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I. SUMMARY 

The purpose of this investigation was to determine the physical effect of 

organic solvent vapors on aerosols having particle radii in the range of 0.01 

to 0.1 micron. To accomplish this, an ion counter was employed to determine 

the particle size distribution of various aerosols both in the presence of pure 

gases and in the presence of gases containing foreign vapors. The size distri-

butions were established as functions of vapor concentration. 

Numerous devices were employed in generating the aerosols. A 2-1/2-horse-

power, 4-cycle gasoline engine was used to produce combustion products. Aero-

sols of soluble materials were prepared by atomization from solvents; stearic 

acid, camphor, ammonium iodide, paraffin, and napthalene aerosols were generated 

in this manner. The solvents were removed from the system by condensation and 

adsorption. Aerosols of graphite were generated with an "exploding wire" device. 

A thin film of graphite was deposited on an insulating material and placed be-

tween the electrodes of the device in a nitrogen atmosphere. The graphite 

aerosol was produced upon the instantaneous discharge through the graphite of 

capacitors totaling 35 microfarads charged to a potential of 10,000 volts. 

Carbon aerosols were generated with an alcohol-benzene burner. Apoly(methyl 

methacrylate) aerosol was generated by passing a pure nitrogen stream over inhibi-

tor-free methyl methacrylate where it picked up the monomer vapor. The vapor 

was then irradiated with ultraviolet light to form the polymer aerosol. Finally, 

synthetic "smog" was produced by irradiating a mixture of nitrogen dioxide, sul-

fur dioxide, and 1-pentene with ultraviolet light. 

Aerosols were brought into contact with a vapor simply by passing the aero-

sol stream through a container in which a quantity of the vapor substance was 
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maintained in the liquid state. This liquid's temperature was regulated to 

ensure its having a certain vapor pressure, and, thus, to provide the desired 

quantity of vapor. The vapor concentration was checked by dew point measure-

ments in most cases, but in a few instances direct condensation was employed 

with the condensate quantity being measured. 

The distribution of sizes making up the several aerosols was established 

by measuring the mobility, i.e., the rate of movement in an electric field, 

of the aerosol particulates carrying an electric charge, i.e., the ions. Since 

the particulates were limited to radii under 0.1 micron, the maximum charge 

carried by any one particulate was almost certainly only one electron. This 

being the case, ion mobilities were readily converted to particulate sizes. 

The assumption was made that the charged particulates were otherwise no dif-

ferent for having the charge. 

Systems consisting of aerosolized particulates (listed first) and a vapor 

(listed second) such as ammonium iodide and alcohol, camphor and alcohol, 

poly(methylmetlacrylate) and methyl ethyl ketone increased in particulate size 

with an increase in vapor concentration below relative humidities of 100 per cent, 

while systems of stearic acid and turpentine, carbon and benzene, graphite and 

benzene, paraffin and hexane, and napthalene and gasoline showed no size change 

below the saturation point. Except for the systems of graphite and benzene 

and carbon and benzene, the particulates were soldble to a measureable extent 

in the liquid phase of the vapor with which they were paired. 

The process of growth when a nonvolatile particulate is exposed to the 

vapor of a liquid in which it is soluble is comprised of two distinct mechan-

isms. The particulate first adsorbs a thin envelope of liquid by physical 
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attraction of the vapor. This envelope becomes thicker as the relative humid-

ity of the vapor is increased, until, at some particular relative humidity, the 

particulate dissolves completely. The resulting solution droplet will then 

continue to grow by the accretion of vapor as the relative humidity is increased. 

For a given particulate size there is a unique relative humidity at which total 

dissolution will occur, and this relative humidity can be calculated using 

data on the surface energy of the solid and the surface tension and vapor pres-

sure of the resulting solution. After the soluble particulate has become a 

solution droplet, its size upon exposure to any higher relative humidity can 

be calculated from a knowledge of the vapor pressure of the solvent and the 

vapor pressure and surface tension of the solution. In general, theory predicts 

that the higher the solubility of the particulate in the solvent to which it 

is exposed the lower will be the relative humidity at which a solution droplet 

will form. For very small particulate diameters (on the order of hundredths of 

a micron) of relatively low solubility materials (less than approximately 5 

per cent by weight) the theory predicts that a solution droplet will not form 

until the relative humidity exceeds 100 per cent. 

The experimental results of this investigation are in agreement with these 

predictions. 
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II. INTRODUCTION 

Hygroscopic particles in the atmosphere pick up or lose water vapor if 

the ambient humidity changes. As a result they shift from discrete solids 

through supersaturated and saturated droplets to dilute solution droplets and 

back again. Each step is accompanied by a change in particulate size. This 

behavior has been described in considerable detail.
1

'
2,3,4* 

Dioctylphthalate 

(DOP) droplets, in addition, have been shown to increase in size when exposed 

to toluene vapor and to do so in accordance with the Kelvin equation, at least 

to sizes as small as 0.03 micron in radius.
5,6 

 Other particulates would also 

be expected to take up organic vapors if brought into contact with them. Since 

the association of vapors and airborne particulates may have considerable in- 

fluence on the course of air pollution, 7  this presentation covers the change 

in size of various particulates from 0.01 to 0.10 micron in radius upon exposure 

to several organic vapors. 

*References are tabulated in the Appendix° 
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III. EXPERIMENTAL WORK 

A. Equipment and Operation 

Essentially, the apparatus used in this investigation consisted of (1) a 

radial ion counter with its associated electrical equipment, (2) air cleaning, 

pressure regulating, and flow measuring devices, (3) aerosol generating systems, 

(4) devices for sharpening the aerosol size distributions, (5) an aerosol charg-

ing device, (6) instruments for determining the concentration of contaminant 

vapors, (7) chambers for controlling the vapor humidities and for aging the 

aerosols, and (8) miscellaneous equipment for preparing and analyzing aerosol 

distributions. A schematic diagram of the apparatus is shown in Figure 1. 

1. Radial Ion Counter and Associated Electrical Equipment  

a. Description. A cylindrical ion counter was previously used by 

these investigators
5,8 

 to measure the increase in size of hygroscopic nuclei 

as a function of relative humidity. For this investigation a similar device 

was selected. A radial design was chosen because of the ease with which such 

a counter could be disassembled, cleaned, and realigned. Some difficulty was 

encountered during construction due to the necessity for machining quite flat 

circular electrodes. To do this, stainless steel plates were annealed to re-

lieve stresses and faced on a lathe. After several facings, taking very small 

cuts, the plates were within approximately three-thousandths of an inch of being 

flat, and calculations were made to determine the possible error due to this 

uncertainty. The error introduced was found to be negligible for the purposes 

of this investigation. 

The radial ion counter with its associated electrical equipment is shown 

in Figure 2. Figure 3 is an engineering drawing of the ion counter which 



Charger 

Vaporizer 	 Conditioning Chambers 
(Temperature Controlled) 

Aging 
Chamber Mixing 	Large 

7hamber 
	Ruticle 

Remover 

Air 
Supply 

Recorder r ....____ ■11 ■■■ im■ ,■. millab .... 	•••••• 

Micro-Micro 
Ammeter Pressure 

Regulator Vapor 
Concentration 

Indicator 
Exhaust 

ii 
I I 
II 

Pressure 
Indicator 

  

I 

L 
Stabalized 

D.C. 
Power Supply 

Filter 

Particulate 
Generator 
(sometimes 

gasoline engine 

Flowmeter 

 

Small Ion 
Remover 

Dew Point 

Partial 
	 Indicator 

—Exhaust 

Figure 1. Schematic Diagram of Ion Counter and Related Equipment 

•o
N  
;
pe
co
ad
  
cq
a
od

ea
  T

uu
Td
  



Final Report, Project No. B-207  

io
n  
C
o
u
n
te
r  
a
n

.  
R
e
la

te
d 
Eq

u
i.

m
en

t 

—9— 



2 35" 

SILVER SOLDER 

•  r 

2.00 MM 
OR 
.0787" 

MICARTA PLATE 

OUTLET 

2MM- 

2.58" 
SILVER SOLDER 

GROOVES 0.063" DEPTH IN EACH 
PLATE AND 0.150" WIDE 

1' 
INLET 

SILVER SOLDER 

0.2500" 

V 	 v 
issomminwisor ,imsm—yeta , 

Art- 	

,IsgitatMargitrAINS BN  

Figure 3. Ion Counter Detail. 

7.480" 

0.1250" 

SILVER SOLDER 

SILVER 
SOLDER 

SILVER 
SOLDER 7.874" 	 I 	 7.874" 

(
q
Jo

d
al

l  
T

'e
uT

d 
• 

o
x
  

qo
  a

  c
o

ac
t  



Final Report, Project No. B-207 

basically consists of two circular, stainless steel electrodes 40 centimeters 

in diameter with a 4-centimeter-diameter center section removed from each and 

both enclosed in a grounded electrostatic shield. The top electrode was sus- 

pended from the electrostatic shield by four stainless steel rods inserted 

through cylindrical Teflon insulators mounted above the shield. The 'Teflon 

insulators were heated approximately 5oC above the other parts of the counter 

to prevent condensation on the Teflon. The heaters were wound from resistance 

wire connected in series. Approximately 10 volts A.C. were applied across 

the heaters, from a variable voltage transformer. Cooling fins were provided 

on the insulator holders between the heaters and the counter to prevent the 

heaters from disturbing the temperature maintained in the ion chamber. The 

bottom electrode W1E3 mechanically attached to the electrostatic shield, but 

it was electrically insulated from it by a 1/4-inch-thick Teflon sheet. 

Four-centimeter-diameter Teflon discs were press-fit in the center of each 

electrode to insure that laminar flow was fully developed before reaching 

the active portion of the electrodes. An aerosol entrance port of one centi-

meter was provided in the center of the bottom electrode. 

The distance between the electrodes was adjusted by raising the top 

electrode, initially at rest on the bottom electrode, the desired distance. 

At first this distance was measured with an optical micrometer by observ-

ing the stainless steel supports protruding through the electrostatic 

shield. This technique was discarded in favor of a partially cutaway cap 

with an adjustment screw in the top. The distance between the adjustment 

screws and the stainless steel supports was set using a spacer of the proper 

thickness with the top electrode at rest on the bottom electrode. The top 

electrode was then raised until all supports came into contact with the 
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adjusting screws. The top electrode was electrically connected to ground 

through a micro-microammeter, Model 410, manufactured by Keithley Instruments, 

Inc., Cleveland 6, Ohio. The bottom electrode was connected to a Keithley, 

Model 240, regulated variable high voltage supply which provided voltages from 

0 to 1000 in 1/10-volt increments with an accuracy of plus or minus one per 

cent or 1/10 of a volt. All connectors were shielded Teflon-insulated cables. 

The ground electrostatic shield surrounding the two electrodes was con-

structed of 1/8-inch stainless steel sheet and was designed to permit ready 

access for cleaning of the electrodes. The aerosol entered through the bot-

tom of the shield, passed radially outward between the electrodes and was ex-

hausted through an opening in the top of the shield. The reading of the 

micro-microammeter was monitored with a recorder, Type S-72150, manufactured 

by E. H. Sargent and Company, Chicago 30, Illinois. 

b. Operation. 	The electrical power to the micro-microammeter, 

recorder, and variable voltage supply was turned on and each instrument was 

allowed to equilibrate before determinations were attempted. The recorder 

was standardized and the recorder and the micro-microammeter were set at 

zero according to instrument instructions. -  An aerosol, from the appropri-

ate generating device, was passed through the various conditioning parts 

of the system at the desired flow rate into the ion counter. 	The voltage 

applied to the bottom plate was increased periodically bymK,qn increments, 

and the current resulting from the migration of ions to the top electrode 

was indicated by the micro-ammeter and recorded. 	A typical recording 

of the ion current at the various, voltages is shown in Figure 4. The chart 

speed is one inch per minute for this recording. Either positive or negative 
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ions could be measured by reversing the polarity of the applied voltage and 

reversing the scale directions on both the micro-microammeter and the recorder. 

To determine if a change in the size distribution of an aerosol occurred 

one method was to set the applied voltage so that only a portion of the ions 

were removed and then to increase or decrease the relative humidity of the con-

taminant vapor. If an increase in particle size occurred, decreasing the 

mobility, fewer particles would be collected at the particular applied voltage 

and a decrease in ion current would be noted. A second method was also employed. 

