A LOCAL VARIATIONAL PRINCIPLE OF PRESSURE AND ITS
APPLICATIONS TO EQUILIBRIUM STATES

WEN HUANG AND YINGFEI YI

ABSTRACT. We prove a local variational principle of pressure for any given open cover. More
precisely, for a given dynamical system (X,T'), an open cover U of X, and a continuous, real-
valued function f on X, we show that the corresponding local pressure P(T, f;U) satisfies

P(T, f;U) = sup{h,(T.U) + / f(z)dp(z) : p is a T-invariant measure},
JX

and moreover, the supremum can be attained by a T-invariant ergodic measure. By establishing
the upper semi-continuity and affinity of the entropy map relative to an open cover, we further
show that

hu(T,U) inf  {P(T, f;U) f/X fdu}

- feC(XR)

for any T-invariant measure p of (X,T), i.e., local pressures determine local measure-theoretic
entropies. As applications, properties of both local and global equilibrium states for a continuous,
real-valued function are studied.

1. INTRODUCTION AND MAIN RESULT

Topological pressure is a generalization to topological entropy for a dynamical system. The
notion was first introduced by Ruelle [24] for expansive dynamical system and later by Walters
[26] for general case. Let (X,T) be a topological dynamical system (TDS for short) in the sense
that X is a compact metric space and T : X — X is a surjective and continuous map. It is known
that certain results concerning topological entropy can be generalized to topological pressure. In
particular, Waters [26] generalized the classical variational principle of entropy [15, 16, 21] to obtain
the following variational principle of pressure:

(1.1) P(T, f) = sup{h,(T) —|—/ f(z)du(z) : pis a T-invariant measure},
p X

where f is a continuous, real-valued function on X, P(T, f) is the topological pressure of f, and,
for each T-invariant measure p, h,(T) is the measure-theoretic entropy of p.

With the notion of entropy pairs [2, 4] in both topological and measure-theoretic situations, a
notable amount of attention has recently been paid to the study of local version of the variational
principle of entropy. Given a TDS (X,T) and an open cover U of X. It was first shown in [3] that
there is a T-invariant measure p such that

(1.2) og}fl;{ hu(T, a) > heop (T, U),

where hiop (T, U) is the topological entropy relative told, h, (T, o) is the measure-theoretic entropy of
u relative to a finite Borel partition o of X, and a = U means that « is finer than /. A somewhat
converse statement to (1.2) is given in [18] as the following: if p is a T-invariant measure and
h, (T, o) > 0 for each partition « which is finer than U, then inf,~y b, (T, ) > 0 and hyop (T, U) >
0. To make a general investigation on the converse to (1.2), Romagnoli [23] introduced two types of
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2 A local variation principle of the topological pressure with applications to equilibrium states

measure-theoretic entropies relative to U: h,(T,U) and bt (T,U), satisfying h,(T,U) < bt (T,U)
and h, (T,U) < hyop(T,U), and proved that

(1.3) hiop (T, U) = max{h,(T,U) : p is a T-invariant measure}.

Later, by proving that both h,(T,U) and h;'[ (T',U) have the properties of ergodic decomposition,
it was shown in [17] that the maximum in (1.3) can be in fact attained by a T-invariant ergodic
measure. Recently, Glasner and Weiss [12] proved that if the system (X, T) is invertible, i.e, T is
a homeomorphism, then the local variational principle is also true for hf (T, U), i.e.,

(1.4) hiop (T, U) = sup{h;} (T,U) : p is a T-invariant measure}

(see also [19] for a relative version). It also follows from [17] that the supremum in (1.4) can be
attained by a T-invariant ergodic measure.

The main purpose of this paper is to generalize the above local variational principles of entropy
to the case of pressure. Our main results state as follows.

Theorem 1 (Upper semi-continuity and affinity). The local entropy map hyy(T,U) is upper semi-
continuous and affine on the space of T-invariant measures.

Theorem 2 (Local variational principle). For any f € C(X,R), the local pressure P(T, f;U) of f
relative to U satisfies

P(T, f;U) = sup{h,(T,U) +/ fdu(z) : p is a T-invariant measure}
p's

and the supremum can be attained by a T-invariant ergodic measure.

We will also show that local pressures determine local measure-theoretic entropies, i.e., the
following holds.

Theorem 3 (Determining measure-theoretic entropy). Let p be a T-invariant measure of (X,T).
The following holds.
a)
h (T, U)= inf {P(T,f;U)— du};
WU = int (P p) = [ i
b) If, in addition, (X,T) is invertible, then

WU < it (P gt~ [ fan.

Theorem 3 immediately leads to the following.
Corollary ([17, 19]). If (X, T) is invertible, then
h;(T,Z/I) = h,(T,U).

The local variational principle of pressure stated in Theorem 2 guarantees the existence of
equilibrium states with respect to a local pressure. Such an existence is not true in general for
a topological pressure, unless some additional properties (such as expansivity) of the TDS are
assumed. Applying our main results, another purpose of the paper is to study properties of
equilibrium states for local pressures and to establish their connections with equilibrium states for
topological pressures. We refer the readers to [25] for physical relevance of topological pressures
and equilibrium states.

The paper is organized as follows. Section 2 is a preliminary section in which basic properties of
both local and global entropies and pressures are studied in both topological and measure-theoretic
situations. We prove Theorem 1 in Section 3, Theorem 2 in Section 4, and Theorem 3 in Section
5. Some applications of our main results to equilibrium states for both local and global topological
pressures are given in Section 6.
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2. ENTROPIES AND PRESSURES

Throughout the section, we let (X,T) be a TDS and Bx be the collection of all Borel subsets
of X.

2.1. Topological entropies and pressures. Recall that a cover of X is a finite family of Borel
subsets of X whose union is X, and, a partition of X is a cover of X whose elements are pairwise
disjoint. We denote the set of covers, partitions, and open covers, of X, respectively, by Cx, Px,
and C%, respectively. For given two covers U,V € Cx, U is said to be finer than V (denote by
U = V) if each element of U is contained in some element of V. Let UVY = {UNV : U e U,V € V}.
Given integers M, N with 0 < M < N and U € Cx or Px, we use Z/Iﬁ to denote \/n uIT™U.

For U € Cx, we define N(U) as the minimum among the cardinals of the sub-covers of & and
define H(U) = log N(U). Clearly, for each U,V € Cx, HUV V) < HU)+ HV), and if V = U,
then H(V) > H(U).

Since a,, = H(L{(;L_l) is a bounded, sub-additive sequence, i.e., ap1m < an+ay, for any n,m € N,
the quantity

! 1
oo (T.U) = lim ~HU™") = inf ~HU ™),

n—oo n n>1n
called the topological entropy of U, is well defined (see [1]). The topological entropy of (X,T) is
defined by

htop(T) = Sup htop(T7u)-
uec

Let C(X,R) be the Banach space of all continuous, real-valued functions on X endowed with

the supremum norm. For f € C'(X,R) and U € C%, we define
Po(T, f;u) = inf{ Y supe/*™) . VeCx and V = Uy},
Vey zeV

where f,(z) = Z;L;Ol f(T7z). Tt is clear that if f is the null function, then P, (T,0;U) =
log N ") = HUG ™).

For V € Cx, we let a be the Borel partition generated by V and define
(2.1) P*(V)={p € Px : 8=V and each atom of 3 is the union of some atoms of a}.

Lemma 2.1. P*(V) is a finite set, and, for each n € N,

Z sup ef(®) = mln{z sup /(@) . 3 e P*(V)}.

GC -V
BECx 5 xEB Beﬁ‘rEB

Proof. Let V = {V4,Va,--- ,Vi.}. For any 8 = {B1,Bs, - ,B;} € Cx with 8 > V, we let i; €
{1,2,--- 1} be such that sup,cp, fu(z) = sup,ex fu(z). Since B = V), there exists a ji €
{1,2,--- ,k} such that B;,, C Vj},. Let
ﬁ(]l) = {le}U{Bi\Vj1 S {1727"' 7Z} and Bl\vh #0}
Then ﬁ(]l) € Cy, ﬁ(]l) >V, and,
Z sup efn(x) > Z sup efn ("’U)
BeﬁxeB BEA(H )£EB
Let {i € {1,2,---,1}: Bi\V;, #0} ={1<ry <ry <--- <, <l}. Denote B} = B,, \ Vj,,
i=1,2,---,l;. Then B} NV;, =0,i=1,2,--- 14, and, 8(j1) = {V},, B}, B3, ,Blll}.
If X\ Vj, = 0, then B(j1) = {V;,} € P*(V) If X \ Vj, # 0, then we let iy € {1,2,- zl} be
such that sup,cp1 e/ = sup, ex\v;, e Since B(j1) =V and B} NV}, = 0,i =1,2,--- 11,
i2
there exists a jo € {1,2,--- ,k}\ {j1} such that B} c Vj, \'V},. Let

ﬂ(jlva) :{‘/jl’vjé\‘/jl}u{Bil\va NS {1,27"’ 3l1} and Bl\vh #w}
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Then ﬂ(jlan) € CX7 ﬂ(jlan) = Va anda

sup efn(x) Z Z sup efn(x).

Bep(in) *F BeER(i2) <P
I£ X\ (V;, UVs) = 0, then 801, o) = {Viy. Vi \ Vi, } € PFOV). T X\ (V;, UV;,) # 0, then we
continue the above procedure. By induction, we obtain a sequence {j1,J2, - ,Jr-} € {1,2, -+, k},

where r < k, such that JI_ Vj, # X, UI_, Vj, = X, and

r—1
ﬂ(jlvj%"’ ’jT’) = {‘/}17‘/]'2 \‘/ju"' 7‘/jr \ (U V7)}
=1

satisfies
Z sup efn(@) > Z sup efn(@)
Bep®EB BeB(jr, jr) TP
Clearly, B(j1,j2, - ,jr) € P*(V).
Hence
inf sup e/ (*) = min sup /(@)
BeCx BV 2 en (G122 G }C{1,2, K} 2 ven

Beg BeB(j1,d2, dr)
where {j1,ja, - ,jr} are such that [{j1,72, - ,jr-} =7 <k, U::_ll Vi #Xand,_,V;, =X. O
In particular, by taking V = Uy~ in Lemma 2.1, we have that P*(Uy ") is a finite set, and

(2.2) P.(T, f;U) = min{z sup ef(@ g e P Uy}

Beﬂ””EB

If, in addition, U is a partition, then

Lemma 2.2. For any f € C(X,R) and U € C%,
P(T, f;U) = nli_)rrgo%loan(T,f;U)
exists and equals infy,>1 %log P.(T, f;U).
Proof. For any n,m € N, V; = L{g_l,Vz - I/I(’J"_l, we have Vi VT "V, = Z/{(?"’m_l. It follows that
Poym(T, f5U) < > X sup  efrim (@)
VIEV: Va€V2 2€ViNT " Vs

= > > sup efn(@)+fm (T"x)
VieEV, VoeVy zeViNT—"V,

< Y 3 supe/r® . sup efm)
VieV, VoV, 2€V] zeVa
=( 3 sup e@)( 3 sup efm2)),
VieV; z€Vy Va€Vs 2z€VH
Since V1, Vs are arbitrary, Ppim (T, f;U) < P (T, f;U)Pn(T, f;U), ie., log P (T, f;U) is sub-
additive. This proves the lemma. O

Using Lemma 2.2, we immediately have the following.
Lemma 2.3. P(T*, fi;US™) = kP(T, f;U) for any f € C(X,R), U € C%, and k € N.
We refer to P(T, f;U) as the topological pressure of f relative to U and to

P(T, f) = sup (T, f;U)
€Cx

as the topological pressure of f. We note that the definition of P, (T, f;U) (hence P(T, f;U))
above is slightly different than the one given in [27]. However, it is easy to see that the topological
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pressures P (T, f) defined above are the same as the ones defined in [27], and moreover, if f is the
null function, then P(T,0;U) = hiop(T,U). An advantage of our definition of P, (T, f;U) is its
monotonicity, i.e., if U = V, then P,(T, f;U) > P,(T, f;V), which is essential for the validity of
the local variational principle stated in Theorem 2.

