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SUMMARY

Working together, heated and unheated temperature sensors can recognize contact with

different materials and contact with the human body. As such, distributing these sensors

across a robot’s body could be beneficial for operation in human environments. We present

a stretchable fabric-based skin with force and thermal sensors that is suitable for covering

areas of a robot’s body, including curved surfaces. It also adds a layer of compliance that

conforms to manipulated objects, improving thermal sensing. Our design addresses thermal

sensing challenges, such as the time to heat the sensors, the efficiency of sensing, and

the distribution of sensors across the skin. It incorporates small self-heated temperature

sensors on the surface of the skin that directly make contact with objects, improving the

sensors’ response times. Our approach seeks to fully cover the robot’s body with large

force sensing taxels, but treats temperature sensors as small, point-like sensors sparsely

distributed across the skin. We present a mathematical model to help predict how many of

these point-like temperature sensors should be used in order to increase the likelihood of

them making contact with an object. To evaluate our design, we conducted tests in which

a robot arm used a cylindrical end effector covered with skin to slide objects and press

on objects made from four different materials. After assessing the safety of our design,

we also had the robot make contact with the forearms and clothed shoulders of 10 human

participants. With 2.0 s of contact, the actively-heated temperature sensors enabled binary

classification accuracy over 90% for the majority of material pairs. The system could more

rapidly distinguish between materials with large differences in their thermal effusivities

(e.g., 90% accuracy for pine wood vs. aluminum with 0.5 s of contact). For discrimination

between humans vs. the four materials, the skin’s force and thermal sensing modalities

achieved 93% classification accuracy with 0.5 s of contact. Overall, our results suggest that

our skin design could enable robots to recognize contact with distinct task-relevant materials

and humans while performing manipulation tasks in human environments.

xi



CHAPTER 1

INTRODUCTION

Covering the surface of a robot’s body with multimodal tactile sensors could be advantageous

for numerous applications where robots work in close proximity to people. For example,

whole-arm force sensing can improve a robot’s ability to reach locations in clutter [1], and

robots can provide better assistance with some tasks if they’re allowed to make contact

between their arms and people [2]. More generally, a robot could use multimodal tactile

sensors to gather more information about the world when contact occurs with people or

objects in its surroundings.

While distributing force sensors across the bodies of robots has been widely explored,

other modalities for tactile sensing over larger areas have received less attention. We pre-

viously conducted research on thermal sensing using data collected by handheld devices

operated by humans [3]. Although we did not conduct tests with a robot, our work sug-

gested that robots that operate in indoor human environments, such as homes, offices, and

healthcare facilities, might benefit from thermal tactile sensing that uses actively heated

temperature sensors (active thermal sensors) together with unheated temperature sensors

(passive thermal sensors). Active thermal sensors are useful for recognizing materials at

the ambient temperature, due to heat transferring from the heated sensor to the material.

Passive thermal sensors have advantages for recognizing contact with humans indoors, since

heat from the human body transfers to the passive thermal sensor, which is near room

temperature.

Active thermal sensors can recognize contact with different materials due to variations

in how heat transfers from the sensor to the material. Notably, the temperature of the active

thermal sensor drops more rapidly and achieves a lower steady state temperature when it

makes contact with a material that has a higher thermal effusivity. Passive thermal sensors
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can recognize contact with people due to the heat generated by the human body. The

temperature of a passive thermal sensor in a typical climate controlled indoor environment

will start to rise once in contact with a person’s body and, in many cases, will do so even

when in contact with clothing worn by a person. In contrast, the temperature of a passive

thermal sensor will tend to remain constant when in contact with materials at the ambient

temperature [3].

In this thesis, we present our design of a multimodal fabric-based tactile sensing skin for

robots in human environments. The skin integrates stretchable fabric-based force sensors and

discrete temperature sensors in the form of thermistors, which have an electrical resistance

that varies with temperature. Our design uses small off-the-shelf thermistors with a low time

constant to improve the speed with which inferences can be made. The skin’s stretchable

fabric-based design enables it to cover curved surfaces on a robot and, possibly, articulated

joints [4]. In addition, the layers of fabric result in the skin being compliant, which could

be beneficial for operating around people and enables the skin to conform to manipulated

objects. This improves contact between the temperature sensors and manipulated objects,

thereby improving thermal sensing.

In addition, we present a characterization and evaluation of the skin, as well as a general

mathematical model for selecting the number of thermal sensors to cover the skin. This

model provides an analysis tool to help designers increase the chance of contact between

the thermal sensors and manipulated objects.

To evaluate our skin design, we used a real robot performing controlled manipulation

tasks in a human environment. We covered a cylindrical end effector with our skin prototype

and used the end effector with a Meka M1 Mobile Manipulator. The robot performed two

manipulation tasks with four materials: pressing an object for 2.0 s and sliding an object

across a table. We also had the robot press the bare forearm and clothed shoulder of 10

human participants. We used the skin’s force sensors to detect the start of contact and used

support vector machines (SVMs) to recognize the touched object based on the sensor data
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in multiclass and binary classification problems. We used the skin’s active thermal sensors

to distinguish between material samples and the skin’s force, active and passive thermal

sensors to recognize contact with the human body.

We based our study of binary classification on the notion that many material recognition

problems that a robot could encounter while assisting people could involve binary classifi-

cation [3]. Tasks can sometimes be considered to involve a tactile foreground, such as an

object to be grasped, and a tactile background, such as the surface on which the object rests.

For example, if a robot were to reposition a person’s limb as he or she sits in a wheelchair,

it might use tactile sensing to distinguish the person’s body from the metal wheelchair.

Similarly, while navigating within a human environment, distinguishing between contact

with a human versus contact with the surrounding environment could be used to inform a

robot’s behavior.

Chapter 2 discusses related work focused on force and thermal tactile sensing for robots.

Chapter 3 describes the development of the skin and construction of the prototype that

covers a robot’s end effector. In Chapter 4, we present a geometric model to inform the

distribution of thermal sensors across the skin. We also characterize the noise level of the

thermal sensors, the speed of response of the active thermal sensors and perform a safety

analysis of the active thermal sensors for use in human environments. Chapter 5 details our

evaluation of the skin and Chapter 6 summarizes the results of our evaluation and discusses

capabilities and limitation of the system. Chapter 7 presents our conclusions.
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CHAPTER 2

RELATED WORK

Tactile sensors measuring force or pressure have been used on many robotic platforms and

are often implemented as arrays or skins [5], [6], [7], [8]. In this work we define robotic

skin as a sensorized covering for a 3 dimensional robot as opposed to a two dimensional

sensor array that can only cover a flat surface. In some cases skins are made of stretchable

fabrics to allow the skin to cover surfaces with complex curvature [9], [10]. As discussed in

our previous work [3], [11], many robotic systems also benefit from thermal tactile sensors

including active thermal sensors for discriminating between materials based on heat transfer

or passive thermal sensors for identifying objects at different temperatures. For active

thermal sensing, some researchers have used arrays of temperature sensors combined with

a common resistive heating element to realize a thermal sensing array as seen in [12] and

[13]. While most researchers use thermistors or resistance temperature detectors (RTDs) for

temperature sensing, other devices including Peltier effect sensors [14], pyrometers [15] and

more recently pectin films [16] have been used.

