Ubiquitous Computing:
Extending Access To Mobile Data

A Thesis
Presented to
The Academic Faculty

by

Michael David Pinkerton

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in Computer Science

Georgia Institute of Technology
May 1997

Thesis Approval Page

DEDICATIONS

The most important dedication: to Nicole, my wife-to-be, for sticking by me and
being so understanding when | was frustrated and grumpy.

I'd really like to thank my advisor, Gregory Abowd, for giving such a wonderful
opportunity (and a chance to play with cool toys) even though | was only a Masters
student. Gregory never once laughed at my ideas, and stuck up for me when | needed it. Of
course, if it were up to him, this project would have been called “Newton’s A-Go-Go.”
We'll try to ignore that.

I'd also like to the entire Future Computing Environments group (I can’t name you
all) for providing such a fertile playground in which to develop such new and fascinating
ideas. My work would have been useless without applications to existing projects. I'm glad
| could do my part in furthering their research in ubiquitous computing.

An important, but often forgotten, group are the tireless tech support folks. Without
the help of the Newton DTS group, this project never would have been completed. Thank
you all!

Finally, | must thank Jimi Hendrix, The Black Crowes, and The Who for providing

hours of listening enjoyment as | hacked away into the early morning hours.

TABLE OF CONTENTS

DEDICATIONS

LIST OF FIGURES

SUMMARY

CHAPTER

INTRODUCTION

1.1 Thesis Statement

1.2 Problems With Current Solutions
1.3 Contributions

1.4 Overview of Remainder of Paper

RELATED WORK

2.1 Connectivity

2.2 Platform Assumptions
2.3 Application-Specific Effort
2.4 Data Integration

2.5 Summary

APPLICATIONS

3.1 Integrating Mobile Information into Desktop Applications
3.2 Collaboration among mobile devices
3.3 Summary

ARCHITECTURE

4.1 Goals

4.2 Overview

4.3 Newton Overview

4.4 LlamaServer

4.5 MobileConnect

4.6 DesktopConnect

4.7 Intercomponent Communication
4.8 Summary

DESIGN DECISIONS, HURDLES, AND LIMITATIONS

5.1 Some information is kept permanently on the mobile device

i
vi

Vii

69

VI.

5.2 Mobile devices always connected

5.3 Centralized server instead of point to point communications
5.4 Client applications explicitly written to handle mobile data
5.5 Assumes a homogeneous mobile environment

5.6 Summary

FUTURE WORK

6.1 Heterogeneous Platforms and Data
6.2 Caching

6.3 Security/Privacy

6.4 Multiple LlamaServers

6.5 Criteria for Ul evaluation

6.6 Extensions to applications

6.7 Conclusion

APPENDIX A - TABLE OF COMMANDS
REFERENCES

LIST OF FIGURES

Figure

© 00 N oo o A~ w N P

N NN R R R R R R R R R R
N kP O © 0 N o O N~ W N kP O

Information flow in synchronization

RCU and the actual note on the Newton

A Cyberdog Notebook

CyberLlama part embedded in OpenDoc container.
The Llama ConnectTo panel

A document with CyberButtons.

Organizing Cyberltems on the desktop
CyberDesk ActOn window

A CyberDesk viewer for Newton nhames
Cyberguide and Cyberguide II

The server-side components of CyberGuide I
Overview of LlamaShare infrastructure

A frame, before and after adding a slot

Layers of the DILs

LlamaServer's position in the infrastructure
Diagram of flattening protocol

Byte stream produced from flattening
MobileConnect's position in the infrastructure
A clientSpec frame for sending frames to a Global Soup
DesktopConnect's position in the infrastructure
Desktop representation of a Newton frame

Java code to access slot f.c.foo in the frame from Figure 21

vi

Page
15
16
21
22
25
26
27
30
31
33
34
39
41
43
44
46
a7
49
50
52
54
55

23
24
25
26
27

DesktopThread/MobileThread registration process
Handling of response from mobile device

Message sent from DesktopThread to mobile device
“Response” message received by LlamaServer

"Request” message received by LlamaServer

Vii

58
59
63
65
66

viii

SUMMARY

We live in aworld wherefully featured mobile device?DA's, etc.) are gaining
wider acceptance and usage. As more and more information is collected and stored on these
devices, there becomes a greater néedboth usersand developers to bable to easily
access anavork with this information,either from desktop machines or fromobile
devices. Current solutions to this problem are either cumberBonusers orestrictive to
developers.

There are two goals of this work:

1) Provide an infrastructure and real-world applicatidos integrating mobile
information into a desktop environment. Thigegration should be seamless,
requiring minimal deviationfrom how userscurrently interacwith their desktop

machines.

2) Allow the mobile devices themselves to collaborate simake information with
others.Each device will be dirst-classclient in thesystem,not just a passive

information repository.

CHAPTER |

INTRODUCTION

1.1 Thesis Statement

We live in aworld where fully-featured mobile devicegPDA'’s, pagers,cell
phones, etc.are gainingwider acceptancandusage. Asmore and more information is
collectedand stored on thesdevices,there becomes a greater nded both users and
developers to be able to easily accessvamik with this information. Current solutions to
this problem are either cumbersome for users or restrictive to developers.

This thesisattempts tosolve some of these problems througleambination of
desktop-based applicationbuilt upon a new infrastructure whiclsupports easy
information exchange with mobile devices. The specific infrastructure we provide as part of
this thesis isthe LlamaShareenvironment,the goal ofwhich is to enable the rapid
development oflesktop-based applications whitdke advantage of mobileformation,
whether to provide newterfaces tausersthat streamline the complex interaction models
required to utilize mobile information in commaasks, or teextend the ability to existing
applications to mix mobile information with local and remote information.

It does nottake hours ofexpensive usetesting to notice th@roblemsthat exist
with usinginformation fromthe more popular PDA’s on desktop-based computer. The
PDA users in our group (both Newt@md Pilot) constantlyocalize theirdesire to have
access to phone numbers or notes located on their PDA whentheimdgesktop machine.
The most prevalensolution, copyinghe entire contents of theDA to theworkstation,

greatly restricts auser’s ability to makechanges at eithelocation. Furthermore, this

method pushesthe burden ontothe user, who isthe least suited to handiguch a
complicated process. For mobile devices to gain a wider acceptance, the intenfatdeo
information must beseamless, agverageusershavelittle patiencefor intricate steps and
convoluted interactions.

Our own projects in the Future Computing Environments (FCE) group illustrate the
problems inherent in developing applications which utilize mobile information. Most (if not
all) have been severely limited by the difficulties of trying to access and use the information
collected on a variety of mobilplatforms. For example, ouPDA-based CyberGuide
project [1, 2, 3]allows users taaccess information about thesnvironment, but the
information is static and there is may for users t@wommunicate contextual information
such as positioningzven retrieving the information collected on the deviges/edtime
consuming and complicated, requiring custom client/sesoftware to be written on both
the desktop andhe PDA. As therewas noinfrastructureavailable to buildupon, each
project made its own attempt with very little success in eask leaving us with avariety
of custom solutions which could not be applied to existing or future research projects, and
a crowd of frustrated developers.

LlamaShare provides a general architecturadress both aheseproblems, but
first its probably best to more closefyxamine theproblems of userand developers in

detail.

1.2 Problems With Current Solutions

From a user’s perspectiviine problems withmobile devices go fabeyond just
havingaccessto information.While getting the information to aser’s desktopnachine
hasalready been elegantlolved, actually integrating that information intouser tasks

(such as insertingnobile information into a documentgquires a series of long and

complicatedsteps whichhave little to do with the task for whichthe user needs the
information. Serious effort has gometo the "synchronization" approach to accessing
mobile informationfrom the desktop worldWhen theuser wants to access adgita on
their mobile device, they musexplicitly go to a special'docking” program which
downloadsthe informationfrom the mobile unit to theeomputer, hopefully in dormat
which desktop applicationsan understand. This isthe approach taken by the
PalmComputing Pilotf4] and the Newton Connection Utilities [5, 6] fromApple

Computer.

Synchronization is perfectly acceptable when the user’s task only requires access to

mobile information, such as synchronizing a desktaendar withthe calendar on the
mobile unit. However, synchronization fallsshort when the task becomesmore
complicated. For example, it does hatgin toaddress how a user woulitegrate a note
stored on anobile device into a letter they aveiting. Even this simple task requires a
much richer infrastructure whiclyoes beyond simply providing access aobile
information.

To demonstrate, here ithe sequence obteps required tdntegrate mobile

information into a common task such as writing a letter:

1. The user realizes they want to use some mobile data to aid in creating their document

in application “A”
2. User mentally locates the data, and realizes it is on a mobile device
3. Thinks about what program is needed to actiesslata (thedocking application,
“B")
4. Searches out and locates that application (this may take several steps by itself)
5. Goes througlhe steps of synchronizinthe mobile devicevith the desktop(there

could be many)

6. Thinks about what application is needed to \ileevuploadediata on thelesktop,
application “C” (almost certainly not the same the original application, “A”).

7. Searches out and locates that application (again, multiple steps)

8. Scans through all of the uploaded data to find the correct entry

9. Thinks about how to integrate this data into the document

10.Integrates it into application “A”, if and only the data is in a format that “A”

accepts.

This long andcomplicatedprocess distractthe user fromtheir current task by
leading them on aild goosechase througlthree different applications and many more
tedioussteps. Moreoverpnce they reach the finatep,they may not even bable to
integrate the data because it is not in a format the target application understands. Finally, the
user now has two copies of their datahy change eithesne, they must re-synchronize
or risk encountering out-of-date information on either their desktop computer or the PDA.

This thesis seeks out a useterfacewhich streamlines thigteraction model of

integrating mobile information to as few steps as possible:

1. The user realizes they want to use some data to aid in creating their document

2. ldentifies the desiregiece of data (either bissuing a query or byreating a
physical marker on the desktop)

3. Drags a representation of the information into the documentdeops it at the

desired location

Developersrun into similar roadblocks when trying tevrite client/server style
applications which access anshnipulate mobilenformation. The three main problem

areas are.

1. Language/platform restrictions
Libraries existfor each mobile device to handiensferring information between
the PDAand thedesktop,but they mayonly be available for certain platforms
(usually Mac and Windows) andtertain languages (C dC++). This seriously

restricts writing applications in, say, Java on a UNIX machine.

2. Limited connectivity options
Applications on thedesktopare normally limited to communicatingith devices
that are either directly cabled to the same machine (serial) soroa privatdocal
network (AppleTalk). This restricts which machines have access to information on
mobile devices tavherethe physical device isonnected, and almositally rules

out connectivity from the Internet.

3. No infrastructure for mobile groupware apps
PDA’'s are fertile ground for groupwareapplications (sharing positioning
information is just one simple example), but there is almost no infrastructure
available to allow thesharing of information amongnultiple mobile devices.

Developers are forced to write their own from scratch each time.

When trying to develop an application which manipulates mobile information, these
limitations can rangérom minor annoyances tshow-stoppersOur own efforts in the

FCE group have been hampered by all three of these at one time or another. The harder it is

for developers tavrite applicationdor mobile devices,the fewer applications willexist,
which is a shame consideririige sheer number of useful ideas which arédeer even

simple brainstorming. LlamaShare was developed to address these issues as well.

1.3 Contributions

In light of all of theseproblems, this thesis provides solutiom® present in other

systems. Here are the major points that LlamaShare addresses:

» Develop in any language, on any desktop platform, on any machine on the Internet
Applications on the desktop which access and manipulate mobile information can be
written on any platform in anjanguage. In additionthe use of TCP/IP as the
communication layer opens up much more tharptaform. Desktop-baseclient
applications camow run onany machine on the Interneind beable to access

mobile devices half a world away as if they were on the same local network.

* Access to multiple mobile devices
By using a desktop-based server as a contact point, clients have access to not just a
single mobile device, but to any mobile device connected tec#raer.Clients can
now querymultiple devicedor information without the requiremettat any of

them are in the same physical location.

 Database for collaborative use by desktop and mobile devices
The LlamaShare architectupeovides adatabase whicban beused tocollaborate
among multiple mobilelevices, asvell as with desktop applications. Thedata

stores,called“Global Soups,”provide a single locatiowhere devicegan collect

and aggregate informatiaollectedindividually. It also provides a singlecation
where information intendetbr all devices in the environment can teposited,

either by a mobile device or a desktop application.

» Users should workvith mobile information the sameay they work with other
information.
No oneknows yet the “right” way to servemobile information to auser, so
LlamaSharegpresents twalifferent approaches whidgtreamline theuser interface
for integrating mobile information into user tasks. One leverages Apple’s Cyberdog
[7] technology to allowusers todirectly organize and manipulate physical
representations of mobildata on thedesktopintermixed with their Internet
information. The other leverages CyberDesk [8], a research prisgct our own
FCE group, which allows useraccess to a nebulous pool @fformation
comprised of local, Internet, and mobile data. In lmatbes mobile data is directly

manipulated using the same metaphors with which users already are comfortable.

1.4 Overview of Remainder of Paper

Chapter 2 presentglatedwork in the fields of mobile andibiquitous computing
and demonstratdsow each projecaddressegparticular aspects of the mobi®mputing.
Furthermore, itdelineateswhere LlamaSharediffers from past work wherconcepts
presented by this thesis overlap with prior research.

Chapter 3 discusses several applications which utilize the LlamaShare infrastructure
and begin toaddress some dhe userinterfaceissuespresented earlier ithis chapter.
There arefour different applications which have beafeveloped, two for desktop

workstations, and two collaborative applications based on the Apple MessagePad.

Chapter 4 delves into details about the underlying infrastructure, describing each of
the components, as well as the protocols between them.

Chapter Sdiscussesnajor design decisions angthy they weremade, aswvell as
limitations of the infrastructure and applications built on tojit.oit also goesnto detail
about many of the technichurdles overcome duringpe development of the LlamaShare
infrastructure.

Chapter 6 comments on future directions and improvemémtsboth the

LlamaShare infrastructure and applications.

CHAPTER I

RELATED WORK

The key areas in which the work presented in this thesis stands apart from currently

existing research and products are:

» Connectivity requirements
* Platform assumptions
» Application-specific effort

» Data integration

The following sections describe existing projectsesch of these three areas and

how LlamaShare differs.

2.1 Connectivity

Mobile devices are inherentlynobile, thus access tinformation becomes
complicated by the fact that these devices can be disconrfemtedhe environment for
long periods of time. As a resulherehasbeen a largdody of research focused on
information access in a disconnected, or loosely connected, environment. This thesis takes

a differentapproach, assumirthat mobile devices will be constanttgnnected. Judging

10

by thegrowth ofthe wireless community, ifive years constartonnectivity may be the
rule instead of the exception.