For some aerosols such as carbon and graphite, two identical humidity chambers 

were constructed, one containing a very high relative humidity of the contam-

inant and the other containing a very low relative humidity. The aerosol stream 

would be diverted through first one chamber and then the other with a large 

stopcock. This is the quickest method for determining if a change in particle 

size does occur; however, absolute values cannot be deduced from the method. 

The concentration of the contaminant vapor was measured on the exhaust side 

of the ion counter. The method of obtaining a size distribution from the ion 

current versus voltage recording is described in detail in Section IV. 

To assure that the ion counter was operating properly the size distribution 

obtained with the ion counter for an aerosol resulting from atomizing a dilute 

solution of sodium chloride was compared with the distribution obtained from 

electron micrographs of the same aerosol. Such a comparison is shown in Figure 5. 

2. Air Cleaning, Pressure Regulating, and Flow Measuring Equipment  

Air was taken directly from a compressed air line at approximately 

90 pounds per square inch and reduced to 20 pounds per square inch with a 

pressure regulator. The air passed from the pressure regulator to a surge tank 
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Figure 5. Aerosol Size Distributions Determined from Electron 
Micrographs and for Ion Mobility Measurements. 
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and filter, then to a second pressure regulator where the pressure was re-

duced to the desired level. Rotometers were used to measure the rates of 

flow throughout the system. In systems where low flow rates were desired 

for introducing gases, stainless steel metering valves, manufactured by 

Nuclear Products Company, Cleveland 10, Ohio, were used. In systems requir-

ing the aerosols to be charged, the excessive air required for proper 

operation of the charging device was bled from the line before it entered 

the main portion of the system. 

3. Aerosol Generating Devices  

a. Gasoline Engine  

(1) Description.  A 4-cycle engine, Model 6012, manufactured 

by the Briggs and Stratton Corporation, Milwaukee 1, Wisconsin, equipped 

with a glass-wool packed muffler, was used to produce gasoline engine ex-

haust. Since the exhaust from the engine was too great andtoo pulsating 

for direct ion counter analysis, an aspirator was employed to withdraw a 

continuous sample from the exhaust stream. 

(2) Operation. The gasoline engine: was filled with the desired 

type of gasoline, started, and allowed to run for several minutes so that 

maximum stability could be attained. A portion of the exhaust gas was pulled 

into a large air stream by means of the gas aspirator. The aerosol was then 

passed through chambers of regulated temperature to adjust the aerosol to 

a predetermined humidity and to establish the humidity history of the aero-

sol. The aerosol then passed into a large aging chamber where it was 

irradiated with ultraviolet light. The average time in the irradiation 

chamber was determined from the flow rate. After irradiating, the aerosol 

passed to the ion counter. 

-16- 
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b DeVilbiss Atomizer  

(1) Description. Aerosols from soluble material were gene-

rated from dilute solutions by atomization, utilizing a DeVilbiss No. 180 

atomizer, manufactured by the DeVilbiss Co,, Toledo, Ohio. The atomizer 

produces fairly uniform droplets of approximately one micron diameter when 

operated with a sufficient forepressure. 

(2) Operation. The aerosol material was dissolved in an 

organic solvent. The atomizer was then filled with a solution containing the 

desired concentration of the material from which the aerosol Was to be gene-

rated and connected to an air line with a pressure of approximately 13 pounds 

per square inch. The aerosol stream was heated immediately after atomization 

to lower the relative humidity of the solvent vapor and to ensure that solid 

particles of the aerosol were formed. The solvent was removed from the 

system:by adsorption or freeze-out techniques. The aerosol was then passed 

through the conditioning chambers to the ion counter. 

c. Equipment for Generating Synthetic "Smog"  

(1) Description. The equipment necessary to generate smog 

synthetically9  is shown in Figure 6. It consisted of a small chamber con-

taining two Teflon bags for storing the required gases, two stainless steel 

metering valves, two glass rotometers, a Teflon-lined chamber for irradiat-

ing the gases after mixing, an ultraviolet irradiation source, and a device 

for inducing an electrical charge on the resulting aerosol. 

The irradiation chamber was a cylindrical drum 32 inches high by 2)+ 

inches in diameter and lined with Teflon. The chamber contained an irradi-

ation source consisting or,four ultraviolet lamps with a total rating of 

-17- 
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60 watts. The ballasts and starters were mounted on the outside of the 

chamber to prevent reactions with the contaminated atmospheres produced in 

the chamber. A charging ,device, described in a following section, was 

mounted on top of the chamber to induce an electrical charge on the result-

ing aerosol particulates. 

(2) Operation.  Air was forced into the part of the smaller 

chamber not containing the Teflon bags, until the air and gases in the bags 

were exhausted. A known quantity of nitrogen dioxide was placed in one bag 

and known quantities of sulfur dioxide and l-pentene were placed in the 

other. The bags were then completely filled with known quantities of air 

metered with a wet test meter at atmospheric pressure. Again air was 

forced into the outer part of the chamber, but this time it caused the gases 

to flow through the stainless steel metering valves, the rotometers, and into 

the irradiation chamber. The desired flow was attained by adjusting the 

valves. The ultraviolet lamps were turned on and the air flow to the charg-

ing device was started. Since the air rate necessary to operate the charg-

ing device was greater than desired through the chamber, only a portion of 

it was allowed to enter the irradition chamber where it was mixed with the 

incoming gases. The average time of irradiation in the chamber was controlled 

by the flow rates. 

The aerosol produced after a few minutes by irradiation was passed 

through the conditioning chambers to the ion counter. 

-19- 
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d. Exploding Wire Device  

(1) Description. An exploding wire device10  was used for 

generating aerosols such as graphite for ion counter analysis. The unit 

was essentially a 35-microfarad capacitance bank, a power supply capable of 

charging these capacitors to 10,000 volts, an explosion chamber with sample 

holders and a switching mechanism to discharge the capacitors across the 

sample. The explosion chamber was constructed of 1/8-inch stainless steel 

with a transparent door for loading and observing the sample. In addition, 

a port was provided in each end of the chamber so that it could be filled 

with an inert atmosphere or maintained at reduced pressures. The sudden 

release of electrical energy provides the heat of vaporization and the explo-

sive force necessary to generate an aerosol. 

(2) Operation. Graphite powder to be aerosolized was placed 

on a cutaway piece of Tygon tubing with copper rods in each end. The 

graphite was wet with water to make it more conducting and spread evenly be-

tween the copper rods. The copper rods were then connected to the electri-

cal contacts in the explosion chamber, and the explosion chamber was filled 

with a nitrogen atmosphere. The capacitors were charged to approximately 

10,000 volts and then discharged suddenly through the graphite breaking 

up and dispersing it. The explosion chamber was next connected to the out-

side portion of a larger chamber containing a bag filled with air. The 

graphite aerosol was pulled into the chamber by withdrawing the air from the 

bag with a water aspirator. The chamber containing the aerosol was then 

stirred with a fan to insure uniform mixing, and finally, was connected to 

the ion counter system. The aerosol was forced through the counter by 
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refilling the bag with air. This batch type system was selected in order to 

prevent the aerosol from being diluted with air after it had been prepared. 

e. Benzene-Alcohol Burner for Producing Carbon  

(1) Description. The burner employed in producing an aero-

sol of carbon consisted of a small container with a wick across which was 

blown a jet of nitrogen gas to prevent complete combustion and aerosol agglom-

erat ion. 

(2) Operation. When the burner was lighted and the nitrogen 

jet was adjusted to prevent complete combustion, a portion of the resulting 

aerosol was sucked into an air stream with a gas type aspirator. The diluted 

aerosol then passed through a mixing chamber and through various other con-

ditioning chanters to the ion counter. 

f. Polymer Aerosol Generator  

(1) Description. A schematic diagram of the apparatus for 

generating poly(methglAmthacryiate) aerosol
11 
 is shown in Figure 7. It con-

sisted of a pressure regulated nitrogen gas supply , a chamber containing 

copper turnings inside a muffle furnace to remove all the oxygen that might 

be in the nitrogen stream, a chamber for introducing the monomer, and the poly-

merization chamber. A circular quartz window approximately 2 inches in diameter 

was located in the polymerization chamber to permit the passage of ultra- 

violet light. The ultraviolet light source was a quartz mercury arc lamp of 

the Central Scientific Company, Chicago, Illinois. This light dipcted 

through the quartz window, activated the monomer causing small nuclei of poly-

mer to form on which the remaining monomer could react. The result was an 

aerosol of Toly(methyl methacrylate). 
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(2) Operation.  Approximately 30 milliliters of methyl methacrylate 

monomer were treated with 25 milliliters of 5 per cent sodium hydroxide solu- 

tion to remove the inhibitor. After thoroughly mixing and allowing sufficient 

time for reaction with the inhibitor, the aqueous phase (bottom layer) was 

removed using a separatory funnel. The methyl methacrylate which remained 

was washed several times with water until a negative reaction for the 011 was 

indicated upon a litmus paper test. Molecular seive of the Linde Air Pro-

ducts New York 17, New York, was then used to dry the inhibitor-free monomer, 

and a portion of it was placed in the monomer container shown in Figure 7. 

The bottom of the container was placed in a water bath which was maintained 

at 160oF. A known quantity of the oxygen free nitrogen was next passed 

through the monomer container where it picked up the monomer vapor. The vapor 

passed into the polymerization chamber at a linear velocity of 0.5 cm/sec. 

The sheath stream flow rate was 774 cc/min which gave it the same flow velocity 

as the monomer. The ultraviolet light was directed through the quartz window 

into the polymerization chaMber, catalyzing the polymerization and causing the 

poly(methyl methacrylate) aerosol to formic The aerosol, finally, was passed 

through the desired conditioning chambers to the ion chamber. 

. Equipment for Sharpening the Aerosol Distribution  

In certain systems, sharpening, i.e., making more nearly monodis-

perse, the aerosol distribution was deemed desirable. This was accomplished 

by removing both the smaller and larger ions with devices as indicated below. 

a. Small Ion Remover  

The small ion remover was a miniature stainless steel radial 

ion counter designed to remove all charged particles with a radius of less 
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than 0.005 micron. It permitted a gas flow of 60 cc/sec and had a plate 

separation of 3 millimeters. The top electrode was grounded directly and a 

positive potential was connected to the bottom electrode. This device removed 

all charged particles of the designed radius and a portion of the larger sizes 

which happened to enter near the collecting electrode. The remaining par-

ticles were sufficient in number for size distribution tests and determina-

tions. Therefore, no attempt was made to measure the portion of the total 

number of particles extracted. 

b.  Devices Used to Remove Large Ions  

Two types of media have been used to remove ions larger than 

about 0.1 micron in radius. The first was a 3-1/2-inch column filled to a 

depth of 30 inches with water. The gas stream containing the aerosol was 

introduced at the bottom of this column through a wire mesh which broke the 

stream in small bubbles. The second remover was a filter of glass wool 

placed directly in the gas stream immediately following the aerosol generator. 

5. Aerosol Charging Device  

An ion generator of the type developed by Whitby, et al.,
12 

was 

used to charge the particulates of several of the aerosols investigated 

which normally were only partially charged. The device consisted of a direct 

current, high voltage supply variable from 0 to 10,000 volts constructed 

especially for the purpose, and a device for inducing the electric charge as 

shown in Figure 8. The actual charging device consisted essentially of a 

cylindrical Plexiglas chamber with sealed ends and two stainless steel elec-

trodes. One electrode was in the form of a thin disk with a 1/16-inch-

diameter hole through its center. The other electrode was a pointed rod. 
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In use the point was centered above the hole in the disk at a distance 

determined by gas flow and voltage requirements. The rod was maintained at 

ground potential. Air, or other gas was fed into the chamber at a pressure 

of 15 pounds per square inch; it exhausted through the electrode with the 

center hole. A corona discharge was established between the electrodes, and 

the P9m tag gas carried the charges outside the unit where they could be mixed 

with aerosol particulates. An aerosol could be charged either positive or 

negative depending on the polarity of the electrodes. 

