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Abstract. We prove a local variational principle of pressure for any given open cover. More

precisely, for a given dynamical system (X, T ), an open cover U of X, and a continuous, real-
valued function f on X, we show that the corresponding local pressure P (T, f ;U) satisfies

P (T, f ;U) = sup{hµ(T,U) +

∫
X

f(x)dµ(x) : µ is a T -invariant measure},

and moreover, the supremum can be attained by a T -invariant ergodic measure. By establishing
the upper semi-continuity and affinity of the entropy map relative to an open cover, we further

show that

hµ(T,U) = inf
f∈C(X,R)

{P (T, f ;U)−
∫

X
fdµ}

for any T -invariant measure µ of (X, T ), i.e., local pressures determine local measure-theoretic

entropies. As applications, properties of both local and global equilibrium states for a continuous,
real-valued function are studied.

1. Introduction and main result

Topological pressure is a generalization to topological entropy for a dynamical system. The
notion was first introduced by Ruelle [24] for expansive dynamical system and later by Walters
[26] for general case. Let (X, T ) be a topological dynamical system (TDS for short) in the sense
that X is a compact metric space and T : X → X is a surjective and continuous map. It is known
that certain results concerning topological entropy can be generalized to topological pressure. In
particular, Waters [26] generalized the classical variational principle of entropy [15, 16, 21] to obtain
the following variational principle of pressure:

(1.1) P (T, f) = sup
µ
{hµ(T ) +

∫
X

f(x)dµ(x) : µ is a T -invariant measure},

where f is a continuous, real-valued function on X, P (T, f) is the topological pressure of f , and,
for each T -invariant measure µ, hµ(T ) is the measure-theoretic entropy of µ.

With the notion of entropy pairs [2, 4] in both topological and measure-theoretic situations, a
notable amount of attention has recently been paid to the study of local version of the variational
principle of entropy. Given a TDS (X, T ) and an open cover U of X. It was first shown in [3] that
there is a T -invariant measure µ such that

(1.2) inf
α�U

hµ(T, α) ≥ htop(T,U),

where htop(T,U) is the topological entropy relative to U , hµ(T, α) is the measure-theoretic entropy of
µ relative to a finite Borel partition α of X, and α � U means that α is finer than U . A somewhat
converse statement to (1.2) is given in [18] as the following: if µ is a T -invariant measure and
hµ(T, α) > 0 for each partition α which is finer than U , then infα�U hµ(T, α) > 0 and htop(T,U) >
0. To make a general investigation on the converse to (1.2), Romagnoli [23] introduced two types of
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measure-theoretic entropies relative to U : hµ(T,U) and h+
µ (T,U), satisfying hµ(T,U) ≤ h+

µ (T,U)
and hµ(T,U) ≤ htop(T,U), and proved that

(1.3) htop(T,U) = max{hµ(T,U) : µ is a T -invariant measure}.
Later, by proving that both hµ(T,U) and h+

µ (T,U) have the properties of ergodic decomposition,
it was shown in [17] that the maximum in (1.3) can be in fact attained by a T -invariant ergodic
measure. Recently, Glasner and Weiss [12] proved that if the system (X, T ) is invertible, i.e, T is
a homeomorphism, then the local variational principle is also true for h+

µ (T,U), i.e.,

(1.4) htop(T,U) = sup{h+
µ (T,U) : µ is a T -invariant measure}

(see also [19] for a relative version). It also follows from [17] that the supremum in (1.4) can be
attained by a T -invariant ergodic measure.

The main purpose of this paper is to generalize the above local variational principles of entropy
to the case of pressure. Our main results state as follows.

Theorem 1 (Upper semi-continuity and affinity). The local entropy map h{·}(T,U) is upper semi-
continuous and affine on the space of T -invariant measures.

Theorem 2 (Local variational principle). For any f ∈ C(X, R), the local pressure P (T, f ;U) of f
relative to U satisfies

P (T, f ;U) = sup{hµ(T,U) +
∫

X

fdµ(x) : µ is a T -invariant measure}

and the supremum can be attained by a T -invariant ergodic measure.

We will also show that local pressures determine local measure-theoretic entropies, i.e., the
following holds.

Theorem 3 (Determining measure-theoretic entropy). Let µ be a T -invariant measure of (X, T ).
The following holds.

a)

hµ(T,U) = inf
f∈C(X,R)

{P (T, f ;U)−
∫

X

fdµ};

b) If, in addition, (X, T ) is invertible, then

h+
µ (T,U) ≤ inf

f∈C(X;R)
{P (T, f ;U)−

∫
X

fdµ}.

Theorem 3 immediately leads to the following.

Corollary ([17, 19]). If (X, T ) is invertible, then

h+
µ (T,U) = hµ(T,U).

The local variational principle of pressure stated in Theorem 2 guarantees the existence of
equilibrium states with respect to a local pressure. Such an existence is not true in general for
a topological pressure, unless some additional properties (such as expansivity) of the TDS are
assumed. Applying our main results, another purpose of the paper is to study properties of
equilibrium states for local pressures and to establish their connections with equilibrium states for
topological pressures. We refer the readers to [25] for physical relevance of topological pressures
and equilibrium states.

The paper is organized as follows. Section 2 is a preliminary section in which basic properties of
both local and global entropies and pressures are studied in both topological and measure-theoretic
situations. We prove Theorem 1 in Section 3, Theorem 2 in Section 4, and Theorem 3 in Section
5. Some applications of our main results to equilibrium states for both local and global topological
pressures are given in Section 6.
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2. Entropies and pressures

Throughout the section, we let (X, T ) be a TDS and BX be the collection of all Borel subsets
of X.

2.1. Topological entropies and pressures. Recall that a cover of X is a finite family of Borel
subsets of X whose union is X, and, a partition of X is a cover of X whose elements are pairwise
disjoint. We denote the set of covers, partitions, and open covers, of X, respectively, by CX , PX ,
and C0

X , respectively. For given two covers U ,V ∈ CX , U is said to be finer than V (denote by
U � V) if each element of U is contained in some element of V. Let U∨V = {U∩V : U ∈ U , V ∈ V}.
Given integers M,N with 0 ≤ M ≤ N and U ∈ CX or PX , we use UN

M to denote
∨N

n=M T−nU .
For U ∈ CX , we define N(U) as the minimum among the cardinals of the sub-covers of U and

define H(U) = log N(U). Clearly, for each U ,V ∈ CX , H(U ∨ V) ≤ H(U) + H(V), and if V � U ,
then H(V) ≥ H(U).

Since an = H(Un−1
0 ) is a bounded, sub-additive sequence, i.e., an+m ≤ an+am for any n, m ∈ N,

the quantity

htop(T,U) = lim
n→∞

1
n

H(Un−1
0 ) = inf

n≥1

1
n

H(Un−1
0 ),

called the topological entropy of U , is well defined (see [1]). The topological entropy of (X, T ) is
defined by

htop(T ) = sup
U∈C0

X

htop(T,U).

Let C(X, R) be the Banach space of all continuous, real-valued functions on X endowed with
the supremum norm. For f ∈ C(X, R) and U ∈ Co

X , we define

Pn(T, f ;U) = inf{
∑
V ∈V

sup
x∈V

efn(x) : V ∈ CX and V � Un−1
0 },

where fn(x) =
∑n−1

j=0 f(T jx). It is clear that if f is the null function, then Pn(T, 0;U) =
log N(Un−1

0 ) = H(Un−1
0 ).

For V ∈ CX , we let α be the Borel partition generated by V and define

(2.1) P∗(V) = {β ∈ PX : β � V and each atom of β is the union of some atoms of α}.

Lemma 2.1. P∗(V) is a finite set, and, for each n ∈ N,

inf
β∈CX ,β�V

∑
B∈β

sup
x∈B

efn(x) = min{
∑
B∈β

sup
x∈B

efn(x) : β ∈ P∗(V)}.

Proof. Let V = {V1, V2, · · · , Vk}. For any β = {B1, B2, · · · , Bl} ∈ CX with β � V, we let i1 ∈
{1, 2, · · · , l} be such that supx∈Bi1

fn(x) = supx∈X fn(x). Since β � V, there exists a j1 ∈
{1, 2, · · · , k} such that Bi1 ⊂ Vj1 . Let

β(j1) = {Vj1} ∪ {Bi \ Vj1 : i ∈ {1, 2, · · · , l} and Bi \ Vj1 6= ∅}.
Then β(j1) ∈ CX , β(j1) � V, and,∑

B∈β

sup
x∈B

efn(x) ≥
∑

B∈β(j1)

sup
x∈B

efn(x).

Let {i ∈ {1, 2, · · · , l} : Bi \ Vj1 6= ∅} = {1 ≤ r1 < r2 < · · · < rl1 ≤ l}. Denote B1
i = Bri

\ Vj1 ,
i = 1, 2, · · · , l1. Then B1

i ∩ Vj1 = ∅, i = 1, 2, · · · , l1, and, β(j1) = {Vj1 , B
1
1 , B1

2 , · · · , B1
l1
}.

If X \ Vj1 = ∅, then β(j1) = {Vj1} ∈ P∗(V). If X \ Vj1 6= ∅, then we let i2 ∈ {1, 2, · · · , l1} be
such that supx∈B1

i2
efn(x) = supx∈X\Vj1

efn(x). Since β(j1) � V and B1
i ∩ Vj1 = ∅, i = 1, 2, · · · , l1,

there exists a j2 ∈ {1, 2, · · · , k} \ {j1} such that B1
i2
⊂ Vj2 \ Vj1 . Let

β(j1, j2) = {Vj1 , Vj2 \ Vj1} ∪ {B1
i \ Vj2 : i ∈ {1, 2, · · · , l1} and Bi \ Vj2 6= ∅}.
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Then β(j1, j2) ∈ CX , β(j1, j2) � V, and,∑
B∈β(j1)

sup
x∈B

efn(x) ≥
∑

B∈β(j1,j2)

sup
x∈B

efn(x).

If X \ (Vj1

⋃
Vj2) = ∅, then β(j1, j2) = {Vj1 , Vj2 \ Vj1} ∈ P∗(V). If X \ (Vj1

⋃
Vj2) 6= ∅, then we

continue the above procedure. By induction, we obtain a sequence {j1, j2, · · · , jr} ⊆ {1, 2, · · · , k},
where r ≤ k, such that

⋃r−1
i=1 Vji 6= X,

⋃r
i=1 Vji = X, and

β(j1, j2, · · · , jr) = {Vj1 , Vj2 \ Vj1 , · · · , Vjr
\ (

r−1⋃
i=1

Vji
)}

satisfies ∑
B∈β

sup
x∈B

efn(x) ≥
∑

B∈β(j1,··· ,jr)

sup
x∈B

efn(x).

Clearly, β(j1, j2, · · · , jr) ∈ P∗(V).
Hence

inf
β∈CX ,β�V

∑
B∈β

sup
x∈B

efn(x) = min
{j1,j2,··· ,jr}⊆{1,2,··· ,k}

∑
B∈β(j1,j2,··· ,jr)

sup
x∈B

efn(x),

where {j1, j2, · · · , jr} are such that |{j1, j2, · · · , jr}| = r ≤ k,
⋃r−1

i=1 Vji
6= X and

⋃r
i=1 Vji

= X. �

In particular, by taking V = Un−1
0 in Lemma 2.1, we have that P∗(Un−1

0 ) is a finite set, and

(2.2) Pn(T, f ;U) = min{
∑
B∈β

sup
x∈B

efn(x) : β ∈ P∗(Un−1
0 )}.

If, in addition, U is a partition, then

Pn(T, f ;U) =
∑

U∈Un−1
0

sup
x∈U

efn(x).

Lemma 2.2. For any f ∈ C(X, R) and U ∈ Co
X ,

P (T, f ;U) ≡ lim
n→∞

1
n

log Pn(T, f ;U)

exists and equals infn≥1
1
n log Pn(T, f ;U).

Proof. For any n, m ∈ N, V1 � Un−1
0 ,V2 � Um−1

0 , we have V1 ∨ T−nV2 � Un+m−1
0 . It follows that

Pn+m(T, f ;U) ≤
∑

V1∈V1

∑
V2∈V2

sup
x∈V1∩T−nV2

efn+m(x)

=
∑

V1∈V1

∑
V2∈V2

sup
x∈V1∩T−nV2

efn(x)+fm(T nx)

≤
∑

V1∈V1

∑
V2∈V2

sup
x∈V1

efn(x) · sup
z∈V2

efm(z)

= (
∑

V1∈V1

sup
x∈V1

efn(x))(
∑

V2∈V2

sup
z∈V2

efm(z)).

Since V1,V2 are arbitrary, Pn+m(T, f ;U) ≤ Pn(T, f ;U)Pm(T, f ;U), i.e., log Pn(T, f ;U) is sub-
additive. This proves the lemma. �

Using Lemma 2.2, we immediately have the following.

Lemma 2.3. P (T k, fk;Uk−1
0 ) = kP (T, f ;U) for any f ∈ C(X, R), U ∈ Co

X , and k ∈ N.

