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SUMMARY

Cost overruns and schedule delays have plagued almost all major aerospace de-

velopment programs and have resulted in billions of dollars lost. Design rework has

attributed to these problems and one approach to mitigating this risk is reducing

uncertainty. Failing to meet requirements during flight test results in one of the most

significant and costly rework efforts. This type of rework is referred to as major re-

work and the main purpose of this thesis is to reduce this risk by improving the loads

analysis process.

Loads analysis is a crucial part of the design process for aerospace vehicles. Its

main objective is to determine the worst-case loading conditions which will realisti-

cally be experienced in normal and abnormal flight operations. These conditions are

called critical loads. With this information, a structure is designed and optimized to

withstand such loads and certify the design. Observing the current approach to loads

analysis has revealed some shortcomings related to uncertainty and the allocation of

load and structural margins. The fields of uncertainty quantification and uncertainty

management were chosen to address these limitations and a framework was proposed

to support decisions for rework in loads analysis.

Key aspects of the framework include utilizing a Bayesian network for modeling

the loads process as well as propagating various uncertainty sources to the system

response. Bayesian-based resource allocation optimization is another key aspect and

used to reduce and manage uncertainty. Finally, the goal of the framework is to

determine the optimal tradeoffs between aerodynamic fidelity and margin allocation

to minimize the risk of major rework while considering their respective costs under a

xviii



finite budget. Assigning costs related to fidelity and margins are intended to reflect the

users’ prioritization of uncertainty, computational cost and performance degradation

through weight penalties.

The demonstration model is the undeformed Common Research Model (uCRM)

wing, which is representative of a transonic wide-body commercial transport. The

modeling and simulation environment is multidisciplinary and anchored in three soft-

ware programs to perform various analyses: NASCART-GT for computational fluid

dynamics; NASTRAN for doublet-lattice method aerodynamics, structural analysis

and aeroelastic analysis; and HyperSizer for failure analysis and structural optimiza-

tion.

Four experiments were conducted related to epistemic uncertainty quantification,

uncertainty propagation and sensitivity analysis via Bayesian network, developing

an uncertainty management system based on resource allocation for loads analysis

and finally experiments to optimize and evaluate the overall framework against seven

design scenarios to explore a potential decision makers’ varying priorities and against a

baseline model representing the current approach. Key findings reveal the structural

required margins are the dominant factor in reducing the risk of rework but the

aerodynamic fidelity and load margin are important for balancing performance and

uncertainty when considering financial implications within a finite budget.

The contributions of this thesis to the aerospace engineering community include;

an integrated modeling and simulation environment for the load analysis process and

structural design, uniquely applying and developing a Bayesian network for efficient

uncertainty modeling and propagation and a viable cost-based uncertainty manage-

ment system for loads analysis, among others.
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CHAPTER I

MOTIVATION

1.1 Introduction

The commercial airline market is poised to double in size over the next three

decades in terms of number of aircraft in service [33]. This growth is met by many

challenges for the relatively few companies in this market to gain a competitive ad-

vantage. Analyst from Strategy& (Formerly Booz & Company)[47] four major chal-

lenges for the industry: increasing production rates, growing demand for more efficient

aircraft, digitization of the industry and unsustainable development cost and value

distribution. When looking at the airplane lifecycle, all of these challenges can be

addressed in part by the design process within the development phase. The last chal-

lenge may be the most pressing and is evident in new development programs being

notoriously long, expensive and riddled with uncertainties which poses substantial

risks to the manfacturer and the customer. For example, the average cost for recent

large commercial wide-body aircraft development is more than US $19 billion and has

made new development programs nearly a “bet-the-company” move [47]. Program

delays can result in billions of dollars from factors such as rework, disruptions in

supply chain and production, and compensation to airline customers, to name a few.

When these risks are associated with the design, this is referred to as design risk.

To meet the market challenges, design risk must be systematically reduced. Design

risk is at its highest during flight and ground tests conducted on full-scale test articles

which serve to validate the design. Failing to meet the requirements of these tests

can be catastrophic because of the money invested in the test articles and the need

to fix the design and repeat the test programs. Thus flight and ground test failures
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can lead to profit loss, delays, damaged reputation and significant redesign. From an

engineering perspective the redesign, i.e. rework, is the most important and the focus

of this work.

An effective design process will, as much as possible, get it right the first time

and minimize excess time and resources to fix a design after failure. Rework is more

damaging, in terms of costs and schedule disruption, the later it occurs in a devel-

opment program. Improving the design process is no easy feat given the size and

complexity of aircraft systems. Failures can occur in many different systems of the

aircraft but structural failures are particularly important given its impact on safety

and certification. Thus structural design is a prime target for improvement to address

rework.

One of the most important aspects of the structural design process is the analysis

of loads because of the uncertain nature of loads and the costly consequences of

failing to predict them accurately and design to these specifications. Loads analysis

is a critical step in aerospace design in general because of its impact on structural

weight, which directly affects aircraft performance. Figure 1 depicts a schematic of

loads analysis which is composed of several load cycles. Each cycle represents stages

in the design process.
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Figure 1: Schematic of loads analysis

Loads analysis is very multidisciplinary and involves analyzing a large number of

load cases, defined by certification criteria, in which the loads are calculated for each

case. The subset of largest loads are deemed critical and are translated into internal

stresses. These stresses, along with other structural responses, are used to calculate

margins of safety of several failure analyses based on predetermined allowables, also

known as design values. The selection of failure methods are also driven by regula-

tions. The lowest margins drive the structural design during optimization to meet

certification and other requirements.

The structural stiffnesses assumed initially are not known precisely and are a

function of the internal structural design (internal layout, component definition, ma-

terials etc.). The stiffnesses must be updated as the design is finalized in the load

cycles. When analyzing the load cases, a coupling exists between aerodynamics and

structures due to an aircrafts’ elasticity. Consequently the loads and stiffnesses are
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interdependent. When the stiffness is updated the loads also change so iteration is re-

quired to stabilize both and mature the design. The loads process generally referred to

here as the series of analysis cycles, where each represents an iteration between loads

and structures. Multiple cycles are conducted to mature the design and converge the

stiffness, afterwards leading to flight and ground testing for validation.

The combination of load uncertainties, stiffness and sizing iterations are signifi-

cant sources of rework in the structural design process [39]. Removal of uncertainty

can help reduce the risk of rework. Uncertainty quantification (UQ) aims to calculate

the effects of error or inaccuracies in our experiments and analysis methods [27]. As

will be discussed, little work has been done in the literature in regards to quantifying

and mitigating the uncertainty in the loads process itself [160]. Increasing the fidelity

in analysis methods can reduce specific sources of uncertainty, but will also increase

the computational expense. Increasing load and structural margins can reduce the

risk of rework but at the cost of increased weight and diminished performance.The

methodology presented in this thesis is an optimization framework to trade the aero-

dynamic fidelity, load margins and structural margins to minimize the risk of rework

in loads analysis while also managing uncertainty and costs related to these analysis

and design decisions.

An important aspect of this framework is the consideration of fixed resources.

Here the term “resources” is used to describe the overall budget and schedule of a

design program. The main factors under consideration which impact these resources

are uncertainty, computational time and effort, weight, and redesign. Each factor

can and will be assigned a cost and the aforementioned analysis and design decisions

will be made under a fixed budget. The magnitude of both the costs and budget are

subjective and are primarily meant to convey the priorities of the user rather than

attempt to assign a specific dollar amount. Though some efforts have been made in

the literature to do assign such costs [6] and will be used for benchmarking.
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This thesis will discuss potential methods to construct the rework decision frame-

work for loads analysis, analyze results from experiments to explore and improve the

framework and finally evaluate the framework against rework in the current loads

analysis approach.

1.2 Problem Statement & Structure of Dissertation

From the motivation an initial literature search to address design risk was con-

ducted. Some strategies to mitigate design risk emerged. Prominent researchers such

as Professor Willcox from the Massachusetts Institute of Technology and others have

focused on a “life cycle” approach to design [110][117]. which is a holistic view of the

entire life of an aircraft from cradle to grave and includes financial implications and

long term costs as opposed to simply designing to maximize performance [90]. One

such work from Peoples and Willcox (2006) [117] states:

“... eliminating design uncertainty earlier is more beneficial than producing

a suboptimal designdespite the larger impact of incurring the cost of design

changes earlierdue to heavier discounting of later cash flows.”

Their findings and the initial literature search speak to both uncertainty and inten-

tionally including and planning for rework (design changes) when mitigating design

risk and thus a potential strategy to do so involves: reducing uncertainty as early

as possible, include financial metrics in optimization to improve life cycle design and

proactively consider rework. Thus a problem statement was developed to guide the

development of the thesis:

Problem Statement: Develop a decision making framework to reduce design

risk in aerospace structures by considering rework, uncertainty, and financial
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implications

The structure for the remainder of this thesis is described in the following. Chapter

2 discusses how the problem addressed in this thesis was formulated. Chapter 3 will

review the background concepts which will form the theoretical foundation for the

proposed framework. Chapter 4 introduces and summarizes the proposed framework.

Chapter 5 will detail the modeling and simulation environment and experimental

setup. Chapter 6 discusses the experimental plan to address the research questions

and validate the initial hypotheses. Finally, Chapter 7 will summarize the body of

work from this thesis and discuss the contributions and future work.
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CHAPTER II

PROBLEM FORMULATION

2.1 Problem Scope & Model Formulation

The problem statement is a broad one so the scope must be defined to feasibly

address the problem within this thesis. Naturally to address rework and design risk

we must focus on the design portion of the development program. Though there are

multiple design phases; i.e. conceptual, preliminary, detailed, etc.; the conceptual

phase involves design of the configuration and planform shape which was deemed to

be out of scope for this work given the focus on higher fidelity analysis methods, and

specifically aerodynamic fidelity. This focus also narrowed the scope to loads analysis

in order to study the effects of aerodynamic uncertainty on structural design and

rework.

The loads analysis process typically consists of a number of load cycles over the

course of the overarching design process. Although estimation of loads is done even at

the earliest stages of conceptual design, here “loads analysis” is defined as occurring

after the outer-mold-line (OML) of the aircraft has been fixed and preliminary wind

tunnel experiments have been performed on a subscale test model. Thus this thesis

methodology assumes any given design is beyond the early conceptual phase where

the planform and configuration have been selected and frozen. After wind tunnel

testing, loads are analyzed; on the order of 1,000 cases for the initial cycle based on

feedback from experts. Prior to that, only a handful of cases are chosen to determine

initial structural weight and definition. Subsequent load cycles ramp up the number of

cases to increase accuracy and accompany higher fidelity methods as the design detail

increases resolution. After the loads analysis is complete a flight test demonstrator is
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built where one of its primary objectives is to validate the predicted loads. Although

both flight and ground tests are equally important and necessary after the loads

process, only the flight load survey will be considered in this work. The loads process

is depicted in Figure 2 and 3.

Initial Loads Preliminary 
Loads 

Design 
Loads 

Certification 
Loads 

Fix Outer 
Mold Line 

Flight Test 
Wind 

Tunnel 
Testing 

Major	  Rework	  

~1,000	  cases	   ~10,000	   ~100,000	   ~100,000	  

Load	  Cycle	  Time:	  	  
~3	  to	  9	  months	  

Rigid,	  linear	  	  
aero	  database	  

Valida1on	  Database	  not	  updated	  

Figure 2: Loads Process with Major Rework

With an understanding of the loads process and its impact on flight test, the mod-

eling environment and test case could be formulated to further refine the scope. The

design risk discussed in motivation applies equally to both commercial and military

applications, but work in the Aerospace Systems Design Laboratory which preceded

this thesis focused on the former, in collaboration with the Boeing Company, and so

only commercial transports were considered here. Thus an appropriate model and

test case should be representative of a commercial transport. The emphasis on loads

analysis and structural design allude to aeroelastic analysis, which imposes additional

requirements on any potential model.

Three important modeling requirements include a planform shape for aerodynamic

analysis and an internal primary structure for structural analysis. Additionally both

the aerodynamic and structural models must be undeformed for aeroelastic analysis.
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A full aircraft model could be utilized, but all these requirements can be satisfied by

only considering the wing. This simplifies the analysis for the initial development of

the framework. It is also appropriate because the aeroelastic effects are greatest on

the wing relative to any other major aircraft component.

The general problem statement developed from the motivation will be applied

specifically to a commercial transport wing and consider aeroelastic analysis and

design after the conceptual phase. Although still general, the scope is appropriate

enough to fully formulate the problem, which will be done in the remainder of this

chapter. Next, the specific sources of rework addressed in this work will be discussed.

2.2 Sources of Rework in Loads Analysis

There are two sources of design rework targeted in this work. The first type,

referred to as major rework, occurs when the actual loads are greater than expected

and cause structural failure during flight test, also called flight load survey. Initial

wind tunnel tests result in simplified (linear and rigid) aerodynamics used through-

out the load analysis cycles. When the actual loads (nonlinear and aeroelastic) are

validated during flight test it may reveal that these simplifications underestimated

the simulated loads. If failures occur the flight tests are suspended or canceled and

significant rework is necessary to fix the design. Additionally, by this time significant

investments have already been dedicated to implementing the flight test program and

building test articles which may have to be repeated.

In reference to Figure 2, flight test validation is a critical check point for major

rework. Wind tunnel experiments are carried out in the beginning of the loads pro-

cess to create an aerodynamic database of surface pressures. Although wind tunnel

testing is viewed as an accurate aerodynamic approach, it is based on a semi-rigid test

model. The model is intended to be rigid but does have some flexibility. Therefore the
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measured pressures need to be corrected for the rigid assumption. Both the correction

and the rigid assumption itself introduce uncertainty. The rigid assumption is not

representative of real aircraft structures which are elastic and subject to aeroelastic

effects. In addition, the aerodynamic data is often linearized to accompany efficient

low to mid fidelity aerodynamic analysis. This is common practice in commercial

transports where the high-fidelity methods such as computational fluid dynamics are

deemed unnecessary given tried and true airplane configurations and the typical op-

erational flight envelope. But advancements in computation, composites, technology,

etc. may soon require higher-fidelity aerodynamics for more unconventional designs.

Nevertheless linearization adds uncertainty to the loads given the aerodynamics

experienced by the aircraft are nonlinear. The rigid linear database from wind tunnel

testing is used in subsequent load cycles to correct the aerodynamic analysis methods.

In Figure 2 these cycles are labled as Initial, Preliminary, Design and Certification

Loads, where the names imply the types of load cases utilized in the loads analysis

and their increasing maturity. Even though the calibrated analysis reduces certain

uncertainty sources (e.g. compressibility, 3D effects, etc.), it introduces the afore-

mentioned sources. Given the expense of wind tunnel experiments the aerodynamic

database is not updated throughout the loads process. The predicted loads are only

validated at the conclusion of the load cycles through flight testing. If the actual

loads and structural response are significantly greater than those predicted during

loads analysis, major rework can occur.

Improving or repeating wind tunnel experiments could reduce uncertainty, but

this is out of the scope of this thesis and would have significant costs associated

with them. An alternative method of reducing the risk of major rework is to adjust

the fidelity of the analysis methods used during the load cycles. The calibration

data is only effective if the analysis has similar fidelity to utilize all the information.

For an extreme example, a 2D airfoil code can only use a small (if any) amount of
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wind tunnel data because they have vastly different fidelity, but a 3D CFD analysis

could potentially benefit from all the wind tunnel calibration data. At the other

extreme, a viscous CFD code with mesh deformation capabilities could potentially

overcome the linear rigid wind tunnel assumptions and reduce the effect of uncertainty

in using the calibration data. The benefits of such analysis decisions must quantified

and appropriately weighed against factors such as computational costs and increased

modeling complexity. One of the objectives of this thesis is to depart from the common

practice of using low to mid fidelity aerodynamics and explore the impact of higher

fidelity methods during load cycles to reduce the risk of rework, but account for

limited resources.

Conversely the second type of rework, referred to here as minor rework, corre-

sponds to any redesign effort required between load cycles and prior to any flight or

ground test validation. This rework is “minor” because the cost relative to major

rework is substantially less, primarily because of when the rework occurs. Unlike

major rework, not all minor rework is bad, which was alluded to in the motivation

and the work of Peoples and Willcox [117]. Design changes frequently happen prior to

certification as new information and requirements are introduced and rework can be

intentionally done to reduce weight and increase performance. Unintentional minor

rework can occur when insufficient structural margins cannot cover potential increases

in loads when both the stiffnesses and design are updated between cycles. Increas-

ing the margins can reduce such rework, but at the cost of increasing the structural

weight and degrading aircraft performance. A schematic of unintentional minor re-

work is shown in Figure 3. This minor rework may be exacerbated when loads are

intentionally increased in load analysis to prevent unconservative designs. Whether

intentional or not, decision makers need to weigh the costs and benefits explicitly

in order to make the best analysis and design decisions for a given scenario. The

framework developed in this thesis has the potential to aid in these decisions.
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The organizational structure of a typical aerospace company plays a role in minor

rework. Loads analysis is usually done by a specific group and described as such [165];

“...in aircraft design projects, [the] loads group lies at the heart of the design

cycle. It receives inputs from various design groups such as aerodynamics

group, structures group, weight and balance group, systems groups, airwor-

thiness group, and so on. Not only receiving these inputs, but [the] load[s]

group also provides outputs to various groups, mainly structural design and

analysis. Those interactions make aircraft loads one of the most multidisci-

plinary subjects in aircraft design and analysis.”

The multidiscipline nature and importance of loads in an aerospace organization is

captured in the following schematic describing the interactions of the loads group:
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Figure 4: Interactions of Loads Group in Aircraft Design Organization [109]

Figure 4 also visualizes the separation of the loads group from the stress, structural

analysis and design groups. Any change in the design or analysis of any group can

change the loads. Even in a small organization there will be iterations due to the

people and processes involved. In the thesis, these three latter groups are considered
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one consolidated stress group. The size and complexity of the interactions between

the loads and stress group are the reasons why the stiffness is not updated within

a given cycle as mentioned in Section 1.1. For example, 1,000 load cases may be

analyzed by the loads group in the initial load cycle as shown in Figure 2. The

resulting internal loads are based on initial stiffness estimates and are given to the

stress group to perform structural analysis and design. This cycle can take three to

nine months. The stress group will calculate updated stiffness values for the new

structural design which affects the loads. But the loads group does not update their

load calculations in the initial load cycle. Instead, the new stiffness is used in the

following preliminary load cycle when the loads group analyzes 10,000 load cases.

The fact that neither the stiffness nor the loads are allowed to converge within a load

cycle adds uncertainty to the design solution produced in that cycle. There cannot be

an indefinite number of cycles, so a stopping criteria is used. Typically four cycles are

enough to converge the design as shown in Figure 2 based on subject matter experts.

Any realistic loads analysis will assume a non-rigid structure and therefore will be

concerned with the interactions between the fluid and flexible structure, i.e. aeroe-

lasticity. Most numerical aeroelastic methods are iterative. Although the loads have

been updated in the preliminary load cycle, the structural margins used by the stress

group have not been. Those margins may have been adequate previously, but insuf-

ficient if the new loads have significantly increased, thus resulting in failure in the

structural analysis. The failed systems or components will then be redesigned to meet

safety requirements, which is rework. This rework is considered minor in this thesis

because it causes additional work within a load cycle but typically does not require

any previous cycles to be repeated.

The structural margins are implemented to account for uncertainty but they are

typically decided based on experience and expert opinion. Insufficient margins will

cause minor rework, but increasing margins will ultimately cause excess structural
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weight. The same can be said for load margins. The other objective of this thesis

is to determine the optimal balance of allocating load and structural margins and

structural weight to reduce the risk of rework under constrained resources.

An overview of the traditional approach to loads analysis has been given. Some of

the weaknesses of this approach have been alluded to in the discussion of rework and

the complex, iterative and uncertain nature of this process. The latter characteristics

could potentially equate to significant uncertainty. The following section discusses

these weaknesses and their consequences in more detail.

2.3 Limitations of the Current Approach

2.3.1 Quantifying and Mitigating Uncertainty

New aircraft development programs have a historical precedent for high risks in

terms of cost and schedule. Up until 2009 the total acquisition cost overrun for major

defense programs, the majority for aircraft1, was estimated at $296 billion. Research,

development, test and evaluation (RDT&E) costs increased by 42% over initial es-

timates and expected deliveries were delayed 22 months on average [144]. In 2011,

Collopy et al [32] extrapolated these results to completion and reported the total loss

due to delay, overruns, and reductions in material (generally caused by overruns) to be

$55 billion per year, or $150 million each day. The 2009 Government Accountability

study examined 47 defense programs in-depth and found at key decision points “most

programs proceeded with far less technology, design, and manufacturing knowledge

than best practices suggest and faced a higher risk of cost increases and schedule

delays”. Increasing design knowledge is equivalent to decreasing design uncertainty,

a core component of the proposed framework.

1Seven out of the top ten largest acquisition programs were for aircraft; the other three programs
were for a submarine, missile and aircraft carrier.
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Analogous trends and challenges are seen in the commercial aircraft realm. Al-

though not all of the cost overruns and delays are attributed to the design process,

there have been several high-profile examples where structural design flaws due to

loads resulted in significant delays and cost implications. Two recent examples in-

clude the Airbus 380 and Boeing 787 development programs [112]. By the time the

first A380 aircraft was complete the development cost increased from $9.43 billion2

(e8.8) [113] to an estimated $11.78−15.00 bilion2 (e11−14) [2] and the first delivery

was delayed two years. One of the launch customers for the A380, Qantas Airways,

reported in its 2005−2006 annual fiscal report that it has “brought to account $100

million AUD ($76 million US) compensation from Airbus for delayed delivery of its

initial and subsequent aircraft” [73].

In 2006 the A380 wing was undergoing ultimate static load testing when it failed

prior to the mandated ultimate load and resulted in program delays. It has been

documented that detailed, high-fidelity structural analysis was a prime contributor

to identifying the root cause and developing the solution: “straps along the stringer

feet on both sides were implemented to avoid separation and rivets were replaced

locally with bolts” [111]. Based on this, uncertainty quantification and management

of fidelity potentially could have helped avoid the failure and rework which ultimately

added to costs, delays and weight. Both uncertainty quantification and uncertainty

management are key aspects of the proposed method called the Rework Decision

Framework (RDF).

The Boeing 787 risks and setbacks have been well-documented and highly pub-

licized. By the time of first delivery in 2011 the program cost had swelled to an

estimated $32 billion [55] and four years of delay. Although the primary cause of

these setbacks was due to the simultaneous introduction of radically new technol-

ogy and supply chain strategies, there were also costly delays and rework due to

2Using average exchange rate from 2000 [148]
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structural flaws resulting in increased weight [159]. Similar to the A380, structural

failure occurred during static load testing of the wing in May 2009. Delamination

of the stringers on the upper skin occurred at the side-of-body interface between the

fuselage and wing. The failure occurred just beyond the limit load which meant a

redesign was be necessary to increase the structural integrity to withstand the man-

dated ultimate load [54].

The rework to design the side-of-body fix was estimated to cause a three month

delay in the flight test program and added to the already delayed first delivery [1].

According published sources [53] engineers with knowledge of the issues claimed the

“retrofit will be tremendously difficult to implement on the [flight test aircraft] already

built because the mechanics will have to do the tedious and meticulous work inside

the confined space of the wing.” These reports, although very speculative, speak

to difficulties which arise from rework and retrofitting. The source also claimed the

area showed up as a “hot spot” in Boeings analysis prior to the wing delamination

but it was never addressed. It may not have been the case that critical loads were

missed, but instead it is possible the impact of such loads were underestimated.

Uncertainty quantification can help better quantify this impact and clearly show

decision makers where areas in the design need to be addressed to mitigate risks. As

of July 2009, Barclays Capital analyst Joe Campbell estimated the total cost overrun

of the Dreamliner program due to “extra startup and engineering costs, penalties

owed to customers for delivery delays and contractual obligations to suppliers for

engineering changes [to be] in the vicinity of $11 billion” [54].

Real-world aircraft development pitfalls show the necessity of efforts to avoid

major rework due to test failures. Increasing knowledge as early as possible could

improve these symptoms which plague nearly all new development programs. Exam-

ples of this principle from academia include the previously cited work of Peoples and

Willcox [117] who conclude that decreasing uncertainty early in design is critical for
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mitigating business risk. Specifically they emphasize that “incurring costs early in a

program to ensure a successful design represents a safer strategy than going to market

with a design that has missed performance goals” [117]. Incorporate this approach

into all aspects of the design process could potentially reduce risk in the development

program.

The current approach to loads analysis accounts for uncertainty through classic

approaches such as margins and safety factors. But these approaches do not reduce

uncertainty, instead they compensate for it. Uncertainty reduction efforts in the cur-

rent approach are largely dependent on physical experiments, such as wind tunnel

tests, which can be very expensive. Although compensation is necessary, without

rigorous assessments of uncertainty relying solely on these approaches can inevitably

lead to over-design and less performance. Safety factors and margins can be sup-

plemented with measurements of confidence, which comes directly from uncertainty

quantification. Once measured, confidence can be systematically increased in order

to reduce uncertainty and mitigate rework risk.

2.3.2 Empirically-based Decisions on Fidelity and Margins

As stated previously, in a given load cycle a large set of cases are run in conjunction

with a chosen fidelity for each of the multidisciplinary analyses. Both the number

of cases and fidelity are selected, in part, to attempt to reduce uncertainty. The

number of cases is primarily dictated by regulations and other safety practices. So

this begs the questions; how much fidelity is enough? Based on subject matter experts,

computational fluid dynamics are more commonly used for designing military aircraft

where supersonic flight regimes and extreme maneuvers are necessary and require

advanced aerodynamic analysis but not typical in designing commercial transports.

Could benefits related to rework be achieved with higher-fidelity methods?
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Prior knowledge and empirical data can help answer these questions, but they

both quickly become unavailable or unreliable for novel designs. Analysis fidelity

decisions are often made as a function of time available to carry out the analysis

and the phase in the design program which dictates qualitatively how accurate the

solution should be. Poor decisions for analysis methods can result in inefficient use of

resources and potentially wasted time and money or unacceptable levels of uncertainty

and too much risk. Analysis fidelity decisions should be made with quantified metrics

relating the uncertainty reduction benefits, and potential costs, rather than simply

doing what has worked in the past.

A similar argument can be made for allocating design margins. As has been men-

tioned, structural margins are typically empirically-based and an “if it ain’t broke,

don’t fix it” approach taken. Although there is a growing amount of research on

reliability-based and other probabilistic methods to effectively replace empirical mar-

gins [61][96], such approaches are not utilized in the proposed Rework Decision Frame-

work. Such advanced methods could be incorporated into the framework for future

work. The choice to develop this framework around classically defined, i.e. determin-

istic, margins and safety factors was to demonstrate a decision system which could be

applied to existing aircraft development programs. Although probabilistic-methods

are popular in academia, they are far from becoming common practice or approved

for certification purposes by regulatory bodies. Instead of fixing the margins to their

historical levels, both the structural and load margins are varied in this framework

to assess their impact on rework and optimized based on constrained resources.

2.3.3 Reactive Approach to Rework

In the current approach to the loads process, of course every effort is made to

avoid flight and ground test failures and these failures are not normal occurrences by
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any means. But new concepts and technology in the future will posed additional risk

because designers will be in new territory. Therefore one could argue that the lack of

integrating uncertainty quantification and management into normal design practices

and the reliance on empirically-based margins make it difficult to proactively plan for

major and minor rework for novel concepts. One only needs to look at some of the

787 development issues which occurred when various new technologies were infused

on the same platform and introduced new uncertainties which may have never been

considered because they were unproven on any previous aircraft [40].

It is thus assumed, and agreed upon by some industry experts, that the current

approach treats rework in a reactive rather than proactive manner [12]. In other

words, design rework is handled as it becomes necessary to fix a problem or reduce

weight, which is reactionary. An alternative approach would be to simulate when both

major and minor rework might occur when decisions are made on specific analysis

and design choices. In this work, those decisions are related to aerodynamic fidelity

and margin allocation. Therefore this thesis seeks an alternative, proactive approach

to decisions which affect design rework. Next, the key features of the proposed alter-

native will be discussed.

2.4 Rework Decision Framework: A New Approach to Aid
Loads Analysis

Some limitations in the current approach to loads analysis and design have been

discussed. In order to address these limitations two focus areas for this thesis have

been identified; uncertainty quantification and uncertainty management. These two

areas are utilized together in the overarching framework to aid in specific analysis and

design decisions which could reduce the risk of major rework and potentially improve

loads analysis. An overview of the framework is discussed here.

It has been shown that uncertainty quantification can potentially improve loads
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analysis and design in general. Overcoming subjective or empirical assessments of

risk is an important first step before attempting to mitigate such risks. In terms

of major rework risk, several sources of uncertainty exist in loads analysis, but this

thesis focuses on aerodynamic uncertainty because of the emphasis on loads. Once

identified, the impact of the uncertainty on the desired responses in the system must

be quantified. The field of uncertainty quantification and sensitivity analysis have

numerous approaches which will be discussed in Chapter 3.

Reducing uncertainty once it has been quantified requires unique methods, es-

pecially because some uncertainty sources by definition cannot be reduced. Several

of these methods will be discussed, but the literature often only focuses on how to

reduce uncertainty but less on if certain sources should be reduced. Identifying im-

portant reducible uncertainty points back to sensitivity analysis. But to truly answer

this question we turn to uncertainty management. In a realistic airplane development

program there is limited time, money, and computational resources to employ often-

expensive experiments and numerical methods to reduce uncertainty. Approaches to

determine how much uncertainty should be reduced given constrained resources will

be explored.

Treating uncertainty directly can potentially reduce uncertainty associated with

the prediction of failure but in the context of current practices, we must also address

the allocation of margins. To counteract unconservative loads, a margin may be

directly applied to the loads to artificially increase them. This practice is regularly

employed in engineering by implementing safety factors. Past failures in aerospace

programs have shown designing to the “ultimate” historically defined by a 1.5 safety

factor is not always enough to avoid major rework [112]. Instead of making the

loads more conservative, another approach to avoid major rework is to increase the

required minimum margin of safety in the structure. The margin of safety is defined

for a specific failure analysis so it will have a different effect on the structure than
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the load margin which impacts all failure analyses dependent on the force.

Both the load and structural margins are applied to make the structural design

more conservative and are well established methods. This thesis proposes a third,

unique approach to addressing major rework: increasing analysis fidelity. In addition

to decreasing uncertainty, adjusting the fidelity can affect the conservativeness of

the loads as well. But unlike margins, more fidelity comes with more computational

costs. The overarching rework decision framework utilizes uncertainty quantification

and management in conjunction with optimization to trade aerodynamic fidelity, load

margins and structural margins to reduce the risk of rework while taking into account

the relative costs associated with these decisions.

In order to address rework proactively different scenarios and decisions need to be

evaluated to assess their impact. An example of such a scenario can be notionally de-

picted by looking at the wing bending moment on the conceptualized model described

in Section 2.1. The wing bending moment is an integrated load which generally can

tell us about the state of internal stresses as shown in the simple beam equation:

σ =
My

I
(1)

where σ is the bending stress, M is the bending moment, y is the distance from the

neutral axis and I is the moment of inertia. Two scenarios are portrayed by plotting

a notional bending moment curve shown in Figure 5.
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Figure 5: Analysis uncertainty and load margin for notional wing bending moment

compared with true loads from flight load survey

The red curve in Figure 5 is the true bending moment derived from the flight

load survey and the dashed curve is the analysis prediction as a function of the

span location, η where 0.0 is the wing root and 1.0 is the wing tip. The error bars

represent the magnitude of uncertainty (exaggerated for illustrative purposes only).

In the context of the bending moment a positive margin would indicate the mean

value of the analysis loads are greater than the true loads, i.e. more conservative.

This is beneficial because underpredicting the loads, i.e. unconservative, increases

the risk of flight test failure.

In the first scenario there is a positive margin, but a large amount of uncertainty

means there is a chance the positive margin will not be realized. In the second

scenario there is a small negative margin but low uncertainty so there is a high

degree of confidence in the prediction. How can a decision maker proactively plan

for rework with these two scenarios? The proposed decision framework allows the

decision maker to optimize to see if there is a solution which has both a positive

mean margin and low uncertainty which can be achieved with a combination of the

right aerodynamic fidelity level and margin allocation.

23



This simplified example shows us a few things: first, the problem statement is

multiobjective because both the mean and variance of the responses are important.

Secondly, analysis fidelity is important because it realistically shows how close we are

to the “true loads” and it impacts the uncertainty. But higher fidelity means more

computational costs. Thirdly, if a more conservative design is preferred to avoid major

rework margins can be added to the load directly, which has a different affect than the

structural margin. Finally, the aforementioned scenarios speak to different priorities

the decision maker might have. For example, the may value a lower uncertainty

in some situations more than others. Thus a scenario-based framework would be

beneficial.

Results will show that the fidelity, load margin and structural margin influence

the mean and variance (uncertainty) in the bending moment. With this information

a decision maker can proactively plan for rework as they choose analysis methods and

allocate margins.

To complete the problem formulation for the Rework Decision Framework we must

address who will use it, how will it be used and when will it be used. For who, the

framework will be most beneficial for managers and technical leaders in the aerospace

industry who make decisions or are responsible for the outcomes of the loads group,

stress group, design group or other engineering groups related to the loads process.

To review the how, the Rework Decision Framework can be utilized for:

• Simulate various analysis fidelity, load margins and structural margins

to estimate potential impacts on rework and costs

• Trade performance, rework, uncertainty and computational cost for a

given scenario based on the decision-makers priorities

• Use the results of the framework to make more informed decision for

analysis methods and margins
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Finally for when: the Rework Decision Framework can be utilized throughout the

load cycles, but the earlier the better in terms of being proactive. The framework

should as be used as events occur which change the decision makers priorities which

are captured in the simulated design scenarios.

2.5 Research Objective & Primary Hypothesis

With problem formulated the research objective of this thesis is the following:

Research Objective: Develop a methodology for loads analysis to quantify and

manage uncertainty related to aerodynamics and load case parameters in order

to improve decision making for rework by optimizing fidelity, load margins and

structural margins

From the objective, two research goals were developed which drove the background

and literature review:

Research Goal 1: Develop a methodology to quantify uncertainty due to

aerodynamic analysis fidelity and load case parameter uncertainty

Research Goal 2: Develop a methodology to improve decision making for

design rework in loads analysis

The first hypothesis is the overarching hypothesis which concerns the entire thesis.

Therefore it is consider the primary hypothesis:

Primary Hypothesis: For a given design scenario, the proposed framework
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involving uncertainty quantification and management will lead to improved de-

cisions regarding rework and performance compared to the current approach

The literature review will be discussed in the next chapter and focuses on uncertainty

quantification and management methods to accomplish the two research goals. Ad-

ditionally the review will develop research gaps, research questions and secondary

hypotheses to address them.
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CHAPTER III

RESEARCH DEVELOPMENT & BACKGROUND

3.1 Rework in Design

Research for decreasing rework and redesign often fall under the field of operations

research, which is ultimately concerned with improving decisions in an industrial sys-

tem using advanced analytics and optimization. These fields span to most engineering

disciplines and applications, but the focus on aeroelasticity and the unique aspects of

the airplane development in the problem formulation narrowed the literature search to

the aerospace field. A review of the aerospace research regarding rework and redesign

have focused heavily on it from a production or operations perspective [39]. In other

words, rework which occurs after the system has been designed, certified and has be-

gun production or even entered service. This type of rework is often tied with repair

and servicability [156]. The problem formulation for this thesis is primarily concerned

with design rework, and therefore redesign which occurs in the pre-production phase.

The body of applicable research is thus smaller but there are some notable works

which will be briefly highlighted.

There is a significant amount of design rework research previously done which

stems from Professors Taiki Matsumura and Raphael T. Haftka from th University

of Florida [96][94][95][172][171][120][119]. In general these papers focus on reliability-

based structural design optimization methods which are concerned with balancing

redesign and performance through added weight. Of particular interest is the work

of Villanueva et al. [172][171] and Price et al [120][119]because of their treatment

of epistemic uncertainty, i.e. a lack of knowledge (see Section 3.3.1) and the use of

Bayesian methods which are utilized in this work and discussed in more detail in
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Section 3.4. Other related design rework research has been done by Arundachawat

et al from Cranfield University [11][12] which combines both structural analysis and

operations and logistical approaches to predict failure modes under uncertainty and

reduce rework.

Although the methods from University of Florida are very useful and similar in

scope, their focus on reliability is one major differentiator from this work. As was

stated, deterministic structural margins are utilized here so the Rework Decision

Framework can be applied to existing development programs. Additionally some of

these works consider epistemic uncertainty along with aleatory, but they do not focus

on analysis fidelity as a mechanism for improving rework. To the author’s knowledge,

no such work in aerospace has this specific focus. Finally, none of the aforementioned

papers differentiate and consider both load and structural margins. The papers from

Arundachawat et al do not specifically focus on the allocation of structural margins.

3.2 Introduction to Loads Analysis

The aerospace loads process generally describes a multidisciplinary design, analy-

sis and optimization (MDAO) process which results in structural sizing and definition.

The structure is discretized into sections or components where each is subjected to

numerous loading scenarios. The external forces and moments which constitute the

loads come from a variety of different sources and flight conditions so the analysis

requires many disciplines such as aerodynamics, structures, propulsion and controls.

These external loads are translated to internal loads and their response is determined

through structural analysis. When critical loads are identified, structural design and

optimization will size and define each component to achieve a favorable objective,

which in many cases is weight and cost.

The loads process is a fundamental step in the overall design process. Typically
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the loads analysis is divided into cycles and supports the design phases of the overall

airplane development. These cycles can be described as initial loads, preliminary

loads, design loads and certification loads, see Figure 2.

When the conceptual design phase is complete the general configuration and outer

mold line (OML) is frozen. Wind tunnel models can then be built and tested. The

resulting data helps formulate the loads used throughout load cycles. A relatively

modest amount of load cases are analyzed (∼ 1000 cases) and with subsequent cycles

the set of cases increases in size and complexity. This ramp up is associated with

finer detail in the design and more advanced tools. The final load cycles consist of

approximately 100,000 cases. The initial and preliminary loads generally correspond

to the preliminary design phase. Design and certification loads generally correspond

to the detailed design phase. At the completion of the design phase a version of the

airplane is manufactured specifically for flight testing to verify the analysis and wind

tunnel model. After the OML has been frozen for a commercial transport design the

loads process, including all cycles, can typically take three to nine months1.

Structural design is a critical step in the overall design process of any physical

system. The objective of structural design is to “develop a structure that fulfills

requirements with regard to serviceability and safety in a cost-effective manner” [51].

In aerospace, this primarily involves defining the internal layout, component sizing

and material definition. These three characteristics are optimized to withstand a

predetermined maximum amount of stress or deformation resulting from the expected

loads experienced by the aircraft during operations. An aircraft’s state defines its

configuration, weight, maneuver, flight condition, ground condition, etc. at any given

instant in time. All the loads cannot be precisely known for a given aircraft state

because the environment to which it operates isn’t precisely known. In addition,

1All magnitudes for the number of load cases and duration of load cycles are derived from feedback
from subject matter experts involved in this work
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there are an infinite number of states the aircraft could realize during its lifetime.

Load cases are essentially the combinations of airspeeds, altitudes, temperatures and

flight and ground conditions [165]. Thus a load case defines a set of conditions which

will determine all the loads the aircraft will experience in a single state. Therefore

analysts will evaluate thousands of load cases to account for these unknowns and

various states.

The goal of loads analysis is to find the loads which will control, or drive, the

structural design. This special subset of load cases is referred to as the controlling or

critical load case set. This set will determine the size, shape and material properties

of the structure so all failure modes analyzed will theoretically be avoided. Often

times the critical load set is determined by calculating the envelope of the summed

external loads or by plotting the internal forces and moments. The internal loads

which envelope all others are the critical loads. Another mechanism for determining

critical loads is through failure analysis. For example, the load cases resulting in the

lowest margin of safety from a particular failure method can be viewed as critical.

The critical load set is used in this thesis as the driving factor of the overall structural

design and weight. Aircraft performance and costs can directly tied to weight [81] so

the loads process is crucial. Details on the individual disciplines in loads analysis will

be discussed in the experimental setup in Chapter 5.

3.3 Uncertainty in Loads Analysis

The need for uncertainty quantification (UQ) in the loads analysis process has

been discussed in Chapter 1. This section discusses some background information

to aid in the understanding of the UQ discipline. In general UQ can be thought of

a series of steps to quantitatively determine the uncertainty (or error) in a system

response due the uncertainty in it’s inputs and noise factors. Visually these steps are
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depicted in Figure 6:

Figure 6: Notional depiction of uncertainty quantification process

In reference to Figure 6, Section 3.3.1 addresses Step 1 and discusses several uncer-

tainty sources related to loads and those considered in this work; namely aerodynamic

analysis fidelity and load case parameter uncertainty. Section 3.3.2 addresses Step

2 and discusses how the two sources will be modeled. Section 3.3.3 addresses Steps

3 and 4 and discusses several propagation methods from the literature and how the

response uncertainty will be represented. The knowledge base for UQ has grown

exponentially due to the reliability on computer models for design and analysis and

its applicability to nearly every discipline in applied science and engineering. Thus

there is a plethora of methods and terminology, but a small, relevant subset will

be discussed and considered here. The methods discussed in this section will serve

as candidate methods in the experimental plan to represent uncertainty in proposed

framework.

3.3.1 Uncertainty Sources in Loads Analysis

Former U.S. Secretary of Defense Donald Rumsfeld said on February 12, 2002,

31



“There are known unknowns. That is to say, there are things that we now

know we dont know. But there are also unknown unknowns. There are things

we do not know we dont know”

The “unknown unknowns” means there are an infinite number of sources of uncer-

tainty in any real system making it impossible to attempt to identify and model all

sources. Even if it were possible, the result would be useless because the response

uncertainty would be infinite. Thus a major step, arguably the most important and

most difficult, is to identify what are the most significant sources in a system which

are useful to a study, the “known unknowns”. Some difficulty lies in the fact that

the system must be understood to even identify where variability and noise may oc-

cur [152]. But it often requires expert system knowledge to distinguish these sources

from each other and determine which significantly impacts the response and which

are relevant. The relevancy of a source can refer to how controllable the uncertainty

is or how likely it is to occur in the system during a given time period. The latter

is one of the primary concerns of reliability engineering [68]. Expert knowledge for

identifying significant and relevant sources for loads analysis was acquired through

literature review and industry experts.

Two major categories exist in the UQ field for sources of uncertainty; aleatory and

epistemic. Aleatory uncertainty represents natural variability inherent in a system.

This type of uncertainty is also called irreducible because, as the name suggest, it

cannot be eliminated in the sense that variability will always exist in the system.

Though the effects of this uncertainty can be reduced, which is the approach taken by

robustness methods. Epistemic uncertainty characterizes a lack of knowledge about a

system. This knowledge can be supplemented and increased so epistemic uncertainty

is called reducible. Both these types are important and will be utilized in this thesis.

Analysis fidelity represents a type of epistemic uncertainty which can represent
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model form error relative to reality. Given the problem fomrulation this would be

a prime candidate for an uncertainty source, but does it have a significant impact

on loads? To answer this we must look at the literature. For load uncertainty in

commercial transport aircraft, a large portion of the research focuses on dynamic

gust loads due to their complexity and difficulty in prediction [72][60][29][10]. The

purpose of this thesis is to develop a framework which could apply to virtually any

uncertainty source in the realm of loads analysis. As stated in Section 5.3.1 static load

types are much simpler and computationally less expensive to analyze than dynamic

loads. Thus gust load analysis were not considered in this initial development.

Epistemic uncertainty due to analysis fidelity has been studied often in aerody-

namics and aeroelasticity [26][42][66][97], though not often with respect to the loads

analysis process utilized in industry. It is hypothesized that aerodynamic fidelity will

have a significant impact on the external loads in this work. For example, the base-

line aerodynamic method used in this thesis cannot capture shock formation due to

it’s linearized compressibility assumption, but computational fluid dynamics (CFD)

can so there will be significant differences in pressure distributions in transonic flight.

Feedback from industry experts involved in this work also confirmed aerodynamic

fidelity is a novel, significant and relevant source for loads analysis so it was chosen

as one of two uncertainty sources to evaluate the proposed framework.