Combining force and thermal sensing into a multimodal sensor remains an active area of

research. In some cases, researchers have used compact multimodal sensors to cover a small

area such as a robot fingertip, while other studies have focused on realizing multimodal

sensing arrays or skins to cover larger areas of the robot.

2.1 Small Area Force and Thermal Sensors

In contrast to the devices in this section, which are designed to provide sensation over

a relatively small area, our skin design provides multimodal sensation over a larger area

(60 cm2) and can be further scaled-up.

The Syntouch BioTAC is a multimodal robotic fingertip sensor that has been widely
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used in robotics applications for material and object identification [17], [18], [19], [20],

[21]. The BioTAC features 19 impedance sensing electrodes for force estimation (both

direction and magnitude) and a single thermistor combined with inherent heat generation in

the sensor’s electrical hardware for active thermal sensing. One drawback of the Syntouch

BioTAC, is that the thermistor takes significant time to heat up and to transfer heat to objects,

in part because of the placement of the thermistor in the interior of the finger and the lack

of controlled heating specifically for the thermistor. In contrast, our design places the

thermistors on the exterior of the surface and directly heats the thermistors in a controlled

manner.

Taddeucci et al. presented a robot fingertip sensor featuring 64 force-sensing taxels

made of peizo-resistive silk screen ink and a single heater and thermistor for active thermal

sensing [22]. Caldwell et al. developed a similar fingertip sensor using a fiber optic force

sensor and a Peltier effect sensor [14]. Yuji et al. constructed a 2x2 array of resistive force

and passive thermal sensors using pressure conductive rubber [23].

Engel et al. constructed a high resolution skin designed to cover a robot’s fingertip with

multiple force and active and passive thermal sensors on a flexible printed circuit board

(FPCB). They used discrete heating elements to locally warm certain temperature sensors

while leaving other temperature sensors unheated for passive thermal sensing [24], [25].

This method is advantageous for combined active and passive thermal sensing compared to

using a common heat source, because heating the entire device may cause heat to flow into

the passive thermal sensors and bias their temperature measurements.

While their use of both active and passive thermal sensing is related to our approach,

our use of stretchable fabric could allow our skin to cover shapes with more complex

curvature, which addresses one of the limitations of the device developed by Engel et

al. [24]. Additionally, we use a geometric model to design the arrangement of sparsely-

distributed thermal sensors, which reduces the required number of the analog channels and

may improve the scalability of our system for covering larger areas.
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2.2 Large Area Force and Thermal Sensors

To provide multimodal sensation over a larger area, researchers have used multimodal tactile

sensing arrays or skins with multiple force and thermal sensors. Examples include [26], [27],

[28], where arrays of force and temperature sensors were realized with an FPCB or similar

polyimide substrate. While this material provides a durable substrate for sensor mounting

and can flex to cover surfaces with single curvature such as cylinders, continuous FPCB

sheets may not have the requisite flexibility and stretchability to cover more complex 3D

shapes according to [24].

Mittendorfer et al. developed small rigid hexagonal printed circuit boards (PCBs)

equipped with sensors for force, temperature, acceleration, and proximity and demonstrated

how multiple units can be connected together via FPCB strips to form a skin. Similar to the

BioTac sensor, their design used inherent heat generation from the electrical hardware to

generate heat for active thermal sensing [29], [30], [31]. To cover surfaces with more com-

plex curvature, Maiolino et al. realized a capacitive force sensing skin using interconnected

FPCB sensing modules covered by a common layer dielectric made of 3D air mesh fabric.

Each triangular module included 2 passive thermal sensors for thermal compensation of the

10 capacitive force sensors [28]. Similarly Castelli et al. built an array of capacitive force

sensors with integrated passive thermal sensors [32].

In contrast to these devices with only one type of thermal sensing (active or passive),

our design incorporates both active and passive thermal sensing in a fabric-based design.

We achieve this with two groups of self-heated thermistors that can be independently heated

to software-specified temperatures using feedback control. Moreover, we show that the

thermistors can be safely heated to temperatures well-above the ambient temperature and

likely above temperatures that could be reasonably obtained via inherent heat generation. In

this work, we use this capability for simultaneous active and passive thermal sensing, but all

the sensors could be active with 2 independent temperatures or all passive. Our skin is made
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of stretchable fabric similar to [9] and [10]. This use of stretchable fabric could potentially

allow the skin to cover surfaces with more complex curvature and time-varying geometry

on a robot, such as articulated joints [4].

Our approach is also distinctive in that we prioritize coverage for the force sensors in

our skin to ensure contact will be detected, but use sparse temperature sensors that are very

small compared to the area of the skin. As our model and experiments support, sparse

point-like sensors can usefully make contact with low-curvature objects of sufficient size.

This presents the opportunity to scale up the skin more easily for some applications with

large, low-resolution force sensing areas covering the full skin and small, sparse temperature

sensors providing additional information when they are in contact.

2.3 Evaluation of Force and Thermal Sensors with Robots

A number of studies have used force and thermal sensor feedback from the BioTAC sensor

to aid in object recognition. Xu et al. attached the BioTAC to the finger of a robotic hand

and had the robot touch and identify various material samples using multimodal sensor

feedback [17]. Chu et al. attached two BioTAC sensors to the gripper of a PR2 robot and

had it perform exploratory procedures with various household objects, using multimodal

sensor feedback to assign haptic adjectives [20]. Mittendorfer et al. used their multimodal

tactile sensing skin system on an HRP-2 robot to aid in whole-body grasping, but did not

focus on force and thermal sensing [31]. Similarly Maiolino et al. tested their device on a

number of robotic platforms but focused on force sensing, using thermal sensing primarily

for temperature compensation [28].

