
AUDIO CLASSIFICATION AND EVENT DETECTION BASED ON SMALL-SIZE
WEAKLY LABELED DATA

A Thesis
Presented to

The Academic Faculty

By

Chieh-Feng Cheng

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

May 2020

Copyright c© Chieh-Feng Cheng 2020



AUDIO CLASSIFICATION AND EVENT DETECTION BASED ON SMALL-SIZE
WEAKLY LABELED DATA

Approved by:

Dr. David V. Anderson, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Mark A. Davenport
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Elliot Moore II
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Eva Dyer
Department of Biomedical Engi-
neering
Georgia Institute of Technology

Dr. Ghassan AlRegib
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Abbas Rashidi
Civil and Environmental Engineer-
ing
University of Utah

Date Approved: November 21, 2019



TABLE OF CONTENTS

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2: Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Audio event detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Audio event detection using weakly labeled datasets . . . . . . . . 5

2.2 Audio enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Audio features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Short-time Fourier transform (STFT) spectrogram . . . . . . . . . . 9

2.3.2 Mel-frequency cepstral coefficients (MFCCs) . . . . . . . . . . . . 9

2.3.3 Delta features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.4 Log-mel energy spectrum . . . . . . . . . . . . . . . . . . . . . . . 12

iii



2.4 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Singular value decomposition . . . . . . . . . . . . . . . . . . . . 13

2.4.2 Principal component analysis and Independent component analysis . 14

2.4.3 Non-negative matrix factorization . . . . . . . . . . . . . . . . . . 15

2.4.4 AutoEncoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 3: Flexible Audio Classification and Event Detection (FACED) frame-
work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Signal enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Clustering and forming the training data . . . . . . . . . . . . . . . . . . . 29

3.6 Classification algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 4: Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Synthetic dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Real-world dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 DCASE dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 5: Evaluation on FACED framework . . . . . . . . . . . . . . . . . . . 40

5.1 Evaluation experiments setup . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Feature extraction and dimensionality reduction . . . . . . . . . . . . . . . 41

iv



5.3 Clustering algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Classification methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 6: Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.1 Method 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.2 Method 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.3 FACED framework . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 Using full dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4.1 Synthetic dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4.2 Real-world dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4.3 DCASE challenge dataset . . . . . . . . . . . . . . . . . . . . . . . 59

6.5 Decreasing the size of dataset . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5.1 Synthetic dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.5.2 DCASE dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Chapter 7: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

v



LIST OF TABLES

5.1 Detecting performance using FACED framework under different feature
extraction methods on TUT Rare Sound Events 2017 dataset . . . . . . . . 42

5.2 Detecting performance using FACED framework with different clustering
methods on TUT Rare Sound Events 2017 dataset . . . . . . . . . . . . . . 44

5.3 Detecting performance using FACED framework with different classifica-
tion methods on TUT Rare Sound Events 2017 dataset . . . . . . . . . . . 46

6.1 Detection performance using different methods with synthetic dataset . . . 54

6.2 Detection performance using different methods with real-world dataset . . . 55

6.3 Detection performance for Activity 1 and 2 using method 1 and method 2
with real-world dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4 Detection performance for Activity 1 and 2 using our preliminary work and
the FACED framework with real-world dataset . . . . . . . . . . . . . . . . 58

6.5 Segment-based error rate (ER) and F-score (F1) using TUT Sound Events
2017 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.6 Segment-based error rate (ER) and F-score (F1) using TUT Rare Sound
Events 2017 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.7 Class-wise error rate (ER) using development dataset from TUT Rare Sound
Events 2017 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.8 Class-wise F-score (F1) using development dataset from TUT Rare Sound
Events 2017 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.9 Error rate (ER) and F-score (F1) using weakly-labeled TUT Rare Sound
Events 2017 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vi



6.10 Class-wise error rate (ER) using weakly-labeled TUT Rare Sound Events
2017 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.11 Class-wise F-score (F1) using weakly-labeled TUT Rare Sound Events 2017
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.12 Detection performance using synthetic dataset, the data size is gradually
shrunk from 100% toward 10% . . . . . . . . . . . . . . . . . . . . . . . . 71

6.13 The F-score (F1) using TUT Rare Sound Events 2017 dataset, the data size
is gradually shrunk from 100% toward 10% . . . . . . . . . . . . . . . . . 73

6.14 The error-rate (ER) using TUT Rare Sound Events 2017 dataset, the data
size is gradually shrunk from 100% toward 10% . . . . . . . . . . . . . . . 74

6.15 The class-wise error-rate (ER) for “Baby cry” event within TUT Rare Sound
Events 2017 dataset, the data size is gradually shrunk from 100% toward
10% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.16 The class-wise F-score (F1) for “Baby cry” event within TUT Rare Sound
Events 2017 dataset, the data size is gradually shrunk from 100% toward
10% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.17 The class-wise error-rate (ER) for “Glass breaking” event within TUT
Rare Sound Events 2017 dataset, the data size is gradually shrunk from
100% toward 10% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.18 The class-wise F-score (F1) for “Glass breaking” event within TUT Rare
Sound Events 2017 dataset, the data size is gradually shrunk from 100%
toward 10% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.19 The class-wise error-rate (ER) for “Gunshot” event within TUT Rare Sound
Events 2017 dataset, the data size is gradually shrunk from 100% toward
10% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.20 The class-wise F-score (F1) for “Gunshot” event within TUT Rare Sound
Events 2017 dataset, the data size is gradually shrunk from 100% toward
10% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

vii



LIST OF FIGURES

2.1 An overview of a monophonic sound event detection system, provided by
DCASE 2017 Challenge (http://www.cs.tut.fi/sgn/arg/dcase2017/) . . . . . 5

2.2 An overview of a polyphonic sound event detection system, provided by
DCASE 2017 Challenge (http://www.cs.tut.fi/sgn/arg/dcase2017/) . . . . . 6

3.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Comparison between the original recording and enhanced recording. . . . . 23

3.3 Short-time Fourier transform (STFT) spectrogram . . . . . . . . . . . . . . 24

3.4 Log-mel energy spetrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Illustration depicting clustering behavior. Note that the two categories share
some clusters (corresponding to background features) but also contain clus-
ters unique to each category. . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Illustration of training vector . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 A segment of the synthetic dataset . . . . . . . . . . . . . . . . . . . . . . 36

4.2 The microphone array used for collecting audio files for this project (left)
and placing audio recorders at a jobsite (right) . . . . . . . . . . . . . . . . 37

5.1 Block diagram for training steps . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Block diagram for testing steps . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1 Average Detection performance using real-world dataset . . . . . . . . . . 58

viii



6.2 The comparison of error-rate (ER) between using TUT Rare Sound Events
2017 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 The comparison of F-score (F1) using TUT Rare Sound Events 2017 dataset 66

6.4 The comparison of error-rate (ER) between the original and weakly-labeled
TUT Rare Sound Events 2017 dataset . . . . . . . . . . . . . . . . . . . . 68

6.5 The comparison of F-score (F1) between the original and weakly-labeled
TUT Rare Sound Events 2017 dataset . . . . . . . . . . . . . . . . . . . . 68

6.6 The Detection accuracy of gradually shrinking synthetic dataset . . . . . . . 71

6.7 The F-score (F1) of gradually shrinking TUT Rare Sound Events 2017
dataset dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.8 The error-rate (ER) of gradually shrinking TUT Rare Sound Events 2017
dataset dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.9 The class-wise error-rate (ER) for “Baby cry” event within the gradually
shrinking TUT Rare Sound Events 2017 dataset . . . . . . . . . . . . . . . 76

6.10 The class-wise F-score (F1) for “Baby cry” event within the gradually
shrinking TUT Rare Sound Events 2017 dataset . . . . . . . . . . . . . . . 76

6.11 The class-wise error-rate (ER) for “Glass breaking” event within the grad-
ually shrinking TUT Rare Sound Events 2017 dataset . . . . . . . . . . . . 78

6.12 The class-wise F-score (F1) for “Glass breaking” event within the gradu-
ally shrinking TUT Rare Sound Events 2017 dataset . . . . . . . . . . . . 78

6.13 The class-wise error-rate (ER) for “Gunshot” event within the gradually
shrinking TUT Rare Sound Events 2017 dataset . . . . . . . . . . . . . . . 80

6.14 The class-wise F-score (F1) for “Gunshot” event within the gradually shrink-
ing TUT Rare Sound Events 2017 dataset . . . . . . . . . . . . . . . . . . 80

ix



SUMMARY

Audio event detection and classification are critical tasks in the analysis of multimedia

data. Most current research on these topics focuses on processing strongly labeled data and

using fully supervised machine learning techniques. However, many sources of multime-

dia data lack detailed annotation and rather have only high-level meta-data describing the

main content of various long segments of the data. We propose a novel framework to per-

form audio classification when working with such weakly labeled data, especially for small

datasets. A traditional approach to this problem is to use techniques for strongly labeled

data and then to deal with the weak nature of the labels via post-processing. In contrast,

our approach directly addresses the weakly labeled aspect of the data by classifying longer

windows of data based on the clustering behavior of the acoustic features over time. We

evaluate our framework using both synthetic datasets and real data and demonstrate that

our method works well under both situations. Also, it outperforms other existing methods

when using small size datasets.

x



CHAPTER 1

INTRODUCTION

1.1 Motivation

The purpose of this research is to develop a method for audio classification based on weakly

labeled data, especially for small training datasets. The motivation for this research is in

response to the deluge of self-recorded multimedia data now available. For example, many

popular upload sites contain video and audio that lacks detailed annotation but rather only

has high-level meta-data describing the significant content of the entire signal. Similar

issues arise in recordings recorded in realistic soundscapes, such as from popular digital

home services like Google home and Amazon Alexa. In these and many other contexts,

given clip-level metadata, we only know that the described objects and events occur in the

recording, but we have no information about how often and exactly when they occur. Such

data is often said to be weakly labeled. There are many unexplored approaches that could

potentially derive targeted information we need from these weakly labeled datasets.

This work develops signal processing and machine learning techniques for weakly la-

beled acoustic data. In these datasets, sections of data are labeled as containing a signal of

interest, but this signal may be intermittent and occur at one or more locations which are

not clearly delineated. An example of weakly labeled image data could be a picture labeled

as “dog” in which the dog is only a part of a larger scene.

Weakly labeled data is common in many application areas but is particularly common

in audio classification tasks. For example, one might have training data consisting of clips

of audio labeled “horns” that contain many other noises along with some intermittent horn

sounds. Given such weakly labeled data, our goal is to be able to classify segments of audio

according to the content they contain, even if this content is only intermittent. Following

1



the example above, we would like to be able to recognize when an audio segment contains

a horn sound even if it only occupies a small fraction of the segment.

More broadly, weakly labeled audio data arises in numerous other applications simply

as a result of the difficulty and expense involved in manually annotating the precise content

of audio data. Due to the difficulty of obtaining strong labels in real-life multimedia data,

most of the multimedia or audio recordings will only contain clip-level metadata which can

be treated as weak labels. Thus, by developing techniques to learn from weakly labeled

data, we can avoid the time-consuming and expensive process of manual annotation. In

this research, we will consider several particular example applications.

1.2 Contributions

In this research, we present a structured and flexible framework which combines multiple

machine learning techniques as an approach to deal with these weakly labeled recordings.

The primary concern of the proposed framework is its classification accuracy of unlabeled

recordings in new environments or soundscapes. Our approach involves classifying longer

segments of data by considering the clustering behavior of the acoustic features across a

window of time to create a foreground / background model. The challenges we face in

making such algorithms practical are open questions that arise in many domains:

• How to best leverage small amounts of data?

• How to make use of hand-recorded training data?

• How to extract important information from weakly labeled data?

• How to deal with significant background / environmental noise?

• How to distinguish different events in an audio clip?

• How to make algorithm flexible enough to fit different audio scenes?

2



We believe that the proposed framework will provide effective ways of addressing many

of these questions.

This research also contributes to the field of civil engineering. One of our collaborative

applications is acoustic monitoring of large construction sites. The goal in this context is

to learn to identify the typical sounds of specific pieces of construction equipment and,

where possible, their actions. Given weakly labeled training data for different pieces of

equipment/actions, we would then like to be able to automatically monitor and characterize

the activity at a construction site from simple audio recordings. Below, we will evaluate

our proposed framework on real-world data we have collected from construction sites [1].

1.3 Organization

This document is organized as follows: Chapter 2 reviews the related research and several

algorithms that are considered practical options in the proposed framework. Chapter 3

gives the overview of the proposed framework and details each stage. In Chapter 4, we will

describe the various datasets we collected for our experiments. Since various algorithms

can be applied with each step in our proposed work, chapter 5 evaluates the performance of

different algorithms which are popular and applicable choices for each step in our proposed

framework. Chpter 6 shows that our proposed framework achieves great performance to

both a more traditional or a currently prevalent approach on both synthetic and real-world

data. In addition to a general comparison of detection performance on a complete dataset,

we also show the performance difference of our proposed framework and other popular

algorithms when the size of a dataset decreases. Chapter 7 summarizes the contributions

of our work and lists ways it might be expanded in future work.

3



CHAPTER 2

BACKGROUND

2.1 Audio event detection

Two main concepts are addressed in this research: “audio event detection” and “weakly

labeled data.” Audio event detection is also known as sound event detection and audio

classification. In general, an audio event detection system can be classified as monophonic

and polyphonic. Simple illustrations of monophonic and polyphonic audio event systems

are shown in Figure 2.1 and 2.2. Monophonic audio event detection systems handle the

polyphonic data by detecting the prominent event; while the polyphonic audio event detec-

tion system has the ability to detect or classify multiple events in complex auditory scenes.

Audio classification and sound event detection is a key component of auditory scene analy-

sis, which is the study of how we decompose an audio into its component events. Auditory

scene analyses are typically performed on audio segments containing more than one audi-

tory event. Some classical applications include speech and language recognition, automatic

music transcription, and sentiment/emotion recognition, just to name a few. Conventional

audio event detection often uses Gaussian Mixture Models (GMMs) on Mel-Cepstral Co-

efficient (MFCC) features [2, 3]. The problem of automatic speech recognition has largely

dominated classic research in this field (e.g., see [4, 5, 6]), with dramatic improvements in

the performance obtained by machine learning based approaches in recent years [7, 8, 9].

However, many other important applications in auditory scene analysis still remain. One

example that we address in this thesis is the analysis of sounds made in construction sites.

Heavy construction equipment often generates unique sound patterns while performing

various tasks, by processing this data we can potentially extract a great deal of information

regarding the underlying activities at a construction site [1].

4



Figure 2.1: An overview of a monophonic sound event detection system, provided by
DCASE 2017 Challenge (http://www.cs.tut.fi/sgn/arg/dcase2017/)

2.1.1 Audio event detection using weakly labeled datasets

Audio classification has traditionally been studied using datasets which contain detailed

temporal information of each sound event present [10, 11]. These are known as strongly

labeled datasets. In strongly labeled datasets, detailed time labels of occurrences of the

audio event in the recordings are given so that event-specific parts can be detected from

the whole recordings. However, as noted above, many audio datasets are only weakly

labeled in that the labels only indicate that some specific sound events are presented in

the audio, but do not contain the exact time the events occur in the recording [12, 13].

However, creating a large amount of strongly labeled data is an extremely time consuming,

difficult and expensive process. In fact, most publicly available strongly-labeled datasets

have less than an hour of audio data for each event [14, 15, 16, 17]. In most cases, only

5



Figure 2.2: An overview of a polyphonic sound event detection system, provided by
DCASE 2017 Challenge (http://www.cs.tut.fi/sgn/arg/dcase2017/)

a few minutes of audio data per acoustic event is available. Recently, the use of weakly-

labeled audio data has received increased attention. Indeed, it was one of the subjects of

the recent DCASE (Detection and Classification of Acoustic Scenes and Events) Workshop

and Challenge [18].

Almost all current literature on audio classification relies on supervised methods us-

ing strongly labeled datasets. In this case, labeled examples of each different audio event

class are available and then some supervised machine learning technique is applied for de-

tecting events and performing audio classification. This reliance on strongly labeled data

severely limits the scale and scope of audio classification works and is currently one of

the most important challenges faced by the research community. The motivation for using

weakly labeled datasets is that manually annotating audio recordings with weak labels is

much easier than annotating with strong labels. Furthermore, weakly labeled datasets can

6



be directly obtained from popular websites such as Youtube.com. Most of the prior work

on learning detection models from audio event search has focused on the task of creating

strong labels from weak labels, for example, [11, 19, 20]. Recently, there have been at-

tempts toward weakly supervised learning of audio events [21]. Chou et al. [22] and Lee

et al. [19] used deep convolutional neural networks to solve weakly supervised audio event

learning problems. Most of the multimedia or audio clips on the Internet contain some

clip-level metadata which can be treated as weak labels. Thus, unlike with strongly labeled

datasets, the time consuming and expensive process of manual annotation may no longer

be required and a large amount of weakly labeled data can be directly obtained from the

Internet.