2.2. Measure-theoretic entropies. Let M(X), M(X,T), and M*(X,T), respectively, be the
set of all Borel probability measures, T-invariant Borel probability measures, and T-invariant
ergodic measures, on X, respectively. Then M(X) and M(X,T) are all convex, compact metric
spaces when endowed with the weak*-topology; M¢(X,T) is a G5 subset of M(X,T).
For given partitions «, 3 € Px and p € M(X), let
Hy(a) =Y —p(A)log u(A) and Hy(a|B) = Hu(aV B) — Hu(B).

Aca
One standard fact is that H,(«|f) increases with respect to o and decreases with respect to .
When g € M(X,T), it is not hard to see that H,(af ') is a non-negative and sub-additive
sequence for a given a € Px. The measure-theoretic entmpy of i relative to « is defined by

. 1 n—1y __

h(Ty00) = lim - Hyu(og™") = inf nH (ag™h),
and the measure-theoretic entropy of u is defined by
(2.3) hu(T) = sup h,(T,a).

a€Px

For a given U € Cx, Romagnoli [23] introduced the following two types of measure-theoretic
entropies relative to U,

n—1 _ 3
h(T,U) = nl:n;o nH (Uy~") and hf(T,U) = azul,r(leer hu(T, ),
where
HU) = _nf  Hy (o)

As to be seen below, many properties of H,(«) for a partition « can be extended to H, (i) for
a cover U.

Lemma 2.4. Let uy € M(X). The following holds for any U,V € Cx.
(1) 0< H,(U) <logNU).
(2) IfU =V, then H,(U) > H,(V).
(3) HuUVYV)<H, (U) +Hu (V).
(4) H,(T7'U) < HTM(U), and, the equality holds when (X, T) is invertible.

Proof. See [23], Lemma 8. U

mm

For a given U € Cx, u € M(X,T), it follows easily from Lemma 2.4 that H, (U~ ") is a sub-
additive function of n € N. Hence the local measure-theoretic entropy h,,(T,U) is well defined.
This extension of local measure-theoretic entropy from partitions to covers allows the generalization
of the local variational principle of entropy to the local variational principle of pressure stated in
Theorem 2.

Lemma 2.5. For anyV € Cx and p € M(X,T),
H,(V)= min H,(B).

BEP* (V)
Proof. The proof is very similar to that of Lemma 2.1. Let ¢(z) = —zlogz, x > 0. We first
observe that if 0 < x <y and 0 < § < z, then
(2.4) Pz —06) + oy +96) < o(z) + o(y).

Let V = {V,Va,--- ,Vx}. For any B = {B1,Bs,--- ,B;} € Px with 8 = V, we let i1 €
{1,2,--- ,1} be such that pu(B;,) = max;<i<; u(B;). Choose j; and 5(j1) = {V},, B{, By,--- ,B}.}
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the same way as in the proof of Lemma 2.1. Then $(j1) € Px and $(j1) = V. Moreover, it follows
from (2.4) that H,(8) > H,(8(j1))-

If X\V;, =0, then ﬂ(]l) = {V;,} € P*(V). Otherwise, we let io € {1,2,---,l;} be such that
H (312) = maxi<;<;, H,(B}), and choose ja, 3(j1, j2) the same way as in the proof of Lemma 2.1.

Then ﬂ(jl,jg) S PX and ﬂ(jl,jg) = V. Also by (24), Hu(ﬁ(]l)) > Hu(ﬁ(jhjg))
Continuing the above procedure inductively, we find a sequence {j1, jo, - ,j»} € {1,2,--- ,k},

where r < k, such that (JI_| Vj;, # X, Ul_, V;, = X, and

ﬂ(jlvj?v"' 7jT) = {‘/}1"/}2 \Vju"' 7‘/jr \ (U VL)}

satisfies that H,(8) = Hu(B(j1,- -, jr)) and B(j1, jo, -+, jr) € P*(V).
Hence H, (V) = ming;, j, ... j.ycqi2,.. .k} Hu(B(j1,J2,- -+, jr)), where {j1,j2,---,j.} are such
that |{j1aj2a' o 7jT}| =r <k, U:;ll ijz 7& X and UZ:l iji =X. O
Some properties of the local measure-theoretic entropies relative to covers are summarized as
follows.

Lemma 2.6. The following holds for all p € M(X,T) and U,V € Cx.

1) hu(T,U) = L b, (TM UMY for all M > 1;
2) Bi(T.U) > i h+(TM uM Y for all M > 1;
3) h(T,U) = lim 3 h+<TM,qu‘1>;
4) h,(T,U) < h (T,U);
5) B (T, UV V) < hH(T,U) + b (T, V) and hy (T, UV V) < h(T,U) + h(T, V);
6) h,(T,U) > h,(T, V) whenever U = V.
Proof. See [23]. O

Since a partition of X is also a cover, we have that h,(T") = supyec, hu(T,U). In fact, the
following holds.

Lemma 2.7. For p € M(X,T), hu(T) = supyccy hu(T,U).

Proof. Let U € C% and « be the Borel partition generated by . Then « = U and hence hu(T) >
hu(T, @) = by, (T,U). 1t follows that h,(T') = supyeco hyu(T,U).

Conversely, let a = {A1, As,--- , Ax} € Px and € > 0. Then there exists a §; = 1(k,e) > 0
such that whenever 81 = {B},B},--- ,B}} and 3 = {B}, B3,--- , B} are k-measurable partitions
with S0 u(BFAB2) < 6y, then H,(51]02) < € (see e.g., [27], Lemma 4.15).

Since p is regular, we can take closed subsets B; C A; with u(A4; \ B;) < 2‘%, 1=1,2,--- k.
Let Bp = X\ UZ 1Bi, Ui =ByUB;,i=1,2,--- k. Then u(By) < 5—1 and U = {Uy,Us,--- , Uy}
is an open cover of X.

For any integer j > 0 and any finite measurable partition 3 which is finer than T~ as a cover,
we can find a measurable partition 3’ = {Cy,Cy, -+, Cy} satisfying C; ¢ T7U;, i = 1,2, |k
and 3 = f'. Hence H, (T 7a|B) < H,(T7a|8'). Since T7U; D C; D X \U,,;, T/U; = T/ B,

W(CiAT T Ay) < (T AN\ T B;) + (T 77 Bo) = pu(A; \ B) + pu(Bo) < S—k - 2% < (Ll
ie., Zle W(CiAT™IA;) < 6y. Tt follows that H, (T 9a|8’) < € and hence H,(T 7a|f) < e
Above all, we have shown that there exists an open cover U of X consisting of k elements such
that for any j > 0 and any k-measurable partition 8 which is finer than T—7U as a cover, we have
H, (T 7a|p) <e
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Now for each n € N and a finite measurable partition (5, = Ug_l, we have (3, > T—IU for
7=0,1,---,n—1, and

H#(O‘g_l) < H,(Bn) + Hu(ag_llﬂn)
n—1

< Hu(Bn) + > Hu(T 7 0|B,)

§=0
< Hu(ﬂn) + ne.
Since 3, is arbitrary, H,(ag~ ') < H,(U;™") + ne. Hence
1 1
hu(T, ) = lim ﬁHu(ag—l) < lim EHM(L{SL_l)—&—e

= hu(T,U) 4+ € < sup hu(T,U) +e.

uec
Since v and e are arbitrary, hy(T') < supyeco hu(T,U). O
2.3. Conditional entropies. For a non-empty set Y C X and covers U, V € Cx, define
NUY) = min{cardd’ :U' CU, Y CUyepU'},
NUy) = I&lg\)}(N(UH/).

Clearly, N({U|X) = N(UU) and NU|{X}) = NU).
Lemma 2.8. Let U,V U1, V1 € Cx. Then
NUW) < N(U VL) forty =U and V =V,
N(TU|IT'Y) = NU|V),
NUNV UV V V) < NUV)N (Ui [Vr).
Proof. See [22]. O
Lemma 2.9. For any p € M(X,T) and U,V € Cx,
H,(V) < H,U)+1log NV|U).
Proof. Let 8 = {B1,Ba, - ,Bn}‘ € ‘PX Wiph 8 = U and denote V = {V;,Va,--- V. }. For each
i=1,2,---,n, we choose I; = {ji,j5, -~ ,jj,} C{1,2,--+,m} such that
li
I < N(VIB) and | )V 2 B;.

r=1

i=1,2,---,n. It is easy to see that v € Px, v = V and N(v|8) = N(V|f). Since B = U, we have
by Lemma 2.8 that

(2.5) N(y|8) = N(V|B) < N(V|U).
For simplicity, we denote v = {A1, Aa, -+, Ag}. It follows from (2.5) that
Hu(’Y) < Hu(ﬁ) + HM(VW)

n k

e

Hlt(ﬂ)+;#(B])(i7Ai§j¢® (B;) log u(B;) )

)

< H,(B)+ > pu(Bj)log|{i € {1,2,--- ,k} : A; N B; # 0}
j=1
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= H,(8) + Y u(B;)log N(7|B))
j=1
< H,(B) +1log N(v]9) < Hu(B) +log N(V|U).
Hence H,(V) < H,(v) < H,(B) +1og N(V|U). The lemma follows since 3 is arbitrary. O

For any covers U, V € Cy, it follows from Lemma 2.8 that the sequence {log N(UyVE~1)}2,
is sub-additive. Hence the quantity

1
h(T,U|V) = lim ElogN(UgL_lwg_l),

called the conditional entropy of U with respect to V, is well defined, and moreover,

(2.6) hMT,UV) < h(T,Us|V1) whenever Uy = U and V = V.
It is clear that if U € C% then h(T,U{X}) = hiop (T, U).
Let

r(T|V) = LIS;ICQ’ h(T,U|V)

be the conditional entropy of T with respect to a cover V € Cx, and

h*(T) = viélg; h(T|V)
be the conditional topological entropy of T. Then by (2.6),
(2.7 R(T|V) < h(T|V1) whenever V = V.
Clearly, h(T|{X}) = hiop(T)-
Lemma 2.10. For any p € M(X,T) and U € Cx,

ha(T) < by (T,U) + W(TIA).
Proof. Let V € C%. By Lemma 2.9,
(2.8) HM(V(;HI) < Hu(u(;kl) +10gN(V6kl|u6kl)
for all n € N. By dividing (2.8) by n then passing the limit n — oo, we obtain that
hy(T,V) < hy (T, U) + (T, VIU) < h, (T, U) + h(T|U).

