
DYNAMICS OF RIGID FIBERS IN A PLANAR
CONVERGING CHANNEL

A Dissertation
Presented to the
Academic Faculty

by

Matthew L. Brown

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

School of Chemical and Biomolecular Engineering
Georgia Institute of Technology

March 29, 2005



DYNAMICS OF RIGID FIBERS IN A PLANAR
CONVERGING CHANNEL

Approved By:

Professor Jeff Empie, Committee chair
School of Chemical and Biomolecular Engineering
Georgia Institute of Technology

Professor Cyrus Aidun, Advisor

School of Mechanical Engineering
Georgia Institute of Technology

Professor Larry Forney

School of Chemical and Biomolecular Engineering
Georgia Institute of Technology

Professor Mostafa Ghiaasiaan

School of Mechanical Engineering
Georgia Institute of Technology

Professor Victor Breedveld

School of Chemical and Biomolecular Engineering
Georgia Institute of Technology

Date Approved: 03/29/2005



ACKNOWLEDGMENTS

There are many people that have contributed to the successful completion of this

work. First of all, I would like to express my sincere gratitude for the diligent assis-

tance of my advisor, Dr. Cyrus Aidun, in helping me complete my doctorate degree.

He has shown continued support and provided valuable advice though out my grad-

uate studies. I would also like to give thanks to Dr. Mehran Parsheh, my lab-mate,

for sharing his expertise in both fluid mechanics and experimental techniques. I have

learned a great deal from Dr. Parsheh and his assistance has proven invaluable to

the successful completion of this work. Special thanks to Dr. Barry Crouse, whose

guidance and support were instrumental in me coming coming to Atlanta and achiev-

ing this degree. A special note of appreciation to my predecessor Chang Park, who

has given me much assistance early on with the design and construction of the flow

facility.

I would also like to extend my gratitude for the technical input and guidance of

the rest of my thesis reading committee as well.

I am also grateful for the friends that I have made during my studies: Thank

you Mehran Parsheh, Eric Schmidt, Chang Park, John Xu, Venkata Bandhakavi,

Jagbir Hooda, Paul McKay, Akay Islek, and Gorkem Bedir for making my time here

enjoyable.

iii



Most importantly, I would like to thank my wife Liza for giving me the greatest

gift, our son Luke, for her love and understanding, and for helping me keep things in

perspective. Finally, I am grateful for the financial assistance provided by the IPST,

which has made it possible to complete this dissertation work.

iv



TABLE OF CONTENTS

ACKNOWLEDGMENTS iii

LIST OF TABLES viii

LIST OF FIGURES ix

NOMENCLATURE xv

SUMMARY xviii

1 INTRODUCTION 1

2 LITERATURE REVIEW 4

2.1 Flow induced orientation of inertialess fibers . . . . . . . . . . . . . . 5

2.2 Flow induced microstructure and rheology of dilute suspensions . . . . 8

2.3 Flow induced fiber orientation with inertia . . . . . . . . . . . . . . . 19

2.4 Turbulence development in a contraction . . . . . . . . . . . . . . . . 24

2.5 Rotational diffusion of fibers in turbulent contraction flow . . . . . . . 31

2.6 Particle-turbulence interaction . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Application to paper forming . . . . . . . . . . . . . . . . . . . . . . . 36

v



3 EXPERIMENTAL METHODS 39

3.1 Flow Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 LDV measurement technique . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Visualization and image processing technique . . . . . . . . . . . . . . 49

3.4 Data correction procedure . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Flow conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 THEORETICAL BACKGROUND 64

4.1 Flow induced fiber orientation . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Models of turbulence in contractions . . . . . . . . . . . . . . . . . . . 76

5 RESULTS & DISCUSSION 81

5.1 Turbulence in planar contraction flow . . . . . . . . . . . . . . . . . . 81

5.2 Flow-induced orientation in a planar contraction . . . . . . . . . . . . 96

5.3 Evaluation of rotational diffusion coefficient, Dr, from turbulence mea-
surements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Effect of turbulence on orientation . . . . . . . . . . . . . . . . . . . . 102

5.5 Effect of contraction shape . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 Accuracy of closure approximations in extensional flow . . . . . . . . 114

5.7 Comparison of grid generated turbulence to step-diffuser turbulence in
a planar contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 CONCLUSIONS 124

APPENDIX A: EFFECT OF CONTRACTION HALF ANGLE 128

vi



APPENDIX B: ERRORS AND UNCERTAINTY 133

APPENDIX C: ORIENTATION TENSOR COMPONENTS 141

APPENDIX D: INERTIA INDUCED FIBER DYNAMICS 143

REFERENCES 146

VITA 154

vii



LIST OF TABLES

1 Description of flow components . . . . . . . . . . . . . . . . . . . . . 41

2 Grid & Honeycomb Dimensions . . . . . . . . . . . . . . . . . . . . . 43

3 LDV parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B.1 Uncertainty in measured streamwise mean velocity component, U1 for
grid generated turbulence and lr = 20 and Re = 85 × 103 . . . . . . . 134

B.2 Uncertainty in measured streamwise fluctuation velocity component,√
u′ 21 for grid generated turbulence and lr = 20 and Re = 85 × 103. . 135

B.3 Uncertainty in measured orientation anisotropy parameter, a1111 for
grid generated turbulence and lr = 20 and Re = 85 × 103. . . . . . . . 140

C.1 Measured second and fourth order orientation tensor components for
case Re = 85 × 103 and lr = 20. . . . . . . . . . . . . . . . . . . . . . 141

C.2 Measured second and fourth order orientation tensor components for
case Re = 170 × 103 and lr = 20. . . . . . . . . . . . . . . . . . . . . 142

C.3 Measured second and fourth order orientation tensor components for
case Re = 85 × 103 and lr = 60. . . . . . . . . . . . . . . . . . . . . . 142

viii



LIST OF FIGURES

1 Schematic of a Beloit Converflo hydraulic headbox (Smook, 1992) . . 37

2 Schematic of flow loop (Dimensions in meters, not to scale) . . . . . . 40

3 Grid & Honeycomb dimensions. . . . . . . . . . . . . . . . . . . . . . 42

4 Schematic of grid generated turbulence experimental set-up with coor-
dinate system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Cutaway schematic of the planar contraction and constant cross section
channel (not to scale, dimensions in mm). Flow is in the positive x1-
direction. A) Tube block, B) Honeycomb, C) Grid position lr = 60
and D) Grid position lr = 20 . . . . . . . . . . . . . . . . . . . . . . . 44

6 Normalized mean streamwise rate of strain along the centerline of the
contraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Image of rayon fibers used in experiments . . . . . . . . . . . . . . . . 50

8 The experimental set-up for fiber suspension visualization. . . . . . . 51

9 Schematic of the division of each fiber into segments and fitting lines
by least square technique. . . . . . . . . . . . . . . . . . . . . . . . . 52

10 Overview of image analysis technique a) Sample of raw images obtained
from the visualization; b) Image after inverting, c) background removal,
and d) skeletonization. The flow direction is from down to up. . . . . 54

11 Optical path of the incident laser beam due to refraction. . . . . . . . 56

12 Power spectrum of streamwise component of velocity at C = 1.65 (—),
C = 2.8 (· · ·) and C = 9 (−−). . . . . . . . . . . . . . . . . . . . . . 57

ix



13 a) Measured x1− component of mean velocity along the contraction
centerline, Re = 85 × 103 (•) and Re = 150 × 103 (o) compared to
potential theory (—). b) Measured x2− component of mean velocity
at C = 1.11 for Re = 85 × 103 (•) and Re = 150 × 103 (o) compared
to potential theory (—). . . . . . . . . . . . . . . . . . . . . . . . . . 59

14 a) Measured streamwise mean velocity profile immediately upstream
of the grid at x2 = 0, −46.8L < x3 < 46.8L, and x1 = −144L (o).
b) Measured streamwise mean velocity profile immediately upstream
of the grid at −58L < x2 < 58L, x3 = 0, and x1 = −144L (�). . . . 62

15 a) Measured streamwise mean velocity profile immediately downstream
of the grid at x2 = 0, −46.8L < x3 < 46.8L, and x1 = −40L (*), x1 =
−54L (o), x1 = −74L (+). b) Measured streamwise mean velocity
profile immediately downstream of the grid at −58L < x2 < 58L,
x3 = 0, and x1 = −40L (*), x1 = −54L (o), x1 = −74L (+). . . . . . 62

16 Mean streamwise velocity x3-profile at C=1.18, 1.65, 2.8, and 9 at Re
=85 × 103 (�), Re = 127 × 103 (o), Re = 150 × 103 (.) . . . . . . . . 63

17 a) Mean streamwise velocity x2-profile at C=1.18, 1.65, 2.8, and 9 at
Re = 85 × 103 (�), Re = 127 × 103 (o), Re = 150 × 103 (.). b)
Normalized mean streamwise velocity profile in the x2- direction for
C=1.18 measured (x) model (see equation 18(-.-), C=1.65 measured
(♦) model (- -), C=2.8 measured (�) model (—), and C=9 measured
(*) at Re =85 × 103. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

18 Coordinate system for three-dimensional fiber orientation. . . . . . . 65

19 a) Stokes flow solution of the orientation distribution function at the
contraction centerline at C = 3.1 a) and C = 6.05. b) . . . . . . . . . 69

20 Development of normalized measured streamwise rms-velocity com-
ponent behind the monoplanar grid (x) compared to grid turbulence
decay in a straight channel based on Roach, 1987 (—). (R2 = 0.99
for −15 ≤ x1/M ≤ 40) (Error bars represent 95% confidence intervals,
α(95%), of the measurements) . . . . . . . . . . . . . . . . . . . . . . . 83

21 Development of normalized rms-velocity components along the chan-
nel centerline at Re = 85 × 103, x1− component, lr = 20 (o), x2−
component, lr = 20 (x), x3− component, lr = 20 (*), and x1− com-
ponent, lr = 60 (♦). (Error bars represent 95% confidence intervals of
the measurements) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

x



22 Prediction of normalized streamwise fluctuation velocity component at
Re = 85 × 103: model(—)(Tsuge, 1984), measured (+). (Error bars
represent 95% confidence intervals, α(95%), of the measurements) . . . 89

23 Downstream development of streamwise component of turbulent inten-
sity along the channel centerline Re = 85 × 103 and lr = 60 (o), Re =
85×103 and lr = 20 (x). (Error bars represent 95% confidence intervals
of the measurements) . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

24 Streamwise component of turbulent intensity along the contraction cen-
terline for Re = 85×103, lr = 60, and β = 8.4o (o); Re = 85×103, lr =
20 and β = 8.4o (+); Re = 170× 103, lr = 20 and β = 8.4o (×); Re =
85×103, lr = 20 and β = 8.15o (�); Re = 85×103, lr = 20, and β = 8.8o

(♦); the exponential decaying curve fitted to data, e−1.6C∗
(—). (Error

bars represent 95% confidence intervals of the measurements) . . . . 91

25 Cross-correlation coefficient R11(� x1) at C = 1.05 (o), C = 2.17 (•),
C = 4.77 (x) and C = 8.3 (+) for Re = 85 ×103. . . . . . . . . . . . . 93

26 Downstream development of the integral time scale normalized with
inlet mean streamwise velocity, U1,0, and fiber half length, L, for Re=85
x 103 (+); Re = 150 x 103 (o). . . . . . . . . . . . . . . . . . . . . . . 94

27 Downstream development of integral length scale normalized with fiber
half length, L, for Re = 85 x 103 (+), Re = 150 x 103 (o). . . . . . . 94

28 Downstream development of the normalized orientation distribution,
ψ, at C = 2.2 (+), C = 3.6 (♦), and C = 8.5 (•) for Re = 85 × 103. . 96

29 Development of fiber orientation parameter, a1111, for φ along a line
parallel to the centerline at x2/L = 1 for Stokes flow computation
based on equation 32 (o), and based on equations 27 and 28 (+). . . . 98

30 Comparison of experimental a1111, for Re = 85 × 103 and lr = 60
measured (x) model (...), Re = 85 × 103 and lr = 20 measured (o)
model (—) and Re = 170 × 103 and lr = 20 measured (+) model
(- -) using the measured distribution at C = 1.1 as the initial value.
All graphs are normalized by the measured value at C = 1.1, a1111,0.
(Error bars represent 95% confidence intervals of the measurements) . 102

xi



31 The comparison of the development of experimentally obtained values
of a1111 and the development of a1111 when Dr = 0 (Stokes flow) cal-
culated from initial ψ for the three cases. Re = 85 × 103 and lr = 60:
measured (x) , computed (– –); Re = 85 × 103 and lr = 20: mea-
sured (o), computed (—); Re = 170× 103 and lr = 20: measured (+),
computed (...). (Error bars represent 95% confidence intervals of the
measurements) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

32 Development of the ratio of experimentally obtained values of a1111 to
prediction by Stokes flow, where measured ψ at C = 1.6 is used as the
initial profile for case Re = 85 × 103 and lr = 60. . . . . . . . . . . . 107

33 Measured (o) and computed (+) orientation distribution function at
contraction ratio 3.4 and Re = 85 × 103 and lr = 60. . . . . . . . . . 107

34 Measured (o) and computed (+) distribution functions at contraction
ratio 5.6 and Re = 85 × 103 and lr = 60. . . . . . . . . . . . . . . . . 108

35 Development of the ratio of experimentally obtained values of a1111

prediction by Stokes flow, where measured ψ at C = 3.6 is used as the
initial profile for cases Re = 85× 103 and lr = 20 (+), Re = 170× 103

and lr = 20 (x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

36 Development of Per in the contraction for cases Re = 85 × 103 and
lr = 60 (o); Re = 85 × 103 and lr = 20 (+); and Re = 170 × 103 and
lr = 20 (x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

37 Contraction geometries considered; flat plate, equation 91 (—), con-
stant rate of strain, equation 92 (−−−), linear rate of strain, equation
93 (- · -), quadratic rate of strain, equation 94 (· · ·). . . . . . . . . . . 110

38 The orientation parameter a1111 for flat plate, equation 91, (—), con-
stant rate of strain, equation 92, (−−−), linear rate of strain, equation
93, (- · -), quadratic rate of strain, equation 94, (· · ·). . . . . . . . . . 112

39 The orientation parameter a1111 versus C for flat plate, (—), constant
rate of strain (−−−), linear rate of strain (- · -), and quadratic rate of
strain (· · ·). Development of a1111 in Stokes flow, Dr = 0, for all cases
(+). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

40 The orientation distribution function at C = 11.2 for flat plate (—),
constant rate of strain (−−−). . . . . . . . . . . . . . . . . . . . . . 113

xii



41 The rotational Péclet number for flat plate (—), constant rate of strain
(−−−), linear rate of strain (- · -), quadratic rate of strain (· · ·). . . 114

42 Measured a1111 for case lr = 20 (�) compared to predictions based
on linear (♦), quadratic (+), hybrid (�), composite (�), orthotropic
interpolation (o), orthotropic fitted (�), and natural (x) closure ap-
proximations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

43 Measured a3333 for case lr = 20 (�) compared to predictions based
on linear (♦), quadratic (+), hybrid (�), composite (�), orthotropic
interpolation (o), orthotropic fitted (�), and natural (x) closure ap-
proximations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

44 Normalized error in case lr = 60; (×) e1111 by present model, (�) e3333
by present model, (+) e1111 by Cintra and Tucker (1995), (◦) e3333 by
Cintra and Tucker (1995). . . . . . . . . . . . . . . . . . . . . . . . . 117

45 Normalized error in case lr = 20; (×) e1111 by present model, (�) e3333
by present model, (+) e1111 by Cintra and Tucker (1995), (◦) e3333 by
Cintra and Tucker (1995). . . . . . . . . . . . . . . . . . . . . . . . . 118

46 Normalized error for Stokes flow model; (×) e1111 by present model,
(�) e3333 by present model, (+) e1111 by Cintra and Tucker (1995), (◦)
e3333 by Cintra and Tucker (1995). . . . . . . . . . . . . . . . . . . . . 118

47 Schematic of the step diffuser generated turbulence experimental set-
up with coordinate system. . . . . . . . . . . . . . . . . . . . . . . . . 119

48 a) Mean streamwise velocity x3-profile for grid generated turbulence
at C=1.18, 1.65, 2.8, and 9.0 at Re =85 × 103 (.), Re = 127 × 103

(o), Re = 150 × 103 (�). b) Mean streamwise velocity x3-profile for
step diffuser generated turbulence at C=1.18, 1.65, 2.8, and 9.0 at Re
=85 × 103 (.), Re = 127 × 103 (o), Re = 150 × 103 (�). . . . . . . . 120

49 Development of normalized streamwise component of fluctuation veloc-
ity for grid generated turbulence lr = 20 (o) and step diffuser generated
turbulence (x) at Re = 85 × 103. . . . . . . . . . . . . . . . . . . . . 122

50 Development of normalized x2− component of fluctuation velocity for
grid generated turbulence lr = 20 (o) and step diffuser generated tur-
bulence (x) at Re = 85 × 103. . . . . . . . . . . . . . . . . . . . . . . 122

xiii



51 Development of normalized x3− component of fluctuation velocity for
grid generated turbulence lr = 20 (o) and step diffuser generated tur-
bulence (x) at Re = 85 × 103. . . . . . . . . . . . . . . . . . . . . . . 123

A.1 Effect of contraction half-angle on the grid generated x1−component
of fluctuating velocity for β = 8.16o (o), β = 8.63o (x), β = 8.89o (+)
for lr = 20 and Re = 85 × 103. . . . . . . . . . . . . . . . . . . . . . . 129

A.2 Effect of contraction half-angle on the grid generated x1−component
of turbulent intensity for β = 8.16o (o), β = 8.63o (x), β = 8.89o (+)
for lr = 20 and Re = 85 × 103. . . . . . . . . . . . . . . . . . . . . . . 130

A.3 Effect of contraction half-angle on x2−component of rms-velocity for
β = 8.16o (o), β = 8.63o (x), β = 8.89o (+) for lr = 20 and Re = 85×103.131

A.4 Effect of contraction half-angle on x2−component of intensity for β =
8.16o (o), β = 8.63o (x), β = 8.89o (+) for lr = 20 and Re = 85 × 103. 131

A.5 Effect of contraction half-angle on x3− component of fluctuation ve-
locity for β = 8.16o (o), β = 8.63o (x), β = 8.89o (+). . . . . . . . . . 132

A.6 Effect of contraction on x3− component of turbulent intensity β =
8.16o (o), β = 8.63o (x), β = 8.89o (+) for lr = 20 and Re = 85 × 103. 132

B.1 Precision error at 95% confidence interval of mean streamwise velocity
component as a function of sample number, Ms and total events, k = 3.137

B.2 Precision error at 95% confidence interval of streamwise component of
fluctuation velocity as a function of Ms. (k = 3). . . . . . . . . . . . . 137

B.3 Projection of fiber orientation vector, pi, onto plane parallel to top
wall of planar contraction. . . . . . . . . . . . . . . . . . . . . . . . . 138

B.4 95% confidence interval of orientation anisotropy as a function of num-
ber of fibers sampled, Ms. (k = 3) . . . . . . . . . . . . . . . . . . . . 139

D.1 The downstream development of Uf/U1, d = 0.57 µm (· · ·),5.7 µm (-
-), d = 57 µm (—), fiber aspect ratio, ap, in these plots is constant (ap

= 53). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

D.2 The downstream development of Uf/U1, ρf/ρ = 1.16 (- -), ρf/ρ = 22.8
(· · ·), ρf/ρ = 114.0 (—), aspect ratio, ap, in these plots is constant (ap

= 53). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xiv



NOMENCLATURE

aij Second order orientation tensor

aijkl Fourth order orientation tensor

aijkl,0 Initial fiber orientation tensor

ap Fiber aspect ratio

b Grid bar width

B Effective bending rigidity

co Constant based on grid geometry

c1 Empirical constant

C Local contraction ratio

Ce Equivalent contraction ratio

d fiber diameter

Dr Rotational diffusion coefficient

Dr Dimensionless rotational diffusion parameter

Dt Translational diffusion coefficient

eijkl Closure approximation error

E Symmetric mean velocity gradient tensor

h Local contraction height

h0 Inlet contraction height

I Second moment of fiber area

K Turbulent kinetic energy

Kp Production of turbulent kinetic energy

l Downstream distance from the grid

lr Grid position

xv



L Fiber half length

m index of refraction

M Mesh size

n Number density of fibers

p Unit orientation vector
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SUMMARY

The influence of turbulence on the orientation state of a dilute suspension of stiff

fibers at high Reynolds number in a planar contraction is investigated. High speed

imaging and LDV techniques are used to quantify fiber orientation distribution and

turbulent characteristics. A nearly homogenous, isotropic grid generated turbulent

flow is introduced at the contraction inlet. Flow Reynolds number and inlet tur-

bulent characteristics are varied in order to determine their effects on orientation

distribution. The orientation anisotropy is shown to be accurately modelled by a

Fokker-Planck type equation. Results show that rotational diffusion is highly influ-

enced by inlet turbulent characteristics and decays exponentially with convergence

ratio. Furthermore, the effect of turbulent energy production in the contraction is

shown to be negligible. Also, the results show that the flow Reynolds number has

negligible effect on the development of orientation anisotropy. It was concluded that

inertia induced fiber motion played a negligible role in the experiments.
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CHAPTER 1

INTRODUCTION

In many industrial processes, the behavior and orientation of fibers in a turbu-

lent flow affects the transport, rheology, and turbulent characteristics of suspensions.

Fibers suspended in flow undergo mean motion due to the mean fluid velocity, random

motion due to the fluctuating component of fluid velocity and inertia driven motion.

The resulting change in the suspension microstructure can have a significant effect

on the material’s bulk properties. In the paper industry, mechanical properties of

manufactured paper are known to be anisotropic due to the anisotropic orientation

of fibers induced by the flow kinematics while passing through a planar contraction

with flat walls. The degree of fiber orientation anisotropy has a significant impact

on paper quality. Defects due to fiber orientation anisotropy, such as paper curl,

result in paper jamming in copier machines and printers. Therefore, in addition to

the fundamental importance of understanding the influence of turbulence on fiber

orientation, this problem is of practical interest in the paper manufacturing process.

