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.-•_•:.;.. SUMMARY 

In this investigation, ,a cascade synthes is procedure is developed 

to realize RC transfer functions withtransmission zeros in part of the 

right half of the complex-frequency plane. The procedure is similar to 

the Dasher procedure for realizing transmission zeros in the left half 

of the complex-frequency plane and is to be used1 in conjunction with that 

procedure. A brief description of the procedure is contained in the fol­

lowing paragraph: • 

Given an RC immittance function of suitable degree, Y-(s) or 

Z,(s), the immittance is developed byremoving a three-terminal 

network which produces a pair of conjugate transmission zeros in 

the region of the; complex-frequency plane given by 

60° < larg si < 90° , 

and which is terminated in an RC immittance function* Y^Cs) or 

Z2(s), whose degree; is less than Y-(s) or Z-(s).; 

The cascade proceduremay then be repeated using Y„(s) or Zo(s). 

Several repetitions of this procedure result in a three-terminal network 

made up of cascaded networks, each of which produces a transmission zero 

or pair.''of•''cbnjugâ :e.•:trans'mi•ss'ion•:̂ z•e•ro•s• and is called a "coupling circuit." 

The procedure may be used to realize the transfer functibris Ê /l-.» E^/E-, 

In/l-i and IA/E-, For these cases, a driving-point immittance function, 

Y1(s) or Z, (s), is derived which is compatible with the given transfer 

function. The immittance function is then developed using the cascade 



'•••''• ' ' • " ' • ' • ' • * ' • • . . • • ; ' • : • • ' ' • ' ' ' ? ? • ' . • • • : . • •">'' ,.'V':: -= "- v:,:.,Yil: : 

procedure to realize the transmission zeros of the transfer functipn. 

The investigation is divided1 into four interrelated areas. 

....These a r e : ••'••"'".':: 

li .Determination bf the effect of surplus factorsV •'.-' 

2. Determination of a set of coupling circuits for producing 

right-halfrplane transmission zeros. 

3. Determination of a..'set of preparatory-step conditions which 

will result in an RC termination. 

.4. .Determination of a procedure for choosing the most suitable 

''..'coupling, circuit for'use with a given driving-point imm.ittan.ce and a 

pair of transmission zeros. 

The procedure for realizing right-haIf-plane zeros is shown to be 

more difficult .••.than theDasher procedure for producing left-half-plane 

zeros. .The;increased complexity is caused by the necessity of the use 

of augmenting factors which result in non-negative numerator coefficients 

of thei numerator of the transfer function before cancellation of any 

common factors. The augmenting factors are restricted to specific ranges 

of values depending on trie locatioh of the transmission zero. The factors 

-'•cause': additional preparatory-step conditions and restrict the location of 

the compact poles of tHe coupling circuits. However, the factors are 

shown to cancel in the overall transfer function and therefore are not 

transmission zeroso Furthermore, it is shown that the augmenting factors 

need not be present in the driving-point immittance. The augmenting 

factors are referred to as surplus factors, because of the similarity to 

surplus factors used in other synthesis procedures. 

The procedure developed during the investigation is confined to 

imm.ittan.ce
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the one-surplus factbr case, which limits the location of the transmission 

zeros to the first 30°-sector of the right half of the complex-frequency 

plane. Many of the results of the investigation are shown to apply to the 

use of multiple surplus factors and therefore to an extended region of 

the right-haIf plane, ; , 

Eight coupling circuits are listed for use in the new cascade 

synthesis procedure. The list of circuits is not necessarily complete. 

Each circuit is described iri terms of the allowable pole locations of the 

short-circuit admittance functions, .y,.., -y..-, arid y«_ or of the open-

circuit iiripeidance c f uric t 16ns,z, v> Z -IOJ and z... The pole locations are 

described as 'functions of the surplus-factor zero^ which is restricted 

to a specific range of values. The eight circuits are shown to cover a 

wide rarige of possible pole locations. The circuits are z-compact and 

y-compact. 

As in the Dasher synthesis procedure, the given driving-point 

immittance, Y,(s) or Z,(s), must be prepared for removal of the coupling 

circuit by removing series or shunt elements. It is shown that in 

certain cases the new procedure requires removal of both shunt and series 

elements. The preparatory step is shown to place requirements on the 

function Y, " Yi i an(* its derivative at both the transmission zero and 

at the surplus-factor zero. The derivation of the preparatory-step con­

ditions shows that satisfaction of the preparatory-step conditions will 

not only result in an RC termination, but will also cause cancellation of 

the surplus factor in the overall transfer functions of circuit. 

A method is derived for choosing the most suitable coupling cir­

cuit to use for a given synthesis problem. The circuit is chosen during 
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the first step -of the procedure. It is shown that the circuit may be 

chosen on the basis of the relative pole-locations of Y!. and y, 1 , or the 

relative pole-locations of Z, and z,|# 

A discussion of the compactness property of the coupling circuits is 

included. A simple procedure that can be used to determine whether a 

given set of z- or y- functions are y- and z- compact is developed. Use 

of non-compact circuits for the cascade synthesis procedure is discussed 

arid shown to be feasible, - i • 

A special technique is demonstrated for the use of the procedure in 

realizing a given transfer functiori with a specific termination. 



CHAPTER I 

,_ : :; INTRODUCTION 

Statement of the Problem 

The cascade synthesis problem discussed in this thesis is an in­

tended -exteris ion of the Dasher method of cascade synthesis of RC networks 

to include transmission zeros in part of the right half of the complex-

frequency plane. ,The problem' differs from the Dasher .problem; in certain 

aspects because of a surplus factor requirement. The problem is stated 

in the following paragraph: 

Given an RC immittance function of suitable degree, Y1(s) or 

Z-(s), develop that immittance by removing a three-terminal net­

work which (a) produces a pair of conjugate transmission zeros 

in the region of the s-plane given by 

60° < |arg s| < 90° (1) 

and (b) is terminated in an RC immittance function, Y~(s) or 

Z?(s), the degree of which is less than Y,(s) or Z, (s). 

Although the procedure developed in solution to the problem may 

be used to produce left-half-plane transmission zeros as an alternative 

to the Dasher method of synthesis, it offers no particular advantage; 

Therefore, the discussion in this thesis concentrates on the development 

of the procedure for producing right-half-plane transmission zeros, 

The procedure to be developed in this thesis may be repeated using 

Y«(s) or Z„(s), Several repetitions of the procedure result in a three? 
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terminal network made up of cascaded networksj each of which produces a, 

pair of conjugate transmission zeros and is called a "coupling circuit." 

The process may be used in conjunction with other cascade synthesis methods. 

For example, negative real transmission zeros may be produced by an exten­

sion pf the Cauer ladder development and conjugate pairs of left-half-

plane transmission zeros may be produced using the Dasher procedure. 

• The procedures may be used to realize transfer functions, such as 

E.27l-,"-» Eo/E- , ±2/l, and t'^/E, • First, a driving-point function must be 

derived which is compatible with the given transfer function. The 

driving-point function may be either an impedance, Z-., or an admittance, 

Y,o Second, the driving-point immittance is developed using cascade syn­

thesis methods to produce transmission zeros or pairs of transmission 

zeros of the given transfer function in the step-by-step manner described 

previously./..'/ 

Origin and History of the Problem 

The study of two-terminal-pair RC transfer functions is of prime 

interest in servomechanism and other low-frequency applications of elec­

trical networks. The results' of the study of RC network synthesis may :be 

applied to LC and RL network synthesis. .'"."•" .V'*'•••',.'v'-:'.'••"'•'-\ 

Existing methods for RG synthesis of right-haIf-plane transmission 

zeros using.three-terminal networks are the Guillemin parallel-ladder •: 

2 ' • - • • " '•"''• • •' . ' • • / ."•' • '••' ' • 3 '•' . V - - ' ' 

procedure and the FialkOw-Gerst polynomial-partitioning procedure . T h e 

Guillemin procedure realizes only Y-„ transfer functions or voltage trans­

fer functions. The Fialkow-Gerst procedure may be used to produce Z'2, 

;Y,.«:, or voltage transfer functions^ Both methods require an excessively 

large number of elements. No single element or group of elements in 



ei the r p roc edure.c ontro 1 s. the 1 ocation of each transmiss ion zero* : Irist'ead, 

each element affects the performance of the network at all frequencies and 

therefore no independeht adjustements are possible in the physical network, 

The Dasher procedure overcomes all of the disadvantages listed in 

the preceding paragraph when compared, to those procedures as they are used 

to produce left-half-plane transmission zeros. "In addition, the Dasher . 

procedure may yields larger gain constant than the Guillemin.procedure. 

The primary disadvantage"of the Dasher procedure is the difficult prepara­

tory step, which often results in a small gain constant. Seshu and 

4 • ' '" • • • ' . . - , * , r • ' " • " • • • ' • • " . , ' .''• • . ' " - . . . ' • " • ' : • ' • • . ' . •'• 

Hakimi studied the problems of simplifying the preparatory step and 

extending the procedure to.include right-half-plane transmission zeros. 

They were not successful in simplifying the preparatory step. However, 

they did conclude that the procedure could be extended to the right-

half-plarie arid they suggested several circuits which might be used in 

the extension. •;'.' ''• .'' •'•'"/' ,*:v 

Meadows observed that surplus factors could be made to cancel 

from the overall transfer function for cascade synthesis. 

H; - : :; .^Propertres of RC Func tions;:",' 

. iFor subsequent refererice, .aJbrief discussion of certain proper­

ties of, RC functions: is giveni H^re.;;: - / ,;'../-'.-

The Foster expansion,of an ̂RC driving-point admittance may be 

written as .-••••- • .-•.''••' '_ "'•'• •'-;.•. 

k s 
v Yn (s) = k s•+ k + Z; 

1 » •, o v=i : s +, cr (2) 



In this '-expiression the k" s must be : rea 1 and pos itive; and the a' s 

must be real and positive. The expression may be obtained by expanding 

Y,/s in partial fractions and multiplying the result by s, The k 's 

represent the residues of the corresponding poles. The values of k and 
• < . . ' - - ' - °° 

k may be zero„ The poles and-zeros of an RG driving point admittance 

alternate along the negative real axis of the s-plane,, The first critical 

point (zero or pole) starting from the d.rigin is a zero. The origin may 

or /•'may/riot be a zero. The last critical point is a pole, A typical 

graph of an RC admittance function along the negative real axis is indi­

cated in Figure 19 ''••.•' 

The F o s t e r expansion for. an RC impedance funct ion rhajrbe w r i t t e n 

a s • ' ; • ' . ' . . . . - - . . , . - " . . • ' ' , ' " , . ' . ••• " ' . ' • . ' • ' • - ' . • . • . . • • • ' - . 

i n , 

•z--(s) = k '-:+ o .+- z v 
I N y • . oo = — •, . 

•••- ' . S V = l S + o 

(3) 

As for the admittance function, the k's arid the o"'s must be real , 

and positive. The k's represent the residues of corresponding poles and 

the values of k and k may be zeroc The poles and zeros also alternate 

along the negative rea| axis. The first critical point starting; from the 

origin is a pole* The origin may or may not be a pole0 The last critical 

frequency is a zero,, A typical plot of an RC impedance function in indi­

cated in Figure 2e 

RC transfer functions, Y12(8),and ZT„(s), for three-terminal net» 

works have the following properties; 

lo TransmissionTZ-$ros may lie anywhere^ ?in the complex-frequency 

plane except along the positive real axis» 



Figure 1. Typical RC Admittance Function. 

|i 

bill |i| 1.1 
III. 