It follows from Lemma 2.7 that h,(T) = supyecq hu(T,V) < hu(T,U) + W(T|U). O

3. UPPER SEMI-CONTINUITY AND AFFINITY OF A LOCAL ENTROPY MAP

The section is devoted to the proof of Theorem 1. Throughout the section, we let (X,T) be a
TDS.

For a fixedd = {U1,Us,--- ,Up} € C, welet U* = {{A1, A2, - ,Am} € Px : Ay, CUp,m €
{1,-++,M}}, where A,, can be empty for some values of m € {1,2,--- ,M}.

The following lemma will be used in the computation of H,(U) and h,(T,U).

Lemma 3.1. Let G : Px — R be monotone in the sense that G(a) > G(8) whenever a = 3. Then
inf  G(a)= alélzf G(a).

a€Px,a=U
Proof. See [17], Lemma 2. O

Lemma 3.2. Let K C X be a closed subset and {UP}"_, be a set of non-empty open subsets of
X which covers K. Then for any § > 0 there exist open subsets {VO}" , of X such that {V}7,
covers K, V2 c U?, u(0VyP) =0, and w(UPAVL) < § for alli=1,2,--- ,n.
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Proof. We prove the lemma by induction on n. When n = 1, we take a closed set K’ such that
K C K' CUY and u(U?\K’) < §. For each z € K’ there exists an €, > 0 such that u(0B(z,¢€,)) =
0 and B(z,e,) C U, where B(z,¢,) = {y € X : d(z,y) < €,}. Hence {B(x,¢;)}zex is an open
cover of K. Using compactness of K, we can find a finite sub-cover {B(z;,¢s,)}_,, for some F,
such that z; € K', i =1,2,--- ,k, and Ule B(xi,ez,) 2 K'. Let V) = Ule B(x;,€z,). Then V7
satisfies the properties stated in the lemma.

Now, assume that for some positive integer m the lemma holds for n = m. We consider the case
n=m+1. Let K,, = KN (X \UY,,). For any § > 0, since {U?}", covers K,,, by induction
hypothesis there exist open subsets V°, Vi --- | VO of X such that {V,°}™, covers K,,, V? C U?,
w(0VY) =0, and p(UPAVLY) < 6 for all i = 1,2,--- ,m.

Let K}, = KN(X\U;"; V). Then K}, is a closed subset of X and K}, C UY, ;. By induction
hypothesis there exists an open subset V.2, such that K], C V%, C U2, u(0V2,,) =0, and
(U AVO ) < 6. As {VPY ! covers K, the lemma holds for n = m + 1. O

Lemma 3.3. If U = {Uy,Us,--- ,Unm} € C%, then for any € > 0 there exists a § = 6(M,e) > 0
such that if V = {V1,Va,--- , Vi } € C% with Zf\il w(U;AV;) < 6§, then
|Hu(u) - HP«(V)l <e

Proof. By Lemma 4.15 in [27], there exists a ¢’ = ¢'(M,e) > 0 such that whenever «, 3 € Px are
two M-measurable partitions with p(aAB) < ¢’ then |H,(8) — H,(a)| < e.

Let § = % and V = {V1,Va,---,Vas} be a measurable cover of X such that u(UAV) < 6.

We first claim that for every M-measurable partition a > U there exists a finite measurable
partition 8 = V such that H,(o) > H,(5) — €.

By Lemma 3.1, it is sufficient to prove the claim for « = {A;1, As, -+, Ay} € U*. Define the
partition 8 = {By, Ba,--- , By} € V*:

By =Vi\ (U (4 N Vi),

k>1
Bi=Vi\(UAxnVy)u U Byj), i=2,3,--+, M.
k>i j<i

For each m = 1,2,--- , M, we clearly have A,, NV, C B,,, and hence A, \ B;, C A, \ (A N
Vin) € Up \ Vi, and By, \ A, C Uk:;&m(Ak \ Bx) C U,#m(Uk \ Vi). It follows that A,,AB,, C
Uil (UkAVR), m =1,2,--- . M, ie., p(aAB) < Mu(UAV) < &, from which the claim follows.
Now, for each o = U, we let § be as in the above claim. Then
Hy(a) 2 Hu(B) —e =2 Hu(V) — €.
Since such an o = U is arbitrary, we have that H,(U) > H,(V) — e. Exchanging the roles of U
and V implies that H, (V) > H,(U) —e. Hence |H,(U) — H,(V)| < e. O

We note that under the weak*-topology M(X,T') is a compact metric space and M¢(X,T) is a
Gs-subset of M(X,T). For each u € M(X,T), there exists a unique Borel probability measure m
on M¢(X,T) such that u = fMe(X,T) Odm(0), i.e., p admits an ergodic decomposition. The ergodic
decomposition of p also gives rise to an ergodic decomposition of the u-entropy relative to o € Px:

(3.1) ho (T, o) = /ME(X . ho(T, a)dm(6).

In fact, ergodic decompositions of the p-entropies relative to U € Cx also hold.
Lemma 3.4. Let p € M(X,T) andUd € Cx. If p = fMe(X ) 0dm(0) is the ergodic decomposition
of u, then

B (T.U) = /

W (T,U)dm(8) and by, (T,U) = / ho (T, U)dm(6).
Me(X,T)

Me(X,T)
Proof. See [17], Proposition 5. O
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We are now ready to prove Theorem 1, i.e., for any U € C%, the entropy map hyy(T,U) :
M(X,T) — Ry is upper semi-continuous and affine.

Proof of Theorem 1. We first prove the upper semi-continuity. Fix a uo € M(X,T) and let
€ > 0. We let N € N be sufficiently large such that
1
NHI"O
By Lemmas 3.2 and 3.3, there exists a finite open cover Vy = Z/IéV*l such that
H,y(Vn) < Hyuy(UY ™) + e and p10(0V) = 0 for all V € Vy.
Then by Lemma 2.5,
3.2 H,(Vn) = i H for all p € M(X,T).
() JV¥) = min H,(8) forall € MX,T)
Since po(0V) = 0 for each V' € Vy, we have that 19(0B) = 0 for any B € 8 when 3 € P*(Vy).
It follows from (3.2) and the finiteness of P*(Vy) that the function Hyy(Vn) : M(X,T) — Ry is
continuous at pg. Hence
limsup h,(T,U) < limsup + H, Uy ") <limsup & H,(Vn)
H— po b ) N
NHMO(VN) < NHMO(UO )+€
< hyo (T, U) + 2e.
Since € > 0 is arbitrary, the entropy map hy.y(T,U) is upper semi-continuous at po € M(X,T).
We now prove the affinity. Given py, pue € M(X,T) and A € (0,1). Let p; = fME(X ) Odm;(0)
be the ergodic decomposition of p;, i = 1,2. Consider p = A1 +(1—A)pe and m = Amq +(1—X)ma.
It is clear that m is a Borel probability measure on M¢(X,T) and p = fMe(X ) 6dm(0). By Lemma
3.4,

U™ <y (T.U) + e

hu(TU) = [y ) ho(T.U)dm(6)
= )‘fMe(X,T) ho(T,U)dm4(0) + (1 — N) fMe(X,T) ho(T,U)dm2(0)
= My, (T,U) + (1 — N)hy,, (T, U).
This shows that the entropy map hy.y(T,U) is affine on M(X,T). O

4. A LOCAL VARIATIONAL PRINCIPLE OF PRESSURE

Our aim in this section is to prove Theorem 2. Let (X, T) and (Y, S) be two TDS. A continuous
map 7 : X — Y is called a homomorphism or a factor map from (X, T) to (Y, S) if it is onto and
7T = Sw. (X,T) is called an extension of (Y,S) and (Y, .5) is called a factor of (X, T). If 7 is also
injective then it is called an isomorphism.

Lemma 4.1. Let 7 : (X,T) — (Y,95) be a factor map between two TDS and U € C%. Then for
any pp € M(X,T), h(T, 7 U) = hrp(S,U).

Proof. See [23], Proposition 6. O

Lemma 4.2. Let 7 : (X,T) — (Y,S) be a factor map between two TDS, f € C(Y,R) andU € C3..
Then P(T, f om;n—'U) = P(S, f;U).
Proof. Fixann € N. If V € Cy, V = U) ™!, then 771V € Cx and 7'V = (n~'U)3 . Hence

Z sup e/r) = Z sup elfomn(z) > P (T, f om;mU).
vev eV vepzErTtV

Since V is arbitrary, we have that P, (S, f;U) > P, (T, f o m;m~U).
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Conversely, we note that P,(T,f o ;7 'U) = inf {3 sup efr®}, Let B =
BEP*((r=1U)G ™~ 1) BepzeB
{B1, B, By} € P*((x~'U)g™"). Since 78 = {n(B1),n(Bz), -~ ,7(Bn)} € Cy and nf =
uy,

Z sup e (fom)n(z) —_ Z sup e fn(y) > P.(S, f;:U).
i—1 T€B; i—1 YET(B;)
Since f3 is arbitrary, P, (T, f o m;n~U) > P, (S, f;U).
Above all, P, (T, f om;7n*U) = P, (S, f;U) for each n € N, from which the lemma follows. O

Lemma 4.3. Let a1, as,--- ,ax be given real numbers. Ifp; > 0,1 =1,2,--- ,k, and Z?:opi =1,
then
k
sz a; —logp;) < log (D e™),

i=1

and equality holds iff p; = :7 foralli=1,2,--- k.
i=1 €%

Proof. See [27], Lemma 9.9. O

Proposition 4.1. Let (X,T) be a TDS, f € C(X,R) and U € C%. Then for any p € M(X,T),
P(Tf3U) 2 b (LU + [ f(@)duo)
X

Proof. Let p € M(X,T). For any n € N and € > 0, we have by (2.2) that there exists a finite
partition 3 € P*(U; ") such that > Bep SUPLcB ef"(x) = P,(T, f;U). Tt follows from Lemma 4.3

that
log(P (T, f;U)) =log('Y supe/®)
BepzreB

=Y M(B)(SUP fn(x) —log u(B))

Beﬁ

( )+ Z Supfn( ) - 1(B)

BepxzeB

)+ Jx fale ( )
>H(ug;1+nfx )du(z).
The proof is complete by dividing the above by n then passing the limit n — oo. O
A subset A of X is called clopen if it is both closed and open in X. A partition is called clopen
if it consists of clopen sets.