We refer to P (T, f ;U) as the topological pressure of f relative to U and to

P (T, f) = sup
U∈C0

X

P (T, f ;U)

as the topological pressure of f . We note that the definition of Pn(T, f ;U) (hence P (T, f ;U))
above is slightly different than the one given in [27]. However, it is easy to see that the topological
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pressures P (T, f) defined above are the same as the ones defined in [27], and moreover, if f is the
null function, then P (T, 0;U) = htop(T,U). An advantage of our definition of Pn(T, f ;U) is its
monotonicity, i.e., if U � V, then Pn(T, f ;U) ≥ Pn(T, f ;V), which is essential for the validity of
the local variational principle stated in Theorem 2.

2.2. Measure-theoretic entropies. Let M(X), M(X, T ), and Me(X, T ), respectively, be the
set of all Borel probability measures, T -invariant Borel probability measures, and T -invariant
ergodic measures, on X, respectively. Then M(X) and M(X, T ) are all convex, compact metric
spaces when endowed with the weak∗-topology; Me(X, T ) is a Gδ subset of M(X, T ).

For given partitions α, β ∈ PX and µ ∈M(X), let

Hµ(α) =
∑
A∈α

−µ(A) log µ(A) and Hµ(α|β) = Hµ(α ∨ β)−Hµ(β).

One standard fact is that Hµ(α|β) increases with respect to α and decreases with respect to β.
When µ ∈ M(X, T ), it is not hard to see that Hµ(αn−1

0 ) is a non-negative and sub-additive
sequence for a given α ∈ PX . The measure-theoretic entropy of µ relative to α is defined by

hµ(T, α) = lim
n→∞

1
n

Hµ(αn−1
0 ) = inf

n≥1

1
n

Hµ(αn−1
0 ),

and the measure-theoretic entropy of µ is defined by

(2.3) hµ(T ) = sup
α∈PX

hµ(T, α).

For a given U ∈ CX , Romagnoli [23] introduced the following two types of measure-theoretic
entropies relative to U ,

hµ(T,U) = lim
n→∞

1
n

Hµ(Un−1
0 ) and h+

µ (T,U) = inf
α�U,α∈PX

hµ(T, α),

where
Hµ(U) = inf

α∈PX ,α�U
Hµ(α).

As to be seen below, many properties of Hµ(α) for a partition α can be extended to Hµ(U) for
a cover U .

Lemma 2.4. Let µ ∈M(X). The following holds for any U ,V ∈ CX .
(1) 0 ≤ Hµ(U) ≤ log N(U).
(2) If U � V, then Hµ(U) ≥ Hµ(V).
(3) Hµ(U ∨ V) ≤ Hµ(U) + Hµ(V).
(4) Hµ(T−1U) ≤ HTµ(U), and, the equality holds when (X, T ) is invertible.

Proof. See [23], Lemma 8. �

For a given U ∈ CX , µ ∈ M(X, T ), it follows easily from Lemma 2.4 that Hµ(Un−1
0 ) is a sub-

additive function of n ∈ N. Hence the local measure-theoretic entropy hµ(T,U) is well defined.
This extension of local measure-theoretic entropy from partitions to covers allows the generalization
of the local variational principle of entropy to the local variational principle of pressure stated in
Theorem 2.

Lemma 2.5. For any V ∈ CX and µ ∈M(X, T ),

Hµ(V) = min
β∈P∗(V)

Hµ(β).

Proof. The proof is very similar to that of Lemma 2.1. Let φ(x) = −x log x, x ≥ 0. We first
observe that if 0 < x ≤ y and 0 < δ ≤ x, then

(2.4) φ(x− δ) + φ(y + δ) < φ(x) + φ(y).

Let V = {V1, V2, · · · , Vk}. For any β = {B1, B2, · · · , Bl} ∈ PX with β � V, we let i1 ∈
{1, 2, · · · , l} be such that µ(Bi1) = max1≤i≤l µ(Bi). Choose j1 and β(j1) = {Vj1 , B

1
1 , B1

2 , · · · , B1
l1
}
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the same way as in the proof of Lemma 2.1. Then β(j1) ∈ PX and β(j1) � V. Moreover, it follows
from (2.4) that Hµ(β) ≥ Hµ(β(j1)).

If X \ Vj1 = ∅, then β(j1) = {Vj1} ∈ P∗(V). Otherwise, we let i2 ∈ {1, 2, · · · , l1} be such that
Hµ(B1

i2
) = max1≤i≤l1 Hµ(B1

i ), and choose j2, β(j1, j2) the same way as in the proof of Lemma 2.1.
Then β(j1, j2) ∈ PX and β(j1, j2) � V. Also by (2.4), Hµ(β(j1)) ≥ Hµ(β(j1, j2)).

Continuing the above procedure inductively, we find a sequence {j1, j2, · · · , jr} ⊆ {1, 2, · · · , k},
where r ≤ k, such that

⋃r−1
i=1 Vji

6= X,
⋃r

i=1 Vji
= X, and

β(j1, j2, · · · , jr) = {Vj1 , Vj2 \ Vj1 , · · · , Vjr
\ (

r−1⋃
i=1

Vji
)}

satisfies that Hµ(β) ≥ Hµ(β(j1, · · · , jr)) and β(j1, j2, · · · , jr) ∈ P∗(V).
Hence Hµ(V) = min{j1,j2,··· ,jr}⊆{1,2,··· ,k} Hµ(β(j1, j2, · · · , jr)), where {j1, j2, · · · , jr} are such

that |{j1, j2, · · · , jr}| = r ≤ k,
⋃r−1

i=1 Vji
6= X and

⋃r
i=1 Vji

= X. �

Some properties of the local measure-theoretic entropies relative to covers are summarized as
follows.

Lemma 2.6. The following holds for all µ ∈M(X, T ) and U ,V ∈ CX .
1) hµ(T,U) = 1

M hµ(TM ,UM−1
0 ) for all M ≥ 1;

2) h+
µ (T,U) ≥ 1

M h+
µ (TM ,UM−1

0 ) for all M ≥ 1;
3) hµ(T,U) = lim

M→∞
1
M h+

µ (TM ,UM−1
0 );

4) hµ(T,U) ≤ h+
µ (T,U);

5) h+
µ (T,U ∨ V) ≤ h+

µ (T,U) + h+
µ (T,V) and hµ(T,U ∨ V) ≤ hµ(T,U) + hµ(T,V);

6) hµ(T,U) ≥ hµ(T,V) whenever U � V.

Proof. See [23]. �

Since a partition of X is also a cover, we have that hµ(T ) = supU∈CX
hµ(T,U). In fact, the

following holds.

Lemma 2.7. For µ ∈M(X, T ), hµ(T ) = supU∈C0
X

hµ(T,U).

Proof. Let U ∈ C0
X and α be the Borel partition generated by U . Then α � U and hence hµ(T ) ≥

hµ(T, α) ≥ hµ(T,U). It follows that hµ(T ) ≥ supU∈C0
X

hµ(T,U).
Conversely, let α = {A1, A2, · · · , Ak} ∈ PX and ε > 0. Then there exists a δ1 = δ1(k, ε) > 0

such that whenever β1 = {B1
1 , B1

2 , · · · , B1
k} and β2 = {B2

1 , B2
2 , · · · , B2

k} are k-measurable partitions
with

∑k
i=1 µ(B1

i ∆B2
i ) < δ1, then Hµ(β1|β2) ≤ ε (see e.g., [27], Lemma 4.15).

Since µ is regular, we can take closed subsets Bi ⊂ Ai with µ(Ai \ Bi) < δ1
2k2 , i = 1, 2, · · · , k.

Let B0 = X \
⋃k

i=1 Bi, Ui = B0 ∪ Bi, i = 1, 2, · · · , k. Then µ(B0) < δ1
2k and U = {U1, U2, · · · , Uk}

is an open cover of X.
For any integer j ≥ 0 and any finite measurable partition β which is finer than T−jU as a cover,

we can find a measurable partition β′ = {C1, C2, · · · , Ck} satisfying Ci ⊂ T−jUi, i = 1, 2, · · · , k
and β � β′. Hence Hµ(T−jα|β) ≤ Hµ(T−jα|β′). Since T−jUi ⊃ Ci ⊃ X \

⋃
l 6=i T−jUl = T−jBi,

µ(Ci∆T−jAi) ≤ µ(T−jAi \ T−jBi) + µ(T−jB0) = µ(Ai \Bi) + µ(B0) <
δ1

2k
+

δ1

2k2
≤ δ1

k
,

i.e.,
∑k

i=1 µ(Ci∆T−jAi) < δ1. It follows that Hµ(T−jα|β′) ≤ ε and hence Hµ(T−jα|β) ≤ ε.
Above all, we have shown that there exists an open cover U of X consisting of k elements such
that for any j ≥ 0 and any k-measurable partition β which is finer than T−jU as a cover, we have
Hµ(T−jα|β) ≤ ε.
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Now for each n ∈ N and a finite measurable partition βn � Un−1
0 , we have βn ≥ T−jU for

j = 0, 1, · · · , n− 1, and

Hµ(αn−1
0 ) ≤ Hµ(βn) + Hµ(αn−1

0 |βn)

≤ Hµ(βn) +
n−1∑
j=0

Hµ(T−jα|βn)

≤ Hµ(βn) + nε.

Since βn is arbitrary, Hµ(αn−1
0 ) ≤ Hµ(Un−1

0 ) + nε. Hence

hµ(T, α) = lim
n→∞

1
n

Hµ(αn−1
0 ) ≤ lim

n→∞

1
n

Hµ(Un−1
0 ) + ε

= hµ(T,U) + ε ≤ sup
U∈C0

X

hµ(T,U) + ε.

Since α and ε are arbitrary, hµ(T ) ≤ supU∈C0
X

hµ(T,U). �

2.3. Conditional entropies. For a non-empty set Y ⊂ X and covers U , V ∈ CX , define

N(U|Y ) = min{cardU ′ : U ′ ⊂ U , Y ⊂ ∪U ′∈U ′U
′},

N(U|V) = max
V ∈V

N(U|V ).

Clearly, N(U|X) = N(U) and N(U|{X}) = N(U).

Lemma 2.8. Let U ,V,U1,V1 ∈ CX . Then

N(U|V) ≤ N(U1|V1) for U1 � U and V � V1,

N(T−1U|T−1V) = N(U|V),
N(U ∨ U1|V ∨ V1) ≤ N(U|V)N(U1|V1).

Proof. See [22]. �

Lemma 2.9. For any µ ∈M(X, T ) and U ,V ∈ CX ,

Hµ(V) ≤ Hµ(U) + log N(V|U).

Proof. Let β = {B1, B2, · · · , Bn} ∈ PX with β � U and denote V = {V1, V2, · · · , Vm}. For each
i = 1, 2, · · · , n, we choose Ii = {ji

1, j
i
2, · · · , ji

li
} ⊂ {1, 2, · · · ,m} such that

li ≤ N(V|β) and
li⋃

r=1

Vji
r
⊇ Bi.

Let γ = γ1 ∪ γ2 ∪ · · · ∪ γn, where γi = {Vji
1
∩ Bi, (Vji

2
\ Vji

1
) ∩ Bi, · · · , (Vji

li

\
⋃li−1

r=1 Vji
r
) ∩ Bi},

i = 1, 2, · · · , n. It is easy to see that γ ∈ PX , γ � V and N(γ|β) = N(V|β). Since β � U , we have
by Lemma 2.8 that

(2.5) N(γ|β) = N(V|β) ≤ N(V|U).

For simplicity, we denote γ = {A1, A2, · · · , Ak}. It follows from (2.5) that

Hµ(γ) ≤ Hµ(β) + Hµ(γ|β)

≤ Hµ(β) +
n∑

j=1

µ(Bj)(
k∑

i=1

−µ(Ai ∩Bj)
µ(Bj)

log
µ(Ai ∩Bj)

µ(Bj)
)

= Hµ(β) +
n∑

j=1

µ(Bj)(
∑

i,Ai∩Bj 6=∅

−µ(Ai ∩Bj)
µ(Bj)

log
µ(Ai ∩Bj)

µ(Bj)
)

≤ Hµ(β) +
n∑

j=1

µ(Bj) log |{i ∈ {1, 2, · · · , k} : Ai ∩Bj 6= ∅}|
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= Hµ(β) +
n∑

j=1

µ(Bj) log N(γ|Bj)

≤ Hµ(β) + log N(γ|β) ≤ Hµ(β) + log N(V|U).

Hence Hµ(V) ≤ Hµ(γ) ≤ Hµ(β) + log N(V|U). The lemma follows since β is arbitrary. �

For any covers U ,V ∈ CX , it follows from Lemma 2.8 that the sequence {log N(Un−1
0 |Vn−1

0 )}∞n=1

is sub-additive. Hence the quantity

h(T,U|V) = lim
n→∞

1
n

log N(Un−1
0 |Vn−1

0 ),

called the conditional entropy of U with respect to V, is well defined, and moreover,

(2.6) h(T,U|V) ≤ h(T,U1|V1) whenever U1 � U and V � V1.

It is clear that if U ∈ Co
X then h(T,U|{X}) = htop(T,U).

Let
h(T |V) = sup

U∈Co
X

h(T,U|V)

be the conditional entropy of T with respect to a cover V ∈ CX , and

h∗(T ) = inf
V∈Co

X

h(T |V)

be the conditional topological entropy of T . Then by (2.6),

(2.7) h(T |V) ≤ h(T |V1) whenever V � V1.