6. Devices for Determining the Dew Point of Contaminant Vapors  

The dew point of contaminant vapor was determined by measuring 

the temperature at which they condensed on a mirrored surface. Figure 9 

shows schematically one apparatus which utilized water to cool a small brass 

sheet, approximately 1/32-inch thick, with a polished chrome finish on one 

side. The temperature of the water was controlled by mixing a stream of water 

that had passed through a cold bath with a stream of water at approximately 

room temperature. Using a mixture of ice and salt in the cold bath, tem-

peratures to approximately 5 °C were readily obtained. The temperature of 

the brass sheet was considered to be that of the water stream, and the latter 

was measured with Bureau of Standards thermometers, calibrated in 1/10-degree 

increments, before and after the test section. Condensation was indicated 

by directing a beam of light at the polished surface and measuring the re-

flected light picked up by a cadium sulfide photocell. The photocell was 

incorporated as one leg of a null bridge circuit which was balanced when there 

was no condensation on the polished surface. The unbalance from condensation 

was indicated by a galvanometer, Model 44o, manufactured by Western Electric 
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Instrument aporation, Newark, New Jersey. This design was slightly trouble-

some to operate; however, it was quite accurate in the hands of an experienced 

operator. 

A second design operating on the same principle was constructed for con-

tinuous monitoring of the dew point. A cadium sulfide photocell was employed 

as the detector; it served as one arm of a 60-cycle A.C. null bridge. The 

photocell operated a relay which controlled the power supply of a Frigistor, 

Model FS4, manufactured by the General Thermoelectric Company, Princeton, New 

Jersey. The Frigistor maintained a brass plate 1/32-inch thick with a mirrored 

chrome finish on one side and approximately the same area as the Frigistor 

(1/2 by 3/4 inch), at the temperature of the dew point. The excess heat from 

the Frigistor was dissipated by circulating water. The dew point temperature 

was measured with a calibrated thermocouple attached to the plate. The e.m.f. 

from the thermocouple was amplified with a stabilized direct current microvolt 

amplifier, Model 9835D, manufactured by the Leeds and lia-thnti Co., 'PhilEtdelphid; 

44, Pennsylvania, and monitored with a recorder Model SR, manufactured by 

E.H. Sargent & Co., 4647 W. Foster Ave., Chicago 30, Illinois. This device 

is only semiautomatic in that the current to the Frigistor must be adjusted 

manually for different dew point temperature ranges. 

7. Chambers for Controlling Humidities and Aging the Aerosols  

The chambers used to control the humidity of the various contami-

nants were 2-liter glass flasks mounted in temperature-controlled water 

baths; material for adding vapor to or adsorbing vapor from the system was 

contained in the flasks also. The aging chamber varied from a 300-liter box 

to a one-liter boiling flask depending on the system being investigated; in 

-28- 
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some instances no aging chamber was used. 

8. Miscellaneous Equipment  

An electron microscope was used to make micrographs from which par-

ticle sizes were then determined. Optical microscopes with an optical microm-

eter were used to analyze the electron micrographs. A thermal precipitator 

was employed to collect samples on the electron microscope grids. A Traube 

stalagmometer was used to measure the surface tension of the various solutions, 

while their densities were measured with a pycnometer. 

B. Test for the "Affinity" of Various Particle Substances in Organic Vapors  

Tests were made to determine if certain of the aerosol substances ad-

sorbed enough contaminant solvent vapor from a saturated atmosphere to dissolve 

partially or completely. To do this the dessicant space of a large dessicator 

was filled with one of several organic solvents. A few particles of the dif-

ferent aerosol materials were then placed on microscope slides and enclosed 

in the container with the solvent. The particles and vapor were allowed to 

equilibrate overnight, after which, visual observations were made to see if 

swelling, dissolution, or partial dissolution of the particles had occurred. 

These determinations were used to see if aerosol growth in the presence of 

vapor might be expected. No absolute conclusions were drawn from these ob-

servations, but they were found to be a general guide to an aerosol's behavior. 

C. Determination of.Physical Properties  

Solubility and surface tension data were needed for theoretical calcu-

lations of the systems investigated. In many cases such data could not be 

found in the literature and had to be determined experimentally. 

To establish solubilities, a 100-gm sample of solvent, which had been 

- 29- 
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brought to 25°C in a temperature-controlled bath, was placed into a thoroughly 

cleaned, dried, and weighed Erlenmeyer flask. A flask of dry solute was also 

prepared and weighed. The solute was next added slowly to the solvent until 

a small amount remained undissolved. The flask was then placed in a controlled 

temperature bath at 25 °C and allowed to remain for several days with occasional 

agitation. Additional solute was added as the previous amount dissolved. 

After the final equilibrium, the flask containing the solvent and the solute 

and the flask containing the solute were reweighed. From the differences, 

solubilities were calculated as was the evaporation of solvent during the 

test. This latter proved to be a negligible quantity in all systems. 

Surface tension determinations were made with a Traube stalagmometer. 

The procedure, briefly, was to clean the equipment with cleaning solutions 

and rinse it with distilled water. The stalagmometer was then filled with 

the solvent, and subsequently, with the solvent containing various concentra- 

tions of the solute. The size and number of the drop emerging were determined 

at 25°C. A pycnometer was used to determine the densities of the pure solvent 

and solvent with various weight per cents of contained solutes when these data 

could not be obtained from the literature. The surface tension a was calcu- 

lated from the equation 

a N p 
w w a 

where a
w is the surface tension of water, N is the number of sample drops, N 

is the comparative number of pure water drops obtained with the stalagmometer, 

p is the density of the sample, and pw•is the density of water. 

- 30- 
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IV. INTERPRETATION OF DATA FROM A RADIAL ION COUNTER 

For laminar flow between the circular plates of the ion counter, the 

velocity profile of the air flow in cylindrical coordinates is 

2 	 2-  
v
R 

_ 	b ,p 	r - ( --1!) . 
2Rp In IT

R2 
  
1 

(2)  

where v
R is the radial velocity, R is the distance from the center of the 

circular plates, b is the distance between the two plates, Ri  is the inner 

radius
, 
R
2 

is the outer radius, LIP is the pressure drop from the inner radius 

to the outer radius, p is the viscosity of the air, and z is the displacement 

along the vertical axis with the origin midway between the plates. 

Since the flow rate, F, can be expressed as 

-Ft 

F = 	v
R 

(27(R)dz 
-b 

integration yields 

4 [ 	 b3 6,P  
F - 3 	p. In 

Equation 4 may then be substituted into Eq. 2 to give the velocity profile 

as a function of F, z, and R. The resulting equation is 

3F 	( z ) ] 
8b. 	R 	'17 1  

(3) 

(5) 
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The mobility of a charged particle in an electric field is defined as the 

velocity per unit field strength. If a distribution of ions with a single 

discrete mobility, wi , is considered 

_ v
z 

wi  - —E  

where v
z 

is the velocity in the z direction and E is the field strength. 

The field strength between the parallel plates is 

_ V E 2b 

where V is the applied potential difference between the plates. Substituting 

Eq.' 7 into Eq. 6 the mobility of each ion is 

2bv  

	

co. 	- 	 I 	V (8) 

The z coordinate of an ion with mobility cu i  entering the chamber at Ri and 

Z
o 

is given at time, t, after entering as 

z = Z
o 

+ vzt 

Substituting this relation into Eq. 5 yields 

Zo 	vz.t. dR 	3F  vR = aT obnli 

A particle initially at Zo  will reach the lower plate and be collected at a 

time tf given by 

tf 	vz 
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Integration of Eq. 9 and substituion of Eq. 11 into Eq. 10 results in 

2- R 
 2 

Zo  
Rc 	, 

_ 	 + 2b - 3Zi 
2 	8101i 	 2 

	

vz 	b 
(12) 

The above equation gives them Rc  at which an ion initially at Z o  will be col-

lected. By setting Rc  equal to R2  the equation may be rearranged to give 

F 	z
o
3 - 3b

2
Z
o 

+ 2b
3 

	

4b3 1T 	R22- R
1
2 

and substitution of v
z 

from Eq. 8 gives 

	

r 	3 FLZ
o 

- 3b
2
Z
o 

+ 2b
3

] 
V - 

The above equation gives the minimum voltage, V, required to collect an ion of 

mobility coi  entering the chamber at Zo . All ions with z > Zo  will also be col- 

lected. The number of ions entering the chamber at with z > Z
o 

is 

N = 21TR
1 
 n. 	 v

r 
dz 

f +b 	
(15) 

z
o 

where n i  is the number of ions of mobility cu i  per cubic centimeter 

Integration of Eq. 15 yields 

N = 	L2b3  - 3b
2
Z + Z J 

n.F 	
r 	 1 

0 	0

3 
	

(16) 
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In order to obtain the number of ions collected per second as a function of 

voltage, Eq. 16 and Eq. 14 may be combined to eliminate Z o, yielding the 

important result that 

N = V wi  n. it l 	2b 

which means that for a discrete mobility the number of ions collected is a 

linear function of the applied voltage until, of course, all the ions are 

collected. 

The preceding equations, although derived for a single mobility w i , are 

valid for each mobility in a mobility distribution. 

Before proceeding further, it is necessary to know what fraction of the 

ions of mobility w i  will be collected for a specific applied voltage V o . The 

specific voltage Vo  chosen is that voltage which will just collect all the 

ions of mobility, wo . Thus Eq. 14 with Zo  = -b becomes 

2Fb  V
o 

w n (R2 	R
2

) i  
o 	c 2 

(18)  

If V
o 
from Eq. 18 is inserted for V in Eq. 17 

w a  
N - Fn. 	1 -- 

1 W
o  

or 1 
w. 

Fn. 	w
o 1 

(19)  

1 1 ButFn.isthetotalnumberofionsofmobilityw.which are entering the 

1 ioncounter.Thusforw.<wo1 
 w./w

o 
 is the fraction of the ions of mobility 

1 
w. which will be collected at a voltage V

o
. 

A typical ion-current versus voltage curve is shown in Fig. 10. Under 

R2
2 

- 
 

RI  
(17) 
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V o  
VOLTAGE 

Figure 10. Typical Current Vs. Voltage Curve. 
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the assumption than an ion carries only one electronic charge the curves may 

be interpreted in terms of mobility and size distribution. 

For a continuous ion mobility distribution the frequency f(w) is defined 

by 

fco 

f (w) dw = 1 	 (20) 

The relationship between f(w) and the current-voltage curve must next be 

established and finally related to ion size. For the specified voltage V o 

 all ions of mobility w 	wo  are collected and produce a current 

I
1 

= Imp 	f (w) &a) 
	

(2 1) 

0 

where Imax 
is the current obtained when the entire distribution is collected. 

For ions of mobility co < wo  the fraction wo of the ions of mobility w which 

is collected produces a current 

I2 	w 	
w f(w) dw 

I 
max jr 

o 	
0 

	 (22) 

Thus the total current I
o 
corresponding to an applied voltage Vo is given by 

I
o = max w —

1 jr.  w f(w) al) %Is  f(w) dw 
0 	o 	 wo 

	 (23) 

Differentiation of Eq. 23 gives 



w
o 
w f(w) dw 	(27) 

Jo 
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dI I 

fa 

max  o 	ax 
dw 	2 

0 	0 

w f(w) dw 	 (24) 

and differentiation of Eq. 18 gives 

amo 	F 	K 	2 _   _ 
dV

o 	
2 	T wo 

KVo 

where 
r 	2 	2 1  

	

IcLR
2 	R J 

1 
2b 

and depends only on the geometry of the system. Combining Eqs. 2 1  and 25 

gives 

K 

(25) 

(26) 

dIo amo 	dIo 
au)

o 
' dVo = dV

o 
- I

max F 

Equaton 23 rearranged gives 

f co 

f(w) dui 
I
o  

max 

gro 
F(w) an 	(28) 

or substituting Eq. 27, 

f (w) d.(1) 
Io

dI
o = - 	  

I 	w KI 	dV 
max 	 o o max 

(29) 

but from Eq. 18 

F = Vo Kw 
0 

-37- 
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therefore 

dI
o 

Io - Vo dV 
f(w) 

 

0 
max 

(31)  

In Eq. 29 the left side is the fraction of ions with w > w o . Referring to 

Fig. 10 the right-hand side of the equation is the intercept on the current 

axis of the tangent to the voltage-current curve divided by the maximum 

current. Thus the current-voltage curves can be used to construct mobility 

distribution curves. 