The parameters which define a load case are intended to represent different op-

erational states of the aircraft, tor example, its speed and altitude. Of course it

is impossible to precisely know all the states an aircraft will experience during its

lifetime so there is some variability in these parameters which represents aleatory

uncertainty. This type of uncertainty if fairly common in studying aerodynamics but

still is an important consideration and therefore will be included as the second source

of uncertainty.

Besides the two aforementioned uncertainty sources there are many others which
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are also significant and relevant to loads analysis, especially given its multidiscipline

nature. For example, uncertainty due to analysis fidelity could be applied to other dis-

ciplines such as structural analysis, aeroelastic analysis and control theory, although

control laws are not explicitly modeled in this environment. High fidelity methods

have been explored for dynamic aeorelasticity and flutter prediction [16], although

only static analysis is considered here. The choice of varying fidelity for only aerody-

namics was primarily made to limit the scope of the work and take advantage of the

analysis tools integrated into the modeling environment, which is discussed in detail

in Chapter 5.

In terms of parameter aleatory uncertainty, aerospace structural design offers a

few common uncertainty sources in the literature. Material properties have always

been popular choices for parameter uncertainty in UQ applications [34][76][104]. It

has become even more popular with the expanding use of composites, and conse-

quently the material definition design space has also expanded. The flexibility offered

by composites also brings many more sources of uncertainty when compared to tra-

ditional metals. Non-heterogeneous material properties, directional stiffness, layup

configurations, manufacturing considerations are some examples where variability can

occur [177][65][99][175]. Chapter 1 mentioned the importance of stress allowables and

margins of safety in structural design and risk. In fact margins of safety were created

for this very purpose, to account for the uncertainty before UQ became a commonly

used design and analysis tool, but mostly limited to research. They are typically

predesignated by subject experts but there is a great deal of uncertainty in the val-

ues themselves [167][158]. Many argue there is too much conservatism in their use,

especially given the same values have been used for decades in some applications.

Although the other uncertainty sources mentioned have been shown to be both

significant and relevant in the literature, they do not directly result in variability in
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the external load calculations. Thus the final choices for uncertainty sources con-

sidered in this thesis are related to aerodynamic fidelity and load case parameters.

Due to the novelty in applying these sources to loads analysis, it’s not clear how

significant they will be in terms of response uncertainty. But the beauty in UQ is

that it supplements or sometimes even circumvents expert knowledge by quantifying

the significance and relevancy through sensitivity analysis which will be discussed in

more detail in Section 3.5.2.

3.3.2 Modeling

The uncertainty sources to be examined in this work were identified. The next

step is to determine how the uncertainty will be represented in a modeling environ-

ment. Probability-based methods have long since dominated the field of UQ [157] for

aleatory sources. Dealing with uncertainty and error is the basis behind probability

and statistics so it is natural that many methods are based on its theories. Epis-

temic uncertainty on the other hand has not received a general consensus on how to

represent it. Thus two general categories exist for modeling epistemic uncertainty;

probabilistic and non-probabilistic.

Probabilistic methods are based on the theory of probability, or the analysis of

random variables. Two key assumptions are made when using probability in most

UQ methods; the uncertainty in question is indeed random and it can be accurately

represented by a distribution function. Most often a probability density function

(PDF) is chosen to model the uncertainty source. Probability density functions are

mathematical functions of continuous random variables which represent the likelihood

of an event to occur. The integration of the PDF over a range of values gives the

probability of the random variable falling within the given range. An expert who is

very familiar with a given system and uncertainty source will assign a distribution
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which most reflects the variation or physical nature of the error. Because this assign-

ment is subjective and the resulting response error is highly dependent on the choice

of distribution, probabilistic methods have received some skepticism [145], though it

is still widely accepted and used in the UQ community.

One probability-based approach for modeling epistemic uncertainty has received

wide acceptance in the UQ community: Bayesian methods. Their view on probability

differs from the traditional frequentist view and instead take a subjective view [139],

which has led to its acceptance. These methods also avoid the aforementioned pit-

falls of relying on assumed probability distributions because these distributions are

updated when new data becomes available. Bayesian methods will be discussed in

more detail in Section 3.4.

The aforementioned reliance on choosing the “right” input distribution has fueled

non-probabilistic methods. Also, probabilistic methods are well suited for studying

parameter uncertainty because they are inherently concerned with the effects of vari-

ation. In contrast, model uncertainty is concerned with the effect of knowledge, or the

lack there of, in a model, simulation or analysis. Some would argue that probability

cannot capture the knowledge of a model due to its fundamental definition [157]. This

idea has also caused non-probabilistic methods to become more popular, given the

increasing importance weighted to epistemic uncertainty. The most widely used non-

probabilistic methods are interval analysis, possibility theory, evidence theory and

fuzzy logic. Each of these have fundamental differences between each other and some

have been shown to be generalizations of probability theory [147]. They primarily

deviate from probability because they are based on the concept of incomplete infor-

mation where probability assumes complete information [20] about the problem and

its modeling. For example, possibility theory provides a mathematical foundation to

quantify the notions of “possibility” and “necessity” and to combine opinions of dif-

ferent experts which led to the concept of fuzzy sets [180]. Evidence theory provides a
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mathematical foundation to quantify the notions of “plausibility” and “belief” which

is based on Dempster-Shafer theory of evidence [146].

Another type of non-probabilistic model is deterministic uncertainty, where the

uncertainty parameters are modeled as constants which may change. All aforemen-

tioned models were nondeterministic. Deterministic uncertainty is modeled in the

following form:

f = f (x + γ,α) (2)

where f is a function dependent on x control variables, γ represents uncertainty

related to production tolerances or sensor and actuator imprecision, α represents

uncertainty related to a changing environment and operating conditions [20]. Some

have argued and demonstrated that non-probabilistic methods can still be utilized in

conjunction with probability [157]. For example, utilizing probability for parameter

uncertainty and evidence theory for model uncertainty for the same system.

The purpose of this work is not necessarily to advance the theory of any UQ

method. In the literature many argue about the fundamental theory behind many of

the non-probabilistic methods and how they compare to probability. Though impor-

tant, these nuances are not critical to the development of the proposed methodology.

Therefore the ease of understanding and implementation of the chosen method are of

paramount concern given its computational expense is feasible. Probability is much

more utilized and easily understood by the general aerospace community than it’s

non-probabilistic counterparts. The ability to assign a mean, variance, and confidence

interval to the structural weight response which can be immediately comprehended

by a user without further background knowledge is of great importance. As discussed

in Section 3.2 both uncertainty sources lend themselves well to probability. Therefore

the modeling of aerodynamic fidelity and and load case parameter uncertainties will
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be done using a probabilistic approach.

3.3.3 Propagation

The modeling method influences the propagation method, for example a proba-

bilistic approach to uncertainty modeling calls for probabilistic propagation methods.

Only probabilistic uncertainty propagation methods will be discussed here.

As the name describes, propagation methods transfer the uncertainty in the input

through the system and onto the response. Probability-based methods sample the

input probability density functions and propagate these distributions to the system

outputs. The resulting response data is collected and fit to a PDF. Depending on the

type of distribution, the uncertainty is quantified by the parameters of the PDF or

by calculating statistical confidence intervals.

The propagation method is applied to the system, so for computer experiments

this may involve calling a mathematical function or software representing an analysis

method. Some of the propagation methods to be discussed require a large number of

sample points to accurately fit the response distribution and thus prohibit expensive

function calls. This leads to the question of which sampling subject should be used

for the propagation. Instead of calling the analysis method itself, a surrogate model

can be sampled instead and significantly reduce the computational cost because it

is an analytical function. As usual, the tradeoff for speed is accuracy. This begs

the question, how accurately can a surrogate model represent the actual analysis?

If an accurate surrogate can be created, this is usually the preferred method over

directly calling an expensive analysis. There are several types of surrogate models

which have been shown to be quite accurate for certain systems. The most widely

used are response surface equations (RSE’s), artificial neural networks (ANN’s), and

Kriging (Gaussian Process Models) [151].
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As discussed, the sampling subject often enables certain propagation methods.

If an accurate surrogate model can be used or the analysis itself is computationally

inexpensive, one of the simplest and most popular methods is Monte Carlo. Monte

Carlo involves sampling one or more input distributions many times until enough

response data is collected to fit a probability density function. The response of a

deterministic analysis can be treated as non-deterministic, and thus it’s uncertainty

can be assessed in a probabilistic sense. The shear number of samples required to

fit the response data makes Monte Carlo infeasible for even moderately expensive

analysis methods in many situations. But with enough data points the response

distribution can be very accurately resolved, which justifies its wide use.

A class of methods derived from Monte Carlo are referred to as Quasi-Monte

Carlo methods. Instead of sampling a probability distribution with a sequence of

pseudorandom numbers, these methods use low-discrepancy sequences. Halton and

Sobol sequences are examples of low-discrepancy sequences, the latter will be used in

this work for sensitivity analysis. These are not random and result in more evenly

space samples which lead to lower convergence rates compared to Monte Carlo [13].

Due to the fact that the method is deterministic it can be more difficult to estimate

the error or variance, which is of utmost importance in UQ.

The expense of Monte Carlo methods and its derivatives have led to methods

which attempt to approximate a distribution at the cost of accuracy. In the field of

reliability several methods exists: First Order Second Moment (FOSM), First Order

Reliability Method (FORM), and Second Order Reliability Method (SORM). Other

methods include Fast Probability Integration, Point Estimation Method, and Global

Sensitivity Equations. Stults (2009) [157] gives a qualitative comparison of these

methods for a multifidelity analysis selection problem framework which is repeated

here in Figure 7. The criteria used in this comparison are: the amount of time needed

to use the method, ability to handle non-monotonic models, ability to handle higher
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order problems, and scalability of the method in terms of time required and quality

of result. Although a different set of criteria would be used in this work, these figures

of merit are still important so this qualitative study can be used as a starting point

for evaluating different propagation methods.

Figure 7: Qualitative Comparison of Uncertainty Propagation Methods [157]
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3.3.4 Uncertainty Reduction and Management

In the problem formulation one of the limitations of the current approach to loads

analysis is relying on expensive experiments such as wind tunnel tests to provide

calibration data as a form of uncertainty reduction. Physical experiments are thus

a classic method for uncertainty reduction. Other similar practice include calibra-

tion, verification and validation. To provide high quality data which can maximize

uncertainty reduction these experiments must be done on full scale systems which ac-

curately simulate the systems’ environment. This is difficult and costly for aerospace

systems and so computationally-based methods will be pursued instead in this work.

Based on a review of the literature on uncertainty reduction one way to classify

these methods is based on the source of uncertainty. If the uncertainty source is due

to variability, i.e. aleatory uncertainty, then specific methods are usually applied. It

was mentioned earlier that aleatory uncertainty is irreducible. Though true, the re-

sulting system response uncertainty can be made to be less sensitive to the variability

in the inputs. These types of approaches are classified as robustness methods [176]. If

instead, a criteria is set in which a solution must achieve a minimum probability of suc-

cess in the presence of variation then this approach is considered a reliability method

[68]. Although these are both popular forms of design optimization under aleatory

uncertainty, the nature of epistemic uncertainty has spawned other approaches to

uncertainty reduction.

Another broad category of uncertainty reduction approaches can be classified as

multifidelity methods. As the name suggests, these methods utilize varying levels of

fidelity or the inclusion of information and data to reduce uncertainty. A popular

multifidelity approach is to represent a computationally expensive system or analysis

with an approximation or surrogate model which can be orders of magnitude quicker

to solve and still capture the main effects of the underlying analysis. An example

of this is using polynomial chaos to construct the low fidelity model [10]. Another
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approach stems from information theory and seeks to determine where in a system

there is a lack of information or data. A popular technique is the treatment of entropy

as a measure of uncertainty with the goal of maximizing it to decrease uncertainty

[24]. One of the more common multifidelity approaches is to use Bayesian methods

to incorporate data from varying fidelity analyses in order to reduce uncertainty [82].

Reducing uncertainty can be accomplished with one of the aforementioned ap-

proaches but none of them alone focuses on if uncertainty sources should be reduced.

The if depends on the magnitude of the impact of the source on the responses of in-

terest and what resources are available to reduce the uncertainty. The impact can be

assessed with sensitivity analysis which is standard practice in UQ but the consider-

ation of resources is typically overlooked in the literature. Uncertainty management

thus involves both the reduction of uncertainty and decision-making [101]. Uncer-

tainty management is already a much smaller research area in UQ, but uncertainty

management approaches in engineering which also involve financial considerations is

even smaller. A promising approach which will be discussed in more detail is resource

allocation and stems from Quantification of Margins and Uncertainty (QMU). QMU

methods were first developed out of Sandia National Laboratory to design nuclear

reactors but has grown and been applied to other fields [61][167] [168]. The resource

allocation methodology is Bayesian-based and will be discussed in Section 3.5.

3.3.5 Conclusion

The research goal for uncertainty quantification given in Chapter 1 is to develop

a methodology to quantify epistemic and aleatory uncertainty due to aerodynamic

fidelity and load case parameters respectively. UQ in conjunction with sensitivity

analysis enables the user to see which sources affect the uncertainty in the response

the most. Thus the impact of analysis choices is quantified with respect to uncertainty.
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In addition, UQ will help determine where to focus analysis resources in downstream

load cycles and design phases. For example, load cases which are critical and also

cause large variability should be explored with higher fidelity tools during detailed

design.

An overview of UQ methods was given in this chapter. Although aerodynamic

fidelity has been explored, its effect on loads analysis has not been. This gap will

be addressed by applying existing UQ methods to loads analysis. Existing methods

consist of techniques to model uncertainty and to propagate it to system responses.

Probability-based propagation techniques were discussed; Monte Carlo, Quasi-Monte

Carlo and distribution approximation methods. Some propagation methods are ex-

haustive require surrogate modeling to be computationally feasible. Popular surro-

gate models were listed. Bayesian methods offer accepted probabilistic approaches

for epistemic uncertainty and easily integrate with aleatory uncertainty. Therefore

Bayesian methods will be explored in this work and discussed in the next two sections.

3.4 Bayesian Methods for Uncertainty Quantification and
Reduction

Several candidate methods were previously explored to reduce epistemic uncer-

tainty. Bayesian methods were a natural choice because of their use of probability

which aligns well with the probabilistic aleatory uncertainty sources. Their ease

of understanding has led to their popularity and use in numerous fields, including

aerospace engineering. Having a large body of published work on such methods also

makes them an ideal choice. In the section some basic concepts are introduced and

the Bayesian methods utilized in this thesis are discussed, specifically Bayesian infer-

ence and Bayesian networks.
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3.4.1 Bayesian Inference

All Bayesian methods and theory are related to the work developed by Reverend

Thomas Bayes and expounded upon and originally published by Richard Price in 1763

[19]. Bayes’ theorem (or Bayes’ rule) takes advantage of the law of conditional prob-

ability and is used to determine the probability of an event based on prior knowledge

of evidence related to the event:

P (A|B) =
P (B|A)P (A)

P (B)
(3)

where the probability of event A is calculated with the condition that event B occurs.

Such a simple formulation has developed into a entire field of probability and

statistics with wide-ranging applications. Bayesian statistics utilizes one interpreta-

tion of probability in which evidence about an event are assigned probabilities which

reflect their degree of belief. This degree of belief can be altered when new evidence

becomes available, which is known as Bayesian inference [139]. Bayesian inference

is one of the most powerful and popular applications of Bayesian methods because

it allows us to make initial assumptions about the uncertainty of quantity and then

update this uncertainty based on new data. Such data can be based off of experi-

mental tests, numerical analysis, simulation, survey, etc. For an uncertain continuous

random variables θ, Bayesian inference can be expressed as:

f ′′(θ) =
L(θ)f ′(θ)∫
L(θ)f ′(θ)dθ

(4)

f ′(θ) is known as the prior probability distribution of θ and expresses all the current

knowledge available about the variable. f ′′(θ) is known as the posterior probability

distribution and is conditioned on the existence of evidential data related to θ. L(θ)

is known as the likelihood of θ and is proportional to the probability of the evidence
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conditioned on θ.

In the context of loads analysis, the uncertainty in a given aerodynamic parameter

is assumed prior to the load cycles and may be based on past airplane development

programs or wind tunnel calibration data, the latter is explored in this work. The

uncertain parameters are also dependent on the aerodynamic analysis using during

the load cycles. Initially we assume a certain aerodynamic fidelity level but then

may wish increase the fidelity in order to reduce uncertainty. If the higher fidelity

analysis is run the resulting data can be used in Bayesian inference to update the

prior distributions and calculate the parameters’ posterior distributions.

The likelihood function is an important consideration in using Bayesian inference.

Although a similar concept, likelihood is different from probability in statistics. In

the context of parameters, probability describes potential future outcomes of a fixed

parameter prior to having data to fully determine the outcome. Likelihood describes

how likely a parameter describes an outcome after some evidential data is available.

The concept of likelihood has been informally used for centuries until a rigorous

formulation was described by Fisher in 1922 [48]. The integration of the likelihood

function does not equal one so it does not follow the laws of probability. Because of

this the magnitude of the function is only important in a relative sense.

The most widely used aspect of likelihood is the maximum likelihood estimation

(MLE ) of a parameter. But unlike MLE, the entire function is utilized in Bayesian

inference to construct the entire posterior distribution, not simply the maximum

value. For a given response function y which is dependent on input variables x and

uncertain parameters θ, observed data for the response yD, and an assumed Gaussian

observational error with zero mean, the likelihood function can be written as:

L(θ) = P (D|θ) =
n∏
i=1

1

σ
√

(2π)
exp−

[
(yD,i − yi(xi,θ)2

2σ2

]
(5)
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where σ is the standard deviation of the observation error and can be assumed or

treated as an uncertain parameter and updated using Bayesian inference.

The denominator of Equation 4 is a normalizing constant which ensures the pos-

terior distributions integrates to unity. The posterior distribution, like the likelihood

function, is only known up to a proportionality constant which in this case is equal to

the integral function [141]. If there are multiple uncertain parameters this integration

can be computationally intensive. Thus numerical methods such as Markov Chain

Monte Carlo can be utilized to draw samples and construct the posterior distribution.

This numerical approach is discussed in the next section.

3.4.2 Markov Chain Monte Carlo Sampling

Markov Chain Monte Carlo (MCMC) sampling methods are class of algorithms

which are specially suited for constructing probability distributions known only up to

a proportionality constant, which is the case for Bayesian inference. The algorithm

is used to construct a Markov chain whose equilibrium distribution fits the intended

posterior distribution. The chain evolves after a number of steps and when converged

can be used to sample the posterior. Increasing the number of steps size increases

the quality of the fit for the posterior distribution. MCMC are popular methods for

Bayesian inference by drawing samples of the posterior distribution by numerically

approximating Equation 6.

f ′′(θ) ∝ L(θ)f ′(θ) (6)

A Markov chain is a type of discrete Markov process. A Markov process is a ran-

dom process where the future independent, in a stochastic sense, of its past behavior.

Thus the process in the future is only predicted based on the current state and not

the past. [57]. The process moves through a sequence of random variables which
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is called a “chain”. Markov processes are named after Andrey Markov who studied

such processes as a doctoral student in Russia and published a foundational paper in

1906 [91]. The Monte Carlo in MCMC refers to the sampling method used to draw

samples from the Markov Chain after it has converged to approximate the desired

distribution.

There are number of algorithms classified as MCMC. Two popular methods are im-

plemented into MATLAB’s Statistics and Machine Learning Toolbox; the Metropolis-

Hasting and Slice sample algorithms. MATLAB documentation [161] summarizes

the two approaches and excerpts are included here. For the Metropolis-Hastings

algorithm:

“Random numbers are generated from a distribution with a probability den-

sity function that is equal to or proportional to a proposal function... To

produce quality samples efficiently with the Metropolis-Hastings algorithm,

it is crucial to select a good proposal distribution. If it is difficult to find

an efficient proposal distribution, use the slice sampling algorithm without

explicitly specifying a proposal distribution.”

In this work MCMC will be used to construct the posterior distributions of uncertain

aerodynamic parameters which are NASTRAN’s empirical adjustment factors. It

is unclear what the posterior distributions will look like, so the advantage of not

specifying a proposal distribution in the Slice sample method is very attractive. The

algorithm is summarized as:

“In instances where it is difficult to find an efficient Metropolis-Hastings pro-

posal distribution, the slice sampling algorithm does not require an explicit

specification. The slice sampling algorithm draws samples from the region

under the density function using a sequence of vertical and horizontal steps.
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First, it selects a height at random from 0 to the density function f(x).

Then, it selects a new x value at random by sampling from the horizontal

‘slice’ of the density above the selected height. A similar slice sampling al-

gorithm is used for a multivariate distribution... Slice sampling can generate

random numbers from a distribution with an arbitrary form of the density

function, provided that an efficient numerical procedure is available to find

the interval I = (L,R), which is the ‘slice’ of the density.”

The implementation of the Slice sample method used in MATLAB is summarized

and quoted below [107] [161]:

“For a function f(x) proportional to the density function is given, then do

the following to generate random numbers:”

Step 1: “Assume an initial value x(t) within the domain of f(x).”

Step 2: “Draw a real value y uniformly from (0, f(x(t))), thereby defining a

horizontal ’slice’ as S = x : y < f(x).”

Step 3: “Find an interval I = (L,R) around x(t) that contains all, or much of

the ‘slice’ S.”

Step 4: “Draw the new point x(t+ 1) within this interval.”

Step 5: “Increment t → t + 1 and repeat steps 2 through 4 until you get the

desired number of samples.”

After sampling, the posterior distribution is constructed using a nonparametric Ker-

nel density estimation approach [130]. In general MCMC methods have been a key

enabler for Bayesian inference for large problems which may include hundreds of un-

certain quantities. When expensive “black box” analyses are dependent on these un-

certain quantities, surrogate modeling is almost a prerequisite to implement Bayesian
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methods. Surrogate modeling techniques used in this thesis will be discussed in more

detail in Section 6.3.1.

3.4.3 Bayesian Networks

In uncertainty quantification the propagation of uncertainty from inputs to out-

puts is referred to as the forward problem. Propagation techniques such as Monte

Carlo were introduced in Section 3.3.3. The process of inferring the uncertainty of an

input is known as the inverse problem. Such techniques include Bayesian inference

discussed in the previous section. In some applications both the inverse and forward

problems are solved and utilized to quantify uncertainty. When such applications are

large, complex or include multiple sources of uncertainty Bayesian networks are often

employed.

A Bayesian network is a probabilistic directed acyclic graphical (DAG) model

which represents the conditional dependencies, in a statistical sense, between vari-

ables or parameters which are uncertain [139]. Each uncertain quantity is a random

variable and represented as a node. The links, or edges, represent conditional de-

pendencies. As with other DAG’s the edges in a Bayesian network are unidirectional

(directed) and thus there is no way to start at a particular node and end up back at the

beginning (acyclic). Disconnected nodes represent quantities which are conditionally

independent.

A probability density function (PDF) is assigned to each uncertain node and af-

fects the subsequent distributions of all other nodes dependent on it (i.e. its child

nodes). These assigned probability distributions are viewed in the Bayesian interpre-

tation of probability and therefore can be updated with new or simulated evidence.

The term “Bayesian network” was first coined by Judea Pearl in 1985 [116]. Since their

inception, Bayesian networks have become quite popular and used in wide-ranging
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fields and applications.

Bayesian networks often carry our the inverse and forward problems to accom-

plish three main goals: inference, parameter learning and structure learning. The

first has been already been discussed in Section 3.4.1 and can efficiently be employed

in Bayesian network software to update many unobserved nodes with data from other

observed nodes based on approaches such as MCMC and others. A node is referred

to as observed if evidential data exists for the quantity. Parameter learning is used to

estimate an unknown parameter based on other observed nodes. Parameter learning

differs from inference because it is intended to estimate a finite value for a parameter

while inference determines the new uncertainty of the parameter. In other words,

learning maximizes some statistical quantity, such as maximizing the probability or

likelihood, to estimate the parameter and inference constructs the posterior distribu-

tion given new evidence. Often methods such as maximum likelihood estimation are

used to learn a parameter. Finally, structure learning uses algorithms to determine

the conditional dependencies, i.e. the structure, of a Bayesian network given data

[122]. For extremely large and complex problems it would be intractable for a human

to construct an appropriate network, especially because there are many ways to define

the same problem using such networks.

There a several types of Bayesian networks used to carry out the three afore-

mentioned tasks. The choice of type depends on the system being represented by

the network. If a system changes with time dynamic Bayesian networks (DBN) can

be used to model it and relate variables over adjacent time steps. A DBN uses a

state-space model representation and utilizes specific algorithms to carry out infer-

ence and learning between states for dynamic systems. Popular types of DBN’s are

Hidden Markov Models (HMM) and Kalman filters. In fact, DBN’s were first devel-

oped by Paul Dagum in the early 1990’s to unify and extend these popular methods in

a general probabilistic graphical representation and be able to carry out inference [37].
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3.4.4 Conclusion

In Section 3.3 several approaches were discussed to quantify and reduce epistemic

uncertainty. Bayesian methods were selected for their probabilistic nature and pop-

ularity in statistics and machine learning. In this section an overview of Bayesian

methods was given and particularly Bayes’ theorem, Bayesian inference and Bayesian

networks were discussed. Bayesian inference will be utilized in the proposed approach

to reduce epistemic uncertainty in aerodynamic empirical adjustment parameters by

updating the parameters’ prior distributions using data from simulated higher fidelity

aerodynamic analysis. Two algorithms were briefly discussed to draw samples from

the posterior distribution based on Markov Chain Monte Carlo sampling. Slice sam-

ple is the more attractive method because it does not require a proposal distribution

to approximate the posterior. Some drawbacks are the performance of the algorithm

is highly dependent on certain parameters which can be difficult to intuitively es-

timate apriori. Nevertheless Slice sample will be the default approach used in the

experimental plan.

Both the inverse and forward problems are necessary in the proposed approach.

The epistemic uncertainty will be reduced in the inverse problem and the updated

posterior distributions of the empirical adjustments will be used to propagate uncer-

tainty to the rework response in the forward problem. A Bayesian network will be

used to carry out the inverse and forward problems and quantify uncertainty in the

system-level response based on all aleatory and epistemic sources. Bayesian networks

are commonly used to carry out the tasks of inference and parameter learning. Only

inference will be of importance in this work because we are more interested in the

effect of the empirical adjustments on rework than explicitly specifying their values.

In large complex systems it can be difficult to determine the conditional dependencies
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required for a Bayesian network. In these cases the structure can be learned using

data and appropriate algorithms. In this work, the dependencies are simple enough

to characterize beforehand so structure learning won’t be employed.

In reality the design environment changes in each cycle of the loads process. As

the design matures in the cycles, for example, the structural definition becomes more

refined, additional load cases are added to the analysis, customer requirements may

change, etc. Thus the loads process is a dynamic process. For simplicity a static

environment will be assumed to develop the rework decision framework. Thus the

use of dynamic Bayesian networks is not necessary in this work. For future work, the

dynamic design environment will be included and DBN’s or other Bayesian methods

for dynamic systems should be explored further.

3.5 Resource Allocation Optimization for Uncertainty Man-
agement

Uncertainty reduction is an important part of the rework decision framework. To

properly address rework, accurate assessments of failure need to be obtained. With

numerous sources of uncertainty it is not feasible to target all sources when resources

are limited. In Section 3.3.4 several candidate methods for uncertainty management

were discussed to reduce epistemic uncertainty under constrained resources. Resource

allocation optimization was chosen as a promising uncertainty management method

because of its use of Bayesian methods which were previously selected for uncertainty

reduction, flexibility for various types of problems, simple problem formulation and

ease of implementation. In this section the details of the resource allocation approach

are outlined.
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3.5.1 Resource Allocation Methodology

The term “resource allocation” has been applied to a number of fields including

economics, strategic planning, computer engineering and information technology. Of-

ten in these contexts resource allocation deals with scheduling and assigning resources

as they become free from doing certain tasks. But generally, resource allocation deals

how best to assign or distribute available resources to accomplish some goal. In this

thesis resource allocation refers to a specific methodology for reducing epistemic un-

certainty in engineering design problems via constrained optimization. To the authors

knowledge, the methodology utilized in this framework is based off of the original work

of Urbina et al (2010) [167] and further developed by Sankararaman [137], both from

Vanderbilt University under Dr. Sankaran Mahadevan.

The work of Urbina et al came out of efforts from Sandia National Laboratories to

perform quantification of margins and uncertainty (QMU) and focused on optimizing

experimental tests to reduce uncertainty. Multiple parameters across multiple levels

of models and tests were not calibrated in this work. Sankararaman generalized the

approach to hierarchical systems by using “all available component-level models and

data to quantify the uncertainty in the system level performance prediction” [141].

This is important because physical tests can be expensive at higher levels in the sys-

tem hierarchy due to increased complexity. It may not be feasible to perform tests at

the system level so data from tests at lower levels must be incorporated into the uncer-

tainty assessment at higher levels. Sankararaman et al was able to apply the resource

allocation method to several types of problems including multidiscipline, mult-level,

and feedback-coupled problems which are all applicable to the loads analysis.

The methodology attempts to answer two questions: First, what type of test or

experiment should be conducted to reduce the uncertainty (e.g. wind tunnel test of

a specific load case)? and secondly, how many repetitions of each type should be
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conducted (multiple repetitions creates more calibration data and accounts for exper-

imental errors)? To answer these questions an optimization is done to determine the

distribution of tests to minimize the variance in the system level response. Each type

of test has an associated cost and so the optimization is constrained based on a fixed

budget. The method relies on Bayesian networks for inference and propagation of

various sources of uncertainty in complex systems. Due to the expense of performing

tests, experimental data for inference is simulated with multiple realizations. The

general steps for the methodology are described below:

Step 1: Design and construction of Bayesian network

Step 2: Sensitivity analysis and dimensionality reduction

Step 3: Bayesian inference

Step 4: Resource allocation optimization

Both Bayesian networks and Bayesian updating were discussed in Section 3.4. For

resource allocation the Bayesian network must include observed nodes which supply

the evidence to update the uncertain nodes. For example in Figure 8 the square nodes

represent observed data for the subsystem responses Y1 and Y2. DY1 and DY2 will be

used in Bayesian inference to update the uncertain parameters Θ1 and Θ2. In this

figure Z is the system-level response and X1 and X2 are design variables.

As with all Bayesian networks all uncertain quantities must be identified and their

relationships to component-level, subsystem-level, and system-level responses estab-

lished. In addition, the Bayesian network allows for integration of other uncertain

sources such as model errors, measurement errors, surrogate modeling errors etc. and

these must be included in the structure of the network. As was mentioned, if systems

are particularly large and/or complex structure learning algorithms can be used to

aid in designing the structure.
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The actual construction of the Bayesian network is heavily software dependent.

There are number of software specifically for designing, building and executing in-

ference and learning for various types of Bayesian networks. Capabilities have also

been added in well-known programs to handle them. In this work the construction

was done in MATLAB to fit into the overall design environment. Although some

3rd-party toolboxes have been developed for Bayesian networks in MATLAB, these

were not utilized here. Instead the Bayesian network is implemented by linking sev-

eral surrogate models together to represent subsystem and system level responses in

loads analysis. The inverse problem is solved with the MATLAB MCMC methods

previously discussed and the forward problem is solved with Monte Carlo sampling

of the surrogate models. More details on the specific types of surrogate models used

in this framework will be discussed in Section 6.3.1 of the Experimental Plan and

Results chapter.

Steps 2 and 4 will be discussed in more detailed along with other important aspects

of the methodology in the following sections.

Figure 8: Example Bayesian network [139]
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3.5.2 Sensitivity Analysis and Dimensionality Reduction

Bayesian inference is carried out at each step in the optimization in order to

evaluate the system response uncertainty. This can be expensive even for problems

with only a few uncertain parameters. Thus Step 2 is important to identify which

types of tests should be conducted to maximize uncertainty reduction. Sensitivity

analysis can accomplish this. Traditional derivative-based sensitivity methods only

calculate local sensitivity which cannot capture the effects of uncertainty from multi-

level sources at the system level. Global sensitivity analysis (GSA) on the other hand

can appropriately apportion variance at the system level in such systems and provide

information for identifying significant sources of uncertainty and the corresponding

tests to mitigate them [135].

GSA is based on the second moment and calculates the effect of each input on the

variability of the output, which is a measure of uncertainty [84]. For a given response

Y = G(X1, X2, ...Xn), with Xi inputs the first order sensitivity indices are given by:

Si =
V [E(Y |Xi))

V (Y )
(7)

where V and E are the variance and expectation respectively. The sum of first-order

indices of all variables is always less than or equal to unity. The first-order index

represents the main effect contribution of each input factor to the variance of the

output.

Interactions between inputs can have significant impacts on the response itself

and its uncertainty [176], so higher order sensitivity indices can be calculated which

measure the impact of uncertainty caused by the interactions of two or more variables.

It is necessary to specify each interaction to calculate higher-order indices, which can

be cumbersome for large problems. Instead the total effects index can be calculated
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and measures the sum of the main effect plus all other higher order interaction terms

involving the variable. The total effects indices are given by:

STi = 1− V [E(Y |X∼i))
V (Y )

(8)

Saltelli et al (2008) suggest an efficient approximation to calculating Equations 7

and 8, otherwise Monte Carlo can be used but may require multiple loops and become

quite expensive. The suggested approximation is utilized in the experimental plan.

The useful properties of these indices are summarized by the authors and quoted here

[135]:

• “Whatever the strength of the interactions in the model, Si indicates

by how much one could reduce, on average, the output variance if Xi

could be fixed; hence, it is a measure of main effect.”

• “By definition, STi is greater than Si, or equal to Si in the case thatXi is

not involved in any interaction with other input factors. The difference

STi − Si is a measure of how much Xi is involved in interactions with

any other input factor.”

• “STi = 0 implies that Xi is noninfluential and can be fixed anywhere

in its distribution without affecting the variance of the output.”

• “The sum of all Si is equal to 1 for additive models and less than 1

for nonadditive models. The difference 1 − ΣiSi is an indicator of the

presence of interactions in the model.”

• “The sum of all STi is always greater than 1. It is equal to 1 if the

model is perfectly additive.”
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It should also be noted that the indices can be negative using this formulation. The

authors mention negative indices are a result of numerical error and occur when an-

alytical sensitivity indices are approximately zero. Therefore variables with negative

values are deemed unimportant. Increasing the sample size when evaluating Equa-

tions 7 and 8 reduces the chances of producing negative indices.

Sensitivity analysis identifies significant uncertain inputs which influence outputs.

What the user does with this information is problem dependent but often it is used

to reduce the size of a problem or model. For resource allocation this is important

because although Bayesian networks represent a wholeistic approach to uncertainty

modeling and quantification, the inverse and forward problems can be expensive for

large problems. Even when surrogate modeling is used to drastically improve the

computational cost, fitting large amounts of surrogates can still require sampling of

expensive analyses. Minimizing the size of the Bayesian network can help improve

efficiency and surrogate modeling.

Reducing the problem can be achieved in the realm of machine learning and

data mining, and is referred to as dimensionality reduction [131]. Machine learning

generally describes a field in computer science and statistics which gives computers

the ability to learn without being explicitly programmed through algorithms which

can learn from data to make predictions [136][75]. Dimensionality reduction differs

from typical sensitivity analysis techniques because it utilizes training data to learn

and the predicted responses to determine important inputs by analyzing the accuracy

of the prediction with separate test data.

The dimensionality reduction process can usually be segmented into reducing the

number of factors (features), called feature selection or transforming higher dimen-

sional problem into a lower dimensional space, called feature extraction [121]. Fea-

ture selection can be achieved with variable screening techniques from statistics such

as ANOVA, normal quantile plots, Lenth’s Method and stepwise regression [176].
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In machine learning, feature selection is the combination of a search technique for

proposing a new subset of features, along with an evaluation measure to score the

different subsets. Three categories of feature selection algorithms are wrappers, filters

and embedded methods which are distinguished by the evaluation measure [59].

In wrapper methods a predictive model is used to evaluate the score and deter-

mine the feature subset. The model is built on a subset of the data and an error

rate based on the number of misclassified points. The misclassification (error rate) is

calculated from hold-out data within the subset and is the subset score. Statistical

stepwise regression is a type of wrapper method where a regression model is built by

systematically adding and removing factors from the model. Filter methods use a

proxy measure as the evaluation criteria to capture essential information of the fea-

ture subset without the computational cost compared to wrapper methods. Common

proxy measures are based on mutual information, correlation coefficients and signifi-

cance tests [179]. Embedded methods generally describe models which embed feature

selection into how the original model is constructed. A commonly used embedded

method is the LASSO method (least absolute shrinkage and selection operator) in

which certain coefficients of a linear model are penalized and reduced to zero so only

a subset of non-zero coefficients remain [163]. Feature selection will be utilized to

reduce the number of uncertain empirical adjustment parameters in the aeroelastic

analysis to improve surrogate modeling.

Feature extraction essentially involves mapping a group of features to a new

smaller set of features. The new feature set is intended to retain the relevant infor-

mation from the original features. The problem dimension reduction should improve

computational efficiency and sometimes improve interpretation by using the simpler

model. The most common example of feature extraction for linear models is principle

component analysis [43]. Feature extraction will be used to reduce the number of
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coupling variables in the Bayesian network representation of the loads analysis pro-

cess. Sensitivity analysis and dimensionality reduction will be important methods to

improving the rework decision framework and making it computationally feasible to

implement for real-world large and complex problems.

With a combination of global sensitivity analysis and dimensionality reduction

the significant tests are identified and included in as compact a Bayesian network as

possible to improve efficiency and maximize uncertainty reduction. Step 2 is critical

to making the resource allocation optimization feasible for realistic problems.

3.5.3 Objective Function and Constraints

Sankararaman et al suggests two formulations of the optimization problem; one

uses the system-level response variance as the objective function and test budget as

the constraint and the other minimizes the test cost subject to a constraint on the

variance reduction. The former is utilized in this work. The problem is posed as the

following:

Minimize
Ntest

: E[V ar(R)]

s.t. : Σq
i=1(CiNi) ≤ TotalBudget (9)

Ntest = [N1, N2, ...Nq]

where E[V ar(R)] is the expecation of the varaince of the system-level response R, Ni

is the number of tests conducted for the ith test, Ci is the cost of the ith test.

As stated previously, the tests and resulting test data are simulated and thus

require multiple realizations. For each realization, Bayesian inference will be done

based on Ntest at a given step in the optimization and updated epistemic uncertainty

along with aleatory uncertainty will be propagated to R. As such, R will be a dis-

tribution and the variance will be calculated for each realization. The expectation of
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the variance will then be calculated from the aggregate of realizations for each step

and minimized by the optimizer.

No rigorous definition for test costs is given in any of the work of Sankararaman

related to resource allocation. The original work of Urbina applied the resource al-

location method to an existing experiment which allowed them to use realistic cost

estimates. The cost estimates themselves was never the focus in these publications

which intentionally allows flexibility into how the user defines them. This is beneficial

but also makes the total budget and test costs highly subjective. Comparing one test

to another, only the relative cost is of importance and how those cost constrain the

maximum allowable number of tests for a given budget.

3.5.4 Optimization Approaches

The resource allocation optimization is an integer problem with objective function

which can be expensive given Bayesian inference is done for multiple realizations at

each step. Thus Sankararaman et al suggest two approaches to decrease the compu-

tational burden. The first involves breaking the problem into multiple stages. Within

each stage the optimal test distribution is found using an exhaustive search based on

a portion of the total budget. The best solution of a given stage is used as a start-

ing point in the following stage. Optimizing on the smaller budget limits the variable

ranges for the integer problem and thus reduces the search space compared to the sin-

gle large problem. Using the optimal previous stage results is equivalent to a greedy

search between stages and in theory should allow the same optimal solution to be

found after the final stage. The system response variance is reduced after each stage

and there is typically diminishing returns as the number of stages increases. Thus the

optimization problem can be terminated before the entire budget is exhausted which

may result in some computational savings compared to a single exhaustive search.
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Given a total budget for potential tests, the optimization problem is divided into j

stages and each stage is allocated a budget of φj such that Σφj = Total Budget. The

multi-stage resource allocation optimization problem is posed as the following for the

first stage:

Minimize
N1

test

: E[V ar(R)]

s.t. : Σq
i=1(CiNi) ≤ φ1 (10)

N1
test = [N1

1 , N
1
2 , ...N

1
q ]

where φ1 is the budget allocation for stage 1, and N1
test is the optimal experiment

combination for the stage 1 budget (= φ1). For subsequent stages the search depends

on the solution from the previous stage. For the j th stage, given budget allocation

φj, the problem is posed as:

Minimize
Nj

test

: E[V ar(R)]

s.t. : Σq
i=1(CiN

j,new
i ) ≤ φj

N j
test = N j−1

test +N j,new
test (11)

N j,new
test = [N j,new

1 , N j,new
2 , ...N j,new

q ]

where the superscript new refers to the new test combination at the jth stage.

The second approach to increasing efficiency in this problem is to create a system

level surrogate model for the response variance as a function of the Ni. To accomplish

this a design of experiments (DoE) would be used to sample the test design space

and then the surrogate model would be fit on the sample data. Optimization on the

surrogate model would significantly decrease the computational cost of the problem.

The accuracy of the solution would be subject to the quality of the surrogate model.

Given the fact that surrogates may already be used to replace analysis methods, using

a surrogate model of surrogate models can lead to large errors if care is not taken in
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the fitting process. The design of exmperiments and surrogate modeling techniques

used in this work will be discussed in Section 6.3.1.

The integer problem in resource allocation presents unique challenges for opti-

mization algorithms so several potential methods will be briefly discussed. Discrete

problems often eliminate gradient-based methods which can be very efficient. But

such methods suffer from only finding locally optimal solutions and are highly depen-

dent on the initial value. These algorithms are also ill-suited for stochastic problems

which have random variations in the objective functions, also known as “noisy” func-

tions. Stochastic problems are common in optimization under uncertainty but all

uncertain systems are not stochastic.

Special algorithms have been developed specifically for noisy functions and also do

not rely on analytic gradient information. Such methods can be categorized as direct

search methods [20]. Stochastic approximation methods are in this category and use

approximations to the Jacobian (gradient) and Hessian matrices of f along with an

iterative update formula to find the next point which converges to the minimization

of the expectation of some utility function [126].

Pattern search methods are a subset of direct search but use no derivative infor-

mation, analytical or approximate. Instead these methods generate a set of search

points based on a pattern, evaluate each of these search points in terms of the robust

measure, than accept those points which are deemed improvements over the previous

search points. The most popular pattern search method [17] is the simplex strategy

developed by Nelder and Mead [108]. This classic method has been modified for

noise by the works of D. Humphrey et al [62] and E. Anderson et al [8]. Metahueris-

tic optimization is also in the category of direct search methods. They are designed

to efficiently explore a large design space rather than search one path to the opti-

mum. Some of the most popular metaheuristics are based on nature and evolutionary

principles, such as genetic algorithms (GA).
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Typically a genetic algorithm consists of the following procedures; initialization,

selection, genetic operations and termination [174]. An initial “population” is set

which represents the search space. The size of this population stays constant through-

out the search so for the Inside-Out Method this population size can be determined

based on how large the user expects the significant set to be. Because the size is

an indicator of the level of risk or conservatism of the solution it can be determined

in other ways as well. Each candidate solution has a set of properties which can be

mutated and altered; traditionally, solutions are represented in binary strings of 0’s

and 1’s which are its “chromosomes”. In selection a fitness function will determine

which members of the population are most fit and will survive to the next genera-

tion. The fitness function is akin to the objective function and will be based on the

lowest margin of safety for each load case. The design space is explored via genetic

operations which produce a new generation of the population. Two commonly used

genetic operations are crossover and mutation. During crossover two members of the

population will “mate” and produce a child solution which have some characteristics

of both parents. During mutation one or more chromosomes are flipped in randomly

chosen members of the population. If implemented each chromosome would repre-

sent a the number test conducted of a specific type. New generations are successively

created until a termination criteria is met. There are many different modifications to

genetic algorithms in the literature.