Clearly, h(T |{X}) = htop(T ).

Lemma 2.10. For any µ ∈M(X, T ) and U ∈ CX ,

hµ(T ) ≤ hµ(T,U) + h(T |U).

Proof. Let V ∈ Co
X . By Lemma 2.9,

(2.8) Hµ(Vn−1
0 ) ≤ Hµ(Un−1

0 ) + log N(Vn−1
0 |Un−1

0 )

for all n ∈ N. By dividing (2.8) by n then passing the limit n →∞, we obtain that

hµ(T,V) ≤ hµ(T,U) + h(T,V|U) ≤ hµ(T,U) + h(T |U).

It follows from Lemma 2.7 that hµ(T ) = supV∈Co
X

hµ(T,V) ≤ hµ(T,U) + h(T |U). �

3. Upper semi-continuity and affinity of a local entropy map

The section is devoted to the proof of Theorem 1. Throughout the section, we let (X, T ) be a
TDS.

For a fixed U = {U1, U2, · · · , UM} ∈ Co
X , we let U∗ = {{A1, A2, · · · , AM} ∈ PX : Am ⊆ Um,m ∈

{1, · · · ,M}}, where Am can be empty for some values of m ∈ {1, 2, · · · ,M}.
The following lemma will be used in the computation of Hµ(U) and hµ(T,U).

Lemma 3.1. Let G : PX → R be monotone in the sense that G(α) ≥ G(β) whenever α � β. Then

inf
α∈PX ,α�U

G(α) = inf
α∈U∗

G(α).

Proof. See [17], Lemma 2. �

Lemma 3.2. Let K ⊆ X be a closed subset and {U0
i }n

i=1 be a set of non-empty open subsets of
X which covers K. Then for any δ > 0 there exist open subsets {V 0

i }n
i=1 of X such that {V 0

i }n
i=1

covers K, V 0
i ⊂ U0

i , µ(∂V 0
i ) = 0, and µ(U0

i ∆V 0
i ) < δ for all i = 1, 2, · · · , n.
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Proof. We prove the lemma by induction on n. When n = 1, we take a closed set K ′ such that
K ⊆ K ′ ⊆ U0

1 and µ(U0
1 \K ′) < δ. For each x ∈ K ′ there exists an εx > 0 such that µ(∂B(x, εx)) =

0 and B(x, εx) ⊂ U0
1 , where B(x, εx) = {y ∈ X : d(x, y) < εx}. Hence {B(x, εx)}x∈K′ is an open

cover of K. Using compactness of K, we can find a finite sub-cover {B(xi, εxi
)}k

i=1, for some k,
such that xi ∈ K ′, i = 1, 2, · · · , k, and

⋃k
i=1 B(xi, εxi

) ⊇ K ′. Let V 0
1 =

⋃k
i=1 B(xi, εxi

). Then V 0
1

satisfies the properties stated in the lemma.
Now, assume that for some positive integer m the lemma holds for n = m. We consider the case

n = m + 1. Let Km = K ∩ (X \ U0
m+1). For any δ > 0, since {U0

i }m
i=1 covers Km, by induction

hypothesis there exist open subsets V 0
1 , V 0

2 , · · · , V 0
m of X such that {V 0

i }m
i=1 covers Km, V 0

i ⊂ U0
i ,

µ(∂V 0
i ) = 0, and µ(U0

i ∆V 0
i ) < δ for all i = 1, 2, · · · ,m.

Let K ′
m = K ∩ (X \

⋃m
i=1 V 0

i ). Then K ′
m is a closed subset of X and K ′

m ⊆ U0
m+1. By induction

hypothesis there exists an open subset V 0
m+1 such that K ′

m ⊆ V 0
m+1 ⊆ U0

m+1, µ(∂V 0
m+1) = 0, and

µ(U0
m+1∆V 0

m+1) < δ. As {V 0
i }

m+1
i=1 covers K, the lemma holds for n = m + 1. �

Lemma 3.3. If U = {U1, U2, · · · , UM} ∈ Co
X , then for any ε > 0 there exists a δ = δ(M, ε) > 0

such that if V = {V1, V2, · · · , VM} ∈ Co
X with

∑M
i=1 µ(Ui∆Vi) < δ, then

|Hµ(U)−Hµ(V)| ≤ ε.

Proof. By Lemma 4.15 in [27], there exists a δ′ = δ′(M, ε) > 0 such that whenever α, β ∈ PX are
two M -measurable partitions with µ(α∆β) < δ′ then |Hµ(β)−Hµ(α)| < ε.

Let δ = δ′

M and V = {V1, V2, · · · , VM} be a measurable cover of X such that µ(U∆V) < δ.
We first claim that for every M -measurable partition α � U there exists a finite measurable

partition β � V such that Hµ(α) ≥ Hµ(β)− ε.
By Lemma 3.1, it is sufficient to prove the claim for α = {A1, A2, · · · , AM} ∈ U∗. Define the

partition β = {B1, B2, · · · , BM} ∈ V∗:
B1 = V1 \ (

⋃
k>1

(Ak ∩ Vk)),

Bi = Vi \ (
⋃

k>i

(Ak ∩ Vk) ∪
⋃
j<i

Bj), i = 2, 3, · · · ,M.

For each m = 1, 2, · · · ,M , we clearly have Am ∩ Vm ⊆ Bm, and hence Am \ Bm ⊆ Am \ (Am ∩
Vm) ⊆ Um \ Vm and Bm \ Am ⊆

⋃
k 6=m(Ak \ Bk) ⊆

⋃
k 6=m(Uk \ Vk). It follows that Am∆Bm ⊆⋃M

k=1(Uk∆Vk), m = 1, 2, · · · ,M , i.e., µ(α∆β) ≤ Mµ(U∆V) < δ′, from which the claim follows.
Now, for each α � U , we let β be as in the above claim. Then

Hµ(α) ≥ Hµ(β)− ε ≥ Hµ(V)− ε.

Since such an α � U is arbitrary, we have that Hµ(U) ≥ Hµ(V) − ε. Exchanging the roles of U
and V implies that Hµ(V) ≥ Hµ(U)− ε. Hence |Hµ(U)−Hµ(V)| ≤ ε. �

We note that under the weak∗-topology M(X, T ) is a compact metric space and Me(X, T ) is a
Gδ-subset of M(X, T ). For each µ ∈M(X, T ), there exists a unique Borel probability measure m
on Me(X, T ) such that µ =

∫
Me(X,T )

θdm(θ), i.e., µ admits an ergodic decomposition. The ergodic
decomposition of µ also gives rise to an ergodic decomposition of the µ-entropy relative to α ∈ PX :

(3.1) hµ(T, α) =
∫
Me(X,T )

hθ(T, α)dm(θ).

In fact, ergodic decompositions of the µ-entropies relative to U ∈ CX also hold.

Lemma 3.4. Let µ ∈M(X, T ) and U ∈ CX . If µ =
∫
Me(X,T )

θdm(θ) is the ergodic decomposition
of µ, then

h+
µ (T,U) =

∫
Me(X,T )

h+
θ (T,U)dm(θ) and hµ(T,U) =

∫
Me(X,T )

hθ(T,U)dm(θ).

Proof. See [17], Proposition 5. �
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We are now ready to prove Theorem 1, i.e., for any U ∈ Co
X , the entropy map h{·}(T,U) :

M(X, T ) → R+ is upper semi-continuous and affine.

Proof of Theorem 1. We first prove the upper semi-continuity. Fix a µ0 ∈ M(X, T ) and let
ε > 0. We let N ∈ N be sufficiently large such that

1
N

Hµ0(UN−1
0 ) < hµ0(T,U) + ε.

By Lemmas 3.2 and 3.3, there exists a finite open cover VN � UN−1
0 such that

Hµ0(VN ) < Hµ0(UN−1
0 ) + ε and µ0(∂V ) = 0 for all V ∈ VN .

Then by Lemma 2.5,

(3.2) Hµ(VN ) = min
β∈P∗(VN )

Hµ(β) for all µ ∈M(X, T ).

Since µ0(∂V ) = 0 for each V ∈ VN , we have that µ0(∂B) = 0 for any B ∈ β when β ∈ P∗(VN ).
It follows from (3.2) and the finiteness of P∗(VN ) that the function H{·}(VN ) : M(X, T ) → R+ is
continuous at µ0. Hence

lim sup
µ→µ0

hµ(T,U) ≤ lim sup
µ→µ0

1
N Hµ(UN−1

0 ) ≤ lim sup
µ→µ0

1
N Hµ(VN )

= 1
N Hµ0(VN ) ≤ 1

N Hµ0(UN−1
0 ) + ε

≤ hµ0(T,U) + 2ε.

Since ε > 0 is arbitrary, the entropy map h{·}(T,U) is upper semi-continuous at µ0 ∈M(X, T ).
We now prove the affinity. Given µ1, µ2 ∈ M(X, T ) and λ ∈ (0, 1). Let µi =

∫
Me(X,T )

θdmi(θ)
be the ergodic decomposition of µi, i = 1, 2. Consider µ = λµ1+(1−λ)µ2 and m = λm1+(1−λ)m2.
It is clear that m is a Borel probability measure onMe(X, T ) and µ =

∫
Me(X,T )

θdm(θ). By Lemma
3.4,

hµ(T,U) =
∫
Me(X,T )

hθ(T,U)dm(θ)
= λ

∫
Me(X,T )

hθ(T,U)dm1(θ) + (1− λ)
∫
Me(X,T )

hθ(T,U)dm2(θ)
= λhµ1(T,U) + (1− λ)hµ2(T,U).

This shows that the entropy map h{·}(T,U) is affine on M(X, T ). �

4. A local variational principle of pressure

Our aim in this section is to prove Theorem 2. Let (X, T ) and (Y, S) be two TDS. A continuous
map π : X → Y is called a homomorphism or a factor map from (X, T ) to (Y, S) if it is onto and
πT = Sπ. (X, T ) is called an extension of (Y, S) and (Y, S) is called a factor of (X, T ). If π is also
injective then it is called an isomorphism.

Lemma 4.1. Let π : (X, T ) → (Y, S) be a factor map between two TDS and U ∈ Co
Y . Then for

any µ ∈M(X, T ), hµ(T, π−1U) = hπµ(S,U).

Proof. See [23], Proposition 6. �

Lemma 4.2. Let π : (X, T ) → (Y, S) be a factor map between two TDS, f ∈ C(Y, R) and U ∈ Co
Y .

Then P (T, f ◦ π;π−1U) = P (S, f ;U).

Proof. Fix an n ∈ N. If V ∈ CY , V � Un−1
0 , then π−1V ∈ CX and π−1V � (π−1U)n−1

0 . Hence∑
V ∈V

sup
y∈V

efn(y) =
∑
V ∈V

sup
z∈π−1V

e(f◦π)n(z) ≥ Pn(T, f ◦ π;π−1U).

Since V is arbitrary, we have that Pn(S, f ;U) ≥ Pn(T, f ◦ π;π−1U).
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Conversely, we note that Pn(T, f ◦ π;π−1U) = inf
β∈P∗((π−1U)n−1

0 )
{

∑
B∈β

sup
x∈B

efn(x)}. Let β =

{B1, B2, · · · , Bm} ∈ P∗((π−1U)n−1
0 ). Since πβ = {π(B1), π(B2), · · · , π(Bm)} ∈ CY and πβ �

Un−1
0 ,

m∑
i=1

sup
x∈Bi

e(f◦π)n(x) =
m∑

i=1

sup
y∈π(Bi)

efn(y) ≥ Pn(S, f ;U).

Since β is arbitrary, Pn(T, f ◦ π;π−1U) ≥ Pn(S, f ;U).
Above all, Pn(T, f ◦ π;π−1U) = Pn(S, f ;U) for each n ∈ N, from which the lemma follows. �

Lemma 4.3. Let a1, a2, · · · , ak be given real numbers. If pi ≥ 0, i = 1, 2, · · · , k, and
∑k

i=0 pi = 1,
then

k∑
i=1

pi(ai − log pi) ≤ log (
k∑

i=1

eai),

and equality holds iff pi =
eai∑k
i=1 eai

for all i = 1, 2, · · · , k.

Proof. See [27], Lemma 9.9. �

Proposition 4.1. Let (X, T ) be a TDS, f ∈ C(X, R) and U ∈ Co
X . Then for any µ ∈M(X, T ),

P (T, f ;U) ≥ hµ(T,U) +
∫

X

f(x)dµ(x).

Proof. Let µ ∈ M(X, T ). For any n ∈ N and ε > 0, we have by (2.2) that there exists a finite
partition β ∈ P∗(Un−1

0 ) such that
∑

B∈β supx∈B efn(x) = Pn(T, f ;U). It follows from Lemma 4.3
that

log(Pn(T, f ;U)) = log(
∑

B∈β

sup
x∈B

efn(x))

≥
∑

B∈β

µ(B)(sup
x∈B

fn(x)− log µ(B))

= Hµ(β) +
∑

B∈β

sup
x∈B

fn(x) · µ(B)

≥ Hµ(β) +
∫

X
fn(x)dµ(x)

≥ Hµ(Un−1
0 ) + n

∫
X

f(x)dµ(x).
The proof is complete by dividing the above by n then passing the limit n →∞. �

A subset A of X is called clopen if it is both closed and open in X. A partition is called clopen
if it consists of clopen sets.