In contrast to these studies, we evaluated our skin for use by a robot to recognize

materials and recognize contact with humans. Due to the complexity of robotic skin, robotic

manipulation, and the human body, it is difficult to predict how well a new skin design

will perform when actually being used by a robot. Consequently, we conducted our tests

with a real robot performing two manipulation tasks and making contact with people at two
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locations on their bodies. Our evaluation provides evidence that our skin design could be

beneficial for robots operating in human environments. This also goes beyond our previous

work in this area [3], which only used data collected with a handheld device operated by

people.
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CHAPTER 3

DEVICE DESCRIPTION

Fig. 3.1 shows our fabric-based force and thermal sensing skin prototype covering the

end effector of a Meka M1 Mobile Manipulator. As shown in Fig. 3.2, the skin has 12

circumferential taxels (each of area 2.2 cm2) and 1 end taxel (area 3.8 cm2) for a total of

13. As seen in the figure each fabric-based force sensing taxel is separated by a 5 mm gap,

bringing the overall sensing area to approximately 60 cm2. Note that because of the multiple

layers of fabric that help to distribute pressure, contacts that occur in between two force

sensing taxels are still detected using the force sensors.

Figure 3.1: Multimodal skin prototype attached to the end effector of a Meka M1 Mobile
Manipulator.

As shown in Fig. 3.3 and Fig. 3.5, each taxel features a fabric-based force sensor and

four thermistors divided into two groups. In this work we use group 1 for active thermal

sensing and group 2 for passive thermal sensing. Thus the entire skin has 13× 2 = 26 active

9



Figure 3.2: Arrangement of force sensing taxels on our multimodal skin prototype.

Figure 3.3: Multimodal taxel design.

thermal sensors and 26 passive thermal sensors.

3.1 Fabric-Based Force Sensors

Each force sensor is composed of a layer of Eeonyx LG-SL-PA-20K stretchable resistive

fabric between two layers of LessEMF stretchable conductive fabric (silver plated 76%

nylon, 24% elastic fiber) based on the design in [4].

Fig. 3.4 shows a schematic of the voltage divider circuit used to measure the resistance,

RF, of each fabric-based force sensitive resistor (FSR). In our previous work, we calibrated

the fabric-based force sensor using an ATI Nano25 Force/Torque sensor and found that its

voltage-to-normal force relationship can be approximated given the contact area using a 3rd

order polynomial fit for forces up to 70 N [4]. Because the interaction forces used in this

study were < 15 N, we used a voltage divider reference resistor, Rref = 1 kΩ to increase the

sensitivity for forces in this range. Also, because the taxels used in this skin design were

comparatively small compared to the touched objects, we assumed the contact area would

be the same size as the taxel. For this range of forces, we found that our previous 3rd order
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Figure 3.4: Schematic of force and thermal sensing circuits.

polynomial fit is approximately linear [4]. Based on this, we mapped the output voltage to

force in Newtons using a linear fit.

3.2 Active and Passive Thermal Sensors

As shown in Fig. 3.3, and Fig. 3.5 each multimodal taxel features four fast-response 10 kΩ

thermistors [33] evenly distributed across the skin. Fig. 3.4 shows a schematic of the circuit

used to provide power to, and measure the resistance of, each thermistor. The system then

converts this resistance value to temperature in Celsius using calibration constants provided

by the manufacturer. We implemented a digitally controlled buck converter [34] to provide

a variable DC voltage, 3.3 V ≤ Vsupp ≤ 10.5 V, to each thermistor. If Vsupp = 3.3 V.

the current flowing through the resistor and the resistive heating in the thermistor are

small, allowing for passive thermal sensing. By increasing Vsupp to 9 V, the interior of each

thermistor self-heats to a temperature of 55 ◦C in a room at 25 ◦C, allowing for active thermal

sensing similar to [35] and [36]. This active thermal sensor initial temperature of 55 ◦C

is higher than the setting used in our previous work in [3] and [37]. It allows for a larger

response when the sensors make contact with a material and as discussed in Section 4.4,

does not create a significant safety hazard. Under these conditions, the thermistors are within

their recommended operating range in terms of power and temperature [33].
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Figure 3.5: Multimodal force and thermal sensing skin prototype.

3.3 Active Thermal Temperature Controller

We defined two groups of thermistors using an alternating pattern as shown in Fig. 3.5 and

powered each group of thermistors by an independent buck converter. Thus, each taxel

included two thermistors in each group and the entire skin required two buck converters. In

this work, we used the group 1 thermistors for active thermal sensing by initially setting

Vsupp1 to 9 V and then using a closed-loop integral controller to adjust Vsupp1 to drive the

mean temperature of the group 1 thermistors, T̄1, to the user-defined setpoint, Tset = 55 ◦C.

The controller is described by

Vsupp1(t) = Vsupp1(0)− ki
∫ t

0

ε(t′)dt′ (3.1)

where Vsupp1 is constrained to be between 3.3 and 10.5 V. The error, ε(t), is given by

ε(t) = T̄1 − Tset (3.2)

While this controller helps ensure that the active thermal sensors are at the user-defined

temperature setpoint prior to contact with the object, it is important that it does not respond

so quickly that it cancels informative changes in temperature when the skin comes in contact

with an object. To prevent this we used a low controller gain, ki = 5 mVK−1s−1. Thus if
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Figure 3.6: Representative active and passive thermal sensor data resulting from touching
the skin once each to four material samples. The data is filtered with a 2nd order low pass
Butterworth filter with a cutoff frequency of 10 Hz.

2 of the 26 active thermistors make contact with an object for 2.0 s and their temperature

immediately drops by 5 ◦C, the mean active temperature will decrease by only 0.4 ◦C, and

Vsupp1 will change by only 4 mV based on the integral controller described in (3.1). In the

extreme case, if many active thermistors contact a cold surface for a long period of time, the

controller will adjust Vsupp1 to the maximum voltage at 10.5 V but will not increase further.

While this control method effectively regulated the mean active thermistor temperature

to 55 ◦C, the temperature of individual active thermistors varied by up to ±2 ◦C while the

robot held the skin in air. This was likely due to slightly different heat transfer rates between

the individual active sensors and the fabric to which they were mounted as shown in Fig. 3.5.

One way to account for this variation in our system could be to use individual closed-loop

controllers on each active thermistor. However, this would require many individually-

controlled DC voltage sources and makes scaling to larger areas more difficult.

We used the group 2 thermistors for passive thermal sensing by setting Vsupp2 to a

constant 3.3 V. Fig. 3.6 shows representative active and passive thermal sensor data collected

from touching the skin to four material samples. Note that the approximate±0.5 ◦C variation

in initial passive sensor temperature is due to the fluctuations in the temperature of the room.
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Figure 3.7: Electrical hardware for multimodal skin: Teensy 3.2’s and custom multiplexer
breakout boards for analog-to-digital conversion (ADC) and buck converters for active
thermal sensing.