The objective of this work is to investigate the effect of turbulence on the rotational

diffusion of an infinite-dilute suspension of stiff fibers in a planar contraction, the
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idealized version of systems used in manufacturing paper and other fiber composite

webs. The approach is to carry out turbulence measurements and fiber visualization

to couple the effect of turbulence on fiber orientation. Experiments are designed such

that the influence of particle-particle interactions and fiber inertia on fiber dynamics

becomes negligible.

Nearly isotropic homogeneous turbulent flow is introduced at the inlet of the con-

verging channel. It is known that integral time scale and normal Reynolds stress

components are important turbulent parameters to characterize the effect of tur-

bulence on the rotational diffusion of fibers. These turbulent characteristics may be

altered by changing the geometry of the flow conditioning section and the contraction

geometry itself. In order to investigate the effect of turbulent flow characteristics, the

turbulent intensity at the contraction inlet is varied by adjusting the position of the

grid relative to the inlet. Since the turbulent intensity decays in the contraction and

eventually the flow becomes nearly laminar, this approach provides an opportunity

to examine the effect of turbulence on dynamics of fiber orientation.

To understand the impact of turbulence on orientation anisotropy requires mea-

surement of orientation at different streamwise positions in the contraction with

clearly defined turbulent conditions at the inlet and knowledge of turbulent flow

variations along the contraction.

We have predicted flow induced orientation of a dilute fiber suspension for ar-

bitrary contraction shape for Re of O(105). Analogous to suspension flows with

fiber-fiber interaction and Brownian motion, a Fokker-Planck type equation is shown

2



to accurately model the orientation state of fibers in turbulent nonhomogenous flow.

To solve this equation, a relation for rotational diffusion coefficient, Dr, is required.

Since the influence of turbulence on orientation anisotropy can be expressed by an

orientational diffusion coefficient, in this thesis we also examine the factors affecting

this coefficient. Fiber orientation in a contraction with flat walls is measured to de-

termine this parameter. In order to obtain reliable average data, the orientation state

of a large population of fibers is quantified and the development of the orientation

distribution function inside the converging channel is obtained. These measurements

show that the orientation distribution function can be accurately measured using

image analysis techniques. Experiments are carried out in a closed flow loop at the

Georgia Institute of Technology using water as the medium. LDV is used to quantify

the mean and fluctuating velocity field.
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CHAPTER 2

LITERATURE REVIEW

The mean and fluctuating velocity field and suspension parameters (i.e. fiber

geometry, carrier fluid viscosity, fiber concentration, fiber density, etc.) are known to

influence fiber orientation state in suspension flow.

The prediction of flow-induced alignment of a fiber suspension is of interest in

many high volume industrial processes including fiber-reinforced composites, poly-

mer extrusions, compression molding and paper manufacture. The development of

suspension microstructure based on flow kinematics is among the primary concerns

in understanding complex suspension flow. Due to the practical importance of these

predictions, dilute suspension theory of rigid, neutrally buoyant, axisymmetric par-

ticles suspended in Newtonion fluid subjected to homogenous simple shear flows is

well understood. However, many practical suspension flows are turbulent. Currently,

the influence of turbulence on fiber dynamics is not well understood. Below is a brief

review of dilute suspension theory focusing on suspension flow in axisymmetric and

planar contractions.
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2.1 Flow induced orientation of inertialess fibers

The focus of this study is on the dynamics and orientation of a dilute fiber suspen-

sion in turbulent contraction flow. Fiber motion in dilute suspension flow is controlled

by surface and body forces on the fiber. In such dilute systems, (nL)3 << 1, and,

φc << 1 where n is the number density of fibers, L is the fiber half length, and φc

is the fiber volume fraction. Clearly, no suspension flow is completely dilute with

absolutely no particle-particle collisions or interactions taking place. However, sus-

pensions in the dilute regime display similar behavior, which differs from the behavior

of semi-dilute, and concentrated suspensions (Crowe 1982). According to Doi & Ed-

wards (1978), the transition from an infinite-dilute non-interacting suspension to a

semi-dilute interacting suspension occurs at φca
2
p = O(1), where ap is the ratio of fiber

length to diameter. In order to investigate the dynamics of suspensions in turbulent

flow, it is first necessary to understand the physics governing the motion of fibers in

laminar Stokes flow.

The shape of a fiber may be approximated as a large aspect ratio ellipsoid. The

dynamics and orientation of an isolated inertialess ellipsoid in the dilute regime in

homogenous flow is given by Jeffery (1922). Jeffery’s relation governs the motion of a

rigid ellipsoidal particle suspended in an incompressible Newtonian fluid, and forms

the basis of most of the research performed in this field. The dynamics and orientation

of an ellipsoid in a homogeneous flow field, (i.e. the mean velocity gradient is constant

in all directions) can be obtained from Jeffery’s relation and its generalization to

any axisymmetric particle by Brenner (1964). An isolated inertialess ellipsoid in
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simple shear flow rotates in a periodic orbit while the center of mass translates with

the bulk flow. The period or rotation is a function of aspect ratio, ap and shear

rate, while the orbit depends on the initial orientation of the ellipsoid relative to

the shear plane. Also, fibers in an extensional flow field will tend to orient along

the principal axis of strain. In the Jeffery’s analysis it is assumed that the particle

size is much smaller than the length scale of the constant gradient flow. Thus, the

disturbances produced by the particle cannot affect the bulk flow motion. The particle

Reynolds number must be small implying either very slow flow or very small particle.

Jeffery’s equation gives the physical behavior of dilute inertialess suspension flows

in which nL3 << 1 , where L denotes the fiber half length and n the fiber number

density. However, it may not predict the behavior of semi-dilute suspension flow where

the fibers are hydrodynamically coupled and the flow rheology is non-Newtonian.

Visualization of rigid fibers in Taylor-Couette flow showed that isolated inertialess

fibers rotate in the same orbit indefinitely, as predicted by Jeffery. However, Jeffery’s

theory overpredicted the period of rotation, suggesting that the relation be modified

to account for different particle shapes

The rotation of rigid spheres in this flow agreed well with predictions by Jef-

fery. Several investigators have extended Jeffery’s solution to consider the effect of

different particle shapes on particle motion in various homogenous flows. (i.e. Ok-

agawa & Mason, 1973 and Goldsmith & Mason, 1967). Chaffey, Takano & Mason,

1965 derived the angular velocity of a spheroid in a Newtonian fluid subjected to

slow two-dimensional shear flow. The analytical solution agreed quantitatively with
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experimental results.

The above investigations developed rheological theory for a specific particle shape

and flow (i.e. simple shear and extensional flows). Brenner (1974) provided a general

method to determine the angular velocity of any axisymmetric particle in arbitrary

simple shear flow. The rheology of these suspensions is expressed in terms of the

volume fraction of suspended particles, the carrier fluid viscosity, and five scalar

material constants representing particle shape. The period of particle rotation in

simple shear flow is directly proportional to the particle aspect ratio, and inversely

proportional to the shear rate and shape factor, β.

Jeffery’s relation is a steady state solution of particle orientation. However, sus-

pension flow is transient in nature. An initially random orientation state subjected to

simple shear experiences damped oscillations which eventually lead to an equilibrium

distribution (Okagawa, Cox & Mason, 1973). This damping is attributed to difference

in particle shape and particle-particle interactions. Vincent & Agassant (1986) and

Folgar & Tucker (1984) investigated the validity of existing models and the factors

affecting fiber behavior.

Givler (1981) was the first to provide a numerical scheme for the solution of Jef-

fery’s orientation equations for isolated ellipsoidal particles suspended in flow with

non-uniform velocity gradients. Local velocity gradients were used to solve the Stokes

equation along the streamlines to predict planar orientation angle. Orientation de-

velopment is given as the time rate of change of the orientation angles φ , and θ for

planar and three-dimensional orientation. Pittman & Kasiri (1992) used a different
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approach to modify Jeffery’s solution for non-homogeneous flows. They evaluated

the drag forces parallel and transverse to the particle axis by using the first approx-

imation of Batchelor’s (1971) slender body theory. The rotational and translational

velocities of fibers are given for arbitrary Stokes flow.

The most general description of fiber orientation state is the orientation distri-

bution function, ψ. An exact evolution equation of orientation distribution function

may be used to evaluate the orientation field. Advani & Tucker (1987) and Akbar &

Altan (1992) presented an analytical technique to describe the orientation behavior

of a large number of non-interacting fibers in two-dimensional homogeneous Stokes

flow. The two-dimensional rotation rate of a slender fiber is given as a function of

fiber aspect ratio and mean velocity gradients. Thus, fiber orientation in Stokes flow

can be determined at any instant given initial fiber orientation, fiber geometry, and

mean velocity gradients are known. This technique was then used to evaluate orien-

tation behavior of a large number of fibers starting from different initial orientations.

An orientation distribution function was evaluated by considering the orientation of

the large number of fibers at a given point downstream.

2.2 Flow induced microstructure and rheology of dilute suspensions

It is well known that the hydrodynamic coupling between fibers leads to non-

newtonian flow behavior with increasing φc. The bulk stresses created by the presence

of fibers depends on the orientation state of the suspension. Suspension viscosity be-

comes anisotropic when fibers are preferentially aligned in one direction. Fortunately,
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the prediction of suspension microstructure and rheology of a dilute suspension of

inertialess fibers from relevant suspension parameters is possible.

The preferential alignment of fibers in one direction changes the suspensions bulk

properties and makes the transport tensors anisotropic. Several anisotropic consti-

tutive models are available to predict suspension microstructure and rheology as a

function of flow kinematics and relevant suspension parameters (i.e. fiber geometry,

carrier fluid viscosity, fiber concentration, fiber density, etc.). Batchelor (1970) was

the first to model the influence of relevant suspension parameters (i.e. φc, ψ, and L)

on the average transport behavior of a dilute inertialess fiber suspension. His analysis

is based on replacing the viscous forces from a suspended body by a line distribution

of stokelets. This approach, known as slender body theory, is often used as a starting

point for the analysis of two-phase flow problems. The bulk average stress of a dilute

fiber suspension is given by

σs = µfiber(< pppp > −1

3
δi,j < pp >) : E + 2µE, (1)

where p is the unit fiber orientation vector, E is the mean rate of strain tensor, δ is

the unit tensor, µ is the fluid viscosity (Batchelor, 1971). The transport coefficient,

µfiber, given by

ufiber ≈ 4π nL3µ

3ln((4nL)1/2/d)
, (2)

represents the contribution of relevant suspension parameters to the average stress.

The fiber viscosity is inversely proportional to the log of the fiber aspect ratio, ap
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= L/d and d is the fiber diameter. This constitutive relation, known as the cell

model, is based on the idea that at some distance from the fiber nL3 << 1 and

the fiber may be considered as surrounded by pure solvent. Therefore the average

suspension properties must gradually change from those of screened fluid to purely

viscous behavior as the distance from a fiber increases. Batchelor’s model shows that

orientation anisotropy alters the rheology of the fiber suspension and predicts high

extensional viscosity for a suspension with fibers strongly aligned in the flow direction.

Lipscomb et. al. (1988) coupled the orientation distribution function, ψ, to the

stress equation to investigate the behavior of a large number of fibers in suspen-

sion flow. They found that dilute fiber suspensions exhibit stresses in extension that

are substantially larger than those in shear at the same deformation rates, leading

to differences in flow of dilute suspensions versus the flow of the suspending fluid.

Lipscomb developed a continuum theory for dilute suspensions of large aspect-ratio

particles and applied the theory to flow of fiber suspensions through sudden contrac-

tions. Experiments with glass fibers in contractions showed good agreement with the

model.

The above models use slender body theory to represent fiber hydrodynamic in-

teractions. The limitation of slender body theory is that it does not account for

short range lubrication forces. Consequently, these models are strictly valid only for

dilute suspensions where neighboring fibers rarely come into close contact. In the

semi-dilute regime , defined as nL3 >> 1 and φc << 1, fibers are likely to have many

more close interactions. These short range interactions serve to reduce the amount of

10



orientation dispersion. Therefore, including these short-range forces in the analysis

leads to an increase in the average stress of the suspension relative to the previous

models. Measurements by Mewis & Metzner (1974) show that orientation dispersion

increases with fiber concentration for nL3 < 40, and then decreases slightly as the

suspension approaches the semi-dilute regime. The above constitutive models are

useful in predicting semi-dilute flow behavior. However, it is important to note that

their accuracy depends on φc and the type of flow considered.

Shaqfeh and Koch (1990) investigated the orientation dispersion of a semi-dilute

fiber suspension in extensional flow. Their model considered both long range hydro-

dynamic interactions and lubrication forces. The influence of short range interactions

was based on an estimate of the number of fiber collisions due to translational and

rotational motion. They found that short range interactions tended to orient fibers

along the principal axis of strain. This model shows that the mean square displace-

ment for a dilute and semi-dilute fiber suspension is O(nL3/lna2
p and O(ln(nL3)/nL3),

respectively. In the dilute regime, it was found that as the concentration increases

the rate of dispersion increases. The dispersion rate decreased with increasing fiber

concentration in the semi-dilute regime. It was also observed that fiber dispersion in

a planar extensional flow is slightly anisotropic in the dilute regime. They found the

dispersion in the transverse direction was larger than that in the extensional direc-

tion. Measurements by Mewis & Metzner show that highly oriented semi-dilute fiber

suspensions have extensional viscosity up to one hundred times the fluid viscosity.

Koch & Rahnamam (1995) have visualized the fiber orientation state of a semi-dilute
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fiber suspensions in planar extensional flow. Results were in good agreement with

the model of Shaqfeh & Koch. Cox & Brenner (1971) showed that suspensions of

large aspect ratio prolate spheroids exhibit shear thickening behavior (i.e. the in-

trinsic viscosity increases with increasing shear rate) up to a critical shear rate at

which the suspension reverts to shear thinning behavior. The normal stress of the

suspension, σ, increases linearly up to a critical deformation rate, at which point it

remains constant.

A rheological constitutive equation of state valid for both dilute and semi-dilute

suspensions was developed by Dinh & Armstrong (1984). Their model is based on

a continuous variation of the fiber orientation angle. Later, Shaqfeh & Fredricks-

son (1990) improved upon Dinh and Armstrong’s model by providing higher order

correction terms in the hydrodynamic stresses.

The above rheological models represent the orientation state with the orientation

distribution function, ψ. The orientation distribution function provides the most

general description of orientation state. However, numerical simulations of the evo-

lution of ψ are computationally expensive. Therefore, it is desirable to use a more

compact description of the fiber orientation state. Giesekus (1982) and Bretherton

(1964) expressed Jeffery’s solution in a more general form using a third rank shape

tensor to facilitate numerical calculations of three-dimensional fiber orientation in

complex geometries. Advani & Tucker (1987) show that even-order tensors give a

concise description of ψ. The second- and fourth-order planar orientation tensors rep-

resent moments of the orientation distribution function. The diagonal components
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of orientation tensor show the degree of the alignment and the off-diagonal terms

represent the skewness of the orientation distribution function. Orientation distribu-

tion functions can be accurately reproduced given the orientation tensor components.

However, higher order tensors lead to a increasingly accurate representation of ψ.

The use of orientation tensors speeds up numerical simulations considerably. This

approach allows for orientation predictions in more complex geometries and higher

Reynolds number flows. The disadvantage of this approach is that the equations are

no longer exact. For example, the evolution equation for the second order tensor

contains an unknown fourth order tensor component. This equation may be closed

by introducing a closure approximation which relates fourth-order tensor components

to the lower-order tensor components.

A number of closure approximations have been put forth to predict the effect of

flow field on fiber orientation using the orientation tensor approach.

Hand (1962) introduced a linear closure approximation based on the linear terms

resulting from combining products of the second order tensor, aij and the unit tensor

δij . This expression is exact for weak flows with randomly distributed fibers. This

model satisfies all the symmetry and projection properties of the second and fourth

order orientation tensors. However, the model performs poorly at intermediate to

highly aligned orientation states.

The quadratic closure approximation is one of the most widely used and simplest

closure models. Doi (1981) represented the fourth order tensor by the dyadic product

of two second order tensors. This expression is exact for strong flows where fibers
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are uniformly aligned in one direction. The model is shown to be inadequate for

orientation predictions for weak flows with random to intermediately aligned orien-

tation state (Advani & Tucker 1990). This model does not satisfy all the symmetry

conditions of the fourth order orientation tensor and only two of the six projection

properties.

Additional closure approximations have been put forth seeking to improve the

robustness of the linear and quadratic models. Hinch & Leal (1976) combined the

desirable features of the linear and quadratic approximation to form a composite clo-

sure approximation which is exact for both limits of orientation state. The composite

closure approximation fulfills two of the six symmetry properties and no projection

properties. Following a similar approach, a hybrid closure approximation was intro-

duced by Advani & Tucker, (1990). Strongly aligned fiber suspensions are represented

well by the hybrid closure approximation. Verieye and Dupret (1993) based their nat-

ural closure approximation on a particular solution of fiber orientation dynamics.

Recently, a new set of closure approximations has been introduced for predicting

flow-induced fiber orientation. It is known that an approximate fourth order orienta-

tion tensor must be orthotropic, that is the principal axis of the fourth order tensor

must be the same as the principal axis of the second order tensor. The advantage

of this approach is that the orthotropic orientation tensor becomes diagonal, where

many of its components are zero. This result leads to a new set of orthotropic closure

approximations for predicting flow-induced fiber orientation.

The symmetric orthotropic fourth order orientation tensor (i.e. aijkl = aklij) has
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nine independent scalar components. Considering additional symmetry and normal-

ization requirements given by Cintra and Tucker (1995), the tensor is composed of

three independent components. In other words, each principle fourth order compo-

nent of the orthotropic orientation tensor is a function of two principle values of the

second order tensor. Three functions may be chosen by linear interpolation between

the limits of fiber orientation state to obtain a fitted orthotropic closure approxima-

tion. Another approach is to choose the functions which best fit the exact solution of

the orientation probability distribution function for a particular flow. This results in

an orthotropic smooth closure reported by Cintra and Tucker. Both the orthotropic

smooth and fitted closures have all the symmetry and normalization properties of the

exact fourth order tensor.

The advantage of this approach is that the solution is exact. However solving

the exact ODF evolution equation is computationally expensive and its application

is limited to relatively simple flows. Another approach to solve practical suspension

flow problems involves numerically solving the coupled orientation tensor evolution

equation, momentum and continuity equations, and a constitutive model for the non-

Newtonian stresses generated by the suspension. Several researchers have investigated

the coupled fiber orientation and flow problem in complex geometries using this ap-

proach.

Most of these studies utilized orientation tensors to represent the flow-induced

orientation field. The orientation tensor approach leads to a more compact form of

the orientation distribution function in order to facilitate the numerical solution of the
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coupled fiber orientation and flow problem. Altan et. al. (1989) and Akbar & Altan

(1992) utilized fiber orientation tensors to reduce the complexity of the constitutive

expression. Recently, progress has been made in understanding the dynamics of

inertial two-phase flows by finite element simulations.

Papanastasiou (1985) developed a numerical methodology for analyzing fiber ori-

entation in complex flow fields. The motion of isolated fibers suspended in an in-

compressible Newtonian fluid was determined by solving the Navier-Stokes equation

using a finite element technique. Orientation of fibers of varying aspect ratio in the

presence of shear and extensional forces was solved for a two-dimensional free jet exit-

ing an axisymmetric channel. Results showed that fibers located near the free surface

tended to orient parallel to the free surface regardless of initial orientation inside

the channel. Fibers located at the axial mid-line maintained their initial orientation

inside the channel.

Chiba & Nakamura (1998) carried out numerical simulations and fiber orientation

observations to investigate two-dimensional fiber orientation through a backwards-

facing step channel. Suspension flow with high and low aspect ratio fibers in a New-

tonian low Re flow were computed rigorously by coupling the flow field with fiber

orientation. The model assumed that a fiber may be represented by an ellipsoid,

no-slip conditions prevail at the surface of the fibers, the velocity field is only locally

perturbed by the motion of the fiber, there is no interaction between fibers, motion is

sufficiently slow that inertia forces are negligible, and the fiber translates with the fluid

velocity. Large aspect-ratio fibers were found to completely align along the stream-

16



lines in recirculating flow. However, small aspect-ratio fibers aligned obliquely to the

streamlines. In the core flow, the preferred angle lied obliquely to the streamlines in

the central region of the channel. Furthermore, the fibers were less oriented and their

preferred angles tilted away from the streamlines as the Reynolds number decreased.

They found that predictions of flow induced suspension microstructure based on the

single-phase fluid viscosity and deformation tensor could lead to significant error even

at low φc.

Despite their potential drawbacks, the use of closure approximations is generally

considered an acceptable method for prediction of complex suspension flows. In fact,

nearly all simulations concerning practical suspension flows use closure approxima-

tions and do not consider the effect of the particles on the flow (i.e. Bay & Tucker,

1992 and Gupta & Wang, 1993).

Secondary factors including non-Newtonian flow behavior, fiber volume fraction

and interaction between fibers often have a slight and sometimes negligible influence

on the orientation state Altan & Rao (1995). The flow-induced orientation struc-

ture in short fiber reinforced injection moldings may be accurately predicted by using

suspension theories developed for a non-Brownian, neutrally buoyant, rigid, and hy-

drodynamically isolated ellipsoidal particle. The orientation equations, however, need

to be accurately solved without additional approximations. Altan & Rao show that

both quadratic and hybrid closure approximations yield significant errors in complex

suspension flows. Their use in conjunction with differential evolution equations in

geometrically complex moldings yield errors large enough to distort or falsify the
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resulting orientation predictions. A number of researchers have modelled the de-

velopment of fiber orientation in planar contraction flow by using experimental and

numerical techniques.

Harris & Pittman (1976) have done the most relevant experimental investigation

of fiber orientation in this geometry. They studied a dilute suspension of fibers in

laminar flow through a planar converging channel, with Re = 1000. Due to low

microscopic Reynolds number, the effect of fiber inertia was negligible. The fiber

orientation anisotropy was found to vary with C and to be independent of Re, µ, ap

and contraction half angle, β. Fiber orientation followed the theory of inertialess fibers

in homogenous Stokes flow. However, in most fiber suspension flows of interest, the

influence of fiber inertia and turbulence on orientation cannot be neglected. Ullmar &

Norman (1997) and Ullmar (1998) measured the orientation anisotropy of nylon fibers

in the x1−x3 plane (see figure 4) in a straight channel downstream of the contraction

outlet. The flow inlet to the contraction consists of a series of turbulence generating

step expansion tubes positioned immediately upstream of the inlet. In these studies,

the influence of flow Reynolds number, contraction ratio and fiber concentration on

the orientation anisotropy was investigated. They concluded that the orientation

anisotropy is strongly dependent on the contraction ratio and almost independent

of the fluid Reynolds number. However, the turbulent fluctuations in these studies

were not measured; therefore, they could not relate the orientation anisotropy to the

turbulent flow characteristics. It should be noted that in their studies the measured

orientation distribution is an average over the entire height of a straight channel
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attached to the downstream of the contraction outlet. It is known that the turbulent

properties change in the straight channel downstream of a contraction and thus the

measured orientation distribution would be different from that at the outlet of the

contraction (see Harris & Pittman, 1976).

