC methods for most Bayesian problems. This

chapter tries to overcome this serious deficiency of MEDs by proposing an efficient
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procedure for generating them. Moreover, a generalization of the MED criterion is

proposed, which is crucial for improving its performance in high dimensions.

There is another approach to overcome the computational problems with expen-

sive posteriors. One can approximate the unnormalized posterior with an easy-to-

evaluate model and then work on the approximate model instead of the exact poste-

rior. This is the approach taken by many: Rasmussen et al. (2003), Bliznyuk et al.

(2008), Fielding et al. (2011), Bornkamp (2011), and Joseph (2012, 2013). However,

the modeling-based methods are severely limited by the curse of dimensionality. That

is, tuning the modeling becomes extremely difficult in high dimensions leading to poor

approximations. At this moment it is not clear if the deterministic sampling method

proposed in this chapter can overcome this problem, but it is clearly a promising

alternative.

This chapter is organized as follows. In Section 2.2, we review MED and provide a

generalized version of MED to improve the efficiency. A fast algorithm for construct-

ing MEDs with much less function evaluations is developed in Section 2.3. Section

2.4 provides a method of local approximation to further save function evaluations of

the proposed algorithm. Examples are given to illustrate the proposed algorithm in

Section 2.5. Section 2.6 concludes this chapter with some remarks.

2.2 Minimum Energy Designs

Let D = {x1, . . . ,xn} be the set of deterministic points from the posterior distribu-

tion, where each xi is a p-dimensional vector in Rp. It is called a minimum energy

design (MED) if it minimizes

E(D) = max
i 6=j

q(xi)q(xj)

d(xi,xj)
, (2.2.1)

where q(x) is called a charge function and d(u,v) is the Euclidean distance between

the points u and v. Joseph, Dasgupta, Tuo and Wu (2015) showed that if q(x) =

1/f 1/(2p)(x) and if the MED has the smallest index, then the empirical distribution of
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the design points will converge to f(x) as n→∞. Here, the index of a design refers

to the number of pairs of points with the maximum energy E(D). For the rest of the

chapter, we will ignore the index because our numerical algorithms rarely finds two

pairs with the same energy, especially for nonuniform distributions. Joseph et al.’s

proof for the limiting distribution of MED was only heuristic. Recently, Tuo and Lv

(2016) was able to give a rigorous proof for this important result.

Thus, our objective is to find a design that minimizes

max
i 6=j

1

f 1/(2p)(xi)f 1/(2p)(xj)d(xi,xj)
,

or equivalently, a design that maximizes

ψ(D) = min
i 6=j

f 1/(2p)(xi)f
1/(2p)(xj)d(xi,xj). (2.2.2)

An important property that makes this method suitable for Bayesian problems is that

we only need to know f(·) up to a constant of proportionality because the propor-

tionality constant does not affect the optimization. So in most Bayesian problems,

we take f(·) to be the unnormalized posterior. Clearly, an MED will try to place

points as apart as possible and in regions where the density is high. Moreover, for

finite n, the empirical distribution of MED can be considered as an approximation to

the target distribution. Thus, MED has all the qualities of a “deterministic” sample

that we are looking for.

2.2.1 Limitations

Maximizing ψ(D) in (2.2.2) to find an MED is not an easy problem. Joseph, Das-

gupta, Tuo and Wu (2015) proposed a one-point-at-a-time greedy algorithm. The

idea is to start with a point x1 and generate x2,x3, . . . sequentially. The (n + 1)th

design point is obtained by

xn+1 = arg max
x

min
j=1:n

f 1/(2p)(x)f 1/(2p)(xj)d(x,xj). (2.2.3)
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Extensive simulations conducted by Joseph, Dasgupta, Tuo and Wu (2015) showed

that this greedy algorithm works well as long as x1 is a “good” point of the posterior

distribution such as posterior mode. However, each step of the algorithm requires a

global optimization and numerous evaluations of the density f(·), which somewhat

defeats the original motivation for this deterministic sampling method. In the next

section, we propose an efficient algorithm to generate an MED that overcomes this

major limitation.

There is another serious limitation of MED, which can be explained using an

example. Figure 6(a) shows a 25-point MED for a uniform distribution in [0, 1]2.

This is a full factorial design with five levels for each factor. This structure of the

design is expected because the MED reduces to a maximin distance design when f(·)

is uniform. A factorial-type design is not good in high dimensions because the number

of projected points in each dimension from an n-run design reduces to n1/p. Therefore,

even if we use a quadrature method that converges at the rate of O(1/n3) such as

Simpson’s rule, the effective rate in p dimensions reduces to O(1/n(3/p)). This can

quickly become worse than an MC sample error rate of O(1/n1/2) in high dimensions

(when p > 6 in this case). We propose an idea to overcome this limitation of MED.

2.2.2 Generalization

Define a generalized distance

ds(u,v) =

(
1

p

p∑
l=1

|ul − vl|s
)1/s

, (2.2.4)

where s ∈ (0, 2]. For s < 1, ds(·, ·) is not a metric, but as we show below that it

has the desirable properties that are needed to achieve our objectives. Using this

generalized distance, the MED criterion becomes

max
D

ψ(D) = min
i 6=j

f 1/(2p)(xi)f
1/(2p)(xj)ds(xi,xj). (2.2.5)
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Figure 6: 25-run MED for the uniform distribution (a) s = 2 (b) s = 0.

Based on our proposal, Tuo and Lv (2016) was able to show that the limiting dis-

tribution of this design is f(x) irrespective of the value of s. Now, for s → 0, the

criterion becomes

max
D

ψ(D) = min
i 6=j

f 1/(2p)(xi)f
1/(2p)(xj)

p∏
l=1

|xil − xjl|1/p. (2.2.6)

Now for f(x) = 1, the criterion is to maximize
∏p

l=1 |xil − xjl|1/p. The product

measure ensures that no two points can have the same coordinate. Thus, the design

will project onto n different points in each dimension, a property shared by the popular

Latin hypercube designs. In fact, the criterion in (2.2.6) for f(x) = 1 is a limiting case

of the MaxPro design criterion proposed by Joseph, Gul and Ba (2015). The Latin

hypercube and MaxPro designs have much better centered L2 discrepancy measures

(Fang et al., 2006) than factorial-type designs and thus, are expected to perform

much better in high dimensions. We have not established any convergence rate for

the integration errors of these new designs, but intuitively it should be comparable to

O((log n)p−1/n) rate of a QMC sample. Figure 6(b) shows the 25-point MED based
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Figure 7: Centered L2 discrepancies for MEDs with different s for n = 20.

on (2.2.6) with s = 0, which clearly has better projections than the original MED.

To further study the choice of s, we generated designs by the generalized MED

criterion (2.2.5) with s = 2, 1.5, 1, 0.5, and criterion (2.2.6) (s = 0) using the greedy

algorithm. Two settings were considered: n = 20, p = 2, and n = 100, p = 2.

The centered L2 discrepancies were computed, and the results with 100 replications

randomized by the starting point are shown in Figures 7 and 8. The solid lines are

the centered L2 discrepancy for the uniform design. These designs are compared with

the scrambled Sobol sequences (Owen, 1998), Monte Carlo (MC) random sampling,

and the uniform designs generated using the software JMP. For both settings, we

can clearly see that all the generalized MEDs are significantly better than random

sampling. CL2 decreases as s decreases. Thus, the generalized MED criterion with

s = 0 can improve the integration performance compared to s = 2. For n = 20,

the MED with s = 0 is worse than the scrambled Sobol sequences and the uniform

design, but is still acceptable. However, when n = 100, the MED with s = 0 becomes

competitive, which is better than the scrambled Sobol sequences and almost identical
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Figure 8: Centered L2 discrepancies for MEDs with different s for n = 100.

to the uniform design. For the rest of the chapter, we have fixed s = 0.