3.4 Power and Analog-to-Digital Conversion

Fig. 3.7 shows the hardware used to power the skin and perform analog-to-digital conversion

(ADC). In contrast to skin systems with fully-integrated circuitry [28], [29], [30], the buck

converters and ADC hardware used in this prototype are separate from the skin and are

mounted to the robot’s forearm. Though it increases the overall form factor of the system,

this approach is advantageous in that most of the circuitry is separate from the skin and

helps to maintain the flexibility and stretchability of the fabric-based skin. Note that while

the thermistor connecting wires are not stretchable, they are designed to be longer than

necessary to accommodate stretching in the fabric.

We selected the Teensy 3.2 microcontroller [38] based on its compact size and fast

processor speed and used its built-in ADCs to read data from the skin with 12-bit resolution.

Each Teensy 3.2 reads data and sends it to the robot’s onboard computer via USB at 100 Hz.

While both our force and temperature modalities rely on resistive sensing and use

identical circuitry for analog-to-digital conversion, we found that the larger magnitude

analog signals resulting from the force sensors can affect the signal readings from the more

sensitive thermistors. To prevent this, we separated our ADC circuitry: using one Teensy

3.2 and one multiplexer board to measure the 13 fabric-based force sensors and a second
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Table 3.1: Estimated power and bandwidth requirements for larger scale skins.
#

Taxels
Area
(cm2)

Analog
Chan-
nels

Power
(W)

Band-
width

(kbits/s)
13 60 65 0.38 78
20 92 100 0.58 120
40 185 200 1.12 240
80 370 400 2.32 480

Teensy 3.2 and two multiplexer boards to read data from the 52 thermistors (note that each

taxel consists of one force sensor and four thermistors).

To accommodate the analog channels, we designed a custom breakout board to hold

two 16 channel ADG1606BRUZ multiplexers (one on each side). Because the multiplexer

selection ports are connected in parallel to the microcontroller, up to 10 multiplexer breakout

boards can be connected to a single Teensy 3.2 using 20 of of its 21 analog input pins. Thus,

the system can be scaled up to 320 analog input channels per microcontroller for larger-scale

skin designs. So, we would expect two microcontrollers to support up to 80 taxels. In this

arrangement, the microcontroller measuring thermal sensor data would have 320 analog

channels while the microcontroller measuring the force sensors would have 80.

As shown in Fig. 3.4, the multiplexer breakout board includes a voltage divider circuit

for each channel with reference resistors Rref = 1 kΩ. With this reference resistor, each

force sensing taxel requires up to 10 mW of power during normal operation. With the

active thermal sensors controlled at 55 ◦C, each thermistor requires approximately 18 mW

of power, whereas the passive sensors each require approximately 1 mW. Based on this,

the 13 taxel prototype we present uses up to 380 mW of power total or 29 mW per taxel.

Table 3.1 outlines the estimated power and bandwidth requirements for larger-scale skins

designs.

We added a capacitor in parallel to each reference resistor to filter noise. Nominally

a large capacitor would be used to specify a lowpass filter cutoff frequency less than the

Nyquist frequency of our ADC to prevent aliasing. However, because each thermistor
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requires an individual filtering capacitor and the noise occurs primarily at frequencies

greater than 10 kHz we chose a smaller element (C = 0.022µF) that helped filter this noise

but did not significantly increase the form factor of each multiplexer board.
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CHAPTER 4

HARDWARE ANALYSIS

4.1 Model of Thermal Sensor Distribution

Because the thermal sensors used in this design are small in size, it is difficult to cover

a large area of the robot while keeping the overall system scalable. To address this, we

developed a geometric model to guide the sparse distribution of thermal sensors across an

area of the robot to maximize the chance of contact while minimizing the total number of

sensors. We used this design in our skin because in human environments flat rigid surfaces

and compliant low-curvature objects (including the human body) are common. Our use of

sparsely-distributed thermal sensors and tactile sensors with low spatial resolution has some

parallels to the variation in tactile modalities and effective spatial resolution across different

parts of the bodies of biological organisms. For example, human skin can perform tactile

sensing with much higher spatial resolution at the tip of the finger than across the torso [39].

In contrast to thermal sensor array designs such as [26], where high resolution sensors

were used to create a thermal image, we designed the placement of our thermal sensors so

that a single sensor from each group would make contact when the skin touches a material

and therein infer information about the temperature and thermal effusivity of the touched

object. This approach decreases the number of thermal sensors required and improves

scalability for larger-area tactile sensing skins.

Because the skin’s thermal sensors use thermistors of small cross-sectional area (0.015 cm2)

compared to our force sensing taxels (2.2 cm2), we model them as point sensors. Note that

this modeling approach differs from work with non point-like sensors including [40]. To

determine the distribution of point sensors along the circumference and axis of the skin

covering the robot’s cylindrical end effector, we developed a planar geometric model of the
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Figure 4.1: Model used to determine number of circumferential thermal sensors.

number of point sensors that will make contact with a curved object.

To determine the appropriate number of circumferential taxels to cover the robot’s

cylindrical end effector shown in Fig. 3.1 and Fig. 3.5, we used our planar model to predict

the number of point sensors that will make contact when the cylinder touches the center

of an object with a radius of curvature R and width w. Fig. 4.1 shows the robot’s rigid

cylindrical end effector of radius r covered with the deformable tactile sensing skin of

thickness a. During contact, the skin compresses a distance d with a small applied force.

This circumferential model yields

n =

 kcπ

cos−1
(
−d2+2d(r+a)+2dR−2(r+a)2−2R(r+a)

2(r+a)(d−r−a−R)

)
 (4.1)

provided that

w ≥ 2(r + a) sin
kcπ

n
(4.2)

where n is the required number of point sensors evenly spaced around the circumference

of the skin for at least kc point sensors to make contact with the surface. Appendix A

provides a detailed derivation of (4.1).
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Figure 4.2: Model used to determine thermal sensor spacing along cylinder axis.

For the case where the skin touches a flat object (R =∞), the model reduces to

nR=∞ =

⌈
kcπ

cos−1
(
1− d

r+a

)⌉ (4.3)

For our prototype, r = 17 mm, a = 5 mm, d = 3 mm. Because the thermistors are

grouped in an alternating pattern, we designed our skin to achieve kc = 2 for flat surfaces to

ensure that at least one thermistor from each group will make contact. This implies n = 12

thermistors in the circumferential direction which motivated our choice of 6 circumferential

taxels as shown in Fig. 3.2. With this number of taxels, contact with a single thermistor

of either group (kc = 1) is guaranteed based on this model when the surface’s radius is of

curvature R ≥ 8.5 mm. For objects with a radius of curvature R < 8.5 mm, contact with a

thermistor may not occur, though the skin’s fabric-based force sensors should still detect the

contact.

As shown in Fig. 4.2, we also applied our planar model to the number of point sensors

along the axis of the robot’s cylindrical end effector that will make contact with a curved

sample.