3.5.5 Conclusion

Uncertainty management allows the proposed framework to offer insight into de-

cisions which may reduce uncertainty and lessen the probability of rework while un-

der constrained resources. Of all the candidate approaches the resource allocation

methodology suggested by Sankararaman et al [137] was chosen because of its use of
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Bayesian methods, flexibility, published results with problems related to loads analy-

sis and relative ease of implementation. The basics of this approach were discussed in

this section. The general steps for resource allocation include the construction of the

Bayesian network, sensitivity analysis, Bayesian inference and solving the resource al-

location optimization problem. Each of these steps were discussed here or in previous

sections.

The resource allocation methodology will be modified to apply to loads analysis

in order to address rework. Sankararaman et al was only interested in minimizing the

system-level variance because they were only trying to answer the questions of which

experimental tests should be run and how many repetitions of each type. For starters,

this work is not concerned with physical experiments but rather disciplinary analyses

at increased fidelity who’s data can be used to improve the accuracy of lower fidelity

methods. In order to address rework properly, the load and structural margins must

also be included in the uncertainty management system, but they do not impact the

uncertainty in the rework response directly. Therefore the single objective of system-

level variance will not be adequate. Despite this, the basic principals of the resource

allocation method are still applicable.

Given the modified objective function, the approaches to solving the resource

allocation problem may differ from the two methods originally suggested, namely the

multi-stage approach and the system-level surrogate approach. The inclusion of load

margin and structural margin variables in the optimization does not lend itself well to

partitioning the budget for multiple stages. This approach works for number of tests

because there is a cumulative effect on reducing the variance. Such a cumulative effect

does not exist for the margins, even if they are treated as discrete. The system-level

surrogate approach will be explored for loads analysis.

The modified resource allocation method requires gradient-free optimization just
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as the original method so direct search algorithms will be explored. The optimiza-

tion problem for rework may be posed as an integer problem if only discrete margin

levels were assumed. A more natural approach would be to have the margins contin-

uous and the fidelity level discrete. This would require an algorithm able to handle

mixed-integer problems. MATLAB’s Global Optimization Toolbox (R2016b) includes

pattern search and genetic algorithm, but the former can only handle integer prob-

lems while the latter can handle integer and mixed-integer. These and potentially

other algorithms will be explored further during experimentation.

In general, the resource allocation methodology offers a good starting point to

for uncertainty management and building the rework decision framework for loads

analysis. An overview of all the relevant background information has been presented

in this chapter and the framework will now be posed in Chapter 4.

3.6 Conclusion & Research Gaps

The background and literature review for uncertainty quantification and man-

agement revealed several observations. These observations then led to research gaps

which will be addressed in the experimental plan to contribute to the aerospace and

scientific community. These research gaps are summarized below:

1. Loads Analysis

A comprehensive MDAO environment is not readily available for mod-

eling load cycles in loads analysis and structural design

2. Uncertainty Quantification

A standard procedure does not exist for estimating the epistemic un-

certainty in linearized lift curve slope due to compressibility

3. Uncertainty Management
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An established correlation between aerodynamic fidelity and design re-

work does not exist

4. Rework Decision Framework

A proactive rework mitigation strategy does not exist involving aero-

dynamic fidelity, load margins and structural margins for aeroelastic

loads analysis which can be implemented in design phase
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CHAPTER IV

PROPOSED APPROACH

The uncertainty quantification and uncertainty management system (UMS) are

key components to the overarching methodology and its structure, from a conceptual

standpoint, is referred here as “the framework”. A description of the modeling and

simulation (M&S) environment will be given in the next chapter to fill in the specific

details of the framework. The upcoming section discusses an overview; one of the

principal components of the framework, the Bayesian network; followed by impor-

tant elements of the optimization problem and finally conclusions for the proposed

approach.

4.1 Introduction to Rework Decision Framework

A conceptual schematic for the framework is given in Figure 9 and depicts how the

uncertainty quantification and management research areas interact with the modeling

environment of the aeroelastic loads process.
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Figure 9: Proposed framework for uncertainty management system

This figure shows why uncertainty quantification and uncertainty management are key

components of the framework. The uncertainty quantification component estimates

the various sources of uncertainty and propagates them to the other parts of the

system where required. The two sources of uncertainty modeled are from aerodynamic

analysis fidelity and load parameter uncertainty. The arrows indicate all sources are

propagated directly to the external loads, which are applied to the structure for each

load case. The load parameter uncertainty are the only sources of aleatory uncertainty

in this environment.

The aerodynamic fidelity is modeled with NASTRAN correction factors, where the

epistemic uncertainty is represented by probability distributions for each factor. The

uncertainty management system simulates and controls this fidelity which impacts

the external loads. The external loads from the load cases are transferred to each
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structural component and then into internal loads and stresses. At the component

level, failure analysis is done and margins of safety calculated.

The uncertainty in each component’s critical margin of safety due to fidelity, load

parameters is assessed and aggregated over the wing. The UMS will simulate vari-

ations in fidelity, load margin and structural margins to determine their impact on

the system level major rework response. Through resource allocation optimization

the UMS will determine the optimal inputs based on their costs and the total budget

constraint. The key components in the UQ and UMS areas will be discussed in the

next two sections.

4.2 Bayesian Network for Loads Analysis

All of the uncertainty quantification and propagation in this environment is car-

ried out using a Bayesian network. As mentioned before, Bayesian networks (BN)

provide a systematic framework for characterizing uncertainty in a system by use of

directed acyclic graphs which describe conditional dependence of uncertain variables

and observed data. The experiments in Section 6.3 deal with the construction and

design of the Bayesian network utilized in this framework. A simplified Bayesian net-

work for aeroelastic loads analysis is shown in Figure 10. Loads analysis is a coupled,

multi-level, multidiscipline problem and an appropriate network must be designed to

reflect each of these aspects.
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Figure 10: Generic Bayesian network for uncertainty quantification in loads analysis

In Figure 10, square nodes are observed data or deterministic variables while non-

square nodes represent uncertain quantities. θ are parameters and X are analysis

or design variables controlled by resource allocation optimization. Ovular nodes rep-

resent subsystem and system responses from computational models. The load case

parameters (e.g. Mach number, altitude, etc.) include aleatory uncertainty (θLC).

The uncertain aerodynamic model parameters θAero are the aforementioned correc-

tion factors which represent epistemic uncertainty and are influenced by the chosen

fidelity. XMargins represent the load and structural margins.

The Bayesian network will be used for parameter calibration via the inverse prob-

lem and uncertainty propagation via the forward problem as described in Section

3.4.3. In the inverse problem θ is calibrated using the bending moment response data

from simulated higher fidelity aerodynamic analysis. The aerodynamic empirical ad-

justment (correction) factors are updated by simulating an increase in aerodynamic

fidelity. In the context of Bayesian statistics, calibration data is treated as observed

data, thus they are square nodes. In the forward problem, the uncertainty from the

newly calibrated aerodynamic model parameters, along with all other uncertainty, are

propagated to each component’s critical margin of safety and in turn to the major

rework response which is used by the UMS as discussed next.
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4.3 Resource Allocation Optimization Problem

The underlying method in the uncertainty management system is the optimization

based on a modified version of the resource allocation problem discussed in 3.5.1. The

principal modifications are the type of tests simulated, their cost and the objective

function. Each of these modifications is discussed in further detail here.

In the works of Sankararaman et al [140][137][141][139] a “test” typically rep-

resented a physical experiment in which the output was used as calibration data.

Experimental tests are simulated using computational models and multiple realiza-

tions of the test are needed in the resource allocation method. In this work, the tests

are not physical and instead are computational experiments. For example, in the

loads process computational experiments are needed to see how changing the fidelity

of an analysis impacts the responses of interest and their uncertainty. These experi-

ments are deterministic so uncertainty sources related to experimental error are not

of interest here as they were in previous work. But computational experiments can

be applied in the same manner as physical ones in the resource allocation problem

because each has a measurable impact on the response variance and a cost to con-

duct this test. The experiments of interest are related to aerodynamic fidelity, load

margins and structural margins.

The cost of an experiment is another differentiator of the proposed approach.

In the previously cited work the cost of a test is associated with the dollar value

necessary to conduct the test, e.g. material cost to run a stress test to determine

the Young’s Modulus of a new material. In this sense the cost of an experiment

may be relatively easy to estimate because such tests are often done in reality. In

this work the cost of a computational experiment is more generic and subjective.

For example, the cost of increasing the aerodynamic fidelity accounts for factors
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such as computational cost (e.g. increased runtime which could lead to schedule

delays) and additional resources needed to handle increased modeling complexity

(e.g. skilled labor, access to high-performance computing cluster, etc.). Such costs

are more difficult to estimate. Additionally, the only benefit to the aforementioned

physical experiments was the reduction of uncertainty in the system-level response.

Here, other benefits are considered and taken into account in the overall cost of an

experiment. For example, the experiments associated with redesigning a component

at a certain required margin can lead to weight penalties or savings. Historically in

the aerospace community there are direct correlations between weight and financial

quantities such as direct operating cost [81].

Thus the net cost (or benefit) of each experiment from various factors is expressed

and used in the optimization problem. Although using currency makes the evaluation

of an experiment much more useful to the user, assigning such units accurately would

take a great deal of effort and most likely very subjective. Instead, the user assigns

costs which reflect their prioritization of how important factors such as uncertainty

and weight are to them. In this sense, only the relative costs of each experiment and

their relation to the total budget is important in this framework. Priorities change

in different scenarios depending on where in the development process they occur so

varying the experiment costs will be a part of the experimental plan.

In the aforementioned resource allocation studies the system response variance

was the single objective function. The system response of interest in this work is re-

lated to the occurrence of major rework so it is beneficial to simultaneously optimize

the mean of the response along with its variance.
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4.4 Summary of Framework

The framework for the proposed approach is summarized in the following steps:

Step 1: Construct Bayesian Network

Determine structure of Bayesian network (BN) and assign prior

distributions to all uncertain inputs and parameters.

Step 2: Sensitivity Analysis

Perform global sensitivity analysis to identify important load case

parameters and WKK parameters which contribute significant un-

certainty to the system-level response.

Step 3: Choose X

For each step in optimization select potential fidelity level, load

margin and required margin.

Step 4: Update Aerodynamic Parameters

Simulate aerodynamic analysis based on X. Use Bayesian infer-

ence to update selected θAero parameters using bending moment

response data for calibration.

Step 5: Calculate Costs, System Response

Calculate expected mean and variance of system-level response R

from multiple realizations by propagating uncertainty from up-

dated θAero and load case parameters.

Step 6: Find X∗,

Complete optimization to solve resource allocation problem and

determine the optimal combination of fidelity, load margin, and

structural margin based on total budget.
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Some considerations of the first two steps of the framework will be discussed. Steps

3-6 will depend on the specific methods chosen during the experimental plan and will

be discussed in more detail there.

The preliminary steps for this framework are to construct the Bayesian network

and perform sensitivity analysis. As discussed in the background there are methods

to learn the structure of a network if the relationship between nodes is complex.

Assigning prior distributions can also be difficult if variables and parameters are

unknown in a system. In the literature there are several techniques for assigning

probability distributions if necessary [24]. Parameters with epistemic uncertainty

have to take special consideration due to probability theory and methods for assigning

probability to these parameters was discussed in [?]. In this work the calculation of

prior distributions for the uncertainty in the empirical adjustment factors was an

extensive part of this thesis and is detailed in 6.2.

As part of Step 1, it is most likely necessary to construct surrogate models to

accompany the Bayesian network. Given the computational demands of the Bayesian

inference and uncertainty propagation, surrogate modeling may be a key enabler

to the proposed framework. In this work several surrogate models are needed to

define the relationship between inputs and outputs of various analysis software and is

discussed further in 6.3.1. Additional uncertainty caused by using surrogate models

can be included in the network and updated accordingly, although this additional

error is not considered in this work.

Sensitivity analysis is another critical step to making this framework computation-

ally feasible. It is possible to assign uncertainty to almost every aspect of a system

but typically only a few sources are relevant in terms of the quantities of interest.

Global sensitivity methods were discussed in 3.5.2. Such methods are used here to

pinpoint which aerodynamic model parameters, load cases, load case parameters and

margins are important to the rework response mean and variance.
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4.5 Conclusion

The proposed approach to address rework in aeroelastic loads analysis consists

of uncertainty quantification and uncertainty management. A general framework for

carrying out both these tasks was outlined. Primarily the uncertainty quantifica-

tion is done using a multi-level, multi-discipline Bayesian network to represent the

conditional dependence between uncertain quantities and responses in the M&S en-

vironment. The calibrated parameters of interest are related to the aerodynamic

fidelity. The calibration data is produced by simulating multifidelity aerodynamic

analysis and using the bending moment response. After update, the effects of the

new aerodynamic parameter uncertainty and load case parameter uncertainty on the

system-level response is measured and inputted into the uncertainty management

system. The system response of interest here is related to major rework but will be

specified from several candidates later.

The UMS is based on the modified resource allocation optimization problem. The

mean and variance of the response are optimized. The output of the UMS is the

optimal set of fidelity and margins to reduce the risk of major rework subject to a

constrained budget.

The proposed framework is a general one and many methods and techniques are

available in the literature as discussed in Chapter 3 which could be applied to the

UQ and UMS components. The goal of the experimental plan is to try candidate

methods in this framework, assess their performance against the current approach to

loads analysis and narrow down the selection. It is unlikely there is one framework

which is best for all scenarios, but good candidates will be suggested for a select set

of important scenarios in aeroelastic loads analysis.
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CHAPTER V

EXPERIMENTAL SETUP

5.1 Demonstration Model

Some of the requirements for the demonstration model were discussed in the Prob-

lem Formulation. To recap, the chosen model must represent a commercial transport

and be capable of performing aeroelastic analysis. Such analysis dictates the must

be an aerodynamic shape, i.e. planform, to perform aerodynamic analysis. There

also must be a primary structure, i.e. wing box, to perform structural analysis and

design. The structural model must also be undeformed for aeroelastic analysis.

In the literature there are a few popular aeroelastic models which fit these re-

quirements, typically they focus on the wing as is done in this work. Some examples

include the AGARD models [178] and the BAH models from Bisplinghoff, Ashley,

and Halfman (1955). Both represent classic models used as standards for validation

of aeroelastic problems. Because CFD will be utilized in this work for high fidelity

aerodynamic analysis, it would be beneficial if the chosen model had been used in

CFD studies. Although CFD models exist which are treated as standards because of

their wide-use, such as the ONERA M6 wing [142], not all of them have also been

used for aeroelasticity. For example, many of the CFD models are in their cruise

configuration, i.e. deformed, or do not include any internal structural definition. For-

tunately some models do exist which have been used for both CFD and aeroelasticity,

including the ONERA M6 [28] and the NASA Common Research Model (CRM).

The demonstration model used to evaluate the framework is based on a modified

version of the CRM. It was chosen primarily because it fit all the model requirements,
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is well-known, has publicly available wind-tunnel data and most importantly a fully-

functioning NASTRAN aeroelastic model existed and was provided by the Boeing

Corporation for this work. This NASTRAN model was accompanied by an existing

IGES model of the wing planform suitable for CFD analysis and developed at the

University of Michigan [71]. Details of the model and its development will now be

discussed.

The CRM was developed in response to recommendations out of the NASA Sub-

sonic Fixed Wing (SFW) Aerodynamics Technical Working Group (TWG) in 2007.

Industry and government leaders in aerospace met and discussed the need for “com-

mon, publicly-available contemporary experimental databases for the purpose of val-

idating specific applications of CFD” [170]. The detailed aerodynamic design of the

CRM was primarily done by the Boeing Company while the physical model was pri-

marily designed, fabricated and tested by NASA. Since its inception, the CRM has

been used in numerous aerodynamic analysis validation studies because of a relatively

large collection of published CFD and wind tunnel data. A photograph of the wind

tunnel model is depicted in Figure 11.

Figure 11: Common Research Model in wind tunnel test.
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The original CRM model is representative of a transonic, wide-body commercial

transport. It is designed to fly at a cruise Mach number of 0.85 with a nominal lift

coefficient of 0.50, and at a Reynolds number of 40 million per reference chord. The

TWG specified the wing have an aspect-ratio of 9.0, and a taper-ratio of 0.275. The

CRM is a complete airplane configuration but in this study the wing design is of

most interest. Components of the fuselage and empennage are only included in the

model when necessary for boundary conditions and stability and control purposes.

The resulting full-scale wing design specifications are depicted in Table 1.

Table 1: Reference Quantities for CRM [170]

Specification Value
Wimpress Wing Area, Sref 4,130.0 ft2

Trap-Wing Area 4,000.0 ft2

Reference Chord, Cref 23.0 in
Wing Span 192.8 ft
Xref 110.5 ft
Yref 39.1 ft
Zref 14.8 ft
Taper Ratio, λ 0.275
Wing Sweep, ΛC/4 35o

Aspect Ratio, AR 9.0

The CRM was intended for CFD validation so the wing configuration is in the cruise

condition and deformed relative to the jig-shape. This presents problems for aeroe-

lastic design and analysis so a modified version was created by the Multidisciplinary

Design Optimization Laboratory at the University of Michigan, Ann Arbor led by

Joaquim R. R. A. Martins [71]. This model, called uCRM, is the undeformed, or

jig-shape, wing configuration and is utilized in this work. The original CRM was de-

signed to resemble the Boeing 777-200ER but does not include any structural model.

The uCRM wingbox also resembles that of the 777-200ER as shown in Figure 12 and

includes two spars and forty-six ribs. The uCRM has been used in several aeroelastic

studies which have also incorporated CFD [71][89].
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Figure 12: uCRM Comparison to B777-200ER

5.2 Modeling and Simulation Environment Overview

5.2.1 Requirements & Development

Requirements for the modeling and simulation environment emerged from the

problem formulation, research development and proposed approach. These require-

ments can be categorized into those which are dictated by the multidisciplinary anal-

ysis of aeroelastic load cycles and those dictated by the uncertainty quantification

and management to construct the rework decision framework.

An integrated environment is needed which includes aerodynamic analysis, struc-

tural analysis, aeroelastic analysis and structural design. Some of the challenges for

constructing such an environment are related to linking the various analysis methods

together so they can communicate and share data. This is often a non-trivial task, es-

pecially for legacy analysis codes which may not have been originally designed to work
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with external methods. The linking is even more critical in feedback coupled systems

where large amounts of data need to be transferred and translated between codes

after each iteration. Two feedback loops exist here, the first is the coupling between

the aerodynamics and structures for aeroelastic analysis. The second is the coupling

between the structural design and aeroelastic analysis. Details on these feedback

loops will be discussed in detail later in this chapter. A final challenge comes from

the identified research gap for modeling load cycles in loads analysis and structural

design. Because of this gap, there aren’t readily available modeling environments in

the literature to base this work off of.

The integrated analysis environment is the core of the rework decision framework

as shown in Figure 9. The uncertainty quantification and management components

have separate requirements. Surrogate modeling is an essential requirement for feasi-

bly carrying out Bayesian inference, uncertainty propagation, sensitivity analysis and

optimization. As has been discussed for the selected methods in this work Bayesian

inference requires Markov Chain Monte Carlo simulation and uncertainty propagation

requires Monte Carlo simulation. Sensitivity analysis and optimization subsequently

can re quire both. In addition, sensitivity analysis can be carried out with machine

learning methods for feature selection.

A single system must be able to serve as the “wrapper” to integrate all the anal-

ysis methods and include the functionality for the decision framework. Fortunately

MATLAB (R2016b) has the ability to satisfy all these requirements. Other program-

ming environments and languages exist which could meet these requirements but

arguably at steeper learning curves. Thus MATLAB was chosen to build the M&S

environment. Details of the M&S environment, analysis methods and models will

now be discussed. The details of the uncertainty quantification and management will

be discussed in Chapter 6.
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5.2.2 Modeling Environment Overview
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Figure 13: Modeling and simulation environment for loads analysis

Figure 13 depicts the modeling and simulation (M&S) environment used in this

work. The environment consists of analysis methods which represent different disci-

plines related to loads analysis and structural design. The environment also describes

the system inputs and outputs as well as the linkages between analysis methods. The

system-level inputs consist of load case variables, aerodynamic fidelity variables. The

two sets of variables are related to the two sources of uncertainty examined in this

thesis; aerodynamic fidelity and load parameter uncertainty (marked in yellow). The

load case variables define each load case and are Mach number, altitude, load factor

and fuel weight.

As will be discussed, two aerodynamic analyses are used in this environment;

NASTRAN’s Doublet-Lattice Method (DLM) and CFD with NASCART-GT. CFD

data is used to define empirical adjustments which are implemented in DLM and
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correct the aeroelastic equations to supplement the DLM with higher fidelity external

aerodynamic data. For each simulated fidelity level there will be a prescribed mean

and standard deviation to the adjustment factors. The magnitude of the standard

deviation will be an approximation of the error of the analysis with respect to the

truth data represented by CFD analysis. It is assumed the uncertainty is normal (in

statistical terms). More details on the empirical adjustments and their associated

uncertainty will be provided in Section 6.2.

The core of the aeroelastic analysis is done using MSC NASTRAN 2014. The ex-

ternal aerodynamic data is imported from NASCART-GT for CFD analysis. Finite-

element analysis (FEA) loads are transferred from NASTRAN to HyperSizer where

internal stresses are calculated and failure analysis and structural design are carried.

There are iterations between NASTRAN and HyperSizer due to the component stiff-

nesses which are initially assumed and subsequently updated along with the structural

design until convergence or the maximum number of iterations is reached. Thus each

NASTRAN-HyperSizer iteration represents a load cycle and an iteration between the

loads and stress groups.

The green box represents the system-level response for major rework and is calcu-

lated within HyperSizer after four load cycles (i.e. iterations). Four iterations were

chosen to mimic the initial, preliminary, design and certification load cycles in a real

development program. Typically these four cycles are enough to converge the loads

and stiffness and produce a mature structural design for flight test and evaluation.

Due to the assumptions and limitations of the model, it may not always be the case

that the loads and stiffness converge after four iterations between NASTRAN and

HyperSizer in all components.

Surrogate models are utilized to represent the interactions between the aforemen-

tioned analysis methods. These same surrogates constitute the Bayesian network for
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carrying out the inverse and forward uncertainty problems. Thus the Bayesian net-

work can be viewed as a system-level surrogate for the entire M&S environment. The

uncertainty management system (purple) selects the aerodynamic fidelity, load mar-

gin, and structural margin via the resource allocation optimization. Those variables

are introduced into the Bayesian network to ultimately calculate the major rework

response. The interaction between the M&S environment, Bayesian network and re-

source allocation optimization form the rework decision framework. Next, important

aspects of the M&S environment and applicable theory will be discussed further.

5.3 Load Cases

5.3.1 Load Case Types

The design of all aircraft must be certified by the Federal Aviation Administration

(FAA) before it can be operated. The FAA establishes Federal Aviation Regulations

(FAR’s) to govern all aviation activities including the design of aircraft. FAR 25 ap-

plies to the airworthiness of transport category aircraft, which is defined as any “jet

with ten or more seats and any propeller-driven aircraft with greater than nineteen

seats or over 19,000 lb maximum takeoff weight (MTOW)” [4]. FAR 25 is broken into

hundreds of sections and several of them pertain to the structural integrity which is

of interest in this work. Most of the loading scenarios (cases) used in the analysis are

derived from FAR requirements in order to ensure the safety of the design. Airplane

manufacturers also supplement these requirements with their own, often proprietary,

loading scenarios based on historical experience. Load cases can be grouped into cat-

egories or types based on their physical nature and the aircraft state which produced

them. This section discusses the major load case types as depicted in Figure 14 and

details those which will be used in this thesis.
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Figure 14: Types of load cases. Balanced steady (highlighted in red) will be analyzed

in experimental plan

The most broad category of loads are static versus dynamic. Static loads occur

when the aircraft is in a state of static or quasi-static equilibrium and thus the forces

and accelerations are independent of time. Referring to the aeroelastic triangle later

shown in Figure 26, these loads do not result from vibratory inertia forces. Dynamic

loads occur when the aircraft state results in forces and accelerations which vary with

respect to time. Analysis of dynamic loads require more complex disciplines such

as flight dynamics and control theory which are not integrated into this modeling

environment and are out of the scope of this work at this time. Thus only static loads

will be explored. Under each of these categories are flight conditions and ground con-

ditions resulting in different types of loading scenarios. Flight conditions are more

pertinent to the structural sizing of wings and so only these conditions will be used
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here. Flight conditions can be further categorized into symmetric and asymmetric

maneuvers. Symmetric maneuvers maintain symmetry of the aircraft about the lon-

gitudinal axis throughout the maneuver and therefore are limited to cruise and pitch

maneuvers. Asymmetric maneuvers do not maintain this symmetry with respect to

the configuration and loading. In order to limit the scope of this work, the more

general balanced steady cases will be utilized for symmetric maneuvers. Although

the provided uCRM model was previously used for asymmetric load cases, there was

not enough time to modify the model as necessary for this environment for both

symmetric and asymmetric. Thus only symmetric cases are considered.

Balanced steady maneuvers refer to maneuvers where the lift is balanced by the

weight and side force so there is zero acceleration. For symmetric maneuvers, this

results in zero pitch acceleration. Two symmetric balanced steady load case types

will be analyzed in this work: positive 2.5 g pull up and -1 g push down. The cruise

load case is commonly analyzed, but was ignored here because it is rarely a critical

load case in terms of structural design. The load factor is defined as the ratio of the

amount of load imposed on an aircraft structure to the weight of the structure itself.

Load factors are expressed in terms of the gravitational constant, g. The maximum

maneuver load factor is dictated by FAR’s and for commercial transports is +2.5 g

and -1 g [4].

5.3.2 Load Case Parameters

For each load case type there are numerous individual load cases analyzed. A

load case prescribes all the factors which define a unique state of the aircraft. Each

aircraft state results in different external loads experienced by the structure. These

factors cab be referred to as parameters. Any change in a parameter results in a new

load case. Many factors influence the state of an aircraft but historical perspective
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tells us certain factors are more influential to certain load case types for traditional

configurations [87]. For example, wind speed on a given day would have a large

influence on a dynamic gust load case but not necessarily on a static taxi load case.

Given the chosen load case types and focus on wing design, the variable parameters

considered are Mach number, altitude load factor and fuel density.

In a typical loads analysis parameter ranges and levels are determined and a full-

factorial design experiment is utilized to determine the internal load envelope for

shear, bending and torsion [87]. Several specific speeds are required to be analyzed

by the FAA and are called design speeds [4]. These speeds are based on structural

integrity considerations and empirical data. These design speeds are visually depicted

in a “V-n Diagram” as shown in Figure 15. The diagram shows different design speeds

as a function of load factor. The load factors will dictate which maneuver and gust

conditions should be analyzed. The subscript letters refer to different speeds and

conditions dictated by FAR’s. For example, VD refers to the design speed which is

typically regulated to be 1.15 times the design cruise speed VC for transport aircraft

[79] and should be evaluated at the ultimate load factor, n = 2.5 to determine the

appropriate envelope. The letters on outside edge refer to other conditions which

must be evaluated to determine the required flight envelope.
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Figure 15: Notional V-n diagram, Frode Engelsen 2015

The altitude primarily affects aerodynamic loads because of air density. Altitude

contour lines are often imposed onto the V-n diagram but similar information can

be derived from a placard or speed-altitude diagram. These plots visually display

the design speed for a given structural design altitude. The altitude is chosen for

operational considerations and in conjunction with required design speeds, the design

Mach numbers are imposed. This information is used to select altitude ranges for

loads analysis [87]. A generic speed-altitude plot is depicted in Figure 16.
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Figure 16: Notional speed-altitude diagram, Frode Engelsen 2015

The fuel weight is an important consideration for inertial loads [87]. Fuel is con-

stantly being burned so consequently the center of gravity (c.g.) is constantly shifting.

Its location is essential for any force analysis as well as stability and control consider-

ations. An aircraft will initially begin operations equal to or less than the maximum

fuel weight. Fuel is burned in order to reach cruise altitude so in-flight load cases are

not typically analyzed assuming full fuel. If max fuel was assumed during flight the

resulting structural design would be too conservative and overweight. In commercial

transport aircraft there are fuel tanks in the center body and in each wing. The fuel

is burned from the center tank first so the wing weight provides inertia relief from

bending for as long as possible. The c.g. location shifts differently when fuel is burned

from the different tanks. Thus the fuel density parameter also dictates the fuel c.g.

location. Several fuel densities will be analyzed in the loads process and the ranges

can be determined visually from fuel burn curves on a c.g. diagram. An example of

a c.g. diagram (without the fuel burn curves) is shown in Figure 17. The payload

weight and distribution obviously affect the c.g. location as well. For commercial
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transports the luggage plays an important role. In the underbelly of the fuselage the

payload can be packed to intentionally shift the c.g. in favorable ways. The purpose

of loads analysis is to find the critical loading scenarios so the payload weight and c.g.

will be fixed to their most extreme values for wing design: as far forward as possible

and equal to the max design payload weight.

Figure 17: Generic center of gravity diagram [166]

5.3.3 Critical Load Cases for Environment

To simplify the modeling, only steady symmetric load case types are considered

in this work. Based off of literature on the uCRM model, public data on the Boeing

777-200, and the flight envelope in Figure 16 an envelope was assumed for the demon-

stration model and is shown in Figure 18. Thirty-eight load cases were initially used

for downselection and are represented by circular points on the plot. The maneuver,

rough gust, and cruise speeds were tested at 2.5 and -1.0G load factors and the dive

speed was only tested at 2.5G’s as per regulations. It should be noted that no gust

analysis was used in this thesis, but the speed and altitude for a gust scenario as rec-

ommended in FAA regulations was used to specify these cases [4]. These load cases
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were used in the M&S environment and HyperSizer determined the critical load case

in each structural component based on the minimum margin of safety. More details

of the failure analysis and selection of critical cases will be discussed in subsequent

sections. From the initial set, four were critical in at least one component and selected

as the final set. These four cases are indicated by dashed circles in Figure 18.

Four parameters are used to specify a load case in this work; Mach number,

altitude, load factor and fuel density. The first three are dictated by regulations

and can be visually selected from flight envelope and Vn diagrams. The fuel density

uncertainty in this work is based on variances in jet fuel production. For the baseline

(deterministic) load cases the nominal fuel weight included in the uCRM model is

assumed and designated as 100%, while uncertainty can cause this value to be greater

than or less than the nominal value. Table 2 lists the baseline (deterministic) load

case parameters for the four critical load cases.

0 50 100 150 200 250 300 350 400 450

Design Speed [KEAS]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
lt
it
u

d
e

 [
ft

]

10
4 uCRM Model Flight Envelope

V
A

 Maneuver Speed

V
B

 Rough Gust Speed

V
C

 Cruise Speed

V
D

 Dive Speed

Operational Ceiling

Critical Load Cases

Figure 18: uCRM model flight envelope and critical load cases
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Table 2: Critical Load Case Parameters

Load Case Mach Altitude Load Factor Fuel

1 0.85 43100 ft 2.5G 100%

2 0.90 23000 ft 2.5G 100%

3 0.60 20000 ft 2.5G 100%

4 0.89 43100 ft 2.5G 100%

5.4 Aerodynamic Analysis

5.4.1 Aerodynamic Analysis Overview

The atmosphere imparts pressure on an aircraft and result in forces and moments

applied to the skin. The environmental conditions and aircraft maneuver will change

the pressure distribution and ultimately change these loads. When an aircraft exe-

cutes a maneuver it actuates control devices to purposefully change the aerodynamic

loads in order to alter it’s orientation, lift or drag. Air-breathing engines increase

the velocity of intake air through combustion and exhaust it to create thrust. Thrust

and the effects of propulsion will directly or indirectly add or change the aerody-

namic loads on other parts of the aircraft. All the aforementioned physics require

aerodynamic analysis to quantify the resulting forces and moments. There are many

methods to support such analysis and these can be categorized into experimental,

numerical and analytical. Analytical methods refer to closed form, exact solutions

which do not require numerical approximations or discretization to solve. Popular

methods within each category will be discussed.

Although there may be other experimental aerodynamic methods, the two read-

ily used for commercial transport design are wind tunnel testing and flight testing.
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Although no experiment is without error, flight testing is the most accurate because

aerodynamic data is measure during actual flight operations. In the earliest days of

aviation design this was the only method to collect such data. In modern design, a

full scale test vehicle is built with integrated sensors to measure various data, includ-

ing aerodynamic pressure, over numerous parts of the aircraft [124]. The pressure is

generally measured using Bernoulli’s Principle:

v2

2
+

∫ p

p1

dp̃

ρ(p̃)
+ Ψ = constant (along a streamline) (12)

Equation 12 depicts the compressible flow version [31] where v is the flow velocity, p is

the pressure, ρ is the density and Ψ is the potential associated with the conservative

force field. The pressure at the surface of the aircraft can be calculated by a manome-

ter or other similar device by the change in fluid velocity relative to the free-stream

or vehicle velocity. Flight test experiments are only typically done after a detailed

design has been fully defined. A flight test program will be used for validation of

previous analysis and is required for certification by the FAA [143]. Building a test

article can be quite expensive and time-consuming so wind tunnel testing is used as

an alternative experimental method.

The first enclosed wind tunnel was developed by Francis Herbert Wenham in 1871

[14]. Wind tunnels utilize a fixed model with a controlled fluid moving over the model

surface. Similar measurement devices used in flight testing are also used in wind tun-

nels and utilize Bernoulli’s Principle. Other common measurement methods include

pressure-sensitive paint, smoke, bubbles and beam balances to determine the pressure

distribution [88]. Wind tunnel testing is viewed as more accurate than numerical or

analytical methods because they measure the aerodynamic forces directly rather than

assume a model [58]. But there are significant simplifying assumptions compared to
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flight testing. Some of the most important are related to scaling and rigidity. Wind

tunnels can also be expensive to maintain and operate and it is often infeasible to use

one large enough to fit a full-scale model, though it has been done. Thus models are

geometrically similar but scaled down to fit into smaller wind tunnels. The scaling

has important effect on aerodynamics and requires the Mach number and Reynolds

number, among others, to be kept constant to accurately compare results to the

full scale design [86]. Both are dimensionless parameters which describe the velocity

relative to the speed of sound and the inertial forces relative to the viscous forces

respectively. Wind tunnel models are often made of different materials than those of

the production aircraft. The model is typically much more stiff but not completely

rigid [153]. Therefore wind tunnel testing is used for rigid-body aerodynamics and

the results require removal of any elastic effects. Although aeroelastic wind tunnel

models have been developed to reflect the full scale flexibility, this can be complicated

[23] and thus avoided. Wind tunnel analysis is commonly done prior to load cycles,

so this analysis is simulated using CFD on a rigid (undeformed) model.

Numerical methods were developed based on aerodynamic theory to calculate

loads on a computer in order to save time and money relative to experimental meth-

ods. Aircraft aerodynamic theories are numerous but nearly all are derivatives of the

Navier-Stokes equations which is a statement of the balance of momentum [106]:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u +

1

3
µ∇(∇ · u) + ρg (13)

where u is the flow velocity, p is the pressure, µ is the dynamic viscosity, and g is the

body acceleration. There are broad categories which describe aerodynamic theories

which include compressible or incompressible; subsonic, transonic or supersonic; and

viscous or inviscid. The first category refers to wheter the density of the fluid has
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constant density (incompressible) or not (compressible). The second category refers

to the flow speed regime being below, near, or above the speed of sound respectively.

The third category refers to whether viscous effects will be considered in the flow.

Viscosity is primarily concerned with the drag force [9]. This work will focus on

transonic flow, which is by definition compressible, due to the commercial transport

aircraft demonstration model. Although drag is a fundamental aerodynamic force,

this work will assume an inviscid flow. The baseline aerodynamic method in this

modeling environment is inviscid and neglects drag, therefore all other methods will

assume the same for compatibility. This neglection will be discussed later in this

section.

Generally there are two major classes of numerical aerodynamic methods: com-

putational fluid dynamics (CFD) and panel methods. CFD methods discretize and

numerically solve the Navier-Stokes equations. Often the discretization is done with

the finite-volume method where a solution to the conservation of mass, momentum

(Navier-Stokes) and energy as well as turbulence equations are found on discrete

control volumes [46]. When an inviscid flow is assumed the Navier-Stokes equations

reduce to the Euler equations. The governing equations for the finite-volume methods

are:

∂

∂t

∫∫∫
QdV +

∫∫
FdA = 0 (14)

where Q is a vector of conserved variables, V is the volume of the control volume

element, F is the flux vector and A is the surface area of control volume element

[114]. Although CFD is less expensive in terms of time and resources than wind

tunnel testing, it still has a high computational cost for large meshes and complex

geometries. But more powerful computers have allowed CFD to be utilized more
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readily in design, but less for commercial transports based on subject matter experts.

Similarly to wind tunnel data, CFD will be utilized in this thesis for validation and

to help calculate the effects of uncertainty due to analysis fidelity. The CFD software

used here is called NASCART-GT and was developed by Professor Stephen Ruffin

in the Aerothermodynamics Research and Technology Lab (ARTLAB) at Georgia

Institute of Technology. NASCART-3D is a viscous solution-adaptive Cartesian grid

flow solver [133]. It is capable of solving the Euler equations, Navier-Stokes equations,

or a hybrid method with Euler and integral boundary layer equations for viscous flows.

Including the integral boundary layer equations with the inviscid Euler equations

allows the viscous effects of the boundary layer to be approximated near the surface

without solving the full Navier-Stokes, thus increasing efficiency at the cost of some

accuracy.

There are different kinds of meshing schemes used by CFD in the “tessellation

of Euclidean space” which represent the flow and body surfaces [162]. Two broad

mesh categories are structured and unstructured. A structured mesh tessellates the

space with congruent element shapes in a regular pattern. An unstructured mesh

is more flexible and allows for tessellation with various shapes, but in an irregular

pattern. A comparison of the two mesh types is shown in Figure 19. An unstructured

mesh requires a connectivity list to describe how vertices form elements and thus

can require additional computational storage. A subdivision of these categories are

Cartesian meshes where the normal of each element aligns with the directions of a

Cartesian coordinate system.

NASCART-GT utilizes an unstructured Cartesian grid so all elements are either

unit squares (for 2D) or unit cubes (for 3D). The elements can vary irregularly, de-

pending on the flow features. The quality of a mesh is critical for achieving accurate

solutions and so refinement is an important step in finding an appropriate mesh. In

practice this was done manually and required extensive experience until automatic
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mesh adaptation techniques were developed. NASCART-GT implements a mesh re-

finement algorithm which looks at specific aspects of the solution to determine where

a finer mesh resolution is needed [164] and is shown in Figure 20. The solution param-

eters available for mesh adaptation include divergence, vorticity, entropy, magnitude

and turbulence gradients. NASCART-GT was chosen for this work due to its in-

dustry acceptance, ease of use, previous work done with fluid-structure interaction

and convenient access to the development team at the Georgia Institute of Technol-

ogy. Specifically NASCART-GT can capture nonlinear compressibility effects such as

shock formation to correct the baseline aerodynamic method which will be discussed.

Figure 19: Different mesh types of a 2D cylinder. Left; structured grid, right; un-
structured grid [3]

The inviscid Euler equations can be further simplified and have led to numerical

methods which are less computationally expensive than CFD. An irrotational flow is

one that has zero vorticity everywhere, ∇ × v = 0. Under the inviscid, irrotational

and steady assumptions, the flow field is conservative and can be represented as the

gradient of a scalar function called the velocity potential [18]. When the flow is also

incompressible the governing equations reduce to the Laplace equation, ∇2ϕ = 0,

where ϕ is the velocity potential. Solutions to the Laplace equations can be super-

imposed to solve the velocity flow fields of many common aerodynamic problems,
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Figure 20: Solution-adaptive mesh refinement in NASCART-GT [134]

thus leading to potential flow theory. In panel methods a geometry is discretized

into panels and potential flow solutions (singularities) are imposed on each panel.

The pressure distribution can be resolved from the calculated velocity flow field. The

assumptions limit potential flow to low subsonic speed regime without modification.

Since their development in the 1960’s more advanced panel codes have been adapted

to handle unsteady and compressible flows [92]. The savings of computational time

in panel methods come at the cost of accuracy compared to CFD or experimental

methods.

MSC NASTRAN (2014) is a widely-used structural finite element analysis solver

developed by NASA in the late 1960s [105]. In addition to structural analysis it

has aeroelastic capabilities as well. Embedded in the aeroelastic analysis are several

internal aerodynamic methods and the capability to import external methods such

as CFD. Both internal and external aerodynamic capabilities will be utilized in this

work. The internal method used here is the Doublet-Lattice method (DLM) and is

an unsteady panel code. DLM was selected over other aerodynamic methods in NAS-

TRAN because of its industry use and the chosen demonstration model; a commercial
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transport wing, i.e. transonic flow, high aspect-ratio and a wing-only model1.

The MSC Nastran aeorelastic users’ guide describes the DLM theory [36]. DLM

is based on linearized aerodynamic potential flow theory and thus ignores any viscous

effects such as skin friction drag. Though lift-induced drag can be derived from lift,

DLM doesn’t account for drag due to D’Lambert’s Paradox [38] and so no drag will

be considered here. A lifting surface is modeled as a collection of trapezoidal flat-

plate panels with side edges parallel to the free stream. Small-angle approximation

is also assumed so the incidence of any panel with respect to the flow cannot be

large. For each panel the unknown lifting pressure is assumed to be uniformly con-

centrated across the 1/4 chord line. This pressure is represented by imposing a string

of singularities based on theoretical solutions to potential flow. The DLM imposes

constant-strength oscillating doublets as singularities on each panel. DLM attempts

to model unsteady aerodynamics by allowing each panel to oscillate out-of-plane in

harmonic motion about a chosen control point. The control point is located at the 3/4

chord point and centered spanwise. It is the location where the normalwash bound-

ary condition is satisfied. “The normalwash (or downwash) is the normal velocity

induced by inclination of the finite-span lifting surface to the free stream” [128][56].

A schematic of the DLM formulation is depicted in Figure 21:

1The demonstration model only includes the empenage for required stability and control. The
fuselage is not fully modeled and represented as a beam for mass and boundary condition purposes.
See the Section 5.4.2 for more details
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Figure 21: Panel discretization schematic of Doublet-Lattice Method [36]

where Y is the spanwise direction, X is the flow direction, open circles indicate

control points and dashed lines indicate the 1/4 chord for each cell. Some limitations

for DLM include its limitation to small deformations and problems where “in-plane

kinematics are not important” [25][169] and “inability to capture all relevant steady

aerodynamics in flight dynamics” [15]. DLM has been used widely in the aeroelastic

community and leads to relatively efficient and reliable solutions [103]. DLM will be

the baseline aerodynamic method used in this thesis.

The last category of aerodynamic analysis are the analytical methods. Closed-

form expressions for aerodynamic forces require significant simplifications and thus

have the lowest accuracy relative to the previously discussed categories but can be

solved almost instantaneously. Such methods include thin airfoil theory and lifting-

line theory. These methods are not compatible with the chosen model and modeling

environment so will not be considered further. This thesis utilizes three aerodynamic

analysis methods: panel codes via NASTRAN’s Doublet Lattice Method, simulated

wind tunnel testing and simulated flight load survey. The wind tunnel testing is simu-

lated with rigid CFD analysis and the data is used to correct NASTRAN’s DLM. The

100



flight load survey is simulated with CFD on a nonrigid model to incorporate aeroe-

lastic effect and again used to correct NASTRAN, see Figure 22. All CFD analysis is

done via NASCART-GT. The first two methods represent different fidelity levels and

thus have different uncertainties while the flight load survey is treated as “truth” in

this context. Details on their implementation will be discussed in the experimental

setup in Chapter 5.
CFD Coupling

Initial Loads Preliminary 
Loads

Design 
Loads

Certification 
Loads

Validation	against	
flexible	CFD

Calibration	with	
rigid	CFD

Fix Outer 
Mold Line

Flight Test
Wind 

Tunnel 
Testing

Minor Rework Major Rework

Figure 22: Schematic of integrating rigid and flexible CFD into loads analysis

5.4.2 Doublet-Lattice Method Model

A complete uCRM NASTRAN model was provided by The Boeing Company to

serve as the demonstration model and was developed in collaboration with NASA.