Figure 2. Typical RC Impedance Function: 
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2. Poles of Z-« must also be poles of Z-, the associated driving 

point impedance. Poles of Y,2 must also be poles of Y-, the associated 

driving-point admittance, 

3, The transfer functions, when related to a given circuit, must 

have non-negative numerator coefficients before cancellation of factors 

common to both numerator and denominator. This property is of particular 

importance for right-half-plane transmission zeros. 

Notation 

The notation used throughout this thesis is given by the following 

scheme: 

1. Lower-case letters refer to quantities related directly to the 

coupling circuits. Lower-case letters having double subscripts always 

refer to the coupling-circuit parameters z^, zyv z22, y^, y^, and y 

2. Capital letters refer to the over-all network impedance or 

admittance functions. 

3. Transmission zeros are defined ass = CH +i6 = o> / 6 and 
o o J l o o l  

s '= a - jB = a> / -6 where |s | = a) . For lef t -half-plane transmission 
o o o o * o' o r 

zeros, a represents a negative number; for right-half-plane transmission 

zeros, OL represents a positive number. 

4*. The current and voltage reference directions and the pi and 

tee representations of the coupling circuits are indicated in Figure 3. 

Example of the Dasher Procedure 

The sequence of steps in the Dasher procedure, assuming that an 
n • , 

RC admittance Y, is given and that one of the desired conjugate trans­

mission zeros is at s = a + if3 , where a represents a negative number. 
o o o o 

is as follows: 



yl = yll + y12 

-* 

y 2 = y 22 + y 1 2 

1 A 

O- »-
A h 

Zl = Zll • *12 

-O 

Figure 3. Pi and Tee Representations of Coupling Circuits. 



^Step lBr Remove an Admittance, Y ,; which is part of Y, such that 

the remainder,Y- , will not only be RC, but will satisfy the fequire-

merits: ....•',••-,-"'••'••• : ,--,—-' 

Y lpM = f t l ( S o> (4) 

Y. ' (s ) = ylr' (s ), 
lp v o ' * 1 1 v. o 7 •'• 

(5) 

where the prime indicates differentiation with Respect to s-i Satisfac­

tion, of the requirements assures that the terminating function, Yw(s), 

w i l l b e R € . ''••••';•'•;.-.. • - V - • - . 

Step 2. Remove a second admittance y-, where 

*1 = ^ll + y 1 2 ' (6) 

to satisfy the relation^ Y v (s )
l= yn(s ) . • 

- : - • > . . . - . - . v . . , l p - o • l o ' •"..••-••.;.,.:•; 

Step 3* The remainder In Step 2, Y v, has a pair /of conjugate 

zeros at, s = <2 ••''!+'• jB . Y is inverted and l/-y-« is removed. The con-
/'.,..'•.:.•...•,'.'•". o : o • a - ... ;. 1 2 

stant multiplier of l/-y-„ is chosen to remove the pair of conjugate 

poles frbm'l/Y > .-...,•••. 
• . - • • > ' ; ' - . - a . . • • • : V - . A - : " / . • • • / : • ' : ' . . . ; . , . . . . ' , • ' ' / . " . • • ' • . . . ' . • : • : , . ' - ' • , • • : . . : ; ' . . " ; . • : " : ; • ' . ' : • ,-., : / . • 

Step:4i The reciprocal of the impedance remaining in Step;3 , 

Z., lias the same PQlê  on the negative-reali axis as y , . This pole is ' : 

removed as an-admittance y« where 

2.2 + * 1 2 ' V) 

to complete the cyele^; :The final.' remainder, ,Y.u,-:;is an RC admittancev ; 

:.'.-,;S:tep 5. The three admittances^ y-, y«, and -y-« are completely 

specified by the preceding steps and the associated coupling circuit is 

chosen from one ̂ f the three circuits of Figures 4, 5; and 6, 



C = k 
a . y 

C- = 

2 ' '.•' 2 
k _ ( l + a ) (a) +2a -q .+a. ' ) -T_X 

- G b = a l C b 

G = k; ( ^ a - a O 
c y o 1 

Res t r i c t i o n : - 2a - a, ^ 0 
.:•;.-.-...,.0' 1 

F i g u r e 4 . - D a s h e r ; C o u p l i n g C i r c u i t A. 
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C = k (1+a) 
a y 

(o,+2a ) 
1 o 

03. 
Cfe = k (1+a) -f 

"l 

-2a 
c - k '• 

c y a, 

G » c,C 
a la 

Gb " °lCb 

Restriction; a,+2o: ' ̂  0 
.. » 1 o , 

Figure 5. Dasher Coupling Circuit B. 
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=:_Z 
k V < 1 + ^ ^ o + 2 a o ^ l ) 

: : 2a." co 
c = k (- -^ - -gy 

c y \ . a • • a 2 ; 

G = ( 7 . 0 
a 1 .a 

; co 
Gu = k - 3 

b ; y GT^ 

' • • ' - • • ' ! ' . . : - . 2 : ' . - ' • - • ' • • ^ 

• ' • / - , > . • . ••. •'. t o ;• , . " , - , . 

R e s t r i c t i o n : '<j,'+ ••Jjr—-. ^G-
• 1 . 2 a ~ •:•. 

• ' - , O 

Figure 6. 'Dasher Gbiipl ing C i r c u i t C 
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The steps are i l l u s t r a t ed in Figure 7. 

The y-parameters for the Dasher coupling c i r cu i t s aife given by 

the following equations; 

12 y 

2a s +60 
o o 

S + CL 
(8) 

or 

.(£• ' • ' .'• • • • 

•y = k [ s + - - - + (o: x-I-VI2Q;. o v -J-. 60 ) — " 7 7 - T 

12 yL, a I... .: o lc .,© a v - ( ^ + a ) 
(9) 

2 

y- - =* kJ'['S.- + ^ - f "a(aV '.+•'• 2 a an ,+CD ) , S ^ v ] 
11 vL °i - 1 . G V ° a i_( s + <?,) 

(10) 

22 
i r 0 : 1 . 2 ' " • • * 2 V S 
k: [ s: + TJT^+. — Ca- + 2a• -cr. + GO ) — v » N y 1 2 1 o 1 o' a, (s + g-) ] - . • • ( I 0 

t ion 

The conditions of Step 1 are equivalent to satisfying the equa-

P0:.b-g'fo 

£ : - ^ . " ' a-,' b'p•'. 
••••- ; . • = o ••••. ^ o 

b .^K-'y^-
• b'p a 

. -. o o 

(12) 

where 

Y, (s ) = g + jb 
lp o 

Yln'(sJ = g» + jb« 
IP o 

(13) 

(14) 
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Preparation ••'_- Coup ling Circuit V Termination 

n " • y 1 2 

'V* 
• y 1 2 

Y l ^ Y 
p IP 

' • ; " • • - • :*[ 'V* Y b~*- y 2 I Y 

O — — < 

'V* Y b~*-

Figure 7. One Cycle of the Dasher Procedure. 

mhos, farads 

Figure 8. Example ofthe Dasher Procedure 
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Dasher also developed (12) in another form involving summation of the 

residues of the poles of Y-V If the conditional equation cannot be sat­

isfied by removing a shunt cdhductance or shunt capacitance or partially 

removing a pole from Y,, then the equation is satisfied by removing series 

elements. YV is replaced in (13) and (14) by s/Y.. = sZ. which also has 

the form of an RC admittance.* The Dasher procedure thus allows one to 

work with admittance functions only. 

For example, given a particular driving, point ad 

- - = -(3s -h2)(2s +V3) 
1.1 (s + l)(s -f 4) (15) 

it is desired to realize a pair of transmission zeros at s == -1 + jla 

Equation (12) may be used to satisfy the conditions of Step 1 of 

the: procedure while removing a shunt conductance, G . The eixample is 

chosen for its simplicity,, .One should expect that, ;\ in general, Y will 

be more complex than indicated here« Equations (13) and (14) become 

'%i*J ^ g + jb = 1 - G p + J2 (16) 

Y ip' ^ o } • ? «' + ^ b ' = i r;J2 ;. (17) 

Substituting these values in (12) along with 

and 

a = -1 
o 

P0;= i:, 

(18) 

(19) 
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one obtains the equation 

1 - G 

Y 
•1..+. 

2— 1 
-1 

2 - 1 

-a 

(20) 

The equation is satisfied and Step 1 is performed by the removal of a 

shunt conductance of value 

V = 1 > (21) 

leaving the remainder RC funct ion 

,. ^ 5s .+ 8 s + 2 
l p i s2 +5s +A 

(22) 

- F o r ; Step 2,; t he s u b s t i t u t i o n s== -1 + j 1 its made in (22) and in 

the equa t ion for •'yv. E q u a t i n g t h e two r e s u l t s , one ob ta ins 

2 - 0 . 
j2 = k (1 + a ) | > -

y 0-
',+ j l ] (23) 

Equating the real and'imaginary parts of (23) yields 

and 

Therefore 

* l : ^ 2 

k|(l + a) = 2 c. 

(24) 

y, = 
2 s 

1 s + 2 ,... 
(26) 
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Now y, is removed from Y, 9 obtaining 
•• I • -v u.: r i p . 3 ; '.;.:-.• 

Y = Y 
lp ^1 (s .+ :-2.)(s2-.+ ,5s + 4);, (27) 

Be cause a, is known, =y1? is known except for k.'•', ; When Step 3 is per­

formed, the value of k will be chosen to remove the conjugate pair of 

poles from 1/Y . 
• a .... .. .... . , 

7 '̂l "-"•• :;;;'1;V _ (s -h: 2)(sf_+ 5s + 4) s.+ 2 ^ > ,; ••„ <r.: v , - A ~ ~ — - ^ — « -• , „ ~ 7. i: , -,-

(3s^2)(s2 + 2 s + 2) ky(s><',.+ 2s> 2) ' 
(28) 

Setting s ;= -1 + jrl in (28) and equating to zero yield 

k = 1 . (29) 

v. ;Completihg the operation indicated :in (28) using the value for 

k obtained in (29) gives 
, y " " . • • . • • - . : . . • ' - • . " . . , ' , . " • ' : • . . • • ' . : . 7 ' .•'••• ' " • : • ' :. : , . .;,• •. • • • • • • . ' , ' • ' • • • . 

-:.z,-.-.'=•'•--
s,;+ £• 

b 3s + 2 ' (30) 

Substituting,(29) in (25) yields 

a = 1 ''"::•• 

The re fore 

2s 
% 's + 2 

(32) 

and the remainder calculated in Step 4 is 

7 = iL _ 3s. + 2 2s 
2 "Z,-"- y2 5 + 2 ~ s + 2 

b 
= 1 . (33) 



Circuit C, Figure 6, is chosen for use in the circuit. The com­

plete circuit is indicated in Figure 8. 

.Introduction to' the New Procedure ,; 

Extension of the cascade;synthesis procedure to include right-half-

plahe transmission zeros may be divided into four inter-related areas for 

discussion:. These ares :v . 

1. Determination of the effect of surplus factors. 

, 2, Determination of a set of coupling circuits for producing right 

half-plane transmission zeros,; 

3. Determination of a set of preparatory conditions which will 

ensure RC termination. 

4. Determination of the most suitable coupling circuit for use 

with a given driving-point immittance and pair of transmission zeros. 

The preceding topics are discussed briefly and, where possible, 

the results are compared to the Dasher procedure here. 

Surplus Factors 

The numerator coefficients of the transfer function, when calcu­

lated for any three-terminal network with no mutual coupling, must be 

non-negative. This fact was first established by Fialkow and Gerst. 