Based on this model we found the required spacing, x, between each point sensor to be

x =
2
√

2dR− d2
kc

(4.4)
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provided that

w ≥ kcx (4.5)

For our prototype, we chose x = 17 mm which corresponds to R = 50 mm.

4.2 Thermal Sensor Noise Analysis

In order to characterize the noise in our active and passive thermal sensors, we used an

oscilloscope to measure the output voltage from the thermistors in air and the output

of the buck converter that supplies power to the thermistors (Vsupp). The predominant

noise occurred at 125 kHz, which is 4 times the PWM frequency used to control the buck

converters (31.25 kHz). We measured the PWM signals from the Teensy 3.2 and found that

the nominally square wave at 31.25 kHz had noise that occurred at 125 kHz. This noise in

the PWM signals, and to a lesser extent the square waves themselves, led to noise in the

output of the buck converters which then causes noise in the temperature readings.

To determine the noise level in units of temperature, we used the oscilloscope to measure

the root-mean-square (RMS) of the thermistor voltage output and found this to be ±9 mV

for the active sensors (Vsupp1 = 9 V) and ±8 mV for the passive sensors (Vsupp2 = 3.3 V).

While the noise produced by the buck converters increases slightly as Vsupp increases, the

corresponding signal to noise ratio goes down. By converting this noise level to temperature,

we found that the noise level for our active thermal sensors was±0.16 ◦C and for the passive

thermal sensors the noise level was ±0.78 ◦C. To reduce this noise, we implemented a 2nd

order low pass Butterworth filter with a cutoff frequency of 10 Hz in software to filter the

thermistor data in real time. This filter design successfully reduced the noise without adding

a significant delay in the signal.
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Figure 4.3: Active thermal sensor touching aluminum (left) and active thermal sensor
reheating in air (right).

4.3 Active Thermal Sensor Time Response

To gain insight into the time response of the active thermal sensors while in contact with

an object and compare our sensors to those used by other researchers, we employed a

lumped capacitance model to consider the change in temperature as an exponential decay

with associated time constant. This model assumes that the body of the thermistor is at a

uniform temperature at each point in time, and the heat transfer from the thermistor to the

object is proportional to the temperature difference. Based on these assumptions, the heat

transfer from the thermistor to the object can be modeled as thermal capacitor discharging

through a thermal resistor [41]. It follows that the thermistor temperature, T (t) will decay

exponentially in the form

T (t) = Tf + (Ti − Tf)e−
t
τ (4.6)

where Ti and Tf are the initial and final temperatures. Note that due to heat generation in

the thermistor, Tf will be greater than the object’s temperature. To perform the analysis we

first had the robot press a 15 mm thick room temperature sample of aluminum for 10 s and

recorded the temperature as it decreased from 55 ◦C during contact. Fig. 4.3 shows the data

we used for the time constant analysis. By rearranging and taking the natural logarithm of
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both sides of (4.6), we have

ln

(
T (t)− Tf
Ti − Tf

)
= − t

τ
(4.7)

Through linear regression we obtained τ = 4.2 s and R2 = 0.998.

To understand the time required for an active sensor to reheat following contact, we had

the robot touch the aluminum sample then break contact and used the same linear regression

method above, to find the average time constant during reheating to be 3.6 s (R2 = 0.997).

Thus, if the temperature of an active thermistor decreases from 55 ◦C to 50 ◦C from touching

aluminum for 2.0 s, we can expect the thermistor to exhibit a 90% reheat time of 2.3 time

constants or 8.3 s.

This simplified model of the heat transfer provides insight into how the sensor design

affects the speed of response during active thermal sensing. Based on this model, the time

constant, τ , is

τ = RthCth (4.8)

where Rth is the equivalent thermal resistance and Cth is the equivalent thermal capaci-

tance of the thermistor [41].

Because the time constant of an active thermal sensor is proportional to the thermal

capacitance of the sensor, decreasing this value can improve the speed of response. This is

beneficial in two ways. When brought in contact with an object the sensor will respond more

rapidly, potentially improving the speed at which a material can be recognized. Additionally,

following contact, a lower thermal capacitance may allow the sensor to reheat more quickly

with the same heating power. Often this is achieved by choosing a sensor of smaller size, but

this can make the sensor more fragile, requiring a more durable and potentially less flexible

substrate to protect it as seen in [24].

A second factor that can increase the time constant of the heat transfer from the thermistor
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Table 4.1: Comparison of observed cooling time constants while touching aluminum with
various active thermal sensors.

First Author Year Device Type Thermal Sensing Method
Time

Constant (s)
Engel [24] 2005 Array/skin Custom 50 nm thick nickel RTDs 0.080
Monkman [15] 1993 Sensor Pyrometer 0.260
Caldwell [14] 1993 Sensor Peltier effect sensor 1.2
Russell [12] 1988 Array/skin Thermistors embedded in surface

of silicone
2.5

Yuji [23] 2000 Sensor Pressure-conductive rubber used
as thermistor

3.0

Monkman [15] 1993 Sensor Peltier heat pump 3.4
Our approach 2017 Array/skin Thermistors on fabric surface 4.2
Russell [13] 1985 Sensor Thermistor embedded in surface

of silicone
5.9

Takamuku [42] 2008 Sensor Thermistors embedded in
polyurethane

9.0

Siegel [27] 1986 Array/skin Thermistors covered by silicone 10*
Lin [19] 2009 Sensor Thermistor inside fluid-filled

polymeric finger (BioTAC)
41

∗Results with aluminum not reported; 10 s time constant observed with steel.

to a material and decrease the speed of response is thermal contact resistance between the

thermistor and the object which can affect Rth. Like many standard thermistors, ours are

approximately spherical [33]. Thus a small contact area is expected during contact with

a rigid surface. This may increase the observed time constant associated with our active

thermal sensors.

Table 4.1 compares various active thermal sensors based on their cooling time constant

achieved while touching aluminum. As seen in the table, our approach yields faster results

than the BioTAC sensor, but time constants as fast as 80 ms have been reported using custom

50 nm thick nickel RTDs on a polyimide skin [24].

4.4 Active Thermal Sensor Safety Analysis

In order to assess the safety of our robot skin being in contact with human skin, we modeled

the temperature of human skin upon contact with a thermistor using a standard heat transfer
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Table 4.2: Tabulated thermal effusivity values.