Lemma 4.4. Let (X, T ) be a zero-dimensional TDS, µ ∈ M(X, T ), f ∈ C(X, R) and U ∈ C0
X .

Assume that for some K ∈ N, {αl}K
l=1 is a sequence of finite clopen partitions of X which are

finer than U . Then for each N ∈ N, there exists a finite subset BN of X such that each atom of
(αl)N−1

0 , l = 1, 2, · · · ,K, contains at most one point of BN , and,
∑

x∈BN
efN (x) ≥ PN (T,f ;U)

K .

Proof. For each x ∈ X and l = 1, 2, · · · ,K, we let Al(x) be the atom of (αl)N−1
0 containing x.

Then for any x1, x2 ∈ X and l = 1, 2, · · · ,K, x1 and x2 are contained in the same atom of (αl)N−1
0

iff Al(x1) = Al(x2).
To construct the set BN we first let x1 ∈ X be such that efN (x1) = maxx∈X efN (x). If⋃K

l=1 Al(x1) = X, then we take BN = {x1}. Otherwise, we take X1 = X \
⋃K

l=1 Al(x1). In
either cases, X1 is closed subset of X. Next, let x2 ∈ X1 be such that efN (x2) = maxx∈X1 efN (x).
If

⋃K
l=1 Al(x2) ⊇ X1, then we take BN = {x1, x2}. Otherwise, we take X2 = X1 \

⋃K
l=1 Al(x2).

In either cases, X2 is a closed subset of X. Since {Al(x) : 1 ≤ l ≤ K, x ∈ X} is a finite set, we
can continue the above procedure inductively to obtain a set BN = {x1, x2, · · ·xm} and non-empty
closed sets Xj , j = 1, 2, · · · ,m− 1, such that

(1) efN (x1) = maxx∈X efN (x) and X1 = X \
⋃K

l=1 Al(x1),
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(2) efN (xj+1) = maxx∈Xj
efN (x) and Xj+1 = Xj \

⋃K
l=1 Al(xj+1) for j = 1, 2, · · · ,m− 1, and,

(3)
⋃m

j=1

⋃K
l=1 Al(xj) = X.

From the construction of BN , it is easy to see that each atom of (αl)N−1
0 , l = 1, 2, · · · ,K,

contains at most one point of BN . Now let β = {Xj−1 ∩ Al(xj)}1≤j≤m,1≤l≤K , where X0 = X.
Then β is a cover of X which is finer than Un−1

0 . Therefore,∑
x∈BN

efN (x) =
m∑

j=1

efN (xj) ≥
m∑

j=1

1
K

K∑
l=1

sup
x∈Al(xj)∩Xj−1

efN (x) =
1
K

∑
B∈β

sup
x∈B

efN (x) ≥ PN (T, f ;U)
K

.

�

Proposition 4.2. Let (X, T ) be an invertible, zero-dimensional TDS, f ∈ C(X, R) and U ∈ C0
X .

Then there exists a µ ∈M(X, T ) such that

(4.1) h+
µ (T,U) +

∫
X

f(x)dµ(x) ≥ P (T, f ;U).

Proof. Let U = {U1, U2, · · · , Ud} and define

U∗ = {α ∈ PX : α = {A1, A2, · · · , Ad}, Am ⊂ Um, m = 1, 2, · · · , d}.
Since X is zero-dimensional, the family of partitions in U∗, which are finer than U and consist

of clopen sets, is countable. We let {αl : l ≥ 1} denote an enumeration of this family.
Let n ∈ N. By Lemma 4.4, there exists a finite subset Bn of X such that

(4.2)
∑

x∈Bn

efn(x) ≥ Pn(T, f ;U)
n

,

and, each atom of (αl)n−1
0 contains at most one point of Bn, for all l = 1, 2, · · · , n. Let

νn =
∑

x∈Bn

λn(x)δx,

where λn(x) = efn(x)∑
y∈Bn

efn(y) for x ∈ Bn, and let µn = 1
n

∑n−1
i=0 T iνn. Since M(X, T ) is compact

we can choose a subsequence {nj} of natural numbers such that µnj
→ µ in the weak∗-topology

of M(X, T ).
We wish to show that µ satisfies (4.1). By Lemma 3.1 and the fact that

h+
µ (T,U) = inf

β�U∗
hµ(T, β) = inf

l∈N
hµ(T, αl),

it is sufficient to show that

P (T, f ;U) ≤ hµ(T, αl) +
∫

X

f(x)dµ(x)

for each l ∈ N.
Fix a l ∈ N. For each n > l, we know from the construction of Bn that each atom of (αl)n−1

0

contains at most one point in Bn, and,

(4.3)

∑
x∈Bn

−λn(x) log λn(x) =
∑

x∈Bn
−νn({x}) log νn({x})

= Hνn((αl)n−1
0 ).

Moreover, it follow from (4.2), (4.3) that

log Pn(T, f ;U)− log n ≤ log(
∑

x∈Bn
efn(x))

=
∑

x∈Bn
λn(x)(fn(x)− log λn(x))

= Hνn((αl)n−1
0 ) +

∑
x∈Bn

λn(x)fn(x)
= Hνn

((αl)n−1
0 ) +

∫
X

fn(x)dνn(x).
= Hνn((αl)n−1

0 ) + n
∫

X
f(x)dµn(x).
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Hence

(4.4) log Pn(T, f ;U)− log n ≤ Hνn
((αl)n−1

0 ) + n

∫
X

f(x)dµn(x).

Fix natural numbers m,n with n > l and 1 ≤ m ≤ n− 1. Let a(j) = [n−j
m ], j = 0, 1, · · · ,m− 1,

where [a] denotes the integral part of a real number a. Then

(4.5)
n−1∨
i=0

T−iαl =
a(j)−1∨

r=0

T−(mr+j)(αl)m−1
0 ∨

∨
t∈Sj

T−tαl,

where Sj = {0, 1, · · · , j − 1} ∪ {j + ma(j), · · · , n− 1)}. Since |Sj | ≤ 2m, it follows from (4.4) and
(4.5) that

(4.6)

log Pn(T, f ;U)− log n ≤ Hνn
((αl)n−1

0 ) + n
∫

X
f(x)dµn(x)

≤
a(j)−1∑

r=0
Hνn(T−(mr+j)(αl)m−1

0 ) + Hνn(
∨

l∈Sj

T−lαl) + n
∫

X
f(x)dµn(x)

≤
a(j)−1∑

r=0
HT (mr+j)νn

((αl)m−1
0 ) + n

∫
X

f(x)dµn(x) + 2m log d,

where d is the cardinality of U . Summing up (4.6) over j from 0 to m − 1 then dividing the sum
by m yields that

log Pn(T, f ;U)− log n ≤ 1
m

m−1∑
j=0

a(j)−1∑
r=0

HT (mr+j)νn
((αl)m−1

0 ) + n
∫

X
f(x)dµn(x) + 2m log d

≤ 1
m

n−1∑
j=0

HT jνn
((αl)m−1

0 ) + n
∫

X
f(x)dµn(x) + 2m log d,

i.e.,

(4.7) log Pn(T, f ;U) ≤ 1
m

n−1∑
j=0

HT jνn
((αl)m−1

0 ) + n
∫

X
f(x)d µn(x) + (2m log d + log n).

Since H{·}((αl)m−1
0 ) is concave on M(X, T ),

(4.8)
1
n

n−1∑
j=0

HT jνn
((αl)m−1

0 ) ≤ Hµn((αl)m−1
0 ).

Now by dividing (4.7) by n then combining it with (4.8), we obtain

(4.9)
1
n

log Pn(T, f ;U) ≤ 1
m

Hµn
((αl)m−1

0 ) +
∫

X

f(x)dµn(x) +
(2m log d + log n)

n
.

Since αl is clopen, it follows that

lim
j→∞

Hµnj
((αl)m−1

0 ) = Hµ((αl)m−1
0 ).

By substituting n with nj in (4.9) and passing the limit j →∞, we have that

(4.10)

P (T, f ;U) = lim
j→∞

1
nj

log Pnj
(T, f ;U)

≤ lim
j→∞

( 1
mHµnj

((αl)m−1
0 ) +

∫
X

f(x)dµnj
(x) + (2m log d+log nj)

nj
)

= 1
mHµ((αl)m−1

0 ) +
∫

X
f(x)dµ(x).

The proof is now complete by passing the limit m →∞ in (4.10). �

Proposition 4.3. Let (X, T ) be an invertible TDS, f ∈ C(X, R) and U ∈ Co
X . Then there exists

a µ ∈M(X, T ) such that

hµ(T,U) +
∫

X

f(x)dµ(x) = P (T, f ;U).
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Proof. We follow the arguments in the proof of Theorem 4, [17]. Let U = {U1, U2, · · · , UM} ∈ Co
X .

We first consider the case that X is zero-dimensional, i.e., there exists a fundamental base of
the topology made of clopen sets. Since the set of clopen subsets of X is countable, the family of
partitions in U∗ consisting of clopen sets is countable. Let {αl : l = 1, 2, · · · } be an enumeration
of this family. Then, for any k ∈ N and µ ∈M(X, T ),

(4.11) h+
µ (T k,

k−1∨
i=0

T−iU) = inf
sk∈Nk

hµ(T k,
k−1∨
i=0

T−iαsk(i)).

For any k ∈ N and sk ∈ Nk, let

M(k, sk) = {µ ∈M(X, T ) : 1
k (hµ(T k,

k−1∨
i=0

T−iαsk(i)) +
∫

X
fk(x)dµ(x))

≥ 1
kP (T k, fk;Uk−1

0 )}.

We note by Lemma 2.3 that 1
kP (T k, fk;Uk−1

0 ) = P (T, f ;U).
By Proposition 4.2, there exists a µk ∈M(X, T k) such that

h+
µk

(T k,Uk−1
0 ) +

∫
X

fk(x)dµk(x) ≥ P (T k, fk;Uk−1
0 ).

Since
∨k−1

i=0 T−iαsk(i) is finer than Uk−1
0 for each sk ∈ Nk, we have

(4.12) hµk
(T k,

k−1∨
i=0

T−iαsk(i)) +
∫

X

fk(x)dµk(x) ≥ P (T k, fk;Uk−1
0 ).

Let νk = µk+Tµk+···+T k−1µk

k . Since T iµk ∈ M(X, T k), i = 0, 1, · · · , k − 1, we have νk ∈
M(X, T ). For sk ∈ Nk and j = 1, 2, · · · , k − 1, let

P 0sk = sk

P jsk = sk(k − j)sk(k − j + 1) · · · sk(k − 1)︸ ︷︷ ︸
j

sk(0)sk(1) · · · sk(k − 1− j)︸ ︷︷ ︸
k−j

∈ Nk.

It is easy to see that

hT jµk
(T k,

k−1∨
i=0

T−iαsk(i)) = hµk
(T k,

k−1∨
i=0

T−iαP jsk(i)) and
∫

X

fk(x)d T jµk(x) =
∫

X

fk(x)dµk(x)

for all j = 0, 1, · · · , k − 1. It follows from (4.12) that

hT jµk
(T k,

k−1∨
i=0

T−iαsk(i)) +
∫

X
fk(x)dT jµk(x)

= hµk
(T k,

k−1∨
i=0

T−iαP jsk(i)) +
∫

X
fk(x)dµk(x)

≥ P (T k, fk;Uk−1
0 ).

Moreover, for each sk ∈ Nk,

hνk
(T k,

k−1∨
i=0

T−iαsk(i)) +
∫

X
fk(x)dνk(x)

= 1
k

∑k−1
j=0 (hT jµk

(T k,
k−1∨
i=0

T−iαsk(i)) +
∫

X
fk(x)dT jµk(x))

≥ P (T k, fk;Uk−1
0 ).

Hence νk ∈
⋂

sk∈Nk M(k, sk).
Let M(k) =

⋂
sk∈Nk M(k, sk). For each sk ∈ Nk, since

∨k−1
i=0 T−iαsk(i) is a clopen cover, by

Theorem 1, the map M(X, T ) → R: µ 7→ hµ(T k,
∨k−1

i=0 T−iαsk(i)) is upper semi-continuous. It
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follows that M(k, sk) is a closed subset of M(X, T ) for sk ∈ Nk, which implies that M(k) is a
non-empty, closed subset of M(X, T ).

We now show that if k1, k2 ∈ N, k1 divides k2, then M(k2) ⊆ M(k1). Indeed, let µ ∈ M(k2)
and k = k2

k1
. For any sk1 ∈ Nk1 , we take sk2 = sk1 · · · sk1︸ ︷︷ ︸

k

∈ Nk2 . Then

1
k1

(hµ(T k1 ,
k1−1∨
i=0

T−iαsk1 (i)) +
∫

X
fk1(x)dµ(x))

= 1
k1

1
khµ(T kk1 ,

k−1∨
j=0

T−jk1
k1−1∨
i=0

T−iαsk1 (i)) +
∫

X
f(x)dµ(x)

= 1
k2

(hµ(T k2 ,
k2−1∨
i=0

T−iαsk2 (i)) +
∫

X
fk2(x)dµ(x))

≥ 1
k2

P (T k2 , fk2 ;U
k2−1
0 ) = P (T, f ;U)

= 1
k1

P (T k1 , fk1 ;U
k1−1
0 ).