The development and original purpose of the model were not fully disclosed so only

the aspects of the model relevant to this work will be discussed. Although the model

was fully-functioning, significant modifications were necessary to implement it into

the loads analysis M&S environment and will be discussed in the remaining sections of

this chapter. The model included a half-span DLM aerodynamics model with wing,
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fuselage, empenage and engine nacelles. The aerodynamics model is has infinitely

thin surfaces and subject to the requirements of DLM discussed in Section 5.4.1. The

DLM model is shown in Figure 23. The “engines” are modeled as lifting surfaces, no

propulsion analysis is utilized in this environment.

Figure 23: uCRM NASTRAN DLM aerodynamic model

For the demonstration model, this work focuses on the wing and only utilizes

the other components as necessary. The wing mesh consists of 2,323 quad elements

(referred to as aerodynamic boxes) and 101 chordwise strips along the span which are

aligned with the flow direction as required by DLM. This will be important because

the aerodynamic empirical adjustment factors representing epistemic uncertainty are

treated as constant along each strip. For trimming purposes, control surfaces are

defined in NASTRAN for the ailerons (inboard and outboard), elevator and rudder.

The aerodynamic model is connected to the structural model with splines for

aeroelastic analysis. In NASTRAN the DLM mesh is primarily used to calculate

aerodynamic pressure and transfer to the finite element mesh. Thus the normal mod-

eling requirements of FEA such as mass, material properties, boundary conditions

etc. are not applied directly to the DLM mesh. Several splining options are available
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but this model utilizes “infinite plate” splines. See Section 5.5.2 for more details.

5.4.3 Computational Fluid Dynamics Model

The CFD data used for calibration with NASTRAN is an integral part of the M&S

environment and uncertainty quantification. Some of the CFD theory pertaining

to NASCART-GT has been discussed in Section 5.4.1 and the process and results

of coupling between CFD and NASTRAN is detailed in Section 6.2. This section

focuses on important aspects of developing the uCRM CFD model in NASCART-

GT. NASCART-GT consists of four primary input files; stl file with mesh definition,

general input file, geometry configuration file and post-processing file.

The mesh is inputted with a stereolithography (stl) file format which is common

for CAD programs. Luckily, MSC Patran (the post-processor for NASTRAN) has

the ability to export a finite-element mesh into an stl file. In addition to the uCRM

NASTRAN model a 3D aerodynamic was developed and made publicly available

by original developers at the University of Michigan [71]. The file is in an Initial

Graphics Exchange Specification (IGES) format, but can be imported into Patran.

Once imported, surface geometries were created and meshed with 205,910 triangular

elements (CTRIA3). Typically CFD requires a finer resolution mesh than FEA, which

is the case here.

The main input file for NASCART-GT contains a number of user-defined parame-

ters to control the CFD analysis. Some key parameters will be discussed, an example

input file for the uCRM model is included in Appendix A. The Mach and altitude

load case parameters determine the freestream condition inputs for Mach number,

pressure and temperature. The effects of load factor and fuel weight are not captured

in the static modes of NASCART-GT used here, but there is a dynamic model ca-

pability which could potentially model these effects. Although not explicitly a load
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case parameter, the angle of attack is dependent on the load case and this is modeled

in NASCART-GT. The angle of attack is one of the most important parameters for

coupling CFD to NASTRAN as will be shown later. Although capable of handling

small 2D viscous problems, it would be intractable for a viscous analysis of the uCRM

model so these features are turned off.

Several parameters exist for defining the surface boundary conditions, flowfield

grid and gas properties among others. A major advantage of NASCART-GT is its

mesh adaptation which reduces the modeling effort significantly which often plague

CFD analysis. Nevertheless there are parameters which control the simulation and

grid adaptation which had to be adjusted for the uCRM model and are listed in Table

3.

Table 3: uCRM NASCART-GT Settings

NUMBER OF ITERATIONS 10000

ADAPTION FREQUENCY 500

ADAPTION START 500

ADAPTION STOP 8000

GRID RESOLUTION 256

The number of iterations and adaptation settings were selected based on con-

vergence plots of the integrated loads which are calculated in NASCART-GT. An

example of such a plot is shown in Figures 24 and 25. As in this example, the so-

lution converges prior to the maximum number of iterations. In Figure 24’ legend

F refers to force components and M refer to moment components, starting from 0

(e.g. the x component is the zeroth component) which aligns with NASCART-GT’s

convention. The spikes in the residuals occurs every 500 iterations when the mesh
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adaptation occurs. A higher frequency and higher stopping iteration causes the mesh

to refine more which typically results in more accurate solution but increased compu-

tational cost. The GRID RESOLUTION turned out to be a very important setting

for the uCRM model. It was discovered that the resolution had to be increased from

the default settings due to the wing geometry and mesh in order to avoid errors in

the cell slicing functionality of the mesh adaptation. This substantially increased

the number of cells after refinement and the computational cost. Runtime varied

from case to case but some took on the order of 72 hours to complete on a single

24-core supercomputer cluster node. Such runtimes are common for CFD, which is

why accounting for the computational cost in this thesis is so important.
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Figure 24: NASCART-GT integrated load convergence
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5.5 Structural Analysis & Design

5.5.1 Structural Analysis Overview

Loads experienced by an aircraft come from sources other than aerodynamics.

The weight of the structure, payload, fuel and subsystems cause inertial loads. The

structure is non-rigid so elastic loads occur. If in a landing or crash configuration,

impact loads will also occur. Structural analysis calculates stresses, strains and defor-

mation due to these loads using three sets of equations [21]. The equations of motion

can be posed as the equilibrium equations for a differential volume in the material to

determine the internal stresses due to applied forces and moments:
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∇σ + ρb = ρa (15)

where σ is the stress tensor, b is the vector of body forces and a is the acceleration

of the differential volume. The constitutive laws, i.e. stress-strain relations, are used

to determine the strains given stresses:

σij = Cijklεkl (16)

where Cijkl is the elasticity tensor and is the strain tensor in index notation. Finally

the strain-displacement relations are used to determine the deformation from the

strains:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(17)

in index notation where u is the deformation vector and x is the Cartesian coordinate

vector. Together with the appropriate boundary conditions, these equations form

the governing equations to solve an elastic deformation problem. More complicated

problems, such as involving heat or crack propagation, can be solved with modified

or more general forms of these equations.

Similar to aerodynamics, structural analysis methods can vary in complexity and

accuracy based on the physical assumptions of the theory. There are also experimen-

tal, numerical and analytical methods. Experimental methods include tests such as

fracture, fatigue or crack propagation to determine different properties of a material

or system. Typically coupons composed of material used in the actual system are sub-

ject to loading and strain gauges determine the strain measurements. Through these
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measurements the resulting stress and deformation can be backed out. For aerospace

applications the usual limitation in these experiments is the equipment size because

of their inability to properly test the actual components in the environments they

will experience once assembled. Only after detailed design are full-scale test vehicles

built to undergo static tests, fatigue and vibration tests which are very costly. On

the other end of the spectrum, analytical methods require significant assumptions to

reach an equation which can be solved exactly and without numerical methods. An

example would be the Euler-Bernoulli beam equations in one-dimension [44]. Most, if

not all, of these methods are inappropriate for aerospace structures beyond the very

beginning conceptual phase of design. Neither experimental nor analytical methods

will be used in this work due to their expense and low accuracy respectively.

Numerical methods are widely used in structural analysis. In aerospace the nu-

merical methods are often validated experimentally via ground and flight test. The

most prominent numerical method is finite element method (FEM) used in finite ele-

ment analysis (FEA) software. The finite element method is a discretization method

like that of CFD to solve structural mechanics problems for complex systems. A

body is discretized into elements on a structural mesh and the boundary conditions

and governing equations, called a boundary-value problem (BVP), are imposed and

solved at each element. The global BVP is “rephrased into its weak form in order to

approximate it locally on each element using chosen basis functions” [123]. Similar

consideration for meshing occurs for FEM as previously discussed for the finite-volume

method in CFD. NASTRAN will be the FEA solver used for structural analysis in

this work.

The constitutive laws require material properties in order to determine strains

from stresses or vice versa. Thus the material definition is an important design and

analysis problem which becomes more complex if considering composites instead of

metals in aerospace. A composite material is any material composed of two or more
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constituent materials with distinct physical or chemical properties which when com-

bined produce different characteristics than the individual constituents. These ma-

terials, specifically carbon-fiber-reinforced polymers, have been used widely in recent

aerospace designs due to their lightweight and high strength-to-weight ratio compared

to conventional metals [155][41]. The flexibility in designing composites allow them to

take advantage of directional stiffness but also introduce more design variables such

as parameters related to ply orientation and layup [69].

A commercial software program called HyperSizer is utilized to facilitate the ma-

terial definition and structural sizing. HyperSizer includes an extensive database and

advanced analysis capabilities for composite design. In this work, the material defi-

nition will be fixed and metallic so many of these design features will not be utilized.

The primary use of HyperSizer will be for determining critical loads via failure anal-

ysis and structural sizing. Although these fall in the realm of structural design, these

methods will be discussed separately in Section 5.5.4.

5.5.2 Aeroelastic Analysis Overview

The coupling of aerodynamic and structural phenomena has been well-studied, but

not entirely well-understood, since the earliest fixed-wing flight. In fact, the Wright

Brother’s are viewed by some as the first experimental aeroelasticians with their

wing-warp (twist) method of control [125]. Aeroelasticity is the study of the coupling

between aerodynamic, inertial and elastic forces which occur when a flexible body

is subjected to fluid flow. Aerodynamic loads deform the structure of an aircraft,

but this deformation also changes the lift distribution which subsequently changes

the aerodynamic load. The complexity and cyclical nature of this coupling requires

additional analysis methods to determine aeroelastic effects, such as iterative methods

[98]. The introduction of thermodynamic effects and control surface forces are deemed
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aerothermoelasticity and aeroservoelasticity respectively, but won’t be considered in

this work. Aeroelastic analysis is divided into two fields: static and dynamic. The

“Collar Triangle” is often used to describe the attributing disciplines under static and

dynamic aeroelasticity:

Figure 26: Variation of Collar Triangle, Frode Engelsen 2015

Under dynamic aeroelasticity the adverse physical phenomena of gust loads, flutter,

buffeting and transonic effects are studied with the usual intent of avoiding them [52].

Due to the complexity and available computational resources, this work will focus only

on static aeroelasticity and consequently only the coupling between aerodynamic and

elastic forces.

Static aeroelastic analysis is predominantly used to analyze maneuver loads, but

also to study the phenomena of divergence and control reversal. Divergence occurs

when the elastic structural response is unbounded given a finite external force input.

Typically this occurs when an aircraft reaches a certain velocity and its wings twist or

bend uncontrollably to the point of catastrophic failure [100]. The speed at which this

110



occurs is called the divergence speed and the goal of this analysis is to calculate this

speed. Traditional aeroelastic design seeks to alter this divergence speed so it does not

occur within the operating conditions of the aircraft. Control reversal occurs when

the deflection of an aircraft’s control surface results in either loss of control or the

opposite response than intended [118]. Typically this occurs when the wing deforms

to the point when the lift vector caused by the aileron deflection is zero or reverses

direction.

In addition to avoiding adverse phenomena, both static and dynamic aeroelastic-

ity are used in design to take advantage of an aircraft’s flexibility. A commonly used

definition for aeroelastic tailoring is [150]:

“the embodiment of directional stiffness into an aircraft structural design to

control aeroelastic deformation, static or dynamic, in such a fashion as to

affect the aerodynamic and structural performance of that aircraft in a ben-

eficial way,”

Aeorelastic tailoring has been studied since late 1960’s and many benefits have been

explored including weight minimization, flutter, divergence, stress, roll reversal, con-

trol effectiveness, lift, drag, skin buckling and fatigue [30]. Composite materials are a

natural enabler for aeroelastic tailoring because of their ability to achieve directional

stiffness. Other enablers include “smart materials” which actively change their con-

figuration or properties when exposed to an external stimuli [41]. In this work the

material definition will be fixed throughout the analysis so aeroelastic tailoring will

not be considered explicitly though aeroelastic analysis will be a central component.

Static aeroelastic analysis will be carried out using MSC NASTRAN. The aero-

dynamic and structural analysis theories have been previously discussed. NASTRAN

couples these analysis by interpolating between the aerodynamic and structural grids
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and the theory is described in the aeroelastic users’ guide and summarized here [36].

The aerodynamic grids are flat-panel lifting surfaces from DLM and the structural

grid is 1, 2, or 3-dimensional array of grid points from the finite element mesh. The

interpolation method used is called splining. Several splining methods are available

including linear, surface and user-defined splines. These methods transform the de-

flections and forces between aerodynamic and structural models. A matrix describes

this transformation:

{uk} = [Gkg] {ug} (18)

{Fg} = [Gkg]
T {Fk} (19)

where the subscripts g and k describe the aerodynamic and structural property re-

spectively, u is the deflections, F is the force and Gkg is the transformation matrix

defined by the chosen splining method. Splines allow dissimilar aerodynamic and

structural grid points to be connected, and also allows the grid sets to be chosen

independently to better suite the aerodynamic and structural theories respectively.

NASTRAN performs static aeroelastic analysis by calculating the aircraft trim

conditions, with “subsequent recovery of structural responses, aeroelastic stability

derivatives, and static aeroelastic divergence dynamic pressures” [36]. The basic set

of equations for static aeroelastic analysis in NASTRAN is:

[Kaa − q̄Qaa] {ua}+ [Maa] {üaa} = q̄[Qax]{ux}+ {Pa} (20)

where Kaa is the stiffness matrix, Maa is the mass matrix, Pa is the vector of applied

loads, q̄ is the flight dynamic pressure, ux is the vector of aerodynamic “extra” points
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used to describe aerodynamic control surface deflections and overall rigid body mo-

tions, üaa is the vector of translational accelerations, Qaa is the aerodynamic influence

coefficient matrix, and Qax is a matrix “providing forces at the structural grid points

due to unit deflections of the aerodynamic extra points” [36]. The subscript a refers

to the structural analysis-set. The splining matrix of Eq 18 and 19 is used to trans-

fer all the aerodynamic properties to the corresponding grid points on the structural

mesh.

5.5.3 Finite-Element Analysis Model

The uCRM model also includes a FEA structural model of the wingbox. The

DLM and FEA models are coupled through the aforementioned splines and together

they form the complete model for NASTRAN’s static aeroelastic analysis, known as

solution sequence 144. The FEA model is shown in Figure 27. The main component

of the model is the mesh defining the wingbox which is highlighted in green. Other

components include the fuselage modeled as a rigid beam, horizontal tail and inboard

and outboard ailerons. This particular model is intended for symmetric maneuvers,

i.e. pitch, so only the horizontal tail is necessary for trimming. Concentrated mass

elements (CONMN2) are added to simulate the weight and inertial effects of the

aircraft and are shown in magenta triangles. The mass elements model fuel weight and

are influenced by the fuel density load case parameter. Rigid body elements (RBE’s)

connect nodes from different component meshes and the concentrated masses. RBE’s

are depicted with magenta lines and circles.
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Figure 27: uCRM NASTRAN structural model

Unlike the aileron and tail meshes, the wing box mesh is significantly finer than

the DLM mesh. This is primarily due to the requirements of FEA to achieve an

accurate solution. The wingbox mesh has 51,702 quad elements (CQUAD4). The

original model had triangular elements (CTRIA3), but those were incompatible with

HyperSizer at the time. Creating the quad mesh took a significant amount of effort,

primarily due to redefining numerous other model entities to the new quad mesh

nodes. The original wingbox contained a front and rear spar, fifty-two ribs2, and

upper and lower wing skins with stringers. The main advantages of HyperSizer stems

from its ability to efficiently analyze various component types with the “smeared

stiffness” approach (see Section 5.5.4). Therefore the discrete stiffeners included in

the original FEA model would undermine the component design in HyperSizer and

so they are removed from the FEA model. The fuselage, tail and control surfaces are

retained in the FEA model but are excluded from the HyperSizer model. Given the

focus of this framework, it is only necessary to size the wingbox components.

2The uCRM model published in [71] had only 46 ribs, so it is assumed additional ribs were added
to the model by The Boeing Corporation
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Although HyperSizer modifies the stiffness and material definitions of FEA model,

an initial set of properties must be assigned prior to the first iteration. These initial

properties can be thought of as initial assumptions of loads group in the first load

cycle, when there is a large degree of uncertainty because detailed structural analysis

has yet to be done. Such assumptions may come from previous conceptual design

studies and will impact the convergence through the load cycles and the final design

for certification and flight testing. Table 4 lists some of the initial properties of the

FEA wing model, some have been modified from the original model. The wingbox

is assumed to be entirely composed of a generic aluminum metal. All FEA mesh

elements are shell elements with the exception of the fuselage which uses bar elements.

The bending moment of inertia ratio 12I/T 3 is a NASTRAN shell property for the

“ratio of the actual bending moment of inertia of the shell, I, to the bending moment

of inertia of a homogeneous shell, T 3/12” [105].

Table 4: Summary of Wingbox Initial FEA Properties

Young’s Modulus E 70.0 GPa

Shear Modulus G 26.9231 GPa

Poisson’s Ratio ν 0.3

Thickness T 0.02 m

12I/T 3 5.0

In NASTRAN, each mesh element must have an associated property set (PSET).

For example, all of the properties shown in Table 4 are assigned to shell elements via

PSHELL entries. A convenient way to group components is to assign them the same

property set. Such groupings needed to be modified for integration into HyperSizer
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as will be discussed. Therefore it was necessary to redefine the property sets in NAS-

TRAN from the original model.

5.5.4 Failure Analysis and Critical Loads

In the context of an aircraft manufacturer, determining the critical values to de-

sign a structure can be approached from two perspectives. The typical aerospace

organization has a loads group and stress group [109]. This section will explore some

of the details behind both the perspectives as well as how they will be viewed in this

thesis.

The ultimate goal of the loads group is to produce the internal loads in each

structural component which will be used for structural design by subsequent analysis

and design groups. The analysts will evaluate a large set of load cases consisting of

different types and parameters to calculate the external loads. These loads and appro-

priate boundary conditions will be imposed in the equilibrium equations (Equation

15) and will be solved by a structural solver, such as FEA, to produce the resulting

internal loads. For preliminary wing analysis, the important external loads are the

three-dimensional shear force, bending moment and torsional moment distributions

in the primary structure [87]. The locus of these forces and moments will form an

envelope where the outer edge represents the highest loading. To the loads group this

envelope represents the critical loads [165].

The loads group would then give the subset of critical loads to the stress group.

The stress group, which is typically much larger than the loads group, will determine

the stress, strain and deformation due to the provided internal loads [165]. To do this

they will evaluate the constitutive (Equation 16) and strain-displacement equations

(Equation 17) using a structural solver. The process of determining critical loads is

more involved from the stress perspective because it involves failure analysis. Failure
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analysis is the process of determining when a structure will “fail” and how it will fail

by any number of physical failure modes [68]. For example, a simple failure mode is

necking of a linear-elastic ductile material under tensile load in the axial direction.

The member will undergo plastic deformation when the yield stress is reached and

fail under ultimate stress. If a component were analyzed where plastic deformation

was unacceptable, the highest normal stress would be compared with the material’s

yield stress. The comparison would determine a margin of safety for the component.

An example calculation is shown in Equation 21.

Margin of Safety =
σy

σapplied
− 1 (21)

where σy is the yield stress.

The larger the margin of safety, then presumably the safer the component is from

that failure mode. Failure does not necessarily mean something physically breaks, it

can be defined as not meeting a requirement. There are commonly published material

properties for metals. Other forms of Equation 21 are used for the calculation of

margins where an “allowable” stress (or load) is used instead of the applied stress for

design purposes. A classic, but some view as conservative, factor of safety used in

aerospace is 1.5 [80][120]. A factor of safety is a similar concept to margin of safety.

Equation 21 can be modified slightly to be put in terms of safety factors (FOS):

Margin of Safety =
Allowable stress

Calculated stress ∗ FOS
− 1 (22)

There are numerous failure analyses for failure modes related to bending, shearing,

torsion, buckling, crack propagation, cyclical loading, impact, etc. The stress group

uses such failure analysis in conjunction with predetermined allowables and margins
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of safety to evaluate the structural response. Every load case is analyzed by a set

of failure methods in every component under consideration. The load case resulting

in the lowest margin of safety for a particular component (or section) is viewed as

critical by the stress group and is different from the loads group. Even though both

are appropriate, in this work critical load cases are selected based on the margin of

safety as was discussed in Section 5.3.3. Clearly the values for the allowables and

margins have a large influence on the structure because they are a measure of how

conservative the design will be. High margins may produce overly conservative designs

which are overweight and result in lower performance even though they will be safer

in terms of structural failure. Margins which are too small are risky and susceptible

to failure even though they may be light weight.

Once identified, the critical cases will drive the design to ensure the structure

will satisfy all safety requirements during operation. The structural design procedure

optimizes the component size, shape, material definition and topology to ensure all

required margins are met while reaching some objective. The classical structural

design objective in aerospace is to minimize weight, but advances in MDAO have

allowed other objectives such as manufacturing and lifecycle costs to be included as

well [32][50].

In the proposed approach aeroelastic analysis is used to determine external and

internal loads for each component. This information is passed to an analysis program

called HyperSizer to carry out the failure analysis and structural design. HyperSizer

is a structural design software from the Collier Research Corporation and;

“...is used throughout the design process–including certification–to quantify

all critical failure modes, reduce structural weight, and sequence composite

laminates for fabrication to avoid unexpected design problems and weight
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growth as the design matures. It provides a complete CAE software inter-

face that is used from preliminary design to final analysis.” [35]

HyperSizer specializes in composite design and has a large database of composite

material properties and structural failure methods. Although the proposed framework

could incorporate composite materials into the structural design by taking advantage

of HyperSizers’ unique capabilities, this will be left for future work. To simplify,

develop and evaluate the framework, only traditional metals will be considered in

this work.

HyperSizer utilizes a “smeared stiffness” approach to efficiently analyze compo-

nent shapes when performing structural optimization. Smeared stiffness is a mod-

eling technique to transform local stiffness from discrete subcomponents to a single

global stiffness representation of a structural component. For example, in Figure 28

four strategies are presented for modeling a stiffened panel. Strategies 2, 3 and 4

model the stiffeners as discrete subcomponents of the stiffened panel. The smeared

stiffness method is utilized in strategy 1 and visualized in Figure 28. Instead of dis-

cretely modeling these subcomponents, their individual stiffness are “smeared” into

the global stiffness. This modeling approximation allows HyperSizer to represent

numerous component designs and material definitions accurately and efficiently by

avoiding the need to remodel or remesh in FEA [7]. After structural design opti-

mization, HyperSizer updates the FEA input files with the appropriate stiffness and

material definitions so that structural analysis can be done on the new design.
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Figure 28: Stiffener modeling approaches using NASTRAN terminology [7]

Figure 29: HyperSizer smeared stiffness method [7]
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5.5.5 Structural Design Model

The HyperSizer model used for structural design optimization will be briefed in

this section. At the core of the HyperSizer model is the FEA (or FEM) model itself.

Data is automatically transferred from the FEA input and output into the HyperSizer

database and outputted back to FEA after optimization. A summary of the relevant

data imported and exported (updated) is shown in Figure 30. As discussed, only the

wingbox is included in the HyperSizer model which is composed of shell elements in

NASTRAN.

Figure 30: FEM data transfered to and from HyperSizer [35]

The property ID entity in Figure 30 is very important to modeling in both NAS-

TRAN and HyperSizer. HyperSizer has two main levels of abstraction for model

features; assemblies and components. At the higher level, assemblies are intended to

group features which share similar properties or are manufactured as single entities

while components describe discrete features. HyperSizer uses the property ID’s from

the FEM model to define components. As was alluded to in Section 5.5.3, the original

uCRM NASTRAN model had property ID’s which needed to be redefine to integrate

appropriately with HyperSizer’s component and assembly definition. In the current
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HyperSizer model there are 50 assemblies consisting of 86 components in total. The

upper and lower skins, front and rear spars and 46 ribs are all separate assemblies.

The ribs were treated as separate assemblies because each rib geometry differs in a

discontinuous fashion and could not be manufactured with the same mold per se,

unlike the skins and spars.

An assembly in HyperSizer will have the same material definition and compatible

component designs. For simplicity and better tractability of results, only a single

material was used for all assemblies. The material is an aluminum with similar elastic

properties to the original NASTRAN models but HyperSizer requires a more detailed

definition. Table 5 lists the properties of the aluminum used in the HyperSizer model.

Table 5: uCRM HyperSizer Material Properties

Form Plate

Spec AMS 4206

Temper T7751

Basis B

ρ 0.1004339 lb/in3

Tref 32o F

α 12.77778 µin/in/F

FtyL, FtuLT 88 ksi

FtuL 91.00001 ksi

FtyLT 86.99998 ksi

FtuLT 91.00002 ksi

Fsu 48 ksi

where F are design allowables for the material and the subscripts t and c refer to

tensile and compressive, y and u for yield and ultimate (1.5 safety factor), L and LT
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for longitudinal (parallel to grain) and long traverse directions (longest dimension

perpendicular to grain, i.e. width) and s for shear, respectively.

All the components within an assembly should have the same design space of

component concepts for the optimization to choose from. There are numerous con-

cepts available in HyperSizer, for example I-stiffened, Z-stiffened, sandwich panel,

etc. For similar reasons as the material, only one concept was considered; unstiffened

panel. Although not realistic given many of the wingbox components on commercial

transports are stiffened, this concept has only one dimension; thickness. This sig-

nificantly simplifies the sizing results and allows better tractability of the margin of

safety throughout the load cycles. A schematic of the component concept is pictured

in Figure 31.
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Figure 31: HyperSizer unstiffened panel component concept

The last pertinent feature of the HyperSizer model is the failure analysis. Only

one failure method was utilized; von Mises yield stress criterion. This method was

chosen because of its wide-use in structural analysis which will allow some intuition in

interpreting the margin of safety results. According to the HyperSizer documentation

on the von Mises criterion [35]:

“...also called maximum-distortion-energy criterion, theorizes that a compo-

nent is safe as long as the maximum distortion energy per unit volume in a

material is smaller than the distortion energy required to cause a yield in a
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tensile test specimen of the same material (Beer and Johnston 1981)”

Under this criteria all panels are as plane stress. The theory was originally developed

for limit load but HyperSizer has modified it for ultimate load. A comparison of the

von Mises and well-known Tresca criterion is depicted in Figure 32.

Figure 32: von Mises and Tresca yield surfaces in the principle stresses coordinates,

including the Deviatoric Plane and the Hydrostatic axis [132]

Using this criteria we can directly attribute failure and the margin of safety to

several physical quantities, namely the distortion energy. The distortion energy can

first be derived from the Cauchy stress tensor which is composed of the hydrostatic

stress tensor and deviatoric stress tensor [21]:

σij =
σkk
3
δij + sij (23)
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where δij is the kronicker delta math function, σkk is the hydrostatic tensor which

causes volumetric expansion or contraction on a stressed body and sij is the deviatoric

stress tensor which distorts the body. It is common to look at invariants in the

(Cauchy) stress tensor to determine principal stresses, the same thing can be done

with the deviatoric tensor:

|sij − λδij| = −λ3 + J1λ
2 + J2λ+ J3 = 0 (24)

where λ is constant of proportionality associated with the eigenvalue of the stress

tensor and J are the invariants of the characteristic equation. Another interpretation

of the von Mises crietrion is that yielding occurs when the second deviatoric stress

invariant, J2 reaches a critical value related to the well-known yield stress, σy [173]:

J2 =
1

6

[
(σx − σy)2 + (σy − σz)2 + (σz − σx)2 + σ2

xy + σ2
yz + σ2

xz

]
=

σy√
3

(25)

In HyperSizer the von Mises criterion for ultimate load dictates failure when:

√√√√( σx
F(tc)uL

)2

−

(
σxσy
F 2
(tc)uL

)2

+

(
σy

F(tc)uLT

)2

+

(
τxy
Fsu

)2

> 1.0 (26)

Only the critical load cases are of concern for sizing so all components are sized to

the ultimate load which includes x1.5 safety factor compared to limit loads. Equation

26 can be interpreted as the ratio of the applied distortion energy to the allowable

distortion energy, Failure Criteria =
DEapplied

DEallowable
. The allowable distortion energy is
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a function of the material stress allowables shown in Table 5 for the chosen material.

The margin of safety based on this failure criteria for ultimate load is calculated by:

MSu =
1√(

σx
F(tc)uL

)2
−
(

σxσy
F 2
(tc)uL

)2

+
(

σy
F(tc)uLT

)2
+
(
τxy
Fsu

)2 − 1.0 (27)

when MSu > 0 no failure occurs and the margin of safety can thus be interpreted

as MSu = Failure Criteria− 1.0. Table 6 summarizes the relationship between the

margin of safety, von Mises failure criterion and the distortion energy.

Table 6: HyperSizer von Mises Criterion Summary

Margin of Safety Failure Criteria Distortion Energy

0 1.0 Applied = Allowable

1.0 0.5 Applied = 1
2
Allowable

∞ 0 Applied� Allowable

-1.0 ∞ Applied� Allowable

In HyperSizer failure analysis based on the von Mises stress criterion is performed

on every component after each iteration. In order to simulate the loads process and

keep track of minor rework, a component will only be redesigned if the calculated

margin of safety is below the require margin. The alternative would be to redesign

every component after every iteration. Based on subject matter expects the former

was viewed as the more realistic practice and employed here. More redesign would

result in decreased weight which may be viewed as more important from a perfor-

mance perspective than any incurred cost from redesign. Nevertheless, redesigning
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only when necessary allows us to analyze how decisions related to fidelity and mar-

gins would incur more or less minor rework, which is one of the costs used in resource

allocation optimization problem.

5.6 Conclusion

An overview of the demonstration model based on the uCRM model and the

modeling and simulation environments were given. The uCRM was chosen because

a complete model was provided by The Boeing Company and because of its use

in aeroelasticity studies, in addition to the popularity of its predecessor, the NASA

Common Research Model. The M&S environment consisting primarily of NASTRAN

for aeroelasticity, NASCART-GT for CFD and HyperSizer for structural design was

briefly discussed. All three analysis methods required modifications to the provided

uCRM model, which was a not a trivial task. An overview of the development of the

necessary models for the respective programs was presented.

The uCRM provides a realistic model for evaluating the rework decision frame-

work. The experimental plan and results are detailed in the next chapter. The

experiments will be used to address the hypotheses and research questions and de-

velop the uncertainty quantification, uncertainty management and overall framework

for this thesis.
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CHAPTER VI

EXPERIMENTAL PLAN, OBSERVATIONS & RESULTS

6.1 Summary of Research Development

An overview of the research development up to this point will be given and com-

pleted in this chapter. Generally speaking there is top-down approach for the research

development where high-level objectives lead to a primary hypotheses and through

the research development end at specific research questions and secondary hypothe-

ses to answer them. As the development advances, the scope narrows and finer levels

of details are required. After the research development is sufficiently defined the

experimental plan is designed and executed to validate the hypotheses and answer

the research questions with results. The conclusion of the thesis then addresses the

original research objective and validates the associated primary hypothesis.

The primary purpose of this thesis is to improve decision making in loads anal-

ysis regarding rework. The motivation behind this and the importance of rework

in aerospace design was given in Chapter 1. After observing sources of rework and

limitations in the current approach to loads analysis and structural design the overall

research objective of this thesis was posed:

Research Objective: Develop a methodology for loads analysis to quantify and

manage uncertainty related to aerodynamics and load case parameters in order

to improve decision making for rework by optimizing fidelity, load margins and

structural margins for new concepts

The objective can be decomposed to two specific research goals:
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Research Goal 1: Develop a methodology to quantify uncertainty due to aero-

dynamic analysis fidelity and load case parameter uncertainty

Research Goal 2: Develop a methodology to improve decision making for de-

sign rework in loads analysis

Accomplishing these two goals in this thesis requires focus areas to review the liter-

ature and assess alternative methods. Clearly the field of uncertainty quantification

is an appropriate research area for the first goal. For the second goal it is was iden-

tified from the motivation that uncertainty should be reduced within a framework

to specifically address sources of rework in loads analysis. In order to reduce uncer-

tainty in the context of realistic airplane development programs where cost overruns

and delays are frequent, the field of uncertainty management was explored to define a

potential method. The research areas of uncertainty quantification and management

were identified under a hypothesis directly related to the research objective and over-

all purpose of this thesis. This hypothesis is referred to as the primary hypothesis

because to encompasses all other hypotheses:

Primary Hypothesis: For a given design scenario, the proposed framework

involving uncertainty quantification and management will lead to improved de-

cisions regarding rework and performance than the current approach

A review of the literature was done and summarized in Chapter 3 related to the

research focus areas and other necessary areas related to loads analysis. Observations

and available methods from the literature review revealed gaps in research which could

potentially be addressed by this thesis and contributions to the scientific community.
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A summary of these gaps are:

1. A comprehensive MDAO environment is not readily available for mod-

eling load cycles in loads analysis and structural design

2. A standard procedure does not exist for estimating the epistemic uncer-

tainty in linearized normal force coefficient slope due to shock formation

3. An established correlation between aerodynamic fidelity and design re-

work does not exist

4. A proactive rework mitigation strategy does not exist involving aerody-

namic fidelity, load margins and structural margins for aeroelastic loads

analysis which can be implemented in design phase

Potential methods were explored and downselected to a few candidates which

would be evaluated in experiments. Specific research questions were developed based

on these candidate methods and in light of the aforementioned gaps. From the litera-

ture review, hypotheses were imposed to initially answer the questions. To differenti-

ate from the primary hypothesis which addresses the entire thesis, these are referred

to as secondary hypotheses. The experimental plan serves to provide sufficient data

to address the research questions and accept or reject the primary and secondary

hypotheses. A summary of the research questions and associated hypotheses and

experiments are given below.

Sections 3.3 and 3.4 discussed the relevant background in uncertainty quantifi-

cation as it pertains to loads analysis. The number of available options for UQ

and uncertainty reduction were narrowed to Bayesian methods and use of Bayesian

networks for modeling the loads analysis process and quantifying uncertainty. This

choice led to the following:
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Research Question 1: What are the appropriate methods for defining the

prior probabilities of uncertain nodes in the Bayesian Network?

Hypothesis 1: Epistemic uncertainty prior probability distributions can be

defined based on the fidelity level and estimated relative error compared to sim-

ulated truth data

It is difficult to compare one method of defining uncertainty to another other than

from a theoretical basis or with actual truth data, i.e. recorded observations from a

system in actual operation. The truth data referenced here is only simulated and refers

to CFD results from a flexible model. Extensive effort has been done to estimate the

epistemic uncertainty sources and answer the first research question. But instead of a

formal experiment comparing alternate uncertainty modeling approaches, Hypothesis

1 will be accepted or rejected based on subject matter experts who will evaluate the

results and use previous studies of related work from Bansal and Pitt (2013) [16].

Sections 3.3 and 3.5 discussed the importance of identifying important sources of

uncertainty through sensitivity analysis. As discussed in Chapter 5, the M&S envi-

ronment for loads analysis is computationally intensive and will require sensitivity

analysis and other techniques to reduce the size of the problem. Additionally there

are multiple sources of aleatory and epistemic uncertainty being modeled but only

the latter are reducible. It can take significant effort to reduce uncertainty so to effec-

tively management it is important to distinguish and compare aleatory and epistemic

uncertainty, leading to the following:

Research Question 2: How important is epistemic uncertainty to major

rework relative to other sources?
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Hypothesis 2: Empirical adjustment parameters with epistemic uncertainty

will be significant among aleatory sources relative to the major rework response

Experiment 1: Determine impact of uncertainty on major rework

Out of several potential uncertainty management approaches discussed in Section

3.3.4 the resource allocation method was chosen. No published studies utilizing this

method were applied directly to loads analysis so modifications may be necessary:

Research Question 3: How should the optimization problem be posed to

effectively reduce and manage uncertainty in the loads analysis process?

Hypothesis 3: The resource allocation methodology provides an appropriate

foundation to reducing and managing uncertainty in loads analysis

Experiment 2: Evaluate uncertainty management optimization approaches

Chapter 4 overviewed the rework decision framework and discussed how uncer-

tainty quantification and uncertainty management work together within the frame-

work. Because this is a unique approach to address rework in loads analysis, the

framework could be structured in numerous ways. The final research question is:

Research Question 4: For a given design scenario, what is the appropriate

method to improve rework decisions regarding major rework in loads analysis?

Hypothesis 4: For a given set of costs, optimizing the aerodynamic fidelity,

load margin and structural margin will improve rework decisions regarding major
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rework

Experiment 3: Determine impact of cost functions on major rework

Experiment 4: Evaluate framework to support rework decisions

Addressing the final research question and hypothesis requires multiple experiments.

Experiment 3 will determine the impact of the cost functions which are subjective.

It also will look at a number of design scenarios reflect changing priorities for trading

performance, uncertainty, rework and computational costs. The final experiment is

the most important and compares the proposed framework against a baseline which

is representative of the current approach to loads analysis. The results of Experiment

4 will accept of reject the primary hypothesis.

The remaining sections of this chapter detail the experimental plan, observations

and results to address the aforementioned research objective, goals, questions and

hypotheses. The conclusion of the experimental plan subsequently concludes the

research development for this thesis.
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6.2 Epistemic Uncertainty Quantification

6.2.1 Aeroelastic Coupling Overview

6.2.1.1 Purpose of CFD Coupling

There are two main purposes to coupling CFD to the aeroelastic analysis. The

first is to model various levels of aerodynamic fidelity in order to realistically quantify

aerodynamic epistemic uncertainty. Epistemic uncertainty is a cornerstone to this

work because it is one of the main sources of design rework in aeroelastic loads

analysis, as has been discussed. This thesis proposes a framework to reduce the

uncertainty in the loads analysis process which requires the prior distribution of all

uncertainty sources be defined. In order to accurately assess the performance of this

framework the initial epistemic uncertainty due to aerodynamics should be as realistic

as possible. The coupling of high fidelity aerodynamics through CFD with the low

fidelity Doublet-Lattice Method (DLM) accomplishes this.

The second purpose of coupling is to simulate the actual loads process. As was

shown in Figure 2, the loads process begins with wind tunnel testing of a rigid sub-

scale model of the airplane configuration after it has been frozen through the con-

ceptual design process. An aerodynamic database is then created to correct the

computational aerodynamic analyses used in the load cycles. On the other end, flight

testing is done after the completion of the load cycles to validate the design by sub-

jecting it to realistic operating environments. These two activities must be simulated

to recreate the loads process and test the proposed framework.

The rigidity of the wind tunnel model is a very important consideration and can be

very complicated to match aeroelastic behavior [23]. Therefore rigid assumptions can

be used, but naturally the wind tunnels models are not perfectly rigid [153] so elastic

effects are removed from the data. Although the intention of using a wind tunnel is to

get a more accurate prediction of aerodynamic pressure, the rigid assumption ignores

the aeroelastic effect which in turn affects the accuracy of the pressure distribution
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results. Also the loads from the wind tunnel analysis can be linearized in a commercial

airplane development programs [102] so the data can be applied to and correct linear

aeroelastic analysis. Thus when the computational aerodynamic analysis is calibrated

with wind tunnel data, uncertainty is introduced by these rigid, linear assumptions.

In this work the wind tunnel test data is simulated by performing CFD analysis of

the undeformed (rigid) aerodynamic model.

Flight test validation is one of the most important (and expensive) activities in

the loads process. All the assumptions from computational analysis and the design

itself are tested by building a full-scale version of the finalized design, called the flight

test article. This article is flown by test pilots and undergoes a series of maneuvers

to simulate different flight conditions in a real environment. Similar to wind tunnel

testing, this activity is simulated using CFD in this work. The external loads acting

on an aircraft during the flight load survey can be nonlinear and the flexible structure

is subjected to the full effects of aeroelasticity. Thus CFD analysis must be run on

a flexible model. The flexible CFD coupling process is discussed in detail in Section

6.2.3.1. The flexibility in the structure cannot be exactly modeled because the struc-

tural stiffness is uncertain prior to the actual construction of the test article. As will

be detailed later, the flexible CFD analysis is done on a model whose stiffness has

been converged through a series of load cycles in order to represent the flexibility as

accurately as possible.

6.2.1.2 Aerodynamic Empirical Adjustments

The method to supplement low fidelity analysis with high fidelity data is largely

dictated by the analysis programs themselves. NASTRAN has two principal methods

to include high fidelity aerodynamic data: direct import of an external aerodynamic
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mesh and correction factors. The former is the more accurate approach and in-

volves defining an external mesh in the appropriate format, which is then coupled

to the NASTRAN structural FEA model. The demonstration model in this work

was developed and vetted by experts at The Boeing Company and NASA. Using the

direct import approach would require redefining all the controllers, splines, masses,

boundary conditions and other quantities which link the aerodynamic model to the

structural model and appropriately constrain both. After such modifications a veri-

fication study would then be necessary to ensure the new model was built correctly

and met the same quality standards as the original. It was deemed that this approach

would require efforts which were out of the scope of this thesis given the timeline.

The correction factor approach allows minimal modifications to the NASTRAN

model itself and instead involves defining the [WKK] and [FA2J ] empirical adjustment

matrices based on external high fidelity data. A schematic to visualize the effect of

the corrections is shown in Figure 33. The [WKK] adjustment factor is intended to

correct the aerodynamic force and moment applied to an element (also referred to

as an aerodynamic box) on the DLM aerodynamic mesh for incidence changes. As

discussed in the background the DLM is a flat-panel method and so [WKK] will correct

the aerodynamic forces per incidence change to account for curvature and thickness

in geometry and nonlinear compressibility which are captured in NASCART-GT but

not in NASTRAN.

To show how the empirical adjustments are applied in NASTRAN, Equations 28-

30 are explored. They represent three matrix equations which are used to summarize

the relationships required to define a set of aerodynamic influence coefficients [129].

These are the basic relationships between the pressure and the dimensionless vertical,

or normal, velocity induced by modifying the angle of the surface relative to the

airsteam; i.e. the downwash (or normalwash) [36],
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{wj} = [D2
jk + ikD2

jk]{uk}+ {wgj} (28)

{fj} = q̄[Ajj]
−1{wj} (29)

{Pk} = [Wkk][Skj]{fj}+ q̄[Skj]{f ej /q̄} (30)

where:

wj = downwash

wgj = static aerodynamic downwash

fj = pressure of aerodynamic box j

q = flight dynamic pressure

k = reduced frequency, k = ωb/V

ω = angular frequency

b = reference semichord

V = free-stream velocity

Ajj(Mach, k) = aerodynamic influence coefficient matrix

uk, Pk = displacements and forces at aerodynamic grid points

D1
jk, D

2
jk = real and imaginary parts of substantial differentiation matrix

Skj = integration matrix

{f ej /q̄} = FA2J matrix

It should be noted that wgj includes the static incidence distribution that may arise

from an initial angle of attack, camber, or twist and is therefore a third type of

empirical adjustment which can be inputted using the [W2GJ ] matrix. The inclusion

of [FA2J ] using CFD data from the uCRM model already accounts for camber and

twist so it is redundant to use both adjustments. Only [WKK] and [FA2J ] will be

utilized in this work.
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[WKK] is an N x2 matrix where each row corresponds to an aerodynamic box

and the columns are the correction factor for the force and moment respectively. It

is derived based on the ratio of the pressure coefficient slope for CFD and DLM

for corresponding points on the two meshes. For simplicity, it is assumed the force

and moment have the same correction factor because they are both derived from

the aerodynamic pressure. Two important factors come about from this correction

factor: how is the pressure coefficient slope calculated and how are corresponding

points found on CFD and DLM meshes given they are different? Both of these

details are addressed later in Section 6.2.1.3.

The second adjustment factor available in NASTRAN is the [FA2J ] matrix. It is

used to correct for the zero lift assumption at zero-degree angle of attack in DLM.