Material
Thermal Effusivity (J m−2K−1s−0.5)

Min Max Mean
Pine Wood [43] 331 506 419
Acrylic [43] 380 702 541
Porcelain [43] 1160 1330 1250
Aluminum [43] 13400 24000 18700
Human Skin [44] 1060 1420 1180
Glass [43] 1290 1550 1420

model with semi-infinite solids [11]. With the human skin at an initial temperature of 31 ◦C

and the thermistor at an initial temperature of 55 ◦C, upon initial contact we would expect the

surface of the human skin where it contacts the heated thermistor to warm to approximately

44 ◦C. We modeled the human skin and glass thermistor as having thermal effusivities equal

to their tabulated mean values in Table 4.2. Note that the thermistors are made of multiple

materials encased in a glass bead but we assumed their thermal properties are that of glass.

Studies of thermal injury suggest that a surface temperature of 44 ◦C would need to be

maintained for greater than 5 hours to result in even minor injury to human skin [45]. In

contrast, contact between human skin and a thermistor on our robot’s skin results in a rapid

drop in the thermistor’s internal temperature, attaining a temperature of approximately 46 ◦C

in 2 s which would reduce the temperature of the human skin surface to 39 ◦C.

In [46] Ungar et al. at the NASA Johnson Space Center establish safe object temperature

limits, based on the object’s thermal effusivity, for contact with human skin for varying

lengths of time. Using this approach, a glass object at 55 ◦C can indefinitely contact human

skin without injury. In addition, we have been unable to perceive the thermistors as being

warm or hot when touched. Similarly, no participants in our study detailed in Section 5.2

made note of any discomfort or warmth from the robot’s skin.
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CHAPTER 5

EVALUATION OF THE SKIN

To evaluate the performance of the overall system, we conducted two experiments during

which we had the robot perform manipulation tasks with the skin and analyzed the resulting

sensor data based on how well it enabled material recognition. First, we had the robot

perform pressing and sliding manipulation tasks with samples of four materials. Second, we

had the robot move to make contact with one clothed and one unclothed body location on

human participants to evaluate the system’s performance in detecting contact with people.

A video of the experimental procedure is available at youtu.be/IxANBLU-4TA.

5.1 Object Manipulation Experiments

Fig. 5.1 shows the experimental procedure we used to evaluate the skin’s performance. Our

objective was to distinguish between four materials during tasks representative of human

environments [47]: pressing a stationary object and sliding an object across a table. We

performed each task with 10 samples each of pine wood, acrylic, porcelain and aluminum.

We chose these materials because they represent four common materials in homes with

distinct thermal effusivities as shown in Table 4.2. In the first task, we programmed the robot

to compliantly press the skin to the material sample for 2.0 s as shown in Fig. 5.1. After

each trial the robot waited 60 s to allow the experimenter to change the material sample to

another of equal thickness and then repeated the motion.

In the second task we attached the sample to a wooden block of mass 0.5 kg and added

1 kg of weights to increase the total mass to 1.5 kg. Using equilibrium point control, we

programmed the robot to push and slide the block a distance of 20 cm in approximately 2.0 s

as shown in Fig. 5.1. Similarly to the pressing task, we waited 60 s between each trial and

tested once with each sample.
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Figure 5.1: Pressing task (left) and sliding task (right) used to evaluate the skin’s perfor-
mance.

5.2 Experiments Contacting the Human Body

For the experiments with human participants, we recruited 10 people via word of mouth and

obtained informed consent from each participant (3 female, 7 male from 18 to 23 years of

age). Our study was approved by the Institutional Review Board of the Georgia Institute of

Technology.

As shown in Fig. 5.2, each participant sat in a chair while the robot compliantly moved

and made contact with two locations on the person’s body, similar to the pressing task

described in Section 5.1. We first asked the participant to rest their arm on table and, if

necessary, roll up their sleeve so that their forearm was visible. We chose this location

because in most cases, this area is either not covered by clothing or can be easily uncovered

by rolling up the sleeve if necessary. We then had the robot move and gently make contact

with the person’s bare forearm for 2.0 s as shown in Fig. 5.2. To study the performance of

our method in recognizing the human body through a layer of clothing, we had the robot

make contact with the participant’s shoulder for 2.0 s while it was covered by the sleeve of

the participant’s clothing (see Fig. 5.2). In this work we analyzed data resulting from one

trial with each body location on each of our 10 participants.
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Figure 5.2: Robot pressing bare forearm (left) and clothed shoulder (right) during experi-
ments with human participants.

5.3 Data Collection

We performed both experiments in a room at a mean temperature of 27 ◦C. While the

data were collected, the room temperature varied by up to ±1 ◦C, as measured by the

passive thermistors. We used the skin’s force modality to detect contact with a threshold

of 0.7 N. We used this threshold to account for false positives in the force readings due

to hysteresis. When the force measured by a taxel exceeded this threshold, we checked

both active thermistors on that taxel to see if they exhibited a negative time derivative

(estimated using a first order difference) of temperature for 2.0 s. This temperature decrease

served as evidence that they were in contact with the material sample or human body at a

lower temperature. If this condition was met, we saved time series data from this active

thermistor and the force data from the corresponding taxel. This check is necessary because

the thermistors are essentially point sensors compared to the force sensing taxels. If an

object with high enough curvature or small enough size touches the taxel, the force sensor

will detect it, but the object may not make contact with a thermal sensor.

It can be difficult to confirm if a passive thermistor made contact with the object or

participant’s body if little to no temperature change occurs. For objects that do not generate

heat this is expected because the air and the object tend to be at the same temperature. While
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people tend to be warmer than the surrounding air due to heat generation in the human body,

this difference depends on the environment and body location [48] as well as the type of

clothing worn. To overcome this challenge, when an active thermistor was determined to be

in contact with the material, we assumed that the adjacent passive thermistor in the same

circumferential position on the same taxel was also in contact and saved this time series as

well. This is a fair assumption because the objects used in this experiment were flat and the

human body locations were compliant.

Fig. 5.3 shows a visualization of the mean and standard deviation of the data collected

during the pressing task and the sliding task. As seen in the figure, the 10 trials with each

material and body location resulted in more than 10 distinct time series because two or more

active thermistors can simultaneously make contact. This can occur when either both active

thermistors on a single taxel simultaneously contact the sample or when active thermistors

across multiple taxels make contact. These results agree with our model presented in

Section 4.1.

Because we used a single buck converter and closed-loop controller to heat all the

active thermistors to 55 ◦C using the mean temperature as feedback (see Section 3.2), the

temperature of a single active thermistor just prior to contact can vary from this desired value

although the mean temperature is as desired. Because this variation may be due to changing

environmental factors such as a varying room temperature, it is important to account for

it so as not to bias the final results. For example, if the room were slightly warmer when

we collected data from the aluminum samples compared to the pine wood, the data-driven

algorithm might recognize this pattern and spuriously obtain a higher recognition accuracy.