(If the circuit is constructed in a manner such that a common factor is 

present in both the numberator and the denominator of the transfer func­

tion, the negative coefficients may appear.) Thus, for a pair of right-

half-plane transmission zeros at s = a + j|3 , at least one surplus 

factor (s + o ) is required, and the expression for -y19 becomes 
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~y 12 

(s + cr )(s2 - 2a s + &2) 
-*•,.:•••':.•••: - o - .•...; o o 

(s + GTr)(s + a2) 
(34) 

or 

-y 

3 ••>''"'•.•••.••"••••.: • • 2 "•'' 2 ••'--',: ; -2 
s•..•;+ (cr .•.-•.-2a ) s•••..+ (cp - 20! 0 ) s + a a> 

o . o ;...'.. :.> ~© •••.,.. o\o o o 
12 (S+GT^CS f (?2) (35) 

For non-negative -numerator .coefficients in (35), the range of the sur-

plus factor is limited to 

. o x - ••••. 

2a < er. < -£• . o — o — zee 
;:-, • O 

"(36) 

Multiplying condition 1(36) by 2& , it is apparent that 
. . . ' " " • ' . - • ' ; - ' - , • ' - - - . t , - - O r ' - - •• 

<x> > 2a'.- .- , 
o ~ o 

(37) 

arid t h a t orie surp lus f ac to r w i l l be s u f f i c i e n t only i f the r i g h t - h a l f -

plane t rar ismiss ion zeros are , l i m i t e d to the reg ion of the s-plane given 

by " ' . ' . ' • . ' • : :
: ; j •' / / f ^ '.V •'...' / ';",'' - Z^'- "' ' ':] :.;, ,': ^ ^ - \ ' " V V 

60° < ia rg s | < 90p . (3B) 

The solution to the cascade synthesis problem discussed in this thesis 

is limited to transmission zeros in the region indicated by (38)^ The -

problems involved in the extension of the prbcedure for use with two or 

more surplus factors, and therefore use with transmission zeros located 

in an extended region of the right-haIf-plane, will be discussed in: 

Chapter V.. "' , 

Although the surplus factor (s + 0 ) is a transmission zero of 

the coupling-circuit transfer function, .\-y,~, the discussion of Chapter 
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III will show that it is not a transmissibn zero of the overall.transfer/ 

function.,-.;yi.„-, nor "does it appear in the driving-point ̂ admittance, Y, . 

In fact, it will be shown that: the. factor, (s + a '.)', augments both the 

numerator and the denominator of both Y,« and Y,j and therefore is a 

surplus factoraccording to the conventional definition. 

Although the discussion of this section has /used admittance furic-

tibris, the same arguments hold for the synthesis procedure if impedance 

functions are used, ' 

Coupling Circuits 

As in the Dasher procedure, the coupling circuits used in the new 

procedure are both z° and y° compact. That is, the residue condition 

I • ' , ' • • ' ' • 2 : . ' • . ' : " • • • - " " • " . ' . ; : • ' ' .• ,••;• • " • • . ' -. • ,-. - • • : ' • ' . ' • • • ' . • " . 

•k^jkjj - k, „ > 0 at each pole is satisfied with an. equality sign for both 

the z~ and y- functions. ; ;v 

In the Dasher procedurei the three listed couplingcircuits will 

realize any transmission zero in the left-half plane using any given 

driving-point immittancefunction of sufficient degree. 

For synthesis of right^half-plane transmission zeros, eight coup­

ling circuits are:listed":in Chapter II. Iri certain cases, the given 

driving ̂point immittance function j .Yw may /require ';ex£ehsive» a Iteration 

for use;in realizing a de is ired transmission zero using any of-the circuits 

' • l i s t e d - . ; .'• .".-.''., ._•"..•.-•. "-. ' \ ' , ' * " ' ' " : ' J . "'"•'..,' "''•'•'•';"' •'.''•. '.-''''• /'•'•: : ' " ' , < . . ' . / • ' . '•' • "., 

'. The element values for the coupling 'Circuits "of the ; Da she r pro­

cedure, ;listed in Figures 4^ 5, and 6, are derived from the variable 

parameters of. the admittance' functions, y, j->..'.- yn«, and y ., It is not 

always possible to use- admittance parameters in the new procedure'because 

of the more Complex preparatory-step requirement. There fore, circuits 

are derived for use.with either admittance: parameters or impedance 



20 

parameters,, Most circuits are limited to use with one or the other. 

.,The Sorie finite pole of the Dasher circuits can be located anywhere 

on the negative real axis, and, therefore a- can be used as a variable in 

satisfying the preparatory-step conditions. The locations of the poles 

of the coupling circuits for the new procedure are restricted because, in 

general, the pole locations are functions of the surplus-factor zero, s = 

'•- a , the range of which is limited as discussed in the preceding section. 

The Dasher circuits.are derived from symmetrical 

circuits of the new procedure are, in general, not derivable from symmet­

rical circuits. •.,-,: • '•.••;••' 

Preparatory Step 

In the-Dasher procedure, the given driving-point function, Y., can 

be altered to meet the preparatory-step .requirementsj 

and 

*ll(so> •" *lP<
so> 

ai'^'V.^ 

(39) 

(40) 

by removal of either series or,; shunt elements. It is hot necessary to 

remove both. The conditions (39) and (40) can be- satisfied by usingequa­

tion (12) or a residue condition derived from (12). Equating the real and 

imaginary .parts of (39) and (40) yie Ids four eguat ions. However, y•. V has 

only three variable parameters in equation (10). These are k , a; and , 

er-? Equation (12) is derived.toy eliminating, these variables ̂ ^^ 

.four equations. After satisfying (12) or its ''equiva.l'eht̂\';.in';.t'erms;:6f'.'' 

impedance3 the Dasher procedure is performed using admittance functions. , 

In the procedure for right"half-plane transmissionzeros, there 
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^ : " ^ 

^ : ^ ^ . ^ 

(41) 

(42) 

In th i s case 

'-.••;• V-- a, to _ a r B 0 s a 0 B 0 s 
y V l = ^ [ s + ^ o + î _ + _1_2_. 

• * 1 1 - . > . / • , • • y L , / . c ? ^ s + ^ s + 02: 

(43) 

where 

B i = 

? 2 * 

. ; • 2 2 '-
•@ " GTIXCJT +2GX (J, + CO ) 
o 1 1 o 1 o 

: ^(02 MP 
2"' 2 

,(̂ o.;.-- CJ2) (02 + 2Q!o a2V+ cp̂ ) 

^2^2 •" ®l) 

(44) 

The variable parameters of y,, are k , a-, and a«. In addition, the para­

meters a , cr, , and cr« are ivariable over certain ranges.; The new procedure 

has no equation similar to Dasher equation (12). The additional condition 

(41), plus the fact that there are stili essentially only three variable 

parameters of y,,, makes the existence of such ah equation highly impro­

bable o: Even if such ah equatioh does /exist^ it may be shown that both 

series, and shunt elements must' 'be', removed,, in general, j from Y- in order 

to satisfy, the equatioho Unfortunately, the lack of such an equation 

makes the procedure more complex and necessitates the use of both admit-

tanee and impedance functions: in the procedure. The impedance conditions 

equivalent./to the previously listed.admittance conditions are: 
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" l l ^ = Zlp(so> 

z.,» (s ) = Z1 '(s ) 
.11 . o - lp N o 

zrl(-ej = Z-i-C-e^) 
11, o lp o 

z i i ? < ^ o ) < ; z i p ? ^ > 

(46) 

(47) 

(48) 

(49) 

The derivation of the preceding preparatory-step conditions is 

contained'in Chapter III. / 

To demonstrate the method ;iised in the new procedure to satisfy 

the conditional equations, another approach to the solution of the pre­

viously discussed example of the Dasher procedure may be used. Equations . 

(50) and (51) represent the real:and imaginary parts: of (39). The assump­

tion is made that a shunt conductance may be used to satisfy the condi­

tions. Equations (52) and (53) represent the real•and imaginary parts 

of (4())'...'. ;.Yij and. y -; are given by (15) and (10). ; 

•,V.:. i f Jk ,, •.'-;•-;.•„. ,• . . . - ; V : - ; . ' : : : . ' p : 

(50) 

k (1 + a) = 2 
y 

2k a 
k(l + a) -

01 ~ ^ 0 l , + ^ 

. = , ! ; • ' 

(51) 

•rlk a(o. - 1) 
. • • • - y i •• 

2 '. 
a. - 2q; + 2 

= 1 (53) 



Substitution of (51) in (52), then (52) in (53) yields 

• Q : I = 2 .,.,'•.•.'. (54) 

Solvirig (5:3) for- k a u s i n ^ t l i i s value;;--ror^^f^glve^ 

\ : , ... • •'• k a = 1: . ( 5 5 ) 
" • " " ' . ' • - - . V V • ' . ' • / ' - y " • • : • • • . - . . ' • ' ' • ' , , . • 

Substituting (55) in (51) yields 

./%'te:lyV'vVv;;^';i,;. ,/'•-> --.T ••(56). 

and therefore from (55) 

a = 1. (57) 

Solving for G in equation (50) yields 

G = 1. (58) 
P 

This method of solution gives, information necessary to calculate 

all circuit element values as well as values of elements removed in the 

preparatory step. The remaining information to be obtained is the expres­

sion for Y9, the terminating function. The method is demonstrated again 

in Chapter IV. 

The disadvantage of using the preceding procedure in the Dasher 

method is that there is no way of knowing beforehand whether removal of 

a shunt conductance or a shunt capacitance or perhaps partial removal of 

a pole of Y,, or even removal of all of these will satisfy the preparatory 

conditions. Unfortunately, this disadvantage extends to the new proce­

dure which has an additional equality to satisfy, namely, equation (41). 
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Choice/of Coupling Circuit 

In the Dasher procedurej the choice of coupling circuit depends 

upon the pole location of the y~parameters at s-;=•• -cr, , and the value of 

a, is determined by the conditional equations.-''..There is no apparent res­

triction oh the location of the pole3 so long as it. lies on the negative 

real axis. Regardless of the value of o'1 , onei of the three circuits will 

be acceptable for, use in the procedure. 

In the new procedure, the poles'of the coupling circuits are 

restricted to certain ranges of values. For each circuit there is a 

complex relationship between the pole locations, a, and g , and the sur- " 

plus^factor zero, a V The poles of the y>furictionS: must interlace with 

the poles of the given admittance function., Y,, in a prescribed mariner. 

At the same time, the poles,of the; z-functions for the same circuit must . 

interlace with the zeros'b£ the Y' -function in a similarly prescribed 
,..' ' -'!r" '*'•• ' 'IP.' ... .-....-. • •'.' ' " 

manner. For this reason and because the poles of the y- and z-functions 

have restricted ranges of values, a circuit is chosen at the beginning of 

the procedure which will satisfy the pole-interlacing property. The 

values of a , a1, and a« are chosen during this step and these values . 

used when satisfying the preparatory-step conditions. The pole-interlacing, 

requirement and the method of choosing the proper circuit are.explained;in 

greater detail in Chapter III. 
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: CHAPTER II : ] - • ' ' ' [ ' : 

COUPLING CIRCUITS 

Properties of the Coupling Circuits 

A two-terminal-pair network for which the residue condition, 
• • o . • ' • • ' • . • • • ' • - ' • ' • * ' • " • . ' ' • ' • ' . ' ' • " . ' " • ' . , • • . • • . • • ' • ' ' . " • . . , ' 

k ••=, k?7-k s 0, is satisfied with an equality sign for the z •-functions ; 

is by definition z-compact. Another manner of defining a z-compact riet-

work is to specify that the function z.,, z-̂ -z.,̂  must contain no second-

order poles after cancellation ofcommon factors. 