Hence µ ∈ M(k1, sk1) for each sk1 ∈ Nk1 and µ ∈ M(k1). This shows that M(k2) ⊆ M(k1).
Since ∅ 6= M(k1k2) ⊆ M(k1) ∩M(k2) for any k1, k2 ∈ N, we have that

⋂
k∈N M(k) 6= ∅.

Let ν ∈
⋂

k∈N M(k) and k ∈ N. By (4.11), we have that
1
kh+

ν (T k,Uk−1
0 ) +

∫
X

f(x)dν(x)
= 1

k (h+
ν (T k,Uk−1

0 ) +
∫

X
fk(x)dν(x))

= infsk∈Nk
1
k (hν(T k,

∨k−1
i=0 T−iαsk(i)) +

∫
X

fk(x)dν(x))
≥ P (T, f ;U).

It follows from Lemma 2.6 that

hν(T,U) +
∫

X

f(x)dν(x) = lim
k→∞

1
k

(h+
ν (T k,Uk−1

0 ) +
∫

X

fk(x)dν(x)) ≥ P (T, f ;U).

Combining this with Proposition 4.1, we have proved the proposition in the case that X is zero-
dimensional.

We now treat the general case. It is well known that there exists an invertible TDS (Z,R), with
Z being zero-dimensional, and a continuous surjective map ϕ : Z → X such that ϕ ◦ R = T ◦ ϕ
(see e.g., [3]). For the TDS (Z,R), we have already shown that there exists a ν ∈ M(Z,R) such
that

hν(R,ϕ−1(U)) +
∫

Z

f ◦ ϕ(z)dν(z) = P (R, f ◦ ϕ;ϕ−1U).

Let µ = ϕν. Then µ ∈M(X, T ). Since, by Lemma 4.1, hµ(T,U) = hν(R,ϕ−1(U)), we have

(4.13) hµ(T,U) +
∫

X

f(x)dµ(x) = hν(R,ϕ−1(U)) +
∫

Z

f ◦ ϕ(z)dν(z) = P (T, f ◦ ϕ;ϕ−1U).

Now, by Lemma 4.2, we also have

(4.14) P (R, f ◦ ϕ;ϕ−1U) = P (T, f ;U).

The proof is now complete by combining (4.13) and (4.14). �

We are now ready to prove the local variational principle of pressure stated in Theorem 2, i.e.,
for any TDS (X, T ), f ∈ C(X, R) and U ∈ Co

X ,

(4.15) P (T, f ;U) = sup
µ∈M(X,T )

{hµ(T,U) +
∫

X

fdµ(x)}

and the supremum can be attained by a T -invariant ergodic measure.
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Let d be the metric on X and define X̃ = {(x1, x2, · · · ) : T (xi+1) = xi, xi ∈ X, i ∈ N}. It is
clear that X̃ is a subspace of the product space

∏∞
i=1 X with the metric dT defined by

dT ((x1, x2, · · · ), (y1, y2, · · · )) =
∞∑

i=1

d(xi, yi)
2i

.

Let σT : X̃ → X̃ be the shift homeomorphism, i.e., σT (x1, x2, · · · ) = (T (x1), x1, x2, · · · ). We refer
the TDS (X̃, σT ) as the natural extension of (X, T ). For each i ∈ N, we denote πi : X̃ → X as the
natural projection which projects each element of X̃ onto its i-th component. Then π1 : (X̃, σT ) →
(X, T ) is a factor map.

Proof of Theorem 2. Let (X̃, σT ) be the natural extension of (X, T ) defined above. By Propo-
sition 4.2, there exists a ν ∈M(X̃, σT ) such that

hν(σT , π−1
1 (U)) +

∫
X̃

f ◦ π1(x̃)dν(x̃) = P (σT , f ◦ π1;π−1
1 U).

Let µ = π1ν. Then µ ∈M(X, T ). Since, by Lemma 4.1, hµ(T,U) = hν(σT , π−1
1 (U)), we have

(4.16) hµ(T,U) +
∫

X

f(x)dµ(x) = hν(σT , π−1
1 (U)) +

∫
X̃

f ◦ π1(x̃)dν(x̃) = P (σT , f ◦ π1;π−1
1 U).

But by Lemma 4.2,

(4.17) P (σT , f ◦ π1;π−1
1 U) = P (T, f ;U).

Combining (4.16) and (4.17), we have

(4.18) hµ(T,U) +
∫

X

f(x)dµ(x) = P (T, f ;U).

Let µ =
∫
Me(X,T )

θdm(θ) be the ergodic decomposition of µ. Then by Lemma 3.4 and (4.18),∫
Me(X,T )

(hθ(T,U) +
∫

X
f(x)dθ(x))dm(θ)

=
∫
Me(X,T )

hθ(T,U)dm(θ) +
∫
Me(X,T )

∫
X

f(x)dθ(x)dm(θ)
= hµ(T,U) +

∫
X

f(x)dµ(x) = P (T, f ;U).

Hence there exists a T -invariant ergodic measure θ such that

hθ(T,U) +
∫

X

f(x)dθ(x) ≥ P (T, f ;U).

The proof of the theorem is now complete by applying Proposition 4.1. �

We remark that Theorem 2 generalizes the topological variational principle of pressure given in
[27], i.e., the following holds.

Corollary 4.1. (Topological variational principle of pressure, [27]) Let (X, T ) be a TDS and
f ∈ C(X, R). Then

P (T, f) = sup
µ∈M(X,T )

{hµ(T ) +
∫

X

f(x)dµ(x)}.

Proof. The proof follows immediately from Theorem 2 and Lemma 2.7 by taking the supremum
over all open covers in (4.15). �

Another immediate consequence of Theorem 2 is the following.

Corollary 4.2. Let (X, T ) be a uniquely ergodic TDS and let µ be the unique invariant probability
measure on X. Then for each U ∈ C0

X and f ∈ C(X, R),

P (T, f ;U) = hµ(T,U) +
∫

X

f(x)dµ(x) = htop(T,U) +
∫

X

f(x)dµ(x).
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Using this corollary, one can also give an alternative proof to the following classical ergodic
theorem of Oxtoby (see also [10]).

Corollary 4.3. (Ergodic theorem) Let (X, T ) be a uniquely ergodic TDS and f ∈ C(X, R). Then
fn(x)

n converges uniformly to
∫

X
f(x)dµ(x) as n →∞, where µ is the unique invariant probability

measure on X.

Proof. Take U = {X} in Corollary 4.2. Then hµ(T, {X}) = 0. Recall that

Pn(T, f ; {X}) = emaxx∈X fn(x),

and hence P (T, f ; {X}) = lim
n→∞

maxx∈X fn(x)
n . We have by Corollary 4.2 that

(4.19) lim
n→∞

maxx∈X fn(x)
n

= P (T, f ; {X}) =
∫

X

f(x)dµ(x).

By replacing f in (4.19) with −f , we also have

lim
n→∞

minx∈X fn(x)
n

=
∫

X

f(x)dµ(x).

Hence fn(x)
n converges uniformly to

∫
X

f(x)dµ(x). �

5. Local pressures determine local measure-theoretic entropies

We will prove Theorem 3 in this section. Throughout the section, we let (X, T ) be a TDS.

Lemma 5.1. Let U ∈ Co
X . The following holds for any f, g ∈ C(X, R) and c ∈ R.

1) P (T, 0;U) = htop(T,U).
2) If f ≤ g, then P (T, f ;U) ≤ P (T, g;U). In particular,

htop(T,U) + min
x∈X

f(x) ≤ P (T, f ;U) ≤ htop(T,U) + max
x∈X

f(x).

3) P (T, f + c;U) = P (T, f ;U) + c.
4) |P (T, f ;U)− P (T, g;U)| ≤ ||f − g||.
5) P (T, ·;U) is convex.
6) P (T, f + g ◦ T − g;U) = P (T, f ;U).
7) P (T, f + g;U) ≤ P (T, f ;U) + P (T, g;U).
8) P (T, cf ;U) ≤ cP (T, f ;U) if c ≥ 1, and, P (T, cf ;U) ≥ cP (T, f ;U) if c ≤ 1.
9) |P (T, f ;U)| ≤ P (T, |f |;U).

Proof. 1), 2) and 3) easily follow from the definition of P (T, f ;U).
By Theorem 2, there exists a µ ∈ M(X, T ) such that hµ(T,U) +

∫
X

f(x)dµ(x) = P (T, f ;U).
Hence

P (T, f ;U)− P (T, g;U) ≤ (hµ(T,U) +
∫

X
f(x)dµ(x))− (hµ(T,U) +

∫
X

g(x)dµ(x))
=

∫
X

(f − g)(x)dµ(x) ≤ ||f − g||.
Similarly, we have P (T, g;U)− P (T, f ;U) ≤ ||f − g||. This proves 4).

Let a ∈ [0, 1]. By Theorem 2 there exists a µ ∈M(X, T ) such that

hµ(T,U) +
∫

X

(af + (1− a)g)(x)dµ(x) = P (T, af + (1− a)g;U).

It follows that
P (T, af + (1− a)g;U) = hµ(T,U) +

∫
X

(af + (1− a)g)(x)dµ(x)
= a(hµ(T,U) +

∫
X

f(x)dµ(x)) + (1− a)(hµ(T,U) +
∫

X
f(x)dµ(x))

≤ aP (T, f ;U) + (1− a)P (T, g;U).

Since a, f and g are arbitrary, 5) follows.
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To prove 6), we note that
∫

X
(g ◦ T − g)(x)dµ(x) = 0 for each µ ∈M(X, T ). Then

P (T, f + g ◦ T − g;U) = supµ∈M(X,T ){hµ(T,U) +
∫

X
(f + g ◦ T − g)(x)dµ(x)}

= supµ∈M(X,T ){hµ(T,U) +
∫

X
f(x)dµ(x)}

= P (T, f ;U).

7), ¡img src=”/horde/themes/graphics/emoticons/cool.png” alt=”8)” title=”8)” align=”middle”
/¿ and 9) can be proved similarly by applying Theorem 2. We omit the details. �

Recall that a finite signed measure on X is a map µ : BX → R which is countably additive. The
following result says that, for each U ∈ Co

X , P (T, ·;U) determines the members of M(X, T ).

Proposition 5.1. Let U ∈ Co
X and µ : BX → R be a finite signed measure on X. Then µ ∈

M(X, T ) iff
∫

X
f(x)dµ(x) ≤ P (T, f ;U) for all f ∈ C(X, R).

Proof. The proof follows completely from that of Theorem 9.11 in [27]. �

Corollary 5.1. Let µ : B(X) → R be a finite signed measure on X. Then µ ∈ M(X, T ) iff∫
X

f(x)dµ(x) ≤ maxx∈X fn(x)
n for all n ∈ N and f ∈ C(X, R).

Proof. Take U = {X} in Proposition 5.1. Since P (T, f ; {X}) = limn→∞
maxx∈X fn(x)

n , the corollary
follows. �

We first prove part a) of Theorem 3, i.e., for given U ∈ Co
X and µ ∈ M(X, T ), P (T, ·;U)

determines the µ-entropy relative to U in the sense that

hµ(T,U) = inf{P (T, f ;U)−
∫

X

f(x)dµ(x) : f ∈ C(X, R)}.

Proof of part a) of Theorem 3. We follow the arguments in the proof of Theorem 9.12, [27].
By Theorem 2, we first have

hµ(T,U) ≤ inf{P (T, f ;U)−
∫

X

f(x)dµ(x) : f ∈ C(X, R)}.

To prove the opposite, we let

C = {(µ, t) ∈M(X, T )× R : 0 ≤ t ≤ hµ(T,U)}.
Since, by Theorem 1, the entropy map h{·}(T,U) : M(X, T ) → R+ is an affine map, C is a convex
set. Let C(X, R)∗ be the dual space of C(X, R) endowed with the weak∗-topology and view C as
a subset of C(X, R)∗ ×R. Take b > hµ(T,U). Since, by Theorem 1, the entropy map h{·}(T,U) is
upper semi-continuous at µ, we have that (µ, b) 6∈ cl(C). Let V = C(X, R)∗ × R, K1 = cl(C), and
K2 = {(µ, b)}. Then V is a locally convex, linear topological space, and K1,K2 are disjoint, closed,
and convex subsets of V . It follows from [9] (pp. 417) that there exists a continuous, real-valued,
linear functional F on V such that F (x) < F (y) for all x ∈ K1, y ∈ K2, i.e., F : C(X, R)∗×R → R
is a continuous linear functional such that F (µ∗, t) < F (µ, b) for all (µ∗, t) ∈ cl(C). Note that
under the weak∗-topology on C ⊂ C(X, R)∗, F must have the form F (µ∗, t) =

∫
X

f(x)dµ∗(x) + td

for some f ∈ C(X, R) and some d ∈ R. It follows that
∫

X
f(x)dµ∗(x) + dt <

∫
X

f(x)dµ(x) + db

for all (µ∗, t) ∈ cl(C). In particular,
∫

X
f(x)dµ∗(x) + dhµ∗(T,U) <

∫
X

f(x)dµ(x) + db for all
µ∗ ∈M(X, T ). By taking µ∗ = µ, we have that dhµ(T,U) < db. Hence d > 0 and

hµ∗(T,U) +
∫

X

f(x)
d

dµ∗(x) < b +
∫

X

f(x)
d

dµ(x), for all µ∗ ∈M(X, T ).