Coda [9, 10, 11], fromCMU, is a UNIX file system formobile workstations
based orthe Andrew FileSystem (AFS).Assumingthat mobile workstationswill be
disconnectedfor periods of time, Coda transparently handtbe consistency and
replicationissues,hiding them from the applications and theser. Of courseconstant
connectivity is desiredvhen it can beachieved, so Coda provides application-
transparent adaptation model for maintaining continuous connectivity while migrating from
one networking environment tmother. For example, laptop user might move from a
connected environment in their office to a cellular connection orrahé without any
interruptions in service. In thiway, Coda-based systenean function inboth connected
and disconnected environments.

Bayou [12, 13], from Xerox PARGyttempts tcaddressseveral of thassues in a
disconnected environment as this theBies in aconnected one by providing raobile
computing environment thacludes portable machines wildsss than idealconnectivity.
Both Bayou and.lamaShare provide an infrastructuiee mobile databases owhich to
build a collaborative infrastructure. Bayou creates “databases” of information egmdbe
shared easily and handle tbensistency problems inherent with disconneciatputing,
usingtechniquessuch as replication, propagationugdatesand conflictresolution. The
“database” concept is very similar to LlamaShare’s “GldBalp” andthe lightweight
server is analogous to the server which runs on the mobile device to serve its information to
desktop workstations.

Wit Il [14, 15], from the University of Washington, also addredbesfragility of
mobile connections byocusing onthe two most restrictive resources inthe mobile
environment: network bandwidth atatal storage. By usingechniquesuch ascaching

and prefetchingWit Il trades offincreased localstorage against reduced bandwidth

11

requirements and user-perceived latenthniquely, Wit Il provides anapplication
framework in which applicationsansupplyinformationsuch asobject relationships and
datatypes. As a resultthe systemcan increase the effectiveness of digtimization
techniques by prefetching related information to enabither operations after theevice
has been disconnected from the environment.

Unlike theprevious systems which focused oonnectivity limitations of mobile
devices,ParcTab[16, 17, 18] from Xerox PARC ignoresiany of theproblems of
disconnected and unreliable communication dgsuming a consistentlgvailable IR
network. ParcTabuses custom hardware for botlthe mobile devices and the IR
transceivers to provide eeliable and uninterrupted service teach tab. Similarly,
LlamaShareuses highfrequency RF via Ethernet transceivers and PCMCéids to

establish its fully connected environment.

2.2 Platform Assumptions

This thesis presents an infrastructure which Ity groundwork foraccess to
information on heterogeneous mobile devitiest arenot based on common desktop
operating systems. Due to hardware constraints, mostly the lack of networking capability in
commercially available devices, LlamaShare currently can only access information from the
Apple MessagePad. Howevernce devicesuch aghe Pilot can more easily exist on a
network, the infrastructure can be expanded handle other devices. The Future Work chapter
discusses this in detail.

Coda (and Odyssey, described below) are only available for devices riuhidixg
[11], which translates directly into laptops. Coda is typicatlé research in disconnected
file sharing tocomeout of the OS community ithat it does not addressther mobile

devices, such athe entire PDAmarket, whichare more portable and have longer battery

12

life. Other projects such a&ACE [19] from Princeton,the work done by Tait and
Duchamp from Columbia [208nd Ficus [21] from UCLA all focus exclusively on laptops
and UNIX-based machines.

Trying bridge the gap to avider variety of mobile devices, Bayou allows
information to be stored at locations other than the typical UNIX-based server. Any device,
even aPDA, may carry a “lightweight’server which makes informaticewvailable to any
other device with which it has@nnection[12]. While promising, veniittle of the work
hasactually beercompleted. Some simpldient librariesexist, but only for Solaris, and
nothing runs on any commercially available PDA’s [13].

Both ParcTab and Wit Il address the domaimah-UNIX mobile devices, but do
S0 by using proprietary hardware and communications infrastructure built at RaRK.

In contrast, this thesis provides an infrastructure using off-the-glelices and
components (such abe Apple MessagePad and NetWave Ethernet Acdeesits).
Moreover, LlamaShare’s devices perform mostheir own computations, irtontrast to

the ParcTab infrastructure which emphasizes communication over local processing [18]. As
a result, each tab is driven by applications running mmateworkstation and stores no

information locally.

2.3 Application-Specific Effort

Different systems have different philosophies about the extent to which applications
should be customized to take advantage of the features wifrdwstructure. As described
in Chapter 5 (Design Decision®)yr infrastructure requirethat applications be explicitly
written to access and manipulate moliieormation. Most ofthe burden of accessing

mobile information is hiddefrom developers withirstubs,but theuse of such stubs is

13

required. As a result, off-the-shedpplications not written tacommunicatewith our
infrastructure cannot participate.

While Coda makes nexplicit demands on a particular applicatigd¢yssey [10]
explores cases whethe application iglesigned to be aware difie loosely connected
nature of the information beirgccessed. As a resulhe application can adapt to rapidly
varying connectivity parametessich as bandwidth and network qualiBor example, a
video application caneact todips in bandwidth by displaying a lowgdelity version of
the movie, possibly without color ound. Furthermordhe application cadisclose the
relationships between groups of filesthe Odyssey infrastructure. Such a disclosure can
then be utilized t@rovide strong hintabout future accesses whichn be exploited for
prefetching.

Wit 1l uses a verysimilar technique to improve application performance in a
constantly changing network environmeHbwever, while Odysseyuses amechanism
based on groups of filedVit Il usesapplication-provided informatioisuch asobject
relationships and data types. Given this informatibe systemcan create “objeajraphs”
which links related objects together (for prefetching), similar to intermediate representations
used incompilers[15]. As a result,the systemcan increase the effectiveness of its
optimization techniques by utilizing such application information.

Both of these systendemonstrate that application-speciifort can bebeneficial

to the overall effectiveness of the system and the usefulness of the applications.

2.4 Data Integration

In the beginning, PDA-style mobile devices couldliitte more than storealendar
and contact informatiorand had no connectivityptions whatsoeveihese early devices

were frustrating becausasers could not share information betwedheir desktop

14

applications and thBDA. As a result, users weferced into entering informatiotwice:
once on their computer, and again on their handheld.

Eventually, these devices gaintite ability to connect tdeterogeneous devices
(such as desktop computers), allowirgers to sharsmformation between theiwwo main
informationrepositoriesDevices like the HP OmniG@2] could only import and export
tab or comma delimited teftes and DBaséll databases. Taccomplish somethintike
coordinating calendar information on boslystem requiredhat the desktop calendar
application be able to impoaind exportext files. The user wasthen forced tomanually
perform the extra step of importing or exporting the information.

More recently,mobile devicesuch aghe PalmComputindpilot, the Psion Series
3c [23], and the Apple MessagePad have alleviated this stapttmatically readindgrom
and writing to the nativedata formats of many popular desktop applications. The
connection utilities are not much more than automatatslators withthe ability to merge
data from two sources into one which contains the most up to date informaéachifsee
Figure 1). This works quite well for a highly specific tasksuch as synchronizing a
calendar, but integrating generic information still requires the user to manually kuzate,
parse, and integrate tab-delimitedata. Furthermore, ifnformation changes on the
desktop,the devicesnust be manuallyesynchronizedelse thePDA will not contain a
consistent view of the information.

To address this problenthe Revelar Connection UtilittRCU) [24] reads and
writes informationdirectly to and from a connect&tewton as it is requested onanged
by the user. As a result, both devices alwlagge a constant view dfie information as it
is being examined by theser. However, RCU is generalpurposeinformation tool. It
does notmakeany assumptions abotite meaning of the information it is displaying and
presents a very low-fidelity view d@he mobile information by revealing the bare structure

of field names andlatatypes. As a result, it isery difficult for users to use the

15

mobile data Ydesktop data

n Connection Utility
PDA

synchronized data Workstation

Figure 1 - Information flow in synchronization

information retrieved fronthe Newton as it is in a structure whi¢hey are notused to
seeing and can be almost meaningless depending on the formatiuofiotheation. For
example, an outline othe Newton (whichcan have multiple levels of indentation) is
presented as a single list of topics (see Fig@lr&he only clue to the indentation of any
particular bullet is the field named “levelyhich noviceusersare notgoing to know to
look for. There is no semantic connection between wimatiser sees through RCU and
what they created on the Newton.

The applications demonstrated by this thesis take mobile information integration one
step further, by allowing users iategrate information via aserinterfacewhich displays
the information in a way that conveys its semantic meaning and does not require a multitude

of complicated steps.

16

4 Unfiled Notes
Cool Stuff Oo®E

........................... File in: [Unfiled Notes :]

@ Outline :

Crate: Fri, Jan 31 1997 05:39 &AM

U A JE==TeNew [rivte: Cool Stury
Topic:

@ @ @ Hide Count: 0

MNarmes

Dates Extras Lewel: 1
Text: Here iz what Gregory &bowd is doing at Georgia Tech
Topic:
Hide Count: 0
Lewel: 2
Text: Cyberbesk
Topic:
Hide Count: 0
Lewel: 2
Text: LlamaShare
Topic:
Hide Count: 0
Lewel: 2
Text: Cyberquide
Topic: k
Hide Count: 0
Lewel: 2
Text: Domisilica

Figure 2 - RCU and the actual note on the Newton

17

2.5 Summary

This thesis presents an infrastructure which differs from datfistems inseveral

key ways:

» Assumes fully connected environment
» Works with truly mobile, commercially available devices (MessagePads)
* Providesapplications which go beyond just providing accessnabile information

(via synchronization) and address how users will actually use such information.

18

CHAPTER I

APPLICATIONS

This chaptediscusseseveral of the applicationghich have beebuilt on top of
the LlamaSharanfrastructure.The applications can bgrouped intotwo categories:
Desktop-based information clients and PDA-bagenupware applicationsDespite our
best efforts inthe past, thesekinds of applications proved far todifficult without an
infrastructure designed to support them. As a consequeheegpplications presented in
this chapter demonstratiee enablingoower of the infrastructure, bumore importantly,
they demonstrate the eastich developersan rapidly produce applicatiomghich can
take advantage of mobile information and group collaboration.

One important poinshould bemadebefore continuingWhile this thesis does not
take credit for any of the core ideas present in the systems which we leverage, the extension
and application to mobile information is a driving factor behind the LlamaShare research
effort. Neither system (Cyberdog or CyberDeskas conceived with applications to

mobile devices in mind, and such applications are purely the work of this thesis.

3.1 Integrating Mobile Information into Desktop Applications

When peoplaisetheir mobile device as Rersonal InformatioManager(PIM),
they keep names, addresses, notes and to-do lists on their mobile unit as if ipeecé a
and paper-based organidice a DayPlanner™. Today’'sommercially available mobile

devices (from PDA'’s tacell phones)are becoming more and mdfiick,” in that they

19

store information intheir own right and are not simply temporamepositories for
information destinedor desktop workstations. Under this model, uderge a wealth of

useful information ontheir mobile device towhich they probably want access while
working attheir desktop.One commonsolution, synchronization, onlgomplicates the

issue by forcing users &xplicitly makeredundant copies of information just to obtain
access to it. This is not only a hassle for users, but pushes the work onto the candidate least
able to handle the complicatadsk -- the unsuspecting endiser. Forthis reason,
LlamaShare assumes information is accessed directlytfrermobile device angrovides

user interfaces which shield the user from the retrieval of the data.

An important question iflow userswill address anarganize their mobilalata
once they have access to it. This section presents two desktop applicationtakenreiy
different approaches in thesolutions, both of whichare equally enabled by the
infrastructure.The overridingthemewith both approaches ithat information on mobile
devicesshould beintegrated into aiser’'s workspace or task the sameway asother
remote information, such as fronthe Internet. Users shoulesot have towork any
differently with mobile information than they do with local or remote information.

The first application, called CyberLlama, extends Cyberdog [7] frompple
Computer. Cyberdog is @llection of OpenDog¢25, 26, 27] components for accessing
remote/Internet data byproviding “Cyberltems” which visually represeninternet
information. Since Cyberdog is based on OpenDoc, any Cyberdog compuameive
embedded in anyOpenDoc container, a word processor for examptaaking the
integration of web content as simple as dragdnagh. Inaddition toCyberdog’sexisting
components to access and organize Internet informa&rerLlamaadds components to
integrate information stored on a Newton with local and remote content.

The second application extends CyberDesk [8], a separate FCE rgzegech for

allowing users toaccess information through simple "agents" which seanctiiple

20

information spaces (thénternet, local data, etc.) based on contexthe CyberDesk
infrastructure simplifies th@utomatic integration of applications Ipyoviding services
(network orlocal) utilized by applications in th€yberDesk environment without the
application itself having to be explicitly awaretbem. Wehave added several services to
CyberDesk which locate and present mobile informafsuth aghat on aNewton) to the

user, accessible by clicking a single button.

3.1.1 CyberLlama OpenDoc Part

When it comes to integrating arbitrary content irdocuments, component
architectures like OpenDoc @LE almost have an unfair advantageomponentsgcalled
“parts” in OpenDoc, conform to a general ARhich allowsthem to be embedded in
special parts called “containers.” Containersnake no speciaassumptions aboutheir
embeddeccomponents, beyonthe generalAPI, which allowsthem to literally contain
anything. To developers, this yields the obviadsantage that they dwt have tacrowd
their application withsupport forevery conceivable content tyggounds, movies, tables,
equations, etc.)but only supporigeneric embeddinghrough which theyautomatically
gain the ability to contain every contetype, even ones notyet invented. Tousers,
components allow arbitrary mixing and matchingcohtent, without any worries to the
current application supporting the content in question. To integrate mobile inforimébion
desktop tasksCyberLlama leverages tlapenness ofhe component architecture and the
freedom for users to freely mix and match content.

Cyberdog, acollection of OpenDoqgarts for accessing anarganizing Internet
content, allows users to stoead categorizacons representing InternéiRLs (called
Cyberltems) in notebooks agell as in buttonghat load the appropriate contemhen

clicked on. Additionally, Cyberltem organization is left entirely up to the user. There are no

21

rules or restrictions based on protocols (for example, you candmaaibaddressegext to
web pages, which yooannot do in either of the majbrowsers).Information can be
organized by semantic content, not by the protocol used to access it.