In [23] the authors propose a multiple instance learning approach for sound event de-

tection using weakly labeled data. The main idea is that audio event detection using weakly

labeled data can be formulated as a multiple instance learning (MIL) problem. In MIL, in-

stances are given in groups called bags, and labels are available for each bag. In a negative

bag all instances are known to be negative, whereas, in a positive bag it is only known that

at least one instance is positive. Thus, in a positive bag both positive and negative instances

can be present. The goal is to learn a classifier technique using data in bag-label form.

In [24] the authors use a fully connected neural network (FCN) to recognize instruments

and tempo for each time frame of an audio clip with only the clip-level labels, extending

this network to other sound event detection problems in [25]. Convolutional and recurrent

neural networks (CNN and RNN) have also been used in the related context of audio tag-

ging tasks [11, 26]. Different from the proposed framework in this research, these existing

works can be understood as first using weakly labeled data to build strong labels, and then

applying standard machine learning techniques.

7



2.2 Audio enhancement

Captured audio is assumed to contain the signals of interest along with environmental and

other background noise sources. Usually the noise will have a negative effect on identifying

certain activity patterns; thus, an effective noise estimation algorithm can have a significant

impact on the proposed procedure, and may be used in our first processing step. Of course,

the enhancement should be tuned carefully since low-level enhancement will still keep

most of the background noise; while if the enhancement is too aggressive, the audio in the

dataset might be distorted, degrading performance.

Noise estimation has been studied in signal processing for decades. Some traditional al-

gorithms are based on optimal smoothing and calculating minimum statistics of the power

spectrum [27]. Actually, most noise estimation algorithms are dealing with speech en-

hancement problems and many assume stationary noise models [28, 29, 30]. In our case, we

need to address highly non-stationary noise environments such as what might be encoun-

tered in real-life recordings. Rangachari and Loizou proposed a noise estimation algorithm

for highly non-stationary environments and it has been shown to be very effective [31].

Cohen also developed a popular noise estimation algorithm which can be used in adverse

environments [32].

2.3 Audio features

The raw or enhanced audio recordings are rarely passed directly into learning algorithms

because they contain far more information than is relevant for most tasks. Instead, a set of

features are typically derived from the raw clips, which are then fed into subsequent algo-

rithms. Feature extraction attempts to summarize the relevant information while discarding

irrelevant information, and will be the first stage in our framework. Several practical fea-

tures are listed below.

8



2.3.1 Short-time Fourier transform (STFT) spectrogram

The short-time Fourier transform (STFT) is a Fourier-related transform used to determine

the sinusoidal frequency and phase content of local sections of a signal as it changes over

time [33]. In practice, the procedure for computing STFTs is to divide a longer time signal

into shorter segments of equal length and then compute the Fourier transform separately on

each shorter segment, which results in the simple Fourier spectrum of each segment. The

signal to be transformed is multiplied by a window function; for example, the Gaussian

window and the Hamming window are two of the popular choices. The Fourier transform

(a one-dimensional function) of the resulting signal is taken as the window is slid along the

time axis, resulting in a two-dimensional representation of the signal. Important consid-

erations for the STFT process are the window used, the size of Fourier transform, and the

amount of overlap for each windowed segment.

2.3.2 Mel-frequency cepstral coefficients (MFCCs)

MFCCs are a set of features that can be computed from audio data and are designed to

match how humans perceive sound. MFCCs are based on the mel scale, which relates

the frequency of sound to a measure of the perceived pitch. The mel scale was originally

developed by Stevens et al. in 1937 [34], and later refined in 1940 [35]. A few different

formulas have been fit to the data that defines the mel scale. One of the most commonly

used ones was given by O’Shaughnessy [36]. The corresponding frequency in mels is

calculated using the formula

m = 2595× log
(

1 +
f

700

)
,

where f is the frequency in hertz. This formula will be used in our experiments when

calculating MFCCs.

The word “cepstral” in MFCCs was defined by Bogert [37], which is obtained by re-

9



versing the first four letters of the word “spectral.” It is originated from the “cepstrum,”

which is obtained by applying a frequency-based transform (e.g. the Fourier or cosine

transform) to the power spectrum of a signal. For example, a simple cepstrum could be

computed as

cepstrum = DCT
{

log
(
|F
{
x(n)

}
|2
)}
,

where x(n) denotes the targeted signal, F{·} denotes the Fourier transform, and DCT{·}

denotes the discrete cosine transform. A mel-scaled cepstrum inserts a triangular filter

bank whose frequency bands are linearly spaced in the mel domain immediately prior to

the log operation. In 1995, dynamic features (deltas and delta-deltas) for MFCCs were

proved to provide significant performance gains under all the different signal conditions

by Sandhu and Ghitza [38]. After MFCCs were applied to speech recognition [39], it was

shown that MFCCs are superior to several other feature types used for speech recognition

because of their ability to represent perceptually relevant aspects of the sound [40]. As of

now, MFCCs are still one of the most commonly used features in speech recognition and

other audio scene problems. The process we use to calculate MFCCs can be summarized

as follows:

1. Calculate the short-time Fourier transform (STFT) of the audio clips. Discard phase

information and only preserve the power.

2. Map the frequency axis onto a mel scale using triangular windows to combine fre-

quency bins from the Fourier transform according to the mel scale spacing.

3. Compute the logarithm of the results.

4. Calculate the discrete cosine transform (DCT) on the results to decorrelate them.

5. The MFCCs are the amplitudes of the resulting spectrum.

The MFCCs are calculated using the RASTA-PLP, an acronym for Relative Spectral

Transform - Perceptual Linear Prediction, program provided by Hynek Hermansky [41,

10



42] under MATLAB environment. The “melfcc.m” function supports various options to

calculate MFCCs from sound signals. For Python environment, LibROSA is also applied

in our work. LibROSA is a popular and great Python package for music and audio analysis.

It provides the building blocks necessary to create music information retrieval systems. The

details of LibROSA can be found in [43].

2.3.3 Delta features

When MFCCs are used as features of an audio, the estimation of the first and second deriva-

tives are often included with the original MFCCs. The estimated first and second temporal

derivatives of a set of features are typically called deltas and delta-deltas. The deltas and

delta-deltas are also referred to as the dynamic features since they capture information

about how the underlying features are changing over time. The combination of original

features and dynamic features has been shown to improve various recognition tasks [44].

The delta feature is calculated as

∆[t] =

∑N
n=1 n(y[t+ n]− y[t− n])

2
∑N

n=1 n
2

,

where y[t] represents the value of a given feature for the tth sample and N is the num-

ber of samples on either side of the current sample to use in estimating the derivative. This

formula represents the slope of a least-squares linear regression over the computation win-

dow. For the first and last N samples of a signal, the computation window will extend past

the beginning or the end of the signal. In these cases, we repeat the corresponding first

or last sample in place of all the missing samples. Delta-deltas are computed by apply-

ing the above equation a second time. Since delta-delta features are computed by second

derivatives, they are also called acceleration coefficients.

Most of our work in Chapter 5 and 6 use features that include MFCCs, the deltas, and

the delta-deltas. The derivative operation in the deltas and the delta-deltas acts like a high-

pass filter. In this work, the original MFCCs, deltas, and delta-deltas of input audio data

11



tend to fall in different magnitude ranges, causing one to dominate the others when used

together before they are fed into clustering algorithms. To prevent from this problem, we

scaled the delta-deltas by a factor of 5 to bring them into similar magnitude ranges with

the deltas. When the original MFCCs were also included, we scaled both the deltas and

delta-deltas by an additional factor of 5.

2.3.4 Log-mel energy spectrum

Log-mel energies are computed in the same way as MFCCs, except that the DCT step is

skipped. Different from coefficients obtained by MFCCs procedures, the calculated results

here directly correspond to the amount of energy in different frequency bands. Comparing

to MFCCs, Log-mel energy spectrum is a more intuitively understandable feature and it is

also a commonly choice among audio feature types. Log-mel energy spectrum has several

modified versions due to different types of acoustic scenes. A common example is using

the magnitude spectrum instead of the power spectrum, and omitting the log scaling at the

end of the log-mel energy spectrum computation. This is often be called as mel-magnitude

spectrum.

2.4 Dimensionality reduction

In general, extracting features from original data can be viewed as a form of dimensionality

reduction. However, we might want to tune the extracted features in a specific situation if

the features are not designed manually. For this purpose, feeding features into a dimension-

ality reduction algorithm can help extract the information most relevant to the current task,

which can speed up learning and reduce overfitting. Also, the dimensionality reduction

process can help save the calculation and time cost in the following learning steps. Several

popular dimesionality methods are introduced below.

12



2.4.1 Singular value decomposition

The singular value decomposition (SVD) is a factorization of a data matrix, and it has many

useful applications in signal processing and statistics [45]. Formally, the SVD of an m× n

matrix X is a factorization of the form UΣVT. The function can be written as

X = UΣVT .

where U is an m × m unitary matrix, Σ is an m × n rectangular diagonal matrix with

non-negative real numbers on the diagonal, and V is an n×n unitary matrix. The diagonal

entries σi of Σ are known as the singular values of X and they are typically sorted in

decreasing magnitude. The columns of U and the columns of V are called the left-singular

vectors and right-singular vectors of X. To perform dimensionality reduction using SVD,

we can preserve only the first R columns of U, the first R rows and columns of Σ, and the

first R rows of V to be used in the following processes, where R is selected by examining

the matrix Σ.

After the value of R is selected, the first R columns of U will be preserved as U′ and

the first R rows and columns of Σ will be Σ′. When the new data Xi comes in, we can use

U′ and Σ′ to factorize Xi into U′Σ′VT
i , where V T

i can be treated as the new feature matrix

for the input data.

For example, performing SVD on the magnitude of the STFT matrix X in order to

reduce the dimension of the STFT spectrogram (X = UΣVT .) By examining the matrix

Σ, which contains the singular values along the diagonal, we can determine how many

components are sufficient to provide a good approximation to the original X. We can then

truncate the SVD by including only the first R components of U, Σ, and V as U′, Σ′, and

V′. The columns of the truncated VT will be treated as a low-dimensional set of features

for each time bin of the STFT. Also, using U′ and Σ′ to decomposed the testing data can

make sure the training data and testing data are both being projected onto a same space.

13



2.4.2 Principal component analysis and Independent component analysis

Principal component analysis (PCA) and Independent component analysis (ICA) are di-

mensionality reduction methods which are associated with SVD. Principal component anal-

ysis (PCA) reduces the dimensionality of data by projecting it onto a small set of orthogonal

bases that maximizes the amount of variance preserved through the projection. The idea

was originally presented by Pearson [46], and later expanded upon by Hotelling [47]. The

PCA algorithm relies on the assumption that the directions of greatest variance contain the

most useful information, which may not always be true. The full principal components

decomposition of X can be given as

T = XW,

where W is a m-by-m matrix of weights whose columns are the eigen-vectors of XTX .

The transpose of W is sometimes called the whitening or sphering transformation. This

transformation maps a data vector x(i) from an original space of m variables to a new

space of m variables which are uncorrelated over the dataset. However, for dimensionality

reduction purpose, we only need to keep the first L principal components. The truncated

transformation produced by using only the first L eigen-vectors can be written as

TL = XWL

where the matrix TL now has n rows but only L columns. That is to say, PCA learns a

linear transformation t = W Tx, x ∈ Rm, t ∈ RL, where the columns of m × L matrix W

form an orthogonal basis for the L features (the components of representation t) that are

de-correlated.

When a training data Ttrain has been factorized into XtrainWL using PCA, the WL

will be preserved, where WL is produced when we strip off all but the first L columns

14



of W. To make the testing data project onto the same space as the training data, WL is

the matrix we need to perform the correct projection. When the testing data Ttest comes

in, it will be projected onto the principal components we derived from the training data

Ttest = XtestWL.

Unlike PCA, independent component analysis (ICA) seeks to decompose a signal into

the sum of individual components, much like sparse representations. However, ICA uses

the assumption that the components will be statistically independent for regularization in-

stead of an assumption of sparsity. The idea of ICA was originally addressed by Jutten and

Herault [48] in 1991. After that, ICA has been frequently applied to blind source separation

(BSS) problems. For more details about the methods, applications, and extensions of BSS

and ICA algorithms, Choi et al. provide a comprehensive review of this topic [49].

2.4.3 Non-negative matrix factorization

Non-negative matrix factorization (NMF or NNMF) is another matrix decomposition method

which is developed by Lee and Seung [50, 51]. NMF is related to ICA, BSS, and sparse

representations. The factorization of NMF can be usually be represented as

X = W ×H,

where X is the m-by-n data matrix, W is the m-by-k dictionary matrix, and H is the k-by-

n activation or expansion matrix. The trick for applying NMF is determining the number

of k we need when performing the factorization.

After the training data X being decomposed into W ×H, the W matrix is preserved

to be used as the dictionary matrix. After the testing data Xt comes in, we could use W

to decomposed Xt into W ×Ht. The learned dictionary W will keep fixed, and Ht could

be used as the new feature matrix of testing data. This is similar to the idea of dictionary

learning. The non-negative factors in the matrices induce the sparsity and lead to part-based

15



decompositions. In audio event detection applications, Smaragdis used NMF [52, 53] and

probabilistic latent component analysis (PLCA) [54] to perform audio source separation

and speech recognition. PLCA [55] is a straight forward extension of Probabilistic Latent

Semantic Indexing (PLSI) [56], which deals with an arbitrary number of dimensions and

can exhibit various features, such as sparsity or shift-invariance. The basic PLCA model is

defined as:

P (X) =
∑
z

P (z)
N∏
j=1

P (xj|z),

where P (x)is an N -dimensional distribution of the random variable x = x1, x2, ..., xN .

The z is a latent variable, and the P (xj|z) are one dimensional distributions. This model

can Effectively represent a mixture of marginal distribution products to approximate an N -

dimensional distribution, where the challenge is to discover the most appropriate marginal

distributions within PLCA models.

Smaragdis et al. found that NMF and PLCA provide excellent separation of vocals and

a piano accompaniment [52]. They are also proved to be effective for sound recognition

applications [55]. NMF relies on the assumption that the inner dimension between the

dictionary and coefficient matrices is small (relative to the other dimensions) in order to

prevent the problem from being under-determined. This effectively limits the number of

dictionary atoms that may be used.

2.4.4 AutoEncoder

Considering the progress made in neural network based algorithms in recent decades, an

AutoEncoder is also commonly used in recent years for the purpose of dimensionality re-

duction. An autoencoder is a type of artificial neural network used to learn efficient data

codings in an unsupervised manner [57]. The aim of an AutoEncoder is to learn a rep-

resentation (encoding) for a set of data by training the network to ignore signal “noise”.

In short, AutoEncoders are neural networks that copies their inputs to their outputs. They

16



work by compressing the input into a latent-space representation, and then reconstructing

the output from this representation. An AutoEncoder can be simply viewed as a combi-

nation of encoders and decoders. In an encoder, the network compresses the input into a

latent-space representation, which can be represented by an encoding function h = f(x).

For the decoder part, it aims to reconstruct the input from the latent space representation,

which can be represented by a decoding function r = g(h). The AutoEncoder as a whole

can thus be described by the function g(f(x)) = r, where you want r as close as the orig-

inal input x. Several variants exist to the basic model of the AutoEncoder, with the aim of

forcing the learned representations of the input to assume useful properties [58]. Within

these years, data denoising and dimensionality reduction for data visualization, especially

related to image processing aspect, are considered as the main practical applications of Au-

toEncoders [59, 60, 61]. With appropriate dimensionality and sparsity constraints, AutoEn-

coders can learn data projections that are more interesting than PCA or above mentioned

techniques [62].

2.5 Clustering

Clustering or cluster analysis is a task of grouping a set of objects in such a way that objects

in the same group, which is called a cluster, are more similar in some sense to each other

than to those in other groups. It is a common technique for statistical data analysis that

can be used in many fields, including machine learning, pattern recognition, image analy-

sis, ..., etc. One prominent method is Gaussian mixture models (GMMs). For GMMs, the

data set is modeled with a fixed number of Gaussian distributions that are initialized ran-

domly and whose parameters are iteratively optimized to better fit the data set. Usually, the

expectation-maximization (EM) algorithm is implemented for fitting mixture-of-Gaussian

models; note, the EM algorithm can also give confidence ellipsoids for multivariate models.

The Bayesian Information Criterion can also be compute to assess the number of clusters

in the data. After learning a GMM from training data, it can be used for clustering by as-

17



signing any given testing data sample to the Gaussian to which it mostly probably belongs.

K-means clusters are each defined by a single data point (centroid). Data samples are

then assigned to the cluster according to which of the cluster centroids they are closest to.

K-means training involves starting with arbitrary centroids and then alternating between

assigning observations to the nearest cluster centroid and updating the cluster centroids

based on the new membership. The GMM may be thought of as generalizing k-means

clustering to incorporate information about the covariance structure of the data as well as

the centers of the latent Gaussians. K-d trees is a popular technique for the nearest neighbor

search and intelligent initialization to speed up the process of k-means clustering.