Using Theorem 2, we have

P (T,
f

d
;U) ≤ b +

∫
X

f(x)
d

dµ(x),
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i.e.,

b ≥ P (T,
f

d
;U)−

∫
X

f(x)
d

dµ(x) ≥ inf{P (T, g;U)−
∫

X

g(x)dµ(x) : g ∈ C(X, R)}.

Since the above inequality is true for any b > hµ(T,U), the above implies that hµ(T,U) ≥
inf{P (T, g;U)−

∫
X

g(x)dµ(x) : g ∈ C(X, R)}. �

Next, we show part b) of Theorem 3, i.e., if (X, T ) is invertible, then for given U ∈ Co
X and

µ ∈M(X, T ),

h+
µ (T,U) ≤ inf

f∈C(X;R)
{P (T, f ;U)−

∫
X

fdµ}.

We need the following classical result of Rohlin.

Lemma 5.2. Let (X, T ) be invertible and µ ∈ Me(X, T ). If µ is non-atomic (i.e. µ({x}) = 0
for each x ∈ X), then for any N ∈ N and ε > 0, there exists a Borel subset D of X such that
D,TD, · · · , TN−1D are pairwise disjoint and µ(

⋃N−1
i=0 T iD) > 1− ε.

Proof. See e.g., [11]. �

Proof of part b) of Theorem 3. We follow the arguments in the proof of Proposition 7.10, [12].
Let U = {U1, U2, · · · , Uk}. By Lemma 3.4 and Proposition 4.1, we may assume that µ is ergodic
and non-atomic. Since P (T, f + c;U)−

∫
X

(f + c)dµ = P (T, f ;U)−
∫

X
fdµ for each c ∈ R, we can

assume that f(x) ≥ 0 for all x ∈ X. Let fmax = maxx∈X f(x). Then fmax ≥ 0.
For ε > 0, we let N ∈ N be sufficiently large such that

(5.1) PN (T, f ;U) ≤ 2N(P (T,f ;U)+ε) and − (1− 1
N

) log(1− 1
N

)− 1
N

log
1
N

< ε,

and let 1 > δ > 0 be sufficiently small such that

(5.2)
√

δ(log k + fmax + log(kefmax)) < ε.

For such δ,N chosen, by Lemma 5.2, there is a Borel subset D of X such that D,TD, · · · , TN−1D

are pairwise disjoint, and µ(
⋃N−1

i=0 T iD) > 1− δ. Let β ∈ P∗(UN−1
0 ) be such that

(5.3) 1 ≤
∑
B∈β

sup
x∈B

efN (x) = PN (T, f ;U)

and consider the partition βD = {B ∩D : B ∈ β} of D. Hence for each element P ∈ βD we can
find a sP ∈ {1, 2, · · · , k}N such that P ⊆ (

⋂N−1
j=0 T−jUij ) ∩D. Using the partition βD, we define

a partition α = {Ai : i = 1, 2, · · · , k} of X as follows. First, for each i = 1, 2, · · · , k, let

A′
i =

N−1⋃
j=0

⋃
{T jP : P ∈ βD and sP (j) = i}.

We then let B′
1 = U1, B′

2 = U2 \B′
1,· · · , B′

k = Uk \ (
⋃k−1

j=1 B′
j). Finally, we let Ai = A′

i ∪ (B′
i ∩ (X \⋃N−1

j=0 T jD)) for i = 1, 2, · · · , k. Clearly, α = {Ai : i = 1, 2, · · · , k} is a partition of X and Ai ⊂ Ui

for all i = 1, 2, · · · , k. Hence α � U .
For β′ ∈ PX and R ⊂ X, we let β′∩R = {A∩R : A ∈ β′ and A∩R 6= ∅}. From the construction

of α, it is easy to see that αN−1
0 ∩D = βD, and moreover,

(5.4)
∑

C∈αN−1
0 ∩D

sup
x∈C

efN (x) =
∑

P∈βD

sup
x∈P

efN (x) ≤
∑
C∈β

sup
x∈C

efN (x) = PN (T, f ;U).

Let E =
⋃N−1

i=0 T iD. Then µ(E) > 1 − δ. For any fixed n � N , we let Gn = {x ∈ X :
1
n

∑n−1
i=0 1E(T ix) > 1−

√
δ}. Since µ(Gn) + (1−

√
δ)(1− µ(Gn)) ≥

∫
X

1
n (

∑n−1
i=0 1E(T ix))dµ(x) >

1− δ, we have

(5.5) µ(Gn) > 1−
√

δ.
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For each x ∈ Gn, let Sn(x) = {i ∈ {0, 1, · · · , n−1} : T ix ∈ D} and Un(x) = {i ∈ {0, 1, · · · , n−1} :
T ix ∈ E}. Note that for any x ∈ X and i ∈ Z, if T ix ∈ E then there exists a j ∈ {0, 1, · · · , N − 1}
such that T i−jx ∈ D. Using this fact, it is not hard to see that for each x ∈ Gn, Un(x) ⊆⋃N−1

j=0 (Sn(x)+j)∪{0, 1, · · · , N−1}. Since for each x ∈ Gn, |Un(x)| =
∑n−1

i=0 1E(T ix) > n(1−
√

δ),
we have |{0, 1, · · · , n− 1} \ Un(x)| ≤ n

√
δ. Therefore, for each x ∈ Gn,

(5.6)
|{0, 1, · · · , n− 1} \

⋃N−1
j=0 (Sn(x) + j)|

≤ |{0, 1, · · · , N − 1} ∪ ({0, 1, · · · , n− 1} \ Un(x))| ≤ n
√

δ + N.

Let Fn = {Sn(x) : x ∈ Gn}. Since for each F ∈ Fn, F ∩ (F + i) = ∅, i = 0, 1, · · · , N − 1, we
have |F | ≤ n

N + 1. Hence

|Fn| ≤
an∑
j=1

n!
j! · (n− j)!

≤ an
n!

an! · (n− an)!
≤ n

n!
an! · (n− an)!

,

where an = [ n
N ] + 1. By Stirling’s formulation and the second inequality in (5.1), we have

lim
n→∞

1
n

log(n
n!

an! · (n− an)!
) = −(1− 1

N
) log(1− 1

N
)− 1

N
log

1
N

< ε.

Hence

(5.7) lim sup
n→∞

1
n

log |Fn| ≤ lim
n→∞

1
n

log n
n!

an! · (n− an)!
≤ ε.

For each F ∈ Fn, let BF = {x ∈ Gn : Sn(x) = F}. Clearly, {BF }F∈Fn forms a partition of Gn.
For each F ∈ Fn, F = {s1 < s2 < · · · < sl}, we let HF = {0, 1, · · · , n − 1} \

⋃N−1
i=0 (F + i).

It follows from (5.6) that l ≤ n
N + 1, |HF | ≤ n

√
δ + N . Moreover, using (5.4) and the facts that

|α| = k, PN (T, f,U) ≥ 1, and BF ⊆ Gn ∩
⋂l

j=1 T−sj D, we have∑
C∈αn−1

0 ∩BF

sup
x∈C

efn(x) ≤
∑

C∈
l∨

j=1
T−sj (αN−1

0 ∩D)∨
∨

r∈HF

T−rα

sup
x∈C

efn(x)

≤
l∏

j=1

(
∑

Cj∈T−sj (αN−1
0 ∩D)

sup
x∈Cj

efN (T sj x)) ·
∏

r∈HF

(
∑

Ci∈T−rα

sup
x∈Ci

ef(T rx))

=
l∏

j=1

(
∑

Cj∈αN−1
0 ∩D

sup
x∈Cj

efN (x)) · (
∑

Ci∈α

sup
x∈Ci

ef(x))|HF |

≤ (kefmax)|HF | · (PN (T, f,U))l

≤ (kefmax)n
√

δ+N · (PN (T, f,U))
n
N +1.

Summing the above inequality over F ∈ Fn yields that

(5.8)
∑

F∈Fn

∑
C∈αn−1

0 ∩BF

sup
x∈C

efn(x) ≤ |Fn| · (kefmax)n
√

δ+N · (PN (T, f,U))
n
N +1.

Since µ(X \Gn) <
√

δ and |αn−1
0 ∩ (X \Gn)| ≤ kn,

(5.9)

Hµ(αn−1
0 ∩ (X \Gn)) +

∫
X\Gn

fndµ

≤
∑

C′∈αn−1
0 ∩(X\Gn)

−µ(C ′) log µ(C ′) + nµ(X \Gn)fmax

≤ −(
∑

C′∈αn−1
0 ∩(X\Gn)

µ(C ′)) log
(
∑

C′∈α
n−1
0 ∩(X\Gn)

µ(C′))

|αn−1
0 ∩(X\Gn)| + nµ(X \Gn)fmax

= µ(X \Gn)(log |αn−1
0 ∩ (X \Gn)| − log µ(X \Gn) + nfmax)

≤
√

δ(log kn + nfmax)− µ(X \Gn) log µ(X \Gn).
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Let γ = {BF }F∈Fn
∪ {X \ Gn} and φ(t) = −t log t, t ≥ 0. Then γ ∈ PX , and, by (5.8), (5.9)

and Lemma 4.3,

(5.10)
Hµ(αn−1

0 ) +
∫

X
fndµ ≤ Hµ(αn−1

0 ∨ γ) +
∫

X
fndµ

=
∑

F∈Fn

(Hµ(αn−1
0 ∩BF ) +

∫
BF

fndµ) + (Hµ(αn−1
0 ∩ (X \Gn)) +

∫
X\Gn

fndµ)

≤
∑

F∈Fn

(Hµ(αn−1
0 ∩BF ) +

∫
BF

fndµ) +
√

δ(log kn + nfmax) + φ(µ(X \Gn))

≤
∑

F∈Fn

∑
C∈αn−1

0 ∩BF

µ(C)(sup
x∈C

fn(x)− log µ(C))

+µ(X \Gn)(0− log µ(X \Gn)) + n
√

δ(log k + fmax)
≤ log (

∑
F∈Fn

∑
C∈αn−1

0 ∩BF

e supx∈C fn(x) + e supx∈X\Gn
0) + n

√
δ(log k + fmax)

≤ n(bn +
√

δ(log k + fmax)),

where bn = 1
n log(|Fn| · (kefmax)n

√
δ+N · (PN (T, f,U))

n
N +1 + 1).

Now, by (5.1), (5.2), (5.7) and (5.10),

h+
µ (T,U) +

∫
X

f(x)dµ(x) ≤ hµ(T, α) +
∫

X
fdµ

= lim
n→∞

1
n (Hµ(αn−1

0 ) +
∫

X
fndµ) ≤ lim sup

n→∞
bn +

√
δ(log k + fmax)

= lim sup
n→∞

1
n (log |Fn|+ (n

√
δ + N) log(kefmax) + ( n

N + 1) log PN (T, f,U)) +
√

δ(log k + fmax)

= lim sup
n→∞

1
n log |Fn|+ 1

N log PN (T, f,U) +
√

δ(log k + fmax + log(kefmax))

≤ 1
N log PN (T, f,U) + 2ε

≤ P (T, f ;U) + 3ε.

The proof is now complete since ε > 0 is arbitrary. �

In [17], the authors showed that for an invertible TDS (X, T ), µ ∈ M(X, T ) and U ∈ C0
X , i)

hµ(T,U) = h+
µ (T,U) iff ii) htop(T,U) ≥ h+

µ (T,U). If we let f be the null function in Lemma
4.1, then we have that ii) is true (in fact, this is already shown in Proposition 7.10 of [12]).
Hence i) is also true. This gives an alternative proof of the Corollary stated in Section 1, i.e.,
hµ(T,U) = h+

µ (T,U) (see also [19] for a relative version).
A general question is whether the equality hµ(T,U) = h+

µ (T,U) still holds for a non-invertible
TDS. We believe that the answer to this question is affirmative.

6. equilibrium states

In this section, we will investigate properties of equilibrium states using our findings in the
previous sections. Throughout the section, we let (X, T ) be a TDS.

6.1. Local equilibrium states. Differing from global equilibrium states, we will show that local
equilibrium states always exist and can be characterized by tangential functionals.

Given f ∈ C(X, R) and U ∈ Co
X . A member µ of M(X, T ) is called an equilibrium state for f

relative to U if
P (T, f ;U) = hµ(T,U) +

∫
X

f(x)dµ(x).

We let Mf (X, T ;U) denote the set of all equilibrium states for f relative to U . Since h{·}(T,U) is
upper semi-continuous on M(X, T ), it is easy to see that

Mf (X, T ;U) =
∞⋂

n=1

cl({µ ∈M(X, T ) : hµ(T ;U) +
∫

fdµ > P (T, f ;U)− 1
n
}).