Lemma 4.4. Let (X,T) be a zero-dimensional TDS, n € M(X,T), f € C(X,R) and U € C%.
Assume that for some K € N, {oy}K, is a sequence of finite clopen partitions of X which are
finer than U. Then for each N € N, there exists a finite subset By of X such that each atom of

(al)évfl, l=1,2,---, K, contains at most one point of By, and, ) p_ efn(@) > W
Proof. For each 2 € X and | = 1,2,--- , K, we let A;(x) be the atom of (a;))’ ! containing z.
Then for any 1,22 € X and [ =1,2,--- , K, 1 and x5 are contained in the same atom of (oq)évf1
iff Al(l‘l) = Al(l‘g).

To construct the set By we first let ; € X be such that e/ = max,cxe™@ . If

U{il Ai(z1) = X, then we take By = {x1}. Otherwise, we take X; = X \ U{il Ai(z1). In
either cases, X is closed subset of X. Next, let x5 € X; be such that efn(z2) — maxgze x, efn (@),
If U{il Ai(z2) D Xq, then we take By = {x1,z2}. Otherwise, we take Xo = X7 \ Ullil Aj(z2).
In either cases, X5 is a closed subset of X. Since {A4;(z) : 1 <1 < K,z € X} is a finite set, we
can continue the above procedure inductively to obtain a set By = {x1, 2, - - &, } and non-empty
closed sets X;, 7 =1,2,--- ,m — 1, such that

(1) e/~ = max,cx /™) and X; = X\ Ufil Ai(z1),
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(2) efn@it) = maXgex, e/~ (@) and Xip1 =X, \ U{il Aj(xjpq) for j=1,2,--- ,m—1, and,
K
(3) U;n:1 Uz:1 Ay(z;) = X.
From the construction of By, it is easy to see that each atom of (al)évfl, l=12,--- K,

contains at most one point of By. Now let 5 = {X,;_1 N Ai(z;) }i<j<m,i<i<k, where Xy = X.
Then [ is a cover of X which is finer than Ugb_l. Therefore,

1 Pn(T, f;U)
§ fn(z) — § fn(z5) > § § efn (@) — E In(z) > DN S
e e sup = sup e = .
2E€BN 1‘L6Al(.LJ)mXJ 1 K BEBIEB K

O

Proposition 4.2. Let (X,T) be an invertible, zero-dimensional TDS, f € C(X,R) and U € C%.
Then there exists a ;1 € M(X,T) such that

(4.1) W)+ [ f@)dutz) = P, £,
X
Proof. Let U = {U;,Us,--- ,Uy} and define
U* :{OéEPX I()[:{A17A2,"' 7Ad}a Am - U’ma m:172a"' 7d}

Since X is zero-dimensional, the family of partitions in U/*, which are finer than ¢ and consist
of clopen sets, is countable. We let {«; : I > 1} denote an enumeration of this family.
Let n € N. By Lemma 4.4, there exists a finite subset B,, of X such that

(T, ;U

(4.2) T @ > b f Pl £U)
reB,
and, each atom of (al)g_l contains at most one point of B,,, for all [ =1,2,--- ,n. Let
=) (@)
z€EB,
where \, (1) = Zef"i:;nm for x € B, and let p, = %Z?:_Ol T'v,. Since M(X,T) is compact
YyEBp

we can choose a subsequence {n;} of natural numbers such that p,; — u in the weak*-topology
of M(X,T).
We wish to show that p satisfies (4.1). By Lemma 3.1 and the fact that

+ _ . s
h# (Tvu) - ﬁltnl/fl* h[L (Tv ﬂ) - lnellg h,u(Tv al)a
it is sufficient to show that
P f3t0) < hy(Toan) + [ f(@)duta)
X

for each [ € N.
Fix a | € N. For each n > [, we know from the construction of B,, that each atom of (a;){~ !
contains at most one point in B,,, and,

> —A(@)logAn(z) =3C,cp, —vn({z})logrn({z})
(43) zEB,
= H,, ()5 ).
Moreover, it follow from (4.2), (4.3) that
log P,,(T, f;U) —logn  <log(}_, eB ef"(z))
=Y uen, Mnl@)(falx) —log An(@))
_an(( )0 )+Zm€B ( ) n( )
((al)g 1)+fX Jn(x)dvy ().
Vn((al)g ! —|—an x)dpin ().
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Hence
(4.4) log P, (T, f;U) — logn < H,,n((al)g’_l) + n/ f@)duy ().
X
Fix natural numbers m,n withn >l and 1 <m <n—1. Let a(j) = [%], j=0,1,--- ,m—1,

where [a] denotes the integral part of a real number a. Then
a(j)—1

(4.5) n\_/ T =\ T ()gtv \/ T,
=0 r=0

tesS;

where S; ={0,1,---,j —1} U{j +ma(j),--- ,n—1)}. Since |S;| < 2m, it follows from (4.4) and
(4.5) that

log P, (T, f;U) —logn < H,, ((a)g ") +n [ f(x)dpn(z)

a(j)-1 )
< Z H,, (T~ ()5 ™) + Hy, (V| T™'er) +n [y fl@)dpn(z)
(4.6) les;
(]) 1 m-y
< X Hpeeeny, (()g' ™) +n [ f(@)dpn(2) + 2mlogd,
r=0

where d is the cardinality of &/. Summing up (4.6) over j from 0 to m — 1 then dividing the sum
by m yields that

(4)—
log P,(T, f:U) — log z Hpmresn, (@05 + 1 [ F@)dyin() + 2mlogd

AN
3=
M\

3o
Il
= o

< LY Hysy, ()7 ™) + 1 [y f(@)dpn() + 2mlog d,
=0

ie.,
n—1
1) Mg Pa(T, fiU) < 1S Hysy (008 Y) 41 fy F(2)dpun(z) + (2mlogd + logn).
3=0
Since Hy.y((oq)g'™") is concave on M(X,T),
n—1
1 m— m—
(4.8) n Z Hri,, ((ou)g 1) < Hy,, ((u)g 1)~
3=0

Now by dividing (4.7) by n then combining it with (4.8), we obtain

1
(4.9) floan(T7f;L{) < —H,, () ") / f(z)du, (z
n m
Since q; is clopen, it follows that
lim Hy, ((e0)g'™") = Hu((aa)g' ™).

j—o0

(2m log d + logn)
- .

By substituting n with n; in (4.9) and passing the limit j — oo, we have that
P(T, f;U) = lim -log P, (T, f3U)
j—o0

(4.10) < lim (L H,, (@)f'™") + [y f(@)dpn, (2) + Croertionns))
J—0 3
= Hu()g ™) + [y f@)dp().
The proof is now complete by passing the hmlt m — oo in (4.10). O

Proposition 4.3. Let (X,T) be an invertible TDS, f € C(X,R) and U € C%. Then there exists
ap e M(X,T) such that

h(TU) + /X f(@)du(z) = P(T, f:U).
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Proof. We follow the arguments in the proof of Theorem 4, [17]. Let U = {Uy,Us, -+ ,Unm} € C%.

We first consider the case that X is zero-dimensional, i.e., there exists a fundamental base of
the topology made of clopen sets. Since the set of clopen subsets of X is countable, the family of
partitions in U* consisting of clopen sets is countable. Let {ay : I = 1,2,---} be an enumeration
of this family. Then, for any k € N and p € M(X,T),

k—1 k-1
(4.11) hi(T* ) TU) = S,jgi,k hu(TF, \) T g, 3))-
=0 =0

For any k € N and s;, € N*, let
M(k,sp) = {pn€ M(X,T): ¢ (hu (T, VT ‘s, () + [x fr(@)dp())
> L P(T, fisUly ™)}

We note by Lemma 2.3 that %P(T’“, fk;l/lécfl) = P(T, f;U).
By Proposition 4.2, there exists a u; € M(X,T*) such that

h (T, uy™) /ka(x)duk(a:)ZP(Tk,fk;u(’f_l).

Since \/ L Zask(z) is finer than Ugil for each s, € N¥, we have

k—1
(4.12) hy (TF, \) T, ) +/ka(x)duk(x) > P(T*, fu;UE™).
1=0
Let v, = /‘k*T“H'k"*Tk_l”’“. Since T'u, € M(X,T*), i = 0,1,--- ,k — 1, we have v €
M(X,T). For s, € N¥ and j =1,2,--- ,k—1, let
POSk = Sk
Pis;, = sp(k—j)si(k—7+1)-sp(k—1)s,(0)s,(1) - sp(k — 1 —j) € N~
J k—j

It is easy to see that

k—1 k—1
s (5N T 000) = o (75N T ) and [ fu@aTopata) = [ fulwaan(o
=0 =0

forall j =0,1,--- ,k — 1. Tt follows from (4.12) that
k=1 .
h'le‘«k (Tkv \/ Tﬁzask(i) + fX fk x dT],LLk(:C)
- huk (Tk V T aPJ sk(z) + fX fk dﬂk(x)
> P(T*, fk,u(’; .
Moreover, for each s, € N¥,

k-1
th(Tk7 \_/ T_zask (2) +fX fk T dyk($)

= kz; o(hTWk(T V T a9k() +fx Jr(z dTJNk( )
> P(T*, fi; Uy ™).
Hence vy € N, ene M (K, s).
Let M(k) = (N, enx M(k, sx). For each si € N since \/ L g, (7) 1s a clopen cover, by
Theorem 1, the map M(X,T) — R: u — hM(T’“,\/i:0 T ask(i)) is upper semi-continuous. It
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follows that M(k,sy) is a closed subset of M(X,T) for s, € N, which implies that M (k) is a
non-empty, closed subset of M(X,T).
We now show that if k1, ke € N, k; divides ko, then M (ko) C M (k). Indeed, let p € M(ks)
and k = % For any si, € N¥1| we take sy, = si, - - sp, € N*2. Then
—_———

k
1 I A
]Tl(hM(T 1 \/ T_laSk- () +fX fkl € d/‘(x»

= gy rhu(TF, VOT I \/ T~ s, () + [x f@)dp()
O i=0

& (hu(T*, }\:/0 T~ g () + [ Tro(2)dp(z))
T P(T™, fr,;Uy* ") = P(T, f;U)
LRI, fis ).