Different from the basic idea of GMM and K-means, DBSCAN [63] starts with finding

core samples of high density and expands clusters from them. After grouping together

points in high-density regions, outliers that lie alone in low-density regions points are then

marked. The assumption of FACED framework is different acoustic features in the signal

will correspond to distinct clusters. We do not need to find centroids for each cluster but

we need to find clusters that have dense regions in the data space. Regions of the lower

density of points are then separated. The DBSCAN algorithm is based on the intuitive

notion of “clusters” and “noise”. Since the core key idea is that for each point of a cluster,

the neighborhood of a given radius has to contain at least a minimum number of points,

this characteristic is much more fit as the intuition of FACED framework. Also, it is a

applicable choice in our experiments since each audio event can be treated as data which

contains clusters of similar density.

2.6 Classification

Many machine learning algorithms are available to build classifiers. One of the most popu-

lar classifiers is the Support Vector Machine (SVM), which seeks to maximize the margin

for error between the decision boundary and training samples. Besides dealing with lin-

early separable data, the introduction of soft margins allow SVMs to handle non-separable

18



data [64] and the application of the kernel trick allows them to learn non-linear decision

boundaries [65]. The sequential minimal optimization algorithm provides a computation-

ally efficient method of learning SVM models [66]. C.C. Chang and C.J. Lin later pro-

posed a popular library for SVMs which is called LIBSVM [67]. LIBSVM is an integrated

software for support vector classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-

SVR) and distribution estimation (one-class SVM).

Decision tree learning is also a simple, quick and popular way to train a classifier that

has a straightforward interpretation. Most decision tree algorithms select rules that max-

imize the information gained by the split, as done by Quinlan’s Iterative Dichotomiser 3

(ID3) algorithm [68]. Quinlan later developed the C4.5 algorithm, which extends ID3 to

add support for missing values, continuous attributes, and attributes with different costs [69].

C4.5 algorithm also performs pruning at the end, which tries to remove unnecessary rules

and reduce over-fitting.

Hidden Markov models (HMMs) are also very commonly used for classification. HMMs

provide a relatively simple way to model sequential data. The system being modeled by an

HMM is assumed to be a Markov process with unobserved (hidden) states. More specif-

ically, we only know observational data and not information about the states. HMMs can

provide a flexible way to model how a signal changes sequentially over time. Rabiner

provides an excellent introduction [70] and tutorial [71] on HMMs.

In recent years, various types of neural-network based classifiers are frequently used in

sound event detection problems. The simplest example is a naive neural network, which

consists of only an input layer, a hidden layer, and an output layer. The neural networks

calculated dot products and followed it up with a non-linear Rectified Linear Unit (ReLU)

function to learn the weights and bias. Some of our preliminary work makes use of the naive

neural network algorithm. Considering the development of deep learning these years, the

most popular neural networks are convolutional neural networks (CNNs), recurrent neu-

ral networks (RNNs), or several ensembles of CNNs and RNNs [72]. In general, CNN

19



is a popular algorithm that pulls out the convoluted embeddings from the input data, and

it is usually used in image processing aspect. Since we transformed the audio clips into

time-frequency domain representations, CNNs can treat these representations as images

and pull out the deep figures as it does in image processing problems. RNNs are mostly

applied after the CNN pulling out the deep figures. Recurrent neural networks were based

on David Rumelhart’s work in 1986 [73]. RNNs come in many variants but one of the

most popular structure of RNNs used in audio event detection problems is long short-term

memory (LSTM) networks. LSTMs were discovered by Hochreiter and Schmidhuber in

1997 [74] and set accuracy records in multiple applications domains. LSTM can learn

to recognize context-sensitive languages unlike previous models based on hidden Markov

models (HMM) and similar concepts [75]. The outstanding applications for LSTM are im-

proving machine translation [76], language modeling [77] and multi-lingual language pro-

cessing [78]. In recent years, LSTM combined with convolutional neural networks (CNNs)

has improved the accuracy of automatic image captioning and audio event detection. The

non-linear Rectified Linear Unit (ReLU) function is frequently used within all the above

mentioned neural networks. The softmax function is also a popular function used in neural

networks, especially applied after the outpur layer. It is a non-linearity, but it is special in

that it usually is the last operation done in a network. This is because it takes in a vector of

real numbers and returns a probability distribution. The definition of softmax is as follows.

Let x be a vector of real numbers, the i’th component of Softmax(x) is

exi∑
j e

xj
.

The output of the softmax is a probability distribution; each element is non-negative and

the sum over all components is 1.

20



CHAPTER 3

FLEXIBLE AUDIO CLASSIFICATION AND EVENT DETECTION (FACED)

FRAMEWORK

3.1 Overview

Our Flexible Audio Classification and Event Detection (FACED) framework for training on

weakly labeled data assumes that a common or similar background exists across multiple

audio clips and that the signal of interest differs across the clips. For example, if there are

two clips, one with a dog barking and one with people chatting, it is expected that they will

have both been recorded under similar circumstances (e.g., standing near the same road or

in a same cafe). We recognize that many situations will not meet this assumption but there

are many that will, such as recordings made in the same household environment or, as is

the case with one of our experiment datasets, at the same construction site. After training

is complete, it is also possible to perform the detection in new environments. The general

approach pipeline is illustrated in Fig. 3.1.

In the FACED framework, we advocate a new approach to training sound event de-

tectors and classifiers on weakly labeled data based on jointly analyzing entire segments

of weakly labeled data to create foreground / background models that implicitly learn the

weakly-labeled events. Our proposed method for training on weakly labeled data com-

prises a sequence of interrelated steps. Since different audio data may have significantly

different presenting features, the proposed method is designed to be flexible so that we

can adjust each step based on the audio dataset. The following is the general overview

for the proposed framework. As an initial step, we note that it is typically helpful (but

not required) to perform signal enhancement to reduce the background noise level. After

the enhancement, we then extracted specific features from the output data. Usually, these

21



Figure 3.1: Block diagram

features are chosen by what kind of audio clips we are processing, and they are typically in

a time-frequency representation, such as the Mel-frequency cepstral coefficients (MFCCs),

short-time Fourier transform spectrogram (STFT) and the Log-mel energy spectrum. If the

dimensionality of the time-frequency representation is too high, we will apply a dimen-

sionality reduction technique to produce a low-dimensional set of features for each column

(time bin/window) of the transferred spectrogram. The most commonly used techniques

here are truncated singular-value decomposition (SVD) and an autoencoder. We then apply

a clustering algorithm to these feature vectors. From the output of the clustering, we can

construct training vectors for segments corresponding to different categories by examin-

ing the distribution across the different clusters. A fully connected neural network is then

trained using these training vectors to identify different sound patterns (e.g., correspond-

ing to the various sound events of interest such as activities of each machine in jobsite

recordings or glass breaking in a shop). Each of these steps are described in detail below.

22



Figure 3.2: Comparison between the original recording and enhanced recording.

3.2 Signal enhancement

This signal enhancement step is not a necessary step in the proposed method but if there

is a significant amount of noise, performance may be improved by applying basic noise

suppression as a first step. Of course, the enhancement should be tuned carefully since low-

level enhancement will still keep most of the background noise; while if the enhancement

is too aggressive, the audio in the dataset might be distorted, degrading the performance.

Here we introduce a classic signal enhancement algorithm developed by [31] because it

is suitable to be used in highly non-stationary noise environments such as what might be

encountered in real-life recordings. An estimate of the noise is continuously updated in

every frame using time-frequency smoothing factors computed based on signal-presence

probability in each frequency bin of the noisy spectrum. More details about this algorithm

can be found in [31]. As shown in Figure 3.2, the frequency pattern is more distinct in the

enhanced recording than the original recording.

23



3.3 Feature extraction

To extract features from the enhanced audio signal, several transforming techniques are

considered. Since different types of recordings will present different characteristics, we

need to select carefully depending on what sound event is recorded in the audio clips. In

general, Log-mel energy spectrum (MFS), Mel-frequency cepstral coefficients (MFCCs),

short-time Fourier transform (STFT) spectrograms, and simple spectrograms are com-

monly used for realistic recordings. Figures 3.3 and 3.4 are examples for STFT spec-

trogram and log-mel energy spectrum for a same audio clip. After performing one of the

mentioned feature extraction techniques, we will have a feature matrix which can be fed

into the clustering step in the proposed method. If the dimensionality of the feature matrix

is too high, we will consider applying a dimensionality reduction technique to produce a

low-dimensional set of features for each column (time bin/window).

Figure 3.3: Short-time Fourier transform (STFT) spectrogram

At first, we convert the audio signal into a time-frequency representation using the

STFT. The STFT reveals the frequency content of a signal of local windows in time and

allows us to track this content as it changes over time. We use a Hann window with size

512, a 1024-point DFT (discrete Fourier transform), and a 50% overlap (256 overlapped

24



Figure 3.4: Log-mel energy spetrum

samples). The window size is not critical but must be long enough to provide sufficient fre-

quency resolution; however, if it is too long, the temporal aspects of the signal are blurred.

The 512 sample length met this criterion so we choose it. The 50% overlapping for Hann

window has the advantage that the sum of the overlapping window functions is exactly one

everywhere. The constant sum implies a proper reconstruction of the signal after inverse

Fourier transform and summation of the overlapping windows. The output of the STFT

consists of both magnitude and phase, here we discard the phase and consider only the

magnitude. We also test log-mel energy spectrum on the same dataset; however, we finally

chose MFCCs as the extracted audio feature to fed into the next stage. The MFCCs func-

tion uses a filter bank of 40 half-overlapped triangles. The number of samples in analysis

window is set to round(fs × 0.05), while the number of overlapping samples between

adjacent windows is set to round(fs × 0.03), where round(·) means round to the nearest

integer and fs is the sampling frequency in Hertz. The number of coefficients returned for

each window of data is set to be 20, specified as an integer in the range [2, v], where v is

the number of valid passbands. The number of valid passbands is defined as

sum(BandEdges <= floor(
fs

2
)− 2,

25



where floor(x) rounds each element of x to the nearest integer less than or equal to that

element. A passband is valid if its edges fall below fs/2. When MFCCs are calculated,

the estimation of the first and second derivatives (delta and delta-delta) are included with

the original MFCCs in our experiments. The combination of original MFCCs features and

dynamic features will be simply referred to as MFCCs in this work.

To summary, our first experiment used the STFT spectrogram. The spectrogram trans-

forms the input audio signal into time-frequency representation and then the audio clip will

be represented as a sequence of spectral vectors. The reason for the popular usage of spec-

trogram is that it can help us visually study sounds and their properties much better. Dif-

ferent from the intuition of transforming audio signal into spectrograms, the mel-frequency

based analysis of audio signal, e.g. mel-log energy spectrum and MFCCs, is based on

human perception experiments. The human ear naturally acts as a set of filters that are

non-uniformly spaced on the frequency axis with more filters located in the low frequency

regions. The mel-frequency filters are designed to imitate this pattern. Typically, an audio

signal is analyzed over short analysis window using FFT to obtain its spectrum, and then

the spectrum is passed through mel-filters to obtain the mel-spectrum. For MFCCs, cep-

stral analysis is further performed on the obtained mel-spectrum. In these decades, MFCCs

are mostly used features in state-of-art speech recognition system.

The reason why we finally choose MFCCs is that there is no significant performance

difference when using STFT spectrogram, log-mel energy spectrum, or MFCCs in our

proposed framework. However, STFT spectrogram and log-mel energy spectrum require

dimensionality reduction to save computational time and cost in clustering and training

stage but MFCCs does not. Thus, MFCCs are used as our audio feature. In actual appli-

cations of MFCCs, the deltas and the delta-deltas will both be appended to the MFCCs.

The MFCCs combined with the deltas and the delta-deltas will be referred as only MFCCs

in the following paragraphs. The details for the evaluation on different feature extraction

methods can be found in section 5.2.

26



3.4 Dimensionality reduction

As mentioned in the above section, considering the time-consuming and high computa-

tional demand of the training process, we may wish to apply some dimensionality reduc-

tion techniques on the feature matrix if we choose STFT spectrogram or log-mel energy

spectrum. Similar to the signal enhancement step, the dimensionality reduction step is not

always required in the proposed method and it is interrelated with which feature extrac-

tion technique is selected in the previous step. For dimensionality reduction techniques,

the simplest way is to apply singular-value decomposition (SVD) or Principal Component

Analysis (PCA) on the targeting matrix. For these two dimension reduction techniques, we

can eliminate those dimensions that are less important by inspecting the eigenvalue / singu-

lar value matrix in the reduced matrix. More complex dimensionality reduction techniques

such as Non-negative Matrix Factorization (NMF) and Probabilistic Latent Component

Analysis (PLCA) can also be practical choices. The above mentioned methods are all based

on matrix factorization.

In our experiments, if we choose STFT spectrograms or log-mel energies as the acoustic

features, SVD, PCA, or NMF are then applied to perform the dimensionality reduction.

For SVD, the decomposed feature matrix UΣVT will be truncated by a value R, which is

typically a number between 20 to 30. We found that 25 is a general and reasonable choice

for our datasets. If PCA is applied, we will only preserve and use the first 10 components,

Unlike SVD and PCA, we did not find a general solution for NMF since the number of

k, which is used to decompose the feature matrix into W ×H, varies a lot when dealing

with different sound events. Considering this nature, we will not use NMF in the following

chapters. The AutoEncode is also applied on our FACED framework. The simplest one

hidden-layer AutoEncode with 10 neurons in the hidden layer is sufficient for our time-

frequency representation matrix. The transfer function for the encoder and decoder are

27



both logistic sigmoid function:

f(x) =
1

1 + e−x

Considering the dimensionality of different features, the dimensionality reduction step

is combined with feature extraction steps. One exception is MFCCs, which we do not ap-

ply a dimensionality reduction algorithm on them since the dimensionality is already low

enough for our framework. To sum up, the simplest way to perform dimensionality re-

duction is matrix factorization based methods, such as the singular value decomposition

(SVD), principal component analysis (PCA), and non-negative matrix factorization (NMF

or NNMF) algorithms. PCA reduces the dimensionality of data by projecting it onto a

small set of orthogonal bases that maximizes the amount of variance preserved through the

projection; while NMF seeks to decompose a signal into the sum of individual components.

Since NMF relies on the assumption that the inner dimension between the dictionary and

coefficient matrices is small (relative to the other dimensions) in order to prevent the prob-

lem from being under-determined, it effectively limits the number of dictionary atoms that

may be used. The extracted audio features can also be view as a set of images; thus, an

AutoEncoder is considered as a dimensionality reduction algorithm in our work. Several of

dimensionality reduction methods could potentially be applied in our work; however, we

would like to use those can provide the most flexible and natural fit for modeling general

sound environment. Furthermore, the method should be able to easily track the number of

dictionary atoms we need to use in each situation. In the evaluation experiments presented

in Chapter 5, we present the results for SVD, PCA, and autoencoder for dimensionality

reduction methods since they are relatively easy to tune and track the number of dictionary

that may be used. Also, they show the high flexibility to deal with the variety of sound

environments in evaluation datasets.

After performing any of the mentioned dimensionality reduction methods on the feature

matrix, the size of the feature matrix can be reduced by a certain amount. Since we chose

MFCCs as our audio feature, this dimensionality reduction step now becomes an optional

28



step before we feed the matrix into the next stage. The another reason for dimensionality

reduction step being optional in FACED framework is the development of neural network

based algorithms. Several architectures of convolutional neural network involve pooling

processes, which can be viewed as the a dimensionality reduction step built in the networks.

Without using a separate dimensionality reduction method, the extracted feature will be

directly fed into the learning step in these kind of methods [79, 80].

3.5 Clustering and forming the training data

After the feature extraction and dimensionality reduction steps, we then apply a clustering

algorithm on the feature matrix to partition the columns into several clusters. Our intuition

is that different acoustic features in the signal will correspond to distinct clusters. If this is

true, then as shown in Fig. 3.5, different categories will have some overlapping clusters—

resulting from the common background elements shared by the different categories—and

will have some non-overlapping clusters, which can be treated as representatives for each

different category. Following the clustering, data that appears in clusters that are shared

by several differently labeled audio clips is assumed to be background data (see cluster 3

and 4 in Fig. 3.5). Clusters associated with only a single class of audio clip are assumed

to correspond to the corresponding weak label.

Clustering algorithms can be categorized based on their cluster model. The most promi-

nent clustering algorithms can be roughly categorized into four types: connectivity-based

clustering (hierarchical clustering), centroid-based clustering, distribution-based cluster-

ing, and density-based clustering. The most appropriate clustering algorithm for a particu-

lar problem often needs to be chosen experimentally, unless there is a mathematical reason

to prefer one cluster model over another. In our experiments, we are applying Gaussian

mixture models (GMM), K-means clustering, and density-based spatial clustering of ap-

plications with noise (DBSCAN) on our dataset. After testing all the three methods on our

experiment datasets, we found no significant performance difference using any of them.

29



Figure 3.5: Illustration depicting clustering behavior. Note that the two categories share
some clusters (corresponding to background features) but also contain clusters unique to
each category.