In addition tosupportingthe standard welzontenttypes (HTML, FTP, gopher,
telnet, news, malil, etc.), OpenDoc’s flexible architecture makes it simple to add support for
new types. To this end, we have added suppoihformation not on thénternet, but on
a Newton (notice the "My Xmas List" icon in thetebook in Figure). Access to mobile
information isnow provided througlthe same mechanism -- the Cyberltem -- as Internet

data.

0 =—"c———— outline | =——=FH
G My ¥mas List -
= % The Revolution
& The OpenDoc Revolution
¥ The Revolution FTP site
(@ Things to update
- % [(aTech stuff
E@] In Tray impinkert@cc.gatech.edu)
¢ ToDo for Thesis
a2 e —home
A lennan
Gregary Abowd
& My Home Page

[|
4 DE

Figure 3 - A Cyberdog Notebook. “My Xmas List,” “Things to Update,”
and “ToDo For Thesis” are Newton Cyberltems

22

From this, wegaintwo important abilitiesFirst, sinceall Cyberltems, regardless
of their type, can be organized imotebooks, Cyberdog’s notebootetaphor (illustrated
in Figure 3) allowghe integration of mobile data into a locatismere usersare already

accustomed to looking for remote data. Second, Cyberikam$e dragged int@penDoc

JED% Letterto mim=——"—— [J|-
Text | Cyberdog | Parts | = DIGITAL HARBOR [
Mew York Vl 12 ‘V| FB|I|H| | ke = ‘Vl 1 Colurn = | Spacing... wﬁva

.EI.|...8...!...?...!...5.|.!.|.4I..|.!.|.$.|.!.n.é.n.!.n.?-l-é-lua-l-

January 31, 1997

Hi Motn,

[know it's a little early to get started, but yvou know what they say: the

Hrmas season starts earlier and earlier every yvear! I've scribbled down a

list of things on my Newton (since it's so darn handy) and I figured I'd

pass thetn along to you.

Work on the thesis is

going well, i'tn getting

+ ®my 2 frant teeth close to the point where I
need to start writing,

O = a ray gun

O e Videos Well, I'm used to writing
O = Ishtar a lot because of the book
that I'm deing on
O Buns of Steel OpenDoc (I'm not above

/ @ That $3000 Massage Chair at Brookstone Shameless plugsl). Hops
. things are going well
O = a big hug with vou and Fido.

Fotta run, Gregory is trving to tell me aboutl some crazy idea involving a
digital fridge!

Lowe Mike

Figure 4 - CyberLlama part embedded in OpenDoc container. Gray rectangl
shows embedded Newton part.

1%

23

containers to display their content embedded within the docufseeat Figure4). This
allows drag and dropntegration of mobile content intalesktop content without

synchronization or complicated steps.

3.1.1.1 Creating a Mobile Cyberltem

When auserdecides they want to accessmote information(whethermobile or
from the Internet), the first step is ¢ceate theCyberltem representinipat information on
the desktop. Cyberdog has a panel-bastetifacefor creating Cyberltems within a single
dialog, called the “Connecto...” dialog. Each differentkind of Cyberltemhas its own
panel with information particular to identifyirtat contentype. For examplegreating a
Cyberltem for a web page requires typing in the URL and creating a Cyberltem for a file on
an FTPsite requireghe server,the path to thdile, and a username/password for non-
anonymous login.

To create aCyberltem representing mobileformation, the user goes to the
“Llama” panel (seeFigure 5 below) and entetbe appropriatenformation. But how
should the user tell LlamaSharewhich piece of information they are interested in?
Answering this question is not quite as easy as it first appdas. accessefall into two
situations: 1) the usémows exactlywhat they want and where it is ¢ime device; 2) the
user knows the information teeresomewherebut not quitewhere. Unfortunatelyeach
of these scenarios calls for radically different user interfaces.

The first scenario suggests building a “browssniilar to Microsoft's Explorer or
the MacOS Finder which allows theser todrill down throughmultiple levels, navigating
directly to the desired piece of information. But what if they don’t know exactly where it is,
or even if it's there at all? The second scenario requires a “find” mechanism which returns a

list of all entries whichmatchsome specificriteria (such as‘contains theword ‘FCE™).

24

This is great for finding information entered long ago and forgotten about, but cumbersome
whenthe user knowsexactlywhat theyare lookingfor. For instancethey mightknow

where the informatioms, but not theexact textwithin it thatwould match asearch.Text-
matching queries alone might force tnger to tryseveral different searcétrings before

they find onethat matches. Someombination of thewo would certainly be the most
desirable.

However, giverthe timeconstraintglaced orthis projecttherewas no waythat
such an interface could have been developed (basicallyoute be rewriting Explorer or
the Finder from scratch). For this reaseithersome subset dfinctionality needed to be
developed or a choice had to be made on which scenario would be most usefshiort
term. A combination approacivas decidedupon which provideshe ability to perform
both text-matching searches and limited browsing (per device only). The result is illustrated
below in Figure &

The user first chooses whicimobile device the information is on and then the
“soup” which contains the data. (A soup is similar to a folder which hpétes of related
information, but usually for a particular application such as\ib&e Pad othe Calendar.)
The usercan thenchoose tgyet anoverview of anentire soup, orsearchthat soup for
entries matching a text-search. The overvéwws aquick summary okach entry in the
soup, such athe title of title of anote and thdirst line or two of text. This should be
enoughcontext if theuser knowsexactlywhat theyare lookingfor. The text-search also
returns an overview of each entry that matches the criteria. Wherséhdindsthe desired
entry, they select it analick OK. The Cyberltemfor that piece of information is then

created.

! This panel has not been fully implemented. All work has been done with a substitute panel with a more
“developer oriented” interface to allow quick testing of the remaining (and more interesting) functionality.

25

Connect
Service
il
—1 1. Choose the Newton: [Jimni Hendrix ¥ |
2. Choose the Soup: [Notes - |

3. Enter search text (optional):

LlamaShare

Gopher 4. Build search list;

. 5. Select the desired information:

Llara @ Cool Stuff - Here is what Gregory Abowd ... E
*f] @ LlamaShare notes - Just some notes to myself ... =
Py

» . @ Testing note - Here is some simple LlamaShare ... E

[Cancel]

Figure 5 - The Llama ConnectTo panel

3.1.1.2 Integrated organization

Once a mobileCyberltem is created, it behavesgactly like any of the built-in
Cyberltem types in that it can be placed intaoéebook, dropped onto a CyberButton, or
dragged to the Finder. All three of these methods provide the user the flexibility to organize
Cyberltems any way they choose.

The most common form of organizin@yberltems placing them imotebooks, is
also the most interesting. Cyberltems (and hence mobile Cyberltems) can be organized in a

Cyberdog notebook in any way the user wants, illustrated by Figure 3 dthave.are no

26

limitations or restrictiondased on protocols, axist in Netscape Communicator and
Microsoft Internet Explorer. If a user wants to create a notebookneitvsgroupslJRLSs,

email addresses, and notes from a Newton, they are perfectly free. Another difference from
the traditional “bookmark list,” which Cyberdog’s notebooks are traditionally compared to,
is that ausercan have multipleiotebooks. This allows single notebook to havall the

items related to a particular topic without being overcrowded with allRies from other,
non-related topics (&pical problemwith bookmark lists inbrowsers). Forexample, a
usercan have anotebook containing everythirrglated to ameeting, includingthe notes

taken on the PDA, the email addresses of everyone in the group, a web page containing the
project being discussed, and a newsgroup for group collaboration after the meeting.

Along the samdines, Cyberltemsan also beplaced intoCyberButtons with drag and

drop. These visually programmed buttons ogbka specified Cyberlterwhen they are

[0 =——— Cyberdog DocBuilder | =——"———[0 &

One-Touch Access To People's Calendars

() <) ()

My Calendar Gregory's Calendar Micole's Calendar

L

~—+

Figure 6 - A document with CyberButtons. This is just an example of wh3a
is possible

27

clicked. CyberButtons allowsers toorganize single references to mobile information
directly into documents, where an entire notebook would be inappropriate. Fighmvé
a document which allowsne-click access to calendar informatistored onmultiple
MessagePads.

Finally, Cyberltemsan be dragged into tieinder andare saved as files in the
folder in which they are dropped, illustrated in Figure 7. It is important to note that only the
pointer to the information is saved on the disk, not the information itself. This allesvs

to organize mobile information as files alongside other files on their desktop, which may fit

| EﬁThESiSEE
T iterns 1.2 GB in dizsk &22.1 MB available
___ il
SE hnd
LlaraShare web page relevant email
R &)
The=iz Outline To-[no list
Figqures Chapters
Gregory dbowd =
4] I
Figure 7 - Organizing Cyberitems on the desktop

28

more easily into aiser’s perception ofhow their information isdistributed.Making no
assumptions as to that statement igue, the opportunity iscertainly presentedallowing
the user to organize information however they choose and not the wsegleresented by

the system.

3.1.1.3 Integrating Mobile Information into documents

We still have yet to go beyond “accessing” information, whigh synchronization
model can handle, even though it doesh@dp with organizinghe information. The next
stage in integrating mobile information into thesktop is to physicallyntegrate it into
desktop content, such as a word processing document. Fortusatedywe aravorking
within an OpenDoc environment, this is simple for users to accomplish.

Cyberltems can be embedded directly witBipenDoccontainergsuch as a word
processor) just by dragging the Cyberltem from a notebodkeatesktop and dropping it
onto a documeniThe Cyberltem is opened and the content is displayed directly in the
document at thenouse location, anthe result isshown in Figure 4Notice that theuser
does nothave toworry atall about whether or not the content is in @steptable format
because the container caeceptanything. As long ashe appropriate viewer part is
available todisplay theinformation,the user does ndtave to bother with translating the
mobile data to a form which can be understood and manipulated by the application.

In addition, mobile data can be editedpilace, and changese storeddirectly on
the mobiledevice.There is no need to repeat the synchronizgpiatess to return the
updated information to the mobile device. Along the same lines, since the display part also
keepstrack of the Cyberltenused to displayhe information, each time thelocument is
opened (or wherthe user explicitly hits “reload”), the documentioads the updated

information directly from the mobile device. As a result, the user alwdgsacts with the

29

most up todateversion oftheir information,again without having t@ynchronize. If the
mobile device is not available (i.e., not connected tongtevork), aread-only snapshot of

the information is presented to avoid getting out-of-sync, but still allowing the user to view
the most recent information.

Essentially, a user is noWee towork with mobile informationusing the same
interactions as if it is locallgtored.Since the information is edited and viewed in-place in
the documentthe usermay not even be awatbat the informatiorresides on anobile
device. Thisinterface demonstratékat there is no need to force the complicatiegps of

synchronization upon users.

3.1.2 The CyberDesk Environment

CyberDesk is a Java-basedoject developed byWood, Dey,and Abowd at
Georgia Tech [8]. One dhe goals is to provide aarchitecturefor application integration
in which applicationgan automatically take advantage of s®vices provided by other
applications in thenvironment. These servicean makeuse of bothlocal information,
such as a@alendar or a contaotanager, ofnternet informationsuch as searching for a
phone number with SwitchBoard or findiralj web pagescontaining a texstring with
AltaVista.

Unlike Cyberdog, whichtakes the approach of givireach piece of information a
physical representation on thieesktop, CyberDesk allows user to search a nebulous
information pool of local and Internet informationresponse to queries basedtbae text
selected in a CyberDesk-aware applicatsumch as aremail application. For example,
when the user selects aperson’s namethey areprovided the option tolook up that
person’s phone number on SwitchBoard, fihdir emailaddress on WhoWhatWhere, or

perform a generic search for their name on AltaVista. The actions which a user may take are

30

~—————————————————————————————————————

= ==
£y

Lookup Mote For String using new ton, Newtc:-nl

SUBJECT: Future Search For String using fltalista |
FROM: Andy Wood -
TO: CyberDesk - cy Lookup Info For String using Newton |

DATE: Wed, 11 Sep
Lookup Email Address For Name using 'whowhere |

MESSAGE: , :
Lookup Phone Number For Name using Switchboard, Newton |

Hey Anind! gl Untrusted Java Applet Mindow

Have you seen all the great stuff that GREGOrYEROwE 2nd

Chrig &tkeson are doing with their Future Computing
Environments projects?

“Wou can get more info at: httpeohssasicoogatech.edusdfces

Andy...

Figure 8 - CyberDesk ActOn window

dependent on the type of data selediedme, URL,email address, etc.and appear
unobtrusively in a separatendow called the"Act On” window, shown inFigure 8. In
addition to searching thénternet, the user is given the option to displayontact
information from the locally-stored contact manager if a CyberDesk axgatact manager
is also present. In thiway, CyberDesk blurghe distinction between locand Internet
information services.

Since CyberDeskvas such an opearchitecture, itwas simple (an afternoon) to
add a service which additionally searches a mobile device for the selected information. Two
applets, one for displaying notes and anotbedisplaying names, wengritten to allow
users to browse information residing on a Newton (see Figure 9).

Users now only need to learn one interaction model (select text, click ActOn button)
to access information stored locally, on the Internet, or on a mobile device. This blurring of

the boundaries, emphasized by the lack of physical representations whicéattéraion to

31

Abowd, Gregory

Abowd, Cregory la01 atlantic Dr.
atlanta, GA 30332

{Home: (40432330000
Work: (404)5334-12354

Figure 9 - A CyberDesk viewer for Newton names

the actual location of thelata, simplifies the number ofsteps necessary taccess
information and makes thectualsourcesmore ubiquitous tahe user. Furthermoresince
that information is retrieved based on tieer’'scontextduring the completion of aask, it
is seamlessly integrated into the task itself.

In order tocompletely hide the location of the informatifsom the user, wehave
proposed &hange to thevay CyberDeslcreates theActOn buttons (which is currently
being implemented). In the existisgstem,CyberDesk creates one button in #hetOn
window for everyapplicableservice,evenwhen different services produce similegsults
such as looking up a phone number. As a rethdtuser musmanuallychoose between
the actionsbased on where they thirtke information is locatedfor example, aocal
contact manager, the Internet service SwitchBoard, or the Newtoaghi@ve the goal of
concealing the information’s true location frdhe user, we propose toombineall action
buttons which provide a similar service into a single buttbich, whenclicked, searches
all information spaces simultaneously. While tlsgrmay get multipleresponseganother
issue to be resolved itme future), they no longer need to be consciously aware of the

location of the information in order to access it.

32

What do the above applications demonstrate? Nopbrtantly, they demonstrate
how powerfulremoving the barrier between mobile information andrdst of auser’s
information carbe. Once auser'scomputing environment is opened up to inclatlethe
information to which they have physical access, they are empowered to use all the tools and
devices available to complete their task, whether it is making a madirte a colleague or
writing a summary of their last meeting. Nobody doubts the overall gains which integrating
Internet information intoour desktops has providednd mobiledevices, which hold

important information not available on the Internet, are no different.