To relate mobility to particle size for small particles, Stokes' law is 

applied with a correction for slip. The relation is 

e k 
w  = 1;71 

where 4 is the viscosity of air, r is the particle radius, and e is the charge 

on the particle. From a review of the best data available, Davies 13  found 

that the slip correction, k, for particles comparable in size to the mean 

free path of air molecules at room temperature was given by the expression 

1 + % —r 
[A + B exp (- Cam)] (33) 

where x is the mean free path of air and A = 0.882, B = 0.281, and C = 1.57. 

For calculation purposes Eq. 32 is substituted into Eq. 31 to give 

dI 
I - V 	0 

0 
	

0 	o dv  

g(r) dr - 	Imax 
	0 
	

(3)4-) 

-38- 

(32)  

fr 
0 
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where the left side is now the fraction of the total number of ions of radius 

r < r
o
. Thus the size distribution of the aerosol particles can be estab-

lished from the current-Voltage curve by simply reading tangent intercept 

points for the current-voltage curve and dividing by 'm  to give the fractfon 

of the size distribution with r < r 
 

Figure 11 shows a typical experimental current-voltage curve obtained 

with the ion chamber. The data plotted in this figure are for an aerosol of 

NaC1 crystals obtained by atomizing a 0.1 per cent NaCl solution. The atom-

ized solution droplets were first passed through a bubble chamber to remove 

the larger droplets and then they were evaporated to NaCl crystals by passing 

through a flask containing LiC1 as drying agent. Next the aerosol was passed 

through a small version of the ion counter which served to remove the smaller 

ions. The results was a rather narrow distribution of approximately gaussian 

shape, centered close to 0.06 micron cube edge dimension. This aerosol was 

sampled by using a thermal precipitator and photographed with an electron 

microscope. A size distribution was made from the electron microscope slide. 

A comparison of the size distribution obtained with the ion counter and 

the size distribution obtained from the electron microscope slide is shown 

in Fig. 5. The agreement shown here is typical for distributions sharpened 

such that the size range lies in the region from 0.01- to 0.1-micron "radius." 

For wider range distributions the agreement is not as good, since a system 

optimized to work best in 0.01- to 0.1-micron range is too sensitive to dis-

criminate effectively between sizes below 0.01 micron and at the same time 

is too insensitive to detect effectively sizes above 0.1 micron. The system 

could in principle be optimized for other size ranges; however, for larger 
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Figure 11. Experimental Current Vs. Voltage Curve for NaCl. 
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particles the assumption of singly charged particles upon which the entire 

analysis depends becomes increasingly less valid. 

For aerosol processes such as those encountered in this study where the 

particles increase in size is due to an uptake of solvent, the absolute size 

change of small particles would be predicted to be less than that of larger 

particles. Under these conditions, the particles at any fractional point in 

the distribution, for example, the 50 per cent point, will remain at the same 

fractional point even though all particles grow. 

The growth of a particular size of particle in an aerosol distribution 

may thus be obtained from a sequence of size distribution curves such as 

Figure 5 when each of the curves is for the same aerosol subjected to dif-

ferent conditions. For instance, a figure to be introduced later (Figure 14 

in the Results section) shows an aerosol of NH41 exposed to different vapor 

pressures of C2H50H. At 23.2 per cent relative humidity the 50 per cent point 

size is 0.0491 micron. At 42.6 per cent relative humidity of C 2H5 OH the 50 

per cent point size is 0.0519 micron. Thus it may be said that a particle 

which had a size of 0.0491 micron at 23.2 per cent relative humidity grew to 

a size of 0.0519 micron when the humidity was increased to 42.6 per cent. 

Such an interpretation was made for all the systems at the various relative 

humidities as given in following tables and figures. 
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V. THEORETICAL PREDICTIONS OF DROPTRT GROWTH 

All solids in contact with a gaseous atmosphere will attract a part of 

the gases or vapors to their surfaces because of unsatisfied molecular forces 

in their surface layers. This phenomenon is called physical adsorption. The 

most readily condensable gases or vapors are absorbed, or held, in the greatest 

quantities. Temperature, partial pressure of the condensable vapors, and the 

nature of the solid determine the actual quantity of vapor so held. 

If a particle is soluble in the vapor condensed on it , adsorption of vapor 

will cause the particle to gain an envelope of liquid which may become suffix 

cient to dissolve the particle at some partial pressure of the vapor less 

than saturation. Prior to complete dissolution, the undissolved particle with 

its film of liquid will appear to the surroundings to be a droplet the concen-

tration of which is that of a solution saturated with respect to particles of 

the particular size. The particle, by the same token, may be considered to 

be in a solution such that it behaves as it would in a solution of infinite 

extent having the same concentration. 

The concentration of a solution in equilibrium with small crystalline 

particles is dependent on particle size and particle surface energy, as well 

as on temperature and the other usual considerations. The smaller the 

particle, the greater is the concentration of the saturated solution with 

which the particle will be in equilibrium. The relation between particle 

size, surface energy, and equilibrium solution concentration is given in the 

case of an isotropic, spherical particle by the following relationship 

RT In a a
o 

= 27TT 	

(35) 

-43- 
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where a and a
o 
are the activities of the solute in solutions of equilibrium, 

respectively, with a particle of radius r and a particle so large as to have 

essentially zero specific surface area, 7 is the specific surface energy of 

the material and V is the molar volume. Since the activity of the solute in 

solution is a measure of the solubility of the solute, this relation predicts 

that the smaller size of the solute particle the greater the solution concen-

tration with which it will be in equilibrium. 

As the partial pressure of the condensable vapor is increased, the en-

velope of liquid surrounding the particle will increase from the surrounding 

vapor. The extra solvent dilutes the liquid of the film so that it is no 

longer saturated with respect to the solid inside. As a result, more mate-

rial is dissolved from the surface of the particle, thereby reducing its 

size. However, as the size decreases, the concentration of the solution with 

which the particle can be in equilibrium increases as is shown in the preced-

ing relationship. Increased solution concentration reduces vapor pressure 

and causes more vapor to be condensed from the atmosphere vapor condensing 

again causes the droplet to grow in size. 

Opposing this accretion of vapor from the surroundings is the increased 

vapor pressure of the volatile component in the film surrounding the particle. 

The relationship between the surface curvature of a droplet and its vapor 

pressure is expressed by the well-known Kelvin equation 

Pr 	2a.c).  
P 
0 

R In 	--, (36) 

where R is the gas constant 8.32 x 107  dyne-cm/gm-mole °K, T is the absolute 

temperature, Pr  is the vapor pressure of a droplet with a radius of curvature 
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r, P
o 

is the vapor pressure of the liquid with a surface the curvature 

of which is essentially zero, a is the surface tension of the liquid, and 

V is the molar volume of the liquid. The applicability of this equation to 

solution droplets of a volatile solvent and a nonvolatile solute, both ionic 

and nonionic, has been well established3,6 down to radii of 10
-6 

centimeters. 

Of course, for solutions where one of the components is sensibly nonvolatile, 

V in equation (36) becomes the partial molar volume of the volatile component 

in the liquid state, and Po  and a are the vapor pressure and surface tension 

of the mixture, respectively. 

Therefore, if the radius of curvature of the film is such that the in-

creased vapor pressure due to curvature will exceed the vapor pressure reduc-

tion due to the presence of solute in the film, vapor will continue to condense 

until sufficient liquid is present completely to dissolve the particle. Once 

dissolution has occurred the resulting droplet will grow as the partial pres-

sure of the volatile component in the surrounding vapor is increased in 

accordance with the relationship expressed by the Kelvin equation. 

To calculate droplet growth with the Kelvin equation, the only data re-

quired in addition to the vapor pressure and surface tension of the mixture 

as a function of concentration are the solubility of the compound in the 

solvent and the density of the mixture as a function of concentration. The 

method of calculation can be outlined as follows: 

(1) The mass of solute accompanying a particle of a given size is cal-

culated from geometrical considerations using the density of the compound. 

(2) The droplet sizes that would result from dissolving this quantity 

of solute in various quantities of the volatile solvent are calculated from 
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geometrical considerations using the solution densities of the corresponding 

concentrations. 

(3) From the Kelvin equation the vapor pressure increase, P r /Po' due to 

surface curvature for each droplet size is calculated. Using these data and 

the normal solution vapor pressure at the corresponding concentrations, the 

total droplet vapor pressures are determined. 

(4) Since a necessary criterion for equilibrium is that the vapor pres-

sure of a solution droplet be equal to that of the pure vapor of the volatile 

component in the surrounding atmosphere, the partial pressure of the volatile 

component at which a droplet of a certain size can exist is determined. 

The partial vapor pressure in the surrounding atmosphere necessary to 

cause a particle to dissolve is usually expressed as a "relative humidity" 

by obtaining the per cent of saturation pressure that is required. The re-

sulting droplet size that will exist at any relative humidity can, of course, 

vary with the initial size of the solute particle from which it is formed. 

However, for a given initial particle size only one droplet size can exist at 

a particular relative humidity. Therefore, from calculations, droplet growth 

information, i.e., droplet size versus relative humidity, can be obtained for 

a particle of a given initial size. A theoretical growth curve for the 

system camphor and ethanol is given in Figure 12; Table I presents calculated 

data for other systems. A psychometric chart for ethanol in air is given as 

Figure 17 in the Appendix.
14 

The region representing the accretion of condensed vapor by the particu-

late and the point at which transition from a particulate surrounded by a film 

of liquid to a solution droplet occurred could not be predicted with the data 
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TABLE 

CALCULATED GROWTH OF AEROSOL PARTICLES 
WITH INDICATED VAPOR HUMIDITY 

Relative Humidity .Particle Radius 
(Per Cent) 

Stearic Acid and Ethanol 

(Microns) 

0 0.0250 
101.09 0.0886 
101.14 0.0094 
101.18 0.1015 
100.69 0.1116 
100.64 0.1285 
100.56 0.1610 

0 0.0500 
100.087 0.1774 
100.140 0.1884 
100.184 0.2030 
100.217 0.2234 
100.239 0.2581 
100.234 0.3230 

0 0.1000 
99.80 0.3544 
99.86 0.3768 
99.93 0.4059 
99.99 0.4468 

100.03 0.5116 
100.08 0.605 

0 0.2500 
99.62 0.8862 
99.69 0.9420 
99.77 1.0164 
99.84 1.1160 
99.91 1.2785 
99.98 1.6121 

Stearic Acid and Turpentine 

0 0.0250 
99.69 0.8585 
99.84 0.0916 
100.2 0.0987 
100.45 0.1244 

(continued) 

-48- 
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TABLE I (Concluded) 

CALCULATED GROWTH OF AEROSOL PARTICLES 
WITH INDICATED VAPOR HUMIDITY 

Relative Humidity Particle Radius 
(Per Cent) 

Stearic Acid and Turpentine 

(Microns) 

0 0.0500 
99.03 0.1637 
99.23 0.1724 
9962 0.1974 
99.99 0.2487 

Napthalene and Gasoline 

0 0.0250 
85.68 o.o48o 
8957 0.0530 
93.61 0.0610 
9752 0.0774 
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available. To make estimates of this type requires data on the surface energy 

of the solid; this information is not available for the compounds used in 

these studies. 

No theoretical calculations were made for the system ammonium iodide 

and ethanol because the validity of predicting complete growth curves for 

ionic salts has been demonstrated previously.
526 

Contrary to the findings for systems of ionic salts, some of the organic 

compounds used in this work 	 notbepredicted to grow inthe]xesenaeof some 

vapors. This is due to the fact that the solubility of these compounds is 

relatively small in the volatile component and the vapor pressure lowering 

effect is not sufficient to overcome the vapor pressure increase produced 

by the sharp radius of curvature of the droplets formed. For example, a 

stearic acid particle with a radius of less than 0.06 micron cannot grow in 

the presence of ethanol vapor according to theory even when the surrounding 

atmosphere is saturated with ethanol vapor. This behavior was not previously 

observed for the systems of ionic salts because their solubility was great 

enough in every case to produce a sufficient vapor pressure lowering of the 

volatile component. 