The only concern is how we tune each clustering method on different datasets.

At first, we applied GMM and K-means clustering algorithms on our datasets. They

are both simple, popular clustering algorithm that transforms multidimensional data into

cluster indices. After performing several experiments, we found that the tuning process

of K-means clustering is slightly easier than GMM. The K-means algorithm alternates

between assigning observations to the nearest cluster centroid and updating the cluster cen-

troids based on the new membership. In practical cases [81], we apply K-means clustering

to partition the columns of VT into K clusters. This can be viewed as a way of characteriz-

ing the distribution of the columns of VT , The number of clusters is the only one parameter

that we need to carefully consider in K-means algorithm. The number is selected experi-

mentally, and we tested it from a large number such as thirty to a more reasonable number

like six, eight, or ten to see which number is suitable for the dataset. Finally, we found that

six to eight clusters worked well for every case that we explored. However, we note that

30



more complex signals may require more clusters, that is to say, the number of clusters still

needed to be tuned for each different datasets.

Since K-means assumes the clusters are spherical, it does not work efficiently with

complex geometrical shaped data or non-linear data. Thus, we then consider applying

density-based clustering algorithm: DBSCAN. Unlike the K-means clustering algorithm,

DBSCAN doesn’t require us to specify the number of clusters in the initialization pro-

cess. DBSCAN identifies three kinds of points: core points, border points, and noise points

from the input data. What we need to define for DBSCAN algorithm is the value of ε and

the minimum number of neighbors required for a core point, where ε is called the epsilon

neighborhood of a point. The epsilon neighborhood is specified as a numeric scalar that de-

fines a neighborhood search radius around the point. If the epsilon neighborhood of a point

contains at least minimum number of neighbors required for core point neighbors, then

DBSCAN identifies the point as a core point. In our experiments, the practical value of ε is

0.3 to 0.5, and the minimum number of neighbors is ten to twenty. They are both selected

experimentally depending on the dataset. However, after testing for all these mentioned

clustering methods, we found out that the performance difference is really close from each

other (within two percent). Thus, what actually influences the experiment results in this

step is how well we tuned the parameters in each clustering methods.

The clustering algorithm results in each time bin being assigned a cluster label; but, this

process is somewhat noisy and having data belong to a particular cluster is not necessarily

a good class indicator. However, in practice what is often needed is a label associated with

a slightly longer time period such as the duration of the sound or a short audio segment.

For our data, the time period for a specific activity can last for seconds, but each second

will have hundreds of time bins. Thus, to construct training vectors for all the time period,

we calculate empirical histograms which capture the distribution across the clusters within

each time window. The length of the time window is set to be half second – long enough to

capture a brief impact sound or a sustained sound according to the activities that we were

31



trying to detect and classify. The half-second periods are then used in the final classification

step.

3.6 Classification algorithm

Following clustering, we then form a set of training data to be used by standard supervised

learning techniques. The simplest and most common algorithm is support vector machine

(SVM) [82, 83]. The input to the SVM is the normalized cluster membership histogram

over the time-period of interest (1 second in our case). Two example training vectors are

shown in Fig. 3.6. The two training vectors (rows) correspond to different events or cate-

gories in the audio clip and the columns capture the percentage of time bins that belonged

to each cluster over a one-second window. We can repeat this process for many such win-

dows for both categories of interest to form training data for each class, which can then be

used to build a simple decision rule for classifying future data using SVMs.

More concretely, we let (xi, yi), i = 1, 2, . . . , n denote the training data where xi ∈ Rd

is a d-dimensional feature vector and yi ∈ {+1,−1} indicates the class of xi. The SVM

training procedure involves solving the following optimization problem [64]:

min
w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

s.t. yi(k(w, xi) + b) ≥ 1− ξi for i = 1, 2, . . . , n

ξi ≥ 0 for i = 1, 2, . . . , n

Above, C ≥ 0 is a tradeoff parameter that controls overfitting, and k(w, ξ) represents a

kernel function which mathematically captures the similarity between the vectors w and

32



ξ. The solution to the SVM optimization problem yields a vector w and an offset b from

which we can make future predictions via the simple decision rule given by

fw,b(x) = sgn(k(w, x) + b).

We use the radial basis function (RBF) kernel which was found to yield better perfor-

mance than the linear kernel in our tests. The RBF kernel is given by

k(x, x′) = exp(−γ‖x− x′‖2),

where γ ≥ 0 is a bandwidth parameter which we must select.

To train the SVM, we use the LIBSVM package in MATLAB [67]. The parameters C

(trade-off parameter) and γ (bandwidth parameter) are selected by considering a log-scale

range from 2−7 to 26. (Note that we select the parameters independently for each dataset.)

We use 10-fold cross validation to select the appropriate values of C and γ.

Figure 3.6: Illustration of training vector

Besides SVM, several neural network based classification methods are also considered

in our framework. As noted before, most publicly available datasets only have less than an

hour of audio data for each event. Moreover, for realistic recordings, only a few minutes

of audio data per acoustic event is available in general. Thus, considering the small data

size, deep neural network will not be a good choice. Also, since we do not need to reduce

the input matrix size to lower dimension in the layers, several types of convolution neural

network (CNN) will not be considered. In our experiments, we applied a fully connected

33



neural network (FNN) with one or two hidden layers to perform the classification. The

number of neurons in the hidden layers is selected experimentally. We found that sixty-

four to sixty is practical choices for our datasets in single layer case; while for two hidden

layer networks, sixty four to sixty neurons in the first hidden layer and thirty two to thirty

neurons in the second hidden layer are our experimental setups. The details for selecting

parameters and structures will later be discussed in Chapte 5. All the above mentioned

neural networks are implemented under the PyTorch environment.

34



CHAPTER 4

DATA

In order to evaluate the performance of the proposed research, we applied it to several

different datasets.

4.1 Synthetic dataset

The first dataset we used is a synthetic dataset. The synthetic dataset consisted of audio

spectrograms, generated so that each looked as though it contained multiple segments of

sound each containing sound events from one of two classes interspersed with background

sounds. To generate the synthetic dataset, a random sequence of states (corresponding to

a sequence of sound types) was generated and then for each labeled segment we further

generate a random sequence of background and sound events consistent with the label. For

different event types, the spectral peaks were noticeably different. For each event type, the

spectral peaks also varied but in a smaller range. State 0 corresponded to environmental

noise in the real recordings and so consisted of randomly generated Gaussian distribu-

tions with large standard deviation σ. For state 1 and state 2, both consisted of randomly

generated Gaussian distributions with similar standard deviation but different mean µ of

the distribution so that each state can represent different categories in real-life datasets. Fi-

nally, the synthetic spectrograms are are blurred temporally (convolution kernel [0.5 1 0.5])

to make the transitions between states less distinct and more realistic. Each synthetically

generated spectrogram column was labelled according to its type, for example, event 1, or

event 2 (state 1 and state 2 in Gaussian distributions). Figure. 4.1 illustrates the spectrogram

of a short segment of the synthetic dataset.

35



Figure 4.1: A segment of the synthetic dataset

4.2 Real-world dataset

The second dataset is provided by Dr. Rashidi and his students in Department of Civil and

Environmental Engineering at the University of Utah. It consists of audio recordings of sev-

eral different pieces of construction machines operating at various jobsites selected as case

studies. Ten of the construction machines are listed below: 1) JD333E Compact Loader, 2)

JD50D Compact Backhoe, 3) Ingersoll Rand Compactor, 4) CAT 320E Excavator, 5) Ko-

matsu PC200 Excavator, 6) JD 700J Dozer, 7) Hitachi 50U Excavator, 8) Concrete Mixer,

9) JD 270C Backhoe, and 10) Bobcat 331 Mini Excavator. Each machine was carefully

monitored and the generated sounds while performing routine tasks were captured using a

commercially available recorder (Tascam DR-05). Figure 4.2 shows the microphone set up

in a construction jobsite. In parallel to recording generated sound patterns, a smart phone

was used to video tape the entire scene. The captured video files will be used later to man-

ually label the audio file and classify different activities and thus, generate the validation

benchmark (or ground truth data). The manual label was used as ground truth label in

the testing experiments. Heavy construction equipment usually performs one major task

(digging, loading, breaking, etc.) and one or more minor tasks (maneuvering, swinging,

36



moving, etc.) in each cycle. Therefore, each audio file had two labels based on the two

activities: major and minor (or activity 1 and activity 2). Also, within each activity time

period, there will be some inactive times which only contain environmental noise in the

recording. Thus, we will have audio clips each labeled with up to two activities, but these

labels do not contain the information as what time the specific events occur in the clip. A

large portion of the recordings might be environmental noise, which corresponds to state 0

in our synthetic dataset. For example, one recording for JD 700J Dozer could be manually

labeled as “digging” from 0s to 30s but it might only dig for 10 seconds in this 30 seconds

period. Each labeled audio file was sent through our proposed framework and divided into

activities 1 and 2. Finally, the performance of the algorithm for each case study has been

compared to manually labeled files.

Figure 4.2: The microphone array used for collecting audio files for this project (left) and
placing audio recorders at a jobsite (right)

4.3 DCASE dataset

A publicity available dataset provided by Detection and Classification of Acoustic Scenes

and Events Challenge (DCASE) is also used to test our proposed framework. The one we

used is TUT Sound Events 2017 dataset. Audio in the dataset consists of recordings of

street acoustic scenes with various levels of traffic and other activity. Each scene was se-

37



lected as representing an environment of interest for detection of sound events related to

human activities and hazard situations. The dataset was collected in Finland by Tampere

University of Technology between June 2015 to January 2016. The recordings were cap-

tured each in a different streets. For each recording location, a three– to five–minute–long

audio recording was captured. The equipment used for recording consists of a binaural

Soundman OKM II Klassik/studio A3 electret in-ear microphone and a Roland Edirol R-

09 wave recorder using 44.1 kHz sampling rate and 24 bit resolution. Individual sound

events in each recording were annotated by the same person using freely chosen labels for

sounds. Nouns were used to characterize the sound source, and verbs to characterize the

sound production mechanism, using a noun-verb pair whenever this was possible. The an-

notator was instructed to annotate all audible sound events, decide the start time and end

time of the sounds as he sees fit, and choose event labels freely. This resulted in a large

set of raw labels. Target sound event classes were selected to represent common sounds

related to human presence and traffic. Mapping of the raw labels was performed, merging

sounds into classes described by their source before selecting target classes. Target sound

event classes for the dataset were selected based on the frequency of the obtained labels,

resulting in selection of most common sounds for the street acoustic scene, in sufficient

numbers for learning acoustic models. The mapping of the raw labels merged sounds into

classes described by their source, for example “car passing by,” “car engine running,” “car

idling,” etc. into “car,” sounds produced by buses and trucks into “large vehicle,” “chil-

dren yelling,” and “children talking” into “children,” etc. Thus, for a time period which is

labelled as a specific class like “car”, it still contains the sparse manifestation during the

on-set time. In the “car” case, there will be about ten seconds long segment labelled as

“car” class in the recording but only two to three seconds in the segment are actually con-

tain active sound. We cannot hear “car” sound in the rest of the labelled segment, which

might be corresponding to “car idling” or “car passing by” events in the manually labeling

procedure. With this labelling methodology, we treated this dataset as the weakly-labeled.

38



The sound classes in this dataset are:

1. brakes squeaking

2. car

3. children

4. large vehicle

5. people speaking

6. people walking

Besides TUT Sound Events 2017 dataset, we also used TUT Rare Sound Events 2017

dataset in our experiments. The labelling methodology are the same but TUT Rare Sound

Events 2017 dataset contains different sound classes, which are “baby crying”, “glass

breaking”, and “gunshot.” TUT Rare Sound Events 2017 dataset consists of source files

for creating mixtures of above mentioned events with background audio, as well a set of

readily generated mixtures and recipes for generating them. The background recordings

are from 15 different acoustic scenes, and the recordings with the target rare sound events

from three classes, accompanied by annotations of their temporal occurrences. The dataset

consists of two subsets (training and testing), each containing 1500 mixtures (500 per target

class in each subset, with half of the mixtures not containing any target class events).

39



CHAPTER 5

EVALUATION ON FACED FRAMEWORK

5.1 Evaluation experiments setup

To evaluate our FACED framework, we performed several experiments on TUT Rare Sound

Events 2017 dataset provided by the DCASE challenge. The experiments can help us

know which algorithm is suitable in each step within FACED framework. Since TUT

Rare Sound Events 2017 dataset contains various different sound events, the choices of

algorithms used for this dataset can be viewed as a general choice for audio classification

and event detection. We used eighty percent of TUT Rare Sound Events 2017 development

dataset as our training data, and the remaining twenty percent is used as a testing dataset.

This dataset was developed for audio tagging but FACED framework is focused on audio

classification and event detection. Thus, we made a modification to this dataset to fit our

evaluation purpose. The ground truth is provided in the dataset but we do not use the strong

labels. We only preserve the clip-level meta-data for each recording; for example, the class

label ”children” is preserved but not the precise on-set and off-set times. To generate the

training dataset used for audio classification, we randomly selected ten recordings from the

TUT Rare Sound Events 2017 development dataset and then concatenated them together to

build a longer recording. These longer recordings contain different sound events and each

section of the concatenated recording is weakly-labeled. Each original audio recording has

only one sound event; thus, we built these longer recordings with several different events.

Also, we ensured the concatenated recordings have at least two different sound events.

The concatenating process was performed on the whole TUT Rare Sound Events 2017

development dataset with each clip being used only once. These concatenated recordings

are used in both training and testing experiments. This process is then repeated for ten

40



times in the following evaluation experiments. We averaged the ten experimental results

and show them in the following result tables.

5.2 Feature extraction and dimensionality reduction

The first step in the FACED framework is extracting audio features from the provided

recordings, thus, we considered different audio features to see which are most suitable

under different background environment and sound events. Considering the dimensionality

of different features, the dimensionality reduction step is combined with feature extraction

steps. As mentioned in chapter 2, although feature extraction methods can be viewed as a

form of dimensionality reduction, they are typically not tuned to a specific situation unless

the features are designed by hand. Passing extracted features through a dimensionality

reduction algorithm can help us gain further information which is more relevant to the

current task. This process can also speed up the following learning process and reduce the

overfitting situation.

In our case, the input recordings contain not only human speech but with various types

of sounds; thus, the evaluation experiments help us find a general choice within these

feature extraction methods. Since experimental recordings will have at least two differ-

ent sound events, the evaluation experiments show the ability for each feature extraction

method when dealing with multi-event recordings. Each concatenated recording in the

testing dataset was fed into the FACED framework to detect and label the sound events in

it. The labelling window size is a half second in our experiments. We implemented the

FACED framework with different feature extraction methods on the training dataset, and

the experimental results are shown in the following Table 5.1. We use a Hann window

with size 512, a 1024-point DFT (discrete Fourier transform), and a 50% overlap (256

overlapped samples) for the STFT spectrogram. For log mel-band energies, the audio clips

are analyzed by 40 ms frames with 50% hop size, and 40 bands are implemented. The

MFCCs in Table 5.1 consist of 20 MFCC coefficients, 20 delta MFCC coefficients, and 20

41



delta-delta coefficients. Thus, total of 60 coefficients are used as the acoustic features. In

the other hand, the dimesionality reduction methods, we preserved the first 25 columns of

U and the first 25 rows and columns of Σ when applying SVD on the extracted acoustic

feature matrices. For PCA, the first thirty pricipal components are taken in the experiments.

A one hidden-layer AutoEncode with 10 neurons in the hidden layer is used in this eval-

uation experiments. The transfer function for the encoder and decoder are both logistic

sigmoid function:

f(x) =
1

1 + e−x
.

For the evaluation purpose, we fixed other steps in the FACED framework. The clus-

tering algorithm is set to be DBSCAN; while the classification method is fully-connected

neural network (FNN) in this evaluation experiments. The values in the following tables

are the average labelling accuracy using FACED framework for audio event detection.

STFT spectrogram log mel-band energies MFCCs
SVD 84.6% 85.2% x
PCA 84.1% 84.9% x
Autoencoder 82.1% 83.6% x
Without dimensionality
reduction 85.3% 88.7% 86.8%

Table 5.1: Detecting performance using FACED framework under different feature extrac-
tion methods on TUT Rare Sound Events 2017 dataset

As shown in the Table 5.1, the best feature extraction method for the evaluation dataset

is using mel-log energy spectrum without any dimensionality reduction methods. Espe-

cially in the no dimensionality reduction cases, the detecting and labelling accuracy indi-

cates that log mel-band energies outperform other methods among the feature extraction

methods. After we apply any dimensionality reduction methods on the original features,

the accuracy will slightly decreased. The reason might be the elimination and distortion of

several information in the features during the dimensionality reduction process. Consid-

ering the feature matrix size and time cost to run this step in FACED framework, MFCCs

42



can give us a good result with a relatively low dimensionality and computational cost; thus,

we chose MFCCs as our audio features to be fed into further experiments. Noted that the

MFCCs here refer to the combination of MFCCs, delta features, and delta-delta features.