Kacir et. al. (1975) studied the fiber orientation of suspension flow at the outlet of

a converging channel. They suggested that the experimental accumulative curves can

be described by an exponential equation ψ(φ) = 1− exp(c1φ) where c1 is an empirical

constant. Fiber dispersion increased and fiber orientation became more isotropic

with increasing turbulent intensity due to the increase in streamwise component of

fluctuation velocity in fiber suspension flow. This was found to also change the

rheology of the fiber suspension flow.

Bernstein & Shapiro (1994) measured the orientation of a glass fiber suspension in

laminar and turbulent pipe flow. They found that at low Reynolds number laminar

flow, the fibers are randomly distributed near the pipe center. The fibers become

more oriented in the streamwise direction with increasing Reynolds number in the

laminar regime. At high Reynolds number turbulent flow, the randomizing effect of

the turbulence lead to an almost random orientation.

2.3 Flow induced fiber orientation with inertia

In the specific case where inertia can be neglected, the dynamics of single par-

ticle motion, interaction with other particles, and effects on the bulk properties are

well understood. However, most particle transport applications of practical interest
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involve suspension flow with inertia. In addition to turbulence and strain, finite fiber

inertia affects the motion of rigid fibers in suspension. Particle inertia is important

when particle Reynolds number is greater than one and the Stokes flow simplifications

cannot be used. Consider a gas- particle suspension where the particle Reynolds num-

ber is high and the fluid Reynolds number is relatively small. In this case, the particle

inertia is important and the fluid inertia is negligible. Thus, the fluid equation can be

simplified to the linear Stokes equation while the complete Navier-Stokes equations

should be solved for the flow adjacent to the particles surface (Koch & Hill, 2001).

However, in many industrial applications the macroscopic Reynolds number based on

the local mean streamwise velocity in the contraction, U1, and the contraction local

height, h, is defined as

Re =
U1h

ν
, (3)

where ν is the fluid kinematic viscosity (water in this study), and the microscopic

Reynolds number based on the streamwise mean local rate of strain, ∂ U1/∂ x1, and

fiber half length, L, defined as

Ref =
(∂ U1/∂ x1)L

2

ν
, (4)

are of O(105) and O(102), respectively. Thus, the inertia of both the continuous and

discrete phases cannot be neglected. The governing equations become more complex

when the Reynolds number of both particle and the fluid are O(1) or greater. This

presents a challenge, as the full equations governing the motion of a particle suspended
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in a fluid are non-linear when considering inertia. Exact analytical results are available

for only a few simple flows. In order to study the fundamental effect of inertia on

particle motion, particle interaction and suspension microstructure, the full non-linear

momentum equation must be solved to analyze the dynamics of individual particles

in suspension. At present, researchers are using numerical simulation techniques

to predict the behavior of two-phase particulate suspensions with inertia. Direct

numerical simulation has been proven to be capable to simulate the behavior of inertial

suspensions (Bunner & Tryggvason, 1999).

In many investigations (e.g. Cox, 1970, Harris & Pittman, 1976, Olson & Kerekes,

1998 and Olson, 2001) the microscopic Reynolds number is based on fiber half length

as given in equation 4. However, Bernstein & Shapiro (1994) used the fiber diameter

as the length scale and concluded that since the microscopic Reynolds number based

on this length scale is small, the effect of fiber inertia in their experiments is negligible.

Since these investigations do not include the motion of fibers with large fluid Reynolds

number, it is not clear which length scale can effectively describe the effect of fiber

inertia. The appropriate choice of length scale is important in determining the validity

of the orientation model used in this work.

Feng & Leal (1997) reported the result of a two-dimensional finite element direct

simulation of the motion of a neutral and non-neutrally buoyant isolated circular

particle suspended in a Newtonian incompressible fluid in Couette and Poiseuille

flow. Fluid flow is computed from the nonlinear Navier-Stokes equations, and the

motion of the particle is determined by Newton’s equations for rigid bodies under
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the action of hydrodynamic force and torque arising from the fluid flow. Particle

Reynolds numbers were large enough to include nonlinear inertial effects and wall

effects. The driving forces of particle migration were identified.

A relatively new simulation method has been proposed for analysis of suspensions

with inertia. This method involves a numerical simulation of particulate suspensions

by coupling the solution of the discrete Boltzmann equation for the fluid phase to

the translation and rotation of solid particles suspended in fluid. The most impor-

tant feature of this technique is that the algorithm is efficient, and computation cost

scales linearly with the number of particles considered. An early application of the

discrete Boltzmann method to analyze the motion of particles suspended in fluid was

presented by Ladd (1988, 1994). His results agreed quite well with both known an-

alytical results for Stokes flow and finite element results for finite Reynolds number

flows. The streamlines for steady incompressible flow past a column of circular cylin-

ders at Reynolds numbers varying from 10-100 were computed. The recirculation

region behind the cylinder grew with increasing Reynolds number, as expected. The

momentum being removed from the system due to the force applied to the stationary

particles is directly proportional to particle Reynolds number. Ladd was able to sim-

ulate suspensions of up to a particle Reynolds number of 200, and particle number

of 1024 spheres. This method allows for simulation of suspensions of various parti-

cle size, particle shape, electrostatic interactions, flow geometry, Péclet number, and

Reynolds number. However, it is limited to particles of density greater than the fluid.

Aidun, Lu, & Ding (1995, 1998) improved upon Ladd’s simulation by accounting
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for the excluded volume in the fluid phase due to the presence of particles. This

results in improved accuracy and robustness of the simulation, allowing for analysis

of suspensions of arbitrary particle-liquid density ratio. Aidun used direct numerical

analysis of the discrete Boltzmann equation for the analysis of impermeable ellipsoid

particles suspended in an incompressible Newtonian fluid with inertia.

Two interesting observations were obtained from simulation of a 2-D ellipsoid in

simple shear flow at particle Reynolds numbers ranging from 0 to 40. First, a critical

Reynolds number existed where the particle ceased to rotate. Physically, this shows

that at a given orientation angle relative to the flow, the positive torque on the top

and bottom surfaces of the ellipsoid is exactly counterbalanced by the negative torque

at the recirculation zones. Thus, at the critical particle Reynolds number the particle

will cease to rotate, and orient at a fixed angle to the flow. Second, the period of

rotation scales universally to the half power of the particle Reynolds number. Here,

particle Reynolds number is based on the length of the major axis of the ellipsoid.

Additional application of the finite element method to simulate complex particle

motions of sedimenting spheres and ellipses is found in work done by Huang, Hu, &

Joseph (1998). Their simulation provides basic information on particle motion and

interaction at non-zero particle Reynolds number. This method is based on coupling

the solution of the Navier-Stokes equation for the fluid domain to the motion of a

suspended particle. They conducted numerical simulations of the settling of ellipsoids

suspended in Newtonian and elastic fluids in a narrow two dimensional channel at

finite Reynolds number. It was found that inertia tends to turn the long side of the

23



ellipse across the stream. At a Reynolds number 0.31 the ellipsoid turns vertical and

drifts towards the channel center with a damped oscillation. At a Reynolds number

of 0.82 the ellipse turns horizontal as it migrates to the channel center. At high

Reynolds numbers, stagnation forces dominate and cause the particle to orient in the

cross-stream direction. At lower Reynolds number, both lubrication and stagnation

forces determine the rotation and translation of the ellipsoid. This reveals that a

small change in the particle Reynolds number can significantly change the dynamics

of particle motion in suspension.

Zettner & Yoda (2000) studied the effects of fluid inertia, geometry and flow con-

finement upon the dynamics of neutrally buoyant elliptical and non-elliptical cylinders

over a wide range of aspect ratios in simple shear flow using particle image velocime-

try (PIV). They found that elliptical cylinders of moderate aspect ratio cease to

rotate, coming to rest at a nearly horizontal equilibrium orientation, above a criti-

cal Reynolds number. Their experimental results were in good agreement with the

lattice-Boltzman results by Ding and Aidun (2000).

2.4 Turbulence development in a contraction

Considering the flow is turbulent, in order to study the dynamics of fiber mo-

tion inside this contraction, it is necessary to first understand development of single

phase turbulent flow in this geometry. In most cases, turbulence consists of random

motion having coherent structures of varying scale. Analytical theories governing the

dynamics of turbulence are available only for simplified cases where the governing
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equations are linear.

Among the fundamental unsolved problems of fluid mechanics is how contracting a

vortex filament effects turbulence. Isotropic turbulence can be thought of as a collec-

tion of randomly oriented three-dimensional cylindrical vortex filaments. Streamwise

velocity fluctuations are caused by vortices aligned perpendicular to the flow axis

and lateral velocity fluctuations are caused by vortices aligned along the axis of flow.

Anisotropic turbulence is produced by stretching randomly oriented vortices at the

contraction inlet and aligning them in the streamwise direction. This results in sup-

pression of streamwise turbulent component and enhancement of the lateral turbulent

components.

Applying Kelvin’s circulation theorem to predict the intensity of turbulent vortices

in an axisymmetric contraction, it can be shown that the streamwise component of

turbulence decays through the contraction, whereas the transverse component grows

(Prandtl, 1933). However, the streamwise and transverse components of turbulent

intensity decrease monotonically with increasing contraction ratio. The contraction

ratio, C, is defined as the ratio of local mean streamwise velocity to the inlet mean

streamwise velocity. The limitation of this Lagrangian approach is that the model

does not account for interaction of vortices.

A distribution of vortex cells more representative of turbulent flow may be consid-

ered using Cauchy’s equations (Taylor, 1935). Taylor’s model predicts a slower rate

of decay for the fluctuating component of turbulence in the streamwise direction, and

a slower rate of growth for the transverse fluctuating component. Taylor’s result may
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be extended by integrating over all wave numbers to predict the effect of contraction

on turbulence (Batchelor & Proudman, 1954, Ribner & Tucker, 1952). In this model,

inlet turbulence is assumed isotropic, for which the turbulent spectra may be rep-

resented by a simple analytical expression. Viscous dissipation of turbulent energy

is neglected. This assumption should not lead to significant error since it is known

that the majority of turbulent energy is contained in large scale eddies. Also, the

time scale of the flow is assumed to be much smaller than the time scale of eddy

interaction. This important assumption makes the problem linear. Consequently,

this approach is referred to as ’linear theory’ or ’rapid distortion theory’. The model

predicts streamwise and transverse turbulent energy components as a function of lo-

cal contraction ratio only. Based on comparison with experimental data, the model

developed by Batchelor & Proudman and Ribner & Tucker more accurately predicts

the development of turbulent energy components in a contraction. The major limi-

tation of linear theory is that no contraction of practical interest completely satisfies

the requirement of rapid distortion.

Several investigators have studied different aspects of flow through axisymmetric

contractions (Uberoi, 1956, Hussain & Ramjee, 1976). Experimental studies of the

development of components of fluctuation velocity in an axisymmetric contraction

show that linear theory is valid for predicting streamwise velocity fluctuations for

contraction ratios, C < 4 . According to Uberoi, initially isotropic turbulence be-

comes increasingly anisotropic and the measured streamwise component of fluctuation

velocity becomes significantly higher than predicted at C > 4. This behavior directly

26



contradicts linear theory. As the contraction ratio increases, bulk flow inhomogeneity

also increases, leading to the deviation seen between linear theory and experimen-

tal results. Measured transverse turbulent energy components slightly deviate from

linear theory. This is attributed to the transfer of energy between streamwise and

transverse velocity fluctuations. Goldstein & Durbin (1980) showed that the ampli-

fication of the streamwise turbulent energy component in the range C > 4, depends

strongly on the spatial scale of turbulence. Another interesting finding is that the

interaction between the turbulence and the mean flow also depends on the spatial

scale of turbulence. Streamwise and lateral components of turbulent intensity remain

nearly constant for C > 40 (Hussain & Ramjee, 1976). However, contradictions ex-

ist in the streamwise and lateral fluctuating velocity components reported by Uberoi

(1956), Hussain & Ramjee (1976), and Tulapurkara & Ramjee (1980). Durbunovich

(1987) showed that the principal reason for the disagreement was the presence of

unsteady flow caused by boundary layer seperation and periodic shedding of vortices

at the outlet of the contraction. Measurements with unsteady flow yielded similar re-

sults as previous investigators. However, when the unsteady flow was removed from

the system the streamwise velocity fluctuations followed a power law form similar

to linear theory given by u′ 21 /u
′ 2
1,0 ∝ C4/3. This shows a weaker influence of C on

development of streamwise velocity fluctuations than follows from linear theory. It

is clear that linear theory is inadequate to predict the effect of contractions on tur-

bulent characteristics. Experimental results show that small eddies are exposed to

the stretching and shearing motions of large eddies in turbulent flow. Therefore, a
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non-linear theory taking into account the precontraction turbulence is needed.

Hussein & Ramjee (1976) investigated the effect of contraction shape on turbu-

lence. They measured the velocity fluctuation in four different axisymmetric con-

tractions with identical total acceleration. They concluded that the total strain,

(∂ Ui/∂ xj) is the primary parameter influencing the development of turbulent en-

ergy components. Townsend (1954), and Tucker & Reynolds (1968) investigated the

effect of contraction on the core turbulent flow with constant mean rate of strain.

Townsend found that after certain degree of strain, an equilibrium structure of tur-

bulence is established. The mechanisms that transfer energy between the different

components are then so effective that further strain produces only a small alteration

in the structure. However, Tucker & Reynolds argue that the flow never reaches an

equilibrium structure.

Hunt & Carruthers (1990) showed that the interaction between the turbulence and

the mean flow, which is responsible for the amplification, increases with decreasing

wave number. The mean square streamwise velocity component along with its spectra

are inversely proportional to C, while the mean-square transverse velocities and spec-

tra are inversely proportional to C. Thus, the turbulent velocity ratio is independent

of contraction ratio. They showed that the amplification effect of the contraction is

reduced when the turbulent scale increases. It was observed that the acceleration,

through the contraction, suppresses the relative turbulent intensity, which therefore

has almost no effect on the mean velocity distribution in the contraction. Convective

acceleration causes the turbulence intensity to decay monotonically with increasing
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C. The lateral normal components of the Reynolds stress tensor were shown to have

nearly the same magnitude in the region C > 4. This is most likely due to the

streamwise alignment of initially random oriented turbulent vortices. The decay rate

of turbulent energy decreases with increasing turbulence scale. Conversely, decreasing

the contraction half angle was shown to increase the decay rate of turbulent kinetic

energy. This is most likely due to the differences in residence time between the two

contractions, as viscous dissipation of turbulent energy increases with residence time.

Tsuge (1984) found that small eddies decay through the contraction in agreement

with Batchelor & Proudman. However, large eddies are amplified due to the stretching

of vortices. Comparison of predicted streamwise velocity fluctuations to experimental

results showed good agreement, with the exception of low Reynolds number flow and

long pre-contraction distances leading to exaggerated dissipation of small eddies in

the initial constant flow section due to the assumption of no energy cascading made

in formulating the model.

A limited amount of work has been done on the development of turbulence in a pla-

nar contraction. Parsheh (2001) found that the intensity of the normal Reynolds stress

components decreases in this geometry. He also showed that the normal Reynolds

stress components have a minimum at C = 2.

Recently, several researchers have used turbulence models found in commercial

codes to model turbulence in a planar contraction (Parsheh, 2001). Computations

showed that the differential Reynolds stress model and the algebraic Reynolds stress

model qualitatively predict the behavior of turbulent flow in this geometry. Inlet
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dissipation scale was the primary turbulent parameter influencing the development of

turbulent quantities. When compared to measurements, the K−ε model was found to

be inadequate in quantitatively predicting turbulent flow behavior in this geometry.

The model overpredicts the decay of mean square component of fluctuating velocity

and sometimes resulted in unrealistic values.

Existing analytical models used to predict turbulence in contractions are shown

to be inaccurate for large C. Several numerical simulations of turbulent plane strain

flow have been performed to investigate the structure of homogeneous turbulence

subject to irrotational strain. It is well known that the range of turbulent scales in-

creases rapidly with flow Reynolds number. Therefore, due to limitations of computer

capacity, these simulations are restricted to low Reynolds number flow and simple ge-

ometries. Recently, several numerical simulations of turbulent plane strain flow have

been performed to investigate the structure of homogeneous turbulence subject to

irrotational strain (Lee & Reynolds 1985, Kwak et al. 1975, and Rogallo & Moin

1984). Lee & Reynolds (1985) were the first to provide complete Reynolds stress

budgets for axisymmetric and plane strain contraction flow. They observed that the

Reynolds stress anisotropy that develops under slow deformation is larger than that

predicted by RDT. The stress anisotropy continued to increase when the straining

was removed. This result contradicts the idea that isotropy will be restored when

straining is removed. Therefore, the traditional theory of return to isotropy is not

necessarily valid. At present, the computational power is not available to run accu-

rate numerical simulations of the motion of suspended fibers at Reynolds numbers
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O(105).

Currently, no proven model is available to accurately predict turbulent parameters

in a contraction in the region C > 4. Therefore, in order to relate turbulence in the

contraction to fiber orientation it is necessary to directly measure the turbulence in

the contraction.

2.5 Rotational diffusion of fibers in turbulent contraction flow

A limited number of studies have been done concerning the motion of rigid fibers

in turbulent flows. In these flows the dispersion of individual fibers is altered due to

the presence of velocity fluctuations.

Analogous to suspension flows with Brownian motion and fiber-fiber interaction,

the effect of turbulence on orientation anisotropy have been modelled by a rotational

diffusion coefficient tensor (e.g. Krushkal & Gallily, 1988 and Olson & Kerekes,

1998 and Olson et. al., 2004). Olson & Kerekes expressed the turbulence induced

rotational diffusion coefficient in an isotropic turbulent flow as a function of turbulent

integral time and length scales, turbulent intensity and fiber length. They found that

by increasing the ratio of the fiber length to the Lagrangian integral length scale,

the diffusion coefficient decreases. Recently, Olson et. al. (2004) numerically solved

the Fokker-Planck equation governing the orientation distribution of fibers at the

centerline of a planar contraction. They state that the rotational diffusion coefficient,

Dr, is constant throughout the contraction and, that Dr = 2 sec−1 gives the best

agreement with experimental studies of Ullmar (1998). A quantitative comparison
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requires orientation measurements at the contraction centerline (as done in this study)

where the equations are derived for. The measurement of fiber orientation distribution

at a straight channel downstream of the contraction outlet represents an average of

all fibers and therefore, inconsistent with the governing equations for the centerline.

The rotational and translational diffusion of particles is controlled by the local

velocity fluctuations due to turbulence and by the ordered motion of large-scale tur-

bulent structures. Olson & Kerekes (1998) expressed the rotational diffusion coef-

ficient as a function of turbulence integral time and length scales and fiber length.

They found that the diffusion coefficient decreases as fiber length decreases. Re-

cently, Olson et al. (2004) numerically solved the Fokker-Planck equation governing

the orientation distribution of fibers in a planar converging channel. They assume

that the rotational diffusion coefficient, Dr, is constant throughout the contraction.

They concluded that Dr = 2 sec−1 gives the best agreement with experimental results.

The rotational Péclet number, which is function of the contraction ratio, inlet veloc-

ity, contraction length and rotational diffusion coefficient, governs fiber orientation

development in this geometry.

A kinetic theory predicting the dispersion of fibers oriented along the extensional

axis of axisymmetric and planar contractions was developed by Shaqfeh & Koch

(1990). This model shows that the mean square displacement for a dilute fiber sus-

pension is O(nL3/ln2ap). They found that the rate of dispersion increases to a max-

imum with increasing concentration in the dilute regime. The dispersion rate then

decreases as concentration approaches the semi-dilute regime. It was also observed
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that fiber dispersion inside a planar contraction is anisotropic in the dilute regime.

Dispersion in the transverse direction was greater than dispersion in the streamwise

direction.

Few researchers have studied the motion of rod-like rigid particles (fibers) in turbu-

lent flows. Cho et. al. (1980) studied the orientation of high aspect ratio ice crystals

in atmospheric turbulence. They compared the estimated average time required for

the fibers to become oriented and the time of the eddy interactions and observed that

the effect of the atmospheric turbulence on the fiber orientation is negligible.

Krushkal & Gallily used the Fokker-Planck equation to determine the orientation

distribution of small fibers in turbulent shear flow. They concluded that particles

become randomly oriented in the presence of strong turbulence. However, for flow

with mean velocity gradients, the orientation distribution function is anisotropic if

the turbulent intensity is not large enough to randomize the particles.

Olson & Kerekes (1998) developed expressions for the translational and rotational

dispersion coefficients, which can be used in the convection-dispersion equation of the

orientation distribution. They coupled the translational and rotational dispersion co-

efficients to the properties of the turbulence. Expressions were given for the dispersion

coefficients as a function of fiber length, streamwise fluctuation velocity component,

integral length scale, and integral time scale. In their study it was assumed that inte-

gral length and time scales were isotropic and thus could be shown by single scalars.

This assumption leads to a significant error for flow in contractions in which the flow

undergoes a large extension in one direction and compression in another direction.
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They concluded that the dispersion coefficients are dramatically damped by increase

of the fiber length or decrease of the turbulent length scale. They showed that the

dependence of rotational dispersion to the fiber length is more significant. In plane

contractions, with decreasing the integral scale, this can imply that the effect of the

flow fluctuations on the fiber dispersion is negligible at high contraction ratios. Few

experimental studies of fiber orientation of suspensions can be found in the literature.

Koch & Rahnama (1995) visualized the orientation of an opaque tracer fiber in an

index of refraction and density matched fiber suspension in planar extensional flow.