3.2 Collaboration among mobile devices

The previousapplications focused solely dhe mobile device acting aspassive
server, answering queries for information already stored on it and returning the information
to someclient somewhere oithe Internet. This is onljhalf thestory, as amobile device
should be able to act a client in its ovight, requestingnformation fromthe environment
to present to the deviceisser. Mobile, multi-user,collaborative applications have not
become prevalent because the infrastructure was never available. Now that dmerevie
can begin to explore the possibilities.

This section provideswo such applications which allowusers with Apple
MessagePads toollaborate with other MessagePaders aswell as one-to-one with

desktop users.

3.2.1 CyberGuide

Our first mobile groupwareapplication isbased on CyberGuidenother project

here in FCE which uses PDAs @ambile tour guides in an unconnected environment. The

33

user can use the device to access information on particular items of interest in the
environment, such as demos, exhibits,tlee neighborhood pub (see Figuf®).
addition, each PDAhas access to sonsxternal positioningsystem(GPS for outdoor
operation, IR beacons for indoor use) arah report thaiser's position inrelation to
objects in the environment on raap. Since the devicknows where it isand other
informationsuch aghe currentime, it can answer queries such as “when dbave to
leave for the next scheduled demo?” and “which bars are still open withile &and serve

Guiness on tap?”

Unfortunately, each device is totally isolated dra$ no way to share information,

CyberGuide

= =

GYU Conference Room

—

You are in front of the CyberDesk demo

] Iy

DO DLV DO DE3 O

MNames Dates Extras v Undo Find Assist | Names Dates Extras v Undo Find Assist

| Connect | | Setip]| Quit |} UT IN

Figure 10 - CyberGuide & CyberGuide Il

34

such asthe user’s locationEnter LlamaSharewhich provides an infrastructure which
allows mobile devices to publish and request information. The new version of CyberGuide
(dubbed CyberGuide Il) allowsachuser to sedhe location of every otharser in the
environment. For small locations, such as a single room, this application doesn’t make a lot
of sensebut in a larger environmensuch as arentire building or an entireampus,
knowing the position of your children or the tour bus would be very useful.

CyberGuide Il works through a combination of desktop-based and Newton clients.
Our positioning system uses several cameras to determine the location of all the IR beacons
in the environment, where a UNIX-based server collects, interprets, anthegitsitions
out a socket to thinternet.Another clientreads fromthat socket and writegach of the
positions to a Globaboup (aLlamaShare construethich acts as a globalgadable and
writeable database, similar to “soups” on the Newton). These compamerllsstrated in
Figure 11.EachNewton then, as a client, reads everyone’s positiomfaymation and
displays it tothe uservia the map on itscreen. Atthe sametime, the Newton is
responding to user taps time map to present information about objects of interest in the

environment.

camera TCP/IP TCP/IP
———————p> ————— b
IR beacons stub
etc
Positioning System “converter” LlamaServer w/ Global Soups
(Java)

Component of LlamaShare

Figure 11 - The server-side components of CyberGuide II

35

Finally, CyberGuide Il demonstratddamaShare’s ability toshare information
between mobile devices in a collaboratigavironment. Usersan enter their own
comments about each demwich aresaved into “GlobalSoups.” When auser visits a
demo, the comments for that demo amtomaticallydownloaded fronthe network tothat
user's Newtorand displayed. Thismechanisnprovides a verysimplistic form of group
communication, and can easily be extended to include more informationjubiam
comment, such asumericalratings. Furthermorethe comments can be reviewed from
desktop-based applicatioegther while thedemosare inprogress or laterafter thefact.
This application truly demonstrates LlamaShar#éxibility to exchange information

between clients from heterogeneous platforms.

3.2.2 CyberTALK chat

The CyberTALK projec{28] is an undergraduaf@oject designed to allowsers
on a mobiledevices, such as a MessagePadcammunicatewith other desktopusers.
Functionality includespaging, email, and, most interestingly, dtalk” program which
allows mobile users tocommunicatewith desktop users in aeal-time conversation.
Information is relayed between the two devices over the network, using “C3obak” as
message centers.

CyberTALK further demonstrates LlamaSharebility to share information
between heterogeneous clients. The desktop side of the chat program is written in Java, and
can be used within any Java-enabled browser. The mobile client is ioittarNewton in

NewtonScript. Both clients can freely send and receive information from the other.

36

3.3 Summary

This chapter presentefur applications, two orthe desktop and two on the
Newton, whichdemonstrate thpower andfexibility of the LlamaShare infrastructure to
share information between heterogenesystems.The two desktop-basedpplications
explore alternativeuser interfacesfor incorporating mobile information into existing
desktop or Internetontent. The mobile applications demonstrate the ability of the
MessagePad tact as a client in thenvironment, allowingthe mobile user to either
participate in group collaborative applications or communiséte desktop-based users in
real-time. The following chapter, Architecture, descrithesinfrastructure omvhich these

applications are built.

37

CHAPTER IV

ARCHITECTURE

This chapter covers the design and implementation of the LlamaShare
infrastructure. First, an overview tfe goals is presented, followed by awerall picture
of the components. After that is a discussion of marth@fruntime and storage details on
the Newton. Next, this chapter discusses the components of the infrastructure individually,
highlighting the functionality and the roleach pieceplays. Finally, it describes the
interaction between the differedomponents,including a detailedanalysis of the

communication and registration processes involved.

4.1 Goals

In order to provide a sufficient infrastructuaible tosupportthe rapid development
of applications whichake advantage of theharing ofmobile information, LlamaShare

needed the following characteristics:

* Platform and language independence for desktop-based clients
Most of the research beirdpne in FCE consists of Java-basgaplets running
through browsers on wariety of platforms. HoweverJibraries for the Newton
only existfor MacOSand Win95/NT. Furthermordhese libraries could only be

calledfrom C orC++, which greatly limitedour developmentchoices.The new

38

infrastructure should banguage independent and allow clientsua on more

platforms.

* Ability to access more than just the device tethered to a workstation
To facilitate the sharing of information between users and their mobile devices, each
client needed the ability taccess more than juste device attached to theser’'s
workstation by a serial cableThat way client applicationscould read and
manipulateinformation, such asalendardata, from avariety of devices.Without
the ability toaccess more than the single mobile device autie’s desk, such
groupware applications would not bBble to take advantage of mobile information

like they do with other information.

* Mobile devices are clients which themselves request information
As we developed the LlamaShardrastructure, itbecame clear that the mobile
devices shouléct asmore than just passive repositories of information. Desktop-
based groupwarapplications were interesting, but really pushthe paradigm of
ubiquitous computing required an infrastructure which allovaéddevices to
participate in theenvironment.Each mobile deviceshould be able to share
information with other devices as well as request that informé&tiodisplay to the
user holding the device. Having such an infrastructure would allow us to develop a

suite of mobile-based groupware applications with which to do research.

LlamaShare was able to address and solve all three ofgbate asiemonstrated

in the following section.

39

4.2 Overview

The LlamaShare infrastructure is comprised of treemponentsillustrated in
Figure 12:
» acentralized server called LlamaServer
» an application stub for mobile-based clients called MobileConnect

» an application stub for desktop-based clients called DesktopConnect

Desktop Application LlamaServer Mobile Application
—> —>
stub | €——] 44— stub
TCP/IP AppleTalk

D Shaded regions indicate components of LlamaShare

Figure 12 - Overview of LlamaShare infrastructure

The LlamaServer acts as a centralized traffip and overseesl communications
between desktop and mobile applications. To the desktop clients, it speaks TCP/IP in order
to provide language and platform independettésing TCP-basedommunications also
allows applications on angachine on the Internet to connect to the LlamaServer and
request information fronmobile devices. Orthe mobile side, the LlamaServespeaks
ADSP (the protocolsed by AppleTalk), which allowthe easy connection afnultiple

devices to the server. The LlamaServer also contains several “Globps” whichact as

40

data stores in which to hold shared information. Information can be read from or written to
Global Soups by both desktop and mobile applications.

Handling the communicatiorwith the LlamaServer on the mobiede is a stub
called MobileConnect. This stub can act in one of two modes: server or cliensehgea,
this stubcan receiveequests foinformation stored othe devicefrom the LlamaServer,
locate the desired information, and then return it over the network. As a cliestylthean
send or receive information between an application running on the mobile device and any of
the GlobalSoups whichreside on thé.lamaServer. In botlcasesthe stub isembedded
within an applicationvhich runsentirely on the mobilalevice. The application decides
whether it wantghe stub tooperate in client mode or gerver modebut then is isolated
from the details of the connection and communication.

Finally, desktop-basedpplicationsuse their own stub tocommunicatewith the
LlamaServer. Named DesktopConnebg stub provides an RPC-stytalling convention
to hide fromthe application the details of accessing informatweer the network. The
primary job of the DesktopConnect stub is to inflate the streaa@tructures read from

the LlamaServer over a TCP socket into “live” data structures.

4.3 Newton Overview

At this point, some explanation about how the Newton and its storage migthél
be helpful. The Newton (and itsapplication programming languadéewtonScript) has
some interesting features rfound in mostsystems. First ishe concept of dframe,”
which is similar to astructure, record, or class in mgsbgramming languages but is
dynamic in that it can grow and shrink at runtime. Fraamestored in “soups” which are

similar to files except they are indexed and searchable via an API.

41

A “frame” is a container, like a struct in C, with typed fietddled “slots” that hold
the data. Framesanalso be nesteddowever,unlike structs which have a predefined (at
compile time)structure, drame is free to gainew slots andhange its overall structure
dynamically, demonstrated in Figule. Also unlike structs, slotsare not accessed by
compiler-determined byte offsets but by name, whidiéskey factoithat allows them to
change structure dynamically. Asesult, slotscan be added to an existing frame without
disrupting its usage by application thadoes noknow about thenew slotsbecause the
application makes nassumptions abotile exacttructure of thdrame. Finally,all type
checking is done at runtime so each slot is tagged with an apprappetevenwhen it is

stored persistently.

f={ f={
a: “hello”, newSlot: “This is new”,
b: 27, a: “hello”,
c:{ b: 27,
foo: “Test”, c:{
bar: “More” foo: “Test”,
3 bar: “More”
d:‘c 3
} d:‘c’
}
Before After
f.newSlot := “This is new”;
Figure 13 - A frame, before and after adding a slot

Framesare stored in “soups,’named for their ability to hold frames with
heterogeneous structures (think of a soup as the “Great Data Melting Pot”). Somoseare
analogous taminiature databases &mchsoup holdsall of the frames for aparticular

application.For examplegach note createdith the Newton’s NotePadpplication is a

42

single frame and the entire soup, called “Notes,” con@lirthe notescreated by theiser.
Contrast this with the typical file system of workstations whichuld have a separafée
for each noteand no common locatiofor data (files can bespread anywheranaking
locating themdifficult). Since all information for a particular application is co-located,
indexing and searching are both very easy. Each soup can have indexes othasjots
present in the frames of tl®up which speeds wgearching significantly, judike in a
database. Furthermore, API's are provided for searchswup using aariety of criteria
ranging from any frames containirgertain text toframeswhose slotmatches certain
criteria. This functionality is nonexistent in magtsktopOperatingSystems ananakes
serving mobile information from the Newton possible.

LlamaShare extends the#ea of soupswith “Global Soups” (se€Section4.4 for
more about Global Soups). Like their Newton hamesakes, Giuhals store frames, but
instead of residing on a particuldevice, a GlobaSoup resides ithe LlamaServer. As a
result,the GlobalSoup isuniversally accessible tall devices in theenvironment, both
mobile and desktop.

The librariesused tocommunicate between tliéewton andthe LlamaServer are
also worth explaining. The Desktop Integration Libraries (DILS) [29] are C libraries written
for MacOS and Win95/NT which are divided into two laygisown in Figure 14). At the
lowest layer are the Communication DILs (CDILs) which are analogous to send and receive
calls, used to send messapesk and forth betweehe Newton and a desktop machine.
The LlamaServer uses the CDILs to send small messages to the Newton such as the request
command and to acknowledge the receipframes.Built on top of the CDILs are the
High-level Frame DIL{HLFDILs, or just FDILs). Asthe namesuggeststhis layer is a
higherlevel protocol which encapsulatéise sending of arentire Newton frame between
the desktop andhe Newton. Additionally the FDILs hide the process offlattening the

frame for transmission and reinflating it at the other end.

43

Application

FDILs

“‘DILs”
CDILs

AppleTalk layer

Figure 14 - Layers of the DILs

The FDILs use a process called “binding” to establish a one-to-one correspondence
between a C data structure and a sldhenreceivedrame. Before transmissioeachslot
in a frame isbound to apre-allocatedbuffer spacdor the slot. This is fine when the
applicationknows exactly which slotsare part of the incomindgrame, but frames are
allowed to have additional slots which the application might not be aware of. To handle this
unexpected information, named “unbound data” because it has not been explicitly bound by
the application, th&DILs create anulti-way treewhereeachbranch is an unbounslot.
Whetherbound or unboundhe type information associatedth eachslot as well as the

slot names stay with the frame even after it crosses into the desktop world.

4.4 LlamaServer

The LlamaServehas twomainroles inthe LlamaSharénfrastructure.The first is
to provide a connection between desktop-based applications aolieetion of mobile
devices.The second is t@ct as astorage location, allowingnobile devices andesktop
applications to collaboratdirough shared informatiorepositories. Both othese roles
enable the development of content-righplications, hosted on both workstations and

PDA’s, which can leverage a combination of local and mobile information.

44

Desktop Application LlamaServer Mobile Application
—> —P
stub | —— 44— stub
TCP/IP AppleTalk
D LlamaServer
Figure 15 - LlamaServer's position in the infrastructure

Primarily, the LlamaServer is dridge. Most desktop-based applications use
TCP/IP forinter-application communicatiod.CP/IP allowseach participant to be written
in different languages and execute baterogeneous platforms yet still l@ble to
communicate. If desktop-based applications were given access to information stored on
mobile devices, TCP/IP should@ontinue to be the protocaltilized to accessthat
information for the sake of ease of programming aocohsistency. None ahe mobile
devices weworked with, howevergould handlelTCP/IP easily which requiredhat other
protocols be adopted in order get them on thenetwork. The easiest protocdbr our
purposes was\DSP (AppleTalk) sinceour existing networkalready supported it, the
MessagePad supported it without any additidraalbware.and wireless suppowas easy
to achieve. Without a bridge betwetne two protocols, desktoppplicationswould lose
the language and platform neutrality provided by TCP/IP, which was not acceptable.