5.3 Clustering algorithm

For clustering algorithms, we compared three popular and efficient methods: GMM, K-

means, and DBSCAN. For Gaussian mixture models (GMMs), it is assumed that all the

data points are generated from a probability distribution that can be modeled as a mixture

of a finite number of Gaussian distributions with unknown parameters. We implement

the expectation-maximization (EM) algorithm for fitting mixture-of-Gaussian models, and

compute the Bayesian Information Criterion to assess the number of clusters in the data.

For K-means clustering, we use k-d trees for the nearest neighbor search and intelligent

initialization to speed up our process. All the DBSCAN, GMM, and k-means clustering

are using the “scikit-learn” machine learning tools in Python environment [84].

Similar to the evaluation process in the feature extraction step, the features that fed into

these methods are MFCCs of the concatenated recordings; while the classification method

is fully-connected neural network (FNN). The experimental results are show in Table 5.2.

We set up several different experimental parameter sets for the evaluation process. The

ideal case is that the clusters can clearly present different sound events. However, in real

cases, part of the clusters are corresponding to the shared environmental and background

sounds. Thus, the number of cluster should be sufficient enough to present both non-

overlapping and overlapping components of the audio clips. The cluster numbers for both

GMM and K-means are first set to be a large number and then reduced to a certain amount.

In our case, we evaluated cluster numbers from thirty to five to see how the clustering

methods perform on the evaluation datasets. As mentioned in section 3.5, we found that

about eight clusters give a suitable mapping of clusters for general usage. In general, two

to three clusters can present a specific sound events. Increasing the number of clusters

43



will relatively decrease the distance between each cluster, which will make it more difficult

for us to classify each cluster into different sound events. By setting a suitable number of

clusters in GMM and K-means (eight to ten clusters in our cases), we can better indicate

each cluster to be the member of each sound events. For evaluation purpose, we fixed

the number of clusters to eight in the experiments for both GMM and K-means. Different

from GMM and K-means, DBSCAN needs to initialize the the value of ε and the minimum

number of neighbors. Considering the size of data points in the extracted features from the

previous step, ε is set to be 0.4 and the minimum number of neighbors is fifteen. All the

above mentioned parameters are selected by experiments.

Detection accuracy
GMM 84.5%

K-means 85.9%
DBSCAN 86.8%

Table 5.2: Detecting performance using FACED framework with different clustering meth-
ods on TUT Rare Sound Events 2017 dataset

As mentioned in section 3.5, the performance for the three clustering methods are close

but K-means and DBSCAN are slightly better than GMM in our experiments. Since the

results in Table 5.2 are average result values, DBSCAN is not always the best choice

but it is a great choice in general. For GMM and K-means, the centroids of clusters will

highly influence the results of clustering so we need to carefully consider the initialization

process of GMM and K-means. For DBSCAN, we can think of the high density clusters

in DBSCAN as representing the different sound events with their distinct features, and we

do not need to tune the centroids and initialization process. One concern for DBSCAN in

our experiments is that if only a few segments of an audio clip are the target sound event

and most of the clip is background environmental sound, DBSCAN cannot construct the

clusters for features of the targeted sound event well. Since the targeted sound events in

the evaluation datasets are long enough and clearly distinguishable, this is not a problem

with our evaluation datasets but it is a concern to be considered for other datasets. After

44



performing the DBSCAN on the training datasets, we will have the mappings for the data

points of the extracted audio features. When feeding a testing data into the clustering

step in FACED framework, the k-nearest neighbors (KNN) algorithm is performed to label

each data point to a specific cluster in the constructed mapping. Similar processing is

conducted for both GMM and K-means. In this clustering step, one clustering algorithm is

first performed on the training datasets, and then the KNN is performed for each testing data

point to locate its cluster. Based on the experimental results, we used DBSCAN in all future

evaluation experiments. However, both K-means clustering and DBSCAN performed well

and are also effective choices for use in the FACED framework. The only one concern for

the clustering step is how well we tuned the parameters in the chosen clustering algorithm

to deal with different soundscapes.

5.4 Classification methods

Similar evaluation experiments are also performed to evaluate classification methods for

the FACED framework. We used different classification methods on the constructed train-

ing vectors generated by MFCCs and DBSCAN clustering. Current state-of-art classifica-

tion algorithms are all based on neural-network structures. As we can see on the popular

sound event detection challenges in these years, the convolutional neural network (CNN),

recurrent neural network (RNN), or even joint neural networks, i.e. convolutional recurrent

neural network (CRNN) [85], are frequently used in others’ experiments. These algorithms

performed really well on large-scale datasets, but they are not quite fit our research intu-

ition. In our experiments, we targeted relatively small size datasets of actual recordings.

Thus, we chose support vector machines (SVMs), a traditional classification algorithm,

and a shallow fully connected neural networks (FNNs) in our experiments. The network

structure in the fully connected neural network is not that complex as CNN and RNN, but

it is still able to construct a robust network model to perform the classification task. For

SVMs, we use the LIBSVM package in MATLAB [67]. The trade-off parameter C and

45



bandwidth parameter γ are selected experimentally between 2−5 to 25 depending on each

epoch. The kernel is set to be the RBF kernel. Besides SVMs, we tested several different

structures of neural network based classification method. We found that a fully connected

neural network (FNN) with two hidden layers performs well in the evaluation experiments.

The FNN consists of input layer, a hidden layer, a bottleneck layer, and a output layer. The

number of neurons in the hidden layer and the bottleneck layer is selected based on the

number of neurons in the input layer. Typically, there will be 100 neurons in the hidden

layer and 50 neurons in the bottleneck layer. A non-linear Rectified Linear Unit (ReLU)

function is applied in the FNN to learn the weights and bias. The optimizer is Adam [86]

with 10−3 learning rate. The above mentioned neural networks are implemented under

PyTorch environment. The evaluation results are shown in the following table 5.3.

Method Detection accuracy
SVM 82.8%

FNN (one hidden layer) 86.8%
FNN (two hidden layers) 87.3%

Table 5.3: Detecting performance using FACED framework with different classification
methods on TUT Rare Sound Events 2017 dataset

As shown in the Table 5.3, FNN performs better than SVM on the evaluation datasets.

The SVM in the above table is using RBF kernel with trade-off parameter C = 2−2 and

bandwidth parameter γ = 29. We tested several kernels and combination of SVM param-

eters and we found this combination is a general choice for this evaluation dataset. To

avoid the overfitting problem, the ten-fold cross validation is applied during the classifica-

tion step. Considering the comparison of SVM and FNN, the performance of FNN does

not drastically outperform SVM but it still shows a five percent difference between SVM

and FNN. Since our datasets are multi-class datasets, SVM is not a great choice when fac-

ing multi-class cases, which performs better on binary classification problems. Different

from SVM, FNN has no limitation on the number of classes. We tested several different

structures of FNN and we found that increasing the number of hidden layers will not help

46



to improve the performance much after two hidden layers. For FNN with three more hid-

den layers, the computation time will significantly increase to five more times than using

FNN with one or two hidden layers, however, the classification performance will only be

improved by less than one percentage. The computation cost for SVM and FNN with one

or two hidden layers are pretty similar. We selected FNN with two hidden layers as the

classification method in FACED framework because it is more flexible and adjustable than

SVM when facing different soundscapes. Typically, FNN can provide multi-class outputs

but SVM is fundamentally a binary classifier.

After performing the evaluation experiments on each step in FACED framework, we

selected a general combination to test the FACED framework on other datasets. The se-

lected framework starts with transforming the input audio clip into MFCCs representation,

and then feeding the MFCCs into DBSCAN clustering to construct the training vectors.

The training vectors are then used as the input for FNN with two hidden layers to construct

the classification model. The illustration for training steps is shown in Figure. 5.1.

Figure 5.1: Block diagram for training steps

47



For the testing process, the first step is also transforming the audio clip into MFCCs

representation. After extracting the MFCCs, we applied the KNN algorithm to label each

data point into the trained clustering mapping to construct the testing vector. We then used

the trained FNN model to detect the sound event present in this input window. The window

segment is set be be 0.5 second in our experiments. The comparison of this combination of

FACED framework and other research is discussed in the next chapter. Figure. 5.2 briefly

illustrates the testing process.

Figure 5.2: Block diagram for testing steps

As mentioned in previous sections, the advantage of the FACED framework is that it

is flexible to face different soundscapes. The selected methods above are used for exper-

imental purpose. It is found to be a general choice but not a best one. For real cases, we

need to test and tune each step carefully in FACED framework when dealing with different

datasets.

48



CHAPTER 6

COMPARISON

6.1 Introduction

The FACED framework has two major applications. The first one is to detect what kind

of audio events occur in a given audio clip. The second one is labeling the time period of

audio events in audio clips. The main difference is whether we care about the time label

for each audio event or not. Since the datasets we are facing are generally weakly-labelled,

the major challenge of the FACED framework appears when we try to do the second appli-

cation (audio tagging) on any given audio clips. However, due to the nature of this work,

it is difficult to get definitive quantitative results on the performance of our FACED frame-

work for tasks such as weakly labeled sound event detection. This is primarily because

the vast majority of our experimental data is weakly labeled, but also in part because the

question of exactly what should and should not constitute a specific sound event is highly

subjective and task-dependent. For weakly labelled datasets, we lack the ground truth of

event labels to quantitative precisely the performance of FACED framework. To reduce

the subjectivity, we used several strongly labeled datasets but we removed the ground truth

and treated it as weakly labeled datasets when training the classification model. The only

one information preserved for training is the clip-level label for each audio recording. For

example, the label of a randomly selected audio clip will be only “street”, “dog bark”, or

“glass breaking” without any temporal information. In order to compare the performance

of the FACED framework with other existing methods for detecting and labelling, we chose

two popular frameworks from the DCASE challenge to compare against. In general, the

popular existing audio event detecting methods consist of data augmentation, feature ex-

traction, a classifier, and a decision maker. Unlike these existing methods, the FACED

49



framework does not perform data augmentation on either training nor testing data. Further-

more, several deep learning techniques such as convolutional recurrent neural networks,

deep neural networks, and long short term memory networks (LSTMs) are frequently used

in audio event detection challenges these years. We will apply both FACED framework and

two popular audio event detection methods on datasets provides by DCASE challenge [87]

to see the differences and their pros and cons. The comparison will be in two parts: per-

forming audio event detection (training and testing) using full datasets and using reduced

datasets. The reason for using reduced datasets is to imitate the small size datasets and

hand-recorded audio clips. The details of audio event methods, datasets, and experimental

results are listed in the following sections.

6.2 Methods

Audio event detection methods vary significantly due to the variety of sound events. How-

ever, several popular choices still exist for people when facing with audio event detection

problems. We chose two popular state-of-art methods to compare with the FACED frame-

work. The first method consists of four parts: extracting log mel-band energies, converting

spectral features with a convolutional neural network, incorporating temporal dependency

with fully connected layer, and determining the presence and the onset time of audio event

with post-processing [11, 88, 79, 80]. There are multiple choices for the temporal depen-

dency processing: a simple dense layer, a fully recurrent neural network, long short-term

memory (LSTM) network, or various types of artificial recurrent neural network. Since the

architecture of RNN-based networks varies a lot, we used a fully-connected dense layer

in our comparison experiments. The second method is based on MFCCs and GMM [15,

72, 89, 90]. The reason for choosing these two methods is that the first method appears

frequently in the top results of DCASE challenges from 2017 to 2019; while the second

method is usually selected as the baseline system in sound event detection challenges. The

following sections describe these two methods in greater detail. We also apply our prelim-

50



inary work [81] on these datasets to compare against the FACED framework work in this

chapter.

6.2.1 Method 1

Method 1 first cuts each audio into 10 seconds segments, and then extracts log mel-band

energies are extracted for each segment. A network consisting of two CNN layers and one

fully connected layer is trained to assign scene labels to the audio signals. The audio clips

are analyzed by 40 ms frames with 50 percent hop size, and 40 bands are implemented for

log mel-band energies. The architecture for the neural network is listed below.

1. First CNN layer

• 2D convolutional layer with kernel size 7 (single channel with 32 filters)

• Zero padding

• Batch normalization

• Rectified Linear Unit (ReLU) activation function

• 2D max pooling with pool size (5, 5)

• 25% Dropout

2. Second CNN layer 2

• 2D convolutional layer with kernel size 7 (single channel with 64 filters)

• Zero padding

• Batch normalization

• Rectified Linear Unit (ReLU) activation function

• 2D max pooling with pool size (4, 100)

• 25% Dropout

51



3. Flattening

4. A dense layer

• 100 units

• Rectified Linear Unit (ReLU) activation function

5. Output layer

6. Softmax

The learning process contains 300 epochs with 16 batch size. We also shuffled the data

between each epoch. The optimizer used in experiments is Adam [86] with 10−3 learning

rate. In order to validate the learning process, about 30% of the original training data is

assigned to be the validation set. After each learning epoch, the performance is evaluated

on the validation set, and best performing model is finally selected. The post processing

is the decision stage and the decision is made based on a threshold value 0.5. If there are

multiple class values over the threshold, the most probable target class is chosen. If all the

values are under the threshold, the segment will be labeled as unknown. The method is

implemented using Python version 3.6.

6.2.2 Method 2

The second method is relatively straight forward compared to the first method. The audio

clips are also analyzed by 40 ms frames with 50 percent hop size. A total of sixteen Gaus-

sian distributions are used to create each acoustic event class model. The feature vector

contains the following three components.

• 20 MFCC static coefficients (including 0th)

• 20 delta MFCC coefficients

• 20 acceleration MFCC coefficients (delta-delta)

52



There are total of sixty values in the feature vector. The test and training process is pro-

cessed on the full audio clip with cross-validation. The classification accuracy is averaged

over folds. The Python environment is also 3.6 for the second method.

6.2.3 FACED framework

The details of methods used in FACED framework have been evaluated in chapter 3 and 5.

The specific methods we chose to be used in the comparison are listed below.

1. Signal enhancement: No (using the original data)

2. Acoustic feature: MFCCs with delta and delta-deltas

3. Dimensionality reduction: No

4. Clustering: DBSCAN

5. Classification model: A fully connected neural network

• 100 neurons in the hidden layer and 50 neurons in the bottleneck layer, Rectified

Linear Unit (ReLU) activation function used in the layers

• Output layer

• Softmax

• Adam optimizer with 10−3 learning rate

6.3 Datasets

As mentioned in chapter 4, we have three different datasets in our work: synthetic dataset,

real-world recordings, and DCASE challenge datasets. In the comparison experiments, we

will first use all of the datasets to see how FACED framework performs compared to other

methods. After using the full dataset, the synthetic dataset and DCASE challenge datasets

will be shrunk gradually. The reason for not shrinking the real-world recordings is that

53



the data size is already small compared to DCASE challenge datasets. The length for each

sound event in DCASE challenge datasets can be more than 4 hours; while the length for

each real-world recording may only last for a half hour. The shrunk datasets will be trained

and tested using the same method listed in previous section to see their performance.

6.4 Using full dataset

6.4.1 Synthetic dataset

For the synthetic dataset, we generated a equivalent 12-hour training data and an 1.5-hour

testing data. This data size is selected to be close to the data size of DCASE challenge

dataset. We found that our method worked very well even if we made the classes relatively

similar, noisy, and blurred. Under those circumstances, it still performed in a similar man-

ner with other methods. As shown in Table 6.1, it is obvious that the popular algorithms

have the ability to identify different categories with this synthetic weakly-labeled training

data, while the FACED framework can complete the identification task slightly better than

our preliminary work. The detection accuracy in Table 6.1 is calculated by comparing the

predicted labels with the ground truth.

Detection accuracy
Method 1 99.8%
Method 2 98.5%
Preliminary work 99.0%
FACED framework 99.6%

Table 6.1: Detection performance using different methods with synthetic dataset

6.4.2 Real-world dataset

The real-world dataset consists of 10 different pieces of construction machines operating

at various jobsites selected as case studies: 1) JD333E Compact Loader, 2) JD50D Com-

pact Backhoe, 3) Ingersoll Rand Compactor, 4) CAT 320E Excavator, 5) Komatsu PC200

54



Excavator, 6) JD 700J Dozer, 7) Hitachi 50U Excavator, 8) Concrete Mixer, 9) JD 270C

Backhoe, and 10) Bobcat 331 Mini Excavator. For these recordings, as a more realistic

dataset, we would generally expect the accuracy of all approaches to be lower than in the

synthetic datasets. The event Detection performance of the different methods for each case

study has been compared to manually labeled files. The comparison results are depicted in

Table 6.2.