2.2.3 Interpretation

Before developing an efficient construction algorithm for MED, we will give an in-

tuition behind MED. The MED criterion with the Euclidean distance in (2.2.2) can

also be written as

max
D

min
i 6=j

√
f(xi)f(xj)VS(xi,xj),

where VS(xi,xj) = πp/2/Γ(p/2 + 1){d(xi,xj)/2}p is the volume of the sphere with

center at (xi +xj)/2 and passing through the two points xi and xj. See Figure 2 for

an illustration. The term
√
f(xi)f(xj) is the geometric mean of the density values at

xi and xj. Thus, Pij(D) =
√
f(xi)f(xj)VS(xi,xj) is approximately the probability

of X falling in the sphere. Let i∗ = argminj 6=i Pij(D). Then, the MED criterion can

be written as

max
D

min
i=1:n

Pii∗(D).
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Now maximizing the minimum probability will tend to make all the probabilities

Pii∗(D) for i = 1, . . . , n equal. Thus, roughly speaking, a MED tries to balance the

probabilities among adjacent points of the design. This has similarities to the MCMC

algorithms, which try to balance the transition probabilities.

Figure 9: Probability-balancing interpretation of MED.

The MED criterion in (2.2.6) can also be given a similar interpretation. It can be

written as

max
D

min
i 6=j

√
f(xi)f(xj)VR(xi,xj),

where VR(xi,xj) =
∏p

l=1 |xil − xjl| is the volume of the hyper-rectangle, which has

xi and xj at the two opposite corners. See Figure 9 for an illustration. Thus, the

same probability-balancing interpretation holds for this criterion as well, which can

be obtained by replacing the hyper-sphere volume element with the hyper-rectangle

volume element.
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2.3 Simplex Construction Algorithm

In this section, we propose a construction algorithm for generating MEDs using few

function evaluations compared to the greedy algorithm. Similar to Joseph, Dasgupta,

Tuo and Wu (2015), a one-point-at-a-time fashion is used in the new algorithm. We

consider the generalized MED criterion

max
x

min
xi∈D

f 1/(2p)(x)f 1/(2p)(xi)

p∏
l=1

|xl − xil|1/p (2.3.1)

as the objective function, which is equivalent to

max
x

min
xi∈D

1

2
log f(x) +

1

2
log f(xi) +

p∑
l=1

log |xl − xil|. (2.3.2)

The main advantage of this criterion is that taking the logarithm of f and product

measures can improve the numerical stability, which is very important since f can

have very small values in high dimensional Bayesian problems.

The first step is to find all the modes of f by simplex search (Nelder and Mead,

1965). Then, MED points are generated sequentially also by simplex search. We

call the proposed algorithm Minimum Energy Simplex Algorithm (MESA). The key

feature of MESA is that all the points generated by simplex search and their evalua-

tions on f are stored in a list. These points are considered to be candidate points for

following iterations, which saves function evaluations and improves the performance

of optimization.

2.3.1 Simplex Search

We first introduce how to construct and update simplexes that are used in MESA.

Nelder-Mead method (Nelder and Mead, 1965) is a widely used nonlinear optimization

method where the derivatives of the objective function are not known. In many

Bayesian problems, the derivatives of the posterior distribution are not available.

Among many derivative-free optimization methods, Nelder-Mead method is simple

and efficient without any extra computation. The method constructs simplexes for
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searching a local optimum. A p-dimensional simplex is a p-dimensional polytope,

which is the convex hull of its p+ 1 vertices. With center x and radius r, throughout

the chapter, simplex S(x, r) is constructed as follows. The p+1 vertices of the simplex

are chosen as {x,x + re1,x + re2, · · · ,x + rep}, where {e1, . . . , ep} are standard

unit basis vectors. The objective function is evaluated at the p + 1 vertices, and

their values are compared. We then update the worst vertex or shrink the simplex.

The procedures are standard in Nelder-Mead method and are depicted in Figure 10.

Details can be found in Nelder and Mead (1965). All the vertices with evaluations

on f in the simplex are recorded into a candidate list L.

2.3.2 Mode-Finding

As Joseph, Dasgupta, Tuo and Wu (2015) suggested, the first point is chosen as the

mode of the posterior distribution. Sometimes the posterior distribution may have

multiple modes. All the modes need to be identified first.

We start from multiple initial points. Space-filling designs, such as Maximin Latin

hypercube designs (Morris and Mitchell, 1995) and Maximum projection Latin hy-

percube designs (Joseph, Gul and Ba, 2015) are good choices for the initial points.

In this chapter, we adopt Maximum Projection Latin Hypercube Designs (MaxProL-

HDs) as the initial points. From each one point in the initial points, simplex search is

applied to find a local maximum of f , which is equivalent to the optimum of (3.3.9)

since there is no points in D. All the vertices as well as their evaluations on f in the

simplex are stored into L.

2.3.3 Design Construction

After the simplex search in mode finding is finished, the first MED point is the one

which has maximal f(x) from L. Suppose we have obtained n MED points D, the
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Figure 10: Algorithm of simplex update
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initial point for searching the (n+ 1)th MED point is selected from L given by

xini = arg max
x∈L

min
xi∈D

1

2
log f(x) +

1

2
log f(xi) +

p∑
l=1

log |xl − xil|. (2.3.3)

Choose min{n, p} closest MED points to xini from D, and compute the average

Euclidean distance r. We then construct a simplex S(xini, r), which requires p new

evaluations. Find the optimum of (3.3.9) by simplex search. The number of new

evaluations for updating the simplex is limited to (p + 1), which is the same as the

number of the vertices and has been found successful in simulations. Meanwhile, all

the vertices with their evaluations on f are added to L as candidate points. For

searching one MED point, the posterior distribution f is evaluated (2p+ 1) times.

The choice of the initial point for each iteration is crucial for the performance of

optimization. The greedy algorithm chooses the average of the last design point and

one point from a space-filling design or low discrepancy sequence, which makes the

initial point not close to the last MED point. However, the initial point still can be

bad because not all the current MED points are considered. In MESA, the initial

point is the candidate point that has the best MED criterion value of (2.3.3) based

on all the current MED points. The initial point itself is already a good choice as

the next MED point. Simplex search then starts from this point to find a better

one. Moreover, since the initial point is selected from the candidate list, no more

evaluations are needed.

Note that a limit on the number of updates of the simplex is set in this stage.

This early termination of optimization can affect the performance of one single point.

But since we are constructing a design which consists of multiple points, the overall

performance is much less affected. Simulation results show that this compromise is

reasonable, given that it can save a large number of evaluations.
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2.4 Local Approximation

In this section, we introduce a local approximation method for MESA to reduce func-

tion evaluations. The idea is as follows. Since MED points can represent the posterior

distribution, based on the current MED points, we can fit a local surrogate model

around the initial point to approximate the posterior distribution. The following eval-

uations are on the surrogate model instead of the true posterior distribution, which

saves considerable evaluations. A similar idea can be found in Joseph, Dasgupta, Tuo

and Wu (2015) for sequentially constructing MEDs for expensive functions. However,

they fit a global Gaussian process model on all the current MED points, which may

lead to a poor performance on some local regions. Whereas we construct a local

model in a neighborhood of the initial point and find the optimal MED point locally.