This assumption comes about because of thin airfoil theory [5]. Thus the aerodynamic

pressures at zero angle of attack are imported from NASCART-GT. Unlike [WKK],

[FA2J ] is only defined for the undeformed (rigid) case and therefore remains the same

for both rigid and flexible CFD coupling. [FA2J ] is an N x1 matrix where each row

corresponds to an aerodynamic control point located on an aerodynamic box. The

issue of dissimilar meshes is handled in the same way for both [WKK] and [FA2J ] and

is discussed in Section 6.2.1.4. Also, it should be noted that in this work [WKK] is

the more critical of the two adjustment factors because it differs with the rigid and

flexible assumption and is the primary method of modeling epistemic uncertainty in

the aerodynamics.
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Figure 33: Corrections to normal force coefficient from NASTRAN empirical adjust-

ments

6.2.1.3 Normal Force Coefficient

The aerodynamic data from the NASCART-GT CFD solver must be translated

appropriately into the [WKK] and [FA2J ] matrices to incorporate this high fidelity

data into NASTRAN. NASCART-GT produces several outputs as mentioned pre-

viously, but fthese empirical adjustments are only dependent on the coefficient of

pressure, Cp, on the surface of the wing mesh (see Equation 31). [FA2J ] only re-

quires Cp so this can be imported directly to NASTRAN after accounting for the

dissimilar meshes. [WKK] is more complicated because it requires the ratios of pres-

sure coefficient slope between NASCART-GT and NASTRAN. The slope is defined

as the change in aerodynamic force divided by the change in angle of attack. All

aerodynamic forces are essentially derived from pressure so Cp is used to calculate

the slope.
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Cp =
p− p∞
1
2
ρ∞V 2

∞
(31)

The CFD and DLM meshes are quite different in terms of refinement, geometry

and element types. The CFD mesh is much finer (205,910 elements) includes thick-

ness and curvature and has triangular elements while the DLM mesh is coarser (3,132

elements), flat and infinitely thin and has quad elements. Thus many CFD elements

will fit into a single DLM element causing non-smoothness in Cp distribution from

CFD translated onto the DLM mesh. This is a discretization error and so one tech-

nique to avoid it is to use an area weighted average of the pressure coefficient, known

here as the normal force coefficient, Cn instead of directly using Cp. Cn represents

the force relative to the normal direction of the surface to which it acts, unlike the lift

force which is perpendicular to the global flow direction. It is calculated as the area

averaged pressure coefficient of M elements along the chord-wise strip of the wing

mesh:

Cn =

M∑
i=1

CpiAi

M∑
i=1

Ai

(32)

Using Cn, each element in [WKK] is defined as:

[WKK ] =
((Cn,CFD(α1)− Cn,CFD(α = 0)) /(α1 − 0))

((Cn,DLM(α2)− Cn,DLM(α = 0)) /(α2 − 0))
(33)

where α is the angle of attack in radians and is specified differently depending on

whether rigid or flexible CFD coupling is used. Details for defining α will be dis-

cussed in their respective sections in 6.2.2.1 and 6.2.3.1.
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6.2.1.4 Transferring Loads Between Dissimilar Meshes

One of the challenges of the correction factor method in NASTRAN is the data

needs to be communicated between dissimilar meshes. An algorithm was developed

to automatically find the corresponding elements between the two meshes and some

key aspects of this method are discussed in this section. The CFD and DLM are both

based on the same uCRM model [71] so the DLM model is simply a 2D projection

of the uCRM model planform. This makes the translation between meshes much

easier because only the vertical z direction differs between corresponding points on

the meshes.

Figure 34: Alignment of planforms for CFD mesh (green) and DLM mesh (white).

The computational demands of CFD require a much finer mesh resolution than

DLM, in addition to more elements needed to account for the geometry. Thus the

resolution difference between the meshes is substantial. The first step of the matching

algorithm is to find all the triangular CFD elements which fit into a given DLM quad

element. Given the identical planform shapes, only the x and y coordinates of a given
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element’s centroid need to be considered.

Pressure is a function of the surface area so the Cp from NASCART-GT is de-

pendent on the triangular element area. The topology of the meshes means there

will be overlap between the edge of the DLM boxes and the projection of the CFD

elements. The overlapping areas must be taken into account to correctly translate

the appropriate forces. The overall matching algorithm is described in the following

steps for each DLM element:

Step 1: Search entire CFD mesh and find nodes projected inside DLM

element.

Step 2: Identify CFD elements associated with nodes from Step 1.

Step 3: Check each CFD element from Step 2 and find any projected in-

tersection points with DLM element edge.

Step 4: Using intersection points, calculate adjusted projected area of each

CFD element inside the DLM element.

Figure 35: Triangulation of CFD wing mesh used for matching algorithm
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(c) Step 4: Projected area (yellow) of all matched CFD elements.

Figure 36: Example of matching algorithm for dissimilar meshes at leading edge.

Once the CFD elements have been matched for a given DLM box they are grouped

by whether they are on the top or bottom surface so the correct CP is calculated.

This is easily done using the normal vector outputted from NASCART-GT for each
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element. The lack of thickness in the DLM means that there are no distinct top and

bottom surfaces so the difference between the top and bottom CP is transferred to

NASTRAN. Physically this makes sense because the aerodynamic lift is related to

the difference in pressure between the top and bottom surface of an airfoil.

In order to preserve virtual work in the transfer of forces, the coefficient of pressure

from CFD is calculated using Equation 34 for i=1,2 ... M CFD elements matched

with DLM element j :

Cpj =

M∑
i=1

CpiAi

Aj
(34)

Equation 34 is used for [FA2J ] and is inserted into Equation 32 to find the normal

coefficient, which is then used in Equation 33 to calculate [WKK].

6.2.1.5 Limitations of Empirical Adjustments

In comparison to the direct import method, the correction factor approach is

less accurate because the latter still relies on the Doublet-Lattice Method for all

aerodynamic calculations and applies the resulting forces to the structural model.

NASTRAN only provides a few types of corrections which do not compensate for

all physics missing in the DLM. Specifically, the [WKK ] correction to the normal

force coefficient slope assumes a linear slope. In reality the slope is not linear for

viscous, compressible flow. In addition, the geometrical differences between the DLM

mesh and structrual mesh causes the feedback between loads and structural response

to have some error. Thus even if the empirical adjustments were exactly known,

the limitations of the DLM would reduce the accuracy of the aeroelastic solution in

comparison to using CFD data directly with the structural model as is done in the
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direct import method. But these limitations must be weighed against computational

costs, complexity and modeling effort.

The empirical adjustments are limited by the fidelity of the external aerodynamic

analysis used to calculate them. NASCART-GT is primarily intended for inviscid

analysis and thus cannot capture viscous effects such as viscous drag, boundary-layer

interaction and flow separation. The last item is of particular interest in this work.

Although incapable of accurately modeling flow separation, almost all inviscid solvers

suffer from numerical viscosity which can lead to numerical (i.e. non-physical) flow

separation [115]. The numerical schemes to discretize the momentum advection Euler

equations and extrapolate states between mesh cells results in truncation errors. The

error term mimics the diffusive nature of viscosity [49] and so a byproduct is an

inviscid flow can portray viscous-like phenomena. Thus at high angles of attack the

NASCART-GT flow solution can separate from the body and cause nonlinear effects

in the aerodynamic properties. [WKK] can only be used to correct a linear slope so any

numerical separation should be avoided to maintain the accuracy of the correction

factors and risk adding uncertainty rather than reducing it.

Due to the nature of how [WKK] is calculated, the problem of numerical separation

is more pertinent to flexible CFD coupling where higher angles of attack are necessary.

The maneuver vertical load factor used in NASTRAN for these cases are carefully

chosen to keep the trimmed wing angle of attack in the linear range and avoid this

phenomena. The details of this approach are discussed further in Section 6.2.3.

6.2.1.6 CFD Coupling Summary

The goal of coupling external CFD data to the FEA solver is to quantify epistemic

uncertainty and simulate the loads process in an actual development program. The

correction factor approach was chosen over the direct import method in NASTRAN

due to the significant modeling and verification efforts needed for the latter. This
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choice does come with certain drawbacks including inherent inaccuracies due to DLM

and the need to translate aerodynamic forces between the dissimilar CFD and DLM

meshes. The process to do this translation and calculate the [WKK] and [FA2J ]

empirical adjustment matrices was outlined.

The empirical adjustments are only as accurate as the external aerodynamic anal-

ysis used to calculate them. The choice of an inviscid CFD solver benefits from less

computational cost but also comes with the inability to capture viscous phenomena

in addition to nonphysical nonlinearities due to numerical viscosity which must ac-

tively be avoided. All of the methods discussed in this section are implemented in

the results shown in the remainder of Section 6.2 related to aerodynamic fidelity.

6.2.2 Rigid Coupling of CFD and Doublet-Lattice Method

6.2.2.1 Rigid CFD Coupling Process Overview

In Equation 33, α1 and α2 are defined for rigid CFD coupling as arbitrary angles

of attack greater than zero. The angles can be arbitrary because only the change in

Cn is of interest. For the CFD analysis, α1 = 0.0349066 radian (two degrees) because

the angle is small enough to avoid any numerical separation. For the NASTRAN

analysis, α2 = 1 radian is used out of convenience so the denominator in the lift curve

term is unity. Unlike in CFD, the NASTRAN analysis can be run at a high angle of

attack because flow separation and other viscous phenomena aren’t captured.

The general steps for calculating rigid [WKK] is fairly straightforward; CFD anal-

ysis is done using the undeformed mesh for each load case at α = 0, 2o. NASTRAN

analysis is done for each load case but with the aeroelastic feedback turned off and

constrained so the trimmed α = 1 rad. Turning off the aeroelastic feedback is akin

to running a rigid analysis so the CFD and DLM data are comparable. The results

from the CFD and DLM are then used in conjunction with the previously discussed

matching algorithm to calculate rigid [WKK], [FA2J ] is the same for both rigid and
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flexible coupling. Next, the results for the rigid CFD coupling are presented.

6.2.2.2 Rigid CFD Results

Results from the rigid (undeformed) CFD analysis at α = 0o are of particular im-

portance because they alone define [FA2J ] and are used throughout all the analysis.

The effects of angle of attack will be seen in the next section. It should be noted

that dynamic behavior was not modeled in NASCART-GT (although it is capable)

so the vertical load factor is irrelevant for all undeformed CFD results. All flowfield

pressure values are in Pascals [Pa].

Load Case 1: Mach 0.85, 43100 ft
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Figure 37: Cp distribution on top and bottom surfaces.
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Figure 38: Flowfield mesh and pressure at 25% span and Cp on wing surface.

Figure 39: Flowfield mesh and pressure at 50% span and Cp on wing surface.
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Figure 40: Flowfield mesh and pressure at 75% span and Cp on wing surface.
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Figure 41: Cp for 25%, 50% and 75% span.

This load case represents the cruise mach number at the operating ceiling altitude.

Thus we’d expect to see some transonic flow effects. The results indicate a normal

shock forms inboard and results in a near discontinuous change in pressure, as can
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be seen in Figure 41. The shock appears to dissipate towards the outboard of the

wing. Figure 38 shows how NASCART-GT’s mesh adaptation refines the mesh for

better accuracy based on the shock’s effects on the flowfield. Cp is only calculated

at the surface of the body because it is zero in the far flowfield. The red regions in

the flowfield indicate increased pressure near the leading and trailing edge stagnation

points. Likewise, the Cp will be large and positive at the stagnation points because

the pressure term in Equation 31 exceeds the freestream pressure and approaches the

stagnation pressure.

The CFD results verify the supercritical nature of the wing design. The uCRM

wing, based on the Boeing 777, utilizes supercritical airfoils to offset the effects of

transonic flow caused by the cruise speeds. Figure 42 shows how such a design theo-

retically weakens the normal shock in order to keep the trailing edge flow separated

and decrease drag in comparison to conventional airfoils. In Figure 38 the supersonic

flow profile, indicated in the blue region, and the flat Cp distribution over the inboard

top surface in Figure 41 both indicate supercritical airfoils are accurately modeled in

the mesh and analyzed correctly in NASCART-GT.

Figure 42: Comparison of transonic flow over a conventional NACA 64 airfoil with

transonic flow over a supercritical airfoil using Cp variation (Chalia 2016).
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Load Case 2: Mach 0.9, 23000 ft
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Figure 43: Cp distribution on top and bottom surfaces.
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Figure 44: Flowfield mesh and pressure at 25% span and Cp on wing surface.

Figure 45: Flowfield mesh and pressure at 50% span and Cp on wing surface.
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Figure 46: Flowfield mesh and pressure at 75% span and Cp on wing surface.
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Figure 47: Cp for 25%, 50% and 75% span.

The second load case is at the highest Mach number but also at a relatively low

altitude. In comparison with the first load case, the lower altitude causes the flowfield

pressures to be much higher. Note that the pressure scales are not the same between

154



the load cases to better visualize the flow features within each, but the Cp scales are

the same. The speed of sound is dependent on the temperature and it is relatively

constant at the altitudes analyzed in these load cases. Thus the altitude variations

have little affect on the the shock [45], but the higher Mach number in this load

case affects the shock location and strength. The normal shock on both the top and

bottom surfaces shifts towards the trailing edge and the supersonic region ahead of the

shock becomes fuller as is expected in compressible flow theory and shown in Figure

48 [149]. The blue “shark fin” regions attached to the body indicate the decreased

pressure due to supersonic flow. The strength of the normal shocks can be deduced

from the change in Cp and as expected the second load case produces stronger shocks

than the first. Also, in Load Case 1 the shocks on the top and bottom surfaces

coalesce at the same chordwise location. In the second load case though the shocks

have separated and the bottom surface shock is ahead of the top surface in agreement

with theory (see Mach=0.9 case in Figure 48).

Figure 48: Shock formation on a transonic airfoil from Shapiro (1954).
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Load Case 3: Mach 0.6, 20000 ft
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Figure 49: Cp distribution on top and bottom surfaces.
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Figure 50: Flowfield mesh and pressure at 25% span and Cp on wing surface.

Figure 51: Flowfield mesh and pressure at 50% span and Cp on wing surface.
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Figure 52: Flowfield mesh and pressure at 75% span and Cp on wing surface.
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Figure 53: Cp for 25%, 50% and 75% span.

Load Case 3 has the lowest Mach number and altitude of all the load cases. The

low Mach number is in the subsonic flow regime and reduces the compressibility effects

so we don’t expect to see any shocks. This will become more important later when

158



benchmarking the comparison between CFD to DLM. DLM cannot predict shocks

so results from this load case should show the closest matching between the fidelity

levels. As expected, there are no significant low pressure regions (blue) in the flowfield

and there are no discontinuous changes in pressure in Figure 53.

It is interesting to note the difference in mesh adaptation when there are no shocks.

Near the body the mesh is mostly refined only at the leading and trailing edges. This

is expected because the geometry of the blunt leading edge and sharp trailing edge

require higher resolution and the flow is more complex near these locations. In the

far flowfield, the refinement is concentrated to the wake which is also much more

complex due to vorticity and thus requires higher resolution. In comparison with the

previous load cases, there is very little refinement ahead of the body. Compressibilty

theory tells us that supersonic flow over a blunt body, such as the wing leading edge,

will cause a separated bow shock in front of the body (see Mach=1.05 case in Figure

48). As such, NASCART-GT’s mesh adaptation begins to refine ahead of the wing

at the higher mach numbers.
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Load Case 4: Mach 0.89, 43100 ft
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Figure 54: Cp distribution on top and bottom surfaces.
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Figure 55: Flowfield mesh and pressure at 25% span and Cp on wing surface.

Figure 56: Flowfield mesh and pressure at 50% span and Cp on wing surface.
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Figure 57: Flowfield mesh and pressure at 75% span and Cp on wing surface.
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Figure 58: Cp at 25%, 50% and 75% span.

The fourth and final load case is at both a high Mach number and high altitude.

The flow characteristics are very close to that of Load Case 2 which has a similar Mach

number, but the pressure scales are much different due to the altitude difference. The

162



Cp distributions are almost identical as well, but keep in mind these results are at

zero angle of attack. As will be seen later, when the angle of attack changes these

two load cases will differ significantly.

Some key results were shown for the rigid CFD analysis in NASCART-GT at zero

angle of attack. The resulting pressure for these cases will be used to define the [FA2J ]

empirical adjustment matrix. The four load cases analyzed differ in Mach number

and altitude and these effects can be seen in the flowfield and pressures on the wing

body. Some expected flow characteristics in transonic flow over supercritical wings

were verified in the results and thus helps validate the CFD modeling and analysis

methods.

Looking ahead to the calculation of rigid [WKK ], the flow features of most interest

are shocks due to transonic flow. The discontinuous change in pressure can lead to

quite extreme WKK values so using the normal coefficient to smooth out these effects

is justified. In the next section the rigid CFD results from NASCART-GT are com-

pared against the DLM results from NASTRAN.

6.2.2.3 Comparison of Rigid CFD to Doublet-Lattice Method

The CFD results from the previous section are used to calculate Cn and eventually

[WKK ]. In this section the CFD results are compared against the DLM results. As

was discussed in Section 6.2.1.4 the Cp from NASCART-GT must first be transferred

to the DLM mesh so it can be compared against the NASTRAN solution. Thus the

transferred CFD results will be compared against the original CFD in this section to

demonstrate the accuracy of the matching algorithm.
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Load Case 1: Mach 0.85, 43100 ft, 2.5G

Figure 59: Top surface comparison of original and transferred CFD Cp for top surface.

Figure 60: Bottom surface comparison of original and transferred CFD Cp for top

surface.
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Figure 61: Cp comparison at 25% (top), 50% and 75% span for α = 2o.

Figures 59 and 60 show the accuracy of the matching algorithm to transfer Cp

from the CFD mesh to the DLM mesh. Figure 61 compares the raw CFD results,
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the transferred CFD results and the DLM results for three cross-sections of the wing.

The CFD and transferred CFD results match very well and is further validation of the

matching algorithm. As was discussed, the DLM mesh has no distinction between top

and bottom surface so only the change in CFD Cp can be compared directly to DLM.

The green line represents ∆Cp and is the difference between the top and bottom blue

lines. Note that ∆Cp does not bisect the region between the blue lines because of the

signage of Cp. In NASTRAN all uncorrected Cp values are positive and goes against

the standard definition used in Equation 31. Typically ∆Cp < 0, which indicates

positive lift is being created. Thus in these results the negative of the DLM Cp is

used for comparison.

The DLM results (red curves) are without any empirical adjustments. The dif-

ference between the red and green curves shows the error, and thus the epistemic

uncertainty, in DLM. The epistemic uncertainty is greatest at the leading edge and

ahead of the shock. In thin airfoil theory a singularity occurs in the calculation of

circulation at a sharp leading edge [5]. The DLM results thus show an asymptotic-like

increase in Cp while CFD better reflects a real flow around a blunt leading edge. In

front of a normal shock the flow is supersonic and thus compressibility effects are

greatest, but after the shock the flow becomes subsonic. DLM cannot account for

nonlinear compressibility so there is much better agreement with CFD, and much less

epistemic uncertainty, behind the shock.
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Figure 62: Comparison of normal force coefficient slope for CFD and DLM.

Figure 63: Top: ∆Cn/∆α v.s. span for α = 0o to 2o. Bottom: distribution of [WKK ]

values on DLM wing mesh.
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Figures 62 and 63 compare the transferred CFD results to DLM and the corre-

sponding [WKK ]. Figure 62 shows the normal force coefficient slope. Recall that the

[WKK ] empirical adjustment assumes a linear slope, so it is beneficial to see if there

are nonlinearities. Thus several angles of attack from 0o to 10o were run in CFD and

plotted at three different span locations to show any nonlinearities. For Load Case 1

the lift curve is fairly linear up to 6o for all spans locations. At higher angles the nu-

merical viscosity causes separation and the nonlinear changes in the lift curve. More

will be discussed later on the effects of numerical separation. These results verify

that 2o is within the linear range and a valid choice for defining [WKK ]. The relative

slopes are most important on these plots, but it should be noted that the offset of

the CFD and DLM lift curves is due to the assumption of zero lift at α = 0o in

DLM. This offset is exactly what [FA2J ] corrects for. The points on the CFD curves

represent individual CFD runs which terminate at different iterations. Thus there

are small variations which cause the slopes to not be perfectly linear. Nonlinearity

due to numerical separation is much greater than that of numerical convergence so

the two are easily distinguishable.

The top plot of Figure 63 shows the normal force coefficient slope as a function

of span. For a given span location, the ratio of normal force coefficient slope values

gives the WKK coefficient. Thus the difference between the CFD and DLM curves

is an indication of the magnitude of the WKK coefficient shown in the bottom plot.

The results shows there is greater agreement (WKK closer to one) near the root and

outboard of the wing. The largest discrepancy occurs at the wing tip where the cir-

culation around the wing tips cause the dropoff in Cn and the large WKK values.
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Load Case 2: Mach 0.9, 23000 ft, 2.5G

Figure 64: Top surface comparison of original and transferred CFD Cp for top surface.

Figure 65: Bottom surface comparison of original and transferred CFD Cp for top

surface.
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Figure 66: Cp comparison at 25%, 50% and 75% span for AoA = 2 deg.
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Figure 67: Comparison of normal force coefficient slope for CFD and DLM.

Figure 68: Top: ∆Cn/∆α as a function of span. Bottom: distribution of [WKK ]

values on DLM wing mesh.
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The Cp distributions in Figure 66 further show how the error is reduced after the

normal shock (at the trailing edge) when the compressibility effects are less. For the

25% span there is also a weaker shock on the bottom surface at 60% chord which im-

pacts the discrepancy between the CFD and DLM. The normal force coefficient slope

in Figure 67 is linear at a higher angle of attack than Load Case 1, two degrees will

still be used for defining the empirical adjustments for consistency. Also, this load

case has larger WKK values than the first. This is expected because the higher Mach

number will cause more nonlinear compressibility effects, including stronger shocks,

which leads to larger differences between CFD and DLM.

Load Case 3: Mach 0.6, 20000 ft, 2.5G

Figure 69: Top surface comparison of original and transferred CFD Cp for top surface.
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Figure 70: Bottom surface comparison of original and transferred CFD Cp for top

surface.
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Figure 71: Cp comparison at 25%, 50% and 75% span for AoA = 2 deg.

The discrepancy between CFD and DLM is much less in this load case because of

the low Mach Number and lack of shocks. The inboard results show the largest error
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near the leading edge where the blunt leading edge of the 3D mesh is thickest and

differs most from the flat plate assumption. Comparing these results to the other load

cases shows the extent to which compressibility impacts the relative error between

CFD and DLM. The remaining error in Load Case 3 can thus be attributed to 3D

effects on the flow around the wing.
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Figure 72: Comparison of normal force coefficient slope for CFD and DLM.
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Figure 73: Top: ∆Cn/∆α as a function of span. Bottom: distribution of [WKK ]

values on DLM wing mesh.

The linear region in the normal force coefficient slope lasts up to four degrees for

Load Case 3. As expected, the ∆Cn/∆α results show extremely close matching over

the majority of the wing. As in the other load cases the largest adjustment occurs

near the wing tip, but the DLM over-predicts the normal force coefficient slope unlike

in the other cases. Thus WKK adjustments are less than one in these areas, but they

are very close to one for most of the inboard wing.
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Load Case 4: Mach 0.89, 43100 ft, 2.5G

Figure 74: Top surface comparison of original and transferred CFD Cp for top surface.

Figure 75: Bottom surface comparison of original and transferred CFD Cp for top

surface.
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Figure 76: Cp comparison at 25%, 50% and 75% span for AoA = 2 deg.
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Figure 77: Comparison of normal force coefficient slope for CFD and DLM.

Figure 78: Top: ∆Cn/∆α as a function of span. Bottom: distribution of [WKK ]

values on DLM wing mesh.
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The high Mach number of Load Case 4 causes the Cp distributions in Figures

74 through 76 to be very similar to Load Case 2, but the error in the normal force

coefficient slope is much less. The linear region also extends to α = 8o.

6.2.2.4 Rigid CFD Coupling Summary

The rigid CFD results were compared against the rigid DLM with fixed α = 1 rad.

The CFD Cp at α = 0 is used to define [FA2J ] after the distribution is transferred

to the DLM mesh. All the load cases showed very close matching between the orig-

inal and transferred CFD validating the matching algorithm. Next the transferred

CFD was compared against DLM and showed the largest contributor to error in this

NASTRAN analysis comes from the inability to model nonlinear compressible flow

effects. In all transonic cases the Cp for CFD and DLM were much closer after a nor-

mal shock where the flow velocity is significantly reduced and compressibility effects

are negligible.

The Cn normal force coefficient slope was compared for both methods in order

to define [WKK ]. The angle of attack was varied from zero to ten degrees to get

visibility into nonlinearities in the slope. Although small variations in Cn occur due

to numerical convergence in the CFD solutions the most significant nonlinearities are

caused by separation at high angle of attack due to numerical viscosity. The point of

separation occurs at different angles for each load case, but in all cases α = 0 to 2o

falls in the linear range so this is used for defining [WKK ].

A summary of the WKK distribution for each load case is given in Table 7. The

results show that Load Case 3 produces the least error in DLM when compared to

CFD. This is expected because this load case is in the subsonic regime and essentially

incompressible. The other WKK values are within reasonable ranges and reflect the

increase of compressibility with Mach number. In general these results reflect the
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importance of shock prediction when defining epistemic uncertainty in DLM.

Table 7: Percentiles of Rigid WKK

Load Case Mach Altitude Load Factor 25% 50% 75% 90%

1 0.85 43100 ft 2.5G 1.0000 1.1910 1.3441 1.4290

2 0.9 23000 ft 2.5G 1.0000 1.3129 1.3816 1.4460

3 0.6 20000 ft 2.5G 0.8962 0.9802 1.0000 1.0000

4 0.89 43100 ft 2.5G 1.0000 1.1017 1.1270 1.1381

6.2.3 Flexible Coupling of CFD and Doublet-Lattice Method

6.2.3.1 Flexible CFD Coupling Process Overview

The flexible CFD coupling is intended to simulate the flight load survey after load

cycles in order to validate the predicted loads and structural design for certification

purposes. Thus the results discussed in this section were produced under the assump-

tion that the structural stiffness (and loads) have converged, unlike the rigid results

which use the initial stiffness values. The process for coupling flexible CFD to DLM

is more involved than the rigid case because the CFD mesh must be deformed based

on the results from NASTRAN. Figure 79 depicts the general steps of the process

which are detailed here.

Deform 
CFD 
Mesh

Flexible 
Nastran 
Solution

Update 
WKK

ANGLEA

Uelastic

Flexible 
CFD 

Solution

CnUtotal

Figure 79: The flexible CFD coupling process.
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The process begins with the NASTRAN solution from the conclusion of the simu-

lated load cycles (iteration between NASTRAN and HyperSizer) with the rigid [WKK]

and [FA2J ] corrections. The trimmed angle of attack ANGLEA as well as deforma-

tions Uelastic are outputted. The deformations of interest are the wing twist (about

the span) and bending (about the fuselage) of the DLM mesh. These deformations

are used to project the two dimensional deformation onto the three dimensional CFD

mesh.

The translational displacement of each element centroid is extracted from the so-

lution using Patran utilities. Patran is the post-processing graphical user interface for

NASTRAN developed by MSC Software. The DLM mesh is segmented into twenty-

three chordwise strips. The vertical displacement of the leading and trailing edge are

used to calculate the twist angle of each strip. A smoothing spline function is fit to

the spanwise twist distribution as shown in Figure 80. A similar process is carried

out for the bending distribution based on the trailing edge of each strip.
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Figure 80: Example of twist spanwise distribution for Load Case 1

The 3D mesh is deformed by directly modifying the stl file (stereolithography)
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which defines it. The following procedure is used to find the deformed z component

of the vertices of each element in the CFD mesh. Given an element vertex with

original coordinates (x,y,z ):

Step 1: Find midpoint of corresponding strip, xmidpoint

Step 2: Calculate z-displacement of element vertex due to twist:

ztwist = |(x− xmidpoint) tan(θtwist)|

if θtwist < 0 or ∆x < 0

ztwist = −ztwist

elseif θtwist > 0 or ∆x > 0

ztwist = −ztwist

end

Step 3: Calculate total z-displacement

ztotal = (ztwist + zbending) + z

Only the z component is needed because the DLM mesh has only two degrees of free-

dom, vertical displacement and rotation about the span, which only results in transla-

tions in the z direction. NASCART-GT is then run using Utotal = {Uelastic, ANGLEA},

in other words its run using the deformed mesh and rotated at an angle of attack

equal to ANGLEA. The CFD results are used to calculate Cn using the procedures

discussed in Section 6.2.1.3. In Equation 32, α1 = α2 = ANGLEA and at Cn(α = 0)

refers to the normal coefficient calculated in the rigid analysis. The matrix calculated

using Equation 33 is actually the update coefficient matrix [WKKUpdate
] and the actual

flexible empirical adjustment is found based on the previously found rigid empirical

adjustment:

WKKFlexible
= WKKUpdate

∗WKKRigid
(35)

The next section discusses the load cycle results which precede the calculation of

the flexible empirical adjustments.
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6.2.3.2 Load Cycle Results with Empirical Adjustments

In an aeroelastic system the flexibility of a body will impact the aerodynamic loads

which act upon it. Thus the wing twist and bending are important considerations.

The elastic twist is of particular importance because it significantly influences aero-

dynamics by changing the angle of the flow a section sees (i.e. the angle of attack).

Because of uncertainty, the initial stiffness is higher than the converged stiffness after

the load cycles so the deformations are greater in the latter case. Figure 81 shows the

results for elastic twist and wing bending before and after loads analysis. It should

be noted that the twist angle is about the global Y axis and does not include the

initial wing incidence built into the jig shape. In fact, this incidence is designed to

achieve an overall twist (incidence + elastic) which creates favorable aerodynamics

at the cruise condition.
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(c) Load Case 2 Elastic Twist, α = 3.60o
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Figure 81: Effect of load cycles on twist and bending, 2.5G
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The results further show how much softer the structure is after the stiffness has been

reduced after load cycles. Keep in mind both the limited types of load cases (i.e.

all symmetric) and failure modes used in this analysis contributes to this flexibility.

Again, such limitations were incorporated to simplify the model and focus on the

method.

In Figure 81 the angle of attack is listed to get a sense of the effective sectional

angle of attack. For example, in Load Case 1 any portion of the span with negative

twist greater than 6.36o will result in a negative effective angle of attack. Thus there

will be some negative lift outboard of about the 75% span. Notice the majority of

the twisted wing in Load Case 2 has negative effective angle of attack. Due to the

taper, the majority of total wing lift is generate inboard so the impact of outboard

twist is lessened.

Some negative effective angle of attack can be beneficial in this M&S environment

because it helps prevent numerical separation. As has been discussed, high angles

of attack can lead to separation due to numerical viscosity in inviscid CFD analysis.

The twist angles reported in Figure 81 are all negative which indicates a reduction in

the total angle of attack at a particular wing section. Thus the twist helps mitigate

the possibility of separation.

On the other hand, if the effective angle of attack is too negative, it will cause

numerical problems. The linear aeroelastic analysis used in this environment imply

there are no large deformations in the structure that would require higher-fidelity

nonlinear finite element solvers which are out of the scope of this work. Thus the

flexible empirical adjustments assume a positive, linear normal force coefficient slope

under deformation across the wing span. But if the model is flexible enough the twist

can cause enough negative lift to lead to nonlinear and even infeasible WKK values.

In the next section we look at if and when nonlinearities due to separation occur or

twist occur.
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6.2.3.3 Nonlinearities in Simulated Flight Load Survey

Nonlinearities in the normal force coefficient slope due to flow separation must be

avoided to maintain accurate empirical adjustments. In previous sections the concept

of numerical viscosity was introduced in inviscid CFD analysis. The effect of angle

of attack on flow separation is visualized in Figure 82 for Load Case 3. At α = 6o

the streamtraces around the wing show mostly attached laminar flow indicated by

the smooth, parallel lines. On the contrary, at α = 10o the flow is detached from the

body and turbulent due to separation.

(a) α = 6o (b) α = 10o

Figure 82: Example of flow separation caused by numerical viscosity at two angles

of attack for Mach=0.6, 20,000 ft. Contour colors are intentionally banded (not

continuous) to show contrast and flow features

Section 6.2.3.1 discussed the flexible CFD coupling process and how the trimmed

angle of attack is used to define the flexible [WKK ] adjustments. ANGLEA is de-

termined in the NASTRAN solution to trim the aircraft and solve the equilibrium

equations. If ANGLEA is large, numerical viscosity will cause separation. In order
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to keep ANGLEA in the linear range of the normal force coefficient slope the vertical

load factor input can be reduced from 2.5G. At a reduced load factor the weight force

of the aircraft is less so less lift is required to maintain equilibrium, which in turn

means a smaller angle of attack is required.

6.2.3.4 Comparison of Flexible CFD to Doublet-Lattice Method

The final structural design from loads analysis is tested for a range of load factors

to determine when flow separation occurs and determine the highest load factor to be

be used for the simulated flight test validation. The structure will still be designed

to withstand the 2.5G critical load cases, so any reduced load factor will only affect

the flight load survey. Comparison of the load factor sweep to FA2J shows the effect

of the deformation and can be used to evaluate the small-deformation assumptions.
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Load Case 1: Mach 0.85, 43100 ft
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Figure 83: Cp comparison at 25% (top), 50% and 75% span, α = 6.36o, 1.5G.
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In order to better explain the load factor sweep results, the Cp and Cn distributions

are shown for each load case. The Cp and Cn are dimensionless so they can be

compared and plotted on the same scale. Even though the NASTRAN solution

includes the rigid [WKK ] and [FA2J ], the corrections only affect the outputted forces

and moments and not the pressure as shown in Equation 30. Thus the DLM results

plotted in Cp vs X/c are uncorrected. A capability was added to MSC NASTRAN to

output the corrected Cn which is utilized here. All DLM results in this section which

include the empirical adjustment factors are labeled as such.

The flexible NASTRAN analysis allows for aeroelastic feedback and thus impacts

the Cp distribution shown in Figure 83. In general the DLM Cp shows less error com-

pared to CFD than in the rigid case even though the results are uncorrected. The

elastic twist reduces the effective angle of attack at each section and subsequently

reduces the airflow speed over the top surface. The lower speed results in less com-

pressibility and thus better matching between DLM and CFD.

Figure 84 shows the Cn distribution as a function of the span for two load factors

in the linear normal force coefficient slope range. The corrected DLM results closely

match the CFD. This is expected because the CFD mesh is deformed based on the

NASTRAN displacements. A vertical load factor of zero G’s means there is no lift or

weight acting on the structure so there should be very little deformation. Thus there

is less error between DLM and CFD at load factors near 0 and this is apparent in

the results. The orange line labled FA2J represents the Cn calculated at zero degrees

angle of attack for the rigid (undeformed) case. Comparison of DLM and CFD at

1.5G to FA2J is an indication of the magnitude of the flexible WKK . At a particular

section the magnitude of WKK is the distance between the solid blue and orange line

divided by the distance between the dashed blue and orange line. Because there is

very close matching between DLM and CFD at 1.5G the WKK values should be very

close to unity along the span.

191



It is clear in Figure 85 that separation occurs between 2G and 2.5G and so 1.5G

will be the upper limit of the linear range. Relative to the rigid results, the separation

occurs at a higher angle of attack because of the greater elastic twist. Comparison

of the slopes between DLM and CFD is another indication of the flexible WKK . The

slopes are very similar between 0 and 1.5G which further shows that WKK values will

be close to one.
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Load Case 2: Mach 0.9, 23000 ft
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Figure 86: Cp comparison at 25% (top), 50% and 75% span α = 3.60o and 2.5G.

[UPDATE CFD DATA FOR CORRECT ALPHA]
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Figure 87: Cn comparison for 0G and 2.5G load factor
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The reduced error in flexible analysis is especially evident in Load Case 2 where

the DLM and CFD match almost perfectly for significant parts of the chord in Figure

86. The trimmed solution for Load Case 2 has a relatively small angle of attack

due to the combination of high Mach number and low altitude. This can be seen in

Equation 36, where the speed and altitude reduce the Cl and requires a smaller α to

trim. The lift cure slope thus remains linear up to the maximum of 2.5G, unlike in

the other cases. Note, there are small nonlinearities due to convergence of the CFD

solution but the general Cn trend increases linearly with α. In comparison, there is

no distinct dropoff in Cn as in the other load cases.

Cl =
L

1
2
ρ∞V 2

∞
(36)

The most significant result for Load Case 2 is in the intersection of the 1.5G and

FA2J curves in Figure 87. The large negative twist due to flexibility in conjunction

with the small positive angle of attack produces the same amount of lift as in the

undeformed, zero-degree case on the outboard wing. This violates the linear assump-

tions of the empirical adjustments and would lead to highly inaccurate flexible WKK

values so this load case will be excluded from the flight load survey. Again, this does

not violate the integrity of the study because the structure will still be sized for this

load case. In addition, it will later be shown that this load case is not critical so

excluding it does not significantly impact the evaluation of major rework in the flight

load survey.

Despite this, these results are very beneficial by revealing that the structural model

may be underestimating the stiffness. This insight can help improve the model or

introduce other uncertainty sources into the current model. With larger deformations

the linear static aeroelastic assumptions may result in larger epistemic uncertainty,

making the proposed uncertainty quantification and management framework even
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more important.
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Load Case 3: Mach 0.6, 20000 ft
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Figure 89: Cp comparison at 25% (top), 50% and 75% span α = 5.16o and 1.5G.
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Figure 90: Cn comparison for 0G and 1.5G load factor
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Figure 91: Load factor sweep for Load Case 3.
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As the baseline case, Load Case 3 showed the least amount of error in the rigid

analysis but the opposite is true when aeroelasticity is considered. To further explore

the impact of this error, the resulting Cn is also plotted (dashed lines). Note, Cn

is typically positive so the negative is plotted here to compare against Cp. In these

figures, Cn is essentially a weighted average of the Cp over the chord. Comparing the

DLM and CFD Cn shows the error results in DLM overpredicting the loads. This

can be more clearly seen in Figure 90 which shows the Cn error over the span and

is larger than the other cases. The rigid analysis was clearly dominated by nonlinear

compressibility and thus Load Case 3 was the most accurate. In the more realistic

scenario of flexible structures, the deformation plays more of a role on accuracy.

199



Load Case 4: Mach 0.89, 43100 ft
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Figure 92: Cp comparison at 25% (top), 50% and 75% span α = 5.16o and 1.5G.

[UPDATE CFD DATA FOR CORRECT ALPHA]
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Figure 93: Cn comparison for 0G and 1.5G load factor
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Figure 94: Load factor sweep for Load Case 4.
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Similar to the rigid results, the Cp distribution resembles Load Case 2 but results

in smaller error. Load Case 4 results in the most accurate DLM solution after cor-

rection with the rigid adjustments. There is a drop off in the Cn in the 2-2.5G region

so 1.5G will be the upper limit.

6.2.3.5 Flexible CFD Coupling Summary

With the exception of Load Case 2, the normal force coefficient slopes for all

cases appear to be linear up to 1.5G at all three span locations. The load factors for

further consideration of the flight load survey are shown in Table 8 along with the

corresponding trimmed angle of attack.

Table 8: Load factors for linear normal force coefficient slope

Load
Case

Mach Altitude Load Factor
for Sizing

Load Factor for
Flight Load Survey

Angle of
Attack

1 0.85 43100 ft 2.5G 1.5G 6.36o

2 0.9 23000 ft 2.5G 2.5G 3.60o

3 0.6 20000 ft 2.5G 1.5G 5.16o

4 0.89 43100 ft 2.5G 1.5G 5.37o

At this point it is clear that flexibility in the structure, and thus aeroelasticity,

plays a more important role in some load cases more than others. The rigid adjust-

ments correct for nonlinear compressibility and 3D flow effects but of course ignore

deformation and aeroelstic effects. When the rigid adjustments were applied to NAS-

TRAN the DLM was able to accurately predict the loads in Load Case 1 and 4 but

not in 2 and 3. Looking at the bending and twist distributions reveal that there larger

deformation in Load Case 1 and 4 most likely reduces the compressibility effects and
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thus reduces the error. On the contrary, the deformation in Load Case 2 and 3 signif-

icantly increases the DLM error in comparison to the rigid case. This type of insight

is helpful in analyzing the criticality of load cases in order to size the structure and

characterize uncertainty.

As was mentioned, the linear elastic assumptions of this analysis must be main-

tained to accurately perform the flight load survey and evaluate major rework using

this environment. It is not necessary to use all four load cases to do the flight test

validation if a load case is more critical than the rest. Plotting the wing bending

moment is one approach to determining which load cases are critical prior to struc-

tural design optimization. Figure 95 shows that Load Cases 1 and 4 envelope the

bending moment for the other two cases and therefore are more critical. Given this

result and the previous determination of reduced DLM error, Load Case 4 will be

used to calculate the flexible [WKK ] and perform the flight load survey. Both Load

Cases 1 and 4 could be used, but to simplify the results, only the 4th case will be

used because it is slightly more critical and results in less DLM error.
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Figure 95: Integrated bending moment.

The flexible [WKK ] defined by Load Case 4 and used for the flight load survey is

summarized in Table 9. The other [WKK ] types are listed for comparison. The fact

thatWKK,rigid andWKK,flex are calculated at different load factors has no consequence

when comparing them because they are simply a ratio of the normal force coefficient

slopes. The effect of applying WKK,flex to NASTRAN is shown in Figure 96.
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Table 9: Percentiles of WKK for Load Case 4; Mach 0.9, 43100 ft

Adjustment Factor Load Factor 25% 50% 75% 90%

WKK,rigid 2.5G 1.0000 1.1017 1.1270 1.1381

WKK,update 1.5G 0.9188 1.0000 1.0013 1.0753

WKK,flexible 1.5G 1.0000 1.0030 1.1302 1.1875
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Figure 96: Integrated bending moment.

The results presented thus far represent a deterministic loads analysis and struc-

tural optimization because no uncertainty has been applied yet. By using the full

values of [WKK,rigid] during the load cycles these results also capture the full effects of

a simulated wind tunnel test. The bending moment curves in Figure 96 include the
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baseline 10% structural margins, updated stiffness and final structural design after

four load cycles.

The bending moment envelopes show that the rigid corrections reduce the error

in comparison to the uncorrected case. More importantly, the results indicate the

rigid corrections just slightly underpredict the loads. This can also be seen in the

larger flexible WKK values in Table 9. The load cases in this study represent critical

cases and thus are extreme compared to normal operating conditions. If the structure

were designed to withstand up to the rigid-corrected loads, there would be zero to

slightly negative margins for loads experience during flight test. In an actual airplane

development such results would indicate the structural design is unconservative and

could cause a failure during the flight load survey and subsequently require significant

rework to fix the design. This is due to a combination of the rigid assumptions in the

wind tunnel calibration when predicting the loads and inadequate structural margins

in the design. As mentioned in the background, such a failure at that stage of the

development could cost millions of dollars due to redesign and testing efforts, delays,

and damaged reputation.

The purpose of this thesis is to quantify and manage uncertainty to avoid this

very scenario, but in a cost effective manner. To avoid rework the rigid adjustments

should result in loads which exceed the flexible-corrected loads and margins which

lead to a conservative design. Ideally, we would achieve this without a large weight

penalty or exorbitant costs for minor rework.

The deterministic results presented thus far are the baseline to which the proposed

framework will be evaluated to avoid major rework in the flight load survey. The

baseline results assume a required margin of 10% for von Mises stress criterion and

the highest fidelity aeroelastic analysis available to capture the full rigid corrections.

For now on, the baseline loads with the flexible adjustments will be known as the true

loads.
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In subsequent sections uncertainty will be defined and included in the system and

later the uncertainty management system will optimize the aerodynamic fidelity and

required margins to minimize the probability of major rework. It is important to

notice that even though a 10% structural margin was assumed in the baseline, this

translated into a small negative margin in the bending moment. This emphasizes

why both the aerodynamic fidelity and structural margins are optimized to avoid re-

work. The next section discusses how the epistemic uncertainty in the aerodynamics

is defined based on the adjustment factors.

6.2.4 Epistemic Uncertainty

6.2.4.1 Defining Uncertainty

Section 3.3 detailed the various types of epistemic uncertainty and several statisti-

cal theories to model it. Probability theory was decided upon largely because it allows

for Bayesian methods and easily integrates with aleatory uncertainty. The type of

epistemic uncertainty is dependent on the source, and in this case the uncertainty in

the empirical adjustment parameters represent model form error. [138] distinguishes

between model parameter and model form error. The latter describes uncertainty due

to using different forms of a model which represent different assumptions, for example

the error associated with using the Euler instead of the Navier-Stokes equations. The

assumption of the different forms can often be attributed to different fidelity levels.