Raoult's law was employed in predicting vapor pressures as a function 

of concentration; this information was necessary for predicting the behavior 

of droplets under conditions of different relative humidity. That is, the 

vapor pressure of the solutions were assumed to be directly proportional to 

the mole fraction of the solvent. This relationship, which may be expressed 

as 

P
o
- P 	 n

2  
P
o 	

n
1 n2  (3 . 
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where P
o is the vapor pressure of the solvent, P is the vapor pressure of the 

solution , and n
1 

and n
2 

are the number of moles of solvent and solute in the 

solution, respectively, has often been found surprisingly reliable for even 

quite concentrated solutions. 

Equation 37 probably predicts the vapor pressure as a function of con-

centration quite well for systems where a pure one-component solvent such as 

ethanol was used. However, it would give only a rough approximation at best 

with such multi-component solvents as gasoline or turpentine. Since the direct 

measurement of the vapor pressures of solutions prepared with these solvents 

was beyond the scope of this problem, Raoult's law was deemed the best method 

for obtaining estimates of vapor pressures. In the case of gasoline the pro-

duct used was Amoco, and an average boiling point of 93.3 °C was obtained for 

this gasoline through the courtesy of the American Oil Company. With.the 

average boiling point and an empirical relationship between the vapor pressure 

P and the absolute temperature T of gasoline
15 

d(log P) 	= 1650 	 (38) 
d(i) 

the vapor pressure at 25 °C was estimated. In the case of turpentine which is 

approximately 80 per cent a-pinene,
16 
 the vapor pressure of a-pinene at 25°C 

was taken as representing the vapor pressure of turpentine. 

-51- 



Final Report, Project No. B-2,07 

VI. RESULTS 

A. Gasoline Exhaust  

Particulate size distributions obtained for the exhaust of a small 4-cycle 

engine as described in Section III A3a are given in Table II and a typical 

electron micrograph of the aerosol is shown in Figure 13. The results indicate 

"smog" formation from the products of the engine exhaust. 

B. Aerosols Produced by Ethanol Solution Atomization  

Stearic acid, camphor, and ammonium iodide aerosols were produced by 

atomizing dilute ethanol solutions of these compounds. The aerosol streams 

were then heated to approximately 50 °C to lower the relative humidity and to 

assure that solid particles were formed, while the alcohol was removed from 

the systems by a series of cold traps. The aerosols then passed through a 

temperature-controlled bath, where the desired amounts of turpentine, ethanol, 

or dioctylphthalate vapors were added. The aerosol and vapor system then passed 

to a second bath to lower the relative humidity, and through an aging chamber, 

where the temperature was reduced. (This assured that the aerosol always passed 

from a condition of lower to higher relative humidity.) Ions were introduced 

into the system in the latter chaMber also to produce an electrical charge 

on the aerosol. The aerosol, finally, was led into the ion counter. 

The vapor concentration or the relative humidity for the above systems, 

other than those of stearic acid and turpentine and ammonium iodide and dioc-

tylphthalate, were determined by dew point measurements. The amount of 

turpentine was determined by condensing the vapor for a given time interval 

and weighing its the aerosol size change was thus determined in terms of a 

weight per cent of turpentine. Results of the dioctylphthalate and ammonium 



TABLE II 

TYPICAL SIZE DISTRIBUTIONS OBTAINED FROM GASOLINE ENGINE EXHAUST 

Per Cent Less 
Than 	Indicated 

Size 

Particle Radius 
Regular Gasoline Unleaded Gasoline 

Distribution la  Distribution 2b  Distribution 3c Distribution 4a 
---"(Microns) (Micron) (Micron) (Micron) 

20 0.043 0.054 0.056 0.038 

30 0.050 0.062 0.067 0.041 

40 0.056 0.069 0.081 0.044 

5o 0.060 0.079 0.097 0.047 

6o 0.064 0.091 0.114 0.050 

7o 0.068 0.105 0.140 0.053 

8o 0.072 0.123 0.172 0.056 

90 0.080 0.059 

a
Aerosol was taken direct from engine exhaust without aging. 

b
Aerosol was passed through aging chamber without irradiation. Average time in chamber was one hour. 

c
Aerosol was passed through aging chamber with irradiation. Average time in chamber was one hour. 
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Figure 13. Electron Micrograph of Partidulate Matter from Gasoline 
(Unleaded) Engine Exhaust. (1 Millimeter = 1 Micron) 
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iodide system were obtained as a function of the temperature at which the 

dioctylphthalate was maintained. 

Current versus voltage measurements for these systems are given in Tables 

XIII through XVII in the Appendix and particulate size distributions for the 

various systems are given in Tables III through VII. Figure 14 shows a series 

of size distributions for an ammonium iodide aerosol exposed to several con-

centrations of ethanol. 

C. Paraffin Aerosol  

Paraffin aerosols were generated by atomizing dilute solutions of paraffin 

and hexane. The hexane vapor produced during aerosol generation was partially 

removed from the aerosol by condensation in a cold trap, The desired amount 

of hexane vapor was then added to the system by passing the aerosol over 

liquid hexane at a controlled temperature. This system was employed because 

it afforded better control over vapor concentration, Since paraffin melts 

at a rather low temperature the stream was only heated slightly to ensure an 

increasing relative humidity situation. The aerosol was next passed through 

an aging chamber, Where an electrical charge was induced, and then into the 

ion counter. The current versus voltage measurements are given in Table XVIII 

in the Appendix. The size distributions for particular hexane concentrations 

are given in terms of the temperature of the hexane bath in Table VIII. 

D. Naphthalene Aerosol  

Naphthalene was generated and treated in the same manner as paraffin 

until it reached the aging chamber, except that gasoline vapor was employed 

instead of hexane. The naphthalene aerosol was sufficiently charged by the 

generation process and additional charging was not required. The current 

-56- 



3.2 
10.2 
19.6 
26.1 
33.8 
39.0 
44.8 
52.2 
58.1 
62.1 
65.6 
68.1 
72.3 
79.9 
88.4 
92.0 
95.3 
98.3 

5.4 
12.3 
23.1 
35.2 
47.6 
56.2 
60.5 
64.o 
66.9 
69.3 
71.3 
73.8 
77.o 
79.4 
81.8 
84.6 
86.7 
88.o 

5.4 
14.6 
22.5 
29.1 
38.4 
43.9 
49.4 
55.3 
60.3 
64.5 
66.7 
79.0 
72.7 
75.6 
77.8 
81.3 
84.6 
86.5 

2.7 
7.7 

13.3 
21.4 
31.4 
39.2 
45.4 
50.5 
53.4 
56.8 
64.2 
70.0 
76.5 
81.o 
85,8 
90.7 
94.0 
95.8 

TABLE III 

SIZE DISTRIBUTIONS OBTAINED FOR SYSTEMS OF STEARIC ACID AND ETHANOL 

Particle 
Radius  
(micron) 

Per Cent of Particulates Less than Indicated Size at ,Ethanol Relative Humidities of  

48% 	57% 	64% 	69% 	71% 	75% 	76% 	77% 	78% 	.79% 

               

	

0.0154 	3.5 	3.6 	4.3 	5.1 	3.6 	3.7 

	

0.0226 	12.0 	9.4 	10.5 	12.2 	10.3 	9.6 

	

0.0282 	21.7 - 	16.2 	17.4 	22.4 	19.9 	20.2' 

	

0.0327 	29.7 	24.1 	27.7 	33.5 	27.5 	27.4 

	

0.0369 	35.9 	31.1 	35.6 	40.1 	37.5 	36.6 

	

0.0407 	43.1 	39.3 	40.3 	47.o 	44'.9 	44.8 

■JI 1 	 0.0444 	52.4 	46.6 	46.3 	52.3 	52.5 	50.7' 
-,1 	 0.0479 	58.8 	51.5 	52.7 	58.o 	58.3 	57.7 

	

0.0512 	65.6 	55.9 	59.4 	62.8 	64.4 	63,1 

	

0.0546 	67.1 	59.o 	63.2 	66.3 	68.9 	66.8 

	

0.0578 	68.3 	61.4 	66.2 	69.6 	72.8 	69.7 

	

0.0608 	70.2 	65.7 	69.5 	71.8 	74.1 	72.5 

	

0.0666 	74.3 	71.2 	73.1 	76.4 	76.2 	76.4 

	

0.0722 	77.2 	76.1 	77.3 	79.8 	77.3 	79.4 

	

0.0776 	79.2 	81.1 	80.2 	82.7 	78.5 	81.9 

	

0.0830 	81.5 	85.9 	82.4 	85.9 	80.9 	85.1 

	

0.0883 	87.2 	-- 	84.3 	87.9 	83.2 	86.9 

	

0.0934 	91.5 	89.8 	86.9 	88.8 	84.9 	88.o 
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TABLE IV 

SIZE DISTRIBUTIONS OBTAINED FROM SYSTEMS OF CAMPHOR AND ETHANOL 

Particle Per Cent of Particulates Less than Indicated Size of Ethanol Relative Humidities of 

27% 35% .39% 5)4 56% 68% 71% 91% Radius 
(micron) 

0.0164 9.8 8.2 12.7 12.1 17.4 12.6 11,7 
0.0238 25.0 23.8 23.0 26.9 35.1 32.9 27.2 25.8 
0.0298 36.8 38.0 37.1 42.3 47.3 42.7 39.8 36.7 
0.0347 48.7 48.4 51,5 53.8 55.4 53.1 49.2 44.7 
0,0392 56.8 57.9 61.3 60.3 60.7 64.6 58.2 52.4 
0.0434 63.6 67.1 66.4 64.9 66.7 70.7 69.5 58.1 
0.0474 68.2 73.8 69.5 696 75.6 75.7 72.8 62.5 
0.0510 72.9 76.6 75.3 73.5 80.4 78.4 76.9 65.3 
0.0547 77.9 79.6 80.4 76.9 83.4 82.2 79.7 68.9 
0.0582 84.3 81.3 84.4 80.3 85.2 84.2 81.7 72.6 
0.0648 88.2 85.9 89.9 84.2 88.8 86.1 86.5 77.4 
0.0712 89.8 87.1 91.4 87.2 91.9 86.9 89.4 80.7 
0.0774 91.1 87.9 93.0 88.0 94.8 87.1 92.3 83.4 
0.0892 94.1 96.5 -- 96.2 90.1 
0.1004 97.5 97.6 93.9 
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TABLE V 

SIZE DISTRIBUTIONS OBTAINED FROM SYSTEMS OF AMMONIUM IODIDE AND ETHANOL 

Per Cent of Particulates Less than Indicated Size at Ethanol Relative Humidities of 

53 % 	61% 	67% 	7o% 

0.0154 3.1 2.0 1.2 1.4 1.4 1.3 
0.0226 8.o 6.6 8.1 5.6 4.3 3.4 1.5 
0.0282 15.7 13.7 16.5 14.1 9.9 7.5 2.6 
0.0327 20.7 21.5 23.6 19.4 16.7 12.2 4.6 0.9 
0.0369 29.2 26.6 28.3 25.1 21.3 16.0 7.1 -- 
0.0407 37.1 30.9 33.5 31.7 26.5 19.6 11.0 3.1 
0.0444 40.3 37.3 41.0 36.3 32.8 22.5 15.5 -- 
o.o479 45.2 45.9 47.5 41.3 39.2 24.5 18.8 6.5 
0.0512 54.1 53.o 52.4 48.4 45.7 27.9 21.8 8.4 
0.0546 61.5 6o.o 56.6 56.2 53.3 32.6 26.1 10.7 
0.0578 68.4 65.o 59.4 63.4 59.1 42.2 31.7 14.2 

0.0608 73.5 68.5 62.3 66.8 63.9 53.o 37.8 18.9 

0.0666 80.0 74.6 69.2 71.7 70.2 62.4 48.6 30.7 

0.0722 81.8 79.2 75.1 77.7 74.8 68.2 55.2 40.7 

0.0776 83.4 83.o 79.7 80.9 76.9 71.3 58.8 48.7 

0.0830 85.5 85.8 83.3 84.3 80.0 74.2 62.9 54.5 

0.0883 88.3 89.1 86.5 88.2 -- 77.9 66.6 57.9 
0.0934 90.8 90.4 88.1 90.2 82.7 80.7 70.0 62.6 
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TABLE VI 

SIZE DISTRIBUTIONS OBTAINED FROM SYSTEMS OF STEARIC ACID AND TURPENTINE 

Per  Cent of Particulates Less than Indicated Size at Turpentine Weight Fractions of 

0.0 0.287 0,368 0.381 0.437 0.481 	0.521 0.555 0.561 

	