As a result, the LlamaServerspeaks both protocols andnanages the
communications between theo separatevorlds. When a command comes in from a
desktop clientthe LlamaServer checks its internal list of currently connectetbile
devices and then sends the appropriate command to the requested NewtdimeuSing.s

(see Appendix A for a full listing afommands)The response fronthe Newton, inmost

45

cases, is a frame which is then read by the FDILs over ADSP. Since the server is reading a
frame of unknown origin and content, it cannmkeany assumptions abotlte slots and
must therefore reatthe entire frame asnbound dataThe LlamaServer then flattens the
unbound frame, turninghe recursiveree structure into a byte stream capable of being
transmitted over TCP/IP where the byte stream is read in by the DesktopCsinbeand
reinflated into a proper data structure. This exact interaction will be covered in Segatjon
Intercomponent Communication.

The process of flattening the unboutmtadeserves some explanatidrhe FDILs
handle the protocol of flattening the frame and subsequently inflating it arestkéop side
internally, which meanghere is no API to easily dat. Even if therewas, the
DesktopConnect client stub would then be dependent on the FDhftate the data at the
desktop application, which wouldnce agairimit the language and thplatform. As a
result, the LlamaServer uses its oflaitening protocol tesendthe unbounddataover the
Internet.

Flattening the unbound data uses a recursive protocol (see Figure 16)nakeh
heavy use of tags (character strings) as markers to indicate the structure of the frame within
the bytestream.Each framebegins withthe ‘[ENTR] tag indicating the beginning of a
new frame and ends with [ENDF]’. In between coneeshslot sent in order (though the
ordering is arbitrary) marked by a ‘[SLOT] tag and ending with a ‘[END&]. Between
these two tags comes the definition of the slot, consisting of an integer representing the data
type, the name of the slot, and the slot datarfif). If the slot contains only a simplkgpe
(such as an integer or a character), the tag ‘[NCHILD] is inseindatating thebasecase
of therecursion to follow,and the nexslot is sent irturn. If theslot is a framethe tag
YCHILDJ] is used toindicate thatthis slot contains a nested frame. At thi@nt, the
nested frame is sent using the same format as desgprieeidusly. The nesting continues

until all slots are leaves (which must happen at some point) at which point the final [ENDF]

46

Start

[NCHILD] GENDS] »

[YCHILD]

Figure 16 - Diagram of flattening protocol

for the nested frame imserted.The next top-leveklot is flattened in similarfashion.
Finally, when all top-level slots are flattened, the top-level [ENDF] is inserted into the byte
stream indicating the end of the definition of fr@me. Anexample of the byte stream
created from flattening a slot is shown in Figure 17.

Just adrames are flattenefbr transmission tdhe DesktopConnedtub, frames
intendedfor the Newton (originating fromthe desktopapplication) must be inflated and
boundinto aDIL object inorder to usdghe FDILs. The DesktopConnedtub flattens the
frame using the same protocol described above, which makes the byte stream easy to parse.
The difficult task is then building boundDIL object from the incomingstream. Again, a
recursive process is used. For each sldhénincomingframe, the algorithmaddsanother
level to the recursion if it is a nested frame, stopping when it reaches a simple data type (the
base case of the recursion). The frame is then bound from the bottom up, one slot at a time.
As each slot (nested or not) is built frahe bytestream, it is bounéhto its parenusing
FDIL routines. When all slots #te toplevel arefinished,the DIL object is complete and

ready to be sent to the Newton or stored in a Global Soup.

47

f={
a: “hello”,
b: 27,
c:{
foo: “Test”,
bar: “More”
h
d: ‘hi’
}

[SLOT]
a hello [NCHILD]
[ENDS]
[SLOT]
b 27 [NCHILD]
[ENDS]
[SLOT]
¢ nil [YCHILD]
[SLOT]
foo Test [NCHILD]
[ENDS]
[SLOT]
bar More [NCHILD]
[ENDS]
[ENDS]
[SLOT]
d hi [NCHILD]
[ENDS]
[ENDF]

Figure 17 - Byte stream produced from flattening

The other major function of the LlamaServer is to providerdralrepository for

shared information tdacilitate the creation of collaboratiapplications between mobile

devices. Just as soupse localrepositories for Newton framekJamaShare’s “Global

Soups”are globally accessiblepositories accessible from both desktop applications and

mobile applications.The servercanhold an arbitrary number of Glob&oups,but each

must have its own unique name as that is how the soup is referémgedevice may add

to or read from a GlobaSoup, which enables applications to share information by

publishing it to a common locatioRurthermorejnformation in a GlobalSoup persists,

even after a devicédnas disconnected fronthe environment and itocal soups are

inaccessible.

48

Each Global Soup consists of an unordezelection of framestored inmultiple
representations. laddition to thedata,each entry isalso tagged witthe name of the
Newton from which itcame(the tag is empty if the frame originatém the desktop).
This allows queries to returall the frames originating from one particuldevice, and
might be used as the basis for a singalehingsystem. Currentlyeach frame istored in
two ways due to limitations and bugs withive FDILs: aboundDIL object which can be
transmitted to thé&lewton usinghe FDILs, and a recursivelatastructure whichcan be
flattened for transmission over TCP/IP to a desktop-based dHemtever,memory is not
an issue within the server so this is not really a problem.

Supported commands on the Global Saup currentlyery limited. Both desktop
and mobile clients can add frames to a Gl&alp, clear the entir&lobal Soup, read the
entire Global Soup, and atomically read and clear the soup. The last command is useful for
making sure a device gets all the contentssugpbefore clearing it (indicatinthat it has
seen everything there) and that no reaviries sneak in betwedine “read” and théclear”
operations. Currently, there is no way to replace or update individual enttlessioup or
do arbitrary queries such as what is possible vaghNewton soupsThe nextversion of
the Global Soups will add introspecticapabilitieswhich facilitate indexing and updating
based on information stored within individdedmes. Regardlesthe currentlysupported
commands arenough to build simpleollaborative applications and allow us to do
research on groupware applications.

A good example of mobile collaboration is extending CyberGuide [3] to allow users
to share their comments about particular exhibits or demos. The conforezdish exhibit
would be stored in a Glob&8oup.When auserdecides to request modketail about a
particular exhibit, CyberGuide reads the comments fiteenGlobalSoupand displays the
onesrelevant to the current exhibit to tiser. The user would bdree to add their own

comments to the pool for the benefit of others in the group.

49

The LlamaServer is written i€++ using PowerPlant [30], &acOS-based
application framework which provides not onlgerinterface components batso thread
and networking classes. The server is highly threaded, allowing it to prosebstantial
number of requests simultaneously. Every connection, whethemntobée device or a
desktop application has its own thread which allows requegirocessing to overlap,
improving overall performance when the load gets heavy. However, the limits of the server
have yet to be strained by our simple applications and the server has not been optimized for
speed. Future workvill gather statistics on throughput with varying loads and varying

scenarios (wired or wireless) .

4.5 MobileConnect

Desktop Application LlamaServer Mohile Application
———————» —p
stub | 4— <4—— | stub
TCP/IP AppleTalk

D MobileConnect stub

Figure 18 - MobileConnect's position in the infrastructure

The Newton can participate in the infrastructure ame of twoways, either as a
client or a server. The software which handhes communications argrotocols is a stub
called MobileConnect containedthin the currentlyrunning application(see Figurel8).
The stub module has a simple external API and implements both client and server behavior,

albeit in mutualexclusion. To addthe capability to participate in the LlamaShare

50

infrastructure to a mobile-based application, a developer siagigthe MobileConnect
module to the application and makes a handful of funa@is. Once thestub hasbeen
initialized, the application can then eitlsarve information stored dhe mobile device or
read and write information to Global Soups stored on the LlamaServer.

As a client, the applicatiorunning onthe mobile devicdias access to any of the
Global Soupsand the information contained withiimem. To sendnformation to the
Global Soupthe application calls a function on the MobileConrstab, passing &tame
consisting of which soup to access, the list of frames to store, and a callback function to be
called when theransfer is complete. This frame is illustratedrigure 19.The stubthen
transparently handles the communicatiaith the LlamaServer, sendintipe objects to the
specified Global Soup. When all the frames have been transmitted, the mobile application is
notified throughthe callbackfunction. Retrieving frames from a globabup is roughly
analogous, except that instead of passingreay offrames,the “frames”slot will be the
destinationfor the incoming frames . Iboth casesthe application is unaware eactly

how the frames are transmitted (which is covered below in Section 4.7).

local clientSpec :={
soupName: "Test Soup",
frames: [{a: "a", z:55},
{c:"c", qqg:{foo:"hello", zebra:"zzz"}},
{e:"e", ee"ee", eee"eee"}],
onCompletion:
func () begin
print ("****Client is finished****");
GetRoot():SysBeep();
end,

3
fFSM:StoreFramesToGlobalSoup (clientSpec);

Figure 19 - A clientSpec frame for sending frames to a Global Soup

51

The application running on the mobile device e#so configurehe stub toaccept
and respond tdncoming requests forinformation stored onthe device. After the
applicationputs the stub into servermode, nomore interaction is needed between the
application and the stub, which reads from the network in the background and processes its
own events while the application’s user interface is idle.

When acting as aerver,MobileConnect handles several different access methods
for mobile information on the local device. The most flexible is a text-bssmath, which
searches a givesoup forany frame containing thprovided text.All frames with the
matching text are returned. The next method, which works well in conjunction wittxthe
searching,are “overviews” which are one ortwo line descriptions ofall frames in a
specified set. This set can either be an entire soup or the resultpetheuslymentioned
find query. The overview is quite useful for allowing usergu@kly scan a large volume
of information in context, without having to transmit and display all of it dwenetwork.
Once the user decides whiframe they are interested, it can be loaded explicitlysing
the final access method. A particular entry on a mobile device can be requestadgoiys
“Resource Id,” an id unique to each piece of information on a device

Resource id'sareassigned t@ach frame in aoup bythe MobileConnecstub at
certain well-defined times, the most common being when the frame is trandnoittethe
Newton tothe desktop. Resource id'are also addedvhen framesare receivedrom a
desktop-basedpplication and are to tsored in asoup. Finally frames are tagged with
their id when an overview is requested in order to allow applications to request an overview
first, then the desirettame after thaise hagicked the one they are interestad saving
both time and bandwidth. At thene theframe istagged,the frame is written back to the

soup and is, as a result, permanently modified.

2 this is different from the Newton’s “_uniqueid” slot in that it is actually unique across all stores, both
internal and card, where the system uniqueid is not.

52

Due to the flexibility of frames and soups, modifying a frame to addetbaurce id
slot does not affect any other application whidesthe frame. Applications are not aware
of any slots which they do not explicitly use in the program, so newnabpisbe added at
any time without causing a disturbance. Furthermaiace applications written to use
soups don’t rely omoyte offsets andixed-size recordsvhen writing andreading a file as
done most traditional desktop-based applications, changing the framesioufh&oes not

wreck havoc by disturbing the carefully predetermined alignment of records.

4.6 DesktopConnect

LlamaShare enables the rapid developmentiegktop-basedlient applications
which take advantage of mobile information Ipyoviding libraries which abstract the
process of requesting anceceiving mobile information to a functiogall. The
DesktopConnect libraries, shown in Figure &f& writtenfor a particular language or OS
and encapsulatall of thelogic required to communicateith the LlamaServeiover a
TCP/IP connection and package the resulting mobile information into a structure suitable

for the current development language.

Desktop Application LlamaServer Mobile Application
—> —>
stub | €—m <4— | stub
TCP/IP AppleTalk
D DesktopConnect stub
Figure 20 - DesktopConnect's position in the infrastructure

53

A single generic library which could be used regardless of the language or platform
is not feasible because there is no consistetworking API which coverall platforms.
Even within a single platform, different languages can vary greatly in their requirements on
the runtime architecture andeeting all ofthose needs from one code bageuld be
impossible. However, whave already builstubs tohandle several of the more common
languagesincluding C++ and Java. Wecertainly get themost mileageout of the Java
library, which allowstrue cross-platform development and finallows application
developers interested in taking advantage of mobile information to use UNIX.

Accessing information from angnobile device in the environment is aasy as
making a function call. The API providesgnchronous, RPC-stylgalling methodwhich
hides the complexities of writing client-server code, such as asynchronous callbacks, from
the application. In the Jav@ase,the function calls return dava Vector, which is a list of
objects, one for each piece of information retrieved from the mobile device. The application
only has to iterate over this list to access the information.

Internally, the library communicatewith the LlamaServeover TCP/IP. It sends
and receives information using the protocol detailed in the next section. The most important
role of the library is to inflate the frames as tweneacrossthe network. Recall thatwhen
the LlamaServesends frames, iflattens themfor transmission over TCP/IP using a
recursive protocol whichutilizes tags toindicate different attributes of the franfsee
Section4.5 for acompletedescription of the format of theutgoing bytestream). The
DesktopConnect library reads the incoming byte stream, interprets the tags, and creates data

structures through a process which is effectively the mirror of the flattening process.

54

f={

name: f
data: nil
a: “hello”, type: Frame
b: 27, children: 4
c{
foo: “Test”,
bar: “More” D ENENE
d:hi name: a name: b name: ¢ name: d
data: “hello” data: 27 data: nil data: “hi”
type: String type: Int type: Frame type: String
children: 0 children: 0 children: 2 children: 0
[1 1 1 [1 1 1 N [[1 1
name: foo name: bar
Jata: “Test” data: “More”
type: String type: String
children: 0 children: 0

Figure 21 - Desktop representation of a Newton frame

The difficulty lies representing the frames, whete hierarchical datstructures of

unknown format, size, and content, ifioamat easily accessible by programmersniore

static languages such as C++ or Java which do not support dynamic structures. In Java, for

example, each Frame class consists geetor (Java’'slinked list container type) of other

frames, which represent the information stored in the slots of the parent frame, as shown in

Figure 21. Inotherwords, aFramehas dlist of childrenFrames, whiclthemselves can

have theirown list of children Frames, ad infinitum.The recursive structure finally

terminatesvheneach frameconsists of onlyjeaf datatypes, such as strings or integers.

These leaves are represented as Frelasses with no children, and insteashtain the

actualdata.Frame classes whidctuallyrepresent internal frames contain actual data

besides the children representing each slot (and thus have a nil data slot).