Machine Method 1 Method 2 Preliminary Work FACED framework
JD333E 85.50% 79.10% 81.79% 83.25%
JD50D 84.81% 68.79% 78.27% 80.05%
IR compactor 85.66% 81.22% 79.37% 82.69%
CAT320E 82.18% 74.39% 79.33% 81.75%
Komatsu PC200 83.97% 78.44% 79.36% 81.94%
JD700J 80.57% 76.87% 79.99% 79.81%
Hitachi 50U 86.11% 80.17% 80.25% 82.57%
Concrete Mixer 82.37% 80.26% 80.12% 80.63%
JD 270C 81.08% 76.89% 77.00% 80.98%
Bobcat 331 80.22% 70.09% 75.69% 78.88%
Average 82.95% 76.62% 79.81% 81.26%

Table 6.2: Detection performance using different methods with real-world dataset

As shown in Table 6.2, the FACED framework performs relatively well and generally

outperformed both the method 2 and our preliminary work. The average accuracy of the

FACED framework was 81.59%. This is better overall than the method 2 (GMM-based

classification), which can be viewed as the baseline system within there method. In gen-

eral, method 1 (CNN-based classification) performs the best when using this dataset. This

shows the similar results as presented in DCASE challenges this years. The top-notched

results are all using convolutional neural networks jointed with other neural networks as

their classification algorithm. Although the FACED framework can not outperform the

CNN-based method in this dataset, it still presents a great performance in this comparison.

As presented in Table 6.2, method 2 cannot provide a stable classification accuracy while

the rest of methods all present relatively stable detecting results. The possible reason is

55



that only method 2 directly used the acoustic features as its training data when building the

classifier. The actual training data for method 1 is the flattened vectors which consist of the

output results from any architecture of CNNs. For our preliminary work and the FACED

framework, the training vector is the cluster distributions not the original acoustic features.

As mentioned in Chapter 2, the extracted acoustic features can not always fit into a spe-

cific situation if the features are not designed manually. For this nature, feeding extracted

acoustic features into another data-processing algorithm might help extract the information

most relevant to the current task, which can help improve the performance of the whole

framework.

In the other hand, it is as expected that the accuracy of all approaches is lower when

using the real-world recordings than they did with the synthetic dataset. We believe that

this is an artifact of how the data was collected and the interference made by background

environments. Although the synthetic dataset has been generated with artificial noises and

blurred to imitate real-world conditions, it still cannot simulate some unexpected situations

in real-world. For example, people talking, clicking the buttons on the microphone, pen

writing on papers, and car whistling sound are all presented in this real-world dataset. It is

difficult to take all the conditions into consideration when generating the synthetic dataset,

thus, the real-world dataset contains more bountiful background sounds compared with the

synthetic dataset, which will largely influence the Detection accuracy of the classification

methods. Also, the background sounds between recordings might be correlated to the ac-

tivity, for example, similar activities were recorded near the same time and place. This will

cause a classifier using the background not as a confuser but to actually help in the clas-

sification. Since the testing data might be recorded in a different place and different date,

how well a classification method deals with the background sounds will largely influence

the detection accuracy. Table 6.2 only presents the overall Detection accuracy of all the

methods. However, in this real-world datasets, each audio file has two labels based on the

two groups of activities: major and minor (or activity 1 and activity 2.) A large portion of

56



activity 2 in the recordings is environmental noise because activity 2 contains several ac-

tivities which are not contributed to the productivity of a specific construction equipment,

for example, machine idling, arms swinging, or back-and-forth moving. For activity 1, the

main portion in the recordings are productive activities that contain relatively out-standing

features compared with activity 1, i.e., rock breaking, maneuvering, and digging. Due to

this nature, we also inspect how these methods work with these two types of activities. The

results are shown in Table 6.3 and 6.4.

Table 6.3: Detection performance for Activity 1 and 2 using method 1 and method 2 with
real-world dataset

Machine
Method 1 Method 2

Activity 1 Activity 2 Activity 1 Activity 2
JD333E 85.97% 79.03% 82.55% 75.65%
JD50D 88.56% 81.06% 79.68% 57.90%
IR compactor 90.02% 81.30% 83.22% 79.22%
CAT320E 87.11% 77.25% 76.37% 72.41%
Komatsu PC200 88.92% 79.02% 79.99% 76.89%
JD700J 87.79% 73.35% 79.88% 73.86%
Hitachi 50U 91.13% 81.09% 83.16% 77.18%
Concrete Mixer 86.68% 78.06% 84.18% 76.34%
JD 270C 83.28% 78.88% 80.99% 72.79%
Bobcat 331 81.09% 79.35% 81.12% 59.06%
Average 87.06% 78.84% 81.11% 72.13%

As shown in the Table 6.3 and 6.4, the main performance difference among all the

methods involves identifying activity 2 (minor activities) in real-world recordings. A sim-

pler illustration is depicted in Figure 6.1. For all the methods, the Detection accuracy for

activity 1 is better overall than for activity 2, which contains much more environmental

noises. In some cases, the method 2 (GMM-based classification) has difficulty when iden-

tifying minor activities in construction equipment recordings, i.e., JD 700J Crawler Tractor

and Bobcat 331 Mini Excavator. The activity 2 (minor activities), which often contain sig-

nificant environmental noise, inactive periods for a specific machine, and non-productive

actions such as moving and swinging arms. These activities often present similar fea-

57



Table 6.4: Detection performance for Activity 1 and 2 using our preliminary work and the
FACED framework with real-world dataset

Machine
Preliminary Work FACED framework

Activity 1 Activity 2 Activity 1 Activity 2
JD333E 80.03% 83.55% 85.64% 80.86%
JD50D 79.79% 76.74% 82.36% 77.74%
IR compactor 82.47% 76.26% 84.19% 81.19%
CAT320E 80.36% 78.29% 83.99% 79.51%
Komatsu PC200 81.24% 77.48% 85.72% 78.16%
JD700J 80.06% 79.91% 82.61% 77.01%
Hitachi 50U 81.62% 78.88% 88.07% 77.07%
Concrete Mixer 80.16% 80.08% 83.39% 77.87%
JD 270C 79.31% 74.69% 82.57% 79.39%
Bobcat 331 76.24% 75.14% 80.87% 76.89%
Average 80.56% 78.10% 83.94% 78.57%

Figure 6.1: Average Detection performance using real-world dataset

tures and these features are corresponding to the overlapping clusters in clustering stage

within the FACED framework. In general, the lower performance when identifying activ-

ity 2 results from that activity 2 has a high probability of being confused with other target

activities. In practice, this might result from the overfitting to the background signal in

58



these recordings. As illustrated in Figure 6.1, both method 1 and 2 have a relatively large

difference between detecting activity 1 and 2 (around 10%). In contrast, in the FACED

framework and our preliminary work, difference between the detection accuracy of activity

1 and 2 is about 5%. This result can support our assumption that each different category

will separate out the background into the “overlapping” clusters and the classification per-

formance is determined more by the “non-overlapping” clusters. Also, since the FACED

framework uses several up-to-dated algorithms and different acoustic features compared to

our preliminary work, it shows an improved performance in this real-world dataset.

6.4.3 DCASE challenge dataset

TUT Sound Events 2017 dataset and TUT Rare Sound Events 2017 dataset are both real-

world recordings from the DCASE challenge. There is a difference between the construc-

tion equipment recordings with TUT sound events dataset: the duration of targeted audio

events. In the construction equipment dataset, an activity for a sound event can last for ten

or even twenty seconds. However, for TUT datasets, each sound event presented in the

audio clips might be only less than five seconds. Also, the targeted sound events in TUT

datasets are specific events, for example, brakes squeaking, baby crying, and glass break-

ing, rather than a group of similar events recorded in construction equipment datasets.

Since we randomly selected and concatenated the audio clips in TUT Rare Sound Events

2017 dataset, the detecting and classifying methodology is different from the one used in

DCASE challenges. Also, DCASE challenge uses evaluation datasets for contest but it did

not provide the ground truth of it. Thus, we split the development datasets provided by

DCASE into training and testing data in this experiments. For the purpose of consistency,

we present our results using the same detection accuracy as presented in DCASE chal-

lenges. DCASE challenges tend to use segment-based error rate calculated in one-second

segments and segment-based F-score as the competition rubric. Segment based evaluation

is done in a fixed time grid, using segments of one second length to compare the ground

59



truth and the system output. In each segment k we need to count the following parameters.

• True positives TP: events indicated as active by both the ground truth and system

output

• False positives FP: events indicated as active by the system output but inactive by

the ground truth

• False negatives FN: events indicated as inactive by the system output but active by

the ground truth

• Substitutions S: system output indicating as active a wrong label events; one substi-

tution is equivalent to one false positives and one false negative, meaning the system

did not detect the correct event (false negative for the correct class) but detected

something (false positive for another class)

• Insertions I: false positives after subtracting the substitutions

• Deletions D: false negatives after subtracting the substitutions

• Reference events N: number of events in the ground truth (segment)

After calculating the above parameters, we can use these parameters to calculate the

Error rate (ER) and F-score (F1). Error rate is calculated as described in [91] over all

test data based on the total number of insertions I, deletions D and substitutions S. The

formula is

ER =

∑
S(k) +

∑
D(k) +

∑
I(k)∑

N(k)
.

In the other hand, F-score (F1) is calculated over all test data based on the total number of

false positive FP, false negatives FN and true positives TP:

F1 =
2P ·R
P +R

,

60



where

P =

∑
TP (k)∑

TP (k) +
∑
FP (k)

,

R =

∑
TP (k)∑

TP (k) +
∑
FN(k)

.

An alternative but similar way to represent the results is event-based evaluation met-

rics, which consider true positives (TP), false positives (FP) and false negatives (FN) with

respect to event instances. The parameters are calculated as:

• True positives TP: correctly detected events

• False positives FP: events in the system output that are not correct according to the

definition

• False negatives FN: events in the ground truth that have not been correctly detected

according to the definition

• Substitutions S: events in system output that have correct temporal position but in-

correct class label

• Insertions I: events in system output that are not correct nor substitutions

• Deletions D: events in ground truth that are not correct nor substituted

• Reference events N: number of events in the ground truth

The formula to calculate the event-based error rate (ER) and F-score (F1) are

ER =
S +D + I

N
.

F1 =
2P ·R
P +R

,

61



where

P =
TP

TP + FP
,

R =
TP

TP + FN
.

In short, for ER, the lower is the better; while for F1, the higher is the better. The

details of the above mentioned evaluation metric can be found in [92]. The calculating

procedure is automatically done by the provided sed eval toolbox published by Forman

and Scholz [93].

Segment-based
(development dataset)
ER F1

Method 1 0.61 66.1%
Method 2 0.73 56.8%
FACED 0.64 65.8%
DCASE top 1 0.20 80.3%
DCASE top 5 0.59 67.0%
DCASE baseline 0.69 56.7%

Table 6.5: Segment-based error rate (ER) and F-score (F1) using TUT Sound Events 2017
dataset

Segment-based
(development dataset)
ER F1

Method 1 0.18 90.2%
Method 2 0.35 85.0%
FACED 0.21 89.9%
DCASE top 1 0.07 96.3%
DCASE top 5 0.16 92.8%
DCASE baseline 0.53 72.7%

Table 6.6: Segment-based error rate (ER) and F-score (F1) using TUT Rare Sound Events
2017 dataset

Table 6.5 presents the segment-based evaluation results for TUT Sound Events 2017

dataset, while Table 6.6 is for TUT Rare Sound Events 2017 dataset. Due to the different

62



characteristics of the two datasets, the results seem drastically different. The recordings in

TUT Sound Events 2017 dataset involves multi-source conditions similar to the everyday

life. The sound sources are rarely heard in isolation in this dataset, which causes the diffi-

culty to detect the targeted sound event correctly. In contrast, TUT Rare Sound Events 2017

dataset is consisted with artificially created mixtures. Targeted sound events are “baby cry-

ing”, “glass breaking”, and “gunshot” mixed with different background scenes. It is easier

to hear the targeted sound events in this dataset. As you can see in Table 6.6, the Detection

performance for all the methods are pretty great when using TUT Rare Sound Events 2017

dataset. Since DCASE did not provide the class-wise performance, the results in Table 6.5

and 6.6 are the overall results using the development dataset.

In general, the FACED framework, method 1, and 2 cannot outperform the best result in

DCASE challenge. However, the FACED framework and method 1 can reach about top 20

even top 10 performance. The core idea of method 1 is from the top DCASE participants.

It is designed to be a general architecture without sophisticated tuning to fit any specific

situations. Similarly, the FACED framework is designed to be flexible so that it can work

under any acoustic scenes. It is reasonable that the general approaches do not have a better

result compared to the carefully designed system. However, the FACED framework and

method still present great results in both datasets. For method 2, the GMM-based classifi-

cation, it is a relatively conventional baseline; thus, it performs overall worse than the other

compared methods. As mentioned in previous section, it is a tough task for a classifier

to deal with background/environmental noises. In TUT Sound Events 2017 dataset, more

complex situations frequently present in the audio clips, for example, overlapping targeted

sound events, or large noise which dominate the targeted sound event. These conditions

largely influence the low detection performance shown in Table 6.5. Without the high level

environmental noises, all the methods present favorable results in when using TUT Rare

Sound Events 2017 dataset.

Different from TUT Sound Events 2017 dataset, TUT Rare Sound Events 2017 dataset

63



can make use of the class-wise event detection. TUT Sound Events 2017 dataset contains

too many overlapping mixtures in the recordings, it is difficult to separate each audio event

out. In the other hand, the sound events in TUT Rare Sound Events 2017 dataset are much

more clear and distinguishable. DCASE provides the class-wise detecting results using the

TUT evaluation dataset. However, both the ground truth of the evaluation dataset and the

class-wise detecting results of the development dataset are not provided. Furthermore, the

system which can provide the overall best detecting results is different from the system that

has a better performance on detecting a specific class. As a result, the results of class-wise

detection using method 1, method 2, and the FACED framework are compared against

the DCASE baseline. Again, the DCASE baseline results are using the TUT evaluation

dataset, which is different from the TUT development dataset we are using, thus it is only

an informative benchmark.

Class-wise error-rate (ER)
Baby cry Glass break Gunshot

Method 1 0.6 0.24 0.623
Method 2 0.784 0.39 0.698
FACED framework 0.65 0.271 0.652
DCASE baseline 0.804 0.38 0.728

Table 6.7: Class-wise error rate (ER) using development dataset from TUT Rare Sound
Events 2017 dataset

Class-wise F-score (F1)
Baby cry Glass break Gunshot

Method 1 76.9% 84.7% 67.8%
Method 2 65.4% 72.20% 55.4%
FACED framework 74.17% 82.17% 65.39%
DCASE baseline 66.80% 79.10% 46.50%

Table 6.8: Class-wise F-score (F1) using development dataset from TUT Rare Sound Events
2017 dataset

Table 6.7 and 6.8 depicted the results of class-wise error-rate (ER) and F-score (F1). In

general, all the method 1, 2, and the FACED framework performs better than the DCASE

64



baseline system. Although the dataset used are different, the audio events in the dataset are

in same class. Method 1 and the FACED framework outperform the baseline system a lot

thus we can have a rough idea that these two systems have a great ability performing audio

event detection and classification. These results are also consistent with Table 6.6. The only

difference is that, in some cases, method 2 performs even worse than the baseline system.

Figure 6.2 and 6.3 illustrate the overall and class-wise ER and F1. As shown in the figures,

the detection performance varies a lot when facing different audio events. A great overall

detection result does not guarantee great results in every case. Within these three classes,

the “gunshot” and “baby cry” have a high possibility to be confused as other sound events

or background sounds. The “baby cry” might have similar features with people’s sound,

such as talking or murmuring. For the “gunshot”, it seems like the detecting classifier has

the chance to confuse it with some sounds with large volume, for example, dropping things

onto the ground. In these comparison experiments, the FACED framework has similar de-

tecting and classification results with method 1, the popular top-notched detecting system.

To better inspect the performance difference between all the methods, several different

experiments are conducted and presented in the following section.

Noted that the results in Table 6.5, 6.6, 6.7, 6.8 are using the full DCASE datasets with

full meta-data. Although the FACED framework does not produce the best result in exper-

iment, it still shows its competitiveness against other methods. In order to test the perfor-

mance of the FACED framework when using weakly-labeled data, we eliminate the detail

temporal information from the TUT Rare Sound Events 2017 dataset and then perform the

experiments again. Since the TUT Sound Events 2017 dataset contains overlapping sound

events and labels, we will not use it in the following experiments. The audio recordings in

TUT Rare Sound Events 2017 dataset will be labeled only with a short description such as

“glass breaking” and “baby crying” without any temporal information. Due to the modi-

fied meta-data, we cannot directly compare our results again the DCASE results. However,

we will still include the DCASE baseline results here as a general benchmark. The over-

65



Figure 6.2: The comparison of error-rate (ER) between using TUT Rare Sound Events 2017
dataset

Figure 6.3: The comparison of F-score (F1) using TUT Rare Sound Events 2017 dataset

all DCASE baseline results are using the TUT development dataset, which is the same as

what we used in this experiments. Although it is not a fair comparison, we also include the

DCASE baseline class-wise event-based evaluation results in the following tables. These

66



class-wise results are using TUT evaluation dataset, not the TUT development dataset, thus

they can only be treated as a general benchmark not an equivalent comparing target. Ta-

ble 6.9, 6.10, and 6.11 present the detecting results using the weakly labeled TUT Rare

Sound Events 2017 dataset.