A tangent functional to the convex function P (T, ·;U) at f is a finite signed Borel measure µ on
X such that

P (T, f + g;U)− P (T, f ;U) ≥
∫

X

g(x)dµ(x), for all g ∈ C(X, R).
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We let Tf (X, T ;U) denote the set of all tangent functionals to P (T, ·;U) at f .

Proposition 6.1. The following holds.
1) Mf (X, T ;U) is a non-empty, compact and convex set.
2) The extreme points of Mf (X, T ;U) are precisely the ergodic members of Mf (X, T ;U).
3) Let µ ∈ Mf (X, T ;U) and µ =

∫
Me(X,T )

θdm(θ) be the ergodic decomposition of µ. Then
for m-a.e. θ ∈Me(X, T ), θ ∈Mf (X, T ;U).

4) Mf (X, T ;U) = Tf (X, T ;U).

Proof. For each ν ∈M(X, T ), we let L(f,U , ν) = hν(T,U) +
∫

X
f(x)dν(x).

1) By Theorem 2, Mf (X, T ;U) is non-empty. By Theorem 1, L(f,U , ·) : M(X, T ) → R is a
upper semi-continuous, affine map. Hence Mf (X, T ;U) is a closed, convex subset of the compact
metric space M(X, T ).

2) Let µ be an extreme point of Mf (X, T ;U). To show µ is ergodic, it is sufficient to show that
µ is an extreme point of M(X, T ). Let µ1, µ2 ∈M(X, T ) and a ∈ (0, 1) such µ = aµ1 + (1− a)µ2.
Then aL(f,U , µ1) + (1 − a)L(f,U , µ2) = L(f,U , µ) = P (T, f,U). It follows from Theorem 2 that
L(f,U , µ1) = L(f,U , µ2) = P (T, f,U). Hence µ1, µ2 ∈ Mf (X, T ;U). Since µ is an extreme point
of Mf (X, T ;U), µ1 = µ2 = µ. It follows that µ is an extreme point of M(X, T ).

3) This follows from the following two facts: a) L(f,U , θ) ≤ P (T, f ;U) for each θ ∈ Me(X, T );
b)

∫
Me(X,T )

L(f,U , θ)dm(θ) = L(f,U , µ) = P (T, f ;U).
4) We follow the arguments in the proofs of Theorems 9.14 and 9.15, [27]. Let µ ∈Mf (X, T ;U).

By Theorem 2, if g ∈ C(X, R), then

P (T, f + g;U)− P (T, f ;U) ≥ hµ(T,U) +
∫

X

(f + g)(x)dµ(x)− (hµ(T,U) +
∫

X

f(x)dµ(x))

=
∫

X

g(x)dµ(x).

Therefore Mf (X, T ;U) ⊆ Tf (X, T ;U).
Conversely, let µ ∈ Tf (X, T ;U). For any g ∈ C(X, R) with g ≥ 0 and any ε > 0, we have by

Lemma 5.1 2) and 3) that∫
X

(g + ε)dµ = −
∫

X

−(g + ε)dµ

≥ −P (T, f − (g + ε);U) + P (T, f ;U)

≥ −[P (T, f ;U)−min(g + ε)] + P (T, f ;U)
= min g + ε > 0.

Hence
∫

X
gdµ ≥ 0. This implies that µ is a non-negative measure. To show that µ is T -invariant,

we note by Lemma 5.1 6) that

n

∫
X

(g ◦ T − g)dµ ≤ P (T, f + n(g ◦ T − g);U)− P (T, f ;U) = 0

for any n ∈ Z and g ∈ C(X, R). Hence, if n > 0 then
∫

X
g ◦ Tdµ ≤

∫
X

gdµ and if n < 0 then∫
X

g ◦ Tdµ ≥
∫

X
gdµ. This shows that

∫
X

g ◦ Tdµ =
∫

X
gdµ, i.e., µ is T -invariant.

Next, we show that µ is a probability measure. Note that
∫

X
ndµ ≤ P (T, f+n;U)−P (T, f ;U) =

n for any n ∈ Z. Hence if n ≥ 1 then µ(X) ≤ 1 and if n ≤ −1 then µ(X) ≥ 1. Thus µ(X) = 1.
Above all, µ ∈M(X, T ).

Now, since µ ∈ Tf (X, T ;U), P (T, f + g;U) −
∫

X
(f + g)dµ ≥ P (T, f ;U) −

∫
X

fdµ for any
g ∈ C(X, R). Hence P (T, h;U) −

∫
X

hdµ ≥ P (T, f ;U) −
∫

X
fdµ for any h ∈ C(X; R). It follows

from Theorem 2 and part a) of Theorem 3 that hµ(T,U) = P (T, f ;U)−
∫

X
fdµ, i.e., P (T, f ;U) =

hµ(T,U) +
∫

X
fdµ. Thus µ ∈Mf (X, T ;U). �

Lemma 6.1. Given U ∈ Co
X , there is a dense subset C of C(X, R) such that each function in C

has a unique equilibrium state relative to U .
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Proof. The lemma follows from Proposition 6.1 4) and the fact that a convex function on a separable
Banach space has a unique tangent functional at a dense set of points (see [9], pp. 450). �

Next, we discuss uniqueness of local equilibrium states. Recall that M(X, T ) forms a compact
metric space under the weak∗-topology. Let d be a compatible metric of M(X, T ) and Hd be the
Hausdorff metric of 2M(X,T ). Given U ∈ Co

X , define

(6.1) ΦU : C(X, R) → 2M(X,T ) : ΦU (f) = Mf (X, T ;U), f ∈ C(X, R).

Lemma 6.2. ΦU is upper semi-continuous.

Proof. Let fn → f in C(X, R) and µn ∈Mfn
(X, T ;U) with µn → µ for some µ ∈M(X, T ).

Since µn ∈Mfn
(X, T ;U),

hµn(T,U) +
∫

X

fn(x)dµn(x) = P (T, fn;U).

Let n →∞ in the above. It follows from Lemma 5.1 4) and Theorem 1 that

hµ(T,U) +
∫

X

f(x)dµ(x) ≥ P (T, f ;U).

By Proposition 4.1, µ ∈Mf (X, T ;U). �

Proposition 6.2. For a given U ∈ Co
X , f ∈ C(X, R) has a unique equilibrium state associated to

U iff f is a point of continuity of ΦU . Moreover, the subset C of C(X, R) such that each function
in C has a unique equilibrium state relative to U is a dense Gδ set.

Proof. If Mf (X, T ;U) has only one point, then it is clear that ΦU is continuous at f , as ΦU is
upper semi-continuous.

Conversely, let ΦU be continuous at f ∈ C(X, R). By Lemma 6.1 there exists a sequence
fn ∈ C(X, R) such that fn → f and each Mfn

(X, T ;U) has only one point. Since ΦU is continuous
at f , Mf (X, T ;U) has only one point.

Let C be set of points of continuity of ΦU . By Lemma 6.1, C ⊂ C(X, R) is a dense subset. Since
ΦU is upper semi-continuous, C is also a Gδ set. �

We now discuss uniformity of local equilibrium states relative to a fixed U ∈ Co
X . Let

M(X, T ;U) = ∪f∈C(X,R)Mf (X, T ;U)

denote the set of all equilibrium states relative to U .

Lemma 6.3. Let f ∈ C(X, R). Then for any µ ∈ M(X, T ) and ε > 0, there exist f ′ ∈ C(X, R)
and µ′ ∈Mf ′(X, T ;U) such that

‖µ− µ′‖ = sup
g∈C(X,R),‖g‖=1

|
∫

X

gdµ−
∫

X

gdµ′| ≤ ε

and
‖f ′ − f‖ ≤ 1

ε
[P (T, f ;U)− (hµ(T,U) +

∫
X

fdµ)].

Proof. We follows the arguments of Theorem 3.16 and Remark 6.15 in [25]. By Lemma 5.1 4)
and 5), P (T, ·;U) : C(X, R) → R is convex and continuous. Since

∫
X

gdµ ≤ P (T, g;U) for all
g ∈ C(X, R), it follows from a general result of Bishop and Phelps (see [14], pp 112 or [25], A.3.6)
on the denseness of tangent functionals of a Banach space that there exists f ′ ∈ C(X, R) and
µ′ ∈ Tf ′(X, T ;U) = Mf ′(X, T ;U) such that

‖µ− µ′‖ ≤ ε

and
‖f ′ − f‖ ≤ 1

ε
[P (T, f ;U)−

∫
X

fdµ− inf
g∈C(X,R)

{P (T, g;U)−
∫

X

gdµ}].

The lemma follows as infg∈C(X,R){P (T, g;U)−
∫

X
gdµ} = hµ(T,U), by Theorem 3. �
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Proposition 6.3. The following holds.
1) The set M(X, T ;U) of all equilibrium states relative to U is dense in M(X, T ).
2) For any finite collection of ergodic measures {µ1, µ2, · · · , µn} ⊂ Me(X, T ), there exists a

f ∈ C(X, R) such that {µ1, µ2, · · · , µn} ⊂ Mf (X, T ;U).

Proof. 1) follows directly from Lemma 6.3.
2) We follow the arguments of Corollary 3.17 and Appendix A.5.5 in [25]. From 1), we know

that there exist f ∈ C(X, R) and µ ∈Mf (X, T ;U) such that

‖µ− 1
n

(µ1 + µ2 + · · ·+ µn)‖ <
1
n

.

Let µ =
∫
Me(X,T )

θdm(θ) be the ergodic decomposition of µ.
Note that ω ≡ m− 1

n (δµ1 + · · ·+ δµn
) is a finite signed Borel measure on Me(X, T ) and there

are finite positive Borel measures ω+, ω− on Me(X, T ) such that ω = ω+ − ω− and ω+, ω− are
mutually singular. Let ν+ =

∫
Me(X,T )

θdω+(θ) and ν− =
∫
Me(X,T )

θdω−(θ). Then ν+, ν− are
mutually singular, finite, positive Borel measures on X and µ− 1

n (µ1 + µ2 + · · ·+ µn) = ν+ − ν−.
Since

‖µ− 1
n (µ1 + µ2 + · · ·+ µn)‖ = ‖ν+ − ν−‖ = ‖ν+‖+ ‖ν−‖ = ν+(X) + ν−(X)

= ω+(Me(X, T )) + ω−(Me(X, T ))
= ‖ω+‖+ ‖ω−‖ = ‖ω+ − ω−‖
= ‖ω‖,

we have that
‖m− 1

n
(δµ1 + · · ·+ δµn)‖ <

1
n

.

Hence m({µi}) > 0, i = 1, 2, · · · , n. It follows from Proposition 6.1 3) that µ1, · · · , µn are equilib-
rium states of f relative to U . �

6.2. Global equilibrium states. Let f ∈ C(X, R). A member µ of M(X, T ) is called an equi-
librium state for f if

P (T, f) = hµ(T ) +
∫

X

f(x)dµ(x).

We let Mf (X, T ) denote the set of all equilibrium states for f . We note that Mf (X, T )
can be an empty set (see e.g., [13, 20]). But it is not hard to see that if htop(T ) = ∞, then
Mf (X, T ) = {µ ∈ M(X, T ) : hµ(T ) = ∞}. So for the rest of the section we assume that
htop(T ) < ∞.

A finite signed Borel measure µ on X is a tangent functional to P (T, ·) at f ∈ C(X, R) if

P (T, f + g)− P (T, f) ≥
∫

X

g(x)dµ(x) for all g ∈ C(X, R).

We let Tf (X, T ) denote the set of all tangent functionals to P (T, ·) at f .
Define

Mu(X, T ) ={µ ∈M(X, T ) : h{·}(T ) is upper semi-continuous at µ},

Ml
f (X, T ) ={µ ∈M(X, T ) : there exist Un ∈ Co

X with diam(Un) → 0, gn ∈ C(X, R) with

‖gn − f‖ → 0, and µn ∈Mgn
(X, T ;Un), such that µn → µ},

Msl
f (X, T ) ={µ ∈M(X, T ) : there exist Un ∈ Co

X with diam(Un) → 0 and

µn ∈Mf (X, T ;Un), such that µn → µ}.
It follows from the Hahn-Banach theorem that Tf (X, T ) is non-empty. It is also easy to see that
both Msl

f (X, T ) and Ml
f (X, T ) are non-empty, closed, and, Msl

f (X, T ) ⊆ Ml
f (X, T ). The set

Mu(X, T ) can be empty because the entropy map h{·}(T ) needs not have any points of upper
semi-continuity in general. This is in fact the main obstruction for the existence of an equilibrium
state for f .
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The general connections of these sets are the following.

Proposition 6.4. The following holds.
1) Mf (X, T ) ⊆ Tf (X, T ) ⊆M(X, T ).

2) Tf (X, T ) =
∞⋂

n=1
cl({µ ∈M(X, T ) : hµ(T ) +

∫
X

fdµ > P (T, f)− 1
n}).

3) Mf (X, T ) = Tf (X, T ) ∩Mu(X, T ).
4) Ml

f (X, T ) = Tf (X, T )
5) Ml

f (X, T ) ∩Mu(X, T ) = Mf (X, T ).