0.0226 	3.4 	2.4 	2.0 	2.8 	1.8 	2.3 	2.1 	4.6 	1.6 

	

0.0282 	8.1 	4.9 	3.9 	6.o 	4.o 	6.3 	4.6 	10 . 8 

	

0.0327 	14.8 	10.0 	7.3 	9.6 	8.5 	9.9 	9.1 	19.5 	ig:8 

	

0.0369 	22.2 	17.2 	11.3 	14.2 	13.3 	14.9 	15.1 	26.6 	18.9 

	

0.0407 	27.2 	24.1 	15.1 	18.6 	18.1 	21.7 	21.3 	33.7 	26.3 

	

0.0444 	32.o 	28.7 	19.5 	24.8 	22.1 	28.8 	25.9 	39.1 	33.0 

	

0.0479 	38.4 	32.3 	25.6 	31.9 	29.2 	32.4 	29.7 	49.1 	36.9 
ON 
0 	 0.0512 	43.8 	37.6 	34.7 	37.7 	34•o 	35.9 	32.o 	57.8 	42.o 

	

0.0546 	49.8 	43.9 	39.6 	43.6 	38.9 	41.7 	35.7 	63.7 	46.4 

	

0.0608 	57.0 	56.8 	46.6 	54.4 	50.1 	54.7 	45.3 	72.7 	53.o 

	

0.0666 	63.6 	63.9 	54.o 	65.6 	58.2 	62.4 	54.7 	79.0 	64.4 

	

0.0722 	69.0 	69.0 	63.9 	71.o 	67.6 	67.5 	61.2 	82.7 	70.3 

	

0.0776 	73.0 	73.0 	70.2 	75.5 	73.3 	71.5 	65.1 	86.3 	75.5 

	

0.0830 	77.2 	77.3 	74.7 	81.0 	76.3 	74.8 	69.1 	90.6 	79.8 

	

0.0883 	80.8 	81.0 	80.4 85.7 	80.o 	78,1 	73.2 	94•0 	83.9 

	

0.0934 	83.7 84.6 	87.4 88.8 	84.8 	81.2 	76.3 	96.3 	87.8 

	

0.1317 	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Particle 
Radius 
(micron 

0.580 	0:581 	0.600 

2.6 	2.3 	2.4 

7 13:3 	7:7 	9.9 
5.9 

20.0 	10.7 	13.5 
27.1 	14.3 	16.5 
35.0 	19.0 	19.6 
39.7 	24.9 	23.7 
43.1 	29.8 	29,4 
47.o 	34.3 	35.7 
54.3 	46.3 	44.4 
66.9 	52.9 	49.1 
76.4 	58.5 	51.9 
82.0 	63.1 	56.3 
88.6 	67.1 	59.7 
93.8 	69.9 	63.6 
96.1 	74.4 	68.7 
100.0 	100.0 	100.0 
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TABLE VII 

SIZE DISTRIBUTIONS OBTAINED FROM SYSTEMS OF AMMONIUM IODIDE AND DIOCTYLPHTHAIATE 

Particle Per Cent of Particulates Less than 

Per Cent of Particulates Less than Indicated 
Size at Dioctylphthalate Vapor Concentrations 

Resulting from Bath Temperatures of 
Radius Indicated Size as Generated 8.80C 35.0°C 48.1-°C 73.2°C 
(micron) 

0.0226 2.2 1.7 1.8 
0.0327 5.9 5.o 7.9 6.1 5.7 
0.0407 19.9 12.3 18.6 12.8 13.3 
0.0444, 26.0 16.7 21.8 19.3 16.9 

0, 
1 

0.0479 
0.0512 

30.9 
34.8 

23.2 
31.1 

25.3 
30.1 

26.6 
33.9 

22.5 
28.3 

0.0546 38.6 38.6 35.8 40.8 35.4 
0.0578 42.5 44.5 -- 45.3 38.8 
0.0608 47.8 50.6 43.1 48.5 42.2 
0.0637 -- 57;9 -- 52.3 46.5 
0.0666 • 57.4 62.5• 48.2 57.o 50.3 
0.0694 -- -- -- 61.1 54.5 
0.0722 63.4 68.3 54.5 65.4 58.8 
0.0776 65.9 74.8 63.5 70.3 65.2 
0.0830 68.9 80.1 68.4 74.3 70.2 
0.0883 72.5 84.3 73.4 79.6 74.4 

0.0934 77.9 88.8 78.7 82.7 78.7 
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Figure 14. Size Distributions Obtained from Ammonium Iodide and 
Ethanol Systems 
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TABLE VIII 

SIZE DISTRIBUTIONS OBTAINED FROM SYS1EMS OF PARAFFIN AND HEXANE 

Per Cent of Particulates Less than Indicated 
Size at Hexane Bath Temperatures of 

Particle Radius 24.6°C 47.8°C 76.3°C 
(microns) 

0.0226 3.7 6.7 10.8 

0.0282 8.4 12.8 22.2 

0.0327 15.3 21.0 31.8 

0.0369 26.6 28.2 40.8 

0.0407 38.5 36.8 47.9 

0.0444 48.o 45.5 54,4 

o.o479 54.7 56.o 60.2 

0.0512 63.5 64.1 64.8 

0.0546 70.8 70.0 68.4 

0.0578 76.8 76.2 72.8 

0.0608 81.9 81.8 79.3 

0.0637 84.9 85.4 83.0 

o.o666 87.1 88.1 87.3 

0.0694 89.9 90.8 91.0 

0.0722 91.7 95.1 

0.0760 95.4 

-63- 
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voltage data are given in Table XIX in the Appendix. Size distributions as 

made for various concentrations of gasoline are given in terms of the tem-

perature of the controlled gasoline bath in Table IX. 

E. Carbon and Graphite Aerosols 

A graphite aerosol was generated by the exploding wire technique and 

drawn into a mixing chamber. There the aerosol was mixed with a fan for 

several minutes and allowed to equilibrate and then. to settle for several hours. 

The aerosol was forced at the end of this time from the mixing chaMber through 

another system of chambers consisting of two identical mixing chambers arranged 

in parallel. One chatber contained a small quantity of liquid benzene and the 

other was completely empty except for air. The voltage applied to the elec-

trode of the ion counter was set to collect approximately half of the total 

number of ions, and the aerosol stream was passed through the empty chslrber a 

few minutes and then through the chaMber containing benzene. The entire pro-

cedure was repeated a number of times. Never was a change in ion current 

detected, therefore there must have been no change in aerosol size. 

Carbon was treated in an identical manner except for the method of gene-

ration. The carbon aerosol 	produced by burning a mixture of benzene and 

alcohol as described previously. 	ain there was no change in ion current 

after being exposed to benzene and, therefore there must have been no change 

in aerosol size. 

F. Poly(Methyl Methacrylate) Aerosol  

PolyMethyl Methacrylati aerosol was generated as previously described 

with the polymer aerosol generator. An electrical charge was induced on the 

aerosol with the ion generating device. The aerosol was then passed over 



TABLE IX 

SIZE DISTRIBUTIONS OBTAINED FROM SYSTEMS OF NAPHTHALENE AND GASOLINE 

Per Cent of Particulates Less than Indicated Size at Gasoline 

Particle 
Bath Temperatures of 

Radius 24.8°C 25.1°C 31.5°C  37.2°C 54.6°C 60.0°C 
(Microns) 

0.0154 11.7 8.7 5.2 12.8 6.6 2.8 

0.0226 30.0 19.3 25.3 32.6 11.2 6.5 

0.0282 45.5 33.3 42.1 46.8 30.1 17.2 

0.0327 58.7 43.3 55.o 61.2 46.8 27.1 

0.0369 72.6 62.2 67.8 72.6 57.8 46.3 

0.0407 80.5 75.5 75.5 81.1 71.7 55.7 

0.0444 86.4 82.9 79.o 86.5 81.6 62.7 

0.0479 89.1 88.8 81.4 91.6 89.4 73.4 

0.0512 91.7 92.2 82.9 93.0 95.1 80.9 

0.0546 92.9 94.2 86.2 94.6 98.2 85.5 

0.0578 95.7 96.2 89.6 97.3 88.1 

0.0608 99.5 91.4 90.7 
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liquid methyl ethyl ketone in a temperature-controlled chamber, through an 

aging chamber, and into the ion counter. Current versus voltage data were 

taken without exposing the aerosol to the ketone and then following exposure 

to desired ketone concentrations. The results are given in Table XX in the 

Appendix. The size distributions at various humidities are given in Table X. 

Figure 15 shows the change in aerosol size as a function of the methyl ethyl 

ketone relative humidity. The poly(methyl methacrylate) aerosol was also 

investigated using acetone vapor. The procedure was the same as with the 

methyl ethyl ketone. Figure 16 shows a comparison of the aerosol radius with 

no acetone vapor and with a high relative humidity of acetone. 

Go  Synthetic "Smog"  

Synthetic "smog" was produced by irradiating a mixture of NO
2' 

SO2' and 

1-pentane in air with ultraviolet light. No increase in smog particulate 

size was detected upon exposing the smog to a high concentration of benzene 

vapor. 

H. Physical Properties  

Solubility and surface tension data for the systems investigated are 

given in Tables XI and XII. 



TABTF, X 

SIZE DISTRIBUTIONS OBTAINED FROM SYSTEMS OF POLY(METHYL METHACRYLATE) 
AND METHYL ETHYL KETONE 

Per Cent of Particulates Less than Indicated Size at Ketone Relative Humidities of 

Particle 
Radius 

Test Test 2 Test 3 Test 4 Test 5 
o% 33% 0% 34% 0% 43% 0% 47% 0% 48L  

(micron) 

0.0154 36.9 19.9 4.2 9.3 16.6 4,8 6.7 8.1 43.5 14.3 
0.0226 56.9 42.9 15.9 20.5 31.3 

19.3 
27.8 18.1 64.8 28.4 

0.0282 69.1 57.8 25.7 28.7 35.9 30.0 44.1 24.2 72.2 38.9 
0.0327 78.4 68.7 38.6 35.3 47.1 45.6 54.7 29.9 78.9 45.6 
0.0369 84.2 76.9 55.8 43.2 65.7 53.5 62. 5 34.5 83.4 51.1 
0.0407 89.8 81.5 75.5 51.7 79.8 59,8 74.9 38.0 85.7 57.4 
0.0444 94.2 85.9 84.2 57.7 90.3 -- 89.7 40.8 89.3 63.4 
0.0479 97.8 89.5 94.2 64.2 96.8 69.6 43.5 93.3 68.7 
0.0512 94.0 70.7 -- -- -- 97.6 72.9 
0.0546 96.9 76.3 76.5 48.o 75.4 
0.0578 80.0 -- =- 
0.0608 83.7 81.7 55.4 -. 
0.0666 89.3 85.7 69.9 
0.0722 94.7 89.6 79.3 
0.0776 87.5 
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TABLE X (Continued) 

SIZE DISTRIBUTIONS OBTAINED FROM SYSTEMS OF POLY(METHYL METHACRYLATE) 
AND METHYL ETHYL KETONE 

Per Cent of Particulates Less than Indicated.Size at Ketone Relative Humidities of 

Particle 
Test 6 Test 7 Test 8 Test 9 Test 10 

Radius o% 54% o% 55% o% 21, 67% o% 75% 
(micron) 

0.0154 10.8 2.2 17.6 35.0 7.0 35.5 11.1 39.1 3.8 
0,0226 36.9 7.9 41.8 4.5 55.7 21.2 59.1 26.8 59 , 3 21.2 
0.0282 64.o 15.4 61.3 15.2 69.8 34.7 76.4 39.0 68.8 34.9 
0.0327 76.1 22.3 76.9 26.7 78.0 45.9 89.o 48.7 76.7 44.9 
0.0369 79.6 27.4 84.2 46.2 83.6 57.8 59.5 84.o 52.7 
0.0407 82.9 30.9 91.6 58.6 88.7 68.6 66.6 91.9 59.5 
0.0444 
0.0479 