The NASTRAN empirical adjustments are intended to capture the effect for different

aerodynamic model forms which are not captured in DLM but impact the lift curve

slope in an assumed linear fashion. Thus the adjustment factors are parameters but

capture model form error.

Model form error can be difficult to quantify and is often excluded from epistemic

uncertainty studies [84]. Representing model form error with a parameter is compact

and convenient, but to accurately capture the impact of fidelity each WKK parameter
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is represented by a known distribution family but unknown distribution parameters.

A normal distribution is assumed for simplicity but the mean and standard devia-

tion are not known. The various aerodynamic theories which are captured by the

adjustment factor must reflect various levels of fidelity and uncertainty. Specifying

the standard deviation of the normal distribution accomplishes this while the mean

adjusts the lift curve slope based on the aerodynamic theory.

In the previous sections, CFD results were compared against DLM and the largest

discrepancies were caused by nonlinear compressibility effects in the rigid case. Com-

paring the flexible CFD showed how the aeroelastic effects can sometimes be domi-

nant. [WKK ] attempts to capture these effects and so its uncertainty should also be

based on them. When uncertainty is introduced, all previous discussions of the mag-

nitude of rigid WKK parameters refer to its mean value, while the standard deviation

is naturally based on the error relative to the flexible parameters, which are treated

as the true values.

The mean WKK represent a linear adjustment to the lift curve slope so it is logical

to assume a linear relationship also exists with the variation in the standard deviation.

With this assumption the entire effect of fidelity can be represented by a scalar factor

which will be referred to as the K -factor. The term comes from a similar use of a

scalar factor to represent technology impact in the work of Kirby et al [74]. The

K -factor varies between 0 and 1 to and symbolizes low and high fidelity respectively.

In this context, the K -factor represents the analysis fidelity used in conjunction with

wind tunnel calibration data. Thus the lower bound represents no calibration, i.e.

WKK = 1.0. The upper bound represents fully calibrated analysis, i.e. WKK,rigid

and in between is partial calibration. Full calibration means an aerodynamic analysis

has high enough fidelity to capture all the effects of the wind tunnel results while

partial means only some of the effects can be applied to correct the aerodynamic

loads. For example, NASTRAN is able to use wind tunnel data to calibrate the slope
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and intercept of lift as a function of incidence, but a lower fidelity analysis may only

be able to account for the intercept.

It is understood that this linearized view of fidelity may not always be applicable

but it is a convenient form for modeling, simulation and optimization and works well

with the linear empirical adjustment parameters in NASTRAN. Thus the K -factor

will be used throughout the remainder of this thesis to represent aerodynamic fidelity.

The relationship between the distribution parameters of WKK and the K -factor are

represented in Equations 37 through 39.

WKK ∼ N(µWKK
, σWKK

) (37)

µWKK
= 1−K +K ∗WKK,rigid (38)

σWKK
= (1−K) ∗min(euncorrected, erigid) +K ∗max(euncorrected, erigid) (39)

The min and max functions in Equation 39 are necessary because of the error terms,

e, described in Figures 97 and 98, which show the uncorrected, rigid and flexible

distribution of WKK and associated errors for each strip along the span. The uncor-

rected adjustment is equivalent to WKK = 1.0 and is plotted as a reference. Note,

the mean value equation does not include the load margin, but will be included later

in the uncertainty management optimization problem.
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The discretization of the DLM grid and calcultion of WKK per strip causes the
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non-smooth distribution in both figures. Comparing the parameters of Figure 97

can be interpreted as visualizing three different fidelity levels; the uncorrected being

the lowest level and flexible-corrected being the highest. The flexible data repre-

sents “truth data”, so the uncorrected and rigid errors reported in Figure 98 are the

discrepancy between the various fidelity levels in Figure 97.

It is assumed that the uncorrected error is always less than the rigid but in fact

there is a portion near the center of the wing where the error is less. This simply

means the magnitude of flexible WKK is closer to 1.0 than the rigid in this region.

These results can be attributed to the fact that the impact of fidelity is nonlinear

in the middle region of the wing. We can circumvent this nonlinearity by utilizing

Equation 39 for the standard deviation in terms of the errors. For example at the

50% span where the uncorrected error is nearly zero, the standard deviation for low

fidelity, K = 0, will be equal to erigid and the high fidelity standard deviation will

be euncorrected. This will allow the same linear scale to be applied to the distribution

parameters of WKK for all parts of the wing.

There 101 strips along the wing DLM mesh and thus 101 WKK parameters. It will

be difficult to fit reliable surrogate models with so many parameters, not to mention

the additional aleatory parameters. The following section thus discusses dimension-

ality reduction efforts to reduce the number of uncertain parameters.

6.2.4.2 Reduction of Uncertain Parameters

Section 3.5.2 introduced sensitivity analysis and dimensionality reduction. Be-

cause of the specific goal of reducing the number of variables rather than simply

determining their impact, dimensionality reduction was chosen. Once the reduced set

of parameters is determined, sensitivity analysis will be done to include all uncertain

variables to determine their effect on the response. Feature selection was deemed more
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appropriate than feature extraction (also known as feature transformation) because

each parameter represents a discrete strip on the wing and any transformation would

eliminate the possibility of determining which specific strips significantly impacted

the uncertainty in the probability of major rework.

Numerous feature selection algorithms exist and were briefly mentioned previ-

ously, three are available using MATLAB’s Statistics and Machine Learning. One,

based on sequential feature selection requires a user-supplied objective function to

evaluate which features should be kept. The others two methods do not require a

custom function be provided, so this option was not pursued. The other two are based

off of RRELIEFF algorithm and Neighborhood Component Analysis (NCA) for re-

gression. Both approaches utilize supervised learning which means each observation

in the training set is “labeled”, or attributed to a specific input, and a known output

structure (in this case the bending moment response). Unsupervised learning is when

the observations are unlabeled and the algorithm determines the hidden structure of

the responses.

The first feature selection algorithm, is an improvement of RELIEF which uses a

heuristic guidance algorithm and to handle incomplete data and multi-class data for

classification problems [77]. RELIEFF has been modified further to handle regression,

called RRELIEFF [127]. The benefits over other inductive learning techniques are it

does not assume conditional independence of the attributes (inputs, features, etc.).

The MATLAB implementation produces weights for each feature between 1 and -1,

where large positive weights correspond to significant features.

The second feature selection approach, NCA, is an improvement of the popular

K-Nearest Neighbor (KNN) classification algorithm. The algorithm uses a quadratic

distance metric to determine the “nearest neighbor” and maximizes the expected

leave-one-out classification error on the training data when used with a stochastic

neighbor selection rule [67]. The algorithm has been for regression problems. Its
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advantages are that it is non-parametric so it does not assume any form for the

response distributions and or boundaries between them. In addition it is low rank so

improves storage and search cost.

Both methods were implemented for the reduction of WKK parameters. 500 sam-

ples of the parameters were drawn from a Latin Hypercube design and run in NAS-

TRAN while keeping all other parameters fixed. A Latin Hypercube is a popular

design of experiment for surrogate modeling and is a generalization of the Latin

square, where only one sample is placed in each row and each column of a square

grid representing the data [64]. The integrated bending moment was output for four

locations on the wing at the wing root, 25%, 50%, and 75% span and at the 50%

chord. The parameters are treated as uncertain inputs and the four loads are the

responses. Then both feature selection algorithms were run on the data as shown in

Figure 99 and 100.
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Figure 99 gives the weights for the wing root bending moment. The algorithm

was run for at all four locations. The weights determine the rank of features in

terms of importance. Each feature index refers to a strip on the DLM mesh its

associated WKK . The algorithm is dependent on how many nearest neighbors the

user selects to calculate per class. The number of neighbors must be between one and

the number of observations, but either bound will produce unreliable or no important

attributes respectively. This parameter was varied and determined that K gave good

separation of features to determine a significant set. Figure 100 shows the selected

features from NCA. All features close to zero are determined to be insignificant to

the bending moment at a particular location. The features are color coded to show

which bending moment they are important to. Note that there may be overlap for
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significant features for the different responses but this is not shown in the figure. The

values next to the dots refer to the η value (spanwise location) of the strip for the

WKK parameter. Similar to RRELIEFF, NCA is dependent on certain parameters

to accurately select feature. λ is the regularization parameter which can be tuned to

minimize the generalization error of NCA. The optimal λ was chosen for each bending

moment response to do the final feature selection.

The bending moment is calculated internally in NASTRAN by integrating the

loads from all wing structural grid points outboard of user-defined monitor points.

Every WKK parameter influences the aerodynamic load distribution and thus influ-

ences each bending moment response. But naturally, not all parameters will have the

same impact on the responses. Thus the feature selection algorithms were run sepa-

rately for each response and the aggregate of important parameters will be used. Any

parameter which is deemed insignificant for all responses will be frozen for all future

analysis. Table 10 shows the η value of selected features in NCA for each response

compared against the highest ranking same number of features using RRELIEFF.

The results for both methods are ordered in terms of importance. It should be noted

that WKK parameters with η > 0.964 are excluded from selection because the wing

tip causes extreme and nonlinear behavior in WKK due to the exacerbated geometric

differences between CFD and DLM meshes.

Table 10: Comparison of Feature Selection Algorithms for Bending Moment Response

η NCA RRELIEFF

0.0 0.15, 0.14, 0.94, 0.12, 0.18, 0.11,
0.68, 0.19, 0.71, 0.40, 0.16, 0.28, 0.93

0.12, 0.14, 0.11, 0.15, 0.16, 0.93,
0.48, 0.57, 0.18, 0.19, 0.78, 0.20, 0.23

0.25 0.15, 0.19, 0.36, 0.77, 0.35, 0.12 0.36, 0.15, 0.35, 0.16, 0.24, 0.45

0.50 0.93, 0.15, 0.91 0.92, 0.96, 0.15

0.75 0.93, 0.96, 0.94, 0.952, 0.92, 0.946, 0.49 0.92, 0.952, 0.51, 0.88, 0.939, 0.946, 0.93
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In general the two methods identify similar areas of the wing which are significant

for each response even though the order of importance may vary somewhat and the

exact same strips are not always selected. The ranking of features in RRELIEFF

provides less information becuase there is no clear cutoff value for importance and

assuming only negative weights are insignificant leads to too many selected features.

In some responses such as the root bending moment there is a clear drop off of

weights which can be used to screen out positive-weighted features, but in other

responses there is no clear distinction. NCA on the other hand clearly distinguishes

between significant and insignificant features and thus makes selection much easier.

As was mentioned, the advantages of RRELIEFF is that it can handle correlated

and incomplete data, but the correlation of WKK is not explicitly considered in this

work and the data is complete. Thus the NCA selected features will be used going

forward and this choice is supported by agreement between the two methods despite

the advantages of RRELIEFF.

The selected features are heavily distributed towards the wing root and tip. The

WKK parameters directly impacts the aerodynamic load of a particular strip so feature

selection helps determines which parts of the wing are important to the structural

loads. The extreme values at the tip may skew the results and lead to those parameters

having more significance, but in general lift and drag are sensitive to the behavior of

vortices and circulation at the tip so it is no surprise that these areas are significant.

The significance of the root and tip can also be seen in the number of selected feature

for each response. For example, the 50% span bending moment has the least number

of important features and none of those features are close to the monitor point.

The set of uncertainty WKK parameters has reduced from 101 to 22 using NCA

feature selection. This is a much more reasonable number of parameters for fitting

surrogate models and should improve their accuracy for a given sample size. To ver-

ify this, Gaussian Process Regression models, also known as Kriging models, were fit
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to 500 Latin Hypercube samples of the full set and reduced set of WKK values with

epistemic uncertainty added. Kriging will be discussed in more detail in Section 6.3.1.

The models were validated using resubstitution and cross-validation with 12.5% hold-

out for testing data. The loss from both resubstitution and cross-validation reduced

by 98.0% when using the reduced number of parameters. The feature selection was

only done on Load Case 4 because it is the critical load case in terms of the bending

moment and the only one used for the flight load survey. Thus the standard deviation

for WKK for the other load cases will be based on errors calculated for Load Case 4.

When all four load cases are considered the number of uncertain parameters in-

creases to 88, which again is large. The component critical load case calculated in

HyperSizer indicates that Load Case 1 and Load Case 4 are critical in 85% of the

components. To reduce the problem size, all WKK parameters will be fixed to their

mean WKK,rigid values for Load Case 2 and 3 and the same insignificant parameters

identified with NCA will be fixed for Load Case 1 and 4. A total of 55 parameters

are included in the design of experiment (10 load case parameters and the required

margin input), but problem dimensions will be reduced further after construction of

the Bayesian network and global sensitivity analysis.

6.2.5 Conclusion

The epistemic uncertainty related to aerodynamic fidelity in the WKK empirical

adjustment parameters was defined. This uncertainty represents model form error

based on its intended use in NASTRAN even though WKK itself is a parameter. The

uncertainty is assumed to be normal with unknown mean and standard deviation. A

linear relationship is assumed for both distribution parameters which is specified by

a scalar quantity call the K -factor with represents the aerodynamic fidelity level.

Previous work done by Bansal and Pitt (2013) [16] on flutter prediction under
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uncertainty using NASTRAN’s DLM and dynamic aeroelastic analysis served as a

foundation for the epistemic uncertainty definitions used here. Based on this work

and feedback from subject matter experts, the proposed uncertainty definition for

the WKK parameters was deemed acceptable. Therefore Hypothesis 1 is accepted.

Defining uncertainty is somewhat subjective, so a measurable experiment to assess

this hypothesis was not constructed. Some weaknesses of the uncertainty definition

exist and could be improved in future work. Specifically, for regions near the middle

of the wing span the uncorrected error was less than the rigid corrected error relative

to the truth data. In order to maintain a linear representation of fidelity the min and

max error terms were used to define the standard deviation. The linear definition

of fidelity is largely dictated by the linear assumption of the WKK parameters. In

future work use of the direct grid import approach in NASTRAN could alleviate these

linear assumption and allow a more sophisticated, and possibly nonlinear, definition

of aerodynamic fidelity.

101 uncertain parameters poses a computational burden when fitting surrogate

models and degrades their accuracy. Thus two feature selection algorithms were im-

plement to determine the significant parameters and reduce the size of the problem.

Both RRELIEFF and NCA were utilized and showed general agreement for the ar-

eas of the wing which were most important to the bending moment responses based

on the selected set of significant WKK parameters. NCA was chosen over RRELI-

EFF because it can better distinguish between significant and insignificant features.

Twenty parameters were selected using NCA. Comparing Kriging models with the

same sample size it was determined that the smaller parameter set reduced the model

loss by 98%.

The feature selection results revealed that parameters near the root and tip were

more significant than those in the middle of the wing span for Load Case 4. These

results are beneficial for determining which parts of the wing to focus for uncertainty
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reduction and possibly for design. In general, this experiment addresses the research

gap related to data-driven estimation of epistemic uncertainty which is largely missing

in the literature. It also provides a procedure and insight into the effort necessary to

rigorously define epistemic uncertainty. This is important for transitioning UQ from

research to practice in aerospace. Though significant effort was needed in this work

to estimate the required error terms, much of this can probably be avoided with more

sophisticated analysis methods.

The WKK parameters with epistemic uncertainty will be incorporated into the

Bayesian network along with aleatory uncertainty. The next section will discuss the

design and construction of the Bayesian Network. Once fully assembled it will be

used to propagate of all uncertainty sources through the loads analysis process and

enable uncertainty quantification for the entire system. Global sensitivity analysis

can then be done to determine the impact of the various uncertainty sources.
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6.3 System Uncertainty Quantification: Bayesian Network

6.3.1 Surrogate Modeling

The Bayesian network for loads analysis requires surrogate modeling because of

the complex and expensive analysis methods in the M&S environment. Surrogates

are fitted to sampled data from the analyses. The method of choosing the samples is

important for efficiently creating accurate surrogates. Instead of full factorial design

in which every possible combination of variables are used to fit the surrogate model

a structured design of experiment (DoE) can be used where only a fraction of the

full set is analyzed. There are numerous DoE’s which are tried and true in the

statistic community. Some examples are fractional factorial designs, optimal designs,

Latin squares, central composite, and space filling designs [176]. A Latin Hypercube

Sampling (LHS) design is used to create the DoE for Kriging surrogate models, as

was done for the WKK parameter feature selection (see Section 6.2.4.2).

Gaussian Process Regression models, known as Kriging models, were originally

developed for geostatistics to interpolate spatial data from only a few samples. The

namesake comes from the 1951 Master’s thesis of Danie Krige from South Africa [78]

and the theory developed by Georges Matheron in France the 1960’s [93]. Accord-

ing to MATLAB documentation (r2016b) Gaussian process regression (GPR) models

are nonparametric kernel-based probabilistic models which can be trained from data

to predict responses at unobserved inputs. A GPR model explains the response by

introducing latent variables from a Gaussian process (GP) for each observation, and

explicit basis functions which transform the original inputs into a p-dimensional fea-

ture space. A GP is a set of random variables, such that any finite number of them

have a joint Gaussian distribution. The covariance function of the latent variables

captures the smoothness of the response. The covariance function is usually param-

eterized by a set of kernel parameters or hyperparameters [161].
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Figure 101: Validation of GPR models for wing critical margin of safety

200 Latin Hypercube samples were run in the M&S environment for one load cycle

and used to fit Kriging surrogate models for global sensitivity analysis. The process of

fitting was done in MATLAB’s Statistics and Machine Learning Toolbox using a built-

in Bayesian optimization to determine the optimal hyperparameters of the Kriging

model for each response. Several methods are available to evaluate the quality of the

fit including confidence intervals, cross validation loss and resubstitution loss (also

called regression error). The cross validation and resubstitution loss are visualized in

Figure 101.

Figure 101 shows the optimized GPR fits match pretty well to the data. For cross

validation was done with a 12.5% training set. The Five K-fold loss is 9.34025e-05

and the resubstitution loss is 1.71535e-07. Kriging models were fit for the integrated

bending moment at four span-wise locations and for the wing critical margin of safety.

The margin of safety response is treated as the system response.

6.3.2 Experiment 1: Determine Impact of Uncertainty on Major Rework

The global sensitivity analysis method discussed in Section 3.5.2 is used to evaluate

the impact of aleatory and epistemic uncertainty on the system. For GSA the system
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response is the wing critical margin safety which is the minimum margin of safety of all

the wing components. Sensitivity analysis was also done with respect to the bending

moment responses because they will be used for calibration data for Bayesian inference

on the WKK parameters. The purpose of GSA is not only to identify significant

uncertain parameters, but also to fix insignificant ones. Even though feature selection

narrowed down the initial set of WKK parameters from 404 (101 for each load case)

to 44, the total amount of input variables for the DoE is large. Using GSA we can

prioritize both the aleatory and epistemic uncertainty sources and reduce the require

DoE sample size for the final surrogate models.

The epistemic uncertainty was defined in previous sections, but the aleatory un-

certainty has yet to be defined. Normal distributions were assumed for all variables

and the mean values are the nominal values used in the four load cases. The standard

deviations for Mach number and altitude were assumed to be equal to 10% of the

maximum nominal value. The load factor and fuel density standard deviations were

determined from preliminary sensitivity studies. The aleatory uncertainty definitions

are shown in Table 11.
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Table 11: Aleatory Uncertainty Definition

Parameter µ σ

LC1 Mach 0.85 0.09

LC2 Mach 0.90 0.09

LC3 Mach 0.60 0.09

LC4 Mach 0.89 0.09

LC1 Altitude 43100 ft 4310 ft

LC2 Altitude 23000 ft 4310 ft

LC3 Altitude 20000 ft 4310 ft

LC4 Altitude 43100 ft 4310 ft

Load Factor 2.5G 0.01G

Fuel Density 100% 1%

Using the Equations 7 and 8 the sensitivities were calculated and are presented in

Table 12, sorted by ascending total effects. As discussed, the total effects are better

measures for fixing parameters than the first order, so they are prioritized. The WKK

parameters include Load Case 1 and Load Case 4 and are labeled as such. Also the

last digit in the parameter name refers to the strip number starting from 1 at the

root and ending at 101 at the tip. All parameters not listed are deemed insignificant

for that response. To help interpret these results, the properties given by Saltelli et

al [135] are repeated here:

• Whatever the strength of the interactions in the model, Si indicates

by how much one could reduce, on average, the output variance if Xi

could be fixed; hence, it is a measure of main effect.

• By definition, STi is greater than Si, or equal to Si in the case that Xi is
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not involved in any interaction with other input factors. The difference

STi − Si is a measure of how much Xi is involved in interactions with

any other input factor.

• STi = 0 implies that Xi is noninfluential and can be fixed anywhere in

its distribution without affecting the variance of the output.

• The sum of all Si is equal to 1 for additive models and less than 1

for nonadditive models. The difference 1 − ΣiSi is an indicator of the

presence of interactions in the model.

• The sum of all STi is always greater than 1. It is equal to 1 if the model

is perfectly additive.

Table 12: Wing Critical Margin of Safety Sensitivity Analysis

Input Total Effects First Order

WKK LC1 64 0.4040 0.4023

WKK LC4 14 0.1396 0.1396

WKK LC4 50 0.1224 0.1226

WKK LC4 3 0.0864 0.0860

WKK LC1 2 0.0859 0.0862

WKK LC1 88 0.0729 0.0733

LC2 23000 ft 0.0371 0.0361

2.5G Load Factor 0.0242 0.0235

WKK LC1 3 0.0105 0.0099

The magnitude of the indices can be interpreted as the variables contribution to

the response variance in percentages. For example, the WKK parameter at the 64th
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strip for Load Case 1 contributes to 40.6% of the total variance in the wing critical

margin of safety. All total effect indices are greater than their respective first order

indicating that all listed variables have interactions. Only using the parameters in

Table 12 for uncertainty quantification may result in too small a model to accurately

predict the bending moment. So the sensitivity indices were calculated for the four

bending moment responses and a minimum variance of 3% was used as cut-off for

significance.
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Table 13: Final Uncertain Parameters

Parameter Type Parameter Type

LC1 Mach 0.85 Aleatory WKK LC1 1 Epistemic

LC2 Mach 0.90 Aleatory WKK LC1 2 Epistemic

LC3 Mach 0.60 Aleatory WKK LC1 3 Epistemic

LC4 Mach 0.89 Aleatory WKK LC1 4 Epistemic

LC1 43100 ft Aleatory WKK LC1 5 Epistemic

LC2 23000 ft Aleatory WKK LC1 6 Epistemic

LC3 20000 ft Aleatory WKK LC1 7 Epistemic

LC4 43100 ft Aleatory WKK LC1 14 Epistemic

2.5G Load Factor Aleatory WKK LC1 19 Epistemic

Fuel Density Aleatory WKK LC1 20 Epistemic

WKK LC1 50 Epistemic

WKK LC1 64 Epistemic

WKK LC1 88 Epistemic

WKK LC1 89 Epistemic

WKK LC1 91 Epistemic

WKK LC1 93 Epistemic

WKK LC1 94 Epistemic

WKK LC1 95 Epistemic

WKK LC4 1 Epistemic

WKK LC4 3 Epistemic

WKK LC4 14 Epistemic

WKK LC1 50 Epistemic

All parameters not listed in Table 13 are fixed. Fixing parameters is necessary
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to make this problem computationally feasible with the available time and resources.

But what impact does that have on uncertainty in the responses? The indices from

global sensitivity analysis allow us to estimate the loss in accuracy by calculating the

retained variance. The retained variance is shown in Table 14. The values listed under

All are the retained variance considering both aleatory and epistemic parameters

while Epistemic considers only epistemic parameters. Comparing the two indicates

the impact of the epistemic uncertainty on the system. Given that only epistemic

uncertainty is reducible, these results give an indication of the potential uncertainty

reduction that can be achieved with the rework decision framework.

Table 14: Retained Variance after Fixing Insignificant Variables

Response All Epistemic

Wing Critical MoS 98.6% 92.5%

Root LC4 Bending Moment 99.1% 66.0 %

25% Span LC4 Bending Moment 86.5% 69.1 %

50% Span LC4 Bending Moment 99.2% 47.8 %

75% Span LC4 Bending Moment 97.1 % 58.2 %

6.3.3 Bayesian Network for Loads Analysis

After global sensitivity analysis and fixing insignificant parameters the Bayesian

network for loads analysis can be constructed from the final Kriging surrogate models

after four load cycles in the M&S environment. The network is visualized in Figure

102. There are 126 nodes in the network which would require a large number of

surrogates. A surrogate model of the system response can be made directly instead of

modeling each component’s margin of safety individually. With this approximation

the Bayesian network requires only 5 surrogate models which are a function of 31

228



parameters and the required margin design variable. As indicated in the Bayesian

network, the K-factor and load margin design variables are captured through the

WKK parameters and are not treated as separate inputs in the DoE or surrogate

models.
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6.3.4 Conclusion

The design of experiments and surrogate modeling methods for performing global

sensitivity analysis and constructing the Bayesian network for loads analysis were

discussed. Specifically, a 200 Latin Hyercube Sampling design was used for Kriging

models for the wing critical margin of safety and bending moment responses. Results

for global sensitivity analysis were presented. Insignificant uncertain parameters were

identified and fixed with minimal losses to the system response variance. In the

end 31 out of 54 parameters were retained, including all of the aleatory load case

parameters. The impact of the WKK parameters and epistemic uncertainty on the

various responses was estimated.

Based on the findings, the epistemic uncertainty is significant to the wing crit-

ical margin of safety relative to the aleatory uncertainty. Therefore, Hypothesis 2

is accepted. But these results are highly dependent on the uncertainty definitions

and their assumptions. Therefore this hypothesis can only be accepted for this prob-

lem and not generalized. A validated estimate of the aleatory uncertainty for the

demonstration model could be done in future work to make a general claim about the

significance of this epistemic uncertainty.

Nevertheless this experiment addresses on of the research gaps by taking steps

towards finding a correlation between aerodynamic fidelity and design rework. The

Bayesian network allows uncertainty propagation which is necessary for sensitivity

analysis. The Bayesian network presented here serves as a unique approach to uncer-

tainty quantification in loads analysis and is a contribution in itself.

With finalized set of parameters, the final five surrogate models are fitted and the

Bayesian network for loads analysis constructed. The completed network will be used

in the overall framework after the uncertainty management experiments which are

discussed next.
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6.4 Uncertainty Management: Resource Allocation Opti-
mization

The resource allocation optimization problem for uncertainty management was in-

troduced in the Proposed Approach, Chapter 4. In the following section the proposed

optimization method is applied to a simple analytical problem and compared against

other approaches. Afterwards the optimization will be applied to the modeling and

simulation environment to carry out Experiments 3 and 4.

6.4.1 Experiment 2a: Multiobjective Resource Allocation

To help evaluate the performance of the proposed method, a simple problem was

found in the literature based on the work from Sankararaman, et al. (2014) [139]

which was used to formulate the test resource allocation optimization algorithm.

The original problem is a mathematical example which is intended for illustrative

purposes only. The corresponding Bayesian network is show in Figure 8. The problem

consists of four independent quantities and three dependent. The numerical details

are described in Table 15. Two types of experiment tests are simulated to update the

θ parameters and reduce the uncertainty in the system response. The objective of

the original problem is to determine the combination of both tests which minimizes

the variance in Z.
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Figure 103: Bayesian network for illustrative problem [139]

Table 15: Numerical details of illustrative problem

Quantity Type Description

X1 (input) Independent N(100,5)

Θ1 (parameter) Independent N(50,10)

X2 (input) Independent N(10,1)

Θ2 (parameter) Independent N(15,4)

Y1 Dependent Model: y1 = x1 + θ1

Y2 Dependent Model: y2 = x2 + θ2

Z System-level Response Model: z = y1 − y2
Quantity to Measure Cost No. of Tests

Y1 10 N1

Y2 5 N2

The original problem has been modified to better represent the optimization prob-

lem which will be applied to the full modeling and simulation environment where both

the mean and variance of the system response are included in the objective function.
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Therefore the objective function for the illustrative problem is changed to a multiob-

jective one where the mean and variance of Z are minimized. For the multiobjective

problem it is also necessary to include X1 and X2 into the design space, whereas

before the design space only consisted of the number of each test to conduct. The

the new optimization problem is posed as:

Minimize: f ( E [Var(Z )], E [Z ] )

s.t.:
∑

(CiNi)≤ 50,

0 ≤ X1 ≤ 100,

0 ≤ X2 ≤ 100

where E [ ] is the expected value, Var() is the variance, Ci is the cost of the ith test

type and Ni is the number of ith test conducted.

The test resource allocation proposed by Sankararaman, et al. is intended to

improve the design process by determining the combination of experimental tests

which maximize the reduction in uncertainty. Therefore the minimization of the

system response mean value can be thought of as the design problem which would

occur after the optimal tests have been determined. This is referred to as a two-step

procedure, where the first step minimizes the response variance and the second step

optimizes for the mean response. This optimiation approach is suggested by Wu,

et al (2009) and known as a location-dispersion modeling [176]. Wu, et al suggests

the location (mean) be optimized first followed by the dispersion for minimization

problems. In this problem it is assumed both the mean and variance of Z will be

minimized. Therefore the “Two-Step” proposed optimization approach follows this

suggestion. We can thus evaluate the performance of the proposed method against

other methods using this illustrative problem modified for design purposes.
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Three strategies for solving this problem were chosen to evaluate against the pro-

posed two-step optimization. The first is a simple deterministic optimization which

does not account for uncertainty and therefore does not employ any variance reduc-

tion. The second is a nondeterministic optimization which accounts for uncertainty in

the optimization search but does not actively reduce the variance. The third method

is that of Sankararaman (2014) where the optimal tests are first determined and then

Z is minimized using the updated parameters found using the optimal test data.

This is essentially a two-step approach with the dispersion optimized first, then the

location.

The results are summarized in Table 16. The deterministic optimization utilizes

a nonlinear constrained gradient-based optimization algorithm in MATLAB, fmin-

con. All other methods are nondeterministic in that they involve random inputs and

parameters. Thus the objective function is non-smooth and therefore gradient-based

methods like fmincon can easily get stuck in a local minimum. Thus the nondeter-

ministic methods use a direct search algorithm in MATLAB, patternsearch.

Table 16: Results of illustrative problem

Problem Type X1 X2 N1 N2 E [Z ] E [Var(Z )]

Deterministic 0.0 100.0 0 0 -65.00 142.00

Nondeterministic 0.0 100.0 0 0 -64.97 115.96

Sankararaman 0.0 100.0 2 6 -61.87 0.67

Two-Step 0.01 100.0 2 6 -64.81 0.71

The final solution for all the methods have similar mean responses but the vari-

ances are very different. A deterministic optimization by definition has no variance,

so the reported variance is based on the propagated uncertainty at the initial X1 and
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X2 and with no reduction efforts. The deterministic optimization search involves only

the mean values of the inputs and parameters and the objective function is simply Z.

The nondeterministic optimization objective function is E [Z ] so there is no mech-

anism to directly reduce the variance even though the uncertainty in the inputs and

parameters are considered. The probability distributions of X1 and X2 attribute to

the uncertainty in Z so the optimal inputs will impact the variance. This can be

seen in the variance reduction of 18% compared to deterministic optimization. This

approach is akin to robust optimization techniques where the variance in a system

is reduced by optimizing control factors instead of attempting to adjust noise factors

directly which can be expensive [176].

The results between the Sankararaman and Two-Step methods are similar in terms

of mean and variance, with the former having slightly better results for both objec-

tives. As was mentioned, the way in which the Sankararaman resource allocation

optimization was implemented into the design problem essentially makes it a two-

step location dispersion model but in the reverse order [176]. Both methods utilize

multiple stages to converge the solution as recommended by Sankararaman et al.

[140]. Another important distinction in the proposed method is that within a given

stage both the location and dispersion are minimized. In the Sankararaman method

the location is minimized after all stages are complete and the dispersion converged.

Although the final objective values are similar, there are computational advantages

for the proposed method due to the aforementioned distinctions between the two

methods.

The results of each stage of the optimization demonstrate how the mean and

variance converge to the final solution and is shown in Figure 104. In the figure,

Stage 0 refers to the initial conditions prior to any optimization. Therefore the mean

response is the value of Z with the mean values of all inputs and parameters. In

the Sankararaman method the mean fluctuates about the initial value but does not
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reduce significantly. This shows that the number of tests does not have a significant

impact on the mean of the system response. The sixth stage refers to the optimization

of the location model to minimize E [Z ]. In the dispersion model the Sankararaman

method reduces the variance throughout the five stages by adjusting the number of

tests. In the final stage only X1 and X2 are adjusted, but this still results in a further

reduction of the variance.

It is clear that the proposed method converges at an earlier stage which can result

in significant computational savings. This is primarily because all design variables

are optimized within each stage so both the mean and variance reduce faster and

converge by the second stage. Because of the integrated optimization approach, there

is no need for a separate sixth stage to optimize X1 and X2 as in the Sankararaman

method. Computational savings from less stages must be weighed against potential

increases in cost from repeating the two-step optimization after each stage for a more

complex problem.
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Figure 104: Comparison of resource allocation optimization methods for illustrative

problem.

The results from this simple problem illustrate the benefits of using Bayesian
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methods in a resource allocation framework to reduce uncertainty compared to de-

terministic and robust optimization methods. The original method suggested by

Sankararaman (2014) results in a 77.1% variance reduction by finding the optimal

number of tests (based on published findings). Adjusting X1 and X2 further reduced

the variance by 22.4% in the modified design problem. Similar reductions were seen in

the proposed Two-Step optimization method but with significantly reduced compu-

tational costs in terms of required stages to converge the solution. All Bayesian-based

optimization methods require significant computational expense due to the reverse

and forward problems, so any computational savings make this approach much more

attractive. Regardless, the additional expense can be justified by the reduction in

uncertainty as shown in this problem.

This illustrative problem also reveals the importance of determining the variables

which are location factors, dispersion factors and adjustment factors [176]. Location

and dispersion factors significantly impact the mean and variance of the system-level

response respectively. An adjustment factor is a location factor which does not sig-

nificantly impact the dispersion model. In this problem X1 and X2 are location and

dispersion factors and N1 and N2 are only dispersion factors so there are no ad-

justment factors. The absence of adjustment factors can make it more difficult to

minimize both the mean and variance simultaneously because some factors will in-

fluence both objectives. This was not an important issue for the illustrative problem

because there was no need to compromise either objective, but it may become relevant

in full modeling and simulation environment and impact the optimization strategy

and results.
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6.4.2 Experiment 2b: Resource Allocation with Feedback Decoupling

Loads analysis is a highly coupled process and includes multiple feedback loops. In

the M&S environment there is an inner feedback-coupling between aerodynamics and

structures which is solved internally in the NASTRAN aeroelastic analysis. There is

also a feedback loop between NASTRAN and HyperSizer which represents the load

cycles. The computational expense of the resource allocation was commented on in

the previous experiment, primarily due to Bayesian inference using Markov Chain

Monte Carlo. Additional computational costs come with running the load cycles

in the M&S environment to create the data to fit the required surrogate models.

Breaking the feedback loop and decoupling the problem would require less iterations

between NASTRAN and HyperSizer and decrease the overall expensive of the rework

decision framework.

Approaches to decouple multidiscipline problems have long existed in the liter-

ature [154][22]. One such approach presented by Liang (2016) [85] was explored

because it is derived from the LAMDA method developed by S. Sankararaman [137],

who also extended the resource allocation methodology referenced in this work. The

resource allocation methodology has been applied to feedback-coupled problems in

the literature. Yet, to the authors knowledge, both methods have yet to be applied

simultaneously to the same problem in the literature, but will done so in this experi-

ment.

A detailed description of the decoupling method can be found in [83] and only a

brief summary will be provided here by means of a simple example with two analyses,

a design variable x and two coupling variables u12 and u21 between the analyses.

The coupled and decoupled version of the problem along with the Bayesian network

used for enforcing interdisciplinary compatibility are shown in Figure 105. For the

original coupled problem, the coupling variables are passed between the analyses to

calculate the responses A1, and A2 which are also dependent on x. If the coupling
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variables converge then compatibility is enforce, i.e. u21 = U21 and the iterations

cease. Therefore we can define an error term ε21 = U21 − u21 and compatibility is

enforced if ε21 = 0.

The Bayesian inference problem can be posed to enforce this compatibility. The

posterior distribution of u21 could be calculated for some given data, D, based on

Equation 4:

f ′′(u21|D) ∝ f(D|u21)f ′(u21) (40)

where f is the probability distribution function, f ′ is the prior distribution and f ′′

is the posterior distribution. We can assume the prior distribution is an uninforma-

tive uniform distribution and the posterior can be calculated given the compatibility

condition:

f ′′(u21|ε21 = 0) ∝ L(u21) (41)

where L is the likelihood function. The Bayesian network is used to carry out the

inverse problem and update the distribution of u21 to that which enforces compati-

bility, then carry out the forward problem to determine the system responses. With

interdisciplinary compatibility satisfied the problem is decoupled and the responses

from the Bayesian network represent the converged solution.
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Figure 105: Example of feedback decoupling approach

An illustrative example is given here to demonstrate the use of resource allocation

for a decoupled feedback problem. The problem is modified from the math problem

presented by Liang et al (2016) [85]. It features two coupled analyses with coupling

variables u12, v12, u21, v21. The subsystem responses g1, g2 are inputs to the system-

level response f = g1 − g2. The problem is shown in Figure 106 and the robustness-

based design optimization (RBDO) problem formulation is shown in Equation 6.4.2.
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Figure 106: Illustrative problem for resource allocation with feedback coupling
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min µf
µxi

P (g1 < 24.6) ≥ 0.9, P (g2 < 48.2) ≥ 0.9

s.t. 0.8 ≤ µxi ≤ 1.2

P (xi ≤ 0.8) ≤ 0.9, P (xi ≥ 1.2) ≤ 0.9 i = 1, ..., 5 (42)

U12(x, u21, v21)− u12 = U21(x, u12, v12)− u21 = 0

V12(x, v21, v21)− u12 = V21(x, u12, v12)− v21 = 0

The bounds of the design variables x1 to x5 are [0.82, 1.2] with an uncertainty

defined by N ∼ (0, 0.02). To emulate the loads analysis problem the distribution type

is known but the parameters are unknown for θ and are specified based on different

fidelity levels. Three levels are used in this problem and the epistemic uncertainty

is assumed normal. The mean and variance of the uncertain parameters are defined

in Table 17. The coefficients in the original problem are the “true” values of the

parameters and the definitions for the mean and variance are derived from it.

Table 17: Uncertain Parameters for Illustrative Problem

Variable Level 1 Level 2 Level 3 True

θ1 µ = −0.11,
σ = 0.0737

µ = −0.165,
σ = 0.03685

µ = −0.198,
σ = 0.018425

-0.22

θ2 µ = 0.075,
σ = 0.05025

µ = 0.1125,
σ = 0.025125

µ = 0.135,
σ = 0.0125625

0.15

The resource allocation methodology is applied first to update the parameters

under a fixed budget. Then the RBDO decoupled problem is solved with compatibility

of the coupling variables enforced. To solve the resource allocation optimization five

stages are used with 10 budget each and a total budget of 50. The cost structure

is intended to emulate the increased costs associated with higher fidelity analysis.
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In addition to the fidelity level, a second variable is introduced; the number of test

samples for updating. Each Level 1 sample has a cost of 2.5, 5 for Level 2 and 10

for Level 3. The final updated parameters are then used in the RBDO problem to

minimize the mean of the system response. To assess the proposed method, RBDO

was done with and without resource allocation. For the latter, the Level 1 values of

θ are assumed and no updating is performed. patternsearch, a global optimization

algorithm in MATLAB was used to solve the integer problem. Note, patternsearch

is not specifically intended for integer problems, but can solve them by modifying

the mesh tolerance and scaling in the optimization options. The resource allocation

results are shown in Figure 107 and the RBDO results are summarized in Table 18.

0 5 10 15 20

Number of Level 1 Tests

0

1

2

3

4

5

6

7

8

9

10

V
a

ri
a

n
c
e

 f

Resource Allocation

Figure 107: Results of resource allocation optimization

The optimal fidelity level and number of samples were consistently Level 1 and

four samples respectively for each stage of the optimization. Thus the optimizer chose

to exhaust the budget with maximum amount of low fidelity analyses. This means it

was better able to reduce the variance by utilizing more data from the lowest fidelity
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Table 18: Results for Illustrative Problem

Variable No θ Update θ Update

x1 1.0312 1.1230

x2 0.8281 0.8262

Design Variables x3 0.8281 0.8262

x4 1.1250 1.1719

x5 1.1719 1.1738

Objective µf -21.09 -23.78

σf 27.90 1.28

Constraints P (g1 < 24.6) 1.00 1.00

P (g2 < 48.2) 0.91 0.90

Compatibility Error U21 0.00% -0.00%

V21 0.01% -0.00%

than running fewer higher fidelity analyses. The purpose of including both analysis

variables into the optimization was to see if this very situation would occur. Typically

we assume higher fidelity is always better for uncertainty reduction, but when our

resources are fixed uncertainty management principals may lead to different results.

Of course, the simplistic definition of epistemic uncertainty and cost structure for

this problem may lead to such results. Figure 107 shows similar results to the first

illustrative problem where there is a large initial reduction in variance after the first

stage and subsequently small reductions there afterwards to exhaust the budget.

The benefits of the parameter update can be seen with the 95.4% reduction with

variance of the system response. The objective function improves as well with uncer-

tainty reduction. In addition the subsystem response constraints and compatibility

conditions are all satisfied. The published optimal system response using the true

parameter values, i.e. no parameter uncertainty, is -26.60. Thus the error due to
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epistemic uncertainty is 20.7% without updates and 10.6% with it. These errors are

solely based on the prior probabilities of uncertainty in θ but their relative value is

important. The error in the system response is halved by using resource allocation

to manage the uncertainty.

Finally it should be noted that the resource allocation and compatibility methods

were decoupled. Thus θ is updated after running the analysis for two iterations and

without enforcing compatibility. The integration of both the parameter update and

compatibility enforcement may lead to different, more accurate results. Additionally

only the single objective function of variance in the system response was used for re-

source allocation, the multiobjective problem will be used in upcoming experiments.

This experiment shows the resource allocation can be used in conjunction with de-

coupling, but the problem is not entirely represented of the loads analysis problem.

In the following experiment the decoupling approach is tested on a math problem

which is representative of the loads analysis problem.

6.4.3 Experiment 2c: Viability of Feedback Decoupling in Loads Analysis

The outer feedback-coupling between the structural design in HyperSizer and

NASTRAN has been discussed. Changes in the structural design due to changing

loads also changes the stiffness in the aeroelastic analysis. The stiffness impacts the

deformation and in turn the aerodynamic loads, and so on. The coupling relation-

ship is depicted in Figure 108. The sub-optimization of each component presents

unique challenges to the normal iterative problem presented in the previous experi-

ment. In this case, the coupling variables do not change solely due to the iterations

between the analyses, they are also impact by the sup-optimization if a component

is redesigned due to the critical margin of safety being less than the required margin.

The component dimensions determined by the optimizer will influence the stiffness
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coupling variables. This calls to question whether the previously discussed method

for decoupling can enforce compatibility without substantial error.

Aerodynamics

Structural 
Analysis

Structural 
Design

NASTRAN

HyperSizer

Figure 108: Feedback coupling schematic with inner and outer loops

To test the viability, the example problem from the previous experiment was

modified to include a sub-optimization step on two design variables which occurs

within each iteration if a constraint is violated. All other variable and parameters are

the same. The sub-optimization is posed as the following:

min
x

f = 1− 10x24 − x25

s.t. g2 ≥ c2 (43)

U12(x, u21, v21)− u12 = U21(x, u12, v12)− u21 = 0

V12(x, v21, v21)− u12 = V21(x, u12, v12)− v21 = 0

where c2 is a constant value included in the system optimization which is analogous

to the required margin in the loads analysis problem. The sub-optimization is done

in Analysis 2 only, similar to the sub-optimization in the structures discipline. A

Latin Hypercube design with 200 samples was constructed for the fidelity level of

each analysis and the constraint minimum value c2. The sample size is based on the
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similar problem presented in [85]. The optimal solutions from Experiment 2b are used

to fix the other design parameters, namely: x1 = 1.1230, x2 = 0.8262 and x3 = 0.8262.