2.6 Particle-turbulence interaction

It is important to consider the effect of fibers on the turbulence of the fluid in devel-

oping models for two-phase flows. Most models relating turbulent parameters to fiber

diffusion assume that the presence of fibers has a negligible effect on the dynamics of

the turbulent fluid flow. This one-way coupling is usually valid for small fiber volume

fractions (φc << 1) or high Stokes numbers (Gore & Crowe, 1991). The two-way cou-

pling of turbulence and fiber motion also considers the effect of fibers on turbulent

velocity fluctuations of the fluid. The presence of fibers results in either turbulent

energy production or an increase in the dissipation rate depending on φc. The change

in fluid Reynolds stresses influences particle diffusion and the hydrodynamic drag

between the fiber and fluid. Squires & Eaton (1990) used direct numerical simulation

of a gas-particle suspension in low Re homogeneous, isotropic turbulence to consider

the effect of two-way coupling. They determined that the fluid turbulent energy and
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dissipation rate increased by as much as a factor of three due to the presence of parti-

cles. Particles also caused the energy in the highest wave numbers to increase relative

to the lower wave numbers.

Recently, the two-way coupling of turbulent flow dynamics and fiber motion has

drawn increasing interest in the field of two-phase flow research. It has been observed

that particles on the order of the smallest scales of turbulence tend to dissipate

turbulent energy, while larger particles have a tendency to produce turbulent energy

(Gore & Crowe, 1989). The presence of boundary layers on the fiber surface has been

shown to alter the Reynolds stresses of the fluid for fibers larger than the smallest

scales of turbulence (Elghobashi, 1992). Turbulence production is likely due to wake

formation behind a moving particle (Hetsroni, 1989). The transition between energy

dissipation and production occurs when the particle size is of the order of the turbulent

integral length scale. Two-way coupling has been shown to be negligible for particle

volume fractions smaller than O(10−6) . For larger particle volume fractions, O(10−6

- 10−4), the change in turbulent energy is determined by the ratio of particle response

time to the turnover time of a large eddy (Elghobashi, 1993). Also, there is an

increased tendency for particles to move towards regions of high strain rate and low

vorticity with increasing φc. Yuan & Michaelides (1992) assumed that the damping

motion of an individual particle was responsible for turbulence dissipation and that

the wake behind the particle was responsible for turbulence generation. Based on

these assumptions they have developed a model which predicts the change of fluid

turbulent kinetic energy as a function of particle diameter, fluid density, wake length,
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and local normal Reynolds stresses. Yarin & Hetsroni (1994) improve upon the model

of Yuan & Michaelides by providing a more detailed account of the influence of the

particle wake. These models are shown to be accurate for flows with no turbulent

production due to mean velocity gradients. Crowe (1993) gives a good overview

of the existing models for particle induced turbulence generation and dissipation in

two-phase flows.

2.7 Application to paper forming

In the paper industry, mechanical properties of manufactured paper are known to be

anisotropic due to the fiber orientation induced by the flow kinematics while passing

through a planar contraction with flat walls. Therefore, enhancement of material

properties and reduced manufacturing costs can be achieved if the final fiber ori-

entation can be predicted accurately. Predicting the orientation behavior of fibers

suspended in water during the paper forming process is of specific interest in this

research. Control of fiber orientation is of great importance in paper forming.

Normally, it is advantageous to manufacture paper with isotropic mechanical prop-

erties. Substantial strength gains can be obtained in the forming process by manipu-

lating the fiber suspension microstructure through hydrodynamic means. Increasing

the fiber orientation isotropy of a finished sheet of paper generally results in increased

strength uniformity and reduced fiber consumption. Printing grades characterized by

a high degree of isotropy demonstrate a high degree of dimensional stability. This

reduces end use problems such as such as twist warp and sheet curl. On the other
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Figure 1: Schematic of a Beloit Converflo hydraulic headbox (Smook, 1992)

hand, in certain paper grades it is desirable to achieve a highly anisotropic orientation

state. Newsprint is an example of a paper grade which primarily requires strength in

one direction. Therefore, fiber consumption may be reduced by producing a highly

oriented sheet of paper.

A hydraulic headbox, the primary component of the forming zone of a modern

paper machine, is illustrated in figure 1. The primary function of the headbox is

to transfer suspension flow in a pipe into a wide rectangular free jet with uniform

velocity in the streamwise direction. For instance, a flow from a pipe with diameter

0.800 m will be diverted to a .01 m thick and 10 m wide liquid jet with uniform

velocity. A typical fiber suspension volume fraction found in paper manufacture is
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0.1 to 1%. Fiber suspension flow typically enters the forming zone by a tapered

manifold which distributes the flow evenly over the width of the paper machine. A

series of step diffuser tubes produces turbulent flow which serves to break up small

flocs and mix the suspension before entering the contraction. The suspension is then

contracted in one direction and exits the contraction in a rectangular free jet. The

jet from the nozzle impinges onto a finely woven plastic belt called a wire moving at

speeds up to 2000 m/min. The wire serves to increase the suspension concentration

through drainage.
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CHAPTER 3

EXPERIMENTAL METHODS

It is well known that flow induced alignment of dilute fiber suspensions in con-

tractions is influenced by mean velocity gradients, turbulence, and finite fiber inertia.

The main purpose of this thesis it to understand the physics governing aspects of

turbulent flow and fiber orientation inside a planar two-dimensional contraction with

application to paper manufacturing. It is necessary to quantify the turbulent flow

characteristics and fiber orientation state inside the contraction in order to under-

stand the coupling of fiber dynamics and turbulence. The effect of particle-particle

interaction is not considered, and it is assumed that the dilute suspension does not

significantly alter the bulk single phase flow.

3.1 Flow Facility

In the present study, high speed imaging and laser Doppler velocimetry techniques

are used to investigate the influence of turbulence on the orientation state of a fiber

suspension in high Reynolds number flow. Velocity field measurements of single phase

flow and visualization of dilute fiber suspension flow were carried out in a closed water
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Figure 2: Schematic of flow loop (Dimensions in meters, not to scale)

loop at the Georgia Institute of Technology. The general experimental set-up is shown

in figure 2 with flow components listed in table 1.

The flow was generated in a 56 cm long rectangular cross section recirculating

closed channel. The fluid exits the contraction in a free jet which is diverted to two

300 gallon collection tanks in series. Fluid is recirculated by a 40 HP variable speed

Ahlstrom centrifugal pump, with a capacity of 500 gal/min at 257 kPa.

The volumetric flow rate is measured using a magnetic flow meter (B) with ±

0.5% accuracy. From the flow meter, the fluid then travels to a pressure equalization

vessel (C) where it is distributed equally to 20 individual 1” PVC Pipes (F) and is

carried to the entrance of the rectangular channel. A constant cross-section channel

with a flow straightener and a turbulence damping screen conditions the flow prior

to entering the contraction. Flow first passes through a hexagonal flow straightener.
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Table 1: Description of flow components

Label Description Manufacturer
& (Model
#)

Properties

A Surge tank Capacity:
18.1 L

B Flow Meter Krohne
IFC 110
(IFS-4000)

Range: 0 -
350 GPM

C Pressure equal-
ization vessel

—– Capacity:
227 L

D Test section —– See figures
5 & 4%

E Flow deflector —— 10” O.D.
Schedule
80 PVC
pipe

F Tube bundle —– 20 1” PVC
tubes

P Pump Sulzer (Apt
21-2B)

Capacity:
500 GPM

Pump motor Reliance
electric
(P3260397H)

40 HP, 60
Hz, 3560
RPM

Controller Danfoss
T1 & T2 Collection

tanks
——— 304 SS,

Capacity:
300 GPM
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Figure 3: Grid & Honeycomb dimensions.

The flow straightener has an open width of 6.2L, a closed width of 0.2L, and is 44L in

length. The fiber half length, L, is used as the characteristic length scale. Once the

flow is straightened, nearly isotropic, homogenous turbulence is generated by a square

monoplanar grid. The grid is located a distance 80L upstream of the contraction inlet

in order to achieve nearly isotropic turbulence entering the contraction. The center

distance of the grid, M , is 8L with a bar width of 2L, resulting in a solidity of 0.56 (the

solidity is defined as the grid geometric blockage area divided by the total area). The

dimensions of these flow conditioning devices are illustrated in figure 3 and outlined

in table 2.

The contraction is 344L in length, 96L wide, inlet height is 112L , and the outlet

height is 10L giving the contraction half angle, β = 8.4o, and maximum contraction

ratio of 11.7. The constant cross sectional channel and contraction are constructed of

Plexiglass to allow for visual access to the flow. The streamwise and lateral directions

are denoted x1, x2, and x3, respectively. The origin of the coordinate system is located

at the inlet centerline of the converging channel, see figure 4.
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Grid
Geometry planar,square
Side 9.525 mm
Center distance 12.7 mm
Open area 56 %
Honeycomb
Geometry Hexagon
Open width 10 mm
Closed width 0.4 mm
Length 70 mm

Table 2: Grid & Honeycomb Dimensions

Figure 4: Schematic of grid generated turbulence experimental set-up with coordinate
system.
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Figure 5: Cutaway schematic of the planar contraction and constant cross section
channel (not to scale, dimensions in mm). Flow is in the positive x1- direction. A)
Tube block, B) Honeycomb, C) Grid position lr = 60 and D) Grid position lr = 20

We consider turbulent flow under plain strain, where the flow is contracted only

in the x2 direction. The mean velocity gradient tensor for the core flow through the

planar contraction (see figure 4) is given by

∂ Ui

∂ xj
=

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ U1

∂ x1

∂ U1

∂ x2
≈ 0 ∂ U1

∂ x3
≈ 0

∂ U2

∂ x1
−∂ U1

∂ x1
0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
. (5)

If the effect of the side walls is negligible, the nozzle contraction may be considered

two-dimensional to simplify the analysis. Thus, the mean velocity in x3−direction,

U3, is zero. Far downstream of the grid, the streamwise mean velocity profiles along

the x2− and x3−directions are uniform. In the contraction, the mean velocity profile

remains uniform except at the boundary layer region. Thus, ∂ U1/∂ x2 and ∂ U1/∂ x3

are approximately zero in the core flow. It is expected that the streamwise rate of

strain, ∂ U1/∂ x1, is the dominant term influencing fiber orientation in the contrac-
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tion. The only non-zero component of mean vorticity vector, which is responsible for

production of turbulence in a contraction, is given by

ω3 =
∂ U2

∂ x1

. (6)

However, this term is zero at the contraction centerline because of symmetry.

The local contraction ratio is defined as

C =
U1

U1,0

(7)

where U1 and U1,0 are the local streamwise mean velocity and the inlet streamwise

mean velocity, respectively. The estimated velocity components U1,p and U2,p based

on potential flow are given by

U1,p =
νRe

h0 − 2x1 tan β
, (8)

U2,p = − 2ν tan βRe

(h0 − 2x1 tanβ)2
x2, (9)

where h0 is contraction inlet height and Re is the flow Reynolds number, given by

equation 3, is constant throughout the contraction.

The relationship between ∂ U1,p/∂ x1 and ∂ U2,p/∂ x1 from equation 8, is given by

∂ U2,p

∂ x1
= −4 tan β

h(x1)

∂ U1,p

∂ x1
x2. (10)
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Figure 6: Normalized mean streamwise rate of strain along the centerline of the
contraction.

This equation shows that when, |x2| ≤ 0.3(h/2), ∂ U2,p/∂ x1 is at least one order of

magnitude smaller than ∂ U1,p/∂ x1. The nozzle produces a variable streamwise rate

of strain in the streamwise direction, which increased significantly close to the nozzle

outlet. There is no rate of strain in the lateral directions.

The development of streamwise mean rate of strain for a contraction with above

dimensions is shown in figure 6. The effect of convective acceleration dominates the

development of mean and turbulent flow parameters inside a contraction. The con-

traction delivers a free jet, which is captured in a large pipe about 40 cm downstream

from the outlet. To reduce the amount of air bubbles in the suspension, two 300

gallon tanks with weirs were incorporated into the flow loop.
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3.2 LDV measurement technique

We are interested in the fundamental hydrodynamics of turbulent extensional

flow in a planar contraction with inlet conditions similar to those found in paper

forming. Laser Doppler velocimetry is a well established non-intrusive technique for

fluid velocity measurement. LDV has been used to make velocity measurements in a

variety of complex flow fields (Goldstein, 1996).

LDV provides information on the mean velocity and Reynolds stress components

with a high degree of accuracy over a large range of velocity magnitudes. Mean

flow and turbulent flow characteristics inside a planar contraction are measured in

an effort to better understand the underlying hydrodynamics of this flow. Anal-

ysis of the instantaneous velocity signal yields the following turbulent parameters:

x1−, x2−, and x3− components of turbulent intensity, Reynolds stress components,

integral time scale and turbulent kinetic energy. LDV is primarily a single point mea-

surement technique and does not directly provide information on the spatial structure

of the flow. However, some researchers have incorporated two or more systems simul-

taneously to directly measure the spatial scale of the flow. Direct measurement of

the spatial scale is extremely challenging, requiring specialized alignment techniques.

Therefore, an indirect measurement of the Eulerian integral length scale, based on

Taylor’s hypothesis is often considered.

A two-component fiber-optic LDV system of standard design (TSI Inc.) powered

by a 5W argon-ion laser (Coherent, Innova 70) was used to measure mean velocity

and Reynolds stress components in the test section. The optical head consists of a
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lens with a focal length of 219L. The beam spacing is 31L giving a beam half-angle of

4.09o. The elliptical measurement volume at the beam intersection is approximately

6.25 × 10−3 in diameter and 2.5L in length. The system is operated in a backward

scatter mode. Prior to the start of the measurements, water was filtered with a 5 µm

filtering system, following which no measurements were possible due to the absence

of scattering particles. The flow was then seeded with 0.3 µm TiO2 particles. The

particle time constant is O(105)−O(106) smaller than the fluid time constant (based

on the local height of the contraction and the free stream velocity) indicating that

the particles follow the flow field.

A colorburst multiple beam separator serves to split the incident beam, shift the

beam frequency, and couple the laser light to the fiber-optic cables. The x2− and x3−

velocity components are shifted by 200 kHz to account for the one-dimensionality of

the flow and to specify the directionality of the flow. The colorlink signal processor

filters out low and high frequency signals to minimize noise and prevent aliasing of the

instantaneous velocity data. The signal processor correlates the signals to determine

instantaneous velocity components. Finally, the data is post-processed using flow

information display software.

The optical head was traversed automatically using a three dimensional linear

traversing system with accuracy ± 0.1 mm. Data measurement rates of instanta-

neous velocity were of the order 500-1500 Hz depending on position. For consistency,

measurements were sampled at a constant rate of 50 Hz. for a period of 90 seconds. At

each measurement location, three sets of 4,500 instantaneous velocity samples were
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Table 3: LDV parameters

LDV Manufacturer TSI
Laser power source (Coherent Innova) 5 W argon laser
Transmitting lens focal length 219L
Beam spacing 31L
Initial beam diameter 1.3L
Beam half angle 4.09o

Laser Wavelength (x1− component) 514 nm
Laser Wavelength (x2−, x3− components) 488 nm
Number of Fringes (x1− component) 41
Number of Fringes (x2−, x3− components) 44
Probe volume 150 µm × 2.5L
Frequency shift (x1− component) none
Frequency shift (x2−, x3− components) 200 kHz
Seeding particles (alumina) 0.3 µm

collected. A standard residence time averaging procedure was used to account for

velocity biasing. In these experiments, Re was varied between 85×103 and 170×103,

corresponding to exit velocities ranging from 4.9 m/s to 9.8 m/s. Table 3 summarizes

the LDV parameters used in collecting instantaneous velocity measurements.

3.3 Visualization and image processing technique

Fiber orientation in the contraction was visualized using well defined rigid red

rayon fibers with mean length, 2L, and diameter, d, of 3.2 mm and 57µm, respectively

(see figure 7).

The suspension’s φc a
2
p− and nL3−values were 0.05 and 0.0053, respectively. This

suggests fiber-fiber interactions and the effects of fibers on flow rheology are negligible.

The fibers were dried by placing them in an oven at temperature 105 oC for at least

24 hours. The density of dry rayon fibers is 1.14 kg/m3. The suspended fibers were
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Figure 7: Image of rayon fibers used in experiments

visualized in the x1 − x3 plane using a laser sheet and high speed camera, see figure

8. The light source is very important in this application since the fiber velocity is

high relative to the fiber diameter. A pulsed infra-red laser, Oxford HSI1000, with a

pulse duration of 15 µsec was synchronized with a Phantom V5 high speed camera.

Images were collected at a rate of 25 images/sec to insure that individual fibers were

not visualized multiple times. A lens was used to project a 3 mm thick, 100 mm wide

rectangular laser sheet into the contraction. The laser head was translated linearly

in the x2− direction with resolution ± 0.01 mm. The camera was translated linearly

in x1−, x2− and x3− directions with resolution ± 1 mm. Images were taken at

the centerplane of the contraction, defined as the region where |x2| = 0.47L and

|x3| = 2.27L. Images have dimension of 9.6 mm in the x1−direction with 341 x 512

pixel resolution. A total of 8190 image files were analyzed at each position. The

orientation distribution state at a given position was evaluated from a succession of
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Figure 8: The experimental set-up for fiber suspension visualization.

approximately 4200 randomly imaged fibers at each position along the centerplane.

A complete software suite for analyzing these images has been developed. This

software inverts the raw image, scans the frame, and identifies each fiber in the image.

Although the fibers are rigid, they are not all perfectly linear. Thus, to accurately

evaluate the orientation of an observed fiber, it is necessary to divide the fiber into

a number of segments, 1/10th of the total fiber length, of equal length as shown in

figure 9. Linear curves are fitted to each segment, and the angle distribution of the

segments is evaluated and used to determine the fiber orientation distribution.

The following is a more detailed explanation of the data processing procedure

mentioned above. The original images obtained from the visualization have 10242

pixel resolution and are 16.8L × 16.8L in dimension. The original images were
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Figure 9: Schematic of the division of each fiber into segments and fitting lines by
least square technique.

cropped into six equally sized images in order to achieve increased spatial resolution.

The images are then inverted such that the black pixels become white and white

pixels become black. Next, the background is removed from each image in a series,

thus isolating the fibers on a clear background. This is accomplished by progressively

loading a series of twenty-one consecutive frames and then averaging the frames to

extract the background. This averaged background is then subtracted from each of

the twenty-one frames, eliminating the effect of lighting gradients as well as dirt and

other artifacts. The image is then binarized by assigning every pixel with a value

lighter than an arbitrary threshold to be white and every one darker to be black.

The resulting image is saved as a bitmap. Binarizing the image serves to simplify the

subsequent orientation analysis. The next set of twenty- one images is then loaded

and averaged. The process continues until every image in the series has been binarized
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as shown in figure 10.

Once the images are properly conditioned, the position and orientation of each

observed fiber is evaluated. This is accomplished by loading, in turn, each of the

binarized frame images and scanning the image to isolate each fiber. Each binarized

image of a fiber is eroded, using a skeletonizing algorithm, to single-pixel-width seg-

ments. Each skeletonized fiber in the frame is then scanned to locate and eliminate

each pixel that represents the intersection of two fibers. The remaining fiber segments

are traced to determine their length as well as the direction of each pixel-to-pixel in-

tersection. Each fiber of less than 0.1L in length is discarded as being a non-fiber

image artifact or an air bubble in the flow. Data files are then written to save the raw

fiber count and position of each fiber in the frame. This process is repeated for each

frame in the sequence. Figure 10 shows the raw image and the resulting processed

image.

The orientation angle, φ, of each fiber is quantified once the images are properly

conditioned and the position of each observed fiber has been evaluated. This is done

by starting from the head of the fiber to divide them into segments 24 pixels (0.64

mm) in length. Once the remaining part of the fiber is smaller than 48 pixels the

division of the fiber is stopped and the remaining part is considered as a segment.

Then, a line is fitted to each segment by the least square method. The orientation

angle of measured fibers was arranged in bins of 3 degree increment to evaluate the

orientation distribution function, ψ. Finally, the obtained orientation distribution

function was normalized and plotted versus the bin centers.
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Figure 10: Overview of image analysis technique a) Sample of raw images obtained
from the visualization; b) Image after inverting, c) background removal, and d) skele-
tonization. The flow direction is from down to up.

In these measurements, the streamwise length of images is chosen to be three

times the fiber length. The contraction ratio varies slightly along this length and

therefore the effective contraction ratio is defined as

Ce =
1

∆ x1

∫ x1,2

x1,1

C(x1)dx1, (11)

where ∆ x1 = 9.6 mm and x1,1 and x1,2 are the upstream and downstream edge

positions of the image, respectively. The straight channel upstream of the contraction

inlet and the contraction are joined by a set of opaque flanges 15.8L in length length.

Due to the presence of these flanges and the finite length of images, the first position
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downstream of the contraction inlet is Ce = 1.1.

3.4 LDV data correction procedure

Generally, mean and fluctuating velocity components are obtained relative to a

zero position in the test section using LDV. This is due to the change in optical path

of the incident laser beam due to refraction as shown in figure 11. In this case, the zero

position is at the contraction sidewall. The displacement of the beam intersection in

the test section is related to the displacement of the traverse in the x3−direction by

equation 12 (Durst, Melling & Whitelaw, 1981). Here, ∆x′3 denotes the displacement

of the beam intersection in the test section and ∆ x3 denotes the displacement of the

traverse. The location of the beam intersection is a function of the optical properties

of the three media the beam crosses, air, plexiglass, and water, as well as the thickness

of the plexiglass. The index of refraction of air, plexiglass, and water are m1 = 1,

m2 = 1.5, and m3 = 1.33, respectively. The half angle of the beam exiting the probe

head, χ1, is 4.1o. Subsequently, χ2 and χ3 are 2.73o and 3.08o, respectively. Therefore,

the change of position of the beam intersection inside the contraction as a function

of change of position of the LDV translator is given by

∆ x′3 =
∆ x3

cosχ1

√
(
m3

m1
)2 − sin2χ1. (12)

For the test section considered in this study, the above equation reduces to

∆ x′3 = 1.33(∆x3). (13)
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Figure 11: Optical path of the incident laser beam due to refraction.