A two-terminal-pair network for which the residue condition is 

satisfied with an equality sign for the y-functions is by definition y-

compact. Similarly,. a second definition for the y-compact property re-

v - . - , " • . ' . . . • • • ' • " " ' " - . ' : . - . - ' . • • • . • • - : ' • . ' ' • - ' ' • . ' : • • • ' ' : • • • • " • ' ' ' " • - ' - ' . " " . . • ' ' • . - • : . " - ' • • 2 ' " • 

quires the absence of any second-order poles in the function y '-,y0n"y-\ o • 

A circuit which is y-compact is not necessarily z-compact and a-

.circuit which is z-compact is not necessarily y-compact. However, given 

the y-functions for atwo-termTnal-pair network (which may or may riot be 

y-compact), a simple check;Will determine whether the; network'is or is 

hot z-compact without actually calculating the z-functions. Similarly,; 

given the z-functions, -â  simple check will determine whether the network 

is or is not y-compact. For example, suppose the y-functions.are given. 

The y-functions are related rtb the z-functions by the following equations 

' • ' • ' • • ' • - - - 2 2 •• ' • ' > • , . : • ' • ' • • • . 

, y u ••*?••,•••!••?• ' \ - , ^ - • : • • • • . • ' . ( 5 9 ) 

\ Z i i Z 2 2 " Z 1 2 . .'., •• 



-y 12 
12 

-ZllZ22"Zi2-

(60) 

'11 
22r 

ZllZ22"lZ12 

(61) 

If the circuit is assumed .to be z-compact, an examination of the right 

side of each equation aboveu reveals that the poles of the numerator func­

tion cancel with the poles of the denominator function. If the circuit 

is not z-cbmpact at a poles that pole will appear as a second-order factor 

in the denominator function, and. therefore as a numerator factor of each 

of the functions y-'-., y.„, .and y « 
= 11 lz . :: 22 

Thus a two-terminal-pair network is z-compact unless the same 

numerator factor appears; in all three of the functions z;̂ ,. z n , and z, 

For example, suppose that the functions 

11' 12: '22° 

(62) 

s + 9s + 4 '.'':;' _ • 5 s 
y„. = - — — — n •' = s + 2 + 
11 s + 2 sl+ 2 

(63) 

y22 " s + 2 - S + 2 + 7T1 
(64) 

are given. The z-functions; associated with the preceding y-functions '.. 

iriust be z-compact because of the absence of a common numerator factor in 

(62);, (63), arid (64)... In this example, the y-functions do not happen to 

be y-compact.. The associated z-functions are: 



27 

;.:; ;,'_^-t&-+:'2)-(s2%4i^; 
1 2 , 9s(2s2, + ?s + 6) v 

(65) 

v 2 
_ (s:-+;,-2.)!'(s + ; ; 9 s ^ + 4 ) 

(66) 

'22 
(s + 2)(s -i- 9s-:* 4) 

2 
9s (2s + 9s +.6) 

(67) 

These functions have a common numerator factor corresponding to the non-

compact pole of the y-functibns. -

For a second example, one may note that the Guillemin parallel-

ladder networks are not, in general, y-compact but they are z-cbmpact. 

The sufficient condition is thatY arid Y„, ihave no common numerator 
12 •••,"..11 • 

factor „ .'.• 

,; ;
 v Now, to show the effect of a non-compact network imbedded in a set 

of cascaded networks, straightforward calculation of the transfer functions 

for.the simple cascade connection of Figure 9 reveals that 

y -̂ 2 \v-MiY2,\ 

' 1 2 - E i = y22..+ :Y2 

212Y2 

Zll + (Z11Z22"Z12)T2 

(68) 

and that 

7
 E2 ; Z12Z2 

,12 ~ Ix•••.' z l 2 + Z2 

'yl2Z2 

yll + (ylly22-y12)Zz 

:(69) 

If the network to be used in the cascade synthesis procedure, is not z-''-

compact at a pole, the right side of equation (68) shows that -Y.- will 

hav£ a transmission zero at the non-compact pole. If the network to be 
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O——-^*-

• ' Y i - ' - . 

yll "y!2 y22 

11 Z12; Z22 

'igure 9'. Cascade Connection of Networks 

mhos, farads 

Figure 10. Example of a Non-Compact CircuitV 



used in the cascade synthesis procedure is riot y-compact at a pole, the 

right side of equation (69) shows that Z' will have a transmission zero 

at the non-compact pole. /. 

; For example, if. the circuit associated with the y- and z-functions 

of equations (62) through (67) is cascaded with a 4-mho conductance as 

indicated in Figure 10, the overall transfer functions are,; 

- - Y • = : 4 C s ? i + 4> ••/."• (70) 
X12 ( s + l > ( s + 12) K'} 

and 

z = ^ , (s -f 2 )<s 2 + 4) n l y 

:22s + 125 +:i60s + 32 

The (s + 2) factor in, the riiimerator of the....Z. „. function is a transmission 

zero caused by the use of a circuit which is riot y-compact at the corres­

ponding pole. - : •" ' : , 

Consequently,a coupling circuit intended for: use in cascade 

synthesis .should be both z-compact and .y-compact for general use in the 

synthesis of either",Z." - or Y.~-functions. However, -Y,-„ transfer furic-
'• ; I2 ."-.-12: . •'>-•••••. 12 

tions may be fonned by cascade synthesis of circuits which are z-compact • 

but not y-compact and Z. * transfer functions maybe formed by cascade 

synthesis of circuits which are y-compact but not z-compact; A pfelimi- \ 

nary investigation of the use of non-compact circuits for cascade synthe­

sis has indicated thatithe disadvantages of such circuits are many when 

compared to the advantages. Coupling circuits which are y-compact but ;.; •• 

riot z-compact are difficult to derive. Circuits which are z-compact but 

riot y-compact may be derived as parallel ladders, but these rerqiiire'more 
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elements than circuits which are both z- and y-compact. In addition, 

the non-compact poles of the coupling circuit are poles or zeros of the 

given driving-point immittahce. 

The coupling circuitsused for cascade synthesis of transmission 

zeros in the part of the right-half plane under consideration have com­

pact y- and z-functions given by the following equations: 

• • ' • " ' , . ' l 7 - " ; ' : • • • ' • : • " • . 2 • ' • ' ^ v 2 •' ' " ' . • . r ' . . • ' • ' ' " 

(s + o ••) (s .- 2a s +CD ) 
i o o o / 7 r 

> ~yi2'~ y .: (s + ̂ H s + cO.; .;. u ' 

or 

and 

where 

and 

2 ' A - ' - ' " " - ' " 1 • A " ' : ' , a CD A s . A_s 

• y i r = l ( s - f — + V + v ) (73' 
• -12 ys 0^2 s + ai s + °2 ' 

y ^ o ' r .:\\\*<••',-/' , f A
2 l > , ••"••• 

yn =k (s+-£-^ + a + a0 ) (74) 
1 1 ; y • a i a 2 ; 1 s + a i 2 s + °2 -

(75) 

-'•"-"• •'-. . •'••>•. - :• 2 ••' 2 -'•• " '"'•."-

. •'".'((?" >. ov) (a, + 2a a, + to ) - : •,-•:'•••>'••. 
O 1 1- O 1 - O ,7Vv 

A = — — — — — — - - — — — — - — . .. (76) 
L, .• -0^2 - a^) -•• - V... . 

.-• "' "'.*•• '• 2 . • : . •, 2 

.... , (a . ••- -a0.):(a0+ '2a a0+a> ) 
A , = ° ; : * ••- 2; • . . • f i ° -

2 . ; ° , (77) 
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or 

2 2 
(s + a )(s - 2a s + a> ) 

k O O O _ -,. ( 7 8 ) 

12 z s(s 4- cO (s + a.) 

2 A A 

a a) A. A 
z19 - k (1 + -2~£~ + — T ^ — + —~— ) -<79.) 
12 z a0a,s s + a0 s + a, • 3 4 3 4 

and 

(80) 

where 

and 

(81) 

(a0 - a )(a? + 2a a_ + co2) 
3 o 3 o 3 o 

A3 * ^ ( c ^ - a3) \ (82) 

2 2 
(a,. - a )(o, + 2a a, + to ) 

A _ ^ o 4 o 4 o7 , 
4 "ff4(ff4 " cr3) . 

Circuits which- have the y- and z>functions of equations: (72) 

through (83) have capacitive feed-through paths for very high-frequency 

voltage and current and have resistive Eeed-through paths for very low-

frequency voltage and current0 Coupling circuits with these properties • 

may be used for cascade synthesis of the most general transfer.functions 

possible. In certain cases3 however, elements removed in the preparatory 

step may have an adverse affect on the performance of the circuit at the 

extreme frequencies„ This is cv.e of the disadvantages of the cascade 

synthesis procedure, 

Other properties which the coupling circuits should have include 
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•a-.wide range of 'compact— pole'" locations .-and- also ease., in deriving circuit 

•.element:1 values from the variable parameters of .y.-n- or z> v» 
" • • ' . • l l ' ; . IT • 

For compact coup l ing c i r c u i t s ,• the surp lus f ac to r (s -Kg ) ••must' -not 
• • • ' . : . • ' ; '..•• • ' • • " • ; • . . . ' • - P • . . . • • • 

cancel from the »y19 function*- ',-I.f such a cahcellation did take place., -

-y, „ .would have :'zero. residue -at' the '•'•polecat. s^'^a-^' however, yin and y •_ 
' 1 ^ . ..., O • 1 1 2.L 

would, have ••n.on='z.e-ro .-residues«, .'.the same rule applies'.'-for the';z-functions..' 

Coup1irig / .Circuits for Use with Admitt ance Func t ions 

If a driving-point admittahce has a pole at s = «? (or if the 

driving-point 'impedance has a zero at s - <*>)', the preparatory step of 

the synthesis procedure should, in,general^ be performed using admittance ; 

functionso The use of admit:Stance functions allows removal of a shunt capa-

citahce. arid perhaps a shunt conductance, which will aid in satisfying an 

impedancepole-interlacing requirement, which in turn Is related to the 

preparatory-step conditions. A detailed explanation is contained in the 

next":'cha;pter.*. '••• ••'•' •;''.;" 

The coupling circuits of Figures 11, '13', 15, 17, and 19 are for 

use with admittance functions0 The element values for each circuit are 

listed in terms cf the variable parameters of the y11-function, as given 

in (74), (76)9 and (77). 

For each of the circuits, the compact poles at' s = -o0 and s = -a., 
1 

are restricted to certain ranges of values. For uniformity, it is assumed 

that o~ is larger than o\ in ail cases. Graphs of the variation of a9 and 

a., as the value of a is varied over its allowable range are sketched for 
I o 

each circuit in Figures 12, 14,, 16, * 185,,;'and 20. The graphs are sketched 
i 

with the assumption that the. transmission zeros are close to the 60-degree 

line- of the right-half plane. For transmission zeros close to the joy 
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axisj, the range of a is increased, and therefore the ranges of a 9 and ov 

are increased,•"• • .•'•""" '•' 

None of these circ.uits'c'ari be used for cascade synthesis of trans • 

mission zeros which lie oh the 60-degree line in the right-half plane. 

For transmission zeros close to the 60-degree .lines the circuit elements 

approach extremely large or extremely.small values. 

This list of coupling, circuits is not necessarily complete. How­

ever 3 a wide range of allowable values for c-. and a«- is'provided.,''. Many -

other circuits were analyzed for use in the procedure. However 5 none 

offered any particular advantage over those listed, 

The z-functions of the admittance coupling circuits are difficult, 

to calculate. For example^ the poles of the z-fuhctions of Coupling 

•..•Circuit'•-A3 Figure 113 are the factors of the polynomial 

where-

3 2 
,s .:+: B.-s + B2& 

(a,-* I)2. .?'•'•: : ..,V<a'2 +..1.)2, .':.:.-••••' ',.. Cav"-'a9) 
— ± — (A + cr0A) + -±——,a_ (A + crv) + '. . ,-;- ~- a0A ai 2 ao 2 • "..-a| -a2

 2 

•'• " • < a f + i ) 2 > •':;-';"(a2+'l)'
2r::'-: •• \'•>'*:':.' \'; • 

. - : • • — - • • • • ; • , : A + , , - , a '.•:;;.;;. . 
; â  a„ z •-

(84) 

(a^Vl)'2,:'''y\. :(a2 + 1)
2. : '• . 