In each sample the sub-optimization is completed and all coupling variable responses

were recorded. Using this data Kriging surrogate models were constructed for the

coupling variables, which include the effect of the optimized x4 and x5 variables. The

same definitions for uncertain parameters θ shown in Table 17 are used.

Liang et al, states “...the training samples for the [Bayesian network] surrogate

model only require a few iterations of the feedback-coupled analysis” [85]. The max-

imum number of iterations was varied to assess the error of decoupling compared to

an iterative approach which includes the sub-optimization. The iterative approach is

Monte-Carlo sampling outside of fixed-point iterations (SOFPI) as was done in Liang

et al. To establish a baseline, SOFPI was run until the coupling variables converged

and required twelve iterations and the final results are viewed as the “true” values.

The results for the u12 coupling variable are shown in Figure 109.
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Figure 109: Results of u12 coupling variable for decoupling in test problem
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where each of the decoupled points refer to the value of u12 after building the the

Bayesian network with training data from the corresponding number of iterations and

enforcing compatibility. The results indicate some error exists which theoretically

should converge to the same as the iterative approach but seems to fluctuate around

a relatively constant error. Similar results occurred for the other coupling variables.

The “compatibility error” was also calculated during this experiment. For example,

for u21 the compatibility error is equal to ε21/U21, where U21 is the final value after

compatibility is enforced. Thus it was expected that the compatibility error would

decrease with the number of iterations. The error for u21 was fairly consistent around

9-10%, but fluctuated for v21 and ranged from 1-30%.

Even though the errors in the coupling variables compared to the iterative ap-

proach are relatively small after three iterations, the inconsistency in the compat-

ibility errors raise concerns. The simple test problems used in these experiments

make it unclear how these errors will scale in the actual loads analysis. Therefore

the LAMDA-based decoupling approach explored here will not be utilized in the final

experiments. This decoupling approach will need to be explored further and on a

more realistic problem before it can be confidently applied to loads analysis. The

main concern is the ability to enforce compatibility with the sub-optimization which

also influences the coupling variables in addition to the feedback effect. In the next

section the insights gained from these three sub-experiments will be used to pose the

final optimization problem utilized by the rework decision framework.

6.4.4 Objective Function for Loads Analysis

Three sub-experiments were conducted on a test problem to look at different

aspects of the resource allocation methodology and how it could be implemented for

loads analysis. The latter two experiments were focused on a potential method to
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decouple one of the feedback loops and reduce the computational cost of constructing

the Bayesian network for loads analysis. The results of the test problem indicated

decoupling based on the LAMDA approach is suitable for normal iterative problems,

but remains to be seen if it can be applied to loads analysis where sub-optimization

occurs within the feedback loop. Nevertheless insight was drawn from all three sub-

experiments to better formulate the resource allocation optimization problem for loads

analysis, which is discussed in this section.

The need for a multiobjective optimization was presented in the motivation, and

its implementation within the context of resource allocation was examined in Ex-

periment 2a. Section 6.3 introduced the wing critical margin of safety as the sys-

tem response, so the multiobjective function is dependent on its mean and variance.

Therefore the mean margin of safety should be maximized and the variance should be

minimized. There are two common approaches to multiobjective optimization; pose

the multiobjective function as a single objective or use an algorithm specifically for

multiobjective problems. Within the context of MATLAB (r2016b) both are possible

with the various functions available in the Optimization Toolbox and Global Opti-

mization Toolbox. The choice of optimizer is dependent on the problem, which will

be discussed in more detail.

The inclusion of uncertainty in a probabilistic formulation dictates that the prob-

lem is nondeterministic. As has been discussed, this lends itself to non-gradient

based methods. This significantly narrows the pool of available algorithms in the

aforementioned toolboxes and focuses primarily on the Global Optimization Tool-

box. The input variables in this optimization are the K-factor, load margin and

structural required margin. The K-factor represents aerodynamic fidelity and specif-

ically model form error. In the M&S environment the fidelity methods are separate

analysis methods, so the K-factor variable is discrete. On the contrary the load mar-

gin and required margin are continuous variables. This is known as a mixed integer
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problem [161]. Only one algorithm is available for global mixed integer optimization,

the genetic algorithm (GA).

The concepts behind GA’s were discussed in Section 3.5. The Global Optimiza-

tion Toolbox has a single and multi-objective version of GA, but unfortunately the

multiobjective version does not support mixed integer problems. A typical approach

to formulating a multiobjective function as a single objective is to use a weighted sum

[63]. The relative weights imply the users priority of the objectives. If the weights are

equal, the optimizer should attempt to minimize each objective equally, therefore the

terms in the weighted sum should be normalized so they are all of equal magnitude.

Solutions to the single objective are Pareto optimum solutions to the multiobjective

function. A Pareto optimum is an optimum point in the design space where no better

point can be found to improve any of the individual objectives without causing any

of the other objectives to be worse off [63].

The multiobjective optimization function used for loads analysis is shown in Equa-

tion 44.

min
x

f = Wσ

(
σ2
R

σ2
K=0

)
−Wµ

(
µCurrent Approach

µR

)
(44)

where f is the total objective function, R is the wing critical margin of safety, W are

the individual objective weights and µ and σ2 are the mean and variance of the wing

critical margin of safety. σ2
K=0 refers to the variance in the wing critical margin of

safety for the lowest aerodynamic fidelity level (uncorrected) and is used as a nor-

malizing constant to scale the objective function. Similarly µCurrent Approach is also a

normalizing constant and is the mean wing critical margin of safety for the current

approach. The “current approach” refers to deterministic loads analysis assuming

K-factor of 0.25, zero load margin and required margin = 0. Analysis of the cur-

rent approach will be used to evaluate the framework in the final experiment. Note
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that in equation 44 f is minimized but the mean of R should be maximized so µR

is in the denominator. The negative sign for the mean term is necessary because

µCurrent Approach is a negative value and µR should be positive.

6.4.5 Cost Functions and Budget Constraint for Loads Analysis

The constraints for the original resource allocation method was a prescribed bud-

get to perform experimental tests in order to decrease variance. Only the cost of

each test, Ci was considered and therefore the total cost was Total Cost = ΣCiNi ≤

Budget where Ni is the number of each test conducted. As alluded to in Chapter 4,

the cost functions used in rework decision framework will be more complicated and

include the effects of performance (through weight), uncertainty, rework cost, and

computational cost. Some of these cost functions were utilized in Experiments 2a-c

in order gain insight into their implementation and impact on the optimization.

One of the most significant takeaways from the experiments in terms of the cost

functions was that it can be difficult to assign values for the uncertainty and com-

putational costs and thus makes it difficult to prescribe a reasonable budget which

would lead to a feasible solution. All the costs are subjective but the uncertainty and

computational costs are more abstract than the weight and a rework cost. Several

formulations were evaluated for the cost functions during the experiments and in the

end the uncertainty and computation costs are based off of the weight and rework

respectively.

Historically in aerospace, correlations exist between the purchasing cost and per-

formance with the total weight [70]. Therefore a penalty is assigned for each additional

pound added by the optimization relative to the current approach. Kaufmann et al

(2009) discusses how there are large variations in the literature as to the magnitude

of the cost per unit weight, but an average of $250 per pound is used here based on
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their findings [70]. The same amount is assumed as a savings if the optimized weight

is less than the current approach. The weight is the total wing weight of the FEA

strucutural model which includes the fuel and primary structure. The uncertainty

cost is then tied to this weight penalty (or savings) by applying a coefficient. The

logic is if the uncertainty is large than their is less confidence in estimating the wing

weight so to account for this the weight cost should subsequently increase. This is of

course a conservative view, but this is analogous to the standard approach of adding

margins and safety factors to the structural design so it is deemed reasonable.

Previous work was discussed in Chapter 3 on balancing redesign and performance.

In Matsumura et al 2013 [95] a ratio was used to relate the weight penalty to redesign

costs. In the final design of experiments to build the Bayesian network (see Section

4.2) most of the cases resulted in only the rear spar requiring redesign during the

four load cycles, meaning minor rework was limited to four components. Using the

published weight cost to rework cost ratios along with four components requiring

rework and the total cost relative to the budget a minimum rework cost of $9,000 per

component was established. If the computational cost increases for using a higher

fidelity aerodynamic analysis then this cost should also increase the rework cost.

Therefore a coefficient for the computational cost was added to the rework.

The total cost function used for loads analysis in the rework decision framework

is:

Total Cost = Acomputational ∗ Crework + (1±Buncertainty) ∗ Cweight (45)

where C is the variable cost for rework per component and weight per pound,

Acomputational is the computational cost coefficient and Buncertainty is the uncertainty

cost coefficient. This form of the total cost function removes some of the subjectivity

out of assigning the computational and uncertainty costs by making them coefficients
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of the rework and weight costs. Similarly, basing the rework cost on the weight

cost also reduces subjectivity given weight cost is a classically used cost driver in

aerospace. Nevertheless this formulation is still subjective so variations in the coef-

ficients and rework cost were used while the weight cost remained fixed at $250/lb.

These variations are depicted in Table 19.

Table 19: Cost Function Parameters

Parameter Min Max

Crework $9,000.00 $18,000.00

Acomputational 1.0 1.75

Buncertainty 0.0 1.25

Acomputational is proportional to the K-factor (fidelity level), e.g. K = 0 results in

Acomputational = 1.0. Buncertainty is also proportional to the K-factor but K = 0 results

in Buncertainty = 1.25. The ± for the uncertainty coefficient in Equation 6.4.5 is a plus

if a weight penalty is applied and a minus if there are weight savings. This ensure

that a maximum penalty or minimum savings occur if at the lowest fidelity level. The

maximum value for rework cost was chosen based on the total cost relative to the

weight costs. Increasing the rework cost essentially limits the amount of weight which

can be added to the components in order to increase the wing critical margin of safety

so care must be taken in choosing its maximum value to achieve a feasible solution

(i.e. satisfying µR ≥ 0). The maximum value of the computational and uncertainty

cost coefficients were chosen for similar considerations in addition to their impact on

the rework and weight costs.

The budget allocation is the last aspect of the constraints applied to the opti-

mization. The purpose of the budget is the same as in the original resource allocation

method, to constrain the resources available to achieve an optimal solution. Here,
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allocating a budget means there are limited financial resources available to cover the

costs associated with performance, rework, uncertainty and computation when trying

to reduce the risk of major rework. As with any constrained optimization, if the

constraints are too restrictive no feasible solution can be found. An additional con-

straint was added to the problem such that the wing critical margin of safety had to

be positive, mean a solution is only feasible if it is predicted that major rework would

be avoided. Therefore enough budget had to be allocated to allow a feasible solution,

but if too large the problem would be unconstrained. An unconstrained problem in

this context is equivalent to uncertainty reduction rather than uncertainty manage-

ment because no tradeoff is required and the user has unlimited resources to find the

optimum solution. With these considerations the minimum budget is $150,000.00 and

the maximum is $200,000.00.

Applying dollars to the costs and budget does not imply these are realistic cost

estimates. As was discussed in Chapter 4, these magnitudes are meant to be inter-

preted in relative terms to reflect priority and appropriately constrain the problem. It

is not necessary to use units at all for the costs and budget, but given the traditional

practice of examining the costs of adding weight in aerospace, it seemed appropriate

here to do so. The cost and budget formulation does allow for rigorous cost esti-

mations to be made such that realistic financial impacts are assessed for choices of

fidelity and margins is possible, but out of the scope of this thesis. Instead such cost

estimations will be left to future work, but the methodology is provided here.

6.4.6 Uncertainty Management Optimization Problem

The insights drawn from Experiment 2 and the development of the objective func-

tion and constraints given the final optimization problem for uncertainty management

in the rework decision framework based on resource allocation:
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min
x

f(x) = Wσ

(
σ2
R

σ2
K=0

)
−Wµ

(
µCurrent Approach

µR

)
s.t. Acomputational ∗ Crework + (1±Buncertainty) ∗ Cweight ≤ Budget

µR > 0 (46)

xl ≤ x ≤ xu

where x is the vector of design variables containing the K-factor, load margin and

structural required margin and the l and u refer to the lower and upper bounds which

are shown in Table 20. The K-factor and load margin are actually analysis variables

but in the usual terminology of optimization problems x will be referred to as design

variables.

Table 20: Design Variable Bounds

Variable Min Max levels

K-factor 0.25 1.0 4

Load Margin 0.0% 25% continuous

Required Margin -10% 30% continuous

The choice of minimum K-factor is based off the assumption that some correction

from wind tunnel data is always used, as opposed to a K-factor of zero which means

no calibration data is used. The bounds for the load margin were determined based on

the fact that a 50% margin is customarily added for the ultimate load and how much

additional load would be reasonably added based on the baseline and true bending

moment results. The load margin is applied to the WKK values and increases them

by the indicate percentage. The increase is only added to the WKK values identified

from the sensitivity analysis discussed in Section 4.2.
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The bounds for the structural required margin were determined based on observed

results for the critical margin of safety of the von Mises yield criterion for ultimate load

using the demonstration model. The structural margins are displayed in percentages.

For example, a 10% margin for a particular component indicates the applied distortion

energy to that component is 10% greater than the allowable distortion energy defined

by the material stress allowables defined in Section 5.5.5. Due to the simplifying

assumptions of the demonstration model, it should not be expected that these ranges

for reflect the actual load or structural margin ranges used in a real commercial

transport design.

Other important insights gained from Experiment 2 are related to the implemen-

tation of Bayesian inference using the slice sample MCMC method (see Section 3.4.2).

The benefits of the slice sample method were discussed and one of the most impor-

tant benefits is the fact that a “proposal distribution” isn’t required to compute the

posterior distribution, but this may also lead to more required samples and

or less accuracy. Several parameters are required for running the slice sample func-

tion and these can significantly influence the quality of the results [161]. Calculating

the posterior distribution was straight forward for the test problems which only had

a few parameters to update, but became much more difficult and computationally

expensive when trying to update the twenty-two WKK parameters. The suggested

methods from the MATLAB documentation to assess the quality of the slice sample

results and tune the parameters were utilized.

The expense of the slice sample approach made if infeasible to use within a heuris-

tic optimization which requires numerous function calls, especially for large number

of parameters in the loads analysis problem. Sankararaman et al suggests segregating

the budget and completing the optimization in multiple stages [139] and this approach

was used throughout Experiment 2. The multiobjective function and cost functions

used for loads analysis make this approach impractical. Another suggested approach
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to decreased computational burden of optimization is to construct a surrogate which

relates the system response as a function of the design variables directly [141], then

optimize using this surrogate model. This approach was implemented in the final

experiments discussed in the next section.

A 200 sample Latin Hypercube design was used on the K-factor, load margin

and required margin variables in order to build the surrogate used for optimization.

Surrogates for the cost functions were also required and dependent on the design

variables. Kriging models were used for all surrogates.

6.4.7 Conclusion

Experiment 22 is separated into three sub-experiments carried our on a simpli-

fied test problem to examine different aspects of the resource allocation methodology.

Insights gained from these experiments helped formulate the optimization problem

for uncertainty management used in the rework decision framework. Therefore Hy-

pothesis 3 is accepted on basis that the core components of the resource allocation

methodology presented in Sankararaman et al (2014) provides an appropriate foun-

dation to reducing and managing uncertainty in loads analysis.

Modifications to the original method are necessary and were detailed. Specifically

a multiobjective function is used to optimize the mean and variance of the wing criti-

cal margin of safety. Unique cost functions were developed and in conjunction with a

prescribed budget allow tradeoffs between performance, rework cost, uncertainty and

computational cost. To reduce the computational burden of the optimization a sur-

rogate model was fit for the wing critical margin of safety as a function of the design

variables and includes the affect of Bayesian inference. The most significant contribu-

tion for this experiment is the optimization formulation for uncertainty management

to address rework in loads analysis. This formulation considers cost implications
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which helps improve life cycle design as discussed in the motivation.
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6.5 Framework to Support Rework Decisions

6.5.1 Experiment 3: Determine Impact of Cost Functions on Major Re-
work

A global sensitivity analysis method was previously discussed in Section 3.5.2 and

was used in this experiment to determine the impact of the parameters for the cost

functions defined using Equation 6.4.5. These parameters and their ranges are show

in Table 19. In addition the sensitivity of the budget and objective function weights

was assessed. The budget ranged from $150,000.00 - $200,000.00 and each objective

weight ranged from 0.0 - 1.0. The results are shown in Pareto plots in Figures 110 -

112.
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Figure 110: Sensitivity analysis of cost function parameters for wing critical margin

of safety mean, µR
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Total Effects for Critical MoS Variance
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Figure 111: Total effects from sensitivity analysis of cost function parameters for wing

critical margin of safety variance, σ2
R
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Figure 112: Sensitivity analysis of cost function parameters for wing weight

The Pareto plots show the total and main effect sensitivity indices on the right

vertical and correspond to the bar heights. The cumulative variance for adding each

variable as a percentage of the total variance is shown on the right vertical axis and

corresponds to the blue line. The plots only show the variables accounting for at least

95% of the total variance, so all variables not listed can be treated as insignificant to

the response. Recall, in the absence of numerical error the total effects would sum
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to 1.0 or greater and the main effects would sum to one. Note, only the total effects

for the response variance are shown because large numerical errors in the main effect

calculations caused the indices to be inaccurate even though 10,000 samples from a

Sobol sequence were used (see Section 3.5.2 for more details). The weight cost was

kept fixed so no sensitivity analysis was done for it.

The results indicate the budget and rework cost are the most dominant effects for

all of the responses. Comparison of the total and main effect magnitudes indicate

there are important interaction effects for the budget and rework in the mean response

and wing weight. Given the form of the cost function, the computational cost and

uncertainty coefficients will likely have less impact than the rework and weight vari-

able costs respectively. It is somewhat surprising that the objective weights are not

more significant given they guide the optimization, but we will see later the objective

function does play a major role in the results of the design scenarios. The computa-

tional cost coefficient directly influences the rework cost so it is understandable why

it is consistently the third most significant parameter.

In terms of the rework decision framework, this information is useful in guiding

how the decision maker to how to define the optimization problem. Given how sen-

sitive the responses are to the rework cost and budget extra care should be taken in

defining these. Even though no sensitivity analysis was done here for the weight cost

it is very likely this is also a significant parameter to all of the responses. Besides

the rework cost, weight cost and budget cost the sensitivity analysis shows how other

parameters, albeit less important, impact the response which are of interest to the

user. For example, if the decision maker is particularly concerned about minimizing

the weight they should also focus on making sure the magnitudes of the computa-

tional cost coefficient are accurate. Most importantly, the sensitivity analysis shows

how the design scenarios discussed in the next session should be defined.
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6.5.2 Design Scenarios

In the problem formulation (Chapter 2) a need was established to use the rework

decision framework in different scenarios which reflect the decision makers priorities

at a given moment. It was also discussed that these priorities for the importance of

performance, minor rework costs, uncertainty and computational costs will likely be

determined by when in the development program one is or when external factors or

events dictate a change in priority (e.g. the budget for the structural design team is

expectantly cut due to new customer requirements). Seven “design scenarios” were

created to reflect typical situations which might occur in a airplane development

program.

The design scenarios are defined based on the cost function parameters, bud-

get constraint and objective weights. The definition of each scenario is shown in

Table 21 and will be discussed individually along with the results of the rework

decision framework. The minimum value for the computational and uncertainty

cost coefficients are set as 1.0 and 0.0 respectively for all the scenarios and so only

the maximum value is scenario-dependent and influences the corresponding coeffi-

cient for each fidelity level. For example the nominal computational cost coefficient

has values of [1.0000 1.1667 1.3333 1.5000]. If K = 0.75 Acomputational = 1.3333

and it is assumed the rework cost increases by 33%. But if Amax = 1.25 then

Acomputational : [1.0000 1.0833 1.1667 1.2500] and only a 17% increase in rework cost

if K = 0.75. The last column refers to the optimization constraint that the wing

critical margin of safety must be positive. This constraint is applied to all scenarios

except for the unconservative.
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Table 21: Design Scenarios

Scenario Wµ Wσ Budget Crework Amax Bmax µR ≥ 0

Nominal 1.0 1.0 $150,000 $9,000 1.5 1.0 Yes

Performance Minimize Weight $150,000 $9,000 1.5 1.0 Yes

Uncertainty 0.5 1.0 $150,000 $9,000 1.25 0.75 Yes

Budget 1.0 1.0 $150,000 $18,000 1.75 1.0 Yes

Schedule 1.0 1.0 $200,000 $18,000 1.75 1.0 Yes

Conservative 1.0 0.0 ∞ $9,000 1.25 0.75 Yes

Unconservative 1.0 1.0 $150,000 $9,000 1.25 1.25 No

6.5.2.1 Nominal Scenario

A “nominal” design scenario was created which established a baseline for all the

other scenarios. Therefore all the parameter values used for this scenario are con-

sidered to be at the nominal level. This scenario will be used in Experiment 4 to

evaluate the rework decision framework against the current approach so its results

will be discussed in more detail then, but for reference the results of the optimiza-

tion are shown in Table 22. The first three columns are the optimal design variables

found at the optimization solution. The load margin is percent increase in each WKK

value which is intended to increase the aerodynamic loads. The required and critical

margins are relative to the allowable distortion energy for the von Mises yield crite-

rion. The weight penalty is the additional wing weight pounds relative to the current

approach and the variance change is relative to the lowest aerodynamic fidelity level

which is σ2
K=0 in Equation 44. After detailing each scenario the aggregate results will

be discussed.
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Table 22: Nominal Scenario Results

Scenario K-factor
Load

Margin

Required

Margin

Wing

Critical

Margin

Variance

Change

Weight

Penalty

Nominal 1.00 0.00% 25.81% 2.15% -21.04% 384.00 lbs

6.5.2.2 Performance-Driven Scenario

The “performance-driven” scenario describes the situation when the decision maker

is primarily focused on reducing weight over all other considerations. This is common

in aerospace and can occur at any point in the development program, though there

may be specific points when weight is being reduced to hit a specific performance

metric. As such the objective function is changed to minimize weight as opposed to

the multiobjective function in Equation 44. All other parameters are kept at their

nominal values. The results are shown in Table 23.

The objective function clearly has an impact on the results. The weight objective

minimizes the weight penalty relative to all other scenarios with feasible solutions.

The absence of the multiobjective function results in the wing critical margin to be

almost zero and is most likely only positive due to the constraint and the low K-factor

setting is chosen which results in an increase in the variance. As was discussed in

Section 6.4.6 the large number of parameters and the fact that the bending moment

responses are influenced by design variables other than the K-factor (see Sec 6.3.2)

means the variance may actually increase relative to the reference point which assumes

the lowest fidelity level (uncorrected, K = 0) and zero load and required margin.
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Table 23: Performance-Driven Scenario Results

Scenario K-factor
Load

Margin

Required

Margin

Wing

Critical

Margin

Variance

Change

Weight

Penalty

Performance 0.25 24.96% 24.38% 0.06% +6.85% 181.43 lbs

6.5.2.3 Uncertainty-Driven Scenario

The “uncertainty-driven” scenario is when the decision maker is primarily focused

on decreasing the uncertainty in the system. This scenario may occur in situations

where a high degree of accuracy is required for analysis and when a lot of confidence is

needed in the major rework estimation. One such situation would be is major rework

occurred after a flight or ground test failure and so the decision maker wants to be as

certain as possible that no more failures will occur when repeating the test program.

To implement this scenario a larger weight is placed on the variance objective

relative to the mean. Additionally the computational cost is decreased to encourage

a higher fidelity level. The uncertainty cost is also decreased because it reduces the

weight penalty and allows more room in the budget to reduce the uncertainty. The

results are shown in Table 24. As expected the highest fidelity level is chosen and the

uncertainty reduction is the largest relative to the other scenarios. The increase in

weight relative to the nominal is most likely due to the decreased uncertainty cost.

Even though the intention of decreasing Bmax is to allow more room in the budget to

increase the fidelity, the optimizer may choose to instead add more weight.
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Table 24: Uncertainty-Driven Scenario Results

Scenario K-factor
Load

Margin

Required

Margin

Wing

Critical

Margin

Variance

Change

Weight

Penalty

Uncertainty 1.00 0.00% 26.23% 2.57% -22.84% 420.00 lbs

6.5.2.4 Budget-Driven Scenario

The “budget-driven” scenario is also common and occurs when a manager is fo-

cused on keeping costs low, perhaps due to budget cuts or increased costs in other

areas. This scenarios is intended to emulate a focus on short-term costs related to

design and not necessarily the cost of the aircraft which is typically driven by weight.

Short-term costs would include labor, computational resources, small-scale testing,

etc. for the various engineering groups (i.e. loads, stress, etc.) to design and develop

the aircraft. Therefore the cost for redesign, i.e. minor rework, and computational

costs are at a premium and is expressed in the larger parameter values. All other

parameters are held at their nominal values. The results are shown in Table 25.

The optimizer was unable to find a feasible solution due to the constraints imposed

by the budget-driven scenario. Specifically the positive critical margin constraint

could not be satisfied. The increased rework costs and limited budget restricted the

amount of weight which could be added to the structure to achieve a positive mar-

gin. This is evident in the relatively low weight penalty. The optimizer attempted

to reduce costs by choosing the lowest fidelity level but it was not enough to reach

a feasible solution. The K-factor setting was expected given the increase in compu-

tational cost and as a result the variance increases. The variance increase may also

be a function of the infeasibility of the final solution. Given this is the only scenario

which was unable to find a feasible solution, it speaks to how focusing on near-term
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costs can have negative consequences for avoiding rework and life cycle design.

Table 25: Budget-Driven Scenario Results

Scenario K-factor
Load

Margin

Required

Margin

Wing

Critical

Margin

Variance

Change

Weight

Penalty

Budget 0.25 24.96% 23.83% -0.73% +14.06% 156.00 lbs

6.5.2.5 Schedule-Driven Scenario

The “schedule-driven” scenario is when a manager is under additional pressure

to complete a design activity by a certain deadline. For example, a previous load

cycle had setbacks and caused delays therefore in the manager must ensure his/her

team completes the current load cycle within a tighter schedule. When time is of the

essence a technical leader may make different design and/or analysis decisions such

as using a lower fidelity analysis method because it is quicker.

The budget was increase for this scenario because a manager is most likely willing

to spend more for near-term costs in order to meet a deadline. The rework and

computational costs are at a premium because of additional time to redesign and use

high fidelity methods. All other parameters are at their nominal values. The results

are shown in Table 26. Despite the increased costs for redesign, the budget allows for

a feasible solution to be found, unlike the budget-driven scenario. The lowest fidelity

level is chosen to reduce the costs for minor rework and as such the variance barely

decreases. Relative to the nominal case, the lower wing critical margin is accompanied

by a lower weight penalty. These results exemplify the saying “time is money” and

so sometimes takes a larger budget to meet a tight schedule.
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Table 26: Schedule-Driven Scenario Results

Scenario K-factor
Load

Margin

Required

Margin

Wing

Critical

Margin

Variance

Change

Weight

Penalty

Schedule 0.25 2.03% 24.29% 1.63% -0.01% 256.00 lbs

6.5.2.6 Conservative Design Scenario

The “conservative design scenario” is less of a specific situation and instead con-

veys a mindset towards design. A decision maker with this mindset is extremely risk

adverse, even at the sacrifice of performance. Additionally they rely on traditional

methods of design and is skeptical of modern approaches such as uncertainty quan-

tification. This represents an extreme scenario and is included to test the extremes

of the rework decision framework. It is not common in aerospace to disregard weight

but there may be specific types of aircraft or custom built derivatives which require

a conservative mindset to ensure safety. One such example could be designing VIP

transport, e.g. Air Force One, where safety is paramount to performance as required

by the customer.

In this scenario the variance objective weight is set to zero indicating that the

only objective is to maximize the mean wing critical margin of safety. Maximizing

the critical margin undoubtedly means adding a significant amount of weight so the

budget constraint is lifted for this scenario. The computational cost is decreased

because a conservative decision maker will most likely want the best analysis tools

available regardless of the cost or schedule. The uncertainty cost is also reduced to

lessened given the lack of consideration of the variance objective.

As expected, the critical margin and weight penalty shown in Table 27 are the

largest of any scenario. Maximizing the critical margin would indeed minimize the risk
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of rework but doing so without regard to uncertainty can clearly degrade performance

which some may regard as unnecessary for typical safety standards. Naturally the

required margin is at its maximum value to achieve such a relatively large critical

margin. Even though the K-factor is at the second to highest level there is still a

large variance increase. This is primarily due to the lack of variance reduction in the

objective function and also indicates that the required margin has a strong influence

on the variance.

Table 27: Conservative Design Scenario Results

Scenario K-factor
Load

Margin

Required

Margin

Wing

Critical

Margin

Variance

Change

Weight

Penalty

Conservative 0.75 0.00% 30.00% 7.00% +20.40% 713.48 lbs

6.5.2.7 Unconservative Design Scenario

The last design scenario is at the other extreme of the conservative mindset. A

decision maker who is unconservative is willing to take risks and will sacrifice struc-

tural integrity (within reason) in order to achieve better performance. Although not

common in commercial transports this is alto common in the design of unmanned

aerial vehicles. The exponential growth of UAV’s has undoubtedly changed the way

traditional aerospace manufacturers approach design. The removal of a pilot signifi-

cantly lowers the minimum required safety standards, although new regulations could

change this. Additionally, for some applications expensive payloads or the airframe

itself can lead to more of a conservative approach to designing UAV’s.

The most significant implementation for the unconservative scenario is relaxing

of the positive critical margin constraint. The mean value is still included in the

objective function so not too much risk is taken on. In addition the computational
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cost is decreased and the uncertainty cost increased because higher fidelity tools

should be encouraged to reduce uncertainty as much as possible given the relaxed

constraint. Unlike the conservative scenario, the multiobjective function leads to the

same K-factor level but results in variance reduction because of the combination of

load and structural margin which impact the bending moment responses used for

Bayesian inference.

Table 28 summarizes the results. Even though the constraint is relaxed the critical

margin is essentially zero, which is what the minimum critical margin should be

during the flight load survey. Thus this scenario is actually not very extreme and

may be viewed as a compromise between the performance and conservative scenarios.

This is evident in the second lowest weight penalty (for feasible solutions) which

increases performance. Another interpretation of these results is that adding the

positive margin constraint added additional conservatism to the other scenarios while

here the approximately zero critical margin was maintained with the multiobjective

function alone and allowed a different solution to be found which previously would

have been deemed infeasible.

Table 28: Unconservative Design Scenario Results

Scenario K-factor
Load

Margin

Required

Margin

Wing

Critical

Margin

Variance

Change

Weight

Penalty

Unconservative 0.75 19.86% 24.83% -3.7e-6% -6.04% 226.29 lbs

6.5.2.8 Discussion of Design Scenarios

The final results of all seven scenarios are summarized in Table 29 which include

the optimal solution of the K-factor, load margin and structural required margin

inputs and the optimal responses based on the constrained problem described in Table
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21. The important responses are also visualized in Figures 113 - 115 to compare the

results of the seven scenarios.

Table 29: Summary of Results from all Design Scenarios

Scenario K-factor
Load

Margin

Required

Margin

Wing

Critical

Margin

Variance

Change

Weight

Penalty

Nominal 1.00 0.00% 25.81% 2.15% -21.04% 384.00 lbs

Performance 0.25 24.96% 24.38% 0.06% +6.85% 181.43 lbs

Uncertainty 1.00 0.00% 26.23% 2.57% -22.84% 420.00 lbs

Budget 0.25 24.96% 23.83% -0.73% +14.06% 156.00 lbs

Schedule 0.25 2.03% 24.29% 1.63% -0.01% 256.00 lbs

Conservative 0.75 0.00% 30.00% 7.00% +20.40% 713.48 lbs

Unconservative 0.75 19.86% 24.83% -3.7e-6% -6.04% 226.29 lbs
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Figure 113: Comparison of wing critical margin of safety mean for design scenarios,

∼ 0.0 for unconservative
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Figure 114: Comparison of wing critical margin of safety variance for design scenarios,

∼ 0.0 for schedule-driven
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Figure 115: Comparison of wing weight for design scenarios

The ability to examine different scenarios which reflect priorities for performance,

redesign, uncertainty and computational cost is one of the most important benefits of

the proposed rework decision framework. This capability is possible because of how

the optimization problem for uncertainty management was posed from Experiment

2. Although the parameter values used in Experiment 3 may seem subjective, this

subjectivity adds flexibility for the decision maker to express different priorities. Ad-

ditionally, the results from each of the scenarios fit the expected trends which justifies

the definitions and helps validate the framework.

Looking at all the scenarios allows us to more closely examine the effects of the

optimum K-factor, load margin and structural required margin. As had been alluded

to, the variance of the wing critical margin of safety is heavily influenced by the

margins. This was somewhat surprising given the only intentional mechanism for
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variance reduction is in the aerodynamic fidelity. These results indicate the relation-

ship between uncertainty for major rework is more complicated than just the fidelity.

Just as in robust design optimization the uncertainty in the response can be reduced

by adjusting design variables which may only indirectly impact uncertainty [176]. In

this problem the load and required margin affect the bending moment responses used

in Bayesian inference to update the WKK parameters. Therefore all three design

variables will have an impact on the uncertainty in the system.

It is clear that additional weight is needed to achieve a positive margin and avoid

major rework. The lowest optimal required margin of all the scenarios was 23.83%

(though this solution was infeasible). It should be noted that the critical margin of

safety almost always came from the same upper skin panel. Thus it would not be

recommended to apply this margin to every component because this would unneces-

sarily add weight. But the assumption in this model is that the structural required

margin is applied uniformly to all components.

In terms of realistic aerospace structural designs 24% is a large margin, especially

given a 1.5 safety factor is already assumed. But the magnitude is less important

given the simplifications of the demonstration model compared to reality. The more

important observation is how the structural margin is the dominant design variable

for avoiding major rework and reducing structural design risk. This comes at no

surprise but being able to quantify the importance of the structural margin is very

beneficial from a design perspective. In this work a uniform, deterministic margin was

applied to all the components and fixed throughout the load cycles. Future work and

improvements to the decision framework could shed new light onto how probabilistic-

based margins which are individually defined by component can lead to reduced risk

but at a lower weight. Additionally, the margins could be varied throughout the load

cycles to potentially reduce overall costs.

It is difficult to determine a clear trend for how the load margin impacts the
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responses with this limited data set. The load margin adds conservativism to the

loads analysis but has a different affect on the critical margin of safety than the

required margin which is a constraint on the structural design. As in the other

design variables, the genetic algorithm tends towards the extreme values. It would

appear that there are important interaction affects between the load margin and other

variables which the optimization is able to exploit to find an optimal solution. This

finding in itself is important because it can guide future work to focus on the load

margin in order to decipher how exactly it influences the responses of interest.

The seven design scenarios defined in this experiment are able to showcase various

aspects of the rework decision framework by allowing the optimizer to exploit the

design variables and achieve different solutions. The diversity of the final results

indicate that beneficial information is provided to improve decisions related to analysis

and design. The user of the rework decision framework can use each scenario as it

occurs in the development program and of course create their own scenarios. But

some observations can be drawn fro looking at these scenarios in aggregate.

The best balance of performance and uncertainty is the unconservative design

scenario. In terms of the total wing weight the unconservative design increases the

weight by 0.5%, but is able to achieve a 12% reduction in uncertainty compared to the

performance scenario. This is primarily due to the relaxation of the positive margin

constraint which these results indicate should be relaxed for all scenarios because

it adds unnecessary conservativism given the multiobjective function. Focusing too

much on near-term costs can jeopardize life cycle design and increase major rework

risk as shown in the budget-driven scenario. Similarly, if decisions are driven by

schedule, one should be prepared to invest more up front to cover near-term costs in

order to meet an imposing deadline.

Of course these insights are predicated to the assumptions used in this model, but

nevertheless preview they type of beneficial analyses and capabilities of the rework
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decision framework. The rework decision framework was able to demonstrate ex-

pected trends in the design scenarios which help validate it. The framework can now

be evaluated against the current approach to loads analysis in the final experiment.

6.5.3 Baseline: Current Approach to Loads Analysis

A baseline is established based on the current approach to loads analysis which

was discussed in the Motivation and Problem Formulation Chapters. To recap, the

major limitations identified in the current approach is a lack of uncertainty quantifica-

tion, solely relying on expensive experiments for uncertainty reduction and a reactive

approach to major and minor rework. Ultimately it is the stance of this thesis that

these limitations have led to increased design risk and specifically increased risk for

major rework when the structural design of novel concepts fail to meet requirements

during flight and ground tests. The baseline model attempts to capture these limi-

tations and is used to evaluate the rework decision framework in Experiment 4. The

baseline is discussed in this section.

The lack of uncertainty quantification and management means the baseline model

is deterministic and no Bayesian methods will be employed for uncertainty reduction.

Without UQ, there is no way to directly compare the uncertainty management efforts

of the framework against the baseline. Contrary to the colloquial saying, in this case

what you don’t know can hurt you. The inability to quantify the uncertainty in the

system reduces the confidence that the empirically-based margins which may have

worked for previous designs will be enough to avoid major rework in new concepts,

or that there won’t be undue additional weight which will degrade performance.

The baseline model assumes a K-factor of 0.25 which is equivalent to using a

low-fidelity aerodynamic analysis in conjunction with rigid wind tunnel calibration

throughout the load cycles. This is viewed as the current approach due to the fact
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that linearized aerodynamics such as NASTRAN’s Doublet Lattice Method are used

to design even modern commercial transports based on subject matter experts. The

model also assumes no load margin is applied and a structural required margin of

zero for the von Mises yield criterion is applied to all components. Additional insight

from subject matter experts claim the load margin is typically added if empirical

data or preliminary studies indicate the loads analysis will underpredicts the “true”

loads anticipated during the flight load survey. The baseline model is assumed to be a

new concept where such data does not exist and thus no load margin is applied. The

required margin is set to zero because a 1.5 safety factor is assumed for ultimate loads

and every effort is made to save weight when finalizing the design at the certification

load cycle.

The deterministic baseline model is run in the M&S environment for four load

cycles in order to produce the finalized design. As stated previously, the structural

components are only redesigned if the critical margin of safety falls below the required

margins. A minimum gauge thickness of 0.35mm is assumed for all components. After

completing the load cycles the wing critical margin of safety is 9.0% and the final wing

weight is 15,893 lbs. Due to the required margin and minimum thickness no redesign

is necessary and thus no minor rework occurs during the load cycles. More details on

this will be discussed in the next section.

The final bending moment is depicted in Figure 116. The blue line represents

the baseline including a K-factor of 0.25 and the red line is the simulated flight load

survey, i.e. the truth data. The uncorrected loads (K = 0) are also shown in brown as

a reference. From a loads perspective, the analysis underpredicts the true loads and

thus increases the risk of major rework. This risk is confirmed after the true loads are

applied to final design and the margin of safety decreases below the required level in

one of the upper skin panels. The final wing critical margin is -8.02% and is classified

as major rework. A more detailed analysis on this component will be discussed in the
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next section.
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Figure 116: Integrated wing bending moment for baseline model

The deterministic baseline which represents the current approach to loads analysis

results in major rework. The lack of uncertainty considerations make it more difficult

to predict how the analysis fidelity and margin choices will impact structural failures

during the test phase for new concepts. Without these predictions, the ensuing ma-

jor rework to fix the wing skin and repeat the flight load survey can not be planned

for in advance and proactively avoided. The baseline results exemplify this reactive

approach, albeit for a simplified model. The final experiment can now be conducted

to compare the proposed framework against the baseline.
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6.5.4 Experiment 4: Evaluate Framework to Support Rework Decisions

The rework decision framework has the capability to evaluate different design

scenarios which were discussed in Experiment 3. The results from the nominal sce-

nario will represent the rework decision framework and be used to compare against

the baseline model results from the previous section. The input assumptions for the

nominal scenario are repeated here in Table 30. A comparison of the results from the

two approaches is shown in Table 31.

Table 30: Nominal Design Scenario Inputs

Scenario Wµ Wσ Budget Crework Amax Bmax µR ≥ 0

Nominal 1.0 1.0 $150,000 $9,000 1.5 1.0 Yes

Table 31: Comparison of Rework Decision Framework against Current Approach

K-factor
Load

Margin

Required

Margin

Wing

Critical

Margin

Variance

Change

Wing

Weight

Current

Approach
0.25 0.00% 0.00% -8.02% N/A 15893 lbs

Framework 1.00 0.00% 25.81% 2.15% -21.04% 16277 lbs

In order to avoid major rework, the framework estimates a structural margin of

25.81% is needed during the load cycles and results in a critical margin of 2.15%

during the flight load survey. In order to satisfy the required margin the wing weight

is increased by 2.4%. In the framework uncertainty quantification is done on a model

which assumes no corrections and zero load and required margin. The uncertainty

is then reduced by resource allocation optimization using the multiobjective func-

tion previously discussed and results in a 21% reduction in the uncertainty. “N/A”
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stands for not applicable in Table 31 because the current approach does not employ

uncertainty quantification or management.

The optimization solution in the rework decision framework is based on Bayesian

network and thus is based on surrogate models. To analyze the results further and

compare to the baseline, the optimal design variables for the nominal scenario were

used in the full M&S environment for four load cycles. The resulting distribution of

the critical margin of safety for both approaches is shown in Figure 117.
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(a) Current approach

(b) Rework decision framework

Figure 117: Distribution of component critical margin of safety during flight load

survey

The margin of safety (MoS) is expressed in terms of HyperSizer’s definition (see
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Equation 27) but can be converted to normal percentages relative to the distortion

energy allowables used throughout this thesis using the following equation:

Distortion Energy Margin =

(
1− 1

MoS + 1

)
∗ 100 (47)

The colorbar represents the magnitude of the margin and components with orange

or red indicates failure during the flight load survey and major rework. The numbers

printed inside the color ranges indicates the number of components within that margin

range. The distribution is very similar for both approaches with the exception of a

few components. Two components stand out, the upper skin panel which results in

major rework and the rear spar. These two components will be examined further to

compare minor and major rework in the two approaches.

The baseline results showed no minor rework occurred during the load cycles. For

the framework, the rear spar required redesign after each load cycle. The internal

load and margin of safety results are shown for both approaches in Figure 118. The

load plots show the internal moments per unit length as a function of the load cycles.

When the original NASTRAN model is imported into HyperSizer the initial stiff-

ness and material definitions are updated as a preliminary step prior to the first load

cycle. These results are not shown in these plots, but there are significant changes to

the stiffness in this first step. For the baseline case the minimum gauge thickness is

large enough where all the components are able to achieve positive critical margins

after the first load cycle. The loads change very little, if at all, during the subsequent

load cycles because none of the wing components are redesigned. If redesign does not

occur, the stiffness in the wing is constant and there is essentially no feedback effect

between NASTRAN and HyperSizer. If the loads and stiffness are constant the mar-

gins of safety will not change either. After completing the load cycles the true loads

are applied in the simulated flight load survey. The internal loads of the baseline rear

283



spar increase and cause the margin of safety to decrease, but still remains positive

indicating major rework would not be needed for this component.

A different picture is painted for the rear spar in the framework results. Here a

larger required margin is applied to all the components. The internal rear spar loads

increase after the first load cycle and cause the critical margin to decrease below the

required level and necessitates the rear spar to be redesigned, i.e. minor rework. Each

time the rear spar is redesigned HyperSizer attempts to minimize the weight so the

new margin is as close to the required level as possible. But the feedback between

HyperSizer and NASTRAN causes further increases in the load and subsequently

more minor rework. As was mentioned before, in an actual airplane development

program four load cycles is usually enough to converge the loads and stiffness. In the

demonstration model the maximum number of cycles was thus limited to four. If more

cycles were permitted, the loads would eventually converge and no more rework would

be required. Unlike in the baseline, the flight load survey causes the internal loads to

decrease so the final margin for the rear spar is well above the required minimum. It

should be noted, even though the required margin is fixed at 25.81% throughout the

load cycles, major rework is always defined with respect to zero margins.

The flight load survey caused the rear spar internal loads to increase in the baseline

but decrease for the framework. Thus it is clear the load paths are different in the

different approaches and thus can affect the same component in distinct ways. The

HyperSizer optimization for each component modifies the load paths such that the

entire wing structure satisfies all the selected failure analyses at minimum weight.
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Figure 118: Comparison of methods for rear spar

The internal moments were chosen as an example to visualize how the changing

loads impact the critical margin, though other load components follow similar trends.