To reduce the influence of this variation, we subtracted the difference between the initial

value and mean temperature (55 ◦C for active sensors, 27 ◦C for passive) from every value

in the time series. Thus, our active and passive thermal sensor data for all time series

starts from the mean temperatures of 55 ◦C and 27 ◦C, respectively. Though it makes the

classification problem more difficult, this correction helps reduce bias from these factors.
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Figure 5.3: Force and Thermal sensor data (mean ± standard deviation) recorded with 10
material samples each of pine wood, acrylic, porcelain and aluminum during pressing (left)
and sliding tasks (right). The left graph includes data from contact with the bare forearm
and clothed shoulder of 10 human participants. Note that the active and passive sensor data
is biased to start from the mean temperatures of 55 ◦C and 27 ◦C, respectively.

5.4 Analyzing Skin Data

To evaluate the sensor data, we used a data-driven material recognition algorithm similar to

our previous work in [11]. As discussed in Section 5.3, during each trial, multiple thermistors

in the same group can make contact simultaneously. In our algorithm, we treat these multiple

time series as independent feature vectors sampled from that material or body location. To

study the effect of contact duration, we truncated the time series in time. We then took

each temperature time series and concatenated it with its estimated time derivative to form a

combined temperature and slope vector of twice the length as in [11]. For discrimination

using only active or passive thermal sensing, this combined temperature and slope vector

is the feature vector. For discrimination using multiple modalities, we concatenated the

combined temperature and slope vectors from active and/or passive thermal sensing together
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along with the vector of force data if used.

For classification, we implemented support vector machines (SVMs) using the scikit-

learn package [49] in Python. We used a linear kernel and performed multiclass classification

via pairwise coupling as described in [50]. To ensure that data collected from a single

material sample or human participant were not simultaneously used for training and testing

we used group 3-fold cross-validation.

5.5 Discriminating between Materials

As shown in Fig. 5.3, passive thermal sensing is not an effective sensing method for

distinguishing materials that are at the ambient temperature. Similarly, because all material

samples used have similar mass and relatively high moduli of elasticity, they cannot be

easily distinguished using force sensing for the types of interactions we studied. For this

reason, we performed material recognition using active thermal sensor data only. Tables 5.1

and 5.2 detail the multiclass and binary classification accuracy for the pressing and sliding

tasks, respectively, with 0.25, 0.5, 1.0 and 2.0 s of contact. For cross validation we used

group 3-fold cross-validation to train on data collected from a subset of the material samples

and test on data collected from other samples.

Previous research by Ho and Jones suggests that humans can also have difficulty dis-

criminating between two materials using active thermal sensing if the materials’ thermal

effusivities are similar. In their work human participants touched material samples for 10 s

yet had difficulty distinguishing the samples if the ratio of the materials’ thermal effusivities

was less than three [51]. Based on this, we might expect humans to have difficulty distin-

guishing between pine wood and acrylic or acrylic and porcelain using only thermal cues

because the ratio of their thermal effusivities is less than three.

As expected, the accuracy is higher for materials with more distinct thermal effusivities.

As seen in Tables 5.1 and 5.2 our method distinguished pine wood from aluminum during

the pressing task with 97% accuracy and in the sliding task with 92% accuracy with only
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Table 5.1: Pressing task classification accuracy with active thermal sensors tested with
different contact durations.

Classification Task 0.25 s 0.5 s 1.0 s 2.0 s
Multiclass (4 Materials) 43% 56% 62% 71%
Pine Wood vs. Aluminum 89% 97% 100% 100%
Acrylic vs. Aluminum 67% 97% 97% 100%
Porcelain vs. Aluminum 67% 69% 58% 77%
Pine Wood vs. Porcelain 84% 90% 97% 100%
Acrylic vs. Porcelain 59% 64% 88% 89%
Pine Wood vs. Acrylic 66% 61% 63% 69%
Average Binary Performance 72% 80% 84% 89%

Table 5.2: Sliding task classification accuracy with active thermal sensors tested with
different contact durations.

Classification Task 0.25 s 0.5 s 1.0 s 2.0 s
Multiclass (4 Materials) 40% 31% 44% 88%
Pine Wood vs. Aluminum 79% 92% 88% 92%
Acrylic vs. Aluminum 58% 43% 70% 100%
Porcelain vs. Aluminum 61% 38% 49% 93%
Pine Wood vs. Porcelain 65% 57% 77% 93%
Acrylic vs. Porcelain 40% 60% 68% 93%
Pine Wood vs. Acrylic 67% 58% 71% 88%
Average Binary Performance 63% 58% 71% 93%

0.5 s of contact.

5.6 Recognizing Contact with the Human Body

To evaluate our skin’s ability to recognize contact with people, we performed binary classifi-

cation between the human body and the non-human material samples tested in the pressing

task. Fig. 5.3 shows the skin’s data used to perform classification. Note that the active ther-

mal sensor temperature tends to decrease faster when contacting the bare forearm compared

to aluminum even though aluminum has a higher thermal effusivity (see Table 4.2). This

may be because the compliant human skin deforms around the spherical thermistor resulting

in a larger contact area. This in turn allows for faster heat transfer.

Because the human body locations tested in this experiment are significantly more com-
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Table 5.3: Human body classification accuracy with various combinations of active, passive
and force sensing with 2.0 s of contact.

Classification Task A P A+P A+F P+F A+P+F
Human vs. Non-Human 81% 92% 93% 94% 93% 92%
Bare Forearm vs. Non-Human 98% 96% 98% 98% 99% 98%
Clothed Shoulder vs. Non-Human 82% 92% 92% 92% 93% 95%
Average Performance 84% 93% 94.3% 94.7% 95.0% 95.0%

∗A=Active, P=Passive, F=Force

Table 5.4: Human body classification accuracy with combined active, passive and force
sensing with different contact durations.

Classification Task 0.25 s 0.5 s 1.0 s 2.0 s
Human vs. Non-Human 83% 93% 91% 92%
Bare Forearm vs. Non-Human 91% 97% 97% 98%
Clothed Shoulder vs. Non-Human 85% 90% 88% 95%

pressible than the non-human material samples, force sensing provides further information

by which they can be distinguished [47], [52], [8]. Additionally, passive thermal sensing

can provide useful information in recognizing objects of elevated temperature such as the

human body [3].

Table 5.3 details the classification accuracy using various combinations of force, active

thermal and passive thermal sensing data. Note that discrimination using only force sensing

is the focus of our previous work [47], [52], [8]. For the classification task we used the

data from the skin to discriminate between all material samples tested in the pressing task

versus the bare forearm only, the clothed shoulder only and combined forearm and shoulder

(labeled ‘Human’in the Tables 5.3 and 5.4). For cross validation we used group 3-fold

stratified cross-validation to train on data collected from a subset of our human participants

and test on data collected from other human participants and balance the data in the folds.