— — — . a 2 A •:-+ •;——-—, <£*£. 
"lo 

£ , -+ l ) : 2 " •• ' >(a-?•+-i)'
2".-/"•'• 

— •-:'- ••••••-•A" •+ — - - - " " — • a 0 

;-a.,•••'. a« . 2 

(86) 

A > 

2 
a a) 
o o, 

0^02 ' ' 
(87) 



34 

The values of 'a- and a~ and therefore the pole Ideations are .not known 

until after the completion of the preparatory step3 Which will be dis­

cussed in-.Chapter/IXi. V;-...v, .-.•,'' . '.'-•'.'-•. * .••.'•.. 

The admittance circuitsare y-compact by construct ion. However, 

because of the difficulty in calculating the z~functionss one cannot 

ascertain whether the circuits are z-compact until after the completion 

of the preparatory step. The circuits will Be z-compact if y,, , -y, r,» 

and y»p have no common 'numerator factor. The only possible common f 

numerator factor is (s + 0 ).', If :(s + 0' • j is a common numerator factor 
: . . ' ' ' . . " • : • ' ' . ' • • - P •;;. •. • . . . ' • : , : Q . . . • • • ' - . . . .' . < • , , ' . - " ' • " 

of the y-functions:•;, :then the z-functionsmust have a non-compact pole at 

s - -g o A•non-compact pole,of the z-furictions must be a zero of Y, 3 
•. . O . . ; . • ' • • ' , '• • • - • • . . . ' • . , • • . • _ . ' • . ; • ' • • l p • 

the driving point admittance after the preparatory step has been performed, 

In the synthesis procedure, the assumption is made initially that the: cir­

cuits are z-compact.... The assumption is checked for validity after comp le -

tidn of the preparatory step by examining the zeros of y1•'- arid y - or by 

examihirig the 'zeros of Y,; •'•• .It is highly improbable that the functions 

. y., , arid y_0 will have a common zero and that the common zero will be .11,: -, 22 \-~ ;•;,..'..'.; • . .-,-:". '•"; ' 

l o c a t e d a t s = - 0 » I t is a l s o i m p r o b a b l e t h a t Y , w i l l h a v e a z e r o a t 
; ' • • . • ' . ; . • • . ; ; 0 . " . • • / . > • : • . . . ' . , . . • ; ' . : ; • • : . • , . ' l p • . : ' • , - " 

sv.;-' -a o If the ci;.rc'ui;t-\'shoulvd;Vbe''
,.ri6ri-c;ompact., the. preparatory, step must 

be recalculated, using another choice; of variables. •_-/.• ./ r 

-The cpriditioris. under which thenumerators of yi,, arid 'J.y.jw will : 

contain the factor (s +\a ) may be determined by evaluating (74) and -

(75) at s -F -a and equating the result to zero. The coriditions aire: 

• 2 • •••• I A 1 ' • 1 x 1 ^ ,v ; ; 

C CD A i CT A0 [a . 
,-rt. 1 ° ° ."•."•. - I ° '•_.-. . ' 2 ' , o _.,. Q o o\an••"•• 1 a,• •••.- a ' ... 2 on > a 1 2 1 a 2 o 
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"•'.•''• ' " 2 '••• ": - I A I I A I ' 
a•-a)'•'• •.•.-•'. , A., a r , A ^ - k r . . • 
0 o . ._• 1 ••••:'.• I1 o 1 . ' 21 o _ 

o . -.'..ovo**; ..a... ..o*'- a - a>, o\->- a 
1 2 1 1 o 2 2 o 

Both, of the conditions must be •satisfied in order for the procedure to 

fail. .The circumstances under1 which the •obnd.it;ioris''-!w;il;r''be--'-s;a'tlS'fleda 

if they, exist, are unknown.-. Several calculations were performed Using 

randomly chosen values for the parameters a1 and a with a particular 

circuit and transmission zero„ The conditions were not satisfled„ 

The significance of the "graphs of pole locations is, related to 

the selection of the proper circuit for use in the synthesis procedure 

and is discussed in the,next chapter0 

., ; "'Coupling Circuits' for Use with Impedance Functions 

, If.v the driving^poirit impedance has a finite, non*=zer6 value at ' 

s -co ( of if the driving-point admittance has a finite, non-zero value 

at s - «o}3 the preparatory step of the synthesis procedure should, in 

genera 1 s be •;performed using irripe dance funct ions. The use of impedance 

functions will allow removal of a series resistance arid perhaps a series 

capacitance3 which may: sat is fy thei preparatory-step v conditions , while ;at 

the same timeP satisfy the admittance pole"interlacing requirement.; The 

preparatory-step conditions and the related pole-interlacingproperty 

are discussed in detail in;the next chapter.«,-

The coupling:circuits of Figures 21, 23,'and 25 are for use with 

impedance functionso. The element values for each circuit aria listed in , 

terms of the variable parameters of the-z, -function, as given in (80), 

••(&) s and (8;3)o.'
 ; : .. • >, 5': >.' . " •* "••'•'. • •':/•' 
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••" . Graphs of the.'•variation; of the compact poles, aq and a/, along 

the negative real axis'--areindicated in Figures 22, 24, and 26. 

None : of • the -circuits; may^e used to realize transmission zeros on . 

{.the 60-degree lineof the right? half of the s-plane^T •'••' 

As in the case of the admittarice circuits, the list of circuits is 

not necessarily complete. ;Many other circuits were analyzed; however,, 

hone were adaptable to the procedure„ 

Coupling CircuitsG and H are z-compact by cbnstructiono They are 

not necessarily y~compact:.,. If they are not y-compact.,' the z-functions 

and Z. will have a zero at s ~ -~a o As for the admittance circuits, 
. l p ' ••..,.. '. o •'•• • 

the circuits are assumed to be y"compact until' after completion of the 

preparatory step; ':• = ';,-" . . / 

Coupling- Circuit F has the same twin-tee structure as Coupling 

Circuit Ao The restrictioh a, •'-•=?; 1 is'_the {result of requiring that a 1 '..= 

a2 in Coupling Circuit A0 Circuit F is both y= and z-compact and the \ 

pole locations bf both the y- 'and z-functions may be calculated before 

performance of theipreparatory step. When using! the circuit in the syn­

thesis proce'dure^ the, number of'variable parameters is one less because 

of the restrictionon a^. the solution of thepreparatory-step equations 

in this. case is demonstrated by the Impedance example of Chapter IV» 
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Figure 12„ Possible Pole Locations for Coupling Circuit A, 
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Figure 13„. Coupling Circuit B. 
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Figure 15•. Coupling Circuit C. 
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Figure 16> Possible Pole Locations for Coupling Circuit C, 
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Figure 17. Coupling Circuit D. 
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Figure 19„ Coupling C i r c u i t E, 
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Figure 20. Possible Pole Locations for Coupling Circuit" E. 
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Figure 21, Coupling Circuit F 
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Figure 22. Possible Pole Locations for Coupling Circuit F. 
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Figure 23 .' Coupling* Circuit G. 
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Figure-. 24. Possible Pole Locations for Coupling Circuit G. 
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Figure 26". Possible Pole Locations for Coupling Circuit H. 
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'•.'.'.-''. \ ''•• h CHAPTER III 

. THEORY OF THE PROCEDURE :;-\*. •, •.:'.;'"".-

The Preparatory Step Conditions 

The problem of satisfying the preparatory-step conditions, (39) 

through (42) or (46) through (49)', is the major problem associated with 

the cascade synthesis procedure. The problem involves satisfying five 

equations and therefore at least five variables are required. In general, 

three of the variables are -present."in the coupling circuit functions, y 

or 2-, i « The other variables must be obtained by removing series or shunt 

elements from the -driving-point immittance, Y- or,'Z . 

'•"•-.• If the removal of these elements, which are represented by Y . or 

Z , consists of partially removing one or more of the finite-poles of Y1 

or Z,, no new transmission zeros are introduced and the remainder Y, or 
• -• +.'.,"'•••••'•"••' v . ' ' " ' . - . • : • ' I P " : 

Z., is RC. Partial removal Of finite poles in the form of a shunt removal 
l p . • ' ' ' ' ' " . ' . " ; ' • • ' • • - • " • - . - • - • • • 

of an RC series branch or a s eries:-s removal of an RC parallel branch main­

tains the capacltive feed-trhough path and "the"' resistive feed-through path 

These paths are also present in the Coupling cIrcults and thus optimiim 

gain for the overall;transfer function is ensured. •„ , ". 

Partial removal of a pole at infinity or the- origin as a shunt or 

series capacitance along with the removal of a series; or shunt resistor 

is often necessary -In order"to si atlsfythepreparatory-step conditions = 

In some cases, these will adversely affect the gain of the overall trans­

fer function. At each realization of a pair of transmission zeros, , 

several options are available to satisfy the preparatory-step conditons. 



In many casess 'one of the optidns will lead to the most satisfactory solu° 

tion of the given problem,, Synthesis of right-half -plane transmission 

zeros should take place in: the realizat ion be fore other transmis s ion zeros 

because of their larger:number of restrictions and because more avenues are 

open for satisfactory solutions, 

The preparatory-step' conditions may be obtained by first writing 

the cascade-synthesis equation / 

in the form • ''"••". , /. "•••• ' •' •,.'••'•-'. 

22' • 2 

The problem is. to determine the relationship between y • and Y ' which 
11 lp 

will ensure that the function 

y + Y (92) 

y22 *2 

will have the properties of -an RC driving-point impedance and then finally 

to determine the conditions under which Y~ will be RC admittance. 

Function (92) may contain only real poles and real zeros if it is 

to be an RC impedance. Therefore,, the second-order complex pole p re sen t 

2 
in y.„ on the right side of (91) must cancel. The numerator function., 

2 2 2 " 
v.. - Y, , then must contain the .factor (s - 2a s + cx> ) which is equiv-
11 lp o , o M 

•alent to requiring ' :; 

yn'-.CsJ-V-Y, (s ) 
11 o lp o 
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and 

'•-yir''(s- •>••-•=';Y- • ' ( s - ) . ; 11 o lp o 

Because function (92) must contain only simple poles:, the right 

side of (91) must have only simple poles. Therefore-, at least one can* 

cellation of the surplus factor present in y~' must take place with the 

numei rator function, V,'., > Y-- » If- V-1 - Y., : is to contain the factor J11 lp 11 lp IP 

(s + a )a then it is required that 
o 

y - n t - O s Y i « ( - 0 . llx o ip 
(95) 

Under the requirements given thus fars function (92) has real 

pcles and real zeros of first orderc There is one pole at s = -a and 
o 

all of the other poles are -also the poles of Y, . If the residues of 
lp 

all of the poles of the impedance function (92) are positive, then the 

function will be RC. 

Now let the residue of the pole of Y, at s = -s be given by 

-k^- o (The residues in an expansion of an RC driving-point admittance 

are negative for all finite poles.) The residue of function (92) which 

also has a pole at ,s = -s >3 is given-by 
v 

(s + s ) y-, - (s + s ) Y-
v 11 v lp s = =s 

(96) 

*12<8v> 

except in the case where y and Y, have a common pole. This case will 

be discussed latere The first term in the numerator of (96) is zero if 
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y ' does not also have a pole at s = -s . The second term of the numera-
1 1 ; . - ...-• • .: •. / * - . . . . . v - . .,. ,••'. . • • ' . ' • - ' . , . -

tor of (96) becomes 

. \r • lpJs ^ -s llv (97) 

v ..-

The denominator term of (96) "is always positive. The conclusion is that 

the residues of (92) are always positive for all such poles. 