It should be reiterated that all margins are only based on the von Mises stress criterion

discussed in the HyperSizer model’s failure analysis in Section 5.5.5. This criterion is

only dependent on stress and thus the sizing of each component is only depended on

the applied stress and the material stress allowables. All components in this model

consist of single-sheet unstiffened panels. In reality the rear spar would have upper
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and lower flanges and a shear web, but these features were not included in this model.

Therefore the structural model is quite simplified compared to reality and the results

of the rear spar reflect this, particularly in how the loads and stiffness do not converge.

After each cycle when the rear spar is redesigned it becomes stiffer and the load path

adjusts so more load passes through it. Therefore the loads and stiffness for this

component may not converge. Again, this is not a realistic scenario and reflects the

assumptions of the simplified model.

A similar analysis was done on the upper skin panel which caused major rework

for the baseline case, the results are shown in Figure 119. For the baseline, the panel

loads and margin remain constant throughout the load cycles followed by an increase

in the loads for the flight load survey, just as in the rear spar. The difference is the

final critical margin actually decrease below zero. For the framework results there are

very small but finite changes in both the internal loads and margin throughout the

load cycles. These small changes are a direct result of the rear spar changes previously

discussed. The entire load distribution changes as a result of minor rework in a single

component and impacts all other components, although the impact is small in this

case. The panel margin is able to maintain a healthy margin above the required level

but reduces as the flight load survey increases the internal loads. A positive margin

is still maintained though, so major rework is avoided.
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Figure 119: Comparison of methods for upper skin panel #10

As was mentioned, a load margin can be applied to correct analysis loads which

underpredict the true loads. In order to assure a fair comparison of the current

approach to the rework decision framework, a 10% load margin was applied to the

baseline. By only looking at the bending moment a 10% increase in the WKK cor-

rection factors should be sufficient to account for the unconservative analysis loads.

After the load margin was applied to the baseline model for four load cycles the wing

critical margin remained at -8.02% for the flight load survey so major rework still
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occurred. The failure occurred in the same upper skin panel. The increase in loads

reduced the margins in all the components but not enough to warrant any redesign.

Therefore the structure essentially remained the same as the baseline case and when

the true loads were applied, the resulting margin was also the same. Even with the

additional load margin, the rework decision framework was able to avoid major re-

work compared to the current approach.

6.5.5 Conclusion

The final rework decision framework was developed based off the M&S environ-

ment discussed in the experimental setup and the results of Experiments 1 and 2.

The framework was then used to perform sensitivity analysis on parameters related

to the objective function and constrains of the optimization problem. The results of

Experiment 3 indicated the rework cost and budget were the dominant parameters

impacting the wing critical margin of safety mean and variance, as well as the wing

total weight. Naturally the weight variable cost is also another significant parameter

though it was kept fixed in these experiments.

Seven design scenarios were defined and evaluated using the framework based

on the aforementioned objective and constraint parameters. The scenarios reflect

different situations which may influence a decision makers’ priorities for trading per-

formance, rework, uncertainty and computational cost. The results for each scenario

was discussed and several expected trends were observed which further validated the

framework. The optimal design variables indicate the structural margin is the most

dominant variable. Additionally, the response variance, i.e. the uncertainty, is not

just dependent on the fidelity level but the combination of all three design variables.

Overall the unconservative design scenario resulted in the best balance of performance
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and design risk reduction. The budget-driven scenario resulted in an infeasible solu-

tion which highlights how focusing on near-term costs can jeopardize the life cycle

design and increase the risk of major rework.

After validating the performance of the framework with the design scenarios, it

was compared against the current approach. A baseline model was discussed which

represents the current approach and its limitations. The rework decision framework

was able to avoid major rework while the baseline could not. The framework is

also able to quantify and reduce uncertainty while the baseline cannot. Although

the simplified structural model is not representative of reality, both the framework

and the baseline used the same assumptions so a fair comparison was made when

evaluating major rework.

The ability to perform optimization and evaluate different tradeoffs via design

scenarios provides the decision maker with more information in order to make choices

related to fidelity and margins. Thus Hypothesis 4 is accepted to address Research

Question 4. Furthermore Experiments 3 and 4 helped address the research gap by

developing proactive rework strategies during the design phase. Strategies can be

developed for any number of design scenarios and are not limited to the ones evaluated

here. The major contribution of these final experiments is an original, comprehensive

framework to improve decision making in aerospace structural design which has been

tested against the current approach to loads analysis.
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6.6 Discussion, Recommendations & Thesis Statement

The experimental plan has been completed to address all the research questions

and validate the secondary hypotheses. In this final section the aggregate of the results

as a whole will briefly be discussed along with key assumptions leading to these results

and recommendations based on the data developed throughout the experimental plan.

6.6.1 Modeling & Simulation Environment

The modeling and simulation environment constructed for this work is an inte-

grated, multidiscipline, MATLAB-based environment which involves CFD via NASCART-

GT from the Georgia Institute of Technology; aeroelastic and finite-element analysis

via MSC NASTRAN (2014) and structural design via Collier Research Corporation’s

HyperSizer (2016). Some of the key assumptions for the current environment are in-

viscid CFD analysis and linear, static aeroelastic analysis and linearized aerodynamic

with NASTRAN’s Doublet Lattice Method.

For viscous flow, other CFD programs may need to be explored due to the com-

putational expense of analyzing a viscous 3D model in NASCART-GT. Nonlinear

and/or dynamic aeroelastic analysis would involve different solution sequences in

NASTRAN and most likely required modification and refinement of the model. For

nonlinear aerodynamics, the direct grid import method should be utilized in NAS-

TRAN to bypass the Doublet Lattice Method. This would also eliminate the use of

the empirical adjustment factors which define the epistemic uncertainty in this work,

so naturally substantial modifications to the framework would be necessary, though

it would allow more advanced characterizations of aerodynamic fidelity as opposed to

the linear assumptions used here.

The iterations between NASTRAN and HyperSizer took a considerable amount

of time with the resources available. For example, running 500 cases for four load
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cycles took over a week to complete. Each case requires a NASTRAN run after each

iteration, but thankfully a computing cluster was available to run several NASTRAN

jobs simultaneously. The biggest bottleneck by far was HyperSizer sizing optimization

for each of the 86 components multiple times within a cycle. No paralellization was

possible given HyperSizer requires Windows and the cluster runs on Linux. Significant

savings could be realized if a Windows-based cluster were available.

The number of iterations was always assumed to be fixed at four to simulate the

four load cycles in a development program. As was seen in the final experiment,

some components (particularly the rear spar) did not always converge within four

iterations. An alternative is to let the iterations persist until convergence. It was also

assumed that each component is only redesigned if its critical margins falls below the

required level. Alternative the components could be redesigned after each iteration

which would undoubtedly decrease the total weight, but then the definition of minor

rework would need to be modified. The recommendation is to use which methods

align best with what is done in reality.

Nevertheless, the M&S environment as it stands offers a foundation to further

develop and advance the rework decision framework. Many of the analyses in this

environment can be substituted with others (with some effort) and can be used for

various aeroelastic design problems, even those non-related to rework.

6.6.2 Demonstration Model

The demonstration model used to develop and evaluate the rework decision frame-

work is based on the undeformed Common Research Model (uCRM) developed out

of the University of Michigan. The specific model utilized in this thesis was provided

by the Boeing Company. Many aspects of the NASTRAN model were untouched to
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maintain its integrity but other aspects took significant effort to adapt to the M&S en-

vironment. Most of the key assumptions for the model are dependent on the analysis

assumptions previously discussed. The load cases defined in NASTRAN were limited

to steady symmetric cases and it is recommended these be expanded to include a

diverse set of load case types and potentially additional load case parameters. The

HyperSizer model was significantly limited in terms of materials, component types

and failure methods and it is highly recommended that HyperSizer’s full capabilities

be utilized for any future work. Specifically the assumptions are all components were

considered to be aluminum unstiffened single sheet panels with only the von Mises

stress criterion failure mode considered.

6.6.3 Epistemic Uncertainty

Defining the epistemic uncertainty using data-driven approaches took considerable

effort but was important to address a gap in the literature. Typically epistemic uncer-

tainty research focuses on theory and settles for assumptions and generalizations when

it comes to demonstrating these theories on complex problems. Even though defining

the uncertainty based on Gaussian noise and the linearized normal coefficient curve

slope error is relatively simplistic compared to some of the advanced theory available,

this limitation is more than compensated by the efforts made to quantify this error

and not just assume an arbitrary distribution parameter value. The procedures for

defining the epistemic uncertainty is well-documented in this thesis and can serve as

guide for applying more advanced epistemic uncertainty methods and close the gap

between UQ research and practice.

The key assumption for the epistemic uncertainty definition is use of the scalar

K-factor to define the aerodynamic fidelity levels. The K-factor approach assumes
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a linear variation in fidelity, but is limited by the linear empirical adjustment pa-

rameters of NASTRAN and specifically the linear assumption of the lift curve slope

for the WKK corrections. Additionally the uncertainty is only applied to the WKK

parameters identified as significant, all other parameters are fixed at their rigid WKK

values. Another assumption is that all WKK parameters are treated as independent,

when most likely significant correlations exist. An alternative approach would be

to define the error relative to the significant parameters but apply uncertainty to all

WKK parameters in some type of uniform way. This would allow the full extent of the

epistemic uncertainty to be captured in the environment. It is recommended this lat-

ter approach be pursued to see how significant the fidelity is compared to the margins.

6.6.4 Bayesian Network and Sensitivity Analysis

The development of the Bayesian network to quantify and reduce epistemic un-

certainty through Bayesian inference is a critical component to the rework decision

framework. The Bayesian network can be an indispensable tool for uncertainty quan-

tification in loads analysis and structural design. Surrogate modeling is highly recom-

mended for computational efficiency, but caution should be taken to ensure quality

surrogates are constructed, especially for complex systems such as the environment

used in this thesis. The Bayesian network used in this thesis is essentially a coupling

of surrogate models and MCMC functions for inference in MATLAB. Professionally

developed software is available to specifically carry out all the leg work for Bayesian

networks in an integrated environment and it is recommended that these be explored

as opposed to the “do-it-yourself” approach taken here. Some of these programs are

MATLAB-based while some are not. All were avoided though in this work due to a

lack of time to learn new software so consequently the effort required is unclear.

Uncertainty propagation for sensitivity analysis is one of the most important uses
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of the Bayesian network. The global sensitivity analysis (GSA) method implemented

in this work required a large sample size to avoid numerical errors [135]. This may

be due to the quality of the surrogate models used in conjunction with the Bayesian

network. Still it may be beneficial to explore other approaches suggested by Saltelli

et al or other authors.

A combination of feature selection using machine learning and GSA were em-

ployed at different times to narrow down the large pool of parameters into a reason-

able amount for the computational resources available. If given more time or more

resources, a single analysis would be done using one method with all parameters from

all load cases (over 400 in total) using a very large sample size (at least 2000). This

would be preferred to doing it in multiple steps in order to capture the most signif-

icant parameters but it would have been very difficult to run so many cases in this

environment. With the current computational resources 2000 cases could take several

weeks to complete. An alternative way to reduce the problem size could be to redefine

how the empirical adjustments are applied. For example they could be constant for

an area of the wing as opposed to each strip.

The GSA results from Experiment 1 identified significant aleatory and epistemic

uncertainty parameters for the system and subsystem responses. A key assumption

is the standard deviation for the Gaussian distribution defining each aleatory pa-

rameter. The focus of this thesis was primarily on the epistemic uncertainty so it is

recommended that more effort be made to also rigorously define the aleatory sources

with data. Several epistemic uncertainty parameters were identified as significant by

GSA. Based on the results the wing root and tip WKK parameters have the largest

epistemic uncertainty in terms of bending moment. This may be because of the largest

moment occurs towards the cantilevered root. The tip may be significant because of

wing tip vortices but these results may be skewed by the large discretization error

which seems to increase the WKK magnitude at the tip. It is recommended future
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work focus on defining and reducing epistemic uncertainty on these areas of the wing.

The sensitivity analysis was only done on Load Case 4 and it was assumed the

other load cases had the same significant parameters, but this should be verified in

future work. The bending moment response used for the sensitivity analysis only in-

cluded four spanwise locations and were always set at the mid-chord. A more refined

bending moment distribution may reveal other results from sensitivity analysis.

6.6.5 Rework Decision Framework

The insight from building and testing the rework decision framework on a simple

problem for the literature was very beneficial for formulating and solving the final

optimization problem on the full system. It is thus recommended a similar approach

be taken for any future developments of the framework. A lot of Experiment 2 was

focused on implementing the decoupling approach of Liang et al [85] and even though

in the end it wasn’t utilized it was also beneficial. Of course the actual load cycles

in a development program should not be modified, but from a modeling perspective

decoupling would substantially decrease the computational burden.

One useful insight from this work was potentially enforcing compatibility through

Bayesian inference in order to model variations in the design variable through the

load cycles. For example, instead of assuming the required margin is fixed at a given

value, it could be large in the beginning cycles and gradually decreased to zero at

the final. These variations complicate the design of experiments because surrogates

would be needed for each iteration, but these surrogates would be disjointed. The

methods of Liang et al could potentially solve this problem by linking the surrogates

through Bayesian methods. Unfortunately there was not enough time to pursue this

further in this work, but it is recommended this approach be explored to see if it is

viable.
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An assumption is that the load margin should only be applied to the significant

WKK parameters, if it were applied to all the parameters uniformly the impact of

the margin may be more significant. As just alluded to, the structural required

margins are assumed to be fixed throughout the cycles and uniformly applied to all

components. During the flight load survey the required margin is always set to zero

to define major rework. It is recommended that the design variables, especially the

fidelity and required margin, be allow to change during the load cycles.

MATLAB’s genetic algorithm was the only suitable choice for the optimization

problem with the available Toolboxes. The GA offered a lot of flexibility and per-

formed well on the surrogates. The required function evaluation of GA’s made it

intractable to use with the slice sample method for Bayesian inference, which is why

the additional surrogate relating the responses directly to the design variables was

necessary. Other optimization algorithms exist for MATLAB from third-party de-

velopers which may be applied to this problem. Again, caution must be taken to

produce high quality surrogate model to ensure the errors do not grow too large.

The Bayesian network enables error terms such as surrogate modeling error to be

treated as additional parameters and updated. Although this was not pursued here

it is highly recommended given the reliance of surrogates to make the framework

computationally feasible.

The question of scalability is an important one for advancing and implement-

ing the rework decision framework. It is of the authors’ opinion the environment

and overarching framework can be scaled to more realistic models and even more

advanced analyses, but high-performance computing and parallelization is highly rec-

ommended. High quality surrogate modeling is another prerequisite for scaling to

minimize errors because it is not recommended to run the optimization on the full

M&S environment.
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6.6.6 Final Recommendations for Reducing Major Rework Risk

In light of all the assumptions previously discussed, the results of the experimen-

tal plan reveal some general strategies for reducing design and rework risk for this

particular model which may be extrapolated to future work.

1. Epistemic Uncertainty

Focus epistemic uncertainty reduction efforts for the wing root and tips

because sensitivity analysis reveals these areas are more significant to

the integrated bending moment responses considered. By itself, the

K-factor representing aerodynamic fidelity was not the most significant

driver for the wing critical margin uncertainty, but in conjunction with

the load and structural margins significant uncertainty reduction was

possible. Therefore it is recommended that higher-fidelity aerodynamic

methods such as CFD be incorporated into loads analysis for commer-

cial transport aircraft to calibrate the linear DLM in NASTRAN.

2. Load Margin

A clear trend could not be established for how the load margin alone

impacted major rework risk with these results, but it is clear by the

optimal load margins chosen by the optimizer in the various design

scenarios that it plays an important role. More data is needed to define

clear trends for the main effects and interaction effects of the load

margin relative to the other variables. Therefore it is recommended

that the load margin continue to be used as a design variable along

with the required margin to reduce rework risk.

3. Structural Margins
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The structural required margin is the dominant factor in reducing ma-

jor rework risk. It is recommended a minimum structural margin of 24%

is needed for the upper skin panel #10 to avoid major rework based

on the seven design scenarios analyzed and the baseline model (see Ta-

bles 29 and 31). This margin was determined as part of the optimal

solution found by the Genetic Algorithm when solving the constrained

multiobjective problem discussed in Section 6.4.6. The rear spar consis-

tently was the only component to require minor rework (i.e. redesign

during the load cycles) so other component types (such as I-beam)

should be considered. The scenarios also emphasize that fidelity and

load margin are important in balancing the weight and uncertainty, but

the required margin is the primary way to achieving positive margins

in the flight load survey. It must be reiterated that structural model

used here is very simplified and assumes all components are single-sheet

unstiffened panels made of aluminum, all components have the same

structural required margin and the only failure analysis considered is

von Mises yield criterion for ultimate load. Therefore the magnitude of

the margins and weight are not representative of a realistic commercial

transport wing

4. Design Scenarios for Proactive Rework Planning

The optimization problem formulation allows the design scenarios to

play an important role in reducing design risk in a cost effective man-

ner. It is recommended these cost considerations be taken into account

when making decisions to avoid major rework. Therefore it is recom-

mended the user of this framework to analyze various scenarios to de-

velop proactive strategies for both major and minor rework and assess

the cost implications of such strategies.
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6.6.7 Thesis Statement

The culmination of the experimental plan and results validate the primary hy-

pothesis made in the problem formulation. This overarching hypothesis is thus the

thesis statement for this work:

Thesis Statement: For a given design scenario, the proposed framework in-

volving uncertainty quantification and management has lead to improved deci-

sions regarding rework and performance compared to the current approach
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CHAPTER VII

CONCLUSION

7.1 Summary

Cost overruns and schedule delays have plagued almost all major aerospace de-

velopment programs and have resulted in billions of dollars lost. Design rework has

attributed to these problems and one approach to mitigating this risk is reducing

uncertainty. Failure to meet requirements during flight or ground tests results in one

of the most significant and costly rework efforts. This type of rework is referred to as

major rework and the main purpose of this thesis is to reduce this risk by improving

design and analysis decisions impacting the loads analysis process.

Loads analysis is a crucial part of the design process for aerospace vehicles. Its

main objective is to determine the worst-case loading conditions which will realisti-

cally be experienced in normal and abnormal flight operations. These conditions are

called critical loads. With this information, a structure is designed and optimized to

withstand such loads and certify the design. Observing the current approach to loads

analysis has revealed some shortcomings related to uncertainty and the allocation of

load and structural margins. The fields of uncertainty quantification and uncertainty

management were chosen to address these limitations and a framework was proposed

to support decisions for rework in loads analysis.

Key aspects of the framework include utilizing a Bayesian network for modeling

the loads process as well as propagating various uncertainty sources to the system

response. Bayesian-based resource allocation optimization is another key aspect and

used to reduce and manage uncertainty. Finally, the goal of the framework is to de-

termine the optimal tradeoffs between aerodynamic fidelity and margin allocation to
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minimize the risk of major rework while considering their respective cost implications

with finite resources. Assigning costs related to fidelity and margins are intended to

reflect the users’ prioritization for redesign costs, uncertainty, computational cost and

performance degradation through weight penalties.

The demonstration model is the undeformed Common Research Model (uCRM)

wing, which is representative of a transonic wide-body commercial transport. The

modeling and simulation environment is multidisciplinary and anchored in three soft-

ware programs to perform various analyses: NASCART-GT for computational fluid

dynamics; NASTRAN for doublet-lattice method aerodynamics, structural analysis

and aeroelastic analysis; and HyperSizer for failure analysis and structural optimiza-

tion.

The experimental plan includes four experiments which have facilitated the contri-

butions of this work to the research community. The final rework decision framework

was evaluated against seven design scenarios to explore a potential decision makers’

varying priorities as well as a baseline model representative of the current, determinis-

tic approach to loads analysis and rework. Key findings reveal the structural required

margins are the dominant factor in reducing the risk of rework but the aerodynamic

fidelity and load margin are important for balancing performance and uncertainty

when considering financial implications within a finite budget.

A recap of the research development is given in the following section and followed

by the major contributions from the experimental plan.

7.2 Research Development

The following is a brief summary of the research development for this thesis.

• Experimental Setup
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Addressed the research gap for modeling load cycles in aerospace struc-

tural design

• Epistemic Uncertainty

– Research Question 1: What are the appropriate methods for

defining the prior probabilities of uncertain nodes in the Bayesian

Network?

∗ Assume Gaussian distribution for lift-curve slope correction

factor uncertainty

∗ Base mean value on fidelity level using K-factors

∗ Base standard deviation on error relative to simulated truth

data

– Addressed the research gap for rigorous, data-driven estimation of

epistemic uncertainty

• Experiment 1: Determine Impact Of Uncertainty On Major Rework

– Research Question 2: How important is epistemic uncertainty

to major rework relative to other sources?

∗ They are significant to major rework relative to aleatory sources

∗ Like all uncertainty, their significance is highly dependent on

assumptions

– Addressed the research gap for determining if correlations exist be-

tween aerodynamic fidelity and design rework

• Experiment 2: Evaluate Uncertainty Management Optimization Ap-

proaches
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– Research Question 3: How should the optimization problem be

posed to effectively reduce and manage uncertainty in the loads

analysis process?

∗ Modified resource allocation methodology

∗ Multi-objective function

∗ Optimization on surrogate model instead of multi-stage ap-

proach

∗ Unique cost constraints related to weight, rework, fidelity level

and computational cost

• Experiment 3: Determine Impact of Cost Functions On Major Re-

work

• Experiment 4: Evaluate Framework to Support Rework Decisions

– Research Question 4: For a given design scenario, what is the

appropriate method to improve rework decisions regarding major

rework in loads analysis?

∗ For a given set of costs, optimizing the aerodynamic fidelity,

load margin and structural margin improves rework decisions

regarding major rework

– Addressed the research gap for developing proactive rework strate-

gies during the design phase

• Primary Hypothesis: For a given design scenario, the proposed

framework involving uncertainty quantification and management will

lead to improved decisions regarding rework and performance compared

to the current approach
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– Accepted based on experimental plan, observations and results

– Forms thesis statement

• Research Objective: Develop a methodology for loads analysis to

quantify and manage uncertainty related to aerodynamics and load case

parameters in order to improve decision making for rework by optimiz-

ing fidelity, load margins and structural margins for new concepts

– Accomplished with rework decision framework utilizing unique re-

source allocation optimization and Bayesian network in conjunc-

tion with loads analysis M&S environment

7.3 Contributions

7.3.1 Integrated M&S Environment

The modeling and simulation environment for the loads analysis process is an

important contribution. A great deal of effort was necessary to integrate the CFD,

FEA and structural design programs together in MATLAB. Such an environment

could be used as a testbed for more advanced studies in loads analysis and structural

design. All the software programs utilized are capable of being scaled up to handle

sophisticated, highly detailed models. Observations from the literature reveal that

not a lot of aerospace research has been focused on modeling the load cycles in a

development program so this is a relatively unique capability and particularly valuable

for life cycle design.

The environment developed here was intended for commercial transport aircraft

but is flexible enough to include other aerospace and even non-aerospace models.

Many engineering systems experience aeroelastic loads from fluid (including liquid)
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and are feedback coupled. Some examples of systems which could utilize this en-

vironment are unmanned airacft, military aircraft, rotorcraft, hypersonic vehicles,

general aviation, rockets, missiles, propulsion systems, wind turbines, automobiles,

watercraft, submarines, etc.

7.3.2 Epistemic Uncertainty Quantification

One of the identified research gaps was that many epistemic uncertainty studies in

the literature do not use data-drive approaches for defining the sources of uncertainty

for complex problems. Even studies which have developed advanced methods of

quantifying episetmic uncertainty in various forms and from various types of data

rarely demonstrate their techniques on realistic engineering problems and instead use

simplified or even analytical problems. As detailed in Section 6.2, extensive work

went into coupling both rigid and flexible CFD to NASTRAN in order to define the

mean and standard deviation of the episemic uncertainty representation for each WKK

parameter.

Accurately defining epistemic uncertainty is one of the most significant challenges

for UQ and also one of the major barriers of its wide-spread use in industry. This

work defies the status quo and estimates this uncertainty with data rather than

solely relying on subjective opinion or assumptions. Perhaps this work can serve as

an example for bridging the gap between academic research and application.

The approach to defining aerodynamic epistemic uncertainty can also be bene-

ficial, especially for NASTRAN users who rely on empirical adjustment factors and

external aerodynamic data for calibration. According to industry experts, this is

common practice in commercial transport design programs so this effort could serve

as a starting point for uncertainty quantification. Especially given the fact that the

demonstration model and modeling and simulation environment are fairly complex
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and therefore give a more realistic picture of potential implementation.

Although the specific form of the WKK matrix is specific to NASTRAN, it repre-

sents a correction to the lifting force slope which could be utilized in many aerody-

namic analyses outside of NASTRAN. In closing, the epistemic uncertainty quantifi-

cation work of this thesis contributed to filling a relevant gap in the literature which

benefits the aerospace community, both academic and industrial.

7.3.3 Bayesian Network for Loads Analysis

Bayesian methods in general have been applied to aerodynamic, structural design

and aeroelasticity individually but rarely to loads analysis and modeling the load cy-

cles in a development program. Due to the complexity of loads analysis and the many

interactions between loads, stress and design groups there are many potential uncer-

tainty sources. Bayesian networks are especially suited for modeling many uncertain

quantities and complex relationships through conditional dependence.

The sensitivity analysis and dimensionality reduction efforts related to Experiment

1 are examples of how large problems can become computationally feasible and en-

able the use of Bayesian networks for realistic problems. The results of Experiments

1, 3 and 4 demonstrate the effectiveness of using Bayesian networks and Bayesian

methods in general to loads analysis, which could improve future efforts.

7.3.4 Uncertainty Management System for Loads Analysis

The results of Experiment 2 helped form the resource allocation optimization

problem utilized in the rework decision framework. Carrying out the sub-experiments

served as important test-beds for modifying the original method and using Bayesian

inference in loads analysis.

Some contributions arose from these experiments which were not directly related
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to the framework but still are important to the broader research community. The re-

source allocation method developed by Sankararaman (2012) and the Bayesian-based

feedback decoupling approach of Liang (2016) are two powerful methods for MDAO.

As was noted, both approaches had yet to be applied simultaneously to a problem.

Experiment 2 filled this gap and demonstrates the effectiveness. The computational

expense of the Bayesian inference in resource allocation can be offset by decoupling

feedback systems. Even though the latter also uses Bayesian inference, Experiment 2

shows the computational effort is much smaller compared to the multiple realizations

of the parameter update required by resource allocation. Thus this experiment can

serve as an example for improving future design efforts by utilizing both approaches.

Enforcing compatibility with the methods suggested by Liang et al ultimately

were not used in the final implementation of the rework decision framework. Yet, it

is still possible they can be applied with future work to evaluate errors associated

with the sub-optimization which occurs during the load cycles. As was alluded to

in the discussion, this method of enforcing compatibility has the potential to enable

modeling variations in the fidelity and margins during the load cycles.

7.3.5 Rework Decision Framework

The final experiments determined the sensitivity of the objective and constraint

function parameters with respect to the important system responses. The rework

cost and budget allocations were the dominant parameters so care should be taken

in defining them. Seven design scenarios were developed and used in the framework

to determine important trends. The framework was able to exhibit expected trends

in analyzing the design scenarios which helped validate the problem formulation was

appropriate.

Some of the key insights gained was the necessity of appropriately setting the
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required margin to avoid rework. The K-factor and load margin had less impact

on the ability to achieve a positive critical margin during the flight load survey but

had a large impact on the cost functions and the ability to balance performance and

uncertainty within the allocated budget.

Finally the rework decision framework was evaluated against a baseline model

which represents the current approach to load analysis. In the end the framework

was able to avoid major rework while providing more information on the system

uncertainty and cost implications of the optimal design variables compared to the

current approach.

The contributions of this thesis are encapsulated in the rework decision framework

and summarized below:

1. Potential M&S testbed for future studies in aeroelastic loads analysis

2. Viable Bayesian network for uncertainty reduction and propagation in

loads analysis

3. Unique Bayesian-based approach for uncertainty management in loads

analysis which considers cost implications

4. Original, comprehensive framework to improve decision making in aerospace

structural design and proactively address rework

7.4 Limitations and Future Work

7.4.1 Aerodynamic Modeling

Aerodynamic fidelity is an important focus of this thesis. With only two analysis

methods to choose from (CFD and NASTRAN DLM) the definition of fidelity was

somewhat restricted. A mid-fidelity analysis such as AVL (Athena Vortex Lattice)

and a viscous CFD solver could have expanded the fidelity range to test its impact
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on rework.

The WKK empirical adjustments only allow for linear lifting force curve slope

which in turn linearizes the calibration data. As was discussed, another method of

supplementing NASTRAN with high fidelity data is the direct grid import method.

This bypasses DLM and allows for nonlinear aerodynamics. This option was not

explored due to the required remodeling effort, but this is an option which should be

explored for future work. The linearization also called for a linear K-factor approach

to simulating fidelity. The results for the WKK error for the uncorrected and corrected

compared to the truth data revealed there are nonlinearities which could not be

captured by the K-factor. Using the direct grid import would circumvent this and

allow for a nonlinear K-factor, or other measure, for fidelity.

In the current framework, the simulated high fidelity data to update the WKK

parameters were only from rigid CFD analysis. Future work could expand this and

test the effects of updating the parameters with flexible CFD data during the load

cycles.

Thirty-eight symmetric steady load cases were downselected to four critical cases

in this work. In reality thousands of load cases of all different types are required in a

development program which may lead to hundreds of critical cases. Therefore future

studies must expand the load case design of experiment and include unsteady, asym-

metric, gust and other important load case types. Naturally with this expansion more

load case parameters would be necessary. For such studies it will again be critical to

perform sensitivity analysis to reduce the problem size.
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7.4.2 Uncertainty Definition

The epistemic uncertainty in the WKK parameters was modeled as Gaussian with

mean and standard deviation distribution parameters based on the rigid WKK nom-

inal values and relative errors. Due to an increased focus in the field of uncertainty

quantification, there are advanced methods for defining distributions specifically for

epsitemic uncertainty. Epistemic uncertainty in this thesis only represented model

form error, but there are other types including data uncertainty, numerical error, etc

and methods exist for defining and mitigating these types as well. Such approaches

could be used here while maintaining a probability-based definition so Bayesian meth-

ods can still be applied.

Although this study focused much more on epistemic uncertainty than aleatory,

global sensitivity analysis showed these sources were still significant. More effort

could be made to define the aleatory uncertainty distributions for the load case pa-

rameters so they reflect realistic operational conditions. Also, other pertinent sources

of aleatory uncertainty could be included such as material properties.

7.4.3 Structural Design

The structural design model used in this framework does not take advantage of

the true strengths of HyperSizer. These choices were made to simplify the initial de-

velopment but future work should use more advanced and realistic models to better

estimate rework. Such changes would include a design of experiments for the struc-

tural optimizer which includes multiple component concepts (e.g. stiffened, sandwich,

bonded, etc.), failure methods and materials. The DoE should not be uniform as was

done here and instead should vary for the component types. For example, several

stiffened panel concepts may be appropriate for the skins but not for the spars. In

particular it would be remiss not to use HyperSizer’s advanced composite modeling for
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any future work, especially given the growth in composites in the aerospace industry.

Such advanced modeling could be utilized with the same existing M&S environment

and requires very little effort to implement into HyperSizer.

The structural margins and safety factors in this thesis were defined in the classical

context, i.e. they were deterministic. This was largely due to simplifying the model

and wanting to develop a framework which could easily be used under normal industry

practices. There is a growing body of research on probabilistic and reliability-based

approaches to defining margins or even alternative approaches. Such advanced ap-

proaches could be integrated into this framework but would likely required creating

custom functions in HyperSizer or running Monte Carlo simulations of HyperSizer.

One advantage of this approach would be to set custom required margins for each

component, rather than assuming the same for the entire system as was done here.

7.4.4 Variations Between Load Cycles

The M&S environment developed in this thesis has the potential to include many

important aspects of a real development program but were excluded from the initial

development of the framework for simplification purposes. One of the most important

aspects is modeling the variations in the system as the load cycles progress. In this

thesis, the only changes which occurred in the system between load cycles was the

loads, stiffness and component dimensions. In reality, the models in the initial load

cycle are not the same ones used in the certification load cycle. The number of

load cases and resolution of internal structure increases significantly throughout the

load cycles. Additionally, as time progresses new information is gained, customer

requirements may change, new high-level design decisions by upper management,

market changes, etc. can impact the design.
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Most of these variations can be captured within this M&S environment and ac-

counted for in this framework to optimize the analysis fidelity and margins and sup-

port more realistic rework decisions. Naturally modeling such variations would signif-

icantly increase the problem size and require optimization after each load cycle. As

shown in this thesis, surrogate modeling is an essential part to making this framework

computationally feasible. Having discrete system changes between cycles means the

approaches for DoE sampling to fit surrogates would most likely be highly inaccurate.

The aforementioned Bayesian-based feedback decoupling method developed by Liang

[83] potentially could be modified to enforce compatibility between surrogate models

of different cycles and drastically decrease the number of samples needed. This ap-

proach was deemed out of scope for this thesis but should be explored for future work

to test its validity. If true, it could serve as a key enabler for life cycle modeling and

design.

7.4.5 Future Work Prioritization

Some key limitations of this thesis were discussed along with recommendations to

overcome them in the future. Naturally not all of these recommendations are weighed

equally and not all can feasibly be explored simultaneously. Thus the author’s opinion

on the prioritization of future work is given, here starting with the biggest priority:

1. Increase Load Case and Structural Design Resolution

Adding more load cases and implementing an advance HyperSizer model

requires no significant change to the integrated M&S environment but

results in substantial increases in the fidelity of the rework assessment.

2. Include Variations Between Load Cycles

An essential part of accurately modeling the loads process is to account
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for internal and external changes in the system which naturally occur

in all airplane development program as load cycles progress. This is a

key enabler to life cycle design.

3. Improve Simulation of Aerodynamic Fidelity

Accurately simulating the effects of aerodynamic fidelity is a corner-

stone of this thesis and requires new analysis methods be introduced

representing various fidelity levels. Directly importing an external aero

grid into NASTRAN and circumventing DLM is an important enabler

for capturing nonlinear effects of fidelity on aerodynamic loads. Model-

ing other types of epistemic uncertainty (data, numerical, etc.) would

also be an important improvement.

4. Improve aleatory uncertainty estimations

The sensitivity studies done in this thesis are ultimately based on the

uncertainty definitions assumed. More effort should be made to real-

istically define the aleatory uncertainty in order to see how important

they are relative to the epistemic sources.

7.5 Concluding Remarks

The rework decision framework developed in this thesis is an important first step

to improving loads analysis and in general life cycle design. Bayesian-based methods

have been shown to be viable approaches for modeling and mitigating uncertainty for

advanced aerospace systems. I hope this work serves as a foundation for future work to

address rework and uncertainty in design. Aerospace development programs continue

to be plagued by cost overruns and delays and even reducing a small amount could

produce significant savings and enhance the overall life cycle of aerospace systems.
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NASCART-GT INPUT FILE
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$ NASCART-GT Input File
$ All lines beginning with '$' or completely empty will be ignored

$ Case name 
CASE_NAME uCRM LC 1 AoA 1.164607e+01 Iteration 0
$----------- Freestream conditions -----------$
$
$ Freestream velocity specified as either Mach number of velocity in 
m/s (Do not specify both)
FREESTREAM_MACH_NUMBER 0.85

$ Freestream pressure in Pa
FREESTREAM_PRESSURE 16227.0

$ Freestream temperature in K
FREESTREAM_TEMPERATURE 216.6500

$ Angle of Attack in degrees (adjust orientation of freestream flow)
ANGLE_OF_ATTACK 0.0

$ Side slip angle in degrees (adjust orientation of freestream flow)
SIDE_SLIP_ANGLE 11.646072

$---------- Surface Boundary Conditions ----------$
$
$ Velocity boundary condition (SLIP for inviscid, NO_SLIP for viscous)
VELOCITY_BC SLIP

$ Thermal boundary condition (ISOTHERMAL, ADIABATIC)
THERMAL_BC ADIABATIC

$ Isothermal wall temperature in K
ISOTHERMAL_TEMPERATURE 300.0

$---------- Grid ----------$
$
$ Problem dimension (1D, 2D, 3D)
DIMENSION 3D

$ Axisymmetric (YES, NO)
AXISYMMETRIC NO

$ Minimum/Maximum values for grid
XMIN -100.0
XMAX 100.0
YMIN 0.0
YMAX 200.0
ZMIN -100.0
ZMAX 100.0



$ Root grid dimension (typically leave as 1, unless there's a specific 
reason to change)
ROOT_CELLS_X 1
ROOT_CELLS_Y 1
ROOT_CELLS_Z 1

$ Domain boundary conditions (RIEMANN_INVARIANTS, FREESTREAM, 
SUPERSONIC_OUTLET, SYMMETRY)
$ RIEMANN_INVARIANTS: farfield condition capable of handling both 
subsonic and supersonic
$ FREESTREAM: Can be used where freestream flow enters domain only if 
supersonic
$ SUPERSONIC_OUTLET: Can be used where freestream flow exits domain 
only if supersonic
$ SYMMETRY: Applies symmetry condition
XMIN_BC RIEMANN_INVARIANTS
XMAX_BC RIEMANN_INVARIANTS
YMIN_BC SYMMETRY
YMAX_BC RIEMANN_INVARIANTS
ZMIN_BC RIEMANN_INVARIANTS
ZMAX_BC RIEMANN_INVARIANTS

$ Initial refinement level (results in an initial mesh of 2^n x 2^n x 
2^n for each root cell)
INITIAL_REFINEMENT_LEVEL 3

$---------- Geoemtry Configuration ----------$
$
$ Geometry configuration file name (name of file containing input 
geometry information)
$ If no geometry is to be used, then specify NONE
GEOMETRY_CONFIG_FILE geometryConfiguration.input
$GEOMETRY_CONFIG_FILE NONE

$---------- Gas Properties ----------$
$
$ Chemistry Model (CPG_AIR, CPG_USER_DEFINED, REACTING) 
THERMOCHEMICAL_MODEL CPG_AIR

$ Location of mixture model (only for REACTING or CPG_USER_DEFINED)
MIXTURE_MODEL_PATH NONE

$ Temperature model (only for REACTING), (ONE_TEMPERATURE, 
TWO_TEMPERATURE)
TEMPERATURE_MODEL ONE_TEMPERATURE

$---------- Simulation Parameters ----------$
$
$ Simulation type (NAVIER_STOKES (includes Euler), BODY_ONLY)



SIMULATION NAVIER_STOKES

$ Initiate simulation from restart file (YES,NO)
RESTART NO

$ Use a restart file (<name of restart file>)
RESTART_FILE restart_previous.output

$ Number of iterations
NUMBER_OF_ITERATIONS 10000

$ Simulation time (use large number to ignore this convergence 
criterion)
SIMULATION_TIME 1.0E10

$ Convergence criteria: normalized RMS error of all conserved 
variables
RMS_CONVERGENCE 1.0e-8

$ Time integration scheme (EXPLICIT_EULER, HANCOCK_PC, RK4, TVD_RK3, 
SSP_RK45, SSP_RK34, SSP_RK35, SSP_RK410, LUSSOR)
TIME_SCHEME TVD_RK3

$ Local vs. global time-stepping (LOCAL, GLOBAL)
TIME_STEP_APPROACH GLOBAL

$ Choose time step based on CFL number (YES, NO)
CFL_DRIVEN YES

$ Starting CFL number (requires CFL_DRIVEN = YES)
CFL_START 1.0

$ Ending CFL number for linear ramping (requires CFL_DRIVEN = YES)
CFL_END 1.0

$ Iteration number to begin CFL ramping (requires CFL_DRIVEN = YES)
CFL_START_ITERATION 100

$ Iteration number to end CFL ramping (requires CFL_DRIVEN = YES)
CFL_END_ITERATION 1000

$ Specified constant time step (requires CFL_DRIVEN = NO)
TIME_STEP 5.0E-6

$ Inviscid flux scheme (ROE, AUSMPW+, HLLC, M-AUSMPW+, AUSM+up2)
INVISCID_FLUX_SCHEME ROE

$ Extrapolation for invscid flux scheme (UPWIND_1, MUSCL_2, MUSCL_3, 
NASCART_MUSCL_2, NASCART_MUSCL_3, WENO_3, WENO_5, MLP_3, MLP_5)
EXTRAPOLATION_SCHEME WENO_3



$ Extrapolation limiter (NONE, MINMOD, SUPERBEE, SWEBY, VAN_LEER), 
(only for MUSCL_2, MUSCL_3)
LIMITER NONE

$ Viscous case (YES, NO)
VISCOUS NO

$ Viscous flux scheme, VISCOUS must be set to YES 
(CENTRAL_DIFFERENCE_2)
VISCOUS_FLUX_SCHEME CENTRAL_DIFFERENCE_2

$ Turbulence (YES, NO)
$ (Not supported yet)
TURBULENCE NO

$ Turbulence formulation, TURBULENCE must be set to YES (RANS, LES, 
RANS_LES, PANS)
TURBULENCE_FORMULATION RANS

$ RANS model (K_OMEGA, K_EPSILON, SST)
RANS_MODEL K_OMEGA

$ Point interpolation method (NEAREST_POINT, DISTANCE_WEIGHTED, 
LEAST_SQUARES)
POINT_INTERPOLATION DISTANCE_WEIGHTED

$---------- Solution-based grid adaption ----------$
$
$ Apation frequency (a value of "0" is equivalent to turning off 
solution adaption)
ADAPTION_FREQUENCY 500

$ Iteration at which to start solution adaption
ADAPTION_START 500

$ Iteration at which to stop solution adaption
ADAPTION_STOP 8000

$ Solution adaption normalized gradient parameters
$ The numerical value represents a scale factor with 
$ respect to the mean gradient throughout the flowfield
$ The MIN parameter specifies where the mesh should be coarsened
$ The MAX parameter specifies where the mesh should be refined
$ Negative values for MIN will ensure that that parameter will not 
coarsen the mesh
$ Very large values for MAX will ensure that that parameter will not 
refine the mesh
MIN_DIVERGENCE 0.3
MAX_DIVERGENCE 0.8



MIN_VORTICITY -0.5
MAX_VORTICITY 1.0e10
MIN_PRESSURE_GRADIENT -0.5
MAX_PRESSURE_GRADIENT 1.0e10
MIN_TEMPERATURE_GRADIENT -0.5
MAX_TEMPERATURE_GRADIENT 1.0e10
MIN_MACH_GRADIENT -0.5
MAX_MACH_GRADIENT 1.0e10

$ Solution adaption bounds - only allows solution adaption within the 
specified box
$ For no restrictions, bounds must be greater than computational 
domain
XMIN_ADAPTION -1.0E10
XMAX_ADAPTION 1.0E10
YMIN_ADAPTION -1.0E10
YMAX_ADAPTION 1.0E10
ZMIN_ADAPTION -1.0E10
ZMAX_ADAPTION 1.0E10

$---------- Aerodynamic Reference Quantities ----------$
$

$ Reference length to be used for computing moment coefficient
AERO_REFERENCE_LENGTH 7.224

$ Area to be used for computing lift, drag, and moment coefficients
AERO_REFERENCE_AREA 812.542

$ Center about which to calculate aerodynamic moment
AERO_MOMENT_CENTER_X 0.25
AERO_MOMENT_CENTER_Y 0.0
AERO_MOMENT_CENTER_Z 0.0

$---------- Output Options ----------$
$
$ Location of visual output data (NODE_CENTERED, CELL_CENTERED)
VISUALIZATION_LOCATION CELL_CENTERED

$ Frequency to write out visualization output data
VISUALIZATION_FREQUENCY 100

$---------- Parallel computing options ----------$
$
$ Number of CPU nodes to partition grid (NOT IMPLEMENTED YET, will use 
MPI)
NUMBER_OF_CPU_NODES 1

$ Options for threads (ALL, SINGLE, USER_DEFINED)
$ Use ALL if computational resources provide multi-core option



$ ALL will use all available threads on single compute node, but 
$ will not distribute across multi-node setup
$ Uses OpenMP
THREAD_OPTION ALL

$ Threads per node (specify number of threads if THREAD_OPTION = 
USER_DEFINED)
THREADS_PER_NODE 1
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