Proof. 1) and 2) are precisely the Theorem 9.14 and the Remark of Theorem 9.15 in [27].
3) Using 2) we have that Tf (X, T ) ∩ Mu(X, T ) ⊆ Mf (X, T ). Now let µ ∈ Mf (X, T ), i.e.,

hµ(T ) +
∫

X
f(x)dµ(x) = P (T, f). If µn ∈M(X, T ), µn → µ, then by (1.1),

hµn(T ) +
∫

X

f(x)dµn(x) ≤ P (T, f),

i.e.,

hµn(T ) ≤ hµ(T ) + (
∫

X

f(x)dµ(x)−
∫

X

f(x)dµn(x)).

Hence lim supn→∞ hµn
(T ) ≤ hµ(T ), i.e., the entropy map h{·}(T ) is upper semi-continuous at µ.

We thus have µ ∈ Tf (X, T ) ∩Mu(X, T ).
4) Let µ ∈ Ml

f (X, T ) and let Un ∈ Co
X , gn ∈ C(X, R) and µn ∈ Mgn

(X, T ;Un) be such that
diam(Un) → 0, ‖gn − f‖ → 0 and µn → µ. Then for any g ∈ C(X, R), we have

P (T, gn + g;Un)− P (T, gn;Un) ≥
∫

X

g(x)dµn(x),

and

P (T, gn + g) ≥ P (T, gn + g;Un) ≥ P (T, gn;Un) +
∫

X

g(x)dµn(x)

≥ (P (T, f ;Un)− ‖f − gn‖) +
∫

X

g(x)dµn(x).

By taking the limit n →∞, we have

P (T, f + g) ≥ P (T, f) +
∫

X

g(x)dµ(x), for all g(x) ∈ C(X, R).

This shows that µ ∈ Tf (X, T ).
Conversely, let µ ∈ Tf (X, T ). Then it follows from 2) that

(6.2) µ ∈ cl({ν ∈M(X, T ) : hν(T ) +
∫

X

fdν > P (T, f)− 1
n2
})

for all n ∈ N. Let d be a prescribed compatible metric on M(X, T ). Without loss of generality,
we assume that d(θ1, θ2) ≤ ‖θ1 − θ2‖ for any θ1, θ2 ∈ M(X, T ). For each n ∈ N, we have by (6.2)
that there exists a µ′ ∈M(X, T ) such that

hµ′(T ) +
∫

X

fdµ′ > P (T, f)− 1
n2

and d(µ′, µ) <
1
n

.

Then by Lemma 2.7, for each n ∈ N, there exists a Un ∈ Co
X such that diam(Un) < 1

n and

hµ′(T,Un) ≥ hµ′(T )− (hµ′(T ) +
∫

X

fdµ′ − P (T, f) +
1
n2

),

from which we have

P (T, f,Un)− (hµ′(T,Un) +
∫

X

fdµ′) ≤ P (T, f)− (hµ′(T,Un) +
∫

X

fdµ′) ≤ 1
n2

.
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For each n ∈ N, we apply Lemma 6.3 for µ′, f and Un to obtain µn ∈M(X, T ) and fn ∈ C(X, R)
such that

‖µn − µ′‖ <
1
n

,

‖fn − f‖ ≤ n(P (T, f,Un)− (hµ′(T,Un) +
∫

X

fdµ′)) ≤ 1
n

.

Since d(µn, µ) ≤ d(µ, µ′) + d(µ′, µn) ≤ d(µ, µ′) + ‖µ′ − µn‖ ≤ 2
n , we have µn → µ. Hence

µ ∈Ml
f (X, T ).

5) follows immediately from 3) and 4). �

From the proof of part 4) of Proposition 6.4, we also have the following.

Proposition 6.5. Given {Vn} ⊂ Co
X with diam(Vn) → 0. Let d be a prescribed compatible metric

on M(X, T ). Then

Ml
f (X, T ) ={µ ∈M(X, T ) : for any ε > 0 and M ∈ N there exist gε,M ∈ C(X, R), L ≥ M

and µε,M ∈Mgε,M
(X, T ;VL) such that ‖gε,M − f‖ ≤ ε and d(µ, µε,M ) < ε}.

We remark that points of Ml
f (X, T ) need not be equilibrium states for f in general. But

Proposition 6.4 4) asserts that µ ∈Ml
f (X, T ) is an equilibrium state for f iff it is a point of upper

semi-continuity of h{·}(T ). This gives a necessary and sufficient condition for a point of Ml
f (X, T )

to become an equilibrium state for f . Of course, such a condition needs not be satisfied in general.
One exception is the case when the entropy map h{·}(T ) can be realized by local ones in the sense
that there exists a U ∈ Co

X such that

(6.3) hµ(T,U) = hµ(T ) for all µ ∈M(X, T ).

Define
hM (T,U) = sup

µ∈M(X,T )

(hµ(T )− hµ(T,U)), U ∈ Co
X .

Then it is clear that hM (T,U) ≤ hM (T,V) whenever U � V. Moreover, (6.3) holds for an U ∈ Co
X

iff hM (T,U) = 0. Also define
hM (T ) ≡ inf

U∈Co
X

hM (T,U).

Then hM (T ) = 0 gives a weaker notion of realization of the entropy map by local ones. By Lemma
2.10, we have

(6.4) 0 ≤ hM (T,U) ≤ h(T |U), U ∈ Co
X , and 0 ≤ hM (T ) ≤ h∗(T ),

where h∗(T ) = infU∈Co
X

h(T |U) is the conditional entropy of T .

Proposition 6.6. If hM (T,U) = 0 for some U ∈ C0
X , then for each f ∈ C(X, R)

(6.5) Mls
f (X, T ) = Ml

f (X, T ) = Tf (X, T ) = Mf (X, T ).

Proof. Note that the condition hM (T,U) = 0 implies that (6.3) holds. It follows from Theorem 1
that the entropy map h{·}(T )(= h{·}(T,U)) : M(X, T ) → R is upper semi-continuous. Hence
Mu(X, T ) = M(X, T ). By (1.1), (6.3), and Theorem 2, we also have P (T, f ;U) = P (T, f) for each
f ∈ C(X, R). Hence Mf (X, T ) = Mf (X, T ;U) and Tf (X, T ) = Tf (X, T ;U) for each f ∈ C(X, R).
It follows from Proposition 6.1 4) and Proposition 6.4 3) that Ml

f (X, T ) = Tf (X, T ) = Mf (X, T )
for each f ∈ C(X, R).

Let {Un} ⊂ Co
X be a sequence such that Un � U for each n and diam(Un) → 0. It follows from

(6.3) that hµ(T,Un) = hµ(T ) for all n and all µ ∈ M(X, T ). Again, by (1.1) and Theorem 2, we
have P (T, f ;Un) = P (T, f) and hence Mf (X, T ) = Mf (X, T ;Un) for all n and f ∈ C(X, R). This
shows that for f ∈ C(X, R), Msl

f (X, T ) ⊇Mf (X, T ), and hence Msl
f (X, T ) = Mf (X, T ). �
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Lemma 6.4. hM (T ) = 0 iff the entropy map h{·}(T ) : M(X, T ) → R is upper semi-continuous.

Proof. Let hM (T ) = 0. Fix a µ ∈ M(X, T ). For any given ε > 0, we let V ∈ Co
X be such that

hM (T,V) ≤ ε. Since h{·}(T,V) is upper semi-continuous,

lim sup
ν→µ

hν(T ) ≤ lim sup
ν→µ

hν(T,V) + ε ≤ hµ(T,V) + ε ≤ hµ(T ) + ε.

Since ε is arbitrary, lim supν→µ hν(T ) ≤ hµ(T ). This shows the upper semi-continuity of the
entropy map h{·}(T ).

Conversely, let h{·}(T ) : M(X, T ) → R be upper semi-continuous. If hM (T ) > 0, then there are
sequences {Un}∞n=1 ⊂ Co

X with diam(Un) → 0 and {µn}∞n=1 ⊂M(X, T ) such that

hµn(T )− hµn(T,Un) ≥ hM (T )
2

for all n.

Without loss of generality, we assume that Un+1 � Un for all n.
By taking subsequence if necessary, we let µn → µ in the weak∗-topology. Fix m ∈ N. For any

n ≥ m, we have

hµn
(T )− hµn

(T,Um) ≥ hµn
(T )− hµn

(T,Un) ≥ hM (T )
2

.

Letting n →∞, it follows from the upper semi-continuity of h{·}(T ) and h{·}(T,Um) that hµ(T )−
hµ(T,Um) ≥ hM (T )

2 > 0. But since hµ(T ) ≤ htop(T ) < ∞, limm→∞(hµ(T ) − hµ(T,Um)) = 0, a
contradiction. �

Proposition 6.7. If hM (T ) = 0, then

Ml
f (X, T ) = Tf (X, T ) = Mf (X, T ).

Proof. By Lemma 6.4, the entropy map h{·}(T ) : M(X, T ) → R is upper semi-continuous, i.e.,
Mu(X, T ) = M(X, T ). The proposition now follows from Proposition 6.4 3)-5). �

We note that the condition htop(T ) < ∞ a prior assumed at the beginning of the subsection is
actually implied by the condition hM (T ) = 0. Indeed, if hM (T ) = 0, then there exists a U ∈ Co

X

such that hM (T,U) ≤ 1. Since

hM (T,U) ≥ sup
µ∈M(X,T )

(hµ(T )− htop(T,U)) = htop(T )− htop(T,U),

we have
htop(T ) ≤ hM (T,U) + htop(T,U)) ≤ 1 + log N(U) < ∞.

We now discuss two classes of weak expansive systems: the h-expansive and asymptotically
h-expansive systems, introduced by Bowen [6] and Misiurewicz [20], respectively. Given n ∈ N and
ε > 0. A subset E ⊂ X is said to (n, ε)-spans another subset F ⊂ X (with respect to T ), if for
each y ∈ F there is a x ∈ E so that d(T k(x), T k(y)) ≤ ε for all k = 0, 1, · · · , n. For a compact
subset K ⊂ X, we let rn(K, ε) = rn(T,K, ε) = min{cardE : E (n, ε)-spans K}. Define

h(T,K) = lim
ε→0

lim sup
n→∞

1
n

log rn(K, ε).

It is well known that htop(T ) = h(T,X). Let

Φε(x) = {y ∈ X : d(Tn(x), Tn(y)) ≤ ε for n ≥ 0}
and define

h∗T (ε) = sup
x∈X

h(T,Φε(x)).

(X, T ) is called h-expansive if there exists an ε > 0 such that h∗T (ε) = 0, and is called asymptotically
h-expansive if limε→0 h∗T (ε) = 0.

It is shown by Bowen [6] that expansive systems, expansive homeomorphisms, endomorphisms
of a compact Lie group, and Axiom A diffeomorphisms are all h-expansive, by Misiurewicz [22]
that every continuous endomorphism of a compact metric group is asymptotically h-expansive
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if its entropy is finite, and by Buzzi [8] that any C∞ diffeomorphism on a compact manifold is
asymptotically h-expansive.

The following characterization is given by Misiurewicz ([20]).

Lemma 6.5. The following holds.
1) If U ,V ∈ Co

X , diamU < ε < δ
2 , where δ is the Lebesgue number for V, then h(T |U) ≤

h∗T (ε) ≤ h(T |V);
2) (X, T ) is h-expansive iff there exists a U ∈ Co

X such that h(T |U) = 0;
3) h∗(T ) = limε→0 h∗T (ε). Consequently, (X, T ) is asymptotically h-expansive iff h∗(T ) = 0.

Proof. See [20], Lemma 2.1 and Corollary 2.1. �

Another characterization of asymptotically h-expansivity is recently given by Boyle and Dow-
narowicz [5] as the following: (X, T ) is asymptotically h-expansive iff it has a principal extension
to a symbolic system.

Proposition 6.8. The following holds.
1) If (X, T ) is h-expansive, then there exists a U ∈ Co

X such that hM (T,U) = 0. Consequently,
Proposition 6.6 holds for a h-expansive TDS.

2) If (X, T ) is asymptotically h-expansive, then hM (T ) = 0. Consequently, Proposition 6.7
holds for an asymptotically h-expansive TDS.

Proof. 1) Let (X, T ) be h-expansive. Then by Lemma 6.5 2), there exists a U ∈ Co
X such that

h(T |U) = 0. It follows from Lemma 2.10 that hµ(T ) = hµ(T,U) for all µ ∈ M(X, T ), i.e.,
hM (T,U) = 0.

(2) Let (X, T ) be asymptotically h-expansive. Then by Lemma 6.5 3) and (6.4), we have
0 ≤ hM (T ) ≤ h∗(T ) = 0, i.e., hM (T ) = 0. �

We remark that, based on discussions of upper semi-continuity of the entropy map, the existence
of global equilibrium states and the equality Tf (X, T ) = Mf (X, T ) are essentially known for an
expansive TDS or an expansive homeomorphism (see [7, 24, 25]), and, more generally, for an
asymptotically h-expansive TDS (see [22]). Our results above give a general treatment on both
h-expansive and asymptotically h-expansive cases with respect to these issues by making use of
local entropies and pressures, and meantime provide more information on the characterization of
global equilibrium states.
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