The residue of the pole of (92) at s = -o is given by 

:(s •+ ab)(yli:; - .Y ) 

12 
•s = -a :98) 

The d e n o m i n a t o r of (98) may be r e p l a c e d by 

Yin = k 
12 y 

2 2 2 2 
9 ( s + (J ) (s'••-:• 2QJ s + CD ) ^ o o o . 

2 2 
( s + c^) ( s + o2) 

(99) 

The residue (98).then becomes 

:s^+:o^2is +y^2jyll - Y1T3) 
2 2 2 2 

% ( s + an)(s - 2a +aT) 
y ° o Q 

s = -a 

(100) 

The quantity in (100) is indeterminant becausê  y,' ; - Y. contains the 
• • • ' : " . ' • ' • > - . " ' . " ' ' - . ' • . • ' • • • • • : • - • ' • • ' V : ' ' '•: • : H l p . \ • . - . - ' ' . - . - . - " • • ' : " . - . 

f a c t o r ( s + a o ) . App ly ing F H o s p i t a l ' s r u l e t o ( 1 0 0 ) , t h e r e s i d u e becomes 

( Q 1 . - ; a o ) t ( a 2 ^^tiM^^.-^^ipV^o^" 
2 2 2 2 

:k ;-(a^ + . 2 a a + CD ) 
y o o o o7 
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The-'residue will be •p&sitive *,-. if. 

yir« (=0 • • » : Y, ,
!(-a..).' 

11 ,o lp . o 102: 

Consequently,, if: Y, is RC and if y.' and Y.' have no pole in 

:commons it has been shown that satisfying (93) ,V(94) s (95)s and (102) 

will cause function (92) to be RC. 

The equivalent set of preparat.ory"»step conditions for the impedance 

case may be obtained by examining the equation 

Z22 + Z2 

Z11-^E 

'12 

(103) 

The .function 

z22 + Z 2 
(104) 

will be RC. if Z- is RC, if Z' and 'z-' have no poles in common, and if 
lp 

z 1 r ( s ) ' = ' Z. ' ( s •). 
1 1 O.; l p O' 

( 1 0 5 ) 

z 1 : . t - ( s ) ' . - Z- , ' ( s .)• 
1 1 o l p •> o 

Z11 .(-cr- > = Zn ( ^ 0 ) 
11 o lp o 

Z T ' T ' C - C J ' • ) < Z v ••• '(-•a") ' . 
1 1 .O ; I ? O 

(107) 

(108) 

••_ Either set of conditionsy admittance or impedance, may be applied 

during the preparatory step. If.one set of conditions is satisfied, the 
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other is also satisfied. 

If Y, and y-̂  have a pole in common.s that pole will also be a 

pole of Y 9»This may be determined from the second term of the right 

side of the equation 

ylly22'= y12 .... y22Ylp 

after noting that the pole isalso a pole of y„„ by construction. ; The 

pole is canceled in the first term because of the compact nature.of the 

coupling circuits Similarly, if Z, '' and z., have a pole in common, that 

pole is also a pole of Z~ and z '.,-

The conditions under which l/(y22 + Y ) and l/(z__ + Z ) are RC 

functions are the same. That iss if l/(y2„ + Y„) is RC9. then l/(z__ + Z?; 

is RC, arid vice-versa. The only possibility that Y„ is not RC is that ." 

the Foster residue of Y23 at a pole common to y9?j is negative and less 

in magnitude than the corresponding Foster residue of y >, However, this' 

would mean that the reciprocal of Y 9 5 Z 9 , must have ait least one pole in 

common with z22 and that its negative residue would be less in magnitude 

than that of the -ẑ p-pole in order that 1/(z„„ + Z2) may be RC. But if 

z~_ and .'Z« have a pole in common, that pole must also be a zero of" Y- . 
•'•'22. • I ".'••,.' ' •"•.:* •-.•" l p 

Thus3 for the case of common poles, one cannot be completely sure of an -

RC termination until after completion of the preparatory stepo 

In the synthesis, procedure; theassumption is made Initially that 

the satisfaction of the preparatory-step conditions- (93) , (94), (95), and 

(102) or" conditions (105)V (106)3 (107), and (108) will ensure an RC ter­

mination. If satisfaction ot the conditions does hot result in an RC 
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terminationP the cause will be that both the; admittance and the impedance 

functions have common poles and that the residues exceed the allowable 

values in both cases. It is highly improbable that these, phenomena will 

ever occur. In the case of occurrance,, the preparatory-step equations 

may be recalculated using,a different pole of the driving point immittance 

as. a variable parameter. " 

As a;matter of. interest, the condition forcommon poles may be 

'derived for the admittance case from equation (109). For a common pole 

at s - -s 3 the residue of Yn-..at the pole will be positive if 
c ' z .-..•. . , -. -: • 

(s + s ) 
c s 

111 > 

-s 

(s + s ) 
c s 

(110) 
s •=• - s 

It is highly probable that condition (110) will be satisfied if. the imped-

andce or admittance conditions listed previously are satisfied, and there­

fore the condition is not used in the procedure. The condition applies 

for. poles at infinity and also for the zero-frequency values of the 

admittance functions. 

The numerator of the function y„„ + Y„ will contain the factor • 

(s -f a ) as suming,that-the preparatbry-step ; cond it ions of. the pre ceding 

section are satisfied.: The transfer function Y.,« then contains the V; 

factor (s .+ a ) A n c ^ in the numerator and once in the denominator as 

indicated by the equation, 

: '.:'=
 y12^2 . -•; 

12 Y22'•+
 Y

2 ' 
(111) 
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Therefore the factor (s + a ) is not a transmission zero but is a surplus 

factor: of the same type as that used, for example, in the Guillemih parallel-

ladder procedure for realizing right-half-plane transmission zeros. The 

factor is also cancelled from the transfer' impedance.function, 

- : Z12Z2 
1 2 ~:z22 + Z2 

The factor also augments both numerator and denominator of the 

driving-point iimittances., Y, and Z.., as indicated by the equations 

';3ft ̂  ;: •••: ; ^&^^MlI^' : ' ' ' - : ; : : am 

and;" •''.' V'1 • 

„ % 2 ^ Z 2 ^ 
1 " z 0 0 - .+ . ,Z n • "' 

- 22 2. 
(114) 

where the factor (s + a ); is -present, in v22
 + Y2 J y12 '> z22 _t" Z2' a n d Z129 

The Choice of Coupling Circuit ' 

The zeros of y9„ + Y„. are located at s = -o and at the poles of 

the driving-point function.'Y,, if the assumptions are made that y^ and 

Y- have ho common poles and that the preparatory conditions, may be satis­

fied by removal of shunt elements. The choice of coupling :circuit for 

use in satisfying the preparatory.conditions may be made by first plotting 

the zeros of 'y„„. + . Y« on the negative cr-axis. A typical, plot is indicated 

in Figure 27. The zero at s = :'-o is located in the range, 

. ; - : : ; ' • ; J '.. ' • " • • . ; • ' • v . ' - - " - , • " • ' . • ; 2 / • • • ' • • - . • • • ; : • • • . V r " " • ' • . . • • • - . ' 

,: ; ' 7 - 2 a o > -v > : -2§ - - ' am 
' • ' • • ' . • • • • •• • • : • • • • . ' - : . : • • • ' ' • ' ' • . " . , ' " • • ' O , . • ' • • ' • • • • . • 
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Figure; 27, Zeros df y„„ .+ Y9, 
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Figure 29;o . Zeros of z' „ + - Z 9 , ; 

F igure 30. Sketch o f , z „ + .z„'-, 
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The next step is to sketch the RC function y?? + Y., which is similar to 

the sketch of Figure 1, using the known zeros to determine the ranges of 

the pole locations. 'The sketched function should have a pole at s = -.00 

because the y_„ function for each coupling; circuit has a pole at s - - 00. 

A typical sketch is indicated in Figure 28; Two; of. the poles on the finite 

part of- the axis are the poles of yOOJ located at s = -cr0 and s = -a.. .' "• ' 
- •: ...."'••• . 22' ., . .-••...•/ 2 _ 1 

The remaining poles are poles of Y9. The last step is to determine which, 

if any, of the coupling circuits of Chapter II have ranges of a9 and a 

that will each coincide, at some point with the ranges of any,two of the 

finite poles in the sketch of 'To-o + Y_o. Trial-and-error calculation 

using different values for a to calculate a„ arid a, is required at this 
•:• •:.'"•' . o - . -.; 2 1 ... • • ' . . - • - . •. 

point. If.a circuit cannot be found which will satisfy the alternating-

pole-zero .requirement,; the. poles of the driving-point immittance may be 

shifted to acceptable ranges by removing series elements or a combina­

tion of series; and shunt elements.; Once the values of cr ,-'-oV, and cr 

are specified, they are used in the equation for y - when satisfying the 

preparatory-step requirements. ' <: 

If it Is desired to make one of the poles of y , coincide, with a 

pole of Y , the sketch of Y. + y9„ must be redrawn, this time with a pole 

replacing; the zero which corresporided to the .pole of' Y,y This pole will 

be a pole of both y '_ and Y~''..'•' As in. the previous case, ,Y9 will have two 

less .poles thanVYT- If both a andI'o.' coincide with poles of Y,, Y, will 

also have two poles less than Y-[".]", ! ? , - ' ' ; . " 

For theL impedarice case, the zeros of z__ -f Z„ are located at 

s = -a and at the poles o.f'-Z ', if the assumptions are made that. Z- and 
o ' . - ' . ' • " V ' . . . . . . ; . . • • 1 . • 

z ' have no pole in common. and that the preparatory-step ''condition's may 
'. 1 1 . , • ' ' . . '• . . ' • ' ' ' ' " . . . • • ' . - • . • - .- • 
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be satisfied by removing series elements only. The choice of a coupling 

circuit is made by first plotting the zeros of z«„- + Z~ on the negative 

a-axiss as in Figure 292 then sketching an impedance function similar to
 : 

Figure -2 using the zeros. The sketch will always have a pole at the 

origin: and will have a finite, positive value at s •=• - °° because of the 

properties of z~ e A typical sketch is indicated in Figure 30. Two of 

the finite poles are the z ^ poles at s - -a- and s = -a,•Hopefully, 

at least one of the coupling circuits of Chapter II will have pole loca­

tions which will coincide with two of: the allowable pole locations of 

the sketch. Again, triai-ahd-error calculation is required and if no 

circuit fits the ;requirementjj shunt elements must be removed in an attempt 

to shift the Z, poles to more suitable locations; 

As in the admittance, case, the sketch must be redrawn if the poles 

of z". coincide with those of"Z-. The common poles are also poles of z.„ 

and of ZyZ' will always^ have two poles> less than Z-.. Z« was shown to 

, have two zeros less than ZT in the preceding discussion for the admittance' 

case. The degree of the terminating immittance is; two less than that: of 

the driving-pointimmittance in bbth numerator and denominator, as in the 

.Dasher synthesis procedure. •.-,[• ''.'/•'•: 

After choosing the circuit, either admittance or impedance, the 

. y,1-function or z^y-function is used to attempt to satisfy the prepara­

tory-step conditions, A solution tovthe preparatory-step conditions is •; 

not possible unless the aXternating~pQle-zero requirement is met on'both 

the impedance and the admittance basis for a given circuit. The procedure 

for choosing a, circuit caused the alternatihg-pole-zero requirement" for 

either the impedance or the admittance functions to be satisfied, but not 
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both. Except in the case of Coupling Circuit F, the compact pole loca-

tidns of the circuits are not known for both the z- and. y-functions until 

after solution of the preparatory-step equations.; 

However, the success of the procedure is almost certain if the 

poles of either Z, or Y1 caii be spread over as wide a range of the finite 

negative cj°axis as possible,, For example, if,; Z1 (s) has a positive and 

finite, value at s = °° and has a pole at s = 0, removal of a series resis­

tor and a series capacitor will move one zero in the direction of s - '••-•TO 

and one zero in the direction of s•'•== 0. The, result is a Y,-function with 

widely spaced poles. The same argument holds for Y^-functions, which 

should have a' pole at s* = °°. Removal of a shunt capacitance and a shunt 

conductance while satisfying the preparatory step will spread the poles 

of Z.5 making a solution-more certain, * 

It-'/lsv;'alw"aVs-':.p6̂s:'ii5ley-to"'-r''spr*ead-- the poles of the Y, or Z, function 

in order to satisfy the pole-interlacing requirement for one of the , -

coupling circuitsc The method used to spread the poles of a Y- function 

with a pole,at s ~ TO is indicated in Figure 31, First, a shunt conduc­

tance and a shunt tapacitance are removed to shift the extreme zeros out­

ward . The admittance ••.function, Y".,': is then inverted and two RC-paralle1 

branches are removed in series, partially.removing the extreme poles and 

""shifting the original poles of the function outward. The; final result is 

an admittance function, Y,., with widely spaced poles, Af similar proce­

dure is illustrated in Figure 32 for a Z- function which does not have a 

zero at s > °°i In this case, a series resistance is removed in the first/ 

step to shift a zero near to the origin. The remainder, Z , is inverted 

and.an RC series branch removed in shunt'to partially remove the pole 
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nearest to s = - «>» A shunt, conductance*:is' also removed and the or 

poles have been shifted outward. The final result is an impedance 

tion, Z«. j with widely spaced poles. 