Overall dataset
ER F1

Method 1 0.36 83.2%
Method 2 0.61 70.1%
FACED framework 0.4 80.1%
DCASE baseline 0.53 72.7%

Table 6.9: Error rate (ER) and F-score (F1) using weakly-labeled TUT Rare Sound Events
2017 dataset

As presented in Table 6.9, the method 1 and the FACED framework can still outperform

the DCASE baseline system even using the weakly labeled data. Noted that the meta-data

used for DCASE baseline here is strong labels. In contrast, method 2 has a difficulty

detecting the targeted events correctly after removing the detail temporal information in

the labels. This might result from the GMM failing to build reasonable distributions for

each targeted event. Also, it is as expected that the detection performance is overall lower

than using the original strongly labels. Figure 6.4 and 6.5 illustrated the comparison of

error-rate (ER) and F-score (F1) between using the original meta-data and weak labels.

The ER of the weakly labeled data is about double than it of the original data, and the F-

score is also decreased a certain amount. It is obvious that the weak labels highly interfere

with the detecting and classification process among all the methods.

6.5 Decreasing the size of dataset

Besides the weakly labeled nature of the dataset, the other topic of our work is the small

size dataset. In this section, we will only used TUT Rare Sound Events 2017 dataset and

the synthetic dataset. The reason for choosing these two dataset is the original time length.

67



Figure 6.4: The comparison of error-rate (ER) between the original and weakly-labeled
TUT Rare Sound Events 2017 dataset

Figure 6.5: The comparison of F-score (F1) between the original and weakly-labeled TUT
Rare Sound Events 2017 dataset

The total time length of the TUT Rare Sound Events 2017 dataset is about 13 hours, and

the synthetic dataset can be generated based on this length. For TUT Sound Events 2017

68



Class-wise error rate (ER)
Baby cry Glass break Gunshot

Method 1 0.781 0.498 0.703
Method 2 0.914 0.667 0.85
FACED framework 0.799 0.528 0.73
DCASE baseline 0.804 0.38 0.728

Table 6.10: Class-wise error rate (ER) using weakly-labeled TUT Rare Sound Events 2017
dataset

Class-wise F-score (F1)
Baby cry Glass break Gunshot

Method 1 70.49% 80.02% 50.84%
Method 2 60.02% 71.97% 39.28%
FACED framework 69.67% 78.57% 49.17%
DCASE baseline 66.80% 79.10% 46.50%

Table 6.11: Class-wise F-score (F1) using weakly-labeled TUT Rare Sound Events 2017
dataset

dataset and construction equipment dataset, the original time length is already below half

the size of the TUT Rare Sound Events 2017 dataset. Thus, only the TUT Rare Sound

Events 2017 dataset and the synthetic dataset will be shrunk gradually in this section. The

intuition of the development of FACED framework is dealing with the hand-recorded small

size data. Thus, the shrunk datasets can help us inspect the influence of the data size and to

compare the performance of the FACE framework with other methods under this situation.

6.5.1 Synthetic dataset

First, the full size of the synthetic dataset is equivalent to 12-hour recordings. The data

size is then shrunk to 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, and 10%. The 10%

data size is equivalent to a 72 minutes recording. The testing data is generated to be a fixed

30 minutes-long data. We will use different size of training data and a same testing data

to perform the comparing experiments. The data size is selected based on the total length

of TUT Rare Sound Events 2017 dataset which will be used later in our work. Table 6.12

69



presents the Detection accuracy when the data size is shrinking. To better visualizing the

results, a line chart is plotted as Figure 6.6. As shown in Table 6.12 and Figure 6.6, the

Detection accuracy is also decreased when the data size is decreased. When the data size

is over 50% (6 hours), the detection accuracy only has a little fluctuation. Actually, the

detection accuracy almost remains the same when using full size, 90%, 80%, and 70% size

of data. However, when the data size is decreased under 40% (4 hours and 48 minutes),

the detection accuracy falls down drastically. In the last case, 10% data size, the FACED

framework has the best performance. It can be observed in Figure 6.6 that the FACED

framework will outperform the other two methods when the data size is below 30%. The

structures of all the three methods are not changed compared to the previous section. A

possible reason for the results under 30% data size is that the neural network architecture

and epochs in method 1 remains fixed during the experiments, thus the shrunk training

data cannot construct networks as well as using full size of data. Similar reason might

cause method 2 build preferable distributions to perform the classification. Compared to

method 1 and 2, the Detection performance of the FACED framework decreased relatively

smooth. The synthetic data results support our assumption that the FACED framework

can still perform well when the size of dataset is small. For a small size data, a more

complex or sophisticated framework does not guarantee better Detection performance. As

mentioned previously, the FACED framework has intended to work on hand-recorded audio

clips, which might not have a large amount of data compared to publicity available datasets.

The experimental results here potential indicate that the FACED framework has the ability

to outperform other methods when facing small size dataset. After the experiments with

synthetic dataset, the following experiment will be conducted with TUT Rare Sound Events

2017 dataset.

70



Method 1 Method 2 FACED framework
Full data 99.8% 98.5% 99.6%
90% data 99.7% 98.3% 99.6%
80% data 99.8% 98.3% 99.4%
70% data 98.0% 96.9% 97.6%
60% data 96.5% 96.2% 96.3%
50% data 94.1% 94.3% 94.2%
40% data 91.7% 90.2% 91.5%
30% data 90.3% 85.5% 91.3%
20% data 87.6% 83.2% 90.3%
10% data 84.2% 79.7% 88.6%

Table 6.12: Detection performance using synthetic dataset, the data size is gradually shrunk
from 100% toward 10%

Figure 6.6: The Detection accuracy of gradually shrinking synthetic dataset

6.5.2 DCASE dataset

Same as the shrinking process when dealing with synthetic dataset, we also decrease the

size of TUT Rare Sound Events 2017 dataset 10%-by10% from the full data size to-

ward a 10% data size. The overall results of error-rate (ER) and F-score (F1) are listed

in Table 6.14 and 6.13. Notably, the tendency of the results are pretty similar to it in

71



the synthetic dataset. For the purpose of an easier inspection, Figure 6.8 and 6.7 are

plotted. As shown in the figures, the FACED framework will outperform the method 1

when the data size is decreased under 50% data size. Since TUT Rare Sound Events 2017

dataset is consisted with real-world recordings, the Detection performance is expected to

be worse than using synthetic dataset. Compared to the overall DCASE baseline results

(ER = 0.53, F1 = 72.70%), the method 1 and the FACED framework still present a good

performance even using only 10% of original training data. However, when decreasing the

training data size to a certain amount, the FACED framework starts to be superior than the

method 1. The possible reason has been discussed in the previous section. These results in-

dicate that the FACED framework has an outstanding performance when facing with small

size dataset, which is the intuition of designing the FACED framework. The results of the

class-wise error-rate (ER) and F-score (F1) are also presented in below.

Table 6.15, 6.17, and 6.19 present the results of class-wise error-rate (ER) of three

sound events in TUT Rare Sound Events 2017 dataset; while Table 6.16, 6.18, and 6.20

are for F-scores (F1). Figure 6.9 to Figure 6.14 can help inspect the results much easier. In

general, the overall tendency of the error-rate (ER) and F-score (F1) remain the same as the

result of overall dataset. Both the method 1 and the FACED framework perform better than

the method 2, which can be treated as the baseline here. The class-wise results between the

method 1 and the FACED framework are pretty close to each other. The relatively special

case is the “gunshot” class. The ER and F1 results have a distinct fluctuation when the data

size is decreasing.

Based on all the results presented in this chapter, we can conclude that the FACED

framework has the competitiveness against other audio event detection and classification

methods. In particular, the relatively-well performance when dealing with the small size

data is the advantage of the FACED framework. Several improvements can be applied on

the FACED framework and we will discuss in the next chapter.

72



Table 6.13: The F-score (F1) using TUT Rare Sound Events 2017 dataset, the data size is
gradually shrunk from 100% toward 10%

Method 1 Method 2 FACED framework
Full data 90.2% 85.0% 89.9%
90% data 90.1% 84.8% 89.8%
80% data 90.1% 84.9% 89.5%
70% data 89.6% 82.2% 88.3%
60% data 88.6% 80.1% 88.2%
50% data 86.1% 78.4% 85.9%
40% data 82.0% 76.5% 84.3%
30% data 80.7% 72.2% 83.3%
20% data 80.10% 71.7% 80.7%
10% data 76.0% 69.4% 79.6%

Figure 6.7: The F-score (F1) of gradually shrinking TUT Rare Sound Events 2017 dataset
dataset

73



Table 6.14: The error-rate (ER) using TUT Rare Sound Events 2017 dataset, the data size
is gradually shrunk from 100% toward 10%

Method 1 Method 2 FACED framework
Full data 0.18 0.35 0.21
90% data 0.19 0.36 0.22
80% data 0.22 0.39 0.24
70% data 0.26 0.44 0.3
60% data 0.32 0.47 0.36
50% data 0.44 0.5 0.4
40% data 0.5 0.58 0.48
30% data 0.56 0.66 0.5
20% data 0.59 0.75 0.54
10% data 0.61 0.8 0.55

Figure 6.8: The error-rate (ER) of gradually shrinking TUT Rare Sound Events 2017
dataset dataset

74



Table 6.15: The class-wise error-rate (ER) for “Baby cry” event within TUT Rare Sound
Events 2017 dataset, the data size is gradually shrunk from 100% toward 10%

Method 1 Method 2 FACED framework
Full data 0.6 0.784 0.65
90% data 0.59 0.78 0.63
80% data 0.61 0.78 0.66
70% data 0.63 0.8 0.69
60% data 0.66 0.83 0.65
50% data 0.69 0.87 0.71
40% data 0.77 0.89 0.73
30% data 0.81 0.92 0.78
20% data 0.81 0.95 0.8
10% data 0.84 0.99 0.79

Table 6.16: The class-wise F-score (F1) for “Baby cry” event within TUT Rare Sound
Events 2017 dataset, the data size is gradually shrunk from 100% toward 10%

Method 1 Method 2 FACED framework
Full data 76.9% 65.4% 74.17%
90% data 76.8% 64.9% 74.0%
80% data 76.6% 62.0% 73.5%
70% data 72.8% 61.8% 72.9%
60% data 70.2% 58.7% 70.9%
50% data 67.8% 57.6% 69.7%
40% data 67.9% 55.4% 67.1%
30% data 65.4% 53.1% 65.9%
20% data 63.0% 50.6% 65.3%
10% data 62.7% 49.9% 64.5%

75



Figure 6.9: The class-wise error-rate (ER) for “Baby cry” event within the gradually
shrinking TUT Rare Sound Events 2017 dataset

Figure 6.10: The class-wise F-score (F1) for “Baby cry” event within the gradually shrink-
ing TUT Rare Sound Events 2017 dataset

76



Table 6.17: The class-wise error-rate (ER) for “Glass breaking” event within TUT Rare
Sound Events 2017 dataset, the data size is gradually shrunk from 100% toward 10%

Method 1 Method 2 FACED framework
Full data 0.24 0.39 0.271
90% data 0.24 0.40 0.27
80% data 0.26 0.44 0.28
70% data 0.30 0.48 0.33
60% data 0.33 0.49 0.34
50% data 0.35 0.51 0.37
40% data 0.36 0.51 0.38
30% data 0.39 0.55 0.39
20% data 0.41 0.57 0.39
10% data 0.42 0.58 0.40

Table 6.18: The class-wise F-score (F1) for “Glass breaking” event within TUT Rare
Sound Events 2017 dataset, the data size is gradually shrunk from 100% toward 10%

Method 1 Method 2 FACED framework
Full data 84.7% 72.2% 82.17%
90% data 84.5% 72.3% 82.1%
80% data 84.6% 71.9% 81.8%
70% data 84.0% 72.0% 81.9%
60% data 83.4% 71.6% 81.6%
50% data 82.7% 71.2% 81.3%
40% data 81.4% 71.8% 81.0%
30% data 79.1% 70.4% 80.5%
20% data 78.3% 69.9% 79.4%
10% data 78.1% 68.7% 79.0%

77



Figure 6.11: The class-wise error-rate (ER) for “Glass breaking” event within the gradu-
ally shrinking TUT Rare Sound Events 2017 dataset

Figure 6.12: The class-wise F-score (F1) for “Glass breaking” event within the gradually
shrinking TUT Rare Sound Events 2017 dataset

78



Table 6.19: The class-wise error-rate (ER) for “Gunshot” event within TUT Rare Sound
Events 2017 dataset, the data size is gradually shrunk from 100% toward 10%

Method 1 Method 2 FACED framework
Full data 0.623 0.698 0.652
90% data 0.63 0.70 0.68
80% data 0.67 0.72 0.69
70% data 0.70 0.75 0.71
60% data 0.75 0.81 0.73
50% data 0.80 0.85 0.75
40% data 0.82 0.93 0.79
30% data 0.85 0.95 0.80
20% data 0.87 0.99 0.82
10% data 0.88 1.01 0.83

Table 6.20: The class-wise F-score (F1) for “Gunshot” event within TUT Rare Sound
Events 2017 dataset, the data size is gradually shrunk from 100% toward 10%

Method 1 Method 2 FACED framework
Full data 67.8% 55.4% 65.39%
90% data 67.6% 55.0% 64.9%
80% data 65.6% 54.1% 64.7%
70% data 59.9% 53.0% 62.7%
60% data 57.3% 49.0% 60.0%
50% data 50.1% 48.0% 57.7%
40% data 52.8% 45.7% 57.5%
30% data 50.0% 41.9% 54.9%
20% data 46.8% 39.4% 53.0%
10% data 46.9% 37.9% 53.1%

79



Figure 6.13: The class-wise error-rate (ER) for “Gunshot” event within the gradually
shrinking TUT Rare Sound Events 2017 dataset

Figure 6.14: The class-wise F-score (F1) for “Gunshot” event within the gradually shrink-
ing TUT Rare Sound Events 2017 dataset

80



CHAPTER 7

CONCLUSION

The research presented in this thesis makes contributions to the fields of signal processing

and audio event detection.

7.1 Contributions

The FACED framework represents novel and practical ways to perform audio event detec-

tion on weakly labeled dataset. Conventionally, the audio event detection system tends to

first create strong labels before training when dealing with weakly labeled data. In con-

trast, the FACED framework reduce the need for costly efforts of manually labeling the

individual sound events within a dataset, allowing the user to leverage general knowledge

of clip-level meta-data with certain sound events may have occur. The FACED frame-

work has been tested and found to be useful both in synthetic and real-world environments,

which could be non-stationary, uncontrolled, and with plentiful noises. It is flexible in how

the framework designed and can make use of different types of algorithms or knowledge

about the acoustic data. It can also be leveraged with relatively small size data to generate

a robust classifier of the sound events present in the data and to help label it. The FACED

framework has a great potential to be adapted to new situations, and adjust itself well to

being cooperated as a processing steps in other systems.

7.2 Future work

There are many ways in which this work could be extended. The FACED framework could

be tried in various other environments where it might be applicable, such as domestic scenes

or a continuously moving settings. There are countless different acoustic feature types that

81



could be used in the feature extraction step (including potential applications to multi-media

data). Also, various algorithms and many parameter configurations could both be explored

when there is any up-to-dated approaches published by other researchers. Ways to make

the FACED framework more robust involves changing in classification methodology, es-

pecially for overlapping sound events presented in the audio data, in some way that could

be explored. There may also be potential to use some post-processing algorithms to help

adapt the FACED framework to polyphonic scenes. The prominent event and the under-

lying events in different environments could both be targeted while retaining information

about all the sound events and adding some ways of post processing. One practical choice

of post processing used in current experiments is the decision stage and the decision is

made based on a threshold value 0.5. For now, if there are multiple class values over the

threshold, the most probable target class is chosen; while if all the values are under the

threshold, an “unknown” label will be attached on to the audio segment. By adjusting this

decision rules, the classification step in the FACED framework might have an improved

ability to label multiple overlapping sound events.

Future work could also include efforts to cooperate the FACED framework into other

systems or as a user-friendly machine learning tools. Considering the intuition for devel-

oping the FACED framework, the substitution from manual labelling with automatically

detecting is the users’ hope. Compared to other deep learning techniques, the FACED

framework has relatively low time cost and computational demand. It has the potential for

the FACED framework performs smoothly as a toolkit on a portable and offline compu-

tation environment. Since there are bountiful options with the FACED framework, effort

would still be needed to inspect the demand for hardware environment and to develop inter-

faces or GUIs that would allow users to interact much easier with the FACED framework.

82



REFERENCES

[1] C. Cheng, A. Rashidi, M. Davenport, and D. Anderson, “Activity analysis of con-
struction equipment using audio signals and support vector machines,” Automation
in Construction, vol. 81, pp. 240–253, 2017.

[2] X. Zhuang, X. Zhou, M. A. Hasegawa-Johnson, and T. S. Huang, “Real-world acous-
tic event detection,” Pattern Recognition Letters, vol. 31, no. 12, pp. 1543–1551,
2010.