Hence 1 € M(ki, sy, ) for each s, € N* and € M(ky). This shows that M (ko) € M (k1).
Since () # M (k1kz) € M (k1) N M (k) for any k1, ks € N, we have that (), oy M (k) # 0.
Let v € ey M (k) and k € N. By (4.11), we have that

Rhi (U5 + [ du( >

|| I\/

=t (b (TR US™N) + [y frlz)dv(z))
= inf, e +(ho (TF, V1, 1T_lask(l )+ [y frl@)dv(z))
= P(T, f;U).
It follows from Lemma 2.6 that
J(T.U) / f@yiv(w) = Jim 2 (TRUT) + [ fuo)dv(e) = P i),
oo k X

Combining this with Proposition 4.1, we have proved the proposition in the case that X is zero-
dimensional.

We now treat the general case. It is well known that there exists an invertible TDS (Z, R), with
Z being zero-dimensional, and a continuous surjective map ¢ : Z — X such that po R =T op
(see e.g., [3]). For the TDS (Z, R), we have already shown that there exists a v € M(Z, R) such
that

h, (R, o (U)) +/ fow(z)dv(z) = P(R, f o p; 0 'U).

Let o = ¢v. Then p € M(X,T). Since, by Lemma 4.1, h,(T,U) = h, (R, ¢ *(U)), we have
(113)  h(TW+ [ f@)dn() = b (R / o pl2)dulz) = P(T, § o 007 U).
X
Now, by Lemma 4.2, we also have
(4.14) P(R, f o~ 'U) = P(T, f;U).
The proof is now complete by combining (4.13) and (4.14). O

We are now ready to prove the local variational principle of pressure stated in Theorem 2, i.e.,
for any TDS (X, T), f € C(X,R) and U € C%,

(4.15) P, f;U)y= sup {h(T.U)+ / fdu(x
HEM(X,T)

and the supremum can be attained by a T-invariant ergodic measure.
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Let d be the metric on X and define X = {(z1, 22, +) : T(ziy1) = a5, 2; € X,i € N}. Tt is
clear that X is a subspace of the product space Hfil X with the metric dr defined by

— d(z;, y;
dT((-Tth) T )a (ylayQa T )) = Z (T)
i=1
Let o7 : X — X be the shift homeomorphism, i.e., op(z1, 22, -+ ) = (T(x1), 1,22, -+ ). We refer
the TDS (X, o7) as the natural extension of (X, T). For each ¢ € N, we denote m; : X — X as the
natural projection which projects each element of X onto its i-th component. Then m : (X,0r) —
(X,T) is a factor map.

Proof of Theorem 2. Let (X, or) be the natural extension of (X, T’) defined above. By Propo-
sition 4.2, there exists a v € M(X or) such that

h,,(UT,W1 / fom (Z)dv(T) = P(or, f om;m; 11/{).
Let y = mv. Then u € M(X,T). Since, by Lemma 4.1, h,(T,U) = h, (o7, 77 ' (U)), we have
(4.16) h,(T.U) +/ f(@)dpu(z) = hy(or, 7L / fom (Z)dv(Z) = P(or, f omy;m 'U).
b's
But by Lemma 4.2,
(4.17) P(or, fom;m 'U) = P(T, f;U).
Combining (4.16) and (4.17), we have
(4.18) mTU)+ [ f@)inte) = P fil)

Let p = fMe(X’T) 6dm(0) be the ergodic decomposition of u. Then by Lemma 3.4 and (4.18),

Jate ¢,y (o (T, U) +fx )df(x))dm(6)
fM C(X.T) ho(T, U)dm +fM «(X,T) I f(z)db(z)dm(0)
= hu(T,U) + [ f(x)dp(x) = P(T, f;U).
Hence there exists a T-invariant ergodic measure 6 such that

h(T0) + [ f(a)dba) = (L fild),
X
The proof of the theorem is now complete by applying Proposition 4.1. O

We remark that Theorem 2 generalizes the topological variational principle of pressure given in
[27], i.e., the following holds.

Corollary 4.1. (Topological variational principle of pressure, [27]) Let (X,T) be a TDS and
feC(X,R). Then

PIT.f) = sw {h(D)+ [ f@)duta

BHEM(X,T)

Proof. The proof follows immediately from Theorem 2 and Lemma 2.7 by taking the supremum
over all open covers in (4.15). O

Another immediate consequence of Theorem 2 is the following.

Corollary 4.2. Let (X,T) be a uniquely ergodic TDS and let p be the unique invariant probability
measure on X. Then for eachU € C% and f € C(X,R),

P(T, f:U) = hy (T.U) + /X F (@) i) = huop(T,U) + /X f(@)dp(z).
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Using this corollary, one can also give an alternative proof to the following classical ergodic
theorem of Oxtoby (see also [10]).

Corollary 4.3. (Ergodic theorem) Let (X,T) be a uniquely ergodic TDS and f € C(X,R). Then

f"T(w) converges uniformly to fX f(z)du(x) as n — oo, where p is the unique invariant probability
measure on X.

Proof. Take U = {X} in Corollary 4.2. Then h,(T,{X}) = 0. Recall that
Po(T, f1{X}) = emeex (@),
and hence P(T, f;{X}) = lim M We have by Corollary 4.2 that
. maxXgex fo(x
(4.19) Jim 2D o gy = [ o)

By replacing f in (4.19) with —f, we also have
lim mlanX fn / f dM

n—oo

n

Hence converges uniformly to [, f(x)du(x). O

5. LOCAL PRESSURES DETERMINE LOCAL MEASURE-THEORETIC ENTROPIES
We will prove Theorem 3 in this section. Throughout the section, we let (X,T) be a TDS.

Lemma 5.1. Let U € C%. The following holds for any f,g € C(X,R) and c € R.
1) P(T,0;U) = hyop(T,U).
2) If f <g, then P(T, f;U) < P(T,g;U). In particular,
hiop(T,U) + Hél)l’(l f(x) < P(T, f;U) < hiop(T,U) + mg)({f(x)

P(T,f+clU)=PT, f;U)+c.
P(T, f;U) = P(T,g;U)| < ||f —gll-
L, U) is convet.

P(T,-

PT,f+goT—g;U)= P, f;U).
P(T, f

P(T,

+g;U) < P(T, f;U) + P(T, g;U).
cfsU) < cP(T, f;U) if ¢ > 1, and, P(T,cf;U) > cP(T, f;U) if c < 1.
|P(T, f;U)| < P(T, |f;U).
Proof. 1), 2) and 3) easily follow from the definition of P(T, f;U).
By Theorem 2, there exists a u € M(X,T) such that h,(T,U) + [ f(z)du(z) = P(T, f;U).
Hence
P(T, fiU) = P(T,g;U) < (hu(TU) + [ f(@)dp(z)) — (h(TU) + [ g(x)du(x))
—IX (f = 9)(x)dp(z )S\If gll-
Similarly, we have P(T, g;U) — P(T, f;U) < ||f — g||. This proves 4).
Let a € [0,1]. By Theorem 2 there exists a u € M(X,T) such that

h(T,U) + /X(af + (1 —a)g)(z)du(z) = P(T,af + (1 — a)g;U).

It follows that
P(T,af + (1 —a)g;U) = h,(T,U) —|—fX af—l—(l—a)g)(
(h (T,U) +fX (x))+

Since a, f and g are arbitrary, 5) follows.

z)dp(z)
)(1 a)(h(T,U) + [ f(x)dp(z))
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To prove 6), we note that [ (goT — g)(x)du(z) = 0 for each € M(X,T). Then

P(T,f+goT —g;U) =sup,cnmxr)ihu(TU)+ [ ( f+goT 9)(x)du(z)}
= sup,e m(x,1) L (T U) + [ f(@)du(z)}

= P(T, f;U).
7), jimg src="/horde/themes/graphics/emoticons/cool.png” alt="8)" title="8)” align="middle”
/¢ and 9) can be proved similarly by applying Theorem 2. We omit the details. O

Recall that a finite signed measure on X is a map p : Bx — R which is countably additive. The
following result says that, for each U € C%, P(T,-;U) determines the members of M (X, T).

Proposition 5.1. Let U € C& and i : Bx — R be a finite signed measure on X. Then p €
M(X,T) iff [ f(x)dp(z) < P(T, f;U) for all f € C(X,R).

Proof. The proof follows completely from that of Theorem 9.11 in [27]. O

Corollary 5.1. Let p : B(X) — R be a finite signed measure on X. Then p € M(X,T) iff
Jx fl@)dp(z) < W%M foralln e N and f € C(X,R).

Proof. TakeU = {X} in Proposition 5.1. Since P(T, f; {X}) = lim,, o 222X (@) "1 corollary
follows. O

We first prove part a) of Theorem 3, i.e., for given U € C% and p € M(X,T), P(T,;U)
determines the p-entropy relative to U in the sense that

hTU) = nf{P(T.fit0) — [ fladuo): | € CXR)),

Proof of part a) of Theorem 3. We follow the arguments in the proof of Theorem 9.12, [27].
By Theorem 2, we first have

hu(T,U) < nf{(P(T, fitd) ~ [ f@)duta) : f € KR,
X
To prove the opposite, we let
C={(pt) e M(X,T) xR: 0<t<h,(T,U)}.
Since, by Theorem 1, the entropy map hy.y(T,U) : M(X,T) — R* is an affine map, C' is a convex
set. Let C(X,R)* be the dual space of C(X,R) endowed with the weak*-topology and view C' as
a subset of C(X,R)* x R. Take b > h,(T,U). Since, by Theorem 1, the entropy map h(T,U) is
upper semi-continuous at p, we have that (u,b) € cl(C). Let V = C(X,R)* x R, K; = cl(C), and
Ky = {(p,b)}. Then V is a locally convex, linear topological space, and K7, K are disjoint, closed,
and convex subsets of V. It follows from [9] (pp. 417) that there exists a continuous, real-valued,
linear functional F on V such that F'(z) < F(y) forall z € K,y € Ko, ie., F: C(X,R)* xR —-R
is a continuous linear functional such that F'(u.,t) < F(u,b) for all (u*, t) € CI(C). Note that
under the weak™-topology on C' C C(X,R)*, F must have the form F(u.,t) = [, f( d,u* )+td
for some f € C(X,R) and some d € R. It follows that [, f(x)du.(x) + dt < [y flz)dp(z) + db

for all (p,t) € cl(C). In particular, [, f(x)du.(z) + dh,, (T,U) < [y f(z)du(sc) + db for all
e € M(X,T). By taking p. = u, we have that dh,t(T U) < db. Hence d > 0 and

hy, (T,U) /f <b+/f du(zx), for all p, € M(X,T).