Suppose we have n MED pointsD. The initial point xini is firstly found by (2.3.3).

A local surrogate model around xini is then built. We fit a quadratic regression model

on log f(x) given by

g(n)(x) = β0 +

p∑
i=1

βixi +

p∑
j=1

βjx
2
j , (2.4.1)

where the unknown coefficients β0, βi, βj are estimated using ordinary least squares

min
β0,βi,βj

∑
xi∈N (xini)

{
log f(xi)− g(n)(xi)

}2
, (2.4.2)

where N (xini) is a set of points around xini that includes: min{n, 2p} closest MED

points to xini and all the candidate points that are inside the sphere with center xini

and radius d(xini,xm), where xm is the farthest point among all the closest MED

points. Denote the fitted model by ĝ(n)(x).

Starting from xini, we always run optimization on the local surrogate model

ĝ(n)(x). The optimal point x∗ can be found with the objective function

max
x∈N (xini)

min
xi∈D

1

2
ĝ(n)(x) +

1

2
ĝ(n)(xi) +

p∑
l=1

log |xl − xil|. (2.4.3)
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There is no reason to still use simplex search on ĝ(n), since evaluations on ĝ(n) are

assumed to be cheap. Because the gradient information of ĝ(n) is easily available, any

gradient-based optimization algorithms can be used. Here we adopt quasi-newton

algorithm. Then, we evaluate x∗ on the true posterior distribution f and add it into

L. Since all the evaluations in optimization are made on ĝ(n), for searching one MED

point, the number of evaluations on f is only one.

Because x∗ is found based on the surrogate model ĝ(n), it is possible that x∗ is

not good when evaluated on f . We compare the criterion values (3.3.9) for xini and

x∗. If x∗ has a better criterion value, it is selected as the (n+ 1)th MED point xn+1.

Otherwise, if xini is better, we add x∗ into L and fit ĝ(n)(x) again. This procedure can

iterate many times until we find a point that is better than xini. However, considering

that xini is already the best point in all the current candidate points, we iterate only

once. Then, if xini is still better than the new x∗, take xn+1 = xini.

The mission of local approximation is to generate more MED points at almost

no cost. In local approximation, only one point x∗ is evaluated on f and is added

into L for searching one MED point. We lose most of the ability to update the

candidate points. It is important to choose when to start local approximation. When

the local approximation starts, MED points can roughly represent the true posterior

distribution, so that the surrogate model is able to provide a good approximation.

Based on our experience, 0.5n is a good choice to start local approximation, where n

is the total number of MED points.

As the iteration goes, the number of points in the candidate list increases. Note

that in each iteration, the initial point is selected by computing the energy between

the current MED points and every point in the candidate list. This computation also

becomes heavier. By applying local approximation, the number of candidate points

is controlled, and the computation can be reduced as well.
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2.5 Examples

2.5.1 Multivariate Normal Distributions

We begin with a standard example. Joseph, Dasgupta, Tuo and Wu (2015) considered

multivariate normal distributions with mean vector zero and variance-covariance ma-

trix Σ where the (ij)th entry σij = 0.9|i−j|. The dimensions p were from two to ten.

For each one case, n = 25p MED points were generated by MESA and the greedy

algorithm. Comparisons were made on sampling performance and computational

time.

To quantify the discrepancy between the empirical distribution of the MED points

and the true distribution, we transformed the MED points to uniform distribution

[0, 1]p, and then computed the center L2 discrepancy measure. The results are shown

in Figure 11. As p increases, MESA significantly outperforms the greedy algorithm.

When p = 10, the discrepancy of the points by MESA is only one tenth of the greedy

algorithm. See Figure 12 for an example in five dimensions. We can see that the

histograms of the points by MESA are much closer to the true distribution. The

reasons of the improvement are two-fold. First, MESA uses the generalized MED

criterion (2.2.6), where s = 0 has better sampling performance than the original

s = 2. Second, for each iteration, MESA has a better initial point that is the best

choice given the current MED points; while the greedy algorithm does not take into

account of the current MED points when choosing the initial point. The choice of

the initial point becomes more important when the dimension is high.

Figure 13 shows the CPU time in a laptop with a 2.6 GHz processor. We can

see that MESA takes more time than the greedy algorithm. When p = 10, MESA

took about 14, 147 seconds, which is still acceptable compared to 1, 280 seconds for

the greedy algorithm. Besides the difference of programming languages, the extra

computation in each iteration in MESA is the computation of the energy between

the current MED points and each one point in the candidate list. The candidate list
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Figure 11: Centered L2 discrepancies of designs generated by MESA (blue solid line)
and the greedy algorithm (black dashed line) for multivariate normal distributions.

becomes larger as we have more MED points, which takes more time. One solution

is to use local approximation after 0.5n points proposed in Section 2.4.

The number of function evaluations is of more interest. Compared to the greedy

algorithm, MESA dramatically decreases the number of required evaluations in all

dimensions, which is shown in Figure 14. In ten dimensional cases, MESA requires

about 10, 950 evaluations, whereas the posterior distribution is evaluated 1, 472, 797

times in the greedy algorithm.

2.5.2 Banana Example

The second example is a two-dimensional banana shaped distribution (Haario et al.,

2001). The target distribution

f(x) ∝ exp

{
−1

2

x21
100
− 1

2
(x2 + 0.03x21 − 3)2

}
.

See Figure 15 for an illustration of the target distribution. Because of the strongly

nonlinear shape, it is very difficult to have enough samples on the two tails. We
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Figure 12: Histograms of the MED points generated by MESA (green dots) and the
greedy algorithm (purple plus signs) for multivariate normal distributions.
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Figure 15: MED points generated by MESA (green inverted triangles) and the greedy
algorithm (black triangles) for the banana example.

generated n = 50p MED points by MESA, the greedy algorithm, and the combination

of MESA and local approximation, which generates first 25p MED points by MESA,

and uses local approximation for the next 25p MED points.

We replicated 100 times of simulations. In each replication, for MESA, the initial

MaxProLHD in mode finding was different, whereas the initial point for each iteration

in the greedy algorithm was selected from a different MaxProLHD. The results are

shown in Table 5. Standard deviations are given in parentheses. The first column

is the Mean Squared Errors (MSEs) of the mean. We can see that MESA is a bit

worse than the greedy algorithm. The number of function evaluations are given

in the third column of Table 5. MESA requires much fewer evaluations than the

greedy algorithm. Considering the savings of evaluations, the compromise on the

performance is acceptable. Another thing that we want to point out is that the

combination of MESA and local approximation only increases the error (in variance)

a little compared to the full MESA. At the same time, the number of evaluations

is much smaller. So after enough points capture the overall shape of the target
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distribution, building a surrogate model and evaluating on it is a good alternative

to further save function evaluations without much loss of performance, rather than

continuing evaluating the true function.

Table 5: Results for the banana example.

MSE of mean MSE of “> 90%” Number of evaluations
MESA 0.6170(0.1386) 0.0051(0.0013) 977

MESA+local 0.5483(0.2244) 0.0051(0.0013) 597
Greedy 0.3917(0.1189) 0.0074(0.0015) 98, 635

To investigate the performance in low probability regions, we counted the number

of samples that hit the confidence region outside 90%. The percentage was computed

by the number of samples in the region over the total number of samples. The second

column of Table 5 compares the MSEs between the percentage in the MEDs and the

true percentage, which is 10%. Both MESA and the combination of MESA and local

approximation are smaller than the greedy algorithm. It is also illustrated in Figure

15, where we can see that MESA has more points on the tails. In mode finding, the

initial design points are well spread out. They are all stored in the candidate list and

can be selected as the initial points for each iteration. Thus, we have a much larger

probability to find extreme points than the greedy algorithm.