CHAPTER IV 

EXAMPLES OF THE PROCEDURE 

1 Example, Using Admittance Functions 

As an example illustrating the procedure, assume 

Y r > (s + l)(s + 2)(s + 3) X116) 

and that it is desired to realize a pair of transmission zeros at 

s•« 3-+ j9. (117) 

..'. The first step is to choose a circuit. The admittance circuits 

are to be used because Y, has a pole at infinity, (If Y, did not have a 

pole at infinity, impedance circuits would be used.) The range of allow­

able values for a is calculated from (36) to be 

6 < &:<15. 
., — " v o , — . •• • 

(118) 

The' numerator "factors of the, funct ion y__ + Y- are 
22 ' 2 

;s'..+:-:a,:)'(s. "+,-l);(s, + :2)'(s"> 3 ) . (119) 

These are plotted on the negative a-axis in Figure' 33, A sketch of ah 

RC driving^point admittance functl6n:withs a pole at s = °° is made using 

these zeros. The sketch is indicated in Figure; 34. Because all of the 

finite poles "are to the right, of -:&• bir the sketch, it is evident that. 
• • • . . : ; _•• : ' ; _ , . • ' . " • ' . • • , o • ; ; . • • . . • . . . ' - . • ,..-' .-• 

the circuit chosen must be such that 
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a o > a2 > a l • \ '•;••.' > ,,'."•• -. ( 1 2 0 ) 

Coupling Circuits B and E of Chapter IX meet requirement (120) . Coupling 

Circuit D is chosen arbitrarily; and'by trial-and-error•calculation, the 

values '.•'.;.; .: .'•.'.-../•'••••• '••'•.'•'• 

& V.'l3;.5,.; ••';-: v" '•'"•' (12: 

2 

and •', 

a 9 = 6, '•'. / • • (12.2) 

a^ .= 1.5, 

are found' to be compatible with the sketch of y 9 9 + Y_ in Figure 34;, 

Removal of series elements to shift the poles of Y1 is not necessary for 

this example. . "•• 

The next step is to see if it is; possible to satisfy the prepara-

tory°step conditions: using the values of a s V ? y and a' of the previous 

step in the y-.-function* The real and Imaginary parts of the following 

equations must be equals ; ' • V... 

; y^C-13.5)' - Ylp(-13.5) (124); 

y^i (3 + j 9) > Y l p (3 + j9): , ;;••• '• f{- y :::0i5l 

'nXV+^y .'•' :'.' (126) 

where 

Y. * Y, - G'•'•- Cs - ^ ~ - -^TT - -~hj lp 1 s + • 1 s + 2 s + 3 fr^) 



'igure:33 *.--., Zeros of y_ «' + Y~ 

•Figure 34 0 .Sketch of y^X- Y„. 
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Figure. 35 0 • Final' Circuit' of 'Admittance '•.Example, 
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and 

180a-s; 45a 

•••.•••• ; '-. , : y i r = . ; V « : + 1 3 5 + : I ^ X 5 , + ? W . ..:.- .^1 2 8: 

In (127) it is assumed that -

••'"•;'.:-w : - . :. " V - , > £ , • • • • : . / • • • B " ^ D '.., .'••• 

Y •- G :+.XJ... + ̂ T + - ~ r + •—-- . 
p s . s + 1 ,••• s + 2 s + 3 

where the values- of ;Gj" C3"A, B3 :and D must •'•be-less than the corresponding 

values -in tihe Foster lelkpahsion- of ̂  the variables Will 

be required to complete the five unknowns necessary to solve the five 

equations represented by (124)s (125)s and- (126). There is no way of 

knowing at the outset which of the variables should be used to satisfy 

the equations. The five equatidns become 

202.5k a' + 8;lk a0 + 121.5k = / 
• . - y . 1 ' . : - - ' , y 2 : :

 y : • " • • • . - • • , • . . . ' • • : ' ! ' ' • • • ' • • ' • . . ' • ' : • • 

-11.37:—• G + 13.5C - 1.08A - 1.174B - 1.286D (130) 

168.0k a- + 30k a0 + 138.0k = 
- . • - . y l - • ' • ' ; y . . - y ' • . . - • ' : • ' • • ' • • . : - . • - ' • • • • ; . : ; . ' 

• 0 3 - G - 3C : - : .959A - , 9 0 6 B : - ; 846D ' (131) 

"• :24.0k an + 15k a 0 + '-9.0k" .-=:-. •'•-., '"'. .-„'...." ' - " " • , • ''•>" 
. y -V. ;; y 2 : .," y : ' • • . . • ' : • , ' . ' \ / •'• "" • ' " • • ? ' • " • ' • .. " - : : : v :••'•. 

. ;. ' 9 . 1 3 - 9C - : .093A - .170B - .231D (132) 

-•-l:.ik'.-a. + k - . 992 - C 4- .007A 4- .010B + .Q10D " (133) 

•-Zi- lk a,:'"••- 1.7k a_ == - . 0 1 1 8 + .008A + .016B + .GI24I> . (134) 

Truncated numbers are used in the preceding equations. The actual calcu­

lations were carried out using ten significant figures for each term of 
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the equations. The Gauss-Jcrdon reduction method may be used to elimi­

nate the variables in the orders k a-. , k a„, k , and C. A solution 

y l y 2' y 

which satisfies the equations but does not over-remove the poles of Y, 

is 

k - .00857 

a± = ,451 

135" 

a2 = .0114 (UT 

A - 0 

B = 0 

C = .9914 

(138) 

(139) 

(140) 

D = .143. J (141) 

Next, the inequality given by (102)9 

y11
,(»13o5) - .016286 > Yx '(-13.5) = .016175 (142) 

is checked using the solution of the equations. The inequality is satis­

fied, and therefore the coupling circuit may be removed. 

The admittance functions of the ladder-circuit representation for 

the coupling circuit and the preparatory step are calculated from the 

solution of the preparatory-step equations. The resulting functions are 

Y - .9914s + ^ ~ (143) 
p s + J 
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a.238s ' ,381s 
yl " s + 1.5 s + 6 

•v _ .00857(s + 13,5)(s2 - 6s + 90) 
y12 (s + 1.5) (s + 6) ' ( M ) 

= 4.9616s 33.44s 
y2 s + 1.5 s + 6 

i The y.-function does not have a zero at s = -a and therefore the 
1 o 

coupling circuit is z-compact, 

Removing the elements in a step-by-step manner results in the RC 

terminating admittance 

s + 2.77 ' ' (147) 

which- may be used to realize other transmission zeros. The function Y9 

could have been calculated directly from the equation 

2 
Y =

 y12 _ ' 
2 v - Y " y22 yll *lp Z 

for the solution of the preparatory step/ leaves Y« as the only unknown 

parameter^ All element values of the coupling circuit and of the prepar­

atory shunt branches may be calculated using the solution to the equations. 

It is interesting to note that Y« has a pole at s = 2.77, which 

is within the range of values predicted from the sketch of y~9 + Y?, 

The element values are calculated with the aid of Figure 17 and 

the final circuit is given in Figure 35. 
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Example Using Impedance Functions 

As a second example, assume 

z x - s(s + l)(s + 2)(s + 
(149) 

and that the cascade synthesis procedure is to be used to realize a pair 

of transmission zeros at 

s = 1 + j2. (150) 

The range of a calculated from (36) is 
o 

2 < o < 205 . 
_ 0 _ 

151) 

Impedance functions and circuits are used because Z1 does not' have 

a zero at s - - ooe 

The functions Z- and z-- have a common pole at s = 0. The pole 

will also be common to Z~ and z_„. Therefore the zeros of the function, 

z__ + Z?9 are given by the factors 

(s + a )(s + l)(s + 2)(s + 3). (152) 

These zeros are plotted on the negative a-axis, along with the known 

pole at s = 0, in Figure 36. A sketch of an RC driving point impedance 

with a finite positive value at s = °o is made using the zeros and pole 

of Figure 36„ The sketch is indicated in Figure 37. 

An examination of the impedance circuit listed in Chapter II reveals 

that Coupling Circuit F has pole locations compatible with Figure 37, By 

trial-and-error calculation, the value 
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Figure 38, Final Circuit of Impedance Example, 
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an.' = 2.252 "• ;- :;. ;',: V (15.3) 
o 

is found to place poles at s - -cry and s = =0~ on either side of the zero 

at s s; -2.., These values" are ; > : . 

eĵ  =:2o0431138277 (154) 

and 

cr3. - 1.9682539682. (155; 

The preceding va lues a re t hen used, to c a l c u l a t e z , , when s a t i s f y ­

ing the p r e p a r a t o r y - s t e p e q u a t i o n s , 

z n ( l + j2) - ' Z l p ( l + j2) (156) 

z u
B ( l + J2) = Z l p ' ( l + j2 ) (157) 

z u ( - 2 0 2 5 2 ) « Z l p ( - 2 . 2 5 2 ) , (158] 

where 

ZT = z- - R - T^-' - - 4 - T - ~ - r - - 7 T (159) 
lp 1 C s s + l s + 2 s + 3 \ / 

and the values of R, C, A, B3 and D are less than the corresponding values 

of the partial fraction expansion of Z, • 

The z1--function, using truncated numbers and using the circuit 

restriction, that a, = 1„ is 
4 ' 

, n̂ 2.80 , 18.11 , 3 N x-«>rt\ 
z l l = k z ( 1 + ~ I ° + s + 2.04 + s + X.97 >•• ( 1 6 0 > 
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Equations (156)j (157)5 and (158), using all possible variables 

and equating the real and imaginary parts, become 

-86.94k (1 + a-) = -.767 - R + .444 £ + .798A + 3.97B - 1.33D (161) 
Z *3 \j 

5.71k (1 + a_) = 1.432 - R - .200 £ - .250A -.230B - .20D (162) 
Z J Li 

-3.85k (1 + a-) = -.613 + ,400 £ + .250A + .154B - .ID-.'.' ; (163) 
- • Z j • L> 

-„517k a > ;205k (1 + a_) ̂  .118 - ,120 ̂  + .030B + |03D (164) 
Z. j Z -D \J 

..083k a, + 1.701k (1 +>.) = .259 - .160 77: p *125A - .071B - .04D. (165) 
Z . j Z '. J , L< •....•'.'• 

Againj truncated numbers are used in the precedihg equations,, 

One procedure for solving the equatiohs is to •'•eliminate, the vari­

ables in the orders k (1 + a„), R, k a_, and 1/C. One solution which 
z \ .f . j-. .. z c.o j .".'*.. 

satisfies the restriction that Zi must be RC is 
• • • . ' : ; • v l p - • ' : " ' • • , : • ' : . . - . . " ' - • " • • . " • • • " : 

- . , < • • . \ •',. .'•:-."--::. k ^ ° . 0 O 3 6 8 6 ( 1 6 6 ) 

a 3 > 2 . 4 7 4 • ; ; '•^'••:'.', (167) 

R > .996455 (168) 

i - 1.0841' " ,. <:," • '-Z?Z : (169) 

.A W-'.462:4 v". • ' , '> :- ' •."• ' : (170) 

;;;' B = 0 ' \ •'".. '•.. '".•:' , ' (17 ' l ) ; 

D «'; . 1 5 0 0 . : (172) 
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However, the preceding solution does not meet the preparatory" 

step inequality9 condition 

Zir° (=2.252) < Z^ »t-2.252).. (.173) 

Therefore a new solution must: be found. By trial and error, the follow1 

i~Lg solution which d;>es satisfy the inequality is determined. 

k = .005001 
z (174) 

a3 = 1.56979 

R = .995041 

1.07998 

(175) 

(176) 

(177) 

A = .46633 (178] 

B =• 0 

D = .15500. 