The position corrections were applied after completion of the experiments. Another

concern in computing the instantaneous velocity statistics is velocity bias. It is well

known that the LDV technique introduces an inherent biasing of the velocity data

towards higher values of mean velocity. This is due to the fact that faster moving

seed particles have a shorter residence time in the measurement volume relative to

the slower moving particles. This is corrected by weighting the instantaneous velocity

signal with the corresponding burst time, τb. The equations used to compute turbulent

quantities from the instantaneous velocity signal are given by

Ui =

∑
ui τb
τb

, (14)
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Figure 12: Power spectrum of streamwise component of velocity at C = 1.65 (—),
C = 2.8 (· · ·) and C = 9 (−−).

and √
u′ 2i =

√∑
u2

i τb∑
τb

− U2
i , (15)

Despite the presence of a surge tank immediately downstream of the pump, it

was noticed that a low-frequency cycling of the mean flow rate was present (see figure

12). The frequency and amplitude of the low-frequency pulses was approximately 0.03

Hz and ± 2% of the streamwise mean velocity component, respectively. This low-

frequency variation in flow rate had a negligible effect on components of fluctuation

velocity near the contraction inlet. In this region the turbulent intensity is high

and the streamwise component of mean velocity is a minimum. However, at the

contraction outlet the turbulence intensity is damped and the streamwise component
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of mean velocity is a maximum. In the region, C > 6, this pulsation introduced

significant error in measured component of fluctuation velocity near the contraction

outlet. In order to achieve reliable measurements of fluctuation velocity components,

fluctuations less than 6 Hz are filtered out of the instantaneous velocity signal. This

is accomplished by sampling the instantaneous velocity signal at 0.1 sec. intervals

and averaging over the duration of the signal.

3.5 Flow conditioning

Mean velocity measurements vs. potential theory

Figure 13 illustrates a comparison of the measured streamwise mean velocity com-

ponent, U1, development down the nozzle centerline to the mean streamwise velocity

predicted by potential theory, which assumes inviscid flow. At Reynolds numbers

varying from 85 × 103 to 170 × 103 for this particular geometry, the viscous forces

should be negligible a safe distance away from the nozzle sidewalls and thus it would

be expected that the measured values agree with potential theory. The individual

points correspond to measured values of U1, and the solid lines represent U1 evalu-

ated from equation 8. It appears the measured values of U1 agree well with theory,

with the exception of immediately upstream of the nozzle exit where it appears the

change in boundary conditions at the nozzle exit cause U1 to slightly deviate from

theory. The nozzle entrance corresponds to C = 1 and the nozzle exit corresponds to

C = 11.7. However, due to optical access restrictions near the nozzle exit, it is only

possible to measure U1 up to local contraction ratio 10.7, which corresponds to 5 mm
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Figure 13: a) Measured x1− component of mean velocity along the contraction cen-
terline, Re = 85× 103 (•) and Re = 150× 103 (o) compared to potential theory (—).
b) Measured x2− component of mean velocity at C = 1.11 for Re = 85× 103 (•) and
Re = 150 × 103 (o) compared to potential theory (—).

upstream at the nozzle exit.

The mean velocity components, U1 and U2 can be closely approximated with the

velocity components based on a simple quasi-one-dimensional potential flow provided

by equations 8 and 9. The accuracy of the potential flow models are demonstrated

in figure 13. Agreement between the models and experimental results can be at-

tributed to the presence of uniform streamwise velocity profiles (i.e. ∂ U1/∂ x2 ≈ 0

and ∂ U1/∂ x3 ≈ 0) at the core region of the contraction, low turbulent intensities,

and presence of a thin relaminarized boundary layer along the walls (Parsheh, 2001).

The velocity components based on potential flow are used in the fiber orientation

analysis throughout this paper.
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Mean flow behind the grid

The condition of the flow immediately upstream of the grid and downstream of the

grid in the constant cross-section channel is illustrated in figures 14 and 15, respec-

tively. The streamwise component of mean velocity is strongly non-uniform upstream

of the grid. Downstream of the grid, the streamwise mean velocity profile becomes

increasingly uniform. Figures 16 and 17a show the mean streamwise velocity profile

in the x2 and x3 directions inside the contraction for the Reynolds numbers stud-

ied. It is seen that the flow is uniform in the core region of the contraction. This

observation will be important in developing the orientation model in the following

sections. Figure 17b shows the profile of normalized mean streamwise velocity com-

ponent in the x2-direction normalized with the predicted velocity based on potential

flow. This shows a slight deviation from potential flow theory in the core region. The

boundary layer, δp, on the contraction top and bottom wall may be estimated by the

development of a turbulent boundary layer on a flat plate given by

δp =
0.37 lp

Re
1/5
δ

, (16)

and

Reδ =
ρ Ū1 lp
µ

, (17)

where lp is the distance along a flat plate and Ū1 the average streamwise velocity along

the plate. The estimated boundary layer thickness δp for Reδ = 63 × 103 is 14.3 mm

at the contraction outlet. The actual boundary layer should be smaller due to the
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presence of a pressure gradient in the streamwise direction. However, this estimate

implies the boundary layer could have a significant influence on the mean velocity

profile. The streamwise velocity profile for turbulent channel flow is approximated by

U1

U∗
1

=
1

k
ln
x2 U

∗
1

ν
+ A, (18)

where U∗
1 =

√
τoρ and k, A are constants equal to 0.4 and 5.5, respectively (Nikuradse,

1933). The wall shear stress, τo, in a rectangular channel is modelled by

τo = 0.0396ρ3/4U
7/4
1 µ1/4 4hw

h + w
, (19)

where h and w are the local contraction height and width, respectively. The predicted

turbulent streamwise velocity profile in the x2 direction is illustrated in figure 17b.

The model gives a relatively good fit for the streamwise velocity profile in the x2

direction at position C = 1.18. However, the model is valid only for fully developed

turbulent channel flow and cannot accurately predict the accelerating flow in a planar

contraction.
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Figure 14: a) Measured streamwise mean velocity profile immediately upstream of the
grid at x2 = 0, −46.8L < x3 < 46.8L, and x1 = −144L (o). b) Measured streamwise
mean velocity profile immediately upstream of the grid at −58L < x2 < 58L, x3 = 0,
and x1 = −144L (�).
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Figure 15: a) Measured streamwise mean velocity profile immediately downstream of
the grid at x2 = 0, −46.8L < x3 < 46.8L, and x1 = −40L (*), x1 = −54L (o), x1 =
−74L (+). b) Measured streamwise mean velocity profile immediately downstream
of the grid at −58L < x2 < 58L, x3 = 0, and x1 = −40L (*), x1 = −54L (o),
x1 = −74L (+).
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Figure 17: a) Mean streamwise velocity x2-profile at C=1.18, 1.65, 2.8, and 9 at Re
= 85 × 103 (�), Re = 127 × 103 (o), Re = 150 × 103 (.). b) Normalized mean
streamwise velocity profile in the x2- direction for C=1.18 measured (x) model (see
equation 18(-.-), C=1.65 measured (♦) model (- -), C=2.8 measured (�) model (—),
and C=9 measured (*) at Re =85 × 103.
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CHAPTER 4

THEORETICAL BACKGROUND

In this section we discuss the theoretical background for the dynamics of fiber

orientation in laminar flow followed by application of existing fiber orientation models

in turbulent flow. In this study the fibers can be assumed to be rigid since the viscous

drag force is insufficient to deform the fibers. To verify this point, let us consider the

dimensionless parameter Z = 2πµ(∂ U1/∂ x1)(2L)4/Bln(2ap), which represents the

ratio of viscous drag force to the elastic recovery force of the fiber in dilute suspensions

(Becker & Shelley, 2001). In this equation, B is the effective bending rigidity which

is equal to the product of the Young’s modulus and the second moment of area,

I = π d4/64. For a typical rayon fiber with 57µm diameter and 3.2 mm length and a

Youngs modulus 2 GPa, the maximum value of Z is O(10−2). This shows that stresses

are insufficient to deform the rayon fibers.

4.1 Flow induced fiber orientation

The three-dimensional orientation of a single fiber is described by the angles (φ, θ)

defined in figure 18. The unit orientation vector, p, represented in cartesian coordi-
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Figure 18: Coordinate system for three-dimensional fiber orientation.

nates given by

p =

⎛
⎜⎜⎜⎜⎜⎜⎝

sinθ cosφ

cosθ

sinθ sinφ

⎞
⎟⎟⎟⎟⎟⎟⎠

(20)

Jeffery’s equation gives the motion of inertialess ellipsoidal particles in flows with

constant mean velocity gradient. The time rate of change of the unit orientation

vector, pi, for a single ellipsoidal particle Jeffery (1922) is given by

∂ p i

∂ t
= Ωijp j + λ(Eijp j − Eklp kp lp i), (21)
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where t denotes time, and the antisymmetric part, Ωij , and symmetric part, Eij , of

the velocity gradient tensors are given by

Ωij =
1

2

(
∂ Ui

∂ xj

− ∂ Uj

∂ xi

)
, (22)

Eij =
1

2

(
∂ Ui

∂ xj

+
∂ Uj

∂ xi

)
, (23)

and λ defined as

λ =
a2

p − 1

a2
p + 1

. (24)

The hydrodynamic interaction coefficient, λ, is a dimensionless description of the

geometry of an ellipsoid, which is approximately equal to one for high aspect ratio

fibers.

The general equations for the time rate of change of the orientation angles, φ and

θ, in three-dimensional flow are given by

dφ

dt
=

1

2

[
∂ U1

∂ x3
− ∂ U3

∂ x1
+

(
∂ U2

∂ x3
− ∂ U3

∂ x2

)
cos φ cot θ −

(
∂ U1

∂ x2
− ∂ U2

∂ x1

)
sinφ cot θ

]
+

λ

2

[(
∂ U1

∂ x3
+
∂ U3

∂ x1

)
cos 2φ+

(
∂ U3

∂ x2
+
∂ U2

∂ x3

)
cosφ cot θ + (25)

(
∂ U1

∂ x2

+
∂ U2

∂ x1

)
sinφ cot θ −

(
∂ U2

∂ x2

− ∂ U1

∂ x1

)
sin 2φ

]
,

dθ

dt
=

1

2

[
−
(
∂ U2

∂ x3
− ∂ U3

∂ x2

)
sinφ+

(
∂ U2

∂ x1
− ∂ U1

∂ x2

)
cos φ

]
+

λ

2

[(
∂ U2

∂ x1
+
∂ U1

∂ x2

)
cosφ cos 2θ − 1

2

(
∂ U1

∂ x3
+
∂ U3

∂ x1

)
sin 2φ sin 2θ − (26)
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(
∂ U3

∂ x2

+
∂ U2

∂ x3

)
sinφ cos 2θ +

1

2

(
∂ U1

∂ x1

− ∂ U3

∂ x3

)
cos 2φ sin 2θ +

3

2

(
∂ U1

∂ x1

+
∂ U3

∂ x3

)
sin 2θ

]
,

(Goldsmith & Mason 1967). The three-dimensional orientation development of large

aspect ratio fibers, λ ≈ 1, for flow through planar contractions, simplifies to

dφ

dt
=
∂ U2

∂ x1

cot θ sinφ− ∂ U1

∂ x1

cosφ sinφ, (27)

dθ

dt
=

1

2

∂ U2

∂ x1

cosφ(1 + cos 2θ) +
1

4

∂ U1

∂ x1

cos 2φ sin 2θ +
3

4

∂ U1

∂ x1

sin 2θ, (28)

The time rate of change of the angle, γ, between the x2− axis and the line of projection

on the x1 − x2 plane (see figure 18), is given by

dγ

dt
= −∂ U2

∂ x1
sin2 γ − ∂ U1

∂ x1
sin(2γ), (29)

In addition to the trivial steady state solution, γ = 0, the other stable steady state

solution is given when the fibers align with the streamlines.

Equations 27 and 28 can be greatly simplified when applied to the center symmetry

plane. Therefore the fiber orientation measurements are focused in the region |x2| ≤

L/2 , where L is the fiber length. In this region the analysis can be simplified since

for most fibers | cot θ/ cosφ| ≤ 20.2 when x1 = 0. The first term on the right hand

side of equations 27 and 28 is at least one order of magnitude smaller than the other
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terms when

1

Γc

≤
∣∣∣∣ cot θ

cosφ

∣∣∣∣ ≤ Γc, (30)

where

Γc =
h(x1)

40x2 tan β
. (31)

Considering a random orientation distribution, at least 90% of fibers satisfy equation

30 at x1 = 0 inside the region where |x2| ≤ L for the contraction in figure 4. Since only

a small fraction of fibers do not satisfy the above criteria, their relative contribution

to the overall orientation distribution is negligible. For the range of angles outlined

above, equations 27 and 28 can be approximated by

dφ

dt
= −1

2

(
∂ U1

∂ x1

)
sin 2φ, (32)

dθ

dt
=

1

4

(
∂ U1

∂ x1

)
cos 2φ sin 2θ +

3

4

(
∂ U1

∂ x1

)
sin 2θ. (33)

It is apparent from the above equations that φ is independent of θ, however, the

evolution of θ depends on φ through cos2φ. The solution of equations 32 and 33

for the three-dimensional orientation distribution function in a planar contraction is

shown in figure 19. As these equations imply, fibers rotate toward the stable steady

state solution, φ = 0o and θ = 90o, with angular velocity components dθ/dt ≥ dφ/dt.

However, the angular velocity component dφ/dt or dθ/dt is zero when the initial fiber
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Figure 19: a) Stokes flow solution of the orientation distribution function at the
contraction centerline at C = 3.1 a) and C = 6.05. b)

angle, φ0 = 90o or θ0 = 0o, respectively. Solution of equation 32 is given by

tan(φ) = tan(φo)e
−ε, (34)

where

ε =

∫ x1

x1,o

1

U1

(
∂ U1

∂ x1

)
dx1, (35)

The subscript ’o’ denotes the initial condition and ε is the total dimensionless accel-

eration imposed on the flow from x1,o to x1 or Co to C. The acceleration parameter,

ε, was constant and 3.1 ×10−6. This equation relates the planar evolution of the

orientation angle of a single fiber, φ, to the convective acceleration in the contraction.

The solution to the equation can be obtained analytically considering potential flow.

Thus, given the initial angle distribution at position x0, one can obtain the angle

distribution at any downstream position in x1 − x3 plane along the centerline. The

rate of rotation of fibers toward the streamwise direction is exponential in the applied
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total acceleration.

When there are many fibers suspended in flow, the most complete description of

orientation state is the orientation probability distribution function ψ(p, t) defined

by ∫
p

ψ(p, t)dp = 1, (36)

where p is defined as the unit orientation vector along the streamwise axis of the fiber

(Dinh & Armstrong, 1984). The planar distribution function for fibers aligned along

the x1 − x3 plane (i.e. θ = 90o) is given by

∫ 2π

0

ψ(φ, t)dφ = 1. (37)

Based on conservation principles in p space, the distribution function must satisfy

the continuity equation given by

Dψ

Dt
+ �(ṗψ) = 0, (38)

where � is the gradient operator in orientation space (i.e. the gradient operator of

the surface of a unit sphere).

For initially random distribution of fibers in a laminar contraction flow, following

Dinh & Armstrong (1984) and based on equations 5, 8, 9, and 38, the orientation
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distribution function for finite aspect ratio fibers is given by

ψ(φ, θ, t) =
1

4π

[(
λe−2ε + ξ2

)
sin2 θ cos2 φ+ ξeε sin2 θ sin 2φ+ λe2ε sin2 θ sin2 φ+ λ cos2 θ

]−3/2

(39)

where

ξ =
∂ U2/∂ x1

2∂ U1/∂ x1
(e−ε − eε). (40)

Analogous to suspension flows with fiber-fiber interaction and Brownian motion, a

Fokker-Planck type equation governs the orientation distribution of fibers in turbulent

flow. The change of orientation distribution function ψ(p, t) in turbulent flow can be

modelled by

Dψ

Dt
= ∇. (ṗψ − Dr.∇ψ) , (41)

where Dr is the rotational diffusion coefficient tensor (see e.g. Doi and Edwards 1988;

Advani and Tucker 1987; Krushkal and Gallily; Olson and Kerekes 1998; Koch 1995).

In this equation, the translational diffusion is neglected because the fiber concentra-

tion in the suspension flow is assumed to be uniform. The rotational diffusion tensor,

Dr, may be replaced with a scalar diffusion coefficient Dr for isotropic rotational

diffusion of fibers.

The orientation distribution function provides the most general description of

fiber orientation state. However, numerical simulations of the evolution of ψ are

computationally expensive. Therefore, a more compact description of orientation

state is desirable. Advani and Tucker (1987) show that even-order tensors give a

concise description of ψ. The second- and fourth-order planar orientation tensors in
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the x1 − x3 plane are defined as

aij =

∫ 2π

0

ψ(φ)pipjdφ, (42)

and

aijkl =

∫ 2π

0

ψ(φ)pipjpkpldφ, (43)

respectively. These symmetric tensors represent moments of the orientation distribu-

tion function. The only non-zero components of the second order orientation tensor

representing isotropic orientation in the x1 −x3 plane are a11 = a33 = 1/2. Advani &

Tucker (1987) showed that higher order tensors lead to a more accurate representa-

tion of ψ. The equation for the development of the second order orientation tensor,

aij , can be derived by combining equations 41 and 42. This evolution equation for

planar orientation is given by

Daij

Dt
= (Ωikakj − aikΩkj ) + λ (Eikakj + aikEkj − 2Eklaijkl) + 2Dr(δij − 2aij). (44)

Here, the symmetric orientation tensor, aij , is a function of time and position. By

solving this equation, the fiber orientation can be predicted. In this expression, the

fourth-order tensor component, aijkl is unknown. A closure approximation is required

which relates fourth-order tensor components to the lower-order tensor components.

A number of closure approximations have been put forth to predict the effect of flow

field on fiber orientation using the orientation tensor approach (Doi 1978, Hinch and

Leal 1976, Advani and Tucker 1990). These closure approximations are reviewed in
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more detail in the following sections.

Approximate closure relations

The overall effect of errors induced by the closure approximations in complex sus-

pension flows is important. These errors may be large enough to lead to inaccurate

orientation predictions, regardless of the model used.

Linear closure approximation: Considering only the linear terms resulting from

combining products of the second order tensor, aij and the unit tensor δij a linear

closure approximation is given by

âijkl = − 1

24
(δijδkl+δikδjl+δilδjk)+

1

6
(aijδkl+aikδjl+ailδjk+aklδij+ajlδik+ajkδil) (45)

(Hand, 1962). This expression is exact for weak flows with perfectly randomly dis-

tributed fibers. This model satisfies all the symmetry and projection properties of

the second and fourth order orientation tensors. However, the model performs poorly

at intermediate to highly aligned orientation states.

Quadratic closure approximation: The quadratic closure approximation is one

of the most widely used and simplest closure models. The fourth order tensor may

be represented by the dyadic product of two second order tensors given by

âijkl = aijakl, (46)
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and is exact for strong flows where fibers are uniformly aligned in one direction (Doi,

1981). The model is shown to be inadequate for orientation predictions for weak flows

with random to intermediately aligned orientation state (Advani & Tucker 1990). This

model does not satisfy all the symmetry conditions and only two of the six projection

properties.

Composite closure approximation Additional closure approximations have

been put forth seeking to improve the robustness of the linear and quadratic models.

Hinch & Leal combined the desirable features of the linear and quadratic approxi-

mation to form a composite closure approximation which is exact for both limits of

orientation state given by

âijkl =
2

5
(δijakl − aijδkl)− 1

5
aijakl +

3

5
(aikajl − ailajk)− 2

5

3∑
m=1

(δijakmaml + aimamjδkl).

(47)

The composite closure approximation fulfills two of the six symmetry properties and

no projection properties.

Hybrid closure approximation The linear and quadratic models may also

be combined to arrive at the following expression

âijkl = (1 − f)ǎijkl + fáijkl, (48)

where

f = Aaijaji − B (49)
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(Advani & Tucker, 1990), ǎijkl and áijkl denote the approximation of aijkl by linear

and quadratic models, respectively. For planar orientation, A and B are constants

equal to 2 and 1. Strongly aligned fiber suspensions are represented well by the hybrid

closure approximation.

Orthotropic closure approximation Recently, a new set of closure approx-

imations is introduced for predicting flow-induced fiber orientation. It is known that

an approximate fourth order orientation tensor is orthotropic. This result leads to a

new set of closure approximations for predicting flow-induced fiber orientation. Or-

thotropic closure models using the orientation tensor in its diagonal form require the

principal axis of the fourth order tensor to be the same as the principal axis of the sec-

ond order tensor. The advantage of this approach is that the orthotropic orientation

tensor becomes diagonal, where many of its components are zero.

Due to the normalization and symmetry requirements the fourth order orientation

tensor has

three independent components which may be expressed as

A11 = f11(a11, a22) A22 = f22(a11, a22) A33 = f33(a11, a22). (50)

This is because the fourth order tensor is orthotropic each principle fourth order

component is a function of two principle values of the second order tensor.
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The orthotropic smooth and fitted closure approximations are given by

⎛
⎜⎜⎜⎜⎜⎜⎝

â1111

â2222

â3333

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.15 + 1.15 a11 − 0.10 a33

0.60 − 0.60 a11 − 0.60 a33

−0.15 + 0.15 a11 + 0.90 a33

⎞
⎟⎟⎟⎟⎟⎟⎠
, (51)

and

⎛
⎜⎜⎜⎜⎜⎜⎝

â1111

â2222

â3333

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0.061 + 0.371a11 + 0.555a2
11 − 0.369a33 + 0.318a2

33 + 0.371a11a33

1.229 − 2.054a11 + 0.822a2
11 − 2.261a33 + 1.054a2

33 + 1.820a11a33

0.125 − 0.389a11 + 0.259a2
11 − 0.086a33 + 0.796a2

33 + 0.545a11a33

⎞
⎟⎟⎟⎟⎟⎟⎠
,

(52)

respectively. Both these closures have all the symmetry and normalization properties

of the exact fourth order tensor.