2.6 Conclusions

In this chapter, we have improved two limitations on MED. One is its efficiency in

integration. The integration error rate using MED points is low. We have defined a

generalized distance and have used it to generalize the MED criterion. With a proper

choice of the tuning parameter, the efficiency of the generalized MEDs is greatly

improved.

The other limitation is the construction algorithm. An MED is constructed by

a one-point-at-a-time greedy algorithm, where a global optimization is required in

each iteration. The function evaluations are too many to make MED competitive
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to MC/MCMC methods. We have developed Minimum Energy Simplex Algorithm

(MESA) for constructing MEDs with much less function evaluations. In each iter-

ation, MESA constructs simplexes to search the optimal MED point while keeping

all the evaluated points as a candidate list for finding good starting points in the

next iteration. MESA is shown to have better performance using much less function

evaluations.

After all the MED points have been generated by MESA, there may exist some

better points in the candidate list, which are not selected because of the one-point-

at-a-time fashion. The simulated annealing algorithm has been used to select MED

points from finite MCMC samples (Gu and Joseph, 2016), which can be applied for

further improving the performance of MESA. The basic idea is that in each iteration,

the worst MED point in the current design is replaced, with a probability, by another

possibly better point in the candidate list L. Details can be found in Gu and Joseph

(2016). One attractive feature is that no more evaluations are needed. However,

it will cost more computational time. We will study the potential improvement in

future research.
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CHAPTER III

ROBUST PARAMETER DESIGN USING COMPUTER

EXPERIMENTS

3.1 Introduction

Robust parameter design is a cost-efficient technique for quality improvement. Origi-

nally proposed by Taguchi (1987), the technique has been widely adopted in industries

for system (product or process) optimization. The core idea is to first divide the fac-

tors in the system into two groups: control factors and noise factors. Control factors

are those factors in the system that can be cost-effectively controlled. On the other

hand, noise factors are those factors which are either impossible or too expensive to

control. Since the noise factors are uncontrollable, they introduce variability in the

output causing quality problems. Robust parameter design is a technique to find a

setting of the control factors (also known as parameter design) that will make the

system robust or insensitive to the noise factors. Thus, under a robust parameter

design, the output becomes less affected by the noise variability even when the noise

factors are left uncontrolled. This is why the approach using robust parameter design

is less costly than other quality improvement techniques which try to directly control

the noise factors in the system.

The key to a successful robust parameter design is in identifying important control-

by-noise interactions of the system. Only when such interactions exist we can use the

control factors to reduce the sensitivity of the noise factors. These interactions are

usually unknown in practice and their existence need to be investigated through

experimentation. Thus designing good experiments is a crucial step in robustness

studies. Many efficient experimental design techniques are proposed in the literature
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such as cross arrays Taguchi (1987) and single arrays (Shoemaker et al., 1991; Wu

and Zhu, 2003; Kang et al., 2011). A thorough discussion of these techniques can be

found in the books by Wu and Hamada (2009) or Myers et al. (2016).

The aforementioned experimental design techniques are mainly proposed for phys-

ical experimentation. Recently, computer experiments have become very common in

industries. That is, if a computer model is available that can simulate the physical

system, the experiments then can be performed in computers instead of the physical

system. This can bring in tremendous cost savings because direct experimentation

with the real physical system is always more expensive than investing on some com-

puter time. However, there are several aspects of computer experiments that necessi-

tate the use of a different experimental design technique or philosophy compared to

those of physical experiments (Sacks et al., 1989). Since most computer models are

deterministic in nature, randomization and replications are not needed. Fractional

factorial and orthogonal array-based design techniques that are prevalent in physical

experiments lead to replications when projected onto subspace of factors and thus

are unsuitable for computer experiments. Split-plot designs that are considered to be

useful in robustness studies (Bingham and Sitter, 2003) become unnecessary as run

orders and restrictions on randomization will not affect the computer model outputs.

This lead to the development of space-filling designs in computer experiments.

The existing work on robust parameter design using space-filling designs do not

make any distinction between control and noise factors. A distinction is made only

at the analysis stage (Welch et al., 1992; Apley et al., 2006; Bates et al., 2006; Chen

et al., 2006; Tan, 2015). Sequential designs that directly attempt to find robust set-

tings of control factors using expected improvement-type algorithms are proposed in

the literature (Williams et al., 2000; Lehman et al., 2004), but we are not aware of

any work on space-filling designs. It is important to develop space-filling designs that
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distinguish control and noise factors because their distributional properties are en-

tirely different. Noise factors are commonly assumed to follow a normal distribution,

whereas control factors are assumed to follow a uniform distribution. Noise factors are

intrinsically random and can vary over time and space. Different from them, control

factors remain fixed once their levels are chosen. A uniform distribution is imposed

on the control factors only to represent our indifference on the choice of level given the

range of possible values for each control factor. Thus, unlike the control factors, most

of the “action” in the noise factor space takes place in the center than at the tails.

Therefore, space-filling designs that uniformily spread out points in the experimental

region are not adequate for robust parameter design experiments. In this chapter

we propose a space-filling design that puts more points in regions where probability

mass for the noise distribution is higher and thus obtain better fitted models where

it matters the most. However, nonuniform space-filling designs create challenges in

model fitting using kriging or Gaussian process models (Santner et al., 2003). Since

the design points are not equally-spaced, stationary covariance functions can lead to

numerical instability in computation and tend to perform poorly in prediction. In this

chapter, we propose a simple but efficient nonstationary Gaussian process that takes

into account of the experimental design structure to solve this potentially difficult

problem.

This chapter is organized as follows. In Section 3.2, we motivate the problem using

a real computer experiment on packaging from the Procter & Gamble company. In

Section 3.3, we propose the new experimental design method and in Section 3.4, we

propose the new modeling method. The performance of the proposed methods is

compared with the existing methods using some simulated examples in Section 3.5.

In Section 3.6, we revisit the example of the computer experiment on packaging and

illustrate the application of the proposed methods and we conclude the chapter with

some remarks and future research directions in Section 3.7.
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3.2 Motivating Example: Packing Experiment

The presence of noise factors is a very common occurrence with computer experiments

in industry. Noise factors can include variation in either material properties or part

dimensions. Other common noise factors can involve variation in product or package

use by the consumer. Finally, noise factors can involve environmental variation like

temperature and humidity, as well as process factors that are difficult to control.

The specific example we will use to motivate the proposed methods will involve

a packing line at Procter & Gamble (P&G). The example has been slightly modified

for simplicity. A computer simulation was developed for one critical transformation

(or part) of an packing line. A computer experiment with nine input factors was

performed. Six input variables are process variables which are defined as control

factors, given that in practice, they remain fixed once they are chosen. In addition,

there are other three variables, which are material properties. They are defined as

noise factors given that there is variability in material properties of the packaging

component. The output response from the computer simulation is a measurement of

how well the packing is.