Pt <or [ )

Using Theorem 2, we have

d
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ie.,
vz Pt - [ A0 2 nip@ g - [ g@in): ge o r),
X X
Since the above inequality is true for any b > h,(T,U), the above implies that h,(T.U) >
nf{P(T, g;U) — [y g(x)du(x) : g€ C(X,R)}. O
Next, we show part b) of Theorem 3, i.e., if (X,T) is invertible, then for given U € C% and
peMX,T),

WU < it (P pit)— [ fan.

We need the following classical result of Rohlin.

Lemma 5.2. Let (X,T) be invertible and p € M®(X,T). If u is non-atomic (i.e. pu({z}) =0
for each x € X), then for any N € N and € > 0, there exists a Borel subset D of X such that
D, TD,--- ,TN71D are pairwise disjoint and u(UNgl T'D)>1—ce.

1=

Proof. See e.g., [11]. O

Proof of part b) of Theorem 3. We follow the arguments in the proof of Proposition 7.10, [12].
Let Y = {U1,Us, - ,Ui}. By Lemma 3.4 and Proposition 4.1, we may assume that u is ergodic
and non-atomic. Since P(T, f +¢;U) — [ (f +c)dp = P(T, f;U) — [y fdp for each ¢ € R, we can
assume that f(x) > 0 for all z € X. Let finax = maxgex f(z). Then fiax > 0.

For € > 0, we let N € N be sufficiently large such that

1 1 1 1
1 P (T, f;U) < 2N fi)+e) —(1—==)log(l— —)— =log —
(5.1) N (T, f;U) < and — ( N) og( N) N ogN <€,

and let 1 > § > 0 be sufficiently small such that

(5.2) V5(10g k 4 fnax + log(kefm=)) < e.

For such 6, N chosen, by Lemma 5.2, there is a Borel subset D of X such that D,TD,--- , TVN~1D
are pairwise disjoint, and ,u(Ufgol T'D) > 1—6. Let € P*(UY ") be such that
(5.3) 1< Z sup /@) = Py (T, f;U)
Beg r€EB

and consider the partition fp = {BN D : B € 8} of D. Hence for each element P € Sp we can
find a sp € {1,2,---,k}" such that P C (ﬂj\:)1 T’jUij) N D. Using the partition 8p, we define
a partition « = {4; : i =1,2,--- |k} of X as follows. First, for each i =1,2,--- |k, let

N-1

Al = U U{TjP : Peppandsp(j) =i}

§=0
We then let Bf = Uy, By = U\ By, -+, B, = Ui \ (Uf;ll BY). Finally, we let A; = A]U(B;N(X\
U;V;Ol T'D)) fori =1,2,--- ,k. Clearly, a« = {A; : i =1,2,---  k} is a partition of X and A; C U;
forall i =1,2,--- k. Hence a = U.

For 3 € Px and R C X, welet ’NR={ANR: A€ 3 and ANR # (}. From the construction

of a, it is easy to see that aévfl N D = [p, and moreover,

(5.4) Z sup e/~ (@) = Z sup e/¥ (@) < Z sup e/v (@) = Py (T, f;U).
N1 %€C P zeP zeC
Ceay ~'ND €Bp Ccep
Let £ = Uﬁgl T'D. Then pu(E) > 1 — 6. For any fixed n > N, we let G, = {x € X :
L3050 1e(Tiz) > 1= V/6}. Since p(Gr) + (1= V)(1 = p(Gn)) = [ 215 1e(T7))du(x) >

1— 46, we have

(5.5) w(Gp) >1— 6.
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For each x € G, let S, (z) = {i € {0,1,--- ,n—1} : T?x € D} and U, (z) = {i € {0,1,--- ,n—1} :
Tz € E}. Note that for any z € X and i € Z, if T'x € E then there exists a j € {0,1,- N -1
such that T°~Jz € D. Using this fact, it is not hard to see that for each x € Gn, U (x
U;V:()l(Sn( )+7)U{0,1,--- , N —1}. Since for each = € Gy, |Up(2)| = S0~ 1p(T%z) > n(1—
we have [{0,1,--- ,n — 1} \ U, (z)| < nV/3. Therefore, for each x € G,

(5.6) 0,1,--+ ,n = I\ UjZg (Sn(@) +5)]
' <H0,1,--- ,N=1}U({0,1,--- ,n— 1} \ Up(z))] <nvd + N.

Let F,, = {Sn(z) : x € G, }. Since for each F € F,,, FN(F+4)=0,i=0,1,--- ,N — 1, we
have |F| < & + 1. Hence

N~

) €
Va),

a
- n! n! n!
fn < . . < n g b
| |*JZ =) = el (n—an)! = anl (n—ap)!
where a,, = [§] + 1. By Stirling’s formulation and the second inequality in (5.1), we have
1 n! 1 1 1 1
lim = log(n———" Y= —(1 - —)log(l — —) — — log — < .
e Og(nan!~(n—an)!) (1= ) log(l =) — Flog 7 <
Hence
|
(5.7) lim sup — 10g|.7-" | < hm flogn# <e
n—oo (7% (’ﬂ - an)'

For each F' € F,, let Bp = {z € G, : Sp(z) = F}. Clearly, {Br}rer, forms a partition of G,,.

For each FF € F,,, F = {s1 < s9 < --- < 5}, we let Hp = {0,1,--- ,n — 1}\Ufi61(F+z)
It follows from (5.6) that | < & + 1, |Hp| < nv/§ + N. Moreover, using (5.4) and the facts that
la| = k, Py (T, f,U) > 1, and Bp C G, N(;_, T~% D, we have

Z sup efn(x) S Z sup efn (:E)
n—1 xeC 1 zeC
C€ag  NBr ceV T %@ 'nD)v V T-ra
j=1 reHp

l . -
< TI( > sup e/NTVe)) T (3 sup e/ (T79))
i=1 c;eT™% (o) 1nD) *€C; reHp C;eT-"az€C;
l

(Y sup @) (X sup ef @)l

i=1 ¢jeal "*nD €T, Cicaz€C;
< (kefme) el (P (T, £,U))!
< (helmox)nVOEN (P(T, f,U)) R
Summing the above inequality over F' € F,, yields that

(58) FZ]: Zl Slelg efn(x) S |‘7:’I’L| . ( efx]]ax)7lf+N (PN(T f, )) 1.
€Fn Ceay 'NBr ¥

Since u(X \ Gp) < V0 and |of ' N (X \ Gp)| < k™,

Hu(a871 N (X \ Gn)) + fX\Gn fndp

S E _M(C/) IOgM(CI) + nIU/(X \ Gn)fmax
C'€ay ™ 'N(X\Gr)
(5 ereun—1iex (©))
(5.9) <—( Y p(C)log Lt 0N BT T X\ G) fana
1 [ag ™ N(X\GR)|
Creal IN(X\Gy)
(X \ Gn)(log |02 ™" 1 (X \ Go)| = log (X \ Gn) + 1 fima)

; \f5(10g k™ + nfmax) — (X \ Gp)log (X \ Gyp).
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Let v = {Br}rer, U{X \ Gy} and ¢(t) = —tlogt, t > 0. Then v € Px, and, by (5.8), (5.9)
and Lemma 4.3,

H,( +f)ifnd,u<H(O‘0 V) Jrfxfndﬂ

(5.10) = Fezf (H (o~ N Br) + [, Fudi) + (Hu(ag ™ 0 (X \Go)) + [\, Fadit)
< F; (Hu(ag ™" N Bp) + [, fadp) + V6(10g k™ 4 1 fimax) + ¢(1(X \ Gn))

< X > M(C)(zlelgfn(x)—logu(c))

FeFn ccal™'nBr
+(X \ G)(0 = log (X \ Gr)) + nV5(logk + fimax)

Slog( X X eMPece @) e PeexiGn 0) 4 ny/F(l0g K + fram)
FeFn Ceay 'NBr

<n(b, + f(Ing + fmax)),

where by, = 1 1og(| | - (ke )™V 25N (P (T, £,U0)F+1 + 1),
Now, by (5.1), (5.2), (5.7) and (5.10),

h:(T,u)HX dp(x) < hu(T,a) + [ fdu
= lim L(H,(of +fond,u <11msupb +V6(logk 4 fmax)

= hmsup (log | Fn| + (n\f + N) log(kefmaX) + (% + 1) log Pn (T, f,U)) + \/g(logk: + fmax)

n—oo

= limsup & log |7, | + 3 log Py (T, f,U) + V5(logk + fmax + log(kelmex))

n—oo
< %1OgPN(Tafau) + 2€
< P(T, f;U) + 3e.

The proof is now complete since € > 0 is arbitrary. g

n [17], the authors showed that for an invertible TDS (X,T), u € M(X,T) and U € C%, i)
h(T,U) = hi(T,U) iff 1) hiop(T,U) > B (T,U). If we let f be the null function in Lemma
4.1, then we have that ii) is true (in fact, this is already shown in Proposition 7.10 of [12]).
Hence i) is also true. This gives an alternative proof of the Corollary stated in Section 1, i.e.,
hu(T,U) = hf (T, U) (see also [19] for a relative version).

A general question is whether the equality h,(T,U) = h;} (T,U) still holds for a non-invertible
TDS. We believe that the answer to this question is affirmative.

6. EQUILIBRIUM STATES

In this section, we will investigate properties of equilibrium states using our findings in the
previous sections. Throughout the section, we let (X,T) be a TDS.

6.1. Local equilibrium states. Differing from global equilibrium states, we will show that local
equilibrium states always exist and can be characterized by tangential functionals.

Given f € C(X,R) and U € C%. A member p of M(X,T) is called an equilibrium state for f
relative to U if

P(T, f;U) = h,(T,U) +/X f(x)du(x).

We let M (X, T;U) denote the set of all equilibrium states for f relative to U. Since hy.y(T,U) is
upper semi-continuous on M(X,T), it is easy to see that

oo

My (TU) = () ellln € MIXT) s hy(Titd) + [ fdu > PAT.fith) = ).

n=1
A tangent functional to the convex function P(T,-;U) at f is a finite signed Borel measure p on
X such that

P(T,f+g;U)— P(T, f;U) > / g(x)du(x), for all g € C(X,R).
X
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We let 7;(X,T;U) denote the set of all tangent functionals to P(T,-;U) at f.