4.2 Models of turbulence in contractions

The following is a brief review of the basic equations and theoretical background

of turbulent flow inside a contraction. Prandtl (1933) put forth the first theory on the

change of intensity of turbulent vortices, by applying Kelvin’s circulation theorem for

flow in a three-dimensional axisymetric contraction. The transverse component of a

turbulent vortex is represented by a small rectangle (∆x1,∆x3), and the streamwise

component is represented by (∆x3,∆x2). As the fluid is contracted, the lengths of
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the sides of the rectangles vary with the local contraction ratio,C, given by,

∆x1 ∝ C, (53)

∆x2,∆x3 ∝
√
C. (54)

Kelvin’s circulation theorem requires conservation of circulation over each rectangular

loop with velocity, Ui = (U1,0 + ∆U1,∆U2,∆U3). Therefore, the fluctuating velocity

components change according to,

u′1 ∝
1

C
, (55)

u′2, u
′
3 ∝

√
C, (56)

where u′1, u
′
2 and u′3 are the fluctuating instantaneous fluid velocity components in

the streamwise and lateral directions. The local contraction ratio,C, is analogous to

the total extensional strain imparted on a fluid element at a given position inside the

nozzle. These relationships, known as Prandtl’s formulaes for axisymmetric contrac-

tions, predict that the downstream component of turbulence decays proportionally

with the inverse of the contraction, while the transverse components increase with

the half-power of the contraction.

It was shown that if the flow turbulence at the inlet to an axisymmetric nozzle is

isotropic, (i.e. u′1 = u′2 = u′3), and the distortion of the flow field is instantaneous,

meaning the generation of turbulence in the contraction process is neglected, then as

flow passes through the contraction the value of the mean-square streamwise velocity

77



fluctuation, u′ 21 , should decrease and the transverse velocity fluctuation, u′ 22 and u′ 23 ,

should increase under the same condition. However, turbulent intensity of both the

streamwise and transverse velocity fluctuations with respect to U1, decrease with

increasing contraction.

A more accurate estimate is achieved by considering the vorticity equation for an

incompressible fluid without mean rotation given by

Dω′
i

Dt
= ωj

∂ Ui

∂ xj
+ ωj

∂ u′i
∂ xj

+ ν
∂2Ui

∂ x2
j

, (57)

where t denotes time, ω′ is the vorticity due to velocity fluctuations, Ui is the mean

velocity, u′1 is the fluctuating velocity, and ν is the kinematic viscosity. The rate

of change of vorticity is due to vorticity production from the straining of turbulent

eddies by the mean velocity gradients ω′
j(∂ Ui/∂ xj), vorticity transfer due to eddy

interaction ω′
j(∂ u

′
i/∂ xj), and vorticity diffusion due to viscosity, ν(∂2Ui/∂ x

2
j). The

nonlinear terms in the vorticity equation represents energy transfer between different

length scales. The above equation reduces to Cauchy’s equations if the deformation

due to mean velocity gradients occurs so rapidly that the orientation of a vortex

filament remains constant in passing through the contraction and viscosity effects

are assumed negligible. Neglecting viscous dissipation of turbulent energy should not

lead to significant error, since most of the turbulent kinetic energy is associated with

large eddies.

Applying Cauchy’s equations to predict fluctuating velocity components yields lin-

ear or rapid distortion theory (Taylor , 1935). Linear theory predicts the development
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of turbulence in axisymmetric contractions as.

u′ 21
u′21,0

=
3

4C2
(ln 4C3 − 1), (58)

u′ 22
u′22,0

=
u′ 23
u′22,0

=
3C

4
. (59)

The subscript ’0’ denotes the inlet of the contraction, C is the contraction ratio, and

U1 is the streamwise velocity component at the flow axis.

If u′1, u
′
2 and u′3 denote the fluctuating velocity of a fluid element moving with

instantaneous velocity ui = (U1 +u′1, U2 +u′2, U3 +u′3) in a planar contraction shown

in figure 4 then the conservation of circulation applied to this fluid element leads to

u′1 ∝
1

C
, (60)

u′2 ∝ C, (61)

u′3 ∝ 1, (62)

For a distortion in which one of the extension ratios remain constant, as in planar

contractions, the approximated expressions for development of the normal Reynolds

stress components according to RDT become

u′ 21
u′21,0

=
3

4
C−1(ln 4C − 1), (63)
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u′ 22
u′22,0

=
3

4
C +

3

8
C−1(ln 4C − 1

2
), (64)

u′ 23
u′23,0

=
3

4
C − 3

8
C−1(ln 4C − 3

2
), (65)

where the subscript ’0’ denotes the value at the position where the distortion first

was applied. Equation 63 implies that the streamwise turbulent energy decreases

monotonically as the flow develops downstream. For large C the asymptotic effect on

the turbulent components is the same as the effect of a large axisymmetric contraction.

Thus, for large C, equations 64 and 65 are approximated by

√
u′ 22 ,

√
u′ 23 ∝ √

C, (66)

which is analogous to Prandtl’s formulas for axisymmetric contractions. This simi-

larity is possibly due to the fact that the vorticity ultimately is everywhere parallel

to the line of the greatest extension and the u′2- and u′3- components are produced by

more or less axisymmetric vortices (Batchelor & Proudman, 1954). Noting that in

the contraction U1 ∝ C, the development lateral components of turbulent intensities

according to RDT becomes

√
u′ 22
U1

,

√
u′ 23
U1

∝ C−1/2. (67)
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CHAPTER 5

RESULTS & DISCUSSION

The main interest of this work is to model the evolution of fiber orientation state in

a planar contraction based on turbulent flow kinematics. In order to make predictions,

we must first understand the interaction or coupling of turbulence and rotational

dispersion. In the following sections, measurements of turbulent flow field and fiber

orientation distribution are presented. Also, the relative significance of the streamwise

mean velocity gradient and turbulent parameters on the evolution of fiber orientation

distribution in the contraction is investigated.

5.1 Turbulence in planar contraction flow

Before considering the effect of turbulence on fiber orientation, the turbulent

quantities in the contraction must be characterized. It is known that integral time

scale, integral length scale and components of fluctuation velocity are important tur-

bulent parameters that influence the rotational diffusion of fibers (Olson, 1998). Since

the performance of turbulent models for planar contraction flow has not been clarified

earlier, existing turbulence models are compared to the measured data. The effect of
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contraction angle, inlet turbulent intensity and flow Reynolds number on development

of components of fluctuation velocity are investigated.

A nearly homogenous, isotropic grid turbulent flow is introduced at the contrac-

tion inlet. At this position, the variations between the rms-velocity components are

within ± 5% outside the boundary layer. It has been observed that the mean ve-

locity components can be closely approximated with the velocity components based

on a simple quasi-one dimensional potential flow, provided by equations 8 and 9 and

demonstrated in figure 13 . This can be attributed to the presence of uniform stream-

wise velocity profiles ∂ U1/∂ x2 and ∂ U1/∂ x3 at the core region of the contraction,

low turbulent intensity components, and presence of a thin relaminarized boundary

layer along the walls (Parsheh, 2001). The velocity components based on potential

flow are used in the fiber orientation analysis throughout this paper.

The decay of turbulent intensity behind a uniform grid in a straight channel has

been approximated by several investigators. One such model for flow in a straight

channel is given by Roach (1987),

√
u′ 21
U1

= c0

(
lg
b

)− 5
7

, (68)

where lg is the downstream distance from the grid, b is the grid bar width, and co is a

constant based on grid geometry. Several investigators have reported different values

for the -5/7 exponent. For example, Groth & Johansson (1988) obtained -0.50 and

Westin et. al. (1994) obtained -0.62. If it is assumed that decaying turbulence can be

predicted by a κ-epsilon model, the exponent can be derived if the turbulent diffusion
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Figure 20: Development of normalized measured streamwise rms-velocity component
behind the monoplanar grid (x) compared to grid turbulence decay in a straight
channel based on Roach, 1987 (—). (R2 = 0.99 for −15 ≤ x1/M ≤ 40) (Error bars
represent 95% confidence intervals, α(95%), of the measurements)

terms are neglected giving an exponent of -0.52 (Parsheh, 2001). Figure 20 shows

that, for flow at the contraction centerline, this model agrees well with the measured

data for up to lg = 40M (40 mesh sizes), where co = 1.13 as specified by Roach.

The R2 value is 0.99 indicating the model accounts for 99% of the variability in the

measurements. The slight deviation between the measured results and the model

given by equation 68 is most likely due to dependence of c0 on Reynolds number for

Re > 104. The agreement between development of grid turbulence in constant cross-

section channels and in the contraction suggests that the production of turbulence

is very small for C < 2. The general energy production term in the Reynolds stress

transport equation is given by
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Pij = −u′i u′j
(
∂ Ui

∂ xj

+
∂ Uj

∂ xi

)
, (69)

Considering the velocity gradient tensor for flow in a planar contraction given by

equation 5, the normal components of the energy production for turbulent flow at the

contraction centerline are given by

P11 = −2u′ 21
∂ U1

∂ x1
, (70)

P22 = 2u′ 22
∂ U1

∂ x1
, (71)

P33 = 0. (72)

The production of turbulent kinetic energy is given by

K =
(
u′ 22 − u′ 21

) ∂ U1

∂ x1
, (73)

where turbulent kinetic energy is defined as

K ≡ 1

2
(u′ 21 + u′ 22 + u′ 23 ). (74)

Considering a homogeneous, isotropic turbulent flow at inlet, equations 70 and

71 imply that the component of fluctuation velocity in the x1-direction is likely to
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decrease, and in the x2-direction to increase, because of the negative and positive sign

of the production terms in these directions, respectively. This is in agreement with

linear theory. In addition, the production of turbulent kinetic energy is expected to

be almost zero, since u′ 21 and u′ 22 are nearly equal in magnitude (see equation 73).

This implies that for isotropic turbulent flow at inlet, the turbulent kinetic energy

is expected to decrease due to negligible production and finite viscous dissipation.

Further downstream, where the flow becomes significantly anisotropic, the production

term becomes larger than the rate of dissipation. This relation is consistent with the

measurement of components of fluctuation velocity as a function of contraction ratio,

C, from inlet to the outlet of the contraction.

The effect of contraction on development of turbulent characteristics is studied

experimentally. In the following paragraphs, the results of LDV measurements of

turbulent flow parameters inside the contraction are considered. Figure 21 shows the

development of measured rms-velocity components in the case Re = 85 × 103 and lr

= 20 and the streamwise component in the case Re = 85 × 103 and lr = 60. Here,

lr is defined as the distance from the grid to the contraction inlet normalized by grid

mesh size, M . The development of streamwise and lateral rms-velocity components

are characterized by a minimum at C = 2.1 and C = 1.7, respectively. However,

the minimum value of the streamwise component when lr = 60 occurs at C = 1.7.

This implies that the location of the minimum value is dependent on inlet turbulence

conditions. Because of nearly isotropic flow at inlet, at C < 2 the production of

turbulent kinetic energy is almost zero according to equation 73. The turbulence level
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Figure 21: Development of normalized rms-velocity components along the channel
centerline at Re = 85 × 103, x1− component, lr = 20 (o), x2− component, lr = 20
(x), x3− component, lr = 20 (*), and x1− component, lr = 60 (♦). (Error bars
represent 95% confidence intervals of the measurements)

in the x1-direction should decrease whereas in the x2-direction should increase, since

the production terms in the x1− and x2-directions have opposite signs. Therefore,

the x1− and x2− components of rms-velocity should not become larger than the

x3− component. This ambiguous result, shown in figure 21, is likely due to the

large variability in rms-velocity near the contraction outlet. The total kinetic energy

production is the sum of two terms with different signs. This implies that when

an isotropic turbulent flow enters the contraction, the production of the turbulent

kinetic energy would be zero immediately downstream of the contraction inlet. This

leads to decay of turbulent intensity due to dissipation. Further downstream, the
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turbulent kinetic energy increases because of anisotropy due to higher Reynolds stress

component in the x2-direction than that in the x1- direction. This effect becomes

amplified further downstream at the high contraction ratio region. The increase in the

streamwise component of the turbulent kinetic energy is most likely because of inter-

component distribution of energy. It is also observed that the streamwise and lateral

components of turbulent kinetic energy increase along the contraction for C > 2. The

monatonic increase of the streamwise turbulent kinetic energy for C > 2 is in contrast

with linear theory. This development of lateral components of fluctuation velocity is

in agreement with linear theory. The influence of contraction geometry half angle,

β, on turbulent characteristics is found in Appendix A. Also, a detailed study of the

measurement uncertainty of turbulent flow parameters is available in Appendix C.

Components of fluctuation velocity at the centerline of a two-dimensional contrac-

tion were measured in order to evaluate the accuracy of existing turbulence models.

Based on the equations governing turbulent fluctuations in inhomogenous turbulent

flow, a model for the development of the streamwise component of fluctuation velocity

in contraction flow is given by

u′ 21 ωo
∝ 2π2

ωo

[
Υ

Γ(2η + 1)

2l2η+1
r

+
Γ(η + 1)

2

(
R

2σ

)η+1
1

U 2
1

+
U 2

1

2η + 2

]
, (75)

where ωo is a constant, R is the dimensionless Reynolds number, σ is the dimensionless

time of flight, lg is the downstream distance from grid to the contraction inlet, Γ

represents the gamma function (Tsuge, 1984). This model is valid assuming that

the cascade of energy into eddies is small compared to the production of energy
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due to the flow, and that the mean flow is time independent reduces the evolution

equation to a linear equation. The first term on the right hand side of the above

equation represents the decay of streamwise component of turbulent energy generated

by the grid. The second term represents the contribution of small scale eddies, (i.e.

κ >> 1), which decreases as C−2 as predicted by classical theory, where κ is the

dimensionless wavenumber. The decay of these eddies due to dissipation is a function

of Reynolds number and time elapsed since production. The third term represents

the contribution of large scale eddies, (i.e. κ < 1), which increases as C2. This

term is independent of Reynolds number and time elapsed and depends only on the

current value of the mean velocity. In this study, the instantaneous velocity signal is

measured using LDV. This model is based on the power spectrum for nearly isotropic

homogenous grid generated turbulence provided by Uberoi & Corssin, 1953. The

adjustable parameters, Υ and η, are chosen to fit the inlet turbulent condition. Figure

22 shows that predictions based on equation agree qualitatively with measurements.

However, the model underpredicts the rate of decay of grid generated turbulence,

which leads to the deviation between the model and measurements. The advantage

of this model is the ability to predict the increase in large scale eddies with increasing

C. For the region C > 3, the model predicts that the majority of turbulent energy is

represented by these large scale eddies.

The turbulent intensity at the contraction inlet was changed by repositioning the

grid relative to the contraction inlet. In the following paragraphs, the effect of in-

let turbulent length scale on turbulent flow characteristics in a planar contraction
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Figure 22: Prediction of normalized streamwise fluctuation velocity component at
Re = 85 × 103: model(—)(Tsuge, 1984), measured (+). (Error bars represent 95%
confidence intervals, α(95%), of the measurements)

is investigated. The downstream development of the streamwise turbulent inten-

sity component along the contraction centerline for Re = 85 × 103 and lr = 20

and for Re = 85 × 103 and lr = 60 are shown in figure 23. Moving the grid posi-

tion further downstream from lr = 60 to lr = 20 nearly doubles the inlet turbulent

intensity. The turbulent intensity for case Re = 170 × 103 and lr = 20 follows ap-

proximately the corresponding values for the case Re = 85 × 103 and lr = 20. The

streamwise turbulent intensity, T1 ≡
√
u′ 21 /U1, decreases monotonically to less than

1.5% at the contraction outlet. The development of normalized turbulent intensity,

T∗
1 ≡ (T1 − T1,e)/(T1,0 − T1,e) with respect to C∗ ≡ C−1, for different flow Reynolds

numbers (Re = 85 × 103 and Re = 85 × 103), contraction half angles, and inlet tur-

bulent conditions is shown in figure 24. The quantities T1,0 and T1,e represent the

turbulent intensity at the inlet and outlet, respectively. These cases closely follow

89



1 3 5 7 9 11
0

0.01

0.02

0.03

0.04

0.05

0.06

√
u′ 21
U1

C

↓

↓ ↓ ↓
α(95%)

α(95%)

α(95%)

Figure 23: Downstream development of streamwise component of turbulent intensity
along the channel centerline Re = 85×103 and lr = 60 (o), Re = 85×103 and lr = 20
(x). (Error bars represent 95% confidence intervals of the measurements)

an exponential decaying function given by, e−1.6C∗
, based on a leased squares fit to

the measurements. The exponential decay closely follows the power law decay for

grid generated turbulence given by Roach at C < 2. In the region C > 2, turbulent

production and transfer of energy between components leads to slightly better agree-

ment with measurements for the exponentially decaying function. Since the turbulent

energy is spread over a broad frequency band, it is necessary to investigate the Eule-

rian integral time and length scales. Correlations of the instantaneous velocity signal

separated in space and time contain a great deal of information about the underlying

structure of turbulent flows. The Eulerian integral length scale is an important fun-

damental turbulence parameter which is known to influence the rotational diffusion

of fibers. Physically, it represents the length scale of the most energy rich eddies
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Figure 24: Streamwise component of turbulent intensity along the contraction cen-
terline for Re = 85 × 103, lr = 60, and β = 8.4o (o); Re = 85 × 103, lr = 20 and
β = 8.4o (+); Re = 170 × 103, lr = 20 and β = 8.4o (×); Re = 85× 103, lr = 20 and
β = 8.15o (�); Re = 85 × 103, lr = 20, and β = 8.8o (♦); the exponential decaying
curve fitted to data, e−1.6C∗

(—). (Error bars represent 95% confidence intervals of
the measurements)

comprising the turbulent motion. The streamwise integral time scale, τ , is defined as

τ =

∫ ∞

0

R11(∆ t)d(∆ t), (76)

where the autocorrelation coefficient, R11, is given by

R11(∆ t) =
u′1(t)u

′
1(t+ ∆ t)

u′ 21
. (77)

Direct measurement of length scales requires the simultaneous acquisition of at

least two spatially separated velocity measurements. However, indirect measurement

of integral length scales may be obtained by Taylor’s approximation, which allows
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estimation of turbulent length scales from measurement of temporal time scales using

a single-point method (Liou & Santavicca, 1985). The change in spatial form of

a fluid element during its motion past a fixed probe may be considered so small

that the fluid element is effectively ’frozen’, provided that the flow field is isotropic

and homogenous, the mean velocity in the flow field is stationary, and the velocity

fluctuation is very small compared to the mean velocity. If these conditions are met,

the signal changes with time are due only to spatial non-uniformities being convected

past the beam intersection at speed U1.

Taylor’s hypothesis is given by

∆ t =

∫ x1,2

x1,1

dx1

U1(x1)
, (78)

where x1,2 denotes the point of measurement and x1,1 is the unknown upstream po-

sition. Taylor’s approximation is valid for nearly isotropic turbulence far behind a

periodic grid (Uberoi & Corrsin, 1953). The integral length scale, Λ, can be estimated

from the integral time scale, by

Λ =

∫ ∞

0

R11(∆ x1)d(∆x1), (79)

where ∆ x1 = x1,2 − x1,1 . The cross-correlation coefficient, R11, evaluated from the

time the instantaneous streamwise velocity signal is collected from LDV measure-

ments (see figure 25). This figure clearly shows the dissipation of small scale eddies

and production of large scale eddies with increasing C. The time and length scales
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Figure 25: Cross-correlation coefficient R11(� x1) at C = 1.05 (o), C = 2.17 (•),
C = 4.77 (x) and C = 8.3 (+) for Re = 85 ×103.

are approximated based on equations 76 and 79. The variation of these scales along

the contraction is presented in figures 26 and 27. The integral length scale of the

streamwise component of fluctuation velocity, Λ, increases by a factor of seven in the

contraction, independent of the Reynolds number. This increase in the scale is due

to dissipation of small eddies and stretching of turbulent eddies in the contraction.

It is observed that the integral length scale is of the order of the fiber length at the

channel inlet, and becomes very small in comparison to the scale of a fibers at higher

contraction ratios. The integral length scale is observed to range between 0.8L and

3.4L for the conditions investigated. The downstream increase in the length scale

is due to dissipation of small eddies and stretching of turbulent eddies in the con-

traction. Furthermore, the integral time scale increased from 2L/U1,0 at the inlet to

11L/U1,0 at the outlet. Based on a paired t-test of the mean, there is a 28% and
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Figure 26: Downstream development of the integral time scale normalized with inlet
mean streamwise velocity, U1,0, and fiber half length, L, for Re=85 x 103 (+); Re =
150 x 103 (o).
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Figure 27: Downstream development of integral length scale normalized with fiber
half length, L, for Re = 85 x 103 (+), Re = 150 x 103 (o).
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21% probability that the integral time and length scales are independent of Reynolds

number, respectively.
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Figure 28: Downstream development of the normalized orientation distribution, ψ,
at C = 2.2 (+), C = 3.6 (♦), and C = 8.5 (•) for Re = 85 × 103.

5.2 Flow induced orientation in a planar contraction

In the following paragraphs, the results of direct measurement of flow-induced ori-

entation in a planar contraction are presented. In order to provide thorough analysis

of the results, the dynamics of fiber orientation in laminar flow is considered. This is

followed by application of existing fiber orientation models in turbulent flow.

The measured orientation distribution function, ψ, at different downstream po-

sitions in the contraction is shown in figure 28. These results show that the fibers

become more oriented in the stream-wise direction when the contraction ratio in-

creases. This is expected as the rate of rotation of fibers towards the steamwise

direction is exponential in the applied total acceleration.

Analytical theory for flow-induced orientation state based on Stokes flow was also

compared with the results of the experiments. The theory predicts fiber orientation
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distribution in the contraction plane, x1 − x3 plane, for two-dimensional flow. The

mean velocity components at the core region of the contraction, U1 and U2, can

be closely approximated with the velocity components based on a simple quasi-one-

dimensional potential flow. The velocity components based on potential flow are used

in the fiber orientation analysis throughout this paper.

In this study, the single component of the fourth order orientation tensor, a1111,

is used to quantify the development of orientation anisotropy. The value of this

component varies between 0 and 1.0 when all fibers are oriented in the x2− and x1−

direction, respectively. For a random distribution of fibers this value is 0.375. This

parameter is used to compare downstream development of ψ(φ) based on equations

27 and 28, and based on equation 32. An initially randomly oriented fiber suspension

flow is modelled along a plane parallel to the contraction centerplane at x2 = L. The

results are presented in figure 29. The overlap between the computed orientation

parameters implies that equations 32 and 33 are a good approximation to equations

27 and 28, and therefore, do not introduce significant error to the analysis.