3.3 Experimental Design

3.3.1 Formulation of the Experimental Design Problem

Let x = (x1, . . . , xp)
′ be the random vector for p control factors and z = (z1, . . . , zq)

′

the random vector for q external noise factors. The term “external” will be explained

later in the section. We will assume that x ∈ X = [0, 1]p and z ∈ Z = [0, 1]q after

some re-scaling. The response y is a function of both control and noise factors given

by y = g(x, z). Depending on the type of characteristic such as smaller-the-better,

larger-the-better, or nominal-the-best, we can impose a loss function on y. Let L(y)

be such a loss function (Joseph, 2004). Then, the objective of robust parameter design

is to find the setting of control factors that minimizes the expected loss, where the

47



expectation is taken with respect to the distribution of noise factors. Let f(z) denote

the probability density function of z with support in Z. Then, the robust parameter

design can be obtained by

min
x

∫
Z
L{g(x, z)}f(z)dz.

Since the function g(·, ·) is available only as a computer code, an experiment will be

conducted to estimate it. Let D = {u1, . . . ,un} be the experimental design with

n runs, where ui = (x′i, z
′
i)
′, and xi = (xi1, . . . , xip)

′, zi = (zi1, . . . , ziq)
′ are the

settings of the control factors and the noise factors for the ith run, respectively, for

i = 1, . . . , n. Let ĝ(x, z) be the estimated response function from the experiment

(also known as surrogate model, metamodel, or emulator). Then, the optimization

can be simplified as

min
x

∫
Z
L{ĝ(x, z)}f(z)dz. (3.3.1)

It is also possible to incorporate the uncertainties in the estimation of g(·, ·) in the

optimization as in Apley and Kim (2011) and Tan and Wu (2012). The problem we

are trying solve is how to design the experiment D so that we can accurately estimate

the solution to the optimization problem in (3.3.1).

A careful examination of (3.3.1) reveals an important insight on the experimental

design problem. We need an accurate g(·, ·) only in the regions of z where f(z)

is large. In other words, if f(z) is small in some regions, the inaccuracies in the

estimation of g(·, ·) in those regions will not affect the robust parameter design. This

makes the experimental design problem for robustness different from that of a usual

computer experiment. Let us now see how to design such an experiment optimally.

Suppose, after the experiment, we fit a Gaussian Process (GP) model

y(x, z) ∼ GP (µ, σ2R(·)), (3.3.2)

where µ and σ2 are the unknown mean and variance parameters, and R(·) is the cor-

relation function. A commonly used correlation function is the Gaussian correlation
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function given by

R(xi − xj, zi − zj) = exp{−
p∑
l=1

θxl (xil − xjl)2 −
q∑

m=1

θzm(zim − zjm)2},

where θx = (θx1 , . . . , θ
x
p)′ and θz = (θz1, . . . , θ

z
q)
′ are the unknown correlation parame-

ters of the control and noise factors. The mean squared error of prediction is given

by

MSE(x, z) = 1− r(x, z)′R−1r(x, z) +
(1− r(x, z)′R−11)2

1′R−11
,

where r(x, z) is an n × 1 vector with ith element R(x − xi, z − zi), R is an n × n

matrix with ijth element R(xi−xj, zi−zj), and 1 is a vector of 1’s having length n.

We want to find D such that MSE(x, z) is small. However, since MSE(x, z) is a

function of x and z, it is not possible to find such a design over the entire experimental

region. Instead, a feasible approach is to minimize the average of MSE(x, z):

min
D

IMSE =

∫
X

∫
Z
MSE(x, z)f(z)dzdx. (3.3.3)

This design criterion is the same as the integrated mean squared error (IMSE) crite-

rion in the literature (Sacks et al., 1989; Santner et al., 2003) except that we use the

density of z as a weight function. This is quite a natural modification of the IMSE

criterion and agrees with our intuition that we should give more weights for regions

where f(z) is large.

A major drawback of the IMSE criterion is that it is a function of the unknown

correlation parameters θ = (θx′,θz ′)′. One approach to overcome this drawback is to

adopt a Bayesian approach. Let p(θ) be the prior distribution of θ. Then, our design

criterion becomes

min
D

BIMSE =

∫ ∫
X

∫
Z
MSE(x, z)f(z)dzdxp(θ)dθ. (3.3.4)

This criterion also has some drawbacks. First, it is extremely expensive to compute

because analytical integration is not possible, especially for the integral on θ. Second,
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the criterion is based on the assumed stationarity of the GP model in (3.3.2), which

may not hold true in practice. Because of these reasons, space-filling designs are

more commonly used in computer experiments. We will also do the same in the next

section. However, the development of the optimal design criterion of this section is

useful in the sense that it gives a solid formulation of the underlying design problem

and can serve as an evaluation criterion for the other proposed designs.

Before proceeding further, we need to clarify a few issues related to robust pa-

rameter design. There are factors which have uncontrollable variability around their

nominal values. This is called internal noise. Examples include, part-to-part variabil-

ity within their tolerances and process parameter variability around their targets. On

the other hand, external noise factors are completely uncontrollable including their

nominal values. Examples of external noise factors include user conditions, incoming

raw material properties, and so on. Different from external noise factors, internal

noise factors need not be varied in the experiment because they can be easily intro-

duced at the modeling stage (Kang and Joseph, 2009). Another aspect that should

be clarified is about the existence of adjustment factors (Joseph, 2007). When the

response is nominal-the-best type, one can almost always find adjustment factors

which can be used for adjusting the mean to target. In such cases, we can ignore the

mean model and focus completely on modeling the variance. This means that we can

change our focus of estimating g(·, ·) accurately to estimating the derivatives of g(·, ·)

with respect to z accurately (Kang and Joseph, 2009). We leave this problem as a

topic for future research.

3.3.2 Space-Filling Designs

Space-filling designs aim at filling the experimental region evenly with as few gaps

as possible. These designs are robust to modeling choices and thus, are widely used
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as designs for computer experiments. See Joseph (2016) for a recent review of space-

filling designs.

A popular choice for space-filling design is the Maximin Latin Hypercube Design

(MmLHD) proposed by Morris and Mitchell (1995). In an MmLHD, all the factors

take n levels {.5/n, 1.5/n, . . . , (n − .5)/n} and the design points are obtained by

maximizing the minimum distance among the points

max
D∈L

min
i 6=j

{
p∑
l=1

(xil − xjl)2 +

q∑
m=1

(zim − zjm)2

} p+q
2

, (3.3.5)

where L denotes the class of Latin hypercube designs. The power (p+ q)/2 in (3.3.5)

has no effect on the result and is used only to facilitate the discussion below.

Let us now see how to modify the space-filling designs to suit the requirements

for robustness studies. First, as alluded in the introduction, we need more points in

the high probability region than in the low probability region. This can be easily

achieved by using inverse probability transform. Assume that the noise factors are

independent. Denote the settings of the lth and mth control and noise factors by

Xl = (x1l, . . . , xnl)
′ and Zm = (z1m, . . . , znm)′, respectively. Then, D can be written

as D = {X1, . . . ,Xp,Z1, . . . ,Zq}. Let Fm(·) be the distribution function of zm,

m = 1, . . . , q. It is well-known that if zm follows a uniform distribution, F−1m (zm) has

the distribution Fm(·). Thus, the desired design can be obtained as

D∗ = {X1, . . . ,Xp, F
−1
1 (Z1), . . . , F

−1
q (Zq)},

where D = {X1, . . . ,Xp,Z1, . . . ,Zq} is an MmLHD. Note that although we have

relied on the uniformity of the points to apply the inverse probability transform, the

space-filling design does not have to be a uniform design. The transformed design

D∗ can be viewed as a space-filling design in the new transformed space.