Proposition 6.1. The following holds.
1) My(X,T;U) is a non-empty, compact and convez set.
2) The extreme points of M (X, T;U) are precisely the ergodic members of M (X, T;U).
3) Let p € My(X, T U) and pp = fMe(X,T) 0dm(0) be the ergodic decomposition of u. Then
for m-a.e. 0 € M(X,T), § € M (X, T;U).
4) My(X,T5U) = Tp(X, T5U).

Proof. For each v € M(X,T), we let L(f,U,v) = h,(T,U) + [y f(x)dv(z).

1) By Theorem 2, M;(X,T;U) is non-empty. By Theorem 1, L(f,U, ) : M(X,T) — Ris a
upper semi-continuous, affine map. Hence M (X, T;U) is a closed, convex subset of the compact
metric space M (X, T).

2) Let p be an extreme point of M (X, T;U). To show p is ergodic, it is sufficient to show that
 is an extreme point of M(X,T). Let p1q, 2 € M(X,T) and @ € (0,1) such p = aps + (1 —a)pe.
Then aL(f,U, p1) + (1 —a)L(f,U, u2) = L(f, U, ) = P(T, f,U). Tt follows from Theorem 2 that
L(f,U, 1) = L(f,U,p2) = P(T, f,U). Hence p1, po € My(X,T;U). Since p is an extreme point
of My(X,T;U), p1 = po = p. It follows that p is an extreme point of M(X,T).

3) This follows from the following two facts: a) L(f,U,0) < P(T, f;U) for each § € M*(X,T);
b) fMe(X,T) L<f7u7 Q)dm(e) = L(fv“n“’) = P(Ta fau)

4) We follow the arguments in the proofs of Theorems 9.14 and 9.15, [27]. Let p € M (X, T;U).
By Theorem 2, if g € C(X,R), then

P(T, f + g;:U) = P(T, f;U) = hyu(T,U) +/X(f+9)(x)dﬂ($) — (hu(T,U) +/Xf(x)du(x))
- [ st@auta).
Therefore My (X, T;U) C T¢(X,T;U).

Conversely, let ¢ € T;(X,T;U). For any g € C(X,R) with ¢ > 0 and any ¢ > 0, we have by
Lemma 5.1 2) and 3) that

/X(9+6)du=—/x—(g+6)du

> —P(T,f—(g—ke);bl)—l—P(T,f;U)
> 7[P(T,f,“) —min(g+e)]+P(T,f;Z/I)
=ming + € > 0.

Hence [ « 9dp > 0. This implies that 4 is a non-negative measure. To show that y is T-invariant,
we note by Lemma 5.1 6) that

n/X(goT—g)duéP(T,f+n(goT—g);U)—P(T,f;u)=0

for any n € Z and g € C(X,R). Hence, if n > 0 then [, goTdu < [, gdp and if n < 0 then
Jx goTdu> [y gdu. This shows that [ goTdu = [y gdp, i.e., p is T-invariant.

Next, we show that 41 is a probability measure. Note that [, ndu < P(T, f+n;U)—P(T, f;U) =
n for any n € Z. Hence if n > 1 then p(X) <1 and if n < —1 then pu(X) > 1. Thus pu(X) = 1.
Above all, p € M(X,T).

Now, since p € Tp(X,T;U), P(T,f + g:U) — [ (f + g)du > P(T, f;U) — [ fdu for any
g € C(X,R). Hence P(T,h;U) — [ hdp > P(T, f;U) — [ fdu for any h € C(X;R). It follows
from Theorem 2 and part a) of Theorem 3 that h,(T,U) = P(T, f;U) — [y fdu, ie., P(T, f;U) =
h(T,U) + [y fdp. Thus p e My (X, T:U). O

Lemma 6.1. Given U € C%, there is a dense subset C of C(X,R) such that each function in C
has a unique equilibrium state relative to U.
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Proof. The lemma follows from Proposition 6.1 4) and the fact that a convex function on a separable
Banach space has a unique tangent functional at a dense set of points (see [9], pp. 450). g

Next, we discuss uniqueness of local equilibrium states. Recall that M(X,T') forms a compact
metric space under the weak*-topology. Let d be a compatible metric of M(X,T) and Hy be the
Hausdorff metric of 2M(XT) . Given U € C%, define
(6.1) Dy O(X,R) — 2MED) @y (f) = My (X, T;U), f € CX,R).

Lemma 6.2. &y is upper semi-continuous.
Proof. Let f, — f in C(X,R) and p, € My, (X, T;U) with u,, — p for some p € M(X,T).

Since py, € My, (X, T;U),

BT+ [ fu@)de () = PT. £,
Let n — oo in the above. It follows from Lemma 5.1 4) and Theorem 1 that
mTU)+ [ f@)dn(e) = P fl).
By Proposition 4.1, € M (X, T;U). O

Proposition 6.2. For a given U € C%, f € C(X,R) has a unique equilibrium state associated to
U iff f is a point of continuity of ®y. Moreover, the subset C of C(X,R) such that each function
in C has a unique equilibrium state relative to U is a dense Gs set.

Proof. If M;(X,T;U) has only one point, then it is clear that &y is continuous at f, as $y is
upper semi-continuous.

Conversely, let ®;; be continuous at f € C(X,R). By Lemma 6.1 there exists a sequence
fn € C(X,R) such that f,, — f and each M, (X,T;U) has only one point. Since ®;, is continuous
at f, M;(X,T;U) has only one point.

Let C be set of points of continuity of ®;,. By Lemma 6.1, C C C(X,R) is a dense subset. Since
dy, is upper semi-continuous, C is also a Gy set. d

We now discuss uniformity of local equilibrium states relative to a fixed U € C$. Let
M(X,T5U) = Upec(x ryM (X, T;U)
denote the set of all equilibrium states relative to U.

Lemma 6.3. Let f € C(X,R). Then for any up € M(X,T) and € > 0, there exist f' € C(X,R)
and ' € My(X,T;U) such that

l-wl= s | [ gdu- [ gdi|<e
geC(X,R),|lgll=1 JX X

17— 7l < 2P f1) — () + / fdu))
€ X

Proof. We follows the arguments of Theorem 3.16 and Remark 6.15 in [25]. By Lemma 5.1 4)
and 5), P(T,;U) : C(X,R) — R is convex and continuous. Since fX gdp < P(T,g;U) for all
g € C(X,R), it follows from a general result of Bishop and Phelps (see [14], pp 112 or [25], A.3.6)
on the denseness of tangent functionals of a Banach space that there exists f/ € C(X,R) and
w e Tp(X,T;U) = My (X, T;U) such that

=l <e

and

and

! 1 . _ _ 1 . _
I =11 < PE ) = [ g int (Pt~ [ g

geC(X R
The lemma follows as infyco(x r){P(T, g:U) — [y gdp} = hy(T,U), by Theorem 3. O
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Proposition 6.3. The following holds.

1) The set M(X,T;U) of all equilibrium states relative to U is dense in M(X,T).
2) For any finite collection of ergodic measures {1, pra, - , pin} C M(X,T), there exists a
f € C(X,R) such that {p1, pa, -+, pn} C My(X,T5U).

Proof. 1) follows directly from Lemma 6.3.
2) We follow the arguments of Corollary 3.17 and Appendix A.5.5 in [25]. From 1), we know
that there exist f € C(X,R) and p € M#(X,T;U) such that

1 1
I — =(p1 +po+- 4 pn)| < =
n n

Let u = fMe(X D 0dm(0) be the ergodic decomposition of p.

Note that w =m — £(8,, + -+ + ,,) is a finite signed Borel measure on M*(X,T) and there
are finite positive Borel measures w;,w_ on M¢(X,T) such that w = w; —w_ and wi,w_ are
mutually singular. Let vy = fMe(X,T) fdw(0) and v_ = fMe(X,T) fdw_(#). Then vy,v_ are

mutually singular, finite, positive Borel measures on X and u — %(Hl +pot ) =ve —v_.
Since

o= 2 g 44 )| = s — v = ol + - = 2 (X) + v (X)
= W (ME(X, T)) + w_(ME(X,T))
= i |+ llo— [ = flwg — ]
= Jlwll

we have that ) i
[[m — 5(5;“ + ot O, )l < w
Hence m({u;}) > 0,i=1,2,--- ,n. It follows from Proposition 6.1 3) that uq,- -, u, are equilib-

rium states of f relative to U. d

6.2. Global equilibrium states. Let f € C(X,R). A member p of M(X,T) is called an equi-
librium state for f if

P(T.S) = 1)+ [ Fa)dnta

We let M;(X,T) denote the set of all equilibrium states for f. We note that M;(X,T)
can be an empty set (see e.g., [13, 20]). But it is not hard to see that if hyp(T) = oo, then
My(X,T) = {p € M(X,T) : hy(T) = oo}. So for the rest of the section we assume that
hiop (T') < 00.

A finite signed Borel measure p on X is a tangent functional to P(T,-) at f € C(X,R) if

P(T.f+9) = P(I.1) 2 [ g(o)du(e) for all g € CX.R)
X
We let 7;(X,T) denote the set of all tangent functionals to P(T)-) at f.
Define

MU(X,T) ={p € M(X,T): hg;(T) is upper semi-continuous at p},

./\/llf(X7 T) ={p € M(X,T) : there exist U,, € C& with diam(U,) — 0, g, € C(X,R) with
llgn — fll — 0, and p, € Mg, (X, T;Uy), such that p, — p},

M‘}l(X, T) ={p € M(X,T) : there exist U,, € C% with diam(lf,,) — 0 and
fn € My(X,T;Uy), such that p, — p}.

It follows from the Hahn-Banach theorem that 7¢(X,T) is non-empty. It is also easy to see that
both M;Z(X, T) and /\/llf(X7 T) are non-empty, closed, and, /\/l;’}l(X7 T) C /\/llf(X7 T). The set
M*(X,T) can be empty because the entropy map hy.3(7T") needs not have any points of upper
semi-continuity in general. This is in fact the main obstruction for the existence of an equilibrium
state for f.
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The general connections of these sets are the following.

Proposition 6.4. The following holds.
1) My(X,T) CT;(X,T) C M(X,T).
2) Ty(X,T) = ﬂl c{p € M(X,T): hu(T) + [y fdu > P(T, f) = 3}).
) Mp(X,T) = Tp(X,T) n M*(X,T).
4) MY(X,T) = T;(X,T)
5) MY(X,T)NM“(X,T) = My (X,T).
Proof. 1) and 2) are precisely the Theorem 9.14 and the Remark of Theorem 9.15 in [27].