55

As with any information an application expects to interpret, it must know something
about the information before it can proceed. Static languages such as C++ and Java rely on
knowing the structure of the information abmpile time inorder to usebyte offsets to
impose a structure on an arbitrary streanbydes. Frames othe Newton behave much
differently since their structure can changgbitrarily, without the knowledge of the
application. Consequently, ampplication interpretingNewton frames ornthe desktop
cannot rely on byte offsets to access certain attributes withinatme, and mustely on a
different approachknowing the names of the desireslots. The LlamaShare library
provides routines to inspect Frame objectsldgating and returning the Franwass

representing the requested slot (see Figure 22 for an example).

import llama.NewtFrame;
import llama.MobileConnect;

/l assume we have the frame in variable f

try {
NewtFrame ¢ = f.GetSlot (“c”);

NewtFrame foo = c.GetSlot (“foo”);
System.out.printin (foo.GetData());

}

catch (SlotNotFoundException e) {
System.out.printin (“Slot not found”);

}

Figure 22 - Java code to access slot f.c.foo in the frame from Figure pP1

56

4.7 Intercomponent Communication

This section covers the protocols between the different components described in the

previous sections. A typical request for mobile information goes like this:

1. A desktop-basedpplication makes a functiorall in the DesktopConneclibrary.
The library packages ansends over TCP/IRhe appropriate 4-letter command
(detailed in Appendix A) and its parameters to themaServer.The client

application is suspended until all of the results are returned, as with a typical RPC.

2. The LlamaServereadsthe informationoff of the network and figures out which
mobile device is the recipient of the command (this is pattieybarameters)Next,
it sends acommand over ADSP (AppleTalk) tthe appropriateNewton to the

MobileConnect stub, acting as a server, running on that Newton.

3. The MobileConned$tub collects the requested frames amhdsthem back to the

LlamaServer (flattening is handled transparently by Apple’s FDIL libraries).

4. The LlamaServer then flattens the frames into a byte streaseadd itback to the
DesktopConnect library where it is inflated back into a data structure. The frames are
put into a list(such as &ector inJava) and returned as parttbé normal return

mechanism of the initial function call.

57

4.7.1 The Registration Process

There are severgroblems which need to beddressed whemplementing the
communications protocol between the server and the desktomabile components. The

following issues motivated the final design:

» There is only a singl®gical connection to each mobile device thaeryone must
share. Unlike desktop systenmspbile devices do not generatyxpose OS threads
to user applications. As a resuttandling multiple simultaneous connections is

unwieldy.

» Information read fromhe connection to the mobile devicrist be shared between
the thread communicating with the desktop client and the thread communicating with

the mobile device.

» The mobile device can be a clientiia own right. The server must beble to
differentiate between a response to a query and a requéstofonation originating

from the mobile device over the same connection.

To this end, the LlamaServer implements a registration mechanisrardier to
maintain controlover the multitude of threads andhessages involved during any
transaction.

Inside the server,eachconnection, whether to a desktafient or to a mobile
device, is represented by a threadthfead associated witthe desktop clientcalled a

Desktop Thread, is created when a client application connects over a well-known TCP port.

58

Its main duty is to read and write information to and from a mobile device or a gimigal
over the TCP connection. Ahread associated with mobile device, called a Mobile
Thread, is created whennaobile device connects to the LlamaSemeer ADSP.Unlike
the more general Desktophread, its duty is to sit othe CDIL pipeand watch for
incoming data.

The registration process is helpful when these two varieties of threads must interact.
When a Desktop Threagants tocommunicatenith a mobile device (to request a set of
frames, forexample) itfirst locates the Mobile Threaaissociated witlthat deviceusing a
global lookup table, and then registers its interest by sending a “register” mes#agfe to
thread.The Mobile Threadeturns a uniquédentifier (called a “cookie” after identifiers

used in web servers) whictts to correlate incomingesponses fronthe mobile device

P

idle DesktopThreads idle MobileThreads

= IIIC»D @—>

app making query

device handling query

@ Desktop query awakens Desktop Thread
@ DesktopThread registers with appropriate MobileThread

@ MobileThread returns cookie

Figure 23 - DesktopThread/MobileThread registration process

59

R

idle DesktopThreads idle MobileThreads

T e 0 1 g

@ device handling query

@ MobileThread reads header information

app making query

@ DesktopThread reads frame off of pipe

@ DesktopThread sends flattened frame back to client

Figure 24 - Handling of response from mobile device

with the appropriate Desktophread.The Desktop Thread nesends thiscookie to the
appropriate mobile device alongth the command requestin@r sending)the desired
information and themgoes to sleepawaiting theresponseThis process idllustrated in
Figure 23.

When the mobile deviceesponds, itprefaces the framevith a header block
consisting of a tag and the cookie sent to ith®y Desktop Threaatho made theequest.
The tag, described in more detail below, indicates that this message is a response to a query
from a desktop client and the cookie identifies to which thread this information is intended.
At the server,the Mobile Thread, busywatching theCDIL pipe, notices the incoming
response and reads the header informatiorfand only the headerinformation). It

determines that the message is a response (by the tag) and scans its internal list of registered

60

threads to determinehich Desktop Threadhas this cookie, and signatkat Desktop
Thread to wake up.

The two threadsare now finished interacting, whichgreatly simplifies the
programming model. Once active, the Desktop Threachoandirectly read the incoming
dataoff the pipe, freeing theMobile Thread taeturn to monitoring the pipésee Figure
24). The Mobile Thread néonger needs tparticipate in thgrocessbecause idoes not
require access to the information requested by the De3kiogad. Thissimplifies the
programming model because only one thread has access to the data and avoids the necessity
for usingcomplicatedand error prone synchronizationethods, such as semaphores, to
coordinate access when passing shared information between threads.

The procesghen repeats itself until the communication is complete. If any more
information needs to be retrieved fraire mobile devicgsuch asthe next frame in the
requestedset), the Desktop Thread thegoesback to sleep and thwocessepeatswhen
the next messageith the same cookie comedong. When the Desktop Thread is done
reading information from thdevice, it sends atunregister’ message to the samebile
Thread where it registered before and then disconnects (or makes a new requeatjperl he
cookie is never reused, thus new requests require reregistration.

The aboveprocess handlethe casewvhere a desktoglient makes a request for
information from a mobile device (i.dVjobileConnect is irserver mode)but ignores the
situation where amobile devicewants to bethe client. Recall that there i®nly one
connection to any mobile device so atignt requests must go throughe same pipe as
responses to queries. Going the abovescenario, when amcoming message arrives at
the LlamaServer, some thread must be awakened to handle the information since this is not
part of the Mobile Thread'’s job -- only there is no Desktop Thread to wak@s a result,

several small enhancements need to be made.

61

As mentioned brieflybefore, weneed a special tag wistinguish a request for
information originating from anobile devicefrom a response to a query issued by a
DesktopThread. Toaccomplishthis, the header of every messagent fromthe mobile
device has, inaddition to thecookie, aspecial 4-letter tag that indicatés function:
‘RSVP’ for a response and ‘RQST’ for request.When the Mobile Threadees the
‘RQST’ tag, it must take another course of action. Instead of trying to wake up a registered
DesktopThread,the Mobile Threadorks a new threadsalled a Mobile ClieniThread,
which serves a&imilar function to the Desktofhread. Once created, this newhread
registers itself with the Mobile Thread who created it and then sends the new cookie back to
the mobile device. Any further communications from the mobile device now use this cookie
to associate themselves with the Mobile Client Thread.

As a result, the infrastructure can utilize the registration process for coordinating the
access to shared information between threads regardless of which side instantiates the
transaction. Not only does it simplify the thread interaction, it promotes code reuse in both
the LlamaServer and the MobileConnect components since b#feaviors and
communication protocols are consistent.

One final note. Even though the MobileConnect component on the Newton can only
process a single request at a tintlee infrastructure is present to handle multiple,
simultaneous requests over a single connection. This is sinliphtation of theNewton
applications not having accessniltiple threads,not of the LlamaShare architecture. In

fact, most commercial mobile devices would also have this problem.

4.7.2 Protocol In Detail: Desktop to LlamaServer

The following is a detailed description of the protocol between the DesktopConnect

library on the desktop side andhe LlamaServerwhen the client requests mobile

62

information. The scenario isvery similar when information is being sent to enobile

device.

1. A client applicationrunning on a desktop-based workstation instantiates a
“connection” object defined by the DesktopConnect library. The job ofothject is
to handleall communications between the application and LitsanaServer When
createdthe connection objeapens a TCRonnection to the LlamaServer on port

5000 (a pre-agreed upon port number).

2. The LlamaServer has a threatosejob it is to watchTCP port 5000 andreate a
new Desktop Thread when a new connection is requested fropothig he newly
created Desktop Thread m®w in charge of handling this connection ahd main

thread returns to watching the connection port.

3. The client application makes a method call of the connection object (or just a function
call in a non-object oriented language) to access information on a mobile device. The
client is suspended until the requested information has been totally gatherkid just

an RPC.

4. The DesktopConnestub sendshe appropriate 4-letter command to therver,
followed by anyapplicable parametersupplied bythe client applicationwhen
making the function call. The DesktopConnect stub blocks, waiting for a response to

the query.

5. On theserver, the Desktop Thread in charge of the connection to ctiest

applicationreadsthe command and the parametéram the network. It then

63

determines which server routine égecutebased orthe command and executes it.
In most cases,this involves communicating with mobile device to get or put
information (accessing Global Soups are the exception). If so, dhe parameters

will include the name of the mobile device to access.

. Theservermaintains a global list of connected devices whiohtains, foreach
device, a pointer tehe Mobile Thread ircontrol of that deviceand a semaphore
guaranteeing only one requeshy beprocessed at a tim&he Desktop Thread
scans thislist searchingfor the requesteddevice. Whenfound, it locks the
semaphore and then registers witle appropriatéviobile Thread (theregistration
mechanism is described in tpeevious section)The semaphore igseful because
MobileConnect camnly handle one connection attime due to limitations in the
Newton OS.Oncedevices provide bettesupport for threading, thiestriction can

be lifted and is not an inherent limitation in the server.

. Once registered, the Desktop Thread continues executing the requested command by
sending the appropriate 4-letter command to the mobile device alonthaitookie
usingthe CDILs. The thread thegoes to sleepawaiting theresponse (shown in

Figure 25).

... N bytes ...

Command Cookie Parameters

Figure 25 - Message sent from DesktopThread to mobile
device

64

8. When thaesponse arriveshe Mobile Thread wilwake upthe DesktopThread.
The Desktop Thread then reads tlaaoff the pipeusingthe FDILs. The frame is
read in as unbound data (see Sectich NewtonOverviewfor a description of the

FDILs and unbound data).

9. The Desktop Thread next flattens the frafeee Sectiod.4 LlamaServerfor a

discussion of flattening) and sends the byte stream to the client.

10.When the client receives the message, the DesktopConnect library inflates the frame
into a datastructure and stores it in lest. It then blocks, waiting for the next

message.

11. After sendingthe frame to the client, the Desktop Thread tellsNb&iton to send

the next frame, and goes back to sleep, awaiting the next frame from the Newton.

12.The process repeats until all the frames have fleaeh at whictpoint the Desktop
Thread unregisters itself. On the application side, the DesktopConnect library returns
the list of frames ithasbeen buildingusing the standard return mechanism for

functions.

4.7.3 Protocol In Detail: LlamaServer and MobileConnect (server mode)

The following is a detailed description of the protocol between the LlamaServer and
the MobileConnecstub whenacting inserver modeThese events are prompted by a

desktop client requesting information from a mobile device, described above.

65

R S|V|P ... N bytes ...
Tag Cookie Frame

Figure 26 - “Response” message received by LlamaServer

1. MobileConnect, when acting asarver,simply waits for commands ovéne pipe
between the LlamaServer and the mobdevice. When one comes in,

MobileConnect reads the command, the cookie, and the parameters.

2. MobileConnect then executes the particalammand,accumulating the resulting
frames into ararray. These frames are thesent,one byone, usingthe following
protocol: if there is a frame teend, sendhe string ‘OK’ (with the appropriate
header information). Otherwisesend the string ‘NO.” When this message is
received by thd_.lamaServer,the Mobile Thread willwake upthe appropriate
Desktop Thread to read OK &O. If NO, the Desktop Thread cleans up and
finishesthe command. If OK,the threadgoesback tosleep,awaiting the frame

itself.

3. The frame is then transmitted from the Newton to the LlamaServer thieeheader
information is again read by tiMobile Threadand the appropriate Desktop Thread
is awakenedThe Desktop Thread thaeadsthe frameoff the network using the
FDILs, then tells the Newton to continue by sending an acknowledgment string via

the CDILs. This message is shown in Figure 26.

66

4. MobileConnect themeadsthe ACK string and continuesntil there are no more

frames to send. At that point, it goes back to waiting for the next command.

4.7.4 Protocol In Detail: LlamaServer to MobileConnect (client mode)

When theNewton wants toact as aclient, things work differentlySince the
implementation of MobileConnect’s internalse afinite state machinebased on the
Newton’s eventmodel, control must be returned tthe main eventoop in order for
anything to happen. For this reason, synchronous RPC-style calling conveations be
used as they are on the desktop side. On other mobile devices, the MobileConnect might be
implemented differently, allowing the implementation of synchronous calls.

The following is a detailed description of the protocol between the LlamaServer and

the MobileConnect stub when acting in client mode.

R QI S|T ... N bytes ...
Tag <empty> Command Parameters

Figure 27 - "Request” message received by LlamaServer

1. The client application running on the Newton makes a call to the MobileConnect stub
passing a framegalled a clienspec,containing the information teend orreceive

and a completion routine to be executed when the communication is complete.

67

2. MobileConnect then sends a message, formatted with a h&adaf the others, to
the LlamaServer where the header is read byMbleile Threadassociated witthat
device. However, in this header, the tag reads ‘RQST’ instead of ‘RS\titlitate
that this is a new request for information, and not a passive response to a query from
the desktop world (see Figuig?). The Mobile Threadorks a newMobile Client
Thread to handle the interactionth the Newton andparticipate in the registration

process.

3. Thefirst order of business othe Mobile Client Thread is tgendthe cookie
(obtained by registering above) to thewton sothat any subsequent messages

from the Newton will be handled by waking up this thread.

4. The process ofreceiving frames is the same above, exceptwith the server
prefixing each frame with “OK” or “NO” to indicate if there aagy more frames to

follow. In fact, the same code can is used.

5. When the request is complete, MobileConstatesthe requested frames in a slot

provided within the client spec parameter calls the completion routine.