There is another way to obtain a space-filling design for a given probability dis-

tribution. The Minimum Energy Design (MED) proposed by Joseph, Dasgupta, Tuo
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and Wu (2015) is given by

max
D

min
i 6=j

√
f(zi)f(zj)

{
p∑
l=1

(xil − xjl)2 +

q∑
m=1

(zim − zjm)2

} p+q
2

, (3.3.6)

which can be viewed as representative points of the target distribution f(·) =
∏q

m=1 fm(·),

where fm(·) is the probability density of zm. The asymptotic convergence of the lim-

iting distribution of MED is recently proved by Tuo and Lv (2016). As discussed in

Wang et al. (2016), the objective function in (3.3.6) can be interpreted as propor-

tional to the probability of a spherical region defined by the points ui and uj. They

proposed an extension of MED which uses a hyper-rectangular region instead of the

spherical region and is given by

max
D

min
i 6=j

√
f(zi)f(zj)

p∏
l=1

|xil − xjl|
q∏

m=1

|zim − zjm|. (3.3.7)

The validity of this criterion can be rigorously shown using a general result obtained

by Tuo and Lv (2016). Although, both (3.3.6) and (3.3.7) can asymptotically pro-

duce the desired probability distribution, there is a major difference in terms of their

space-filling property. The criterion in (3.3.7) is closely related to the maximum pro-

jection criterion (Joseph, Gul and Ba, 2015) and will produce designs with excellent

projection properties, whereas the use of the criterion in (3.3.6) will lead to factorial-

type designs which have poor projection properties. We will exploit this difference in

the space-fillingness to our benefit.

As discussed in Section 3.1, control-by-noise interactions are important for ro-

bustness studies. Because the total information from the experiment is fixed, we

can improve the estimation of control-by-noise interactions only if we can sacrifice

the estimation of other interactions or higher-order effects. Thus, by sacrificing the

higher-order effects and interactions in the noise factor space, we can hope to improve

the estimation of those effects in the control factor space as well as between the control

and noise factors. Translating into design language, we can sacrifice the projections
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in the noise factor space and hope to get better projections in the control factor space

and between control and noise factors. This suggests using a hyper-rectangular region

in the control factor space and a spherical region in the noise factor space, which leads

to the MED criterion:

max
D

min
i 6=j

p∏
l=1

|xil − xjl|
√
f(zi)f(zj)

{
q∑

m=1

(zim − zjm)2

} q
2

. (3.3.8)

To summarize, in this section, we have proposed two ways of obtaining space-

filling designs for robustness studies: using the inverse probability transform of a

space-filling design and the other using the MED in (3.3.8). However, it is not clear

which of these designs is better. The latter seems to capture the desirable properties

better than the former at least in terms of estimating the control-by-noise interaction

effects, but this needs further investigation. We will evaluate them using the BIMSE

criterion in (3.3.4). Before that we need to explain how to construct the designs.

3.3.3 Optimal Design Algorithm

For the simplicity of notations, let

E(ui,uj) =

p∏
l=1

|xil − xjl|
√
f(zi)f(zj)

{
q∑

m=1

(zim − zjm)2

} q
2

.

As in Morris and Mitchell (1995), we use the criterion

min
D

ψ(D) =

{
n−1∑
i=1

n∑
j=i+1

1

Ek(ui,uj)

}1/k

, (3.3.9)

for searching for optimal design. The criterion in (3.3.9) approximates the criterion

in (3.3.8) for large k and has the added benefit that it tends to minimize the pairs of

points with the largest energy (also known as the index of the design).

We perform the optimization of ψ(D) as follows. First we generate a space-

filling design and obtain the initial design for optimization through inverse probability

transform as discussed in the previous section. Specifically, we use the MaxProLHD
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(Joseph, Gul and Ba, 2015) because it can give a nearly optimal design in the con-

trol factor space. Denote the initial design by D = (D
(0)
x ,D

(0)
z ). To simplify the

optimization, we alternately optimize Dx and Dz. That is, suppose that we have

finished h− 1 iterations and the current optimal design is (D
(h−1)
x ,D

(h−1)
z ). We first

fix D
(h−1)
z and obtain

D(h)
x = arg min

Dx

ψ(Dx,D
(h−1)
z ), (3.3.10)

and then fix D
(h)
x and obtain

D(h)
z = arg min

Dz

ψ(D(h)
x ,Dz). (3.3.11)

These iterations are continued until convergence.

We use continuous optimization algorithms in both (3.3.10) and (3.3.11). The

optimizations can be made much faster using gradient information, which can be

analytically calculated. The gradients are given by

∂ψk(D)

∂xrs
= k

∑
i 6=r

{
1

Ek(ui,ur)

1

xis − xrs

}
, (3.3.12)

for r = 1, . . . , n, s = 1, . . . , p, and

∂ψk(D)

∂zrt
= kq

∑
i 6=r

{
1

Ek(ui,ur)

zit − zrt∑q
m=1(zim − zrm)2

}
−k

2
f(zr)

−1 ∂f

∂zrt
(zrt)

∑
i 6=r

1

Ek(ui,ur)
,

(3.3.13)

for r = 1, . . . , n, t = 1, . . . , q.

3.3.4 Design Evaluation

We compare the designs using the BIMSE criterion in (3.3.4). Three designs were

compared: an existing space-filling design (we use the MmLHD in the chapter), the

proposed transformed space-filling design denoted as T(MmLHD), and the MED.

Two settings were considered: (i) n = 40, p = 2, q = 2, and (ii) n = 80, p = 4, q = 4.

Assume that the noise factors follow a normal distribution. Note that we have

assumed them to be in [0, 1]q after re-scaling. If the standard deviation of the orig-

inal distribution (before re-scaling) is known, this is easy to do. However, in many
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practical problems, the practitioner may only be able to specify them in some inter-

vals, where even the limits are somewhat vaguely defined. Therefore, we specify the

normal distribution as follows. Let [a, b] be the range of zm in original scale. First it

can be re-scaled to [0, 1] by (zm − a)/(b − a). Now the normal distribution on [0, 1]

is defined as with mean 0.5 and standard deviation

σ =
1− 1/n

Φ−1(1− .5/n)− Φ−1(.5/n)
. (3.3.14)

This specification ensures that the range of T(MmLHD) is [0.5/n, 1−0.5/n]p+q, which

allows for a fair comparison with the MmLHD. Throughout the chapter, the optimal

MmLHDs were downloaded from https://spacefillingdesigns.nl/. MEDs were directly

generated from the distributions by using the optimization algorithm described in the

previous section.

We need to specify a prior distribution for θx = (θx1 , . . . , θ
x
p)′. From our experience

with different products and processes, the response is usually a smooth function over

the noise factors. But the function can exhibit complex nonlinear relationships with

the control factors. With this in mind, we let θxl ∼ Exp(1) for l = 1, . . . , p, and

θzm ∼ Exp(10) for m = 1, . . . , q. In other words, the prior mean of θzm is ten times

as smaller than that of θxl , which makes the realizations from the GP much smoother

over the noise factors than over the control factors.