5.3 Evaluation of rotational diffusion coefficient, Dr, from turbulence
measurements

The focus of this study is to model the orientation distribution of rigid fibers

due to turbulence in planar contraction flow. However, it is known that fiber inertia

influences the dynamics of many dilute suspension flows (Koch, 2001). In this work,

fibers are similar in density to the fluid in order to minimize the effect of inertia.

The density ratio of a suspension of rayon fibers in water is 1.16. The magnitude of
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Figure 29: Development of fiber orientation parameter, a1111, for φ along a line parallel
to the centerline at x2/L = 1 for Stokes flow computation based on equation 32 (o),
and based on equations 27 and 28 (+).

Re and Ref are of O(105) and O(102) at the contraction outlet, respectively. Fiber

inertia may still be important considering, Ref > 1.

The Stokes number is useful in predicting how closely suspended fibers follow the

flow. Stokes number, St, is defined as the ratio of particle response time, τp, to the

system response time, τa. Suspensions with St < 1 are characterized by fiber motion

that closely follows the fluid motion. The particle response time and system response

time for the suspension flow considered in this work are given by,

τp =
d2

ν
, (80)

and

τa =

(
∂ U1

∂ x1

)−1

, (81)

98



respectively. The Stokes number is given by,

St =
τp
τa

=
d2 ∂ U1

∂ x1

ν
. (82)

The particle response time is 3.9×10−3 sec. and the system response time varies from

1.23 sec. to 1.1×10−2 sec.. Consequently, the Stokes number increases exponentially

from 3.2 × 10−3 at the contraction inlet to 0.34 at the outlet. In the region near the

contraction inlet, St << 1, indicating that fiber inertia has a negligible effect on fiber

motion. Fiber inertia has only a slight effect in the region of strong streamwise rate

of strain immediately upstream of the contraction outlet. Therefore, it is understood

that fiber inertia has a negligible effect on orientation in these experiments. A more

detailed investigating of the influence of inertia and the fiber slip velocity is located

in Appendix D.

Analogous to suspension flows with Brownian motion, the time rate of change

of the orientation distribution function ψ(p, t) in turbulent flow is modelled by a

Fokker-Planck type equation (see Doi & Edwards, 1988, Advani & Tucker 1987 and

Olson & Kerekes 1998), given by

Dψ

Dt
= Dr �2 ψ −�(ṗψ), (83)

whereDr is the rotational diffusion coefficient. In this equation, translational diffusion

is neglected because the fiber concentration in the suspension flow is assumed to be

uniform. Depending on the flow conditions, the diffusion term on the right hand side
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of equation 83 represents the randomizing effect of either the Brownian motion (Doi

& Edwards 1988) or the turbulent eddies (Olson & Kerekes 1998). In the present

study, this model implies that fiber orientation development is an interplay between

the arranging effect of the mean velocity gradient field and the randomizing effect of

the turbulent eddies.

The evolution of ψ along the contraction centerplane is obtained from a convection-

dispersion equation given by

∂ ψ

∂ x1

=
Dr

U1

∂2 ψ

∂ φ2
+

1

U1

∂ U1

∂ x1

∂

∂ φ

(
1

2
ψ sin(2φ)

)
. (84)

Orientation measurements are compared with theory in order to better understand

the effect of turbulence on the rotational dispersion of fibers in suspension. For the

flow at the contraction centerline, the convection-dispersion equation is solved using

a finite difference approximation. In this computation, the flow is one-dimensional

in the streamwise direction. The values of U1 and ∂ U1/∂ x1 at the fiber center are

used in this computation. The purpose of this analysis is to predict Dr, which is

determined by a least square fit of the model to the measured ψ. Therefore, the

measured orientation distribution function at C = 1.1 is used as the initial profile

in the model. It is observed that the orientational diffusion is highly dependent on

inlet turbulence properties and local contraction ratio. In this figure, the computed

orientation parameter is shown versus the contraction ratio at the center of mass of

the fiber. After considering several functional forms, Dr(C) is approximated by an
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exponentially decaying function. This function is given by

Dr =

√
u′ 21,0

2L
e−0.95 C (85)

where
√
u′ 21,0 denotes the streamwise component of rms-velocity at the inlet. The

exponent -0.95 gives the best fit to measured cases. Figure 30 shows development of

measured orientation parameter, a1111, for the three measured cases. The measured

values or orientation tensor components may be found in Appendix C. The model for

Dr is shown to be accurate in predicting orientation anisotropy for a given inlet flow

condition.

It is interesting to consider why this exponential decaying form of Dr works so

well to predict the rotational diffusion of fibers. First, we know that the couple nec-

essary to rotate a slender fiber in Stokes flow scales as L3 (Batchelor, 1971). The

integral time scale τ is given by ΛU1 in the model by Olson & Kerekes. Therefore,

u′ 21 τ Λ/(2L)3 can be written as

√
u′ 21 T1Λ

2/(2L3). This relation may be approxi-

mated by

√
u′ 21 T1/(2L), since Λ is the same order of magnitude as L throughout

the contraction. Also, we have shown that normalized turbulent intensity, T∗, decays

exponentially to the −1.6C∗ power. Therefore, the model proposed in equation 85

is consistent with turbulence measurements and existing theory. This model works

well for the range of flow Reynolds number, contraction half angle, and inlet tur-

bulent conditions. However, it is well known that grid generated turbulence decays

as a function of streamwise position from the grid, lg. Therefore, it is likely that

the model presented above will yield accurate predictions of orientation state over a
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Figure 30: Comparison of experimental a1111, for Re = 85×103 and lr = 60 measured
(x) model (...), Re = 85×103 and lr = 20 measured (o) model (—) and Re = 170×103

and lr = 20 measured (+) model (- -) using the measured distribution at C = 1.1 as
the initial value. All graphs are normalized by the measured value at C = 1.1, a1111,0.
(Error bars represent 95% confidence intervals of the measurements)

finite range of contraction half angle. Further work needs to be done to determine

the range of contraction half angles, fiber length, flow Reynolds number, and inlet

turbulent conditions for which equation 85 is valid.

5.4 Effect of turbulence on orientation

In the present study, turbulent flow characteristics along the centerline of the con-

traction were measured to determine the influence of turbulence on fiber orientation

development. The rotational diffusion coefficient, Dr, has been modelled by several

investigators. Krushkal & Gallily used a relationship based on Kolmogorov’s local

isotropy hypothesis for small eddies and from dimensional analysis derived the fol-
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lowing expression

Dr ≈
(εt
ν

)1/2

(86)

where εt is the dissipation rate of turbulent energy per unit mass, given by

εt = ν
∑
i,j

(
∂ u′i
∂ xj

)2

, (87)

(Hinze, 1975). Olson (2001) proposed the rotational diffusion coefficient is given by

Dr ≈ 0.7

(
4εt
15ν

)1/2

. (88)

Olson & Kerekes (1998) suggest that for long fibers in isotropic turbulent flow, the

rotational diffusion coefficient is given by

Dr = 24u′ 21
τ

(2L)2

Λ

(2L)

(
erf

(
π1/2(2L)

2Λ

)
+

16

π2

(
Λ

2L

)3 (
1 − e−π(2L)2/4Λ2

)
(89)

+
2

π

Λ

2L

(
e−π(2L)2/4Λ2 − 3

))

This model implies Dr is a function of the integral time scale, τ , integral length

scale, Λ, and streamwise component of fluctuation velocity. The models given by

equations 86 and 90 are evaluated from the measured turbulent characteristics in the

contraction. It was observed that at the region close to the contraction inlet, Dr

based on the model given by equation 90 is at the same order of magnitude as the
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value calculated by equation 84. However, these two values of Dr are not exactly the

same, which may be explained by the fact that the above model is not valid when

the integral length scale Λ is larger than the fiber length scale, L. The accuracy of

the rotational diffusion model given by equation 86 is evaluated using the measured

streamwise velocity time signal to estimate εt. It is assumed that small scale eddies are

locally isotropic in the contraction. The value of Dr based on this model is two orders

of magnitude larger than the value obtained from measured orientation distribution

by equation 84.

In the following paragraphs, the effect of turbulence on the development of ori-

entation distribution function is investigated. This is done by comparing a1111 with

a1111 for Stokes flow evaluated by equations 37, 43 and 84 (denoted by a1111,s). The

orientation distribution function measured at C = 1.1 is used as initial condition

for evaluation of a1111,s. Figure 31 shows the development of orientation parameter

given by Stokes flow and a1111. Stokes flow overpredicts the orientation anisotropy

in the contraction, due to the absence of turbulence. The small deviation between

the computed orientation distribution functions by Stokes flow in figure 31 is due to

unequal anisotropy of the initial profiles. The orientation distribution, ψ , measured

downstream of the contraction inlet, C = 1.1, is slightly anisotropic and differs be-

tween each case. The anisotropy in orientation distribution at this position can be

attributed to the small flow contraction in the straight channel due to boundary layer

growth. It is of particular interest to study the development of a1111 through the

contraction in terms of the Reynolds number. As shown in figure 31, increasing the
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Figure 31: The comparison of the development of experimentally obtained values of
a1111 and the development of a1111 when Dr = 0 (Stokes flow) calculated from initial
ψ for the three cases. Re = 85× 103 and lr = 60: measured (x) , computed (– –); Re
= 85 × 103 and lr = 20: measured (o), computed (—); Re = 170 × 103 and lr = 20:
measured (+), computed (...). (Error bars represent 95% confidence intervals of the
measurements)
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Reynolds number from 85×103 to 170×103 with lr = 20 leads to a slight decrease in

orientation anisotropy. This is in agreement with many other investigations of similar

problems (i.e. Olson et. al., 2004).

The effect of turbulent characteristics at the contraction inlet on orientation dis-

tribution is studied by changing the grid position relative to the contraction inlet, lr,

while keeping the Reynolds number constant at 85 × 103. At lr = 60, due to lower

turbulent intensity along the contraction centerplane, a larger number of fibers align

with the streamwise direction compared to lr = 20. This leads to a higher value of

orientation parameter in this set-up.

It is important to identify the region in the contraction where rotational diffusion

has a significant influence on the dynamics of fiber orientation. Figure 32 shows the

downstream development of the ratio of a1111 and evaluated orientation parameter

in Stokes flow, a1111,s, for case Re = 85 × 103 and lr = 60. The measured ψ at C

= 1.6 is used as the initial profile for Stokes flow evaluation. As it is seen from this

figure, the orientation parameter, a1111, nearly follows the Stokes flow development at

C > 1.6. To show the actual comparison of the orientation distribution functions, the

normalized polar diagram of the measured and computed distribution functions at C

= 3.4 and C = 5.6 are presented in figures 33 and 34, respectively. The two plots

nearly overlap confirming the conclusion from figure 32. Similarly, the development

of orientation distribution at Re = 85×103 and Re = 170×103 for lr = 20 follow the

Stokes flow development at C > 3.3, as shown in figure 35. Comparison of the results

in figures 32 and 35 shows that for the case when lr = 60, the randomizing effect of
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Figure 32: Development of the ratio of experimentally obtained values of a1111 to
prediction by Stokes flow, where measured ψ at C = 1.6 is used as the initial profile
for case Re = 85 × 103 and lr = 60.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ψ cos(φ)

ψ sin(φ)

Figure 33: Measured (o) and computed (+) orientation distribution function at con-
traction ratio 3.4 and Re = 85 × 103 and lr = 60.
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Figure 34: Measured (o) and computed (+) distribution functions at contraction ratio
5.6 and Re = 85 × 103 and lr = 60.
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Figure 35: Development of the ratio of experimentally obtained values of a1111 pre-
diction by Stokes flow, where measured ψ at C = 3.6 is used as the initial profile for
cases Re = 85 × 103 and lr = 20 (+), Re = 170 × 103 and lr = 20 (x).
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Figure 36: Development of Per in the contraction for cases Re = 85×103 and lr = 60
(o); Re = 85 × 103 and lr = 20 (+); and Re = 170 × 103 and lr = 20 (x).

turbulent becomes insignificant further upstream (i.e., lower contraction ratio) due

to the relatively lower turbulent intensity at the inlet.

For the cases investigated, relative importance of turbulence disappears when the

streamwise turbulent intensity falls below 1.5%. The rotational Péclet number, Per,

compares the relative influence of the mean gradient component and the rotational

diffusion (Krushkal & Gallily). This parameter is defined as,

Per =
∂ U1/∂ x1

Dr

. (90)

where ∂ U1/∂ x1 is the characteristic velocity gradient.

Figure 36 shows the development of Per along the contraction centerline for the

measured cases. The values of Dr computed from equations 32 and 85 are used

to evaluate Per. The results show that the effect of turbulence on the orientation
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Figure 37: Contraction geometries considered; flat plate, equation 91 (—), constant
rate of strain, equation 92 (−−−), linear rate of strain, equation 93 (- · -), quadratic
rate of strain, equation 94 (· · ·).

.

development becomes insignificant when Per > 10 (see figures 32, 35 and 36).

5.5 Effect of contraction shape

In the following paragraphs we examine the effect of contraction shape on ori-

entation anisotropy. The inlet height, h0, the contraction length, l, and the max-

imum contraction ratio, Cmax, are constant for the contractions considered. It has

been shown that the production of turbulence has a negligible effect on orientation

anisotropy. Therefore, the turbulent rotational diffusion coefficient is assumed to be

dependent only on the inlet conditions. The value of Dr is evaluated, according to

equation 85, based on the inlet turbulent conditions for case lr = 20. As a result, the

value of Dr and ε are independent of contraction shape for a given C. In this analysis,

the resulting orientation anisotropy inside the contraction with flat walls, constant
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rate of strain, linear rate of strain, and quadratic rate of strain are compared. The

equation of local height for these contractions is given by

h = h0 − 2x1 tanβ, (91)

h =
h0l

(Cmax − 1)x1 + l
, (92)

h =
h0l

2

(Cmax − 1)x2
1 + l2

, (93)

h =
2h0l

3

3(Cmax − 1)lx2
1 − (Cmax − 1)x3

1 + 2l3
, (94)

respectively. Figure 37 shows the geometry of these contractions. Equation 84 is

solved for flow at the contraction centerline using a finite difference approximation

with isotropic inlet fiber orientation. The orientation parameter, a1111, versus the

contraction length and the contraction ratio is shown in Figs. 38 and 39, respectively.

The contraction with flat walls has the smallest orientation anisotropy at the outlet.

However, the contraction with constant rate of strain has the largest anisotropy. This

is likely the result of different flow dynamics at the region immediately downstream

of the inlet. To show the actual comparison of the orientation anisotropy in these

cases, the orientation distribution function of contraction with constant rate of strain

and flat walls at C = 11.2 are presented in figure 40. At C > 3 the randomizing
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Figure 38: The orientation parameter a1111 for flat plate, equation 91, (—), constant
rate of strain, equation 92, (−−−), linear rate of strain, equation 93, (- · -), quadratic
rate of strain, equation 94, (· · ·).
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Figure 39: The orientation parameter a1111 versus C for flat plate, (—), constant
rate of strain (−−−), linear rate of strain (- · -), and quadratic rate of strain (· · ·).
Development of a1111 in Stokes flow, Dr = 0, for all cases (+).
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Figure 40: The orientation distribution function at C = 11.2 for flat plate (—),
constant rate of strain (−−−).

effect of turbulence is negligible compared to the orienting effect of flow acceleration.

Therefore, in this region a1111 develops similarly for the contractions considered, as

seen in figure 39. Thus, the orientation anisotropy follows the development of Stokes

flow. At C < 3, where Dr is large, strong turbulence has more time to interact with

fibers for contractions with low initial rate of strain. This rotational Péclet number,

Per more effectively describes the shape effect. The downstream variation of Per for

the studied contractions is presented in figure 41. Turbulence has negligible effect on

orientation anisotropy when Per > 10. Smaller value of Per at C < 3 results in a

smaller orientation anisotropy at the outlet.

It should be noted that in Stokes flow, where Dr = 0, the development of a1111

is only a function of C and is independent of contraction shape. This is attributed

to the fact that the change of orientation angle in Stokes flow is only dependent on

the dimensionless acceleration, ε. The value of ε is identical in all contractions for a
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Figure 41: The rotational Péclet number for flat plate (—), constant rate of strain
(−−−), linear rate of strain (- · -), quadratic rate of strain (· · ·).

given contraction ratio.

5.6 Accuracy of closure approximations in planar extensional flow

In this section, components of the aijkl tensor obtained by measuring the pla-

nar orientation state at the contraction centerline are presented. In addition, the

measured aij tensor is used to calculate aijkl based on the closure approximations

presented in the theory section.

The orientation of large aspect ratio fibers, λ ≈ 1, for flow through planar con-

tractions, after simplifications and considering ∂ U2/∂ x1 ≈ 0 is given by equations

32 and 33. The values of U1 and ∂ U1/∂ x1 are computed at the center of each fiber

and are assumed to be constant along the fiber. Solution of equation 32 is given by

equation 34. Figures 42 and 43 show that both the fitted orthotropic and natural

closure approximations give accurate prediction of the measured normal components
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Figure 42: Measured a1111 for case lr = 20 (�) compared to predictions based on
linear (♦), quadratic (+), hybrid (�), composite (�), orthotropic interpolation (o),
orthotropic fitted (�), and natural (x) closure approximations.
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Figure 43: Measured a3333 for case lr = 20 (�) compared to predictions based on
linear (♦), quadratic (+), hybrid (�), composite (�), orthotropic interpolation (o),
orthotropic fitted (�), and natural (x) closure approximations.
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of the orientation tensor, a1111 and a3333 for case lr = 20. One of the most inaccurate

predictions is given by the hybrid closure approximation. Interestingly, the hybrid

closure approximation is one of the most widely used approximations to simulate

the flow induced development of suspension microstructure. The same behavior has

been observed when approximated a1111 and a3333 of case lr = 60 were investigated.

However, a least-squares fit of orthotropic model to the measured cases gave slightly

different coefficients given by

⎛
⎜⎜⎝ a1111

a3333

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ 0.101 + 0.413a11 + 0.498a2

11 − 0.392a33 + 0.321a2
33 + 0.305a11a33

0.141 − 0.395a11 + 0.2518a2
11 + 0.084a33 + 0.786a2

33 + 0.567a11a33

⎞
⎟⎟⎠

(95)

It should be noted that since θ is not measured only two normal components of

aijkl have been investigated. The deviation between the predicted and measured

orientation is represented by the error parameter, eijkl, defined as

eijkl =
(aijkl − âijkl)

2

a2
ijkl

(96)

where the repeated index do not imply summation. Figures 44 and 45 show the rel-

ative performance of orthotropic closure fitted to the measurements versus the fitted

closure of Cintra and Tucker (1995). Predictions based on equation 95 give slightly

more accurate orientation predictions in planar extensional flows. Cintra and Tucker’s

closure is based on a best fit of both extensional and shear flows. Therefore, coef-

ficients given by equation 95 yield slightly more accurate prediction for plain strain
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Figure 44: Normalized error in case lr = 60; (×) e1111 by present model, (�) e3333 by
present model, (+) e1111 by Cintra and Tucker (1995), (◦) e3333 by Cintra and Tucker
(1995).

flow. Even in orientation anisotropy predicted by Stokes flow, the coefficients pre-

sented here shows a better accuracy as illustrated in figure 46. In order to obtain ODF

of Stokes flow prediction, equation 34 is used to calculate φ at different downstream

positions.
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Figure 45: Normalized error in case lr = 20; (×) e1111 by present model, (�) e3333 by
present model, (+) e1111 by Cintra and Tucker (1995), (◦) e3333 by Cintra and Tucker
(1995).
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Figure 46: Normalized error for Stokes flow model; (×) e1111 by present model, (�)
e3333 by present model, (+) e1111 by Cintra and Tucker (1995), (◦) e3333 by Cintra
and Tucker (1995).
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Figure 47: Schematic of the step diffuser generated turbulence experimental set-up
with coordinate system.

5.7 Comparison of grid generated turbulence to step-diffuser turbulence

Previously, we have considered the influence of turbulence on the rotational

diffusion of fibers for an idealized version of systems used in paper manufacture.

Grid generated turbulence is characterized by nearly isotropic turbulence and uniform

streamwise velocity gradients in the x2− and x3− directions (see figure 47). However,

a typical flow geometry encountered in modern paper forming operations consists of a

series of step-diffuser tubes which generate high intensity anisotropic turbulence and

non-uniform streamwise velocity gradients in the x2− and x3− directions. Therefore,

it is of practical interest to investigate turbulent flow characteristics representative of

condition found in industry.

In the following paragraphs, the development of nearly homogenous isotropic tur-

bulence at the inlet is compared to step diffuser generated turbulence. Inlet turbulence

is generated by a five row, four single step tube bank.

Figure 48 shows the uniformity of the streamwise component of mean velocity for
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Figure 48: a) Mean streamwise velocity x3-profile for grid generated turbulence at
C=1.18, 1.65, 2.8, and 9.0 at Re =85× 103 (.), Re = 127× 103 (o), Re = 150× 103

(�). b) Mean streamwise velocity x3-profile for step diffuser generated turbulence at
C=1.18, 1.65, 2.8, and 9.0 at Re =85× 103 (.), Re = 127× 103 (o), Re = 150× 103

(�).

both grid generated and step diffuser generated turbulence for the Reynolds numbers

considered in this study. The grid generated turbulence is uniform in the contraction

except near the sidewalls near the outlet where the streamwise velocity profile reverts

near the sidewalls. This is most likely due to the pressure drop at the contraction

outlet. The step diffuser turbulence is characterized by strong jet interaction near

the contraction inlet. However, in the region C > 1.65, the mean streamwise velocity

profile becomes uniform. In this region the application of the model given by equations

and is likely valid.

Turbulence characteristics inside the contraction vary between grid generated tur-

bulence and step diffuser generated turbulence. Figures 49, 50 and 51 show the

development of streamwise and lateral components of fluctuation velocity, respec-

tively. The step diffuser generated turbulence shows a minimum in lateral fluctuation

velocity components at C = 2.4 as opposed to C = 2.0 for the case of grid gener-
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ated turbulence. Production of turbulent energy is nearly zero near the inlet of the

contraction for grid generated turbulence due to nearly isotropic turbulence. Step

diffuser generated turbulence is anisotropic therefore some production of turbulent

energy is taking place near the contraction inlet. However, due to the presence of large

scale eddies generated by the step diffuser tubes and the large turbulent intensity at

the inlet, the decay of components of fluctuation velocity because of dissipation is

dominant. Therefore, the dissipation of turbulent energy and production of turbulent

energy become equal further downstream in the contraction. At C > 2.8, the tur-

bulent energy increases for both cases because of anisotropy due to higher Reynolds

stress component in the x2- and x3- directions than that in the x1-direction. This

effect becomes amplified further downstream at the high contraction ratio region.