4.8 Summary

This chapter went intaletail about the major components of the LlamaShare
infrastructure (server, mobile stub, and desktop stubhamdthey interoperate. The next
chapterdiscusses why wenade certairdesign decisions regardirije architecture and

many of our assumptions about how it will be used.

68

CHAPTER V

DESIGN DECISIONS, HURDLES, AND LIMITATIONS

This chapter explains the rationale behind many ofddés#gn decisions arghows
how the devices themselves contributed to many of the problems encountered. Some of our
decisionsmight seemmarrow inthe overallpicture, but considerinthe limitations of the
devices we were dealingith, they make moresense. Many of thedecisions weregnade
because of rather stritime constraints, which forced a single course of actiBetter
solutions to thesessueswill be discussed ithe “Future Work”chapter. This discussion
will also expose manyimitations of the LlamaSharénfrastructure. Again, proposed

solutions will be addressed in the “Future Work” chapter.

There are 5 major design decisions, each introducing its own hurdles:

» Some information is kept permanently on the mobile device

» Mobile devices always connected

* A centralized server (LlamaServer) instead of point to point communications
* Client applications explicitly written to handle mobile data

» Assumes a homogeneous mobile environment

69

5.1 Some information is kept permanently on the mobile device

There aretwo ends ofthe spectrum in terms dfiow mobile devicesstore
information: thick clients and thiolients. Athick client, equivalent to aon-networked
desktop machine, holds all of its information permanentlydo®$n’t rely on any outside
source to constantly feed it data or keep it up to date. Thick clients are totally self-contained
units. A thin client, on the other hand, canlikened to aNetwork Compute(NC) which
relies on some other sourfm its programs and data. t#hin client islittte more than a
window onto information stored remotely.

Instead of trying to go witheither extreme, LlamaSharassumesthat some
information will be stored on the mobile device, but other information is required from the
environment in order to augment its view of therld. Thick clients, whichhave no need
to share an@cceptnew information,are of limitedusefulness in a world wheigeople
work with multiple devices. In afully connectedworld, thin mobile devicessuch as
ParcTab[18] would bethe best solution, butetail hardware (mostly PDAsare not
designed to be used asch. Achieving such a system with Newtons or Pilots would
require substantial development on top of the existygfems,and ignoreshe built-in
capabilities which already exist in these devices.

With the assumptiorthat somedata will permanentlyeside on the mobileevice
comes the requirement to be able to uniquely address information on these devices from the
desktop. This prompted the “Resource Id” solution described in Chapter 4, which assigned
to each piece of information on the Newton a tag uniquely identifying it odethiee. It is
apparent that the NewtonOS engineers did not have remote information addressimd) in
when they developed thélewton’s storagesystem.While the Newton doeshave a
“uniqueld” slot ineach framestored in asoup, it isunique only withinthe physicaktore

(internal or card) in whiclthe frameresides.The result ighattwo pieces of information

70

can actually have the same unique id on the sdemiee, one residingternally the other
on a card. This was unacceptable for purposes, abobileConnectwould beunable to
determine which piece of information the user wanted.

Our solution of using resource id’'s is nwbuble free. Since theid’s are added
without theknowledge ofthe NewtonOS,they cannot be totally reliedpon. One major
problem is that theesource id for angiven frame is only unique with respect to other
frames on a single devicdustbeaming a frame from one MessagePad to anetiller
cause major problems the beamed frame alreadias a resource ithat exists on the
destination devicelNot having accesgito the internals of th®©S, there is noway to
guaranteauniqueness whethe user transfergnformation using amechanism other than
LlamaShare.

Solving this problem requires one of two solutiohke first would be totag each
piece of information with more than just anndmber, such aappending theame of the
unit to the id. This would allowhe information to traveirom device todevice, whilestill
retaining itsuniqgueness. Howevethis situation breakslown quickly when two people
have the same name (the name of uker isthe name of theinit). Instead, wecould
append a serial number (uniqueetichMessagePad), but onlye newest MessagePads
have such a feature and this would not be@eguate solutiofor any other devicesuch
as thePilot. The second solution would be foatch the storagsystem ofeachdevice,
which is neither portable nor simple. Lobbying RIDA designers to support this kind of
tagging might be the best long-term solution.

Finally, framesneed to be given a resource id before tlway be accessed
individually. This“chicken before the egg” situation ¢aused, again, bipe fact that our
assignment of resource id&e based on using LlamaConnect, ribe OS. One way
around this shortcoming is to requést entiresoup (or an overview) beforehand which

will assign id’s to those frames which do abtady havehem. However this requires

71

sending everythingnce, whichtakes time. Amalternativesolution would be tdave an
application on the MessagePad which saaresy soupand updates theesourced’s, but
this would require user intervention. Again, obtaining OS support for thedéatiication

infrastructure LlamaShare needs is a must.

5.2 Mobile devices always connected

Obviously, amobile infrastructuravhich assumethat the devices wilalways be
connected has inherent limitations -- today. As we look towthelfaiture, connectivity is
getting cheaper and easier. Wireless communication is booming. Take laptops for example.
With digital cellular modems, users can go out into a field and still be onctirapany’s
Ethernet. Instead of spendirtgne on research where&ommunication is fragile and
transient, LlamaShare looks shortly into the future where these comacernst a problem
in order to address other issues regarding mobile computingimitatethis, LlamaShare
makes use of wireless technologies which allow devices to freely roam within a limited area
(50 meter radius).

The decision toassumethat mobile devices aralways connected to a shared
network wasmadefor severalreasons. Primarily, it assurelsat programmers writing
applications to take advantage of mobile data have immeatateuninterrupted access to
this information, which simplifies programming afatilitates the rapid development of
thesekinds of applications. Before developaran get a feefor what applications are
possiblethey need an infrastructure which makesng mobile information as simple as
possible. Otherwisghey too easily gebogged down irthe details and never get to the
interesting part -- the application.

Unlike tethering devices tdesktop workstations with serial cablegetting the

devices on thanetwork proved a muchreater challenge than anticipatétbboking up

72

tablet-sized devices to tmetwork was no problensince many of therwere Windows-
based and could take advantage of the same drivers/cards available for theicdagiop.
However, getting the smaller PDA’s on the network was more difficulwasbne factor
as to whythe MessagePadas chosen ovehe Pilot. Neither device could be placed on
our Etherneteven with add-orcards,and neither the MessagePadr the Pilot could
easily handlelrCP/IP (at most onlyvia a PPP connection)The MessagePad, however,
could do AppleTalkwhich allowed us to quicklyconnect multiple devices to the
LlamaServer overour existing network. Unfortunately, thidies LlamaShare almost
exclusively to theMessagePad, as mvher devicesise AppleTalk. Finally, the DILs do
not yet work with TCP/IP (whileghey do with AppleTalk), allowing us take advantage
of existing communication libraries to get the communication layer of the LlamaServer
completed quickly.

Using AppleTalk also allowed LlamaShare to quickly move from wired to wireless
solutions. The connectivity was initially developesing wired connections over olacal
EtherTalk (AppleTalkover Ethernet)network, but we recentlypurchasedNetWave
wireless access points [31] abdyna PCMCIAcards [32] forthe Newtons. The access
points broadcasEthernet over a very high frequency RF sigmdlich the wireless
PCMCIA cardscan access.The card’s driver readshe AppleTalkbundled inside the
Ethernet angrovidesthe Newton withthe illusionthat it isconnected While we would
prefer that the Newton did plain Ethernet, using AppleTalk gave us the opportunityko
in a wirelessmode much more easily than serslutions. Once theNewtons were
untetheredthe restriction to being fully connected didn't seem so impracticaljsass
could move around within a 50m radius inside the building and still be connected. Chaining
multiple access points together would yield an even larger roaming range.

Two recently announced developmentake us moréopeful about beingble to

move away from AppleTalkApple is adding Ethernesupport in it's2.0 release of the

73

Newton Internet Enabler (NIE) [33]. This will allow the MessagePad to speak TCP/IP over
an existing Ethernet network without having to resort to a dial-in PPP connection as per the
current solution. Also, PalmComputing has announced that its next version of theilPilot
also allow synchronization over TCP/IP. Exactly how the Pilot gets on the network has yet
to be disclosed. In any respect,msbile devices get more and maretwork-savvy, the

problem of being restricted to the MessagePad and AppleTalk vanishes.

5.3 Centralized server instead of point to point communications

LlamaShare utilizes a centralizegrver asthe contact point betweedesktop
systems andnobile devices,mainly to bridge the gap between the differaatworking
protocols used byhe desktop andmobile environments. TCP/IP haamost become a
ubiquitous standard fointer-application communication over both inter- antranets.
Most developers with experience in writing client/server applicafmnaccessingemote
information are familiawith TCP/IP. Even Javahasincluded TCP/IP-based networking
classes along with the core classes that comprise the language.

However, the LlamaShareerver doesnuch more tharact as asimple TCP to
AppleTalkrouter, which igmportant as the infrastructuraoves away from AppleTalk.
The LlamaServer isesponsible fomaintaining the GlobaSoups whichallow multiple
devices to share information in a collaborative environment. Without a central contact point,
this would not bgpossible.Additionally, the LlamaServeprovides a singleontact point
for multiple mobile devicesvhich may movearound, appearand disappear from the
environment. Having a fixed 1B&ddress for desktogients to connect téreesthe client
from having to worryabout wherdghe mobile device isvhenmakingrequests fomobile
information. The next phase of development (discussed in the next chapter),liakivgs

multiple LlamaShareserverstogether overthe Internet, providing seamless access to

74

mobile devices across the world by only having to connectstogde, relatively static, IP
address. With direct point to point communication, achieving this would be difficult.

The problem with any centralized system is that the point of convergence becomes a
bottleneck. In the current architecture, the LlamaServer is an obvious bottleneck since every
request and acknowledgment mpass through itDespite the performangeenalties, we
believe the extra functionality that a centralized server provides outweighs any performance
problems. Furthermore, the proposed extensiotiskanultiple servers ovethe network
relieves the burden of each individual server whikantaining the illusion of aentralized

server to applications.

5.4 Client applications explicitly written to handle mobile data

Unlike the synchronizatioomodel, which providesuilt-in translators from the
mobile device’s nativedata format tothose used by popular applications, no such
translation scheme is part of LlamaShareat means thatiserscannot justhook up
LlamaShare and expect to be able to read their calendar using Now UpToDate. Applications
must be specifically written tknow to requesthe informationfrom the LlamaServer and
then understanthe data formatised bythe individual mobiledevices. Webelieve that
having direct access, without forcing the user to pre-dowrdtadobile information prior
to using it, allows developers to write much more flexible and powepiplications which
take advantage of mobile information (CyberDesk [8] is one example).

There are two options for presenting sudlormation tousers: aeneric interface
which can handleall possible informationformats, or acustom application built to
specifically handle each different ddtarmat. The genericapproachtaken byprograms
such asRevelar Connection Utility24], allowsaccess t@ll Newton information in one

application, with a consistent interface. However, this interface givegmantic meaning

75

to the information angust displays it in its purest form - a skeleton of frames and slot
names. While all the information may be on tser's screenmnaking anysense of it is a
totally differentstory. Being so generic, tannot present the information in a meaningful
form. Custom applicationsyhile more difficult to build and more costly in terms of
development timegcan present information tasers in arich form which users can
understand.

The two desktopapplications presented by this thesis (see Chaptare8)both
explicitly written to understand Newton information and to access this information through
stubs which speak to a LlamaServer. While most (if not alth@fcommunicationvith the
infrastructure is handled vitubs,developers are still awatbat they are connecting to a
LlamaServer andhat the data thetub returns is Newtoimformation which requires
specialprocessing. Wéeel thatthis allows developers to write applications which makes
manipulating mobile information easi@r users byhiding theburdensassociated with
using suchinformation within the applicatiorBoth CyberLlama andur extensions to
CyberDesk illustrate how clients written smderstandnobile information provide a more
streamlined user experience than RCU and synchronization.

Finally, having an understanding of the mobile information allows the application to
provide more input to the infrastructure about informatlmat goes together. Systertike
Wit Il [15] and Odyssey [10] are investigating application-side extensions which allow the
underlying infrastructure tonake bettedecisions about caching ammtefetching. Such
optimizationswould be impossible to daell (if at all) for applications which were not
specifically written to understandthe nature of the mobile information they were

manipulating.

76

5.5 Assumes a homogeneous mobile environment

Several of theprevious design decisions pointddamaShare tousing the
MessagePad as the primary mobile device accessible lyfthstructure. Acombination
of easy networking (vigAppleTalk) and dynamiciatastorage (via thesoups)made the
MessagePad a perfect choice to prove the feasibility of the infrastructure amskthmess
of the applications.

One of the key features which made the MessagePad so attractive was the flexibility
of thesoups. Framedjeing dynamic imature,can be modified by addinglots without
affecting the application to which the frame actuakgtongs.Adding resourced’s to each
frame in asoup takes full advantage of this capability, attte applications on the
MessagePad which use this information are none the wiser becausarirggnply ignore
slots which they do not understand. Additionally, soups are easily searchable
programmatically, and much more flexible than a plain text-based search. Implementing the
“find” command fromthe desktop was asimple as opening soup and calling its find
routine with varying parametefsuch as only look irthe *“title” slot or the “lastname”
slot). Finally, since frames carry withthem thetypes and slot names dhe data,
introspection once on theesktop is mucteasier,especiallywhen the desktop doesn’t
know the exact format of the information it is receiving. If a client only received a chunk of
binary data, it wouldheed to be hard-coded tioat dataformat. Any changes to thexact
pattern of bits would breathe applicationNot so with frames, whichllow the ordering
of slots to change (or even go away entirely) without necessarily affecting applications.

However, werealize that there are more mobilevices out there than just
MessagePads. Currently, applications have to be written assuming that the information they
receivefrom the LlamaServer ar®lewton frames. This assumpti@mompletely breaks

down when the mobile device is something other théfessagePad, such a$#ot or a

77

cell phone. Furthermorethe internals of the LlamaServer currentipderstand only
Newton frames. Support fany other devicevould have to bewritten, andthen grafted
onto the “flattening” protocol used to exchange frames betweesetlier andhe desktop
client. The Future Work chapter describes some ideas we have to circumvent this problem

and extend into a heterogeneous mobile environment.

5.6 Summary

This chapter presented the key design decisions which drove the development of the
LlamaShare infrastructure and applications. Several ofl¢logsions, such abe choice to
usethe MessagePad exclusively and tee of AppleTalk over TCP, were based on
limitations of existinghardware which should disappearthese devices matur@ther
decisions, such ascaentralizedserver and custorient applications, werenotivated by
our desire tobuild a rich set of easy tase applications whichwould leverage our
infrastructure to allow users to collaborate in mobile and desktop environmentaofiile
information.