The integration in (3.3.3) is performed using quasi Monte-Carlo methods. We used

10,000 Sobol points, where the columns related to the noise factors are transformed

using a truncated normal distribution with mean 0.5, standard deviation σ, and

limits [0, 1]. To perform the integration over θ in (3.3.4), we used a 10(p + q)-

run MaxProLHD with inverse probability transform using the specified exponential

distributions. A boxplot of the 10(p + q) IMSE values are shown in Figures 16 and

17. The Monte Carlo average values (approximate BIMSEs) are given in Table 6. We

can see that for both the settings, T(MmLHD) and MED have better performances

than the existing approach using MmLHD. In terms of the mean, T(MmLHD) and
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Figure 16: IMSEs for MmLHD, T(MmLHD) and MED for n = 40, p = 2, and q = 2
for different realizations of θ.

MED improve the performance by 22% and 43% for n = 40, and 19% and 21% for

n = 80, respectively. Between the two proposed designs, MED is slightly better.

Thus, according to the Bayesian IMSE criterion in (3.3.4), MED is the preferred

choice for robust parameter design experiments.

Table 6: Bayesian IMSEs for MmLHD, T(MmLHD) and MED.

MmLHD T(MmLHD) MED
n = 40 2.13× 10−4 1.66× 10−4 1.21× 10−4

n = 80 6.61× 10−3 5.37× 10−3 5.20× 10−3

3.4 Modeling

GP models in (3.3.2) are the standard choice for modeling in computer experiments

(Sacks et al., 1989). However, there is a problem in using it in robustness studies. It

can be explained as follows. Let y = (y1, . . . , yn)′ be the data from the experiment.

56



MmLHD T(MmLHD) MED

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

IM
S

E

Figure 17: IMSEs for MmLHD, T(MmLHD) and MED for n = 80, p = 4, and q = 4
for different realizations of θ.

Then, the posterior mean of y(x, z) is given by

ŷ(x, z) = µ̂+ r(x, z)′R−1(y − µ̂1),

where µ̂ = 1′R−1y/1′R−11. Let c = R−1(y − µ̂1). Then, the predictor can be

written in the basis function expansion form

ŷ(x, z) = µ̂+
n∑
i=1

ciR(x− xi, z − zi)

= µ̂+
n∑
i=1

ci exp

{
−

p∑
l=1

θxl (xl − xil)2
}

exp

{
−

q∑
m=1

θzm(zm − zim)2

}
.

The correlation parameters are constants and do not vary with x or z. This is

acceptable in the control factor space because the points are evenly spread out in

that space, whereas for noise factors we have more points in the high probability

regions than in the low probability regions. Using a constant correlation parameter

θz does not make sense in this case and can lead to numerical instability and poor

predictions. We would want θz to be small when the points are closer and large when
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the points are farther. However, changing θz with respect to different zm is not an

easy proposal because such correlation functions are not well-defined (that is, they

may not be positive definite). In this section, we propose an alternative fix to this

problem.

3.4.1 Model Formulation and Prediction

We define two basis functions for z: exp{−
∑q

m=1 θ
z
m(zm−zim)2} and exp{−

∑q
m=1 αm(zm−

zim)2}, where αm ≥ θzm. The first basis function has larger length-scale (or smaller θzm)

which is good for modeling in the low-probability regions, whereas the second basis

function has smaller length-scale (or larger αm) which is suitable for modeling in the

high probability regions. In the GP modeling framework, these can be defined using

a combination of two GPs, which is an idea proposed by Ba and Joseph (2012) and

Harari and Steinberg (2014). See also the earlier work by Booker (2000). Borrowing

the notations used in Ba and Joseph (2012), our proposed model is

y(x, z) = µ+ δg(x, z) + w(z)δl(x, z),

δg(x, z) ∼ GP (0, τ 2g(·)),

δl(x, z) ∼ GP (0, σ2l(·)),

(3.4.1)

where µ is the constant mean, δg(x, z) is the GP for the global trend with variance

parameter τ 2 and correlation function g(·), δl(x, z) is the GP for the local adjustments

on noise factors with variance parameter σ2 and correlation function l(·), and w(z)

is the weight function. This model is equivalent to

Y (x, z) ∼ GP (µ, τ 2g(·) + σ2w2(z)l(·)). (3.4.2)

We choose the weight function to be

w(z) =

(
f(z)

fmax

)γ
, (3.4.3)
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where fmax = max f(z) and γ is an unknown parameter in (0, 1). The correlation

functions are given by

g(xi − xj, zi − zj) = exp

{
−

p∑
l=1

θxl (xil − xjl)2 −
q∑

m=1

θzm(zim − zjm)2

}
,

l(xi − xj, zi − zj) = exp

{
−

p∑
l=1

θxl (xil − xjl)2 −
q∑

m=1

αm(zim − zjm)2

}
,

(3.4.4)

where αm ≥ θzm, for m = 1, . . . , q. Note that if there exist no noise factors, the

proposed model will degenerate to an ordinary GP model.

The proposed model is a much simplified version of the composite Gaussian process

(CGP) model of Ba and Joseph (2012). The weight function is pre-defined up to

a constant, whereas Ba and Joseph estimate the function nonparametrically from

the data. Moreover, the correlation parameters for the control factors are the same

for both the GPs which makes the parameter estimation simpler than that in CGP

models.

The best linear unbiased predictor of the model (3.4.1) is derived as follows.

Denote Q = G + λWLW , where G and L are two n × n correlation matrices

with the (ij)th entry g(xi − xj, zi − zj) and l(xi − xj, zi − zj), respectively, and

W = diag {w(z1), . . . , w(zn)}. Similar to CGP models, we have that

µ̂ = (1′Q−11)−11′Q−1y, (3.4.5)

and

ŷ(x, z) = µ̂+ {g(x, z) + λw(z)Wl(x, z)}′Q−1(y − µ̂1), (3.4.6)

where y = (y1, . . . , yn)′, g(x, z) = (g(x−x1, z−z1), . . . , g(x−xn, z−zn))′, l(x, z) =

(l(x−x1, z−z1), . . . , l(x−xn, z−zn))′, and λ = σ2/τ 2 is the ratio of variances. We

refer the proposed model to New GP model thereafter.

3.4.2 Parameter Estimation

We adopt maximum likelihood to estimate the unknown parameters

(µ, τ, σ, γ, θx1 , . . . , θ
x
p , θ

z
1, . . . , θ

z
q , α1, . . . , αq).
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The log-likelihood function (up to an additive constant) of the model (3.4.1) is

l(µ, τ, σ, γ, θx1 , . . . , θ
x
p , θ

z
1, . . . , θ

z
q , α1, . . . , αq)

= − 1

2

{
log(det(τ 2G+ σ2WLW )) + (y − µ1)′(τ 2G+ σ2WLW )−1(y − µ1)

}
,

(3.4.7)

which is equivalent to

l(µ, τ, λ, γ, θx1 , . . . , θ
x
p , θ

z
1, . . . , θ

z
q , α1, . . . , αq)

= − 1

2

{
n log(τ 2) + log(det(Q)) + (y − µ1)′Q−1(y − µ1)/τ 2

}
.

(3.4.8)

The maximum likelihood estimators of µ and τ 2 can be derived from (3.4.8), which

is given by

µ̂ = (1′Q−11)−11′Q−1y, τ̂ 2 = (y − µ̂1)′Q−1(y − µ̂1)/n. (3.4.9)

Then, by substituting them into (3.4.8), we have the log profile likelihood

l(λ, γ, θx1 , . . . , θ
x
p , θ

z
1, . . . , θ

z
q , α1, . . . , αq) = −n log(τ̂ 2)− log(det(Q)). (3.4.10)

The maximum likelihood estimators for the unknown parameters are obtained by

maximizing (3.4.10).