86.8 
90.1 

-- 
36.o 

94.9 65.2 
70.0 

92.3 
95.9 

75.4 
80.7 

72.6 
77.4 

65.3 
71.3 

0.0512 -- -- 74.5 
0.0546 
0.0578 

94.1 42.6 
46.9 

80.2 
82.9 

88.0 81.9 79.2 

0.0608 52.3 85.2 94.3 86.6 84.1 
0.0666 66.o 83.3 90.3 89.0 
0.0722 76.3 93.6 94.4 91.9 
0.0776 82.6 98.1 
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Figure 15. Experimental Growth Curve for a 0.02 Micron 
Radius Poly(Methyl Methacrylate) Particle with 
Increasing Methyl Ethyl Ketone Relative Humidity 
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Figure 16. Comparison of Poly(MethylMethacrylate) Aerosol Size 
Distributions Obtained with No:Acetone Vapor and in an 
Atmosphere Very Nearly Saturated with Acetone 
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TABTR XI 

SOLUBILITY DETERMINATIONS 

System 	 Solubility 	at 25°  C 

Solid 	 Solvent 
	 (Gm/100 gm solvent) 

Stearic Acid 	 Ethanol 	 4.8 

Camphor 	 Ethanol 	 155.0 

Napthalene 	 Gasoline 	 32.0 

Stearic Acid 	 Turpentine 	 4.5 

PoXy(Methyl 	 Methyl Ethyl 	 51.0 
Methacrylate) 	Ketone 

Ammonium 	 Ethanol 	 26.3 
Iodide 

*Paraff in 	 Benzene 	 1.99 

*Atherton Seidell, Solubilities of Inorganic and Organic Compounds, 
Vol. 1, Second edi'bion, Van Nostrand, New York, 1919. 
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TABLE XII 

SURFACE TENSION OF SOLUTIONS 

Concentration Surface Tension 
(Weight %) 

Stearic Acid and Ethanol 

(Dynes/Cm2) 

0.5 22.028 

1.0 22.045 

1.5 22.070 

2.0 22.101 

2.5 22.137 

3.0 22.180 

Stearic Acid and Turpentine 

26.54 1.0 

2.0 2693 

3.0 27.45 

3.5 27.72 

Napthalene and Gasoline 

21.525 5 
lo 21.945 

15 22.66 

20 23.38 

Camphor and Ethanol 

22.37 10 

20 22.96 

30 23.74 

4o 24.66 

5o 25.64 

6o 26.68 
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VII. DISCUSSION OF RESULTS 

The results from the studies of gasoline exhaust, presented in Table II, 

show that practical aerosol size analyses can be made with an ion counter. 

A particular result gives, for example, that a particle of 0.060-micron radius 

taken directly from the engine exhaust grew to 0.079 micron after being aged 

for a period of one hour and to 0.097 micron after being irradiated with ultra-

violet light for one hour. Table II also shows that the distribution obtained 

for unleaded gasoline exhaust was somewhat smaller than that obtained with 

leaded gasoline. Reproducible aerosols could not always be obtained because 

several of the variables could not be sufficiently controlled, Engine speed, 

temperature, fuel mixture, humidity, and air intake temperature all affected 

the aerosol output and of these the most serious appeared to be engine speed. 

The engine not only influenced the particle size directly but it altered the 

aerosol flow rate in the system. 

Aerosols of nonionic substances such as stearic acid, poly(methyl meth-

acrylate), and camphor are normally uncharged when produced by solution atomi-

zation, hence their size distribution could not be determined with the ion 

counter until the aerosol charging device was constructed. The device worked 

quite satisfactorily for long periods. The results of this phase of the in-

vestigation indicate that particulate aerosols will show significant size 

increases when exposed to less than 100 per cent relative humidities of vapors 

of liquids in which the aerosols are sufficiently soluble. The process is 

concluded to be one in which the solid first dissolves in the-adsorbed solvent 

to become a solution droplet at a relative humidity which, in principle , can 

be calculated from the surface energy of the solid, and the surface tension 
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and vapor pressure of the solution. Unfortunately, data for these calcula-

tions are not available for most organic materials in organic solvents, 

including many of those investigated in this study. However, theory predicts 

that, in general, the more soluble materials will become solution droplets 

at lower relative humidities. The results obtained in this investigation are 

in agreement with this prediction. For instance, the graphite and benzene 

and the carbon and benzene systems which are completely insoluble showed no 

measureable size increase. In the cases of the stearic acid and alcohol, 

stearic acid and turpentine, paraffin and benzene, and naphthalene and gasoline 

systems, the solubilities are relatively low and therefore the vapor pressure 

lowering effect of the solute is small. Hence these systems would be predicted 

to show little or no size increase except at extremely high relative humidities, 

which is in agreement with experimental results. The systems which showed 

considerable size change were those consisting of ammonium iodide and ethanol, 

poly(methyl methacrylate) and methyl ethyl ketone, and camphor and ',ethanol. 

Here the solubility of the aerosol material in the vaporous component is high 

and the resulting solution has a vapor pressure significantly lower than 

that of the pure solvent. Hence, again theory and experiment are in agreement 

in indicating quite significant size changes for these systems. 

The "affinity" tests in which pieces of the aerosol material were ex-

posed to a 100 per cent vapor relative humidity was a qualitative experiment 

to indicate the possibility of size change. It might be refined to give more 

quantitative data by noting the rate of vapor pickup. 

An estimate of the consistency of the data and results may be obtained 

by examining Figure 15.. The deviations from a single line indicated in this 
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figure are typical. The largest single contribution to deviation was a fluctu-

ation in the aerosol flow rate. The electrical equipment associated with 

the ion counter was extremely stable and free of noise, hence its contribution 

to deviation was negligible. 

Synthetic "smog" was found to be readily produced by irradiating a mix-

ture of nitrogen dioxide, sulfur dioxide, and 1-pentane in air with ultra-

violet light without the specific addition of inert nuclei. This is in general 

agreement with the findings of others.
9,18 

In order to achieve sufficient 

ion current for analysis, a. minimum gas flow of 60 cc/sec was required. The 

average residence time in available chambers was insufficient to produce the 

aerosol continuously at this flow rate, therefore tests with this aerosol were 

obtained only periodically. This restricted the time available for making 

measurements. Also, the aerosols produced in this fashion contained larger 

size particulates than can accurately be analyzed in an ion counter and 

absolute size determinations could not be made. However, a change in aerosol 

size could easily be detected. It may be noted that exposure of this "smog" 

to organic vapors in the absence of irradiation produced no detectable size 

changes but an increase was occasioned by increases in water vapor content of 

the mixture being irradiated. 
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VIII. CONCLUSIONS 

From the results of this investigation it may be concluded that: 

1. Particulate aerosols that are soluble in volatile organic solvents 

increase in size with increase in solvent vapor concentrations. The extent 

of the size change may be predicted from theoretical considerations. 

2. In general, the greater the solubility of the aerosol material the 

lower will be the relative humidity at which significant growth will occur. 

3. For materials with a relatively low solubility (less than approxi-

mately 5 per cent by weight) relative humidities in excess of 100 per cent 

are required for growth if the nuclei size is of the order of 0.01 micron 

diameter. 

4. An ion counter affords an excellent means for analyzing aerosol 

particulate radii in the range from 0.01 to 0.1 micron. 

-77- 
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IX. RECOMMENDATIONS 

There is an acute shortage of data relating to concentrated and super-

saturated solutions, the surface properties of solids, and the solubility 

of small particles. Since these are factors of importance in nearly all 

nucleation and aerosol studies, research into any or all of them should be 

encouraged. 

Presently, ion counter use requires that the particles being investigated 

be sufficiently small to carry a maximum of only one electronic charge. An 

effort should be made to develop electrical analysis methods and devices by 

which size distribution of larger particles having multiple charges could be 

determined. 

Respectfully submitted: 

CJ de Orr 
Project Director 

Approved:: 

tjt C. Whitley, Chief 
lical Sciences Division 
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TASTE XIII 

CURRENT VERSUS VOLTAGE DATA OBTAINED FOR SYSTEMS OF STEARIC ACID AND ETHANOL 

Volts 

Current 3  x 10
11 

Amperes, 	t Relative Humidities of Ethanol of 

48% 57% 64% 69% 71% 75% 76% 77% 78% 79% 

0 0 0 0 0 0 0 0 0 0 0 

2 16.0 14.5 17.5 17.5 19.0 16.0 18.8 13.3 20.7 19.2 

4 31.6 30.5 37.0 37.0 35.0 32.8 36.9 26.6 41.2 39.1 
6 47.0 41.8 50.3 50.3 48.o 47.7 55.1 41.2 54.7 52.4 

8 58.7 52.0 66.0 66.0 62.9 60.0 69.7 51.0 67.3 66.2 

10 69.5 61.8 78.0 78.0 75.4 72.9 75.0 620 78.6 78.7 

13 83.3 76.0 93.6 93.6 87.8 863 89.0 75.6 92.8 94.8 

16 92.9 88.0 107.4 107.4 103.5 97.2 102.0 85.9 102.9 108.2 

20 104.0 99,0 123.7 123.7 119.0 111.2 116.3 100.2 116.8 121.2 

25 117.6 112.5 13510 135.0 127.8 124.9 130.2 114.3 130.3 129.4 

30 128,0 123.5 1485 148.5 137.2 134.6 141.4 124,0 139.7 135.5 

35 134.4 130.3 158.3 158.3 144.8 143.1 150.0 133.4 148.1 142.6 

40 141.8 137.5 166.5 166.5 154.8 149.4 160.6 139.5 154.7 150.0 

45 144.5 147.7 171.0 171.0 161.4 154.4 166.1 145,9 1596 155.2 

50 147.0 155.0 176.2 176.2 165.4 157.7 174,7 1514 165.0 160.8 

60 152.9 162.3 184.0 184.0 170.0 164.2 181.0 160.0 168.6 162.5 

80 162.1 167.3 191.7 191.7 177.4 175,5 192.7 166,5 177.9 170.4 

loo 168.2 170.4 200.0 200.0 183.2 180.4 197.0 172.3 186.2 176.5 

120 171.2 175.3 205.0 205.0 189.8 184.2 198.2 1727 194.5 180.0 

150 173.9 176.0 210,0 210.0 194.7 184.2 200.1 172.7 195.0 183.9 

maximum 173.9 176.0 2100 210.0 198.0 184.2 200.1 172.7 195.0 184.0 
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TABIR XIV 

CURRENT VERSUS VOLTAGE DATA OBTAINED FOR SYS1EMS OF CAMPHOR AND ETHANOL 

Current, x 10 Amperes, at Relative Humidities of Ethanol of 

Volts 27% 35%  39% 54% 56% 68% 71% 91% 

0 0 0 0 0 0 0 0 0 

2 17 19 19 21 22 25 23 22 

5 43 4o 45 43 5o 48 48 41 

8 57 6o 62 59 68 62 63 58 

10 64 68 72 67 76 67 7o 64 

15 79 81 88 81 go 8o 85 76 
op 
-.1 20 89 92 99 97 89 

25 95 98 105 94 104 g6 102 93 

35 102 106 114 102 113 101 110 101 

50 112 111 121 108 118 106 116 110 

75 115 114 124 113 123 110 121 116 

100 117 117 126 116 123 113 123 120 

120 117 127 124 114 123 

200 118 128 118 124 114 123 

maximum. 118 120 128 118 124 114 123 124 
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TABTE XV 

CURRENT VERSUS VOLTAGE DATA OBTAINED FOR SYSTEMS 
OF AMMONIUM IODIDE AND ETHANOL 

Current x 10
11 

Amperes, at  Relative Humidities of Ethanol of 

Volts 23% 38% 41% 43% 53% 61% 67% 70 % 

0 
2 
4 
6 
8 

10 
13 
16 
20 
25 
30 
35 
4o 
45 
5o 
55 
6o 
7o 
8o 
loo 
120 
150 

maximum 

0 

13.4 
28.0 
40.3 
50.5 
61.3 
75.2 
86.9 
99.8 

11.5.3 
15.8 
134.7 
143,3 
149.8 
155.8 
159.8 
162.7 
166.7 
169,6 
174.1 
179.5 
179:8 
179.8 

0 
12.9 
24.7 
37.o 
47,8 
56.9 
71.7 
83.9 
95.2 
108,6 
120.7 
130.7 
138.5  
144.1 
151.1 
__ 

156,8 
162.9 
167.6 
169.6 
174.9 
176.9 
176.9 

0 
13.0 
26.o 
38.o 
48.o 
58.0 
70.0 

79.5 
90.0 
101.5 
111.0 
119.0 
124.5 
129.5 
134.0 
137.2 
140.1 
145.0 
148.2 
152.0 
154.5 
156.0 
158.o 