3) Ubing 2) we have that 7,(X,T) N M*(X,T) C M;(X,T). Now let p € M;(X,T), ie.,
hu(T) + [ f(@)dp(z) = P(T, f). If p, € M(X,T), p, — 1, then by (1.1),

+/Xf(x)dun(x) < P(T,f),

i, (T) /f Japu(z /f Ydjun (2

Hence limsup,, o hy, (T) < h (T), i.e., the entropy map hy.}(T) is upper semi-continuous at f.
We thus have p € T;(X,T) N M“(X T)

4) Let p € M;(X, T) and let U,, € C%, gn € C(X,R) and p, € Mg, (X,T;U,) be such that
diam(U,,) — 0, ||gn — f|| — 0 and w,, — p. Then for any g € C(X,R), we have

P(T, gn + g;Uyn) — P(T, gn;Un) > /X g(x)dpn(z),

i.e.

and

P(T,gn+9) = P(T, gn + g;Un) = P(T, gn; Un) + /X g(x)dpn (x)

> (P(T, f:Uy) — |1f — gull) + / 9(2)dpn ().
X
By taking the limit n — oo, we have
P(T.f+9) > P(T, f) + / g(@)du(z), for all g(z) € C(X,R).
X

This shows that pu € T7(X, T).
Conversely, let 4 € Tp(X,T). Then it follows from 2) that

(6.2) e cl({v e M(X,T): / fdv> P(T, f)— 3 })

for all n € N. Let d be a prescribed compatible metric on M(X,T). Without loss of generality,
we assume that d(61,62) < |61 — 62 for any 61,0, € M(X,T). For each n € N, we have by (6.2)
that there exists a u/ € M(X,T) such that

1
h, (T) +/ fdu' > P(T, f) — 3 and d(p', p) < —
b's
Then by Lemma 2.7, for each n € N, there exists a U, € C% such that diam(U,,) < % and
1
(1) = o (T) = (o (1) + [ il = PP )+ ).

from which we have

PAT.£Uy) = (e (T + [ i) < PATf) = (o (Tt) + [ fut) < .

n
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For each n € N, we apply Lemma 6.3 for ¢/, f and U, to obtain u,, € M(X,T) and f, € C(X,R)
such that

, 1
ln — 1] < o
Hh—ﬂﬁﬂﬂﬂﬂ%%ﬂwﬁﬂm+AﬂMD§

Since d(pin, p) < d(p, ') + d(p s pn) < d(p, ') + |1/ — pnll < 2, we have p, — p. Hence
pe MYX,T).
5) follows immediately from 3) and 4). O

1
—

From the proof of part 4) of Proposition 6.4, we also have the following.

Proposition 6.5. Given {V,} C C% with diam(V,,) — 0. Let d be a prescribed compatible metric
on M(X,T). Then

./\/llf(X,T) ={u e M(X,T): for any e >0 and M € N there exist ge s € C(X,R), L > M
and pre s € Mg, o, (X, T5VL) such that ||gen — fI| < € and d(p, pre,nr) < €}

We remark that points of M?(X ,T) need not be equilibrium states for f in general. But
Proposition 6.4 4) asserts that pu € le(X, T) is an equilibrium state for f iff it is a point of upper
semi-continuity of h¢.y(7T"). This gives a necessary and sufficient condition for a point of /\/llf(X ,T)
to become an equilibrium state for f. Of course, such a condition needs not be satisfied in general.
One exception is the case when the entropy map hy.3(T") can be realized by local ones in the sense
that there exists a U € C§ such that

(6.3) h(T,U) = h,(T) forall pe M(X,T).

Define
RM(T,U) = sup  (hu(T) — ho(T,U)), U € C%.

HEM(X,T)
Then it is clear that hM (T,U) < KM (T, V) whenever U = V. Moreover, (6.3) holds for an U € C%
iff WM (T, U) = 0. Also define

PM(T) = inf RM(T,U).

UeCy

Then h™(T) = 0 gives a weaker notion of realization of the entropy map by local ones. By Lemma
2.10, we have

(6.4) 0 < R™(T,U) < W(T|U), U €C%, and 0 < hM(T) < h*(T),
where h*(T') = infyece h(T|U) is the conditional entropy of 7.

Proposition 6.6. If WM (T,U) =0 for some U € C%, then for each f € C(X,R)
(6.5) ME(X,T) = ML(X,T) = T;(X.T) = My (X.T).

Proof. Note that the condition h™ (T,U) = 0 implies that (6.3) holds. It follows from Theorem 1
that the entropy map hyy(T)(= hyy(T,U)) : M(X,T) — R is upper semi-continuous. Hence
MU(X,T) = M(X,T). By (1.1), (6.3), and Theorem 2, we also have P(T, f;U) = P(T, f) for each
feC(X,R). Hence My(X,T) = My(X,T;U) and T3(X,T) = T;(X,T;U) for each f € C(X,R).
It follows from Proposition 6.1 4) and Proposition 6.4 3) that ./\/llf(X, T)=T;(X,T)=M;(X,T)
for each f € C(X,R).

Let {U,} C C% be a sequence such that U, > U for each n and diam(l,) — 0. It follows from
(6.3) that h,(T,Uy,) = h,(T) for all n and all p € M(X,T). Again, by (1.1) and Theorem 2, we
have P(T, f;Uy,) = P(T, f) and hence M;(X,T) = M;(X,T;U,) for all n and f € C(X,R). This
shows that for f € C(X,R), M$¥(X,T) 2 M;(X,T), and hence M3 (X,T) = My (X, T). O
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Lemma 6.4. hM (T) = 0 iff the entropy map hiy(T) : M(X,T) — R is upper semi-continuous.

Proof. Let hM(T) = 0. Fix a p € M(X,T). For any given ¢ > 0, we let V € C% be such that
M (T, V) < e. Since hyy(T,V) is upper semi-continuous,
limsup b, (T) < limsup h, (T, V) + € < hy(T,V) + € < h,(T) + €.
V— v—

Since € is arbitrary, limsup,,_,, h,(T) < h,(T). This shows the upper semi-continuity of the
entropy map hy.y(T).

Conversely, let by (T) : M(X,T) — R be upper semi-continuous. If h*(T') > 0, then there are
sequences {U, }52,; C C% with diam(U,,) — 0 and {p,}52; C M(X,T) such that

BM(T)

b, (T) = by, (T, Uy) > for all n.

Without loss of generality, we assume that U, 1 = U, for all n.
By taking subsequence if necessary, we let p,, — p in the weak*-topology. Fix m € N. For any
n > m, we have

M
Py () = oy (T8) 2 B (7) = (T 0) = 22,

Letting n — oo, it follows from the upper semi-continuity of hy.y(T) and hyy(T,U,,) that h,(T) —

h(T,U) > 2500 5 0. But since 7y, (T) < hiop(T) < 00, i oo (b (T) = by (T, Up)) = 0, a

contradiction. O
Proposition 6.7. If KM (T) =0, then
MG(X,T) =T;(X,T) = My(X,T).

Proof. By Lemma 6.4, the entropy map hyy(T) : M(X,T) — R is upper semi-continuous, i.e.,
MU(X,T) = M(X,T). The proposition now follows from Proposition 6.4 3)-5). O

We note that the condition hyop(T') < 0o a prior assumed at the beginning of the subsection is
actually implied by the condition h™(T) = 0. Indeed, if R* (T) = 0, then there exists a U € C%
such that M (T,U4) < 1. Since

PMTU) > sup (hu(T) = heop(T\U)) = hiop(T') — hiop(T,U),
HEM(X,T)
we have
hiop(T) < WM (T, U) 4 hiop (T, U)) < 1 +log N(U) < oco.

We now discuss two classes of weak expansive systems: the h-expansive and asymptotically
h-expansive systems, introduced by Bowen [6] and Misiurewicz [20], respectively. Given n € N and
€ > 0. A subset E C X is said to (n, €)-spans another subset F' C X (with respect to T'), if for
each y € F there is a € E so that d(T*(z),T*(y)) < e for all k = 0,1,--- ,n. For a compact
subset K C X, we let r,,(K,€) = r,(T, K,e) = min{cardE : E (n,¢)-spans K}. Define

1
(T, K) = lim lim sup - log r, (K, €).

n—o0

It is well known that hyop(T) = h(T, X). Let
O (z)={ye X :d(T"(z), T"(y)) < e for n > 0}

and define
hip(e) = sup (T, ®(x)).
rzeX

(X,T) is called h-expansive if there exists an € > 0 such that h¥.(¢) = 0, and is called asymptotically
h-ezpansive if lim._o h%.(e) = 0.

It is shown by Bowen [6] that expansive systems, expansive homeomorphisms, endomorphisms
of a compact Lie group, and Axiom A diffeomorphisms are all h-expansive, by Misiurewicz [22]
that every continuous endomorphism of a compact metric group is asymptotically h-expansive
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if its entropy is finite, and by Buzzi [8] that any C'*° diffeomorphism on a compact manifold is
asymptotically h-expansive.
The following characterization is given by Misiurewicz ([20]).

Lemma 6.5. The following holds.
1) IfU,V € C%, diamld < € < g, where ¢ is the Lebesque number for V, then h(T|U) <
hi(€) < h(T[V);
2) (X,T) is h-expansive iff there exists a U € C% such that h(T|U) = 0;
3) h*(T') = lim._.o hi-(¢). Consequently, (X,T) is asymptotically h-expansive iff h*(T) = 0.

Proof. See [20], Lemma 2.1 and Corollary 2.1. O

Another characterization of asymptotically h-expansivity is recently given by Boyle and Dow-
narowicz [5] as the following: (X, T) is asymptotically h-expansive iff it has a principal extension
to a symbolic system.

Proposition 6.8. The following holds.
1) If (X, T) is h-expansive, then there exists ald € C% such that K™ (T,U) = 0. Consequently,
Proposition 6.6 holds for a h-expansive TDS.
2) If (X, T) is asymptotically h-expansive, then hM(T) = 0. Consequently, Proposition 6.7
holds for an asymptotically h-expansive TDS.

Proof. 1) Let (X,T) be h-expansive. Then by Lemma 6.5 2), there exists a U € C% such that
hMT\U) = 0. It follows from Lemma 2.10 that h,(T) = h,(T,U) for all 4 € M(X,T), ie.,

RM(T,U) = 0.
(2) Let (X,T) be asymptotically h-expansive. Then by Lemma 6.5 3) and (6.4), we have
0 < hM(T) < h*(T) =0, i.e., B™(T) = 0. "

We remark that, based on discussions of upper semi-continuity of the entropy map, the existence
of global equilibrium states and the equality 7;(X,T) = M(X,T) are essentially known for an
expansive TDS or an expansive homeomorphism (see [7, 24, 25]), and, more generally, for an
asymptotically h-expansive TDS (see [22]). Our results above give a general treatment on both
h-expansive and asymptotically h-expansive cases with respect to these issues by making use of
local entropies and pressures, and meantime provide more information on the characterization of
global equilibrium states.
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