[3] T. Heittola, A. Mesaros, A. Eronen, and T. Virtanen, “Context-dependent sound
event detection,” EURASIP Journal on Audio, Speech, and Music Processing, vol. 2013,
no. 1, p. 1, 2013.

[4] D. Gerhard, Audio signal classification: History and current techniques. Citeseer,
2003.

[5] G. Guo and S. Li, “Content-based audio classification and retrieval by support vector
machines,” IEEE Transactions on Neural Networks, vol. 14, no. 1, pp. 209–215,
2003.

[6] L. Lu, H. Zhang, and H. Jiang, “Content analysis for audio classification and seg-
mentation,” IEEE Transactions on speech and audio processing, vol. 10, no. 7,
pp. 504–516, 2002.

[7] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. Sainath, et al., “Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups,” IEEE Signal Pro-
cessing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[8] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep recurrent
neural networks,” in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2013.

[9] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell: A neural network
for large vocabulary conversational speech recognition,” in 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016.

[10] D. Ubskii and A. Pugachev, “Sound event detection in real-life audio,” IEEE AASP
Challenge: Detection and Classification of Acoustic Scenes and Events, 2016.

83



[11] S. Adavanne and T. Virtanen, “Sound event detection using weakly labeled dataset
with stacked convolutional and recurrent neural network,” arXiv preprint arXiv:1710.02998,
2017.

[12] Q. Kong, Y. Xu, W. Wang, and M. Plumbley, “A joint detection-classification model
for audio tagging of weakly labeled data,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2017 IEEE International Conference on, 2017.

[13] Y. Xu, Q. Kong, Q. Huang, W. Wang, and M. Plumbley, “Attention and localization
based on a deep convolutional recurrent model for weakly supervised audio tagging,”
arXiv preprint arXiv:1703.06052, 2017.

[14] D. Giannoulis, E. Benetos, D. Stowell, M. Rossignol, M. Lagrange, and M. D.
Plumbley, “Detection and classification of acoustic scenes and events: An ieee aasp
challenge,” in Applications of Signal Processing to Audio and Acoustics (WASPAA),
2013 IEEE Workshop on, IEEE, 2013, pp. 1–4.

[15] A. Mesaros, T. Heittola, and T. Virtanen, “Tut database for acoustic scene classifica-
tion and sound event detection,” in Signal Processing Conference (EUSIPCO), 2016
24th European, IEEE, 2016, pp. 1128–1132.

[16] K. J. Piczak, “Esc: Dataset for environmental sound classification,” in Proceedings
of the 23rd ACM international conference on Multimedia, ACM, 2015, pp. 1015–
1018.

[17] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy for urban sound
research,” in Proceedings of the 22nd ACM international conference on Multimedia,
ACM, 2014, pp. 1041–1044.

[18] Workshop on Detection and Classification of Acoustic Scenes and Events, New York,
USA, Oct. 2019.

[19] J. Lee, J. Park, S. Kum, Y. Jeong, and J. Nam, “Combining multi-scale features using
sample-level deep convolutional neural networks for weakly supervised sound event
detection,” Proc. DCASE, pp. 69–73, 2017.

[20] D. Lee, S. Lee, Y. Han, and K. Lee, “Ensemble of convolutional neural networks for
weakly-supervised sound event detection using multiple scale input,” Detection and
Classification of Acoustic Scenes and Events (DCASE), 2017.

[21] A. Kumar and B. Raj, “Weakly supervised scalable audio content analysis,” in Mul-
timedia and Expo (ICME), 2016 IEEE International Conference on, IEEE, 2016,
pp. 1–6.

84



[22] S.-Y. Chou, S. Jang, and Y.-H. Yang, “Framecnn: A weakly-supervised learning
framework for frame-wise acoustic event detection and classification,” Recall, vol. 14,
pp. 55–4, 2017.

[23] A. Kumar and B. Raj, “Audio event detection using weakly labeled data,” in Pro-
ceedings of the 2016 ACM on Multimedia Conference, 2016.

[24] J. Liu and Y. Yang, “Event localization in music auto-tagging,” in Proceedings of the
2016 ACM on Multimedia Conference, 2016.

[25] T. Su, J. Liu, and Y. Yang, “Weakly-supervised audio event detection using event-
specific Gaussian filters and fully convolutional networks,” in Acoustics, Speech and
Signal Processing (ICASSP), 2017 IEEE International Conference on, 2017.

[26] Y. Xu, Q. Kong, Q. Huang, W. Wang, and M. Plumbley, “Convolutional gated re-
current neural network incorporating spatial features for audio tagging,” in Neural
Networks (IJCNN), 2017 International Joint Conference on, 2017.

[27] R. Martin, “Noise power spectral density estimation based on optimal smoothing
and minimum statistics,” IEEE Transactions on speech and audio processing, vol. 9,
no. 5, pp. 504–512, 2001.

[28] Y. Ephraim and D. Malah, “Speech enhancement using a minimum mean-square
error log-spectral amplitude estimator,” IEEE transactions on acoustics, speech, and
signal processing, vol. 33, no. 2, pp. 443–445, 1985.

[29] I. Cohen and B. Berdugo, “Noise estimation by minima controlled recursive aver-
aging for robust speech enhancement,” IEEE signal processing letters, vol. 9, no. 1,
pp. 12–15, 2002.

[30] P. C. Loizou, Speech enhancement: theory and practice. CRC press, 2007.

[31] S. Rangachari and P. Loizou, “A noise-estimation algorithm for highly non-stationary
environments,” Speech communication, vol. 48, no. 2, pp. 220–231, 2006.

[32] I. Cohen, “Noise spectrum estimation in adverse environments: Improved minima
controlled recursive averaging,” IEEE Transactions on speech and audio processing,
vol. 11, no. 5, pp. 466–475, 2003.

[33] E. Sejdić, I. Djurović, and J. Jiang, “Time–frequency feature representation using
energy concentration: An overview of recent advances,” Digital signal processing,
vol. 19, no. 1, pp. 153–183, 2009.

85



[34] S. S. Stevens, J. Volkmann, and E. B. Newman, “A scale for the measurement of the
psychological magnitude pitch,” The Journal of the Acoustical Society of America,
vol. 8, no. 3, pp. 185–190, 1937.

[35] J. A. Tropp, “Greed is good: Algorithmic results for sparse approximation,” IEEE
Transactions on Information theory, vol. 50, no. 10, pp. 2231–2242, 2004.

[36] W. J. Poser, “Douglas o’shaughnessy, speech communication: Human and machine.
reading, massachusetts: Addison-wesley publishing company, 1987. pp. xviii+ 568.
isbn 0-201-16520-1.,” Journal of the International Phonetic Association, vol. 20,
no. 2, pp. 52–54, 1990.

[37] B. P. Bogert, “The quefrency alanysis of time series for echoes; cepstrum, pseudo-
autocovariance, cross-cepstrum and saphe cracking,” Time series analysis, pp. 209–
243, 1963.

[38] S. Sandhu and O. Ghitza, “A comparative study of mel cepstra and eih for phone
classification under adverse conditions,” in 1995 International Conference on Acous-
tics, Speech, and Signal Processing, IEEE, vol. 1, 1995, pp. 409–412.

[39] P. Mermelstein, “Distance measures for speech recognition, psychological and in-
strumental,” Pattern recognition and artificial intelligence, vol. 116, pp. 374–388,
1976.

[40] S. B. Davis and P. Mermelstein, “Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences,” in Readings in
speech recognition, Elsevier, 1990, pp. 65–74.

[41] H. Hermansky, “Perceptual linear predictive (plp) analysis of speech,” the Journal
of the Acoustical Society of America, vol. 87, no. 4, pp. 1738–1752, 1990.

[42] H. Hermansky and N. Morgan, “Rasta processing of speech,” IEEE transactions on
speech and audio processing, vol. 2, no. 4, pp. 578–589, 1994.

[43] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg, and O. Nieto,
“Librosa: Audio and music signal analysis in python,” in Proceedings of the 14th
python in science conference, vol. 8, 2015.

[44] A. Eronen, “Comparison of features for musical instrument recognition,” in Pro-
ceedings of the 2001 IEEE Workshop on the Applications of Signal Processing to
Audio and Acoustics (Cat. No. 01TH8575), IEEE, 2001, pp. 19–22.

[45] G. H. Golub and C. Reinsch, “Singular value decomposition and least squares solu-
tions,” in Linear Algebra, Springer, 1971, pp. 134–151.

86



[46] K. Pearson, “Liii. on lines and planes of closest fit to systems of points in space,” The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
vol. 2, no. 11, pp. 559–572, 1901.

[47] H. Hotelling, “Analysis of a complex of statistical variables into principal compo-
nents.,” Journal of educational psychology, vol. 24, no. 6, p. 417, 1933.

[48] C. Jutten and J. Herault, “Blind separation of sources, part i: An adaptive algorithm
based on neuromimetic architecture,” Signal processing, vol. 24, no. 1, pp. 1–10,
1991.

[49] S. Choi, A. Cichocki, H.-M. Park, and S.-Y. Lee, “Blind source separation and inde-
pendent component analysis: A review,” Neural Information Processing-Letters and
Reviews, vol. 6, no. 1, pp. 1–57, 2005.

[50] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix
factorization,” Nature, vol. 401, no. 6755, p. 788, 1999.

[51] ——, “Algorithms for non-negative matrix factorization,” in Advances in neural in-
formation processing systems, 2001, pp. 556–562.

[52] P. Smaragdis and J. C. Brown, “Non-negative matrix factorization for polyphonic
music transcription,” in 2003 IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics (IEEE Cat. No. 03TH8684), IEEE, 2003, pp. 177–180.

[53] P. Smaragdis, “Non-negative matrix factor deconvolution; extraction of multiple
sound sources from monophonic inputs,” in International Conference on Indepen-
dent Component Analysis and Signal Separation, Springer, 2004, pp. 494–499.

[54] ——, “Probabilistic decompositions of spectra for sound separation,” in Blind Speech
Separation, Springer, 2007, pp. 365–386.

[55] P. Smaragdis, B. Raj, and M. Shashanka, “A probabilistic latent variable model for
acoustic modeling,” Advances in models for acoustic processing, NIPS, vol. 148,
pp. 8–1, 2006.

[56] T. Hofmann, “Probabilistic latent semantic indexing,” in ACM SIGIR Forum, ACM,
vol. 51, 2017, pp. 211–218.

[57] M. A. Kramer, “Nonlinear principal component analysis using autoassociative neu-
ral networks,” AIChE journal, vol. 37, no. 2, pp. 233–243, 1991.

[58] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

87



[59] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and compos-
ing robust features with denoising autoencoders,” in Proceedings of the 25th inter-
national conference on Machine learning, ACM, 2008, pp. 1096–1103.

[60] L. Gondara, “Medical image denoising using convolutional denoising autoencoders,”
in 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW),
IEEE, 2016, pp. 241–246.

[61] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester, “Collaborative denoising auto-encoders
for top-n recommender systems,” in Proceedings of the Ninth ACM International
Conference on Web Search and Data Mining, ACM, 2016, pp. 153–162.

[62] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint arXiv:1606.05908,
2016.

[63] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm for
discovering clusters in large spatial databases with noise.,” in Kdd, vol. 96, 1996,
pp. 226–231.

[64] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,
no. 3, pp. 273–297, 1995.

[65] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin
classifiers,” in Proceedings of the fifth annual workshop on Computational learning
theory, ACM, 1992, pp. 144–152.

[66] J. Platt, “Sequential minimal optimization: A fast algorithm for training support vec-
tor machines,” 1998.

[67] C.C.Chang and C.J.Lin, LIBSVM: A library for support vector machines, Software
available at http://www.csie.ntu.edu.tw/ cjlin/libsvm, 2001.

[68] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1, pp. 81–
106, 1986.

[69] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.

[70] L. R. Rabiner and B.-H. Juang, “An introduction to hidden markov models,” ieee
assp magazine, vol. 3, no. 1, pp. 4–16, 1986.

[71] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in
speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

88



[72] J. Li, W. Dai, F. Metze, S. Qu, and S. Das, “A comparison of deep learning meth-
ods for environmental sound detection,” in 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2017, pp. 126–130.

[73] D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al., “Learning representations by
back-propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1, 1988.

[74] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[75] F. A. Gers and E Schmidhuber, “Lstm recurrent networks learn simple context-free
and context-sensitive languages,” IEEE Transactions on Neural Networks, vol. 12,
no. 6, pp. 1333–1340, 2001.

[76] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Advances in neural information processing systems, 2014, pp. 3104–
3112.

[77] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu, “Exploring the limits
of language modeling,” arXiv preprint arXiv:1602.02410, 2016.

[78] D. Gillick, C. Brunk, O. Vinyals, and A. Subramanya, “Multilingual language pro-
cessing from bytes,” arXiv preprint arXiv:1512.00103, 2015.

[79] E. Cakır, G. Parascandolo, T. Heittola, H. Huttunen, and T. Virtanen, “Convolutional
recurrent neural networks for polyphonic sound event detection,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 25, no. 6, pp. 1291–1303,
2017.

[80] E. Cakır and T. Virtanen, “Convolutional recurrent neural networks for rare sound
event detection,” Detection and Classification of Acoustic Scenes and Events (DCASE),
2017.

[81] C.-F. Cheng, D. V. Anderson, M. A. Davenport, and A. Rashidi, “Audio classifi-
cation based on weakly labeled data,” in 2018 IEEE Statistical Signal Processing
Workshop (SSP), IEEE, 2018, pp. 568–572.

[82] A. Rashidi, M. Sigari, M. Maghiar, and D. Citrin, “An analogy between various
machine-learning techniques for detecting construction materials in digital images,”
KSCE Journal of Civil Engineering, vol. 20, no. 4, pp. 1178–1188, 2016.

[83] A. Ben-Hur and J. Weston, “A user’s guide to support vector machines,” Data mining
techniques for the life sciences, pp. 223–239, 2010.

89



[84] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[85] J. Salamon and J. P. Bello, “Deep convolutional neural networks and data aug-
mentation for environmental sound classification,” IEEE Signal Processing Letters,
vol. 24, no. 3, pp. 279–283, 2017.

[86] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[87] A. Mesaros, T. Heittola, and T. Virtanen, “A multi-device dataset for urban acoustic
scene classification,” in Proceedings of the Detection and Classification of Acoustic
Scenes and Events 2018 Workshop (DCASE2018), Nov. 2018, pp. 9–13.

[88] H. Lim, J. Park, and Y Han, “Rare sound event detection using 1d convolutional
recurrent neural networks,” in Proceedings of the Detection and Classification of
Acoustic Scenes and Events 2017 Workshop (DCASE2017), 2017, pp. 80–84.

[89] B. Elizalde, A. Kumar, A. Shah, R. Badlani, E. Vincent, B. Raj, and I. Lane, “Exper-
iments on the dcase challenge 2016: Acoustic scene classification and sound event
detection in real life recording,” arXiv preprint arXiv:1607.06706, 2016.

[90] S. Adavanne, G. Parascandolo, P. Pertilä, T. Heittola, and T. Virtanen, “Sound event
detection in multichannel audio using spatial and harmonic features,” arXiv preprint
arXiv:1706.02293, 2017.

[91] G. E. Poliner and D. P. Ellis, “A discriminative model for polyphonic piano tran-
scription,” EURASIP Journal on Advances in Signal Processing, vol. 2007, no. 1,
p. 048 317, 2006.

[92] A. Mesaros, T. Heittola, and T. Virtanen, “Metrics for polyphonic sound event de-
tection,” Applied Sciences, vol. 6, no. 6, p. 162, 2016.

[93] G. Forman and M. Scholz, “Apples-to-apples in cross-validation studies: Pitfalls
in classifier performance measurement,” SIGKDD Explor. Newsl., vol. 12, no. 1,
pp. 49–57, Nov. 2010.

90


	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Introduction
	Motivation
	Contributions
	Organization

	Background
	Audio event detection
	Audio event detection using weakly labeled datasets

	Audio enhancement
	Audio features
	Short-time Fourier transform (STFT) spectrogram
	Mel-frequency cepstral coefficients (MFCCs)
	Delta features
	Log-mel energy spectrum

	Dimensionality reduction
	Singular value decomposition
	Principal component analysis and Independent component analysis
	Non-negative matrix factorization
	AutoEncoder

	Clustering
	Classification

	Flexible Audio Classification and Event Detection (FACED) framework
	Overview
	Signal enhancement
	Feature extraction
	Dimensionality reduction 
	Clustering and forming the training data
	Classification algorithm

	Data
	Synthetic dataset
	Real-world dataset
	DCASE dataset

	Evaluation on FACED framework
	Evaluation experiments setup
	Feature extraction and dimensionality reduction
	Clustering algorithm
	Classification methods

	Comparison
	Introduction
	Methods
	Method 1
	Method 2
	FACED framework

	Datasets
	Using full dataset
	Synthetic dataset
	Real-world dataset
	DCASE challenge dataset

	Decreasing the size of dataset
	Synthetic dataset
	DCASE dataset


	Conclusion
	Contributions
	Future work

	References