The ranges for the unknown parameters in the optimization are taken as follows.

We set λ ∈ [0, 1] because it is expected that g(·) always dominates the model rather

than l(·). The correlation parameters for control factors θxl are positive as in ordinary

GP models. For noise factors, we assure αm ≥ θzm by setting αm = θzm + κm, m =

1, . . . , q, where κm ∈ [0,∞). The upper bounds of θzm, αm, are decided by following

the same rule in CGP models, that is, αm = log 100/d2avg, where d2avg is the average

distance. In the weight function w(z), we set γ ∈ [0, 1] as described before.

In total we have p+2q+2 unknown parameters to be optimized. Compared to the

ordinary GP model, where the number of unknown parameters in the optimization

is p, it is acceptable since the number of noise factors q is usually relatively small in

real examples.
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3.5 Simulations

In this section, we study the performances of both the proposed designs and the

proposed model by simulated examples.

3.5.1 Gaussian Process Simulations

Sample paths on [0, 1]p+q from GP (0, σ2R(·)) were simulated, where σ2 = 25, R(·)

has the same form (3) with correlation parameters θxl = 20 for all l = 1, . . . , p and

θzm = 5 for all m = 1, . . . , q. The control factors were uniformly distributed on [0, 1]p,

and the noise factors were from the normal distribution with mean 0.5 and variance

given by (3.3.14). GP realizations were generated on the sites of both design points

and test points. The design points were used to fit a model, and the test points were

then used to calculate the prediction errors. The test points were N = 100(p + q)

points from Sobol’ sequences after inverse probability transform on noise factors. We

fitted ordinary GP models on MmLHD, T(MmLHD), and MED, and fitted New GP

models on the last two. Three simulation settings were (i) n = 40, p = 2, q = 2, (ii)

n = 60, p = 3, q = 3, and (iii) n = 80, p = 4, q = 4. The simulations were replicated

100 times.

The box plots of the absolute prediction errors for n = 60, p = 3, q = 3 are

given in Figure 18. The absolute prediction errors were given by |ŷ(xi, zi) − y(ui)|,

i = 1, . . . , N , where ui is the ith test point. The results for the other two settings are

similar and are hence omitted. Two groups of comparisons can be seen from Figure

18. First, using ordinary GP models, both T(MmLHD) and MED perform better

than MmLHD, which shows improvements because of the usage of the new designs.

Besides, by fitting New GP models on T(MmLHD) and MED, the performances are

further improved. The comparisons between ordinary GP models and New GP models

illustrate that New GP models work well on the proposed non-uniform designs.
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Figure 18: Absolute prediction errors for the GP simulations example.
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3.5.2 Ishigami Function

Let us consider the Ishigami function (Ishigami and Homma, 1990). The form is given

by

g(u) = sin x1 + A sin2 x2 +Bz41 sinx1 + 0z2, (3.5.1)

where A = 5, B = 1, and x1, x2, z1, z2 ∈ [−π, π] are the control factors and the noise

factors scaled to [0, 1]p+q, and follow the same distributions as in the GP simulations

example.

The design setting was n = 40, p = 2, and q = 2. Ordinary GP models were fitted

on MmLHD, T(MmLHD), and MED, and New GP models on the last two. The test

points were N = 100(p + q) points from Sobol’ sequences after inverse probability

transform on noise factors.

Table 7: RMSPEs for Ishigami function.

RMSPE MmLHD T(MmLHD) MED
GP 6.53 5.57 5.41

NewGP 6.44 5.09 4.97

The results of Root Mean Squared Prediction Errors (RMSPE) are shown in Table

7. The RMSPE was calculated by

{
1

N

∑N
i=1(ŷ(ui)− g(ui))

2

}1/2

, where ui is the ith

test point. From the results we can see that T(MmLHD) and MED improve the

RMSPE by 14.7% and 17.2%, and New GP models further improve by another 7.4%

and 6.7%, respectively. Based on all the simulation results, we recommend MED as

the design for robustness studies.

3.6 Packing Example

In this section, the performance of the proposed design and modeling method on the

packing line example from P&G is tested.

Computer simulations were run for P&G packing lines. In the computer simula-

tions, nine input factors were used. The first six factors were control factors denoted
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by x1, x2, x3, x4, x5, x6. The distributions of the control factors were assumed to be

uniform distributions with corresponding ranges. The last three factors were noise

factors denoted by z1, z2, z3. They followed normal distributions, where the length of

the range was six standard errors for each noise factor, respectively. The inputs were

then scaled to a unit cube.

To study the performance of both design and modeling methods, we compared

three different settings. Engineers usually fit an ordinary GP model on MmLHD,

which was considered as the benchmark. It was compared with fitting an ordinary

GP model on MED (which only changes the design), and fitting a New GP model

on MED (which further changes the modeling method). The total number of data

points was n = 10p = 90.

Figures 19 and 20 show the MmLHD and MED used in the simulations. We can

see that for the noise space of the MED, the design points follow normal distributions,

and more points concentrated in the center.

Since the computer simulations are relatively expensive, engineers usually do not

run extra experiments for testing. The prediction performance is measured by Leave-

One-Out Cross Validation (LOOCV) prediction errors defined by

y(ui)− ŷ(−i)(ui), (3.6.1)

where ŷ(−i) is the surrogate model fitted with all the data points except (ui, yi), for

i = 1, . . . , n.

We first plot the true response y(ui) vs. the LOOCV predicted response ŷ(−i)(ui),

which are shown in Figures 21, 22 and 23. A method has good prediction performance

and is desirable if points are located close to the 45 degree line. In Figures 21 and 22,

we can clearly see that MED+GP is much better than MmLHD+GP . More points are

close to the 45 degree line, which shows the strength of MED over MmLHD. The mod-

eling methods are compared in Figures 22 and 23. Note that points in MED+NewGP

and in MED+GP have the same y(ui), but most points in MED+NewGP are closer
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Figure 19: MmLHD for P&G packing example.

65



Figure 20: MED for P&G packing example.
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Figure 21: True response vs. LOOCV predicted response for P&G packing example.
The design is MmLHD and the modeling method is ordinary GP model.

to the 45 degree line, which indicates New GP models further outperform ordinary

GP models when MED is used.

These improvements are also confirmed by mean squared LOOCV prediction er-

rors, which are 0.0479, 0.0260 and 0.0226, respectively. MED+NewGP improve by

45.7% from design and by further 13.1% from modeling. We point out that since

noise factors in MmLHD do not follow normal distributions, mean squared LOOCV

prediction errors for MmLHD+GP were calculated with the weights of normal distri-

butions.
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Figure 22: True response vs. LOOCV predicted response for P&G packing example.
The design is MED and the modeling method is ordinary GP model.
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Figure 23: True response vs. LOOCV predicted response for P&G packing example.
The design is MED and the modeling method is New GP model.
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3.7 Conclusions

In this chapter, we have developed new design and modeling methods for robust

parameter design in computer experiments. In the design part, a new design based on

the generalized MED criterion has been proposed, where different tuning parameters

are used for control and noise factors. Since the design points are not equally-spaced,

stationary covariance functions can lead to numerical instability in computation and

tend to perform poorly in prediction. In the modeling part, we have proposed a

simple but efficient nonstationary Gaussian process that takes into account of the

experimental design structure to solve this potentially difficult problem. Both the

proposed design and model have been demonstrated to improve the performance

over conventional methods using simulated examples and a real example on P&G

packaging process.
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