(179) 

(180) 

Using the latter solution^ the z=functions of the tee representation of 

the coupling circuit are 

_ .3171 
Zl " s + 1.97 

181) 

(182) 

,2020^ 
s + 1.97 

183: 
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and the RC terminating impedance is 

(184) 

The final circuit is indicated in Figure 38.: 
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/,',.-/•'•/_. '•••'-':• '• ' : ' ' ; , . • ' • . " - ' • • • • - C H A P T E R . . W • • . ; • • " , -- : 

:'•/• :'- ' "DISCUSSION OF THE P R O C E D U R E - ; •,'•''''." 

A:Special Technique 

The procedure developed in.this thesis may be applied in many cases 

to the problem wherethe;transfer function and termination are given. As 

an illustration,, the given transfer function is 

, ••_•": s • - 6 s + 9 0 

'12 . ; (s!..+ l)(s + 2) 3 :i85) 

and the given terminating function is 

z2 = 1, (186) 

The zeros of the function z y + Z - are given by the factors 

>':.+•.:?.-) (s +:l.)'(s.+;2);. 

The alterhating>p61e-zero requirement i s sa t i s f ied i n th i s case by 

Coupling Circuit G with: , * 
• 

a - 13.5 
. O - r 

(188; 

a 4 = 6 (189) 

o"o ~ 1.5« 
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The values of a , a,, and o„ are used to calculate z~~ and the fol­

lowing evaluations are made s 

i l! 

[z o V+ Z j , = 0 = ^L34k -f 360k a0 + 9k a, + 1 22 2 s/= -1 z z 3 z 4 :i9i) 

[z._ + Z_] • o'•=•' 0 « -66.5k . .- 360k a- + 7.5k a.+ 1 (192) Zz 2. s.~ "2. z z 3 ':•• z 4 . 

..[zao + -Z.0] 1Q' -'•'= 0 •= -9k - 15k aQ - 6k a, + 1 22 2 s - -13.5 z . ;• • z 3 z 4 

Solving the; preceding equations results in 

193' 

k > ,.02078100023 
• . - z • • • 

(194) 

a_= 008058608067 

a 4 = 6.318681315. 

(195) 

(196) 

These values are used, to calculate the circuit-element values and the 

final circuit is indicated in Figure 39. 

There is no assurance that a coupling circuit may be found which 

will match the alternating-pole-zero requirement. The terminating func­

tion should not contain any poles not present in z9oS for if such were 

the case, z99 + Z9 would have more than three zeros. More than three 

equations similar to (191), (192), and (193) would result, although only 

three variable parameters are available to solve them. 

The procedure may be used with non°RC terminations, such as a 

simple inductance or a series RL branch. 

Ill 
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O &-

34«57 

vV\A-*-v\AA 

"^1109 "1^2253 

4' 

"02025 

ohms, farads 

Figure .39.; Circuit of; Special Technique Example, 

'•"'•••• " '"' Bi s cuss ion of Future Work •.-...••••'• 

• The procedure developed in this thesis is limited to realization 

of;-transmission zeros in the first 30c=sector of the right-half plane. 

In that limited region, realization is not ensured in all possible cases 

because of the restrictions"of the coupling circuits. The problems in­

volved in removing the limitations are discussed in the following sections 

Additional Surplus Factors 

Use of more than one surplus factor extends the permissable region 

for right-half-plane transmission zeros. The surplus-factor zeros, 

a 12 o 0. . • -.» o must be real and positive for RC circuits. ol o23 9 on r 
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For example s the 'function 

[s + 0yX(-s "+-.a;^)-(s2 -' 2ans-+-CD )
2 ' '". T " -(.197: 

;01 . OZ "'•'. ..U O 

will have non-negative coefficients if the following conditions are 

satisfied;- ../ 

.;•;• '='•• • a , + o 0 > 2a- ','..-/•' '(198) 
'••.'.• - o l .; '• o 2 — • o . • • '.•.•;:; " • .• 

to2 •+ a rOi0 > la (cT/V + cr 0 ) (199) 
o ol 12 .=• o ol o2 ••• . 

2 ' : " ' • " •' - ' • • ' • • • • " " • • • • '• : ' • " ; ] ' " •' ' 

o ol; o2••.—• o ol o2 (200) 

The additional requirement that the quadratic polynomial 

s 2 + (°ol + ffo2> V * ° 0 i V
; " ••'.''. (201) 

must have r e a l zeros w i l l be s a t i s f i e d i f 

[a •,::'* GT •„•) > 4er , a 0 ••..•••- ' ,. , (202) 
' o l • : o2 — : o l o2 v '. 

A straightforward procedure for determinirig the conditions under which 

all of the Inequalities are satis fied is unknown. Condition, (202) is 

satisfied with the restricted condition that 

a o i : s °o2 • ' , ' ;'-::X^:: • ; ( 2 0 3 ) 

Substituting (203) in (198) and using the equality sign., the surplus fac­

tor values become 

.'-.•'•''• -'.a- i = - - a 0 = a . . ' .. :':;.' '". .(204)-
o l . o 2 •••• o •-,'•'•• > v ,- . • 
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Restriction••••.(.204)-5 when substituted' in- condition (199) s results
 :in 

"•'.-.'=,'. 6y> 3a2 \:'-r'": : .' • " r . , . " > • ' • . ' . ' , . : * / ( 2 0 5 ' 

The same condition, (205), is obtained by substituting (203) in (200). 

The resulting value of cr̂ . using the equality sign of (200) is then sub­

stituted in (199). 

Condition (205) limits the right-half-plane transmission zero to 

the region of the s-plane given by 

5 4 . 8 ° < | a r g s | < 9 0 % (206) 

an extension of approximately five degrees over the one-surplus-factor 

region. The actual extension is Less than five degrees because the sur­

plus factors cannot be equal. 

As an example of the preceding results, the zeros of the polynomial 

s2 - 2s + 3 (207) 

2 
lie on the 54e8°~lines of the s-plane. When multiplied by (s + 1) the 

polynomial has non=negative coefficients given by 

s4 + 4s + 3. (208) 

2 
When multiplied by (s + 3) D the non-negative coefficients are given by 

s4 + 4s3 + 27. (209) 

If the surplus factors are made slightly unequal in either case, negative 

coefficients appear in the result of the multiplication. 
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'Similarly9 for three equal surplus factors, the 

zero restriction "is 

9. the transmission-

2 . 8 2 
0) >.^a 
' o . — 3 ' o 

:.2io) 

or 

52.3° < |arg s < 90' 

The preparatory-step conditions for additional surplus fa 

:2 i i ; 

be come 
ic tors 

or 

%<so> = V V 
y l l ' < s o = Y l p ' < V 

y n ( - a o i ) = Y (-aQ l) 

(212) 

(213) 

(214) 

yll(-°on> " V " V > 
y l l , ( - a o P > Y l p < - " o l ) 

(215) 

(216) 

y l l , ( - < J o n > > Y l p ' < - " „ „ ) on' (217) 

Z l l ( s o > " Z 

Z l l ' < S o > 

1 l a . 
lp o' 

z i ' ( s ) 
lp x oJ 

Z11("%1> " V ° o l > 

'11 on ; lp^ u on j 

(218) I 

(219) ' I 

( 2 2 0 ) 

(221) 
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"zll"<~°oJ < Z1P' K l » 

'11 onv lp on 

(222) 

(223) 

where -Y- and Z. are RC functions and a \, . ". .9 d represent the sur-
lp lp : ;, •,..;• ;oli -.... o n , r ; 

plus-factor zeros. The procedure for proving these cdnditidns is a straight' 

forward extension of the proof/given in, Chapter III for one surplus factor, 

and therefore is not repeated here. 

Coupling circuits for the procedure must be derived. The family: 

of circuits for use with two surplus factors arid parameters will include 

a triple-tee circuit, the. circuits of Figures 15 and 19, the circuits of 

Figures 13 arid 17 with extended ladder sections, :and other circuits. 

The terminating immittanee must be two degrees less 'in the numer­

ator and in the; denominator, than the driving-point immittanee, regardless 

of the number: of surplus ̂ factors, 

Non-Compact Coupling Circuits 

The list of cdupling circuits given in Chapter II is not complete 

enough to iriclujde" all- possible 'combinations of given driving -point :f.une.ra­

tions and given transmissionzeros without the removal of both 'series 

and shunt elements. The procedurê ^ would be improved with the addition v 

of other compact three-terminal networks.: V 

An alternative to finding other compact hetworks.wbuld be to devel­

op ..t̂Wo sets of no.ri-c-omp'act networks - one set for use -in Z, j synthesis 

and the other for use in'y. synthesis. ' The necessity for two sets of V 

coupling circuits was discussed in Chap ^ \ 

The non-compact to Have fewer restrictions o n , 

pole locations•.' For example 5 the Guillemin parallel-ladder networks 
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have no restrictiohs on pole locations.. However•, the non-compact poles 

of the coupling circuit must also be poles of the driving-point immit- ...,-' 

tance. In addition, the a\J.ternating-'poie-zero requirement for the y„„+ Y„ 

or z99 + Z 9 functions must be satisfied. The functions have the numerator 

factor (s + 0 ) as in the compact case. The preparatory"step conditions 

appear to be the: same for non-compact and compact coupling circuits. 

;The family of non-compact coupling circuits for Use with one sur­

plus factor may contain circuits with one or two non-compact poles. For 

example5 the coupling circuits of Figures 15 and 19 are non-compact at 

the ov-pole if g9 is chosen to be less in; magnitude than a-. The Gulllemin 

parallel-laddeT networks are5 ,in-generalP non-compact at both poles. ' In 

certain casesj the non=compact pole may be made to coincide with theVsur-

plus°factor zero cr . If this is done 2 the (s -f <j ) factor will cancel in 

ŷ-i 9s simplifying the preparatory-step conditions. An interesting sub =. 

case: to consider here s is the effect of causing (s + w ) to cancel'in y-' 

or y99 as ̂ well as in -,~y\ 9. ;The cancellation may be realizedVusing the.. 

methods of this thesis. 

K 
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