The increase in the streamwise component of the turbulent kinetic energy is most

likely because of inter-component distribution of energy. The inlet region of the

step diffuser turbulence is characterized by significant streamwise velocity gradients

in x2-direction. However, the rotational Péclet number is less than one at the inlet

based on ∂ U1/∂ x3 and equation 85. Therefore, the model presented above for orien-

tation diffusion due to turbulence in grid generated turbulence is likely accurate for

dilute step diffuser generated turbulence assuming mean streamwise velocity gradient

is known.
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Figure 49: Development of normalized streamwise component of fluctuation velocity
for grid generated turbulence lr = 20 (o) and step diffuser generated turbulence (x)
at Re = 85 × 103.
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Figure 50: Development of normalized x2− component of fluctuation velocity for grid
generated turbulence lr = 20 (o) and step diffuser generated turbulence (x) at Re =
85 × 103.
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Figure 51: Development of normalized x3− component of fluctuation velocity for grid
generated turbulence lr = 20 (o) and step diffuser generated turbulence (x) at Re =
85 × 103.
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CHAPTER 6

CONCLUSIONS

To date, a limited body of work is available considering the coupling of turbulence

and rotational diffusion of fibers in practical suspension flow. In this work, the influ-

ence of turbulence on the development of the orientation distribution of a suspension

of stiff fibers at high Reynolds number in a planar contraction is investigated. A di-

lute nearly density matched suspension is considered such that fiber-fiber interactions

and the effect of fiber inertia are negligible.

Nearly isotropic homogenous turbulence with uniform mean velocity profile is in-

troduced at the contraction inlet. It is observed that the development of the stream-

wise component of the fluctuation velocity up to contraction ratio 2 closely follows the

development of decaying grid turbulence in a straight channel. The streamwise and

lateral components of fluctuation velocity decrease to a minimum value downstream

of the contraction inlet. The location of the minimum of velocity components depends

on the position of the grid relative to the contraction inlet. The integral length scale

of turbulence was found to be of the order of the fiber length at the contraction inlet,

and increases with increasing contraction ratio.
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The main results have shown that a Fokker-Planck type equation accurately mod-

els the orientation state of fibers in turbulent inhomogenous flow. The downstream

development of orientation distribution shows that the rotational diffusion coefficient

Dr decays exponentially with local contraction ratio, C, and is dependent on inlet

turbulent characteristics. This suggests that the influence of turbulent energy pro-

duction of fiber dynamics in the contraction is negligible. This is attributed to the

small production of turbulent energy at C < 2, where turbulence closely follows the

decay of grid generated turbulence in a rectangular channel, and the large streamwise

rate of strain at large C which offsets the effect of turbulence. The development of

orientation distributions function implies a rather weak dependence on Re for range

of Re considered. Furthermore, the results show that the influence of turbulence on

fiber rotation is negligible for Per > 10.

The influence of turbulent parameters on rotational dispersion of fibers near the

contraction inlet is predicted within an order of magnitude by the model put forth

by Olson & Kerekes (1998). The model proposed by Krushkal & Gallily is shown

to overpredict fiber rotational diffusion by two orders of magnitude. However, both

models specify that the integral length scale Λ must be much larger than the fiber

length scale, L, which is not valid for the suspension flow considered. The exponential

decay of Dr disagrees with previously reported results (Olson et al. 2004), where Dr

remains constant in the contraction according to their results. A model for Dr is

proposed based on the observation that rotational diffusion is primarily dependent

on inlet turbulent characteristics and local contraction ratio, and the components of
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fluctuation velocity develop similarly for the range of Re, β, and lr considered in this

study. The model is limited to initially homogeneous, isotropic turbulent flow with

uniform mean velocity profiles and negligible turbulent production near the inlet.

Based on this model, the fiber orientation in a contraction of arbitrary shape

may be predicted by solving the Fokker-Planck equation for a given inlet turbulent

condition. The orientation anisotropy parameter, a1111, obtained from the moments

of the orientation distribution function, is shown to vary with the contraction shape.

Predictions show that the outlet anisotropy is maximum for contractions with high

initial rate of strain. The development of orientation anisotropy is governed by the

rotational Péclet number, Per representing the interplay between the randomizing

effect of turbulence and the orienting effect of streamwise mean rate of strain. The

relative importance of turbulence disappears when the streamwise turbulent intensity

falls below 1.5%. In the region C > 4, Per indicates that turbulence has a negligible

effect on fiber orientation and a1111 follows predictions based on Stokes flow. In the

region C < 3, Per < 1 indicating that turbulence strongly influences the orientation

in this region.

Comparison of the measured aijkl at the centerline of a planar contraction to

their approximations showed that natural and orthotropic approximations are the

most accurate models. However, by fitting orthotropic model to measured aijkl, new

coefficients have been obtained. It is shown that for planar contraction flow, or-

thotropic approximation with these coefficients better predicts the orientation state.

It is interesting to investigate the performance of these coefficients in other flows.
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The development of orientation distribution function follows that of high aspect ratio

axisymmetric particles in Stokes flow when the rotational Péclet number is larger

than 10.

There has been some disagreement among previous investigators as to the appro-

priate choice of length scale to evaluate the microscopic Reynolds number. Results

show that the orientation distribution function at large C develops closely to the

prediction based on Stokes flow. Based on this result and estimates of the fiber

slip velocity, it is clear that fiber inertia played a negligible role in the experiments.

Therefore, fiber diameter is the appropriate length scale to determine the microscopic

Reynolds number and thus the effect of inertia.

The model for Dr in planar contraction flow is based on an idealized version of

systems used in manufacturing. Semi-dilute suspension flows found in the paper

industry are extremely complex due to the non-ideal nature of pulp fibers. These

fibers are often irregularly shaped, flexible, with irregular, electrostatically charged

surfaces. In addition, we have shown that the inlet flow to the converging zone of

a typical hydraulic headbox is non-uniform. Turbulence is produced in the region

C < 2 due to the presence of mean streamwise velocity gradients in the x2 and x3

directions. Therefore, prediction of flow induced microstructure in the converging

zone is likely to have some error originating from the production of turbulent energy

in the region C < 2. Accurate predictions of orientation state are expected in the

region, C > 2, since the mean velocity gradients are nearly uniform.
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APPENDIX A

EFFECT OF CONTRACTION HALF ANGLE

The effect of contraction half-angle, β, on the development of turbulent parameters

inside a planar contraction is investigated. The values of β considered in this work

ranged from β = 8.16o to β = 8.63o. These values correspond to Cmax = 7.3 and

Cmax = 16.7, respectively. Although the difference appears small, the total convective

acceleration at the contraction outlet for the second case is more than double that

of the first case. In this series of experiments, the flow Reynolds numbers are nearly

constant and the same grid set-up was used. Figure A.1 shows the development

of normalized streamwise rms-velocity component for the three different contraction

angles considered. It appears that the contraction half-angle has no clear effect on

development of streamwise rms-velocity component for the cases studied. This is

in agreement with linear theory. However, Tsuge shows that the development of

streamwise turbulent intensity in a planar contraction is a function of residence time.

This is explained by the fact that the residence time for the low contraction case is only

slightly more than the residence time for the high contraction case. The residence

time effect should be more pronounced when changing Re Figure A.2 shows the
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Figure A.1: Effect of contraction half-angle on the grid generated x1−component of
fluctuating velocity for β = 8.16o (o), β = 8.63o (x), β = 8.89o (+) for lr = 20 and
Re = 85 × 103.

development of normalized streamwise turbulent intensity for the three contraction

angles considered. Again, it is seen that the three cases fall on the same curve

signifying that the development dependens only upon the total applied strain. This

is in agreement with the results reported by previous investigators.
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Figure A.2: Effect of contraction half-angle on the grid generated x1−component of
turbulent intensity for β = 8.16o (o), β = 8.63o (x), β = 8.89o (+) for lr = 20 and Re
= 85 × 103.

Figure A.3 shows the development of normalized x2−component of rms-velocity

for the contraction angles considered. Figures A.4, 47, A.5, A.6, show the development

of the x2− and x3− components of fluctuation velocity and turbulent intensity with

changing contraction angle. Results are similar to the results mentioned earlier. The

development of normalized x2−component of turbulent intensity for the contraction

angles considered. Figure A.5 shows the development of normalized x3−component

of fluctuation velocity for the contraction angles considered. Figure A.6 shows the

development of normalized x3− component of turbulent intensity for the contraction

angles considered.
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Figure A.3: Effect of contraction half-angle on x2−component of rms-velocity for
β = 8.16o (o), β = 8.63o (x), β = 8.89o (+) for lr = 20 and Re = 85 × 103.
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Figure A.4: Effect of contraction half-angle on x2−component of intensity for β =
8.16o (o), β = 8.63o (x), β = 8.89o (+) for lr = 20 and Re = 85 × 103.
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Figure A.5: Effect of contraction half-angle on x3− component of fluctuation velocity
for β = 8.16o (o), β = 8.63o (x), β = 8.89o (+).
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Figure A.6: Effect of contraction on x3− component of turbulent intensity β = 8.16o

(o), β = 8.63o (x), β = 8.89o (+) for lr = 20 and Re = 85 × 103.
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APPENDIX B

ERRORS AND UNCERTAINTY

In the following paragraphs we consider the accuracy and reproducibility of fiber

orientation state and the turbulent velocity field measurements presented above. Im-

portant sources of error originate from alignment of the ldv and high speed camera

with the test section as well as precision error.

For each turbulent parameter the total uncertainty, δT,i, is a function of the bias

limit, Bi, and precision limit, Pi, given by

δT,i =
√
B2

i + P 2
95%,i (B.1)

We assume that the source of uncertainty is independent and may be represented by a

Gaussian distribution. Although there are many possible sources of error originating

from fundamental ldv principles (i.e. fringe spacing and transmitting angle) and data

acquisition procedures, we will focus on the likely most significant sources of error.

Error propagation analaysis states that the total uncertainty in the measured U1 and
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Table B.1: Uncertainty in measured streamwise mean velocity component, U1 for grid
generated turbulence and lr = 20 and Re = 85 × 103

C (∂ U1

∂ x1
δ x1,a)

2
(

m2

s2

)
(∂ U1

∂ x1
δ x1,b)

2
(

m2

s2

)
P 2

95%,U1

(
m2

s2

)
δT,U1

(
m
s

)

2 3.2 × 10−4 5.6 × 10−4 2.05 × 10−5 0.030

4 5.3 × 10−3 0.009 8.41 × 10−5 0.119

6 0.025 0.045 1.82 × 10−4 0.266

8 0.282 0.141 3.2 × 10−4 0.651

√
u′ 21 is given by

δT,U1 =

[(
∂ U1

∂ x1

δ x1,a

)2

+

(
∂ U1

∂ x1

δ x1,b

)2

+ P 2
95%,U1

]1/2

, (B.2)

and

δ
T,

√
u′ 2
1

=

⎡
⎢⎣
⎛
⎝∂

√
u′ 21

∂ x1

δ x1,a

⎞
⎠

2

+

⎛
⎝∂

√
u′ 21

∂ x1

δ x1,b

⎞
⎠

2

+ P 2

95%,

√
u′ 2
1

⎤
⎥⎦

1/2

, (B.3)

where δ x1,a is the uncertainty in x1− position due initial alignment at the origin,

δ x1,b is the uncertainty in x1− due to horizontal misalignment, while P 2
95%,U1

and

P 2

95%,

√
u′ 2
1

are the random errors associated with the measurements. Tables B.1 and

B.2 summarize the estimated uncertainty in the measurements.

Results show that the majority of error in measurements of mean and turbulent
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Table B.2: Uncertainty in measured streamwise fluctuation velocity component,

√
u′ 21

for grid generated turbulence and lr = 20 and Re = 85 × 103.

C (
∂

√
u′ 2
1

∂x1
δ x1,a)

2
(

m2

s2

)
(

∂

√
u′ 2
1

∂x1
δ x1,b)

2
(

m2

s2

)
P 2

95%,

√
u′ 2
1

(
m2

s2

)
δ
T,

√
u′ 2
1

(
m
s

)

2 4.06 × 10−8 7.22 × 10−8 2.54 × 10−7 6.05 × 10−4

4 2.03 × 10−7 3.61 × 10−7 3.37 × 10−7 9.50 × 10−4

6 4.70 × 10−7 8.36 × 10−7 5.82 × 10−7 1.40 × 10−3

8 1.14 × 10−6 2.02 × 10−6 9.39 × 10−7 2.00 × 10−3

flow parameters is due to misalignment of the beam intersection in the x1− direction,

primarily at high C. Uncertainty in the streamwise location, δ x1,a, is introduced each

time the ldv position is set to 0 relative to the contraction outlet. The contraction

inlet may be referenced to accuracy approximately ±0.3 mm. giving a conservative

estimate of δ x1,a to be 0.6 mm. If the beam fails to enter the contraction normal

to the sidewall, then the ldv measurement of U1 will be located at a different x1

position than expected. The angle of misalignment was deduced from the differences

in x1 positions along the near and side walls. The uncertainty in the location of

the probe volume due to horizontal misalignment, δ x1,b is estimated to be 0.8 mm.

The streamwise rate of strain, ∂ U1

∂ x1
is evaluated based on equation 8. However, a

polynomial fit of urms(x1) is required to estimate
∂

√
u′ 2
1

∂ x1
.

The precision of the mean and fluctuation velocity is evaluated by varying the
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sample size, Ms, for a fixed number of events, k, at a single position. The precision

error is given by

P95%,i = te,k−1
σs

k − 1
, (B.4)

which represents the error associated with considering a finite number of instanta-

neous velocity measurements to calculate turbulent flow statistics. In this equation k

is the event number consisting of Ms instantaneous velocity measurements, te is the

t-statistic corresponding to the desired confidence interval and σs is the standard de-

viation of Ms samples. The standard error of the mean represents the 95% certainty

that the mean will fall between the upper and lower limits of the error bars. The

averaged results, Ū1, and
¯√
u′ 21 are given by

Ū1 =
1

k

k∑
1

U1,
¯√
u′ 21 =

1

k

k∑
1

√
u′ 21 . (B.5)

The precision error associated with the streamwise component of mean and fluctu-

ation velocity is shown in figures B.1 and B.2, respectively. Based on this confidence

interval, the uncertainty in U1, and

√
u′ 21 , are estimated to be ± 0.5 % and ± 3.5 %,

respectively. Varying the sample size from 3,000 to 6,000 does no lead to significant

differences in sampling error in U1 or

√
u′ 21 . Therefore, the choice of 4,500 samples

per measurement location is justified.

The possible sources of error considered in measuring orientation anisotropy, a1111

are the bias error associated with imaging at a slight angle, β, to the x1− and x3−

plane and precision error. Figure B.3 illustrates that the fiber image is a projection of
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Figure B.1: Precision error at 95% confidence interval of mean streamwise velocity
component as a function of sample number, Ms and total events, k = 3.
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Figure B.2: Precision error at 95% confidence interval of streamwise component of
fluctuation velocity as a function of Ms. (k = 3).
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Figure B.3: Projection of fiber orientation vector, pi, onto plane parallel to top wall
of planar contraction.

the x1 component of the orientation vector, p1 onto a plane parallel to the top wall p̂1.

The x3− component of the orientation vector, p3, remains unchanged leading a biased

measured orientation angle, φ, which is always larger than the actual orientation

angle. The magnitude of the deviation in p1 is less than 1% for the contraction half

angles, β, considered. However, the influence of this bias on measured a1111 needs to

be quantified. This deviation is given by

φ = sin−1(sinφmcosβ), (B.6)

where φm is the measured orientation angle and φ is the exact orientation angle.

Based on this relation, the bias error associated with the orientation measurements

is approximately 1.6%. The total error in orientation anisotropy is given by

δT,a1111 =
[
B2

a1111
+ P 2

95%,a1111

]1/2
, (B.7)
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Figure B.4: 95% confidence interval of orientation anisotropy as a function of number
of fibers sampled, Ms. (k = 3)

where the precision error, based on the results of figure B.4, is approximately ±4.4%.

Table B.3 gives an overview of the bias and precision errors considered.
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Table B.3: Uncertainty in measured orientation anisotropy parameter, a1111 for grid
generated turbulence and lr = 20 and Re = 85 × 103.

C B2
a1111

P 2
95%,a1111

δT,a1111

2 7.21 × 10−5 5.54 × 10−4 0.025

4 1.30 × 10−4 9.94 × 10−4 0.036

6 1.60 × 10−4 1.23 × 10−3 0.037

8 1.85 × 10−4 1.42 × 10−3 0.040
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APPENDIX C

ORIENTATION TENSOR COMPONENTS

Table C.1: Measured second and fourth order orientation tensor components for case
Re = 85 × 103 and lr = 20.

C a11 a33 a13 a1111 a3333 a1133

1.16 0.5531 0.4469 0 0.4318 0.3256 0.1213
1.55 0.5757 0.4243 0 0.4579 0.3064 0.1178
2.23 0.6186 0.3814 −0.0053 0.5048 0.2675 0.1139
3.31 0.6796 0.3204 −0.014 0.5733 0.2141 0.1063
3.71 0.7129 0.2871 0.0055 0.6113 0.1859 0.1016
4.53 0.7458 0..2542 −0.0143 0.6519 0.1602 0.0940
5.32 0.7829 0.2172 0.0099 0.6986 0.1329 0.0843
6.65 0.8407 0.1593 0 0.7692 0.0878 0.0715
7.46 0.8510 0.1490 0 0.7854 0.0833 0.0656
8.49 0.8651 0.1349 0 0.8067 0.0766 0.0584
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Table C.2: Measured second and fourth order orientation tensor components for case
Re = 170 × 103 and lr = 20.

C a11 a33 a13 a1111 a3333 a1133

1.16 0.5622 0.4378 0 0.4436 −−− −−−
1.55 0.5806 0.4194 0 0.4650 −−− −−−
2.23 0.6058 0.3942 0 0.4917 −−− −−−
3.31 0.6735 0.3265 0 0.5666 −−− −−−
3.71 0.6888 0.3112 0 0.5828 −−− −−−
4.53 0.7252 0.2748 0 0.6285 −−− −−−
5.32 0.7665 0.2335 0 0.6770 −−− −−−
6.65 0.8323 0.1675 0 0.7567 −−− −−−
7.46 0.8430 0.1570 0 0.7739 −−− −−−
8.49 0.8578 0.1413 0 0.7969 −−− −−−

Table C.3: Measured second and fourth order orientation tensor components for case
Re = 85 × 103 and lr = 60.

C a11 a33 a13 a1111 a3333 a1133

1.16 0.5796 0.4204 0 0.4646 0.3054 0.1150
1.55 0.6223 0.3777 0 0.5144 0.2698 0.1079
2.23 0.6688 0.3312 0 0.5640 0.2265 0.1047
3.31 0.7494 0.2506 0 0.6599 0.1610 0.0895
3.71 0.7744 0.2256 0 0.6907 0.1419 0.0837
4.53 0.8091 0.1909 0 0.7387 0.1205 0.0704
5.32 0.8501 0.1499 0 0.7874 0.0873 0.0627
6.65 0.8798 0.1202 0 0.8274 0.0677 0.0524
7.46 0.8990 0.1010 0 0.8523 0.0544 0.0466
8.49 0.9052 0.0948 0 0.8623 0.0519 0.0429
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APPENDIX D

INERTIA INDUCED FIBER DYNAMICS

A more precise approach to determine the influence of inertia is to calculate the fiber

slip velocity from the equations of motion governing an isolated fiber suspended in an

accelerating flow field. The fiber is considered to be a cylinder of uniform length, L,

and diameter, d. The force balance in the x1− direction for a cylinder with streamwise

axis parallel to x3− direction is given by,

Uf (x1)
∂ Uf(x1)

∂ x1
=

2ρ

π dρf
CD(U1(x1) − Uf (x1))

2, (D.1)

where CD denotes the drag coefficient. The drag coefficient is a function of fiber

Reynolds number based on the fiber slip velocity, fiber diameter, and the carrier fluid

viscosity (Panton 1984). In this analysis, the free stream pressure gradient along

the fiber diameter is assumed to be zero. Thus, the value of CD for zero pressure

gradient flow is used. The effect of turbulent eddies and interaction between fibers is

not considered.

A finite difference approximation is used to solve equation D.1 for the fiber slip

velocity, (U1 −Uf ). Figure D.1 shows the effect of fiber diameter on its velocity along
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Uf

U1
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Figure D.1: The downstream development of Uf/U1, d = 0.57 µm (· · ·),5.7 µm (- -),
d = 57 µm (—), fiber aspect ratio, ap, in these plots is constant (ap = 53).

the contraction. In these plots fiber aspect ratio is constant. This figure implies that

increasing fiber diameter leads to an increase in fiber slip velocity. The slip velocity is

largest at high contraction ratios where acceleration is high, however, for fibers used

in this study the slip velocity is almost negligible. The change in fiber length with

constant fiber diameter does not affect the slip velocity. The effect of change of fiber

density on slip velocity is shown in figure D.2. For heavier particles the slip velocity

is larger.

The drag force for a fiber in which the streamwise axis is aligned in x1-direction

is much smaller compared to a fiber aligned in the x3-direction.

However, considering fiber diameter as the length scale, Ref will be small enough

to imply no effect of fiber inertia. The force balance in the streamwise direction shows

that fiber velocity induced by the drag force is dependent on the fiber diameter, d , and

the liquid and fiber density ratio. Thus, the relative velocity of fiber and the carrier
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Figure D.2: The downstream development of Uf/U1, ρf/ρ = 1.16 (- -), ρf/ρ = 22.8
(· · ·), ρf/ρ = 114.0 (—), aspect ratio, ap, in these plots is constant (ap = 53).

liquid is a function of fiber diameter only, since the ratio of fiber to liquid density is

approximately equal to one. For the fiber dimensions and suspension properties used

in this study, the slip velocity is very small. Assuming

Thus, it can be concluded that the effect of inertia is negligible if the Reynolds

number based on the fiber diameter, and not length, is the appropriate parameter.

This question will be addressed when the distribution of the measured orientation

anisotropy is compared to the theories for inertialess fibers in suspension.
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