0 
11.9 
25.1 

35.7 
47.2 
59.0 
72.2 
83,6 

95.1 
109.6 
121.7 
130,8 
140.4 
146.0 
152.7 
-- 

160.0 
167.0 
169.0 
176.1 
178.1 
182.4 
182.4 

0 
12.1 

' 24.4 
36.2 
46.8 
57.5 
71.o 
83.6 
97.6 
112.9 
126.0 
135.5 
145.5 
154.0 
159.9 
164.0 
168.2 
173.9 
179.5 
185.1 
190.2 
196.1 
199.0 

0 
8.1 
17.3 
27.8 
36.8 
44,2 
55.6 
65.7 
76.3 
88.3 
101.3 
111.0 
121.2 
130.2 
138.8 
1462 
151.0 
154.1 
161.2 
169.7 
177.0 
182.8 
185.0 

0 
8.5 
14.1 
19.8 
25.8 
32.4 
41.3 
51.0 
61.2 
72.9 
86.6 

95.9 
105.8 
113.1 
122.1 
130.2 
134.2 
144.3 
151.3 
165.4 
169.0 
178.8 
184.o 

0 
5.9 
8.9 
14.0 
22.0 
20.4 
27.6 

35.9 
45.9 
53.8 
63.2 
-- 

70.2 
-- 

94.6 
--

108.1 
120.1 
129.1 
140.2 
147.5 
162.8 
168.9 
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TABLE XVI 

CURRENT VERSUS VOLTAGE DATA OBTAINED FOR SYSTEMS OF STEARIC ACID AND TURPENTINE 

Volts 

Current, x 10
11 

Amperes, at Weight Fractions of Turpentine of 

0.0 0.285 0.381 0.368 0.437 0.481 0.521 0.555  0.561 0.580 0.581  0.600 

0 0 0 0 0 0 o o o 0 0 o o 
5 18.6 18.5 21.0 18.5 19.8 22.2 17.7 22.2 18.0 17.8 14.3 18.5 

10 29.1 37,9 44.8 36.8 40.9 48.o 34.3 45.3 35.8 36.8 28.6 37.9 
15 55.2 55.9 64.9 56.9 60.0 66.9 49.9 64.1 51.7 54.1 39.9 55.9 
20 67.9 70.3 87.1 71.0 752 85.0 63.4 78.9 65.0 65.9 48.5 70.3 
25 78.5 82.8 96.4 85.3 90.3 99.8 75.1 89.9 76.1 77.0 58.0 82.8 
30 86.9 92.2 109.1 97.0 101.6 113.1 83.7 100.0 85.0 86.2 65.2 92.2 
35 94.3 101.6 121.4 107.6 111.9 123.1 91.5 108.1 91.8 8 93.8 
40 
45 

101.0 
106.5 

109.7 
116.3 

130.1 
138.4 

118,4 
125.5 

123.0 
129.6 

133.1 
140.4 

98.8 
105.0 

115.2 
118.9 104.0 105.6  

E 

a! 
50 111.0 122.3 145.9 133.0 138.6 147.9 111.1 123.1 108.9 110.0 91.6 122.3 
60 117.9 130.4 155.9 143.3 147.2 159.3 121.0 128.7 116.9 117.6 99.5 130.4 
70 123.5 137.5 164.5 152.8 156.8 165.9 127.8 132.0 122.9 124.9 105.6 137.5 
80 126.1 143.2 168.5 158.5 163.0 171.0 133.2 134.8 126.1 129.2 110.0 143.2 
90 -- -- 172.5 164.7 166.0 174.1 137.3 -- -- 132.8  

loo 133.2 148.o 175.0 168.7 170.1 179.8 141.3 137.0 133.0 133.1 116.7 148.0 
120 138.7 154.5 177.8 172.2 174 .9 184.7 146.2 138.9 134.7 134.0 123.2 154.5 
150 139.8 156.2 186.9 175.4 180.1 189.8 150.7 140.7 137.9 135.3 127.7 146.2 
200 141.3 156.7 188.7 1829 182.8 196.9 156.0 141.6 139.3 136.2 127.7 156.7 

maximum 141.3 156.7 188.7 1830 182.8 196.9 157.1 141.6 139.3 136.2 127.7 156.7 
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TABLE XVII 

CURRENT VERSUS VOLTAGE READINGS OBTAINED FOR SYSTEMS 
OF AMMONIUM IODIDE AND DIOCTYLPHTHALATE 

Current, x 1011 Amperes, at Vapor Concentrations Obtained from Bath 
Temperatures of 

Volt s 
No 

Dioctylphthalate 28.8°C 35.0°C 48.1°C 73.2°C 

0 0 0 0 - 0 0 

5 14,1 15.3 17.7 15.7 16.8 

lo 28.1 31.1 29.8 30.0 31.1 

15 42,0 44.8 45.0 43.6 44.o 

20 54.3 57.0 55.0 56.o 56.0 

25 63.1 69.3 65.3 67.0 67.2 

30 73.0 79.3 74.7 76.7 76.2 

35 80.8 88,8 81.6 85.6 85.8 

40 86,3 97.2 87.0 94.0 92.9 

50 .97.0 109.0 100.0 104.6 105.8 

6o 105.6 122.1 107.0 115.0 114.7 

70 111.6 128.0 112.7 1198 123.3 

80 118.4 133.2 119.0 123.6 133.3 

loo 123.5 138.1 123.7 132.0 139.0 

120 129.1 143.0 127.0 136.0 143.0 

150 132.1 143.7 130.0 140.0 149.0 

200 132.1 145.0 134.0 141.8 152.2 

maximum 132,1 145.0 134.0 141.8 152.2 
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TABLE XVIII 

CURRENT VERSUS VOLTAGE DATA FOR SYSTEMS 
OF PARAFFIN AND HEXANE 

Volts 

Current, x 10 11 Amperes, at Hexane Bath 
Temperatures of 

24.6°C 47.8°C 76.3 °C 

0 0 0 0 

2 10.7 12.8 19.2 

4 15.6 17.2 26.4 

6 20.0 22.2 34.3 

8 25.3 27.8 44.1 

10 30.5 33.5 51.1 

13 38.8 42.1 

16 45.8 49.o 70.6 

20 54.9 57.4 80.7 

25 64.o 65.9 89.o 

3o 71.1 72.9 96.2 

35 76.o 78.5 102.5 

4o 80.4 83.1 107.3 

45 84.7 

5o 86.,o 88.9 114.1 

6o 88.8 92.1 119.8 

70 91.0 93.9 

80 92.o 95.0 123.o 

100 93,0 96.o 123.7 

maximum 93.0 96.0 123.7 



TABLE XIK 

CURRENT VERSUS VOLTAGE DATA OBTAINED FOR SYSTEMS 
OF NAPHTHALENE AND GASOLINE 

Volts 

Current, x 11 
0 
	Am

peres, at Gasoline Temperatures of 

24.0°C 25.1°C 31.5°C 37.2°C 54.6°c 6o.o° c 

0 0 0 0 0 0 0 
2 25.0 22.0 23.0 30.0 25.0 16.1 
4 45°9 33.5 43.5 52.0 46.5 30.5 
6 6o.8 46.0 62.0 70.0 65.o 44.5 
8 74.o 58.3 76.5 84.o 80.9 57.2 
10 83.9 63,9 87.8 94.9 100.5 69.3 
13 95.5 75.1 102.0 107,8 1133 86.o 
16 105.0 84.2 112.0 117.2 128,0 100.0 
20 113.9 95.2 122.1 126.1 140,9 122.8 
25 120.3 103.4 128.8 134.3 156.5 130.9 
30 124.9 109.0 134.4 136.1 168.9 137.0 
35 127.0 110.8 139.8 141.1 170,7 -- 
4o 128.3 113.5 141,2 142.7 173.2 152.3 
5o 130.2 114,8 142.8 144.0 175.6 158,1 
6o 131,6 115.5 145.7 145.4 175.7 160.9 
8o 131,6 115.5 148 8 145,8 175.7 162.6 

maximum •31.6 115.5 148_8 145.8 175.7 162.6 
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TABLE MC 

CURRENT VERSUS VOLTAGE DATA OBTAINED FOR SYSTEMS OF .POLY(METHYL METHACRYLATE) 
AND METHYL ETHYL KETONE 

Current, x 1011 Amperes, at Relative Humidities of Ketone of 

Test 1 Test 2 Test 3 Test 4 Test 5 

Volts 0% 33% o% 34% o% 48% 0% 55% 0% 75% 

0 0 0 0 0 0 0 0 0 0 0 
2 18.0 16.0 12.2 7.0 19.0 12.7 10.0 3.6 19.2 19.0 
4 25.5 25.0 20.0 15.5 23.3 22.0 19.0 8.2 30.0 24.0 
6 30. 8  33.3 26.6 21.8 30.2 30.0 25.8 11.0 35.2 27.0 
8 33.2 37.6 27.5 26.2 32.5 33.5 30.7 14.o 38.0 35.0 
10 34.6 42.1 29.3 28. 7 34.2 38.8 33.8 18.7 41.0 40.0 
13 37.8 45.8 33.3 32.o 36.3 41.7 37.8 21.2 42.0 50.0 
16 40.2 48.7 39.3 37.0 36.3 44.1 39.o 28.o 45.o 57.2 
20 41.5 49.0 43.2 40.8 38.7 49.9 40.3 29.5 47.3 6o.o 
25 44.5 - 50.o 44.o -- 55.8 43.7 33.0 -- 61.4 
30 44.7 54.4 53.o 48.8 41.0 6o.o 44.8 34.7 50.0 64.2 
4o 45.0 48.o 55.o 53.1 _... 61.0 45.o 36.o -- 70.2 
50 48.7 55.2 -- 42.1 -- 45.0 39.o 50.6 72.8 
6o 45.o 48.8 58.2 66.8 45:0 40.5 73.8 
8o L... 60.0 70.0 - 75.8 

100 600 70.0 42,0 -- -- 
maximum 45.o 58.8 55.2 6o.o 70.0 45.o 42.0 5o06 78.0 
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TABLE XX (Concluded) 

CURRENT VERSUS VOLTAGE DATA OBTAINED FOR SYSTEMS OF POLY(METHYL METHACRYLATE) 
AND METHYL ETHYL KETONE 

Current, x 10
11 

Amperes, at Relative Humidities of Ketone of 

Cz 
Volts 

Test 6 Test 7 Test 8 Test 9 Test 10 

o% 43% 0% 47% o% 54% 0% 60% 

0 

67% 

0 0 0 0 0 0 0 0 0 0 
2 10.0 6.5 20.2 7.0 10.5 2.8 42.2 14.8 31.0 12.1 
4 15.5 11.0 33.2 12.0 20.8 5.2 61.3 27.5 46.5 18.0 
6 20.6 18.7 46.0 18.7 2900 8.0 74.7 38.5 52,8 21.8 
8 23.7 24.7 59.8 19.7 36,0 97 85.3 47.5 6o.o 27.7 

,.0 
A_---- 10 26.0 27.8 69.3 21.0 36.5 11.0 894 55.0 62.2 30.3 

13 29.7 3100 77.8 22,9 45.o 14.0 97.0 64,4 64.0 39:5 
16 32.8 35.6 85.5 27,0 47.0 15.7 102.6 71.8 71.1 44.3 
20 36.2 39.8 94.0 31,0 48.8 17.8 105.5 80.0 74.5 47.5 
25 40.5 4200 101.6 33.2 50.5 20.0 107.5 88.o 75.5 51.3 
30 43.5 43.3 109.0 36.2 51.8 22.0 110.9 92.8 54.7 
4o 43.5 47.5 1093 40.0 53.2 25.3 113.0 99.4 57.0 
5o -- 50.0 109.3 41.9 54.o 28.3 li3.0 103.0 75.5 -- 
6o 43.5 51.4 109.3 48.7 54.5 :30.7 106.5 59.0 
80 53.4 540 2 54-5 33.5 109.5 6o.o 
loo 54.o 54.2 -- -- 110.0 62.0 

maxjmum 43,5 54.0 109.3 54.2 54.5 35.0 113.0 110.0 75.5 62.0 
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