Our method exhibited the best performance discriminating between human vs. non-

human using combined force and thermal sensing data from the skin, achieving 94%

accuracy with force and active thermal sensing data and 93% accuracy with force and

passive thermal with 2.0 s of contact. For detecting contact with the human body through a

layer of clothing, our method achieved a maximum accuracy of 95% using combined force,
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active and passive thermal sensing data. For recognizing the human body based on touching

bare skin, we see that solely active or passive thermal sensing can achieve a high accuracy

(98% and 99%, respectively). This may be because the compliance of the human skin allows

for a greater contact area with the thermistor and faster heat transfer.

Table 5.4 outlines the binary classification accuracy based on all three of the skin’s

sensing modalities for discriminating between human and non-human with contact durations

of 0.25, 0.5, 1.0 and 2.0 s. As seen in the table, longer duration contact can lead to more

accurate results but our method successfully discriminated between contact with human and

non-human with an accuracy of 93% using 0.5 s of contact.

33



CHAPTER 6

DISCUSSION AND LIMITATIONS

6.1 Skin Hardware

With the ADC hardware described in Section 3.4, the skin design can be scaled up to

accommodate larger numbers of taxels, but because the ADC hardware and buck converters

for the thermal sensors are external from the skin itself, extra space on the robot would be

used. From a power standpoint this skin prototype used up to 29 mW of power per taxel

which suggests that a scaled up version of the skin could place a non-negligible load on the

robot’s power supply.

For our skin design, all active thermistors share a common power supply (buck converter)

and a single closed-loop controller regulates the average thermistor temperature at a user-

defined setpoint prior to contact. While this method increases the scalability of the design

by requiring only two buck converters, one for each thermistor group for an entire skin, this

method also introduces drawbacks. Namely, a single controller for all thermistors allows for

variability in the active thermal sensor temperature prior to contact.

To enhance contact, the thermistors are on the exterior of the skin and slightly protrude

outward. This results in a skin surface that might be less suitable for some applications

and could potentially catch on objects, such as when sliding along a surface. Moving the

thermistors further back into the fabric and possibly covering them with a thin, thermally

negligible material could potentially address these issues.

6.2 Skin Modeling

While the relatively sparse distribution of thermistors makes it possible for objects to touch

the skin and not come into contact with any thermal sensors, this approach improves the
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scalability of the overall system. Our geometric model presented in Section 4.1 accurately

predicted that during contact with a flat surface, at least one active thermal sensor would

touch the object. In our characterization of the active thermal sensor time response presented

in Section 4.3, we found that the sensors exhibit a cooling time constant of 4.2 s. This

relatively slow response time may be caused by the small contact area between the spherical

thermistors and a flat surface. That said, as discussed in Chapter 5, reasonable inferences

can be made based on the sensor data using as little as 0.5 s of data.

6.3 Skin Evaluation

Based on Section 5.5, for distinguishing between materials at room temperature based on

their thermal properties, the skin’s active thermal sensors showed success for enabling

binary classification of materials with larger differences in thermal effusivities. However,

the data from the skin was less informative for distinguishing materials of similar thermal

effusivities.

As discussed in Section 5.6, the skin’s force and active and passive thermal sensors

enabled the most accurate recognition of contact with the human body. Though active or

passive thermal sensing on their own may be effective at recognizing contact with a person’s

bare skin, our results suggests that the combination of force and active and passive thermal

sensing is most informative for recognizing contact with the human body while it is covered

in clothing.
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CHAPTER 7

CONCLUSION

In this thesis, we presented the design of a fabric-based force and thermal sensing skin for

robots in human environments. The skin features distributed self-heated thermistors for

active and passive thermal sensing and fabric-based force sensors. After outlining the design

of the skin, we analyzed the spacing of the thermistors used for thermal sensing using a

geometric model and characterized the speed of response of the active thermal sensors using

a simplified model of the heat transfer. Following this, we evaluated the skin by attaching it

to the end effector of a Meka M1 Mobile Manipulator and used the robot to perform pressing

and sliding tasks with 10 samples each of 4 materials. We also had the robot make contact

with two locations on the arms of human participants. In our evaluation of the skin, we used

the force modality to detect the onset of contact and implemented SVMs to discriminate

between materials using active thermal sensing and recognize contact with the human body

using force, active and passive thermal sensing. The skin enabled accurate discrimination

between two materials with large differences in their thermal properties and in recognizing

contact with people. This study demonstrates the feasibility of our fabric-based force and

thermal sensing skin for robots. Our evaluation suggests that our multimodal tactile sensing

skin can provide useful information to robots operating in human environments.
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APPENDIX A

DERIVATION OF CIRCUMFERENTIAL THERMISTOR SPACING MODEL

Figure A.1 shows the geometry used to derive the circumferential thermistor spacing model

given by (4.1). The figure shows the case where kc = 1: when the robot’s cylindrical

arm covered with the skin makes contact with a curved object of radius R, at least 1

circumferential thermistor will touch the object when the skin is compressed a distance

d = d1 + d2.

Figure A.1: Geometry used to derive circumferential thermistor spacing model.

Using the right triangle and angle θ shown in the figure,

d1 = (r + a)(1− cos θ) (A.1)

furthermore, based on the Pythagorean theorem we can write

d2 = R−
√
R2 − y2 (A.2)

Noting that

y = (r + a) sin θ (A.3)
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we can plug this into (A.2) to obtain

d2 = R−
√
R2 − (r + a)2 sin2 θ (A.4)

Finally, note that if n thermistors are distributed uniformly around the circumference,

their angular spacing will be 2θ, thus

nkc=1 =
2π

2θ
=
π

θ
(A.5)

Generalizing this to any value of kc, we have

n =
kcπ

θ
(A.6)

and solving for θ,

θ =
kcπ

n
(A.7)

By plugging in this expression for θ into (A.1) and A.4, we can rewrite d as a function

of n

d = (r + a)

(
1− cos

(
kcπ

n

))
+R−

√
R2 − (r + a)2 sin2

(
kcπ

n

)
(A.8)

We used Wolfram Alpha [53] to rearrange (A.8) to solve for θ and obtained

θ = cos−1
(
−d2 + 2d(r + a) + 2dR− 2(r + a)2 − 2R(r + a)

2(r + a)(d− r − a−R)

)
(A.9)

By plugging this result into (A.6) and noting that n must be a positive integer we obtain
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the final result

n =

 kcπ

cos−1
(
−d2+2d(r+a)+2dR−2(r+a)2−2R(r+a)

2(r+a)(d−r−a−R)

)
 (A.10)
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