The following chapter, Future Workdetails how we plan to expand the
infrastructure sahat it can bettesupportmore platforms, more devices, andmportant

issues such as privacy.

78

CHAPTER VI

FUTURE WORK

6.1 Heterogeneous Platforms and Data

As discussed itthe previous chaptetthe current LlamaShare infrastructureiéesl
very heavily to theNewton because of the flexibilityprovided bythe soupsand ability to
easily inspect the contents of arbitrary frames. Provisions must be made, however, to allow
for other kinds of mobile devices to connect to the LlamaServer and share information with
desktop systems, or with other mobile platforms through Global Soups. Unfortunately, the
communicatiorprotocols anddataformats of the more popular mobile devidésewton,

Pilot, WInCE) are all different to the extent that makes data interchange very difficult.

At minimum, specific sections othe LlamaServermust be rewritten to
communicate with each new platform. Currently, the thread within the server which speaks
to theNewton, called aMobileThread, relies on the DIlfsom Apple which are Newton
specific. In order taccommodate othetevices,the functionalitywhich the DILs provide
(communication andlatatransfer protocols) must be duplicatedgénericsolution, such
as developing our own protocol, has the benefit that we do not need to nedydors for
libraries, allowing us tantegrate devicegsuch as pagers amdobile phones) which may
not havesuchcommunicatioribraries. Onthe contrary, using custortbraries for each
platform would allow us to take full advantage of the communication abilities of a given
device as wevould not berestricted to thdowest common denominator #ite time the

protocol was developed. Ireither respect,the rest of the server does notequire

79

modification. Each connected devideas its own thread (similar to a MobileThread)
running code to communicate directly with that device. \iegpuests arrive dhe server,
these threads wiliake part in the registration mechanigumst like the MobileThreads do
now for the Newton.

While the infrastructure adapts easily wommunicatewith other devices, the
different data formats used by each device pose a ggratdem.One solution mightrely
on a “meta-formativhich describeshe internal structure adach piece oinformation. A
possible first step would use meta-content description languages like MCF [34Abuen
Computer,the underlying layer to theiHotSauce technology, to provide to desktop
applications a description of the semantic content of the informatarsmitted. For
example, a desktogpplicationwould receive a piece of dataith a MCF descriptiorthat
tagged it as a “name” or a “noteThe nextstep,once the content islentified, is to add a
“format description” to each piece of information. This description, similar to a legend on a
road map, details how to interpret and inspketinformation if the format isnknown to
the application. The intelligence to parse the format description would be built irgtuthe
which already must be useddommunicatenith the LlamaSharénfrastructure making it
as transparent to the application as possible.

An alternativesolution would storehe mobile information in a common format in
an object-oriented database, which provides the typing features of a meta-content language
for free. Incoming information would pass through translatorshi®rappropriate platform
to translate it into a format generic to all platforms. This datalvasdd replace the Global
Soup, as it would baccessible tall devices on th@etwork (like an ordinarydatabase).
Oneproblem with this approach ihat it mightnot beable torepresentall of the data
formats of evenavailable platformand might have tdake a least common denominator
approach, causin@gpplications to lose much othe richness ofthe original data.

Furthermoretranslating the information back to the individual native fornfiatsstorage

80

on the devices themselvegould have the sam@roblem, causinghe act of storing
information in the database to lmssy. Finally,unlike the MCF formatvhich can grow
dynamically as new devices add new data formats, the common format mightatote be

handle the requirements of new devices.

6.2 Caching

In a perfectenvironmentthe devicesvould have infinite battery lifeand infinite
wireless range. Howeveespecially in theshort term, wehave neither. Continuous
connectivity drains batteries very quickly and even if an entire building can be covered with
a wireless networkthere are timeswvhen the user will leave the environment. The
infrastructure should be able to continue to provide information about the departed device to
those who ask longfter itgoes off-line.The easiesivay to solve this is byaching the
device’s contents on the LlamaServer.

While not intended to handle the flexibilithat regularsoupsprovide in terms of
access and searching, Global Soups could be extended to support these operations in order
to allow fulfillment of queries even after the device is no longer iretheronmentUsing
the same mechanism as theEwton’s synchronizationtool, the Newton Connection
Utilities [5], information is pulled ofthe device while the device is idd&d synchronized
with the current contents of the Glot&dbup. When theuser removeghe devicefrom the
network, all subsequent queries would be handlethéyslobalSoup withoutthe device
having to be connected.

An interesting side-effect of caching the contents of the device (eithireiin
entirety or selecteghortions) would behe ability to remove thépersonal-ness” of the
mobile device. Instead of these devices being restricted to a sisgiethey could be

scatterecaround an office and anysercould pick up any devicavhich was closest to

81

them. A setup similar to ActiveBadges [35] could be used to automatically detevinicie
user picked up thedevice. The devicewould then download the particularuser’s
information from the Global Soup and make it available from that mobile devicegdéss
more to theside of a “thinclient” which acts more as window into information stored
elsewhere, but introduces the concept of a Group Digital Assistant (GDA).

In some respect, synchronizationthe most basic form of cachingVhat we are
proposing, however, goes beyosyghchronization when device is currentlyconnected.
Our cachingmechanism, for example, would bble to detect thatquested information
had been previously requested and had not chang#tk anobiledevice. As a result, the
copy of the information cached in the Global Soup would be used instead of going back out
to the device. Inthe casewhere the information on the device hachanged, the
infrastructure would purgéhe old informationfrom the cacheand request the new
information fromthe device automatically, unlike synchronizatiwhich requiresexplicit
re-synchronization by theser. In summary, owaching mechaniswould besimilar to
synchronization when the devieeas not connected, but woulglain the benefit of having

direct access to new information when it was connected.

6.3 Security/Privacy

The privacy model currently in place can lbest described as ‘participatory”
model. Ifthe user wants access tioe information ofothers,they must provide access to
their own information aswell. For the most part, thisnakessense, as users who are
interested irngroup collaboration already dthings like share calendars on-line apdst
notes as tdheir location on theidoor or screen saver [36Fpreitzer andrheimer[37]
claim such “friendly environments” exist wheteere is mutuatrust between participants.

However,all informationshould not necessarily besely accessible, and they go on to

82

define privacy to mean that information aboyiesisonremainsknown only tothat person
unless they explicitly hand it out to someone else.

In response to thighe keyarea offuture work shouldlimit what data can be
accessed on the device while it is connected to the environment. Ther® granularities
in which thiscanoccur. First, users should ladble tospecify whichsoupsare either
shareable or off-limits. For example, office co-workers would probably want to thleare
“Dates” soup containing their calendar information but not their “PocReiicken” soup
which containshow much money they have in their respectiaecounts. At afiner
granularity, users should also be able to specify which items within a particular soup can be
accessed. This gives users the ability to publish notes taken at meetings, but not notes of a
more personalnature. Either of these methods could be easityplemented at the
MobileConnect stub, customizable witie appropriateiser interfaceMobileConnect can
be easily extended to reject requdstsinformation insoupsdesignatedff limits or even
reject requests for particular resource id’s which are not public. Additionally, the user could
be given this choice, allowing a case-by-case veto as each request is made.

Security and authentication pose more of a problem imthestructure. It is easy
to spoof anAppleTalk name on aetwork so unsuspecting usersght connect to the
wrong program, written by a sp@nceconnectedthe spy could askthe Newton for any
information it wanted(as long as it wasiot designated as off-limits by the privacy
mechanism). Mechanismsuch as Kerberos [38] goublic-key cryptographysystems

could be employed to help authenticate users who request information.

83

6.4 Multiple LlamaServers

Mobile devices, by naturenove fromplace to place agsers travel. It would be
useful when away from the office to still allow a particular device to be in the environment
and be accessible as if it were connected lota LlamaServer'snetwork. Unfortunately,
patching into an AppleTalketwork fromthe outside is difficult abest. Abetter solution
involves multiple LlamaServers, each running at a different location within their respective
networks.Distributing the devices among multiptervers also habe effect of reducing
the bottlenecks mentioned in the previous chapter.

A separate registratioservice,similar to the Domain Nam8ervice(DNS), could
be employed to centrally gather thedBdress othe LlamaServer tavhich each device is
connected. The DesktopConnect stub would first contact the name service to find out the IP
address of the current LlamaServer and then tratenformation isprovided,connect to
the appropriate server for the device. This solution woulcmesite much additionaork
for the individualservers and would probabgven reduce the individuébads since the
servers would no longer be as much of a bottleneck. The only additional work would be to
keep the name service up to dadeich wouldrequire transmitting updateghen adevice
connected odisconnected. In additiomultiple nameserverscould beused in order to
reduce the bottleneck at each name server, similar to the way DNS works.

As a result, client applicationsould have access to any mobdevice, regardless
of its physical location, through a singtentactpoint. Each applicatiomeeds only two
relatively static pieces of information to access information from that device: #Hugiess
of the closeshameserver andhe name of thélewton. This allows individualmobile
devices to transparently roam from server to server without disrupting applications or

Cyberltems which may be hard-coded to talk to a particular name service.

84

6.5 Criteria for Ul evaluation

To date, wehave not performed anysertesting tosupportthe claims we make
about theusefulness of having transparent accegndbile information. Some questions
which we wouldlike to answer bygetting realusers to usepplications built on top of

LlamaShare are:

* Now that information can reside anywhere, where do users store their information?

» How often do users integrate mobile information into desktop tasks?

* What are the most common kinds of mobile information accessed from the desktop?

* Do users organize their mobile information in the same placeich theyorganize
their desktop or Internet information?

* Do users create information on the desktop and want it on their mobile @mviater
access?

» Does sharing mobile information aid in group communication?

6.6 Extensions to applications

The applications presented in Chapter 3 never advanced much bey6potieof
concept” stage because of our desire to demonstrate as many different kipgications
as possible in the short time frame. As a residty arefunctional, but far frompolished.
Additionally, there are features which we would like to add to each application to round out
its functionality and make it even more useful.

In both the CyberLlama and CyberDesk applications, the compaomssdsto view

the mobile information damnly that -- view. The LlamaShare infrastructurgupports

85

writing changes back to the mobdevice, buthe applications themselves do sopport

it. We would like to add the following:

» Extending the components to allow modifying mobile information and steng it

back to the Newton.

* Allow users tagenerate content from scratch iwe desktop side and save it on the

Newton.

Currently, the selection of viewers forobile information on thelesktop israther
limited. CyberLlama implements only a “Notepadéwer, and the CyberDesk applets can
only display “Notepad” and “Names” information. The Newton, however nfes/ more
dataformats which users wouldenefit from beingable toaccess and modify on the

desktop:

» A “Calendar” componenivhich wouldallow users to viewand modify the calendar
information from a giverNewton. CyberDesk could be expanded sbow the
calendar of theuser whosename is selected in aemail window by directly

accessing the calendar information off of that Newton.

» An application to read the calendar information off of sedealtonsand display an
aggregation of everyonetalendar info in on@lace. This wouldnakescheduling

group meetings much easier.

» CyberDesk hasany built-in types which wevould like to support, such as dates,

phone numbersand email addressesWriting servicesfor CyberDesk whictpull

86

the appropriate informatiomom the Newton wouldmake theNewton services as

complete as the Internet services.

6.7 Conclusion

This thesis presented an infrastructure which alloted rapid prototyping and
development of applications whit¢hke advantage of mobileformation. Additionally, it
presented several applications whistneamline theprocess for users taccesstheir
information off of their mobile devices and seamlessly integrate mobile informatton
desktop tasks and applications. Finally, it described an infrastructure which allows group

collaboration applications to be built on mobile devices.

APPENDIX A

TABLE OF COMMANDS

87

d

ad

the

—F

(0]

ified

Command Name Description

NEWT Get Newton List Returns a list of the connected
MessagePads

LIST Get Soup List Returns a list of all the soups on g
given MessagePad

SOUP Get Soup Returns all frames in the specified
soup on a given MessagePad

OVER Get Soup Overview Returns an overview (2 line
summary) of every frame in the
specified soup on the given
MessagePad

ENTR Get One Entry Returns one frame from a specifig
soup on the given MessagePad

FIND Find Text Returns all frames that contain the
specified text on a given MessageR

FOVR Find Text (overview) Returns an overview of all frames
that contain the specified text.

STOR Store Frames To Newton Stores the incoming frames in a
specified soup on a given
MessagePad

GLOB Store Frames To Global Soug Stores the incoming frames into
specified Global Soup (does not
handle replacement, only appends
existing data).

GCLR Clear A Global Soup Clears the specified Global Soup

GDEL Delete A Global Soup Deletes the specified Global Souf

GGET Read From A Global Soup Returns all frames from the sped
Global Soup.

GGCL Read and Clear A Global Soup A combination of GCLR and GG

ET.

Reads all frames from the specified
Global Soup and then, in one atom
action, clears the soup.

c

88

REFERENCES

1 Long, S., Aust, D., Abowd, G., Atkeson, C. Cyberguide: Prototyping Context Aware
Mobile Applications. CHI'96 Short paper. April, 1996.

2 Sue Long, Rob Kooper, Gregory D. Abowd, and Christopher G. Atkeson. Rapid
Prototyping of Mobile Context-Aware Applications: The Cyberguide Case Study. In the
Proceedings of the 2nd ACM International Conference on Mobile Computing and
Networking (MobiCom'96)November 1996. To appear.

3 Abowd, G., Atkeson, C., Hong, J., Long, S., Kooper, R., Pinkerton, M. Cyberguide:
A Mobile Context-Aware Tour Guide. To AppearACM Wireless Network4.997.

4 PalmComputing Pilot web page (http://www.usr.com/palm/index.html)

5 Newton Connection Utilities web page
(http://www.newton.apple.com/product_info/SW/ncu.html)

6 Apple MessagePad web page (http://www.newton.apple.com)
7 Apple ComputerCyberdog Programmer’s KiAddison-Wesley, 1996.

8 Wood, A., Dey, A., Abowd, G. CyberDesk: Automated Integration of Desktop and
Network Services. Technical Note Rroceedings of CHI' 9fAtlanta, GA, March
1997), ACM Press

9 Kistler, J.Disconnected Operation In a Distributed File Syst®mD Thesis, Carnegie
Melon University. May 1993.

10 Satyanarayanan, M. Mobile Information Acces$sEEE Personal Communications
(Feb 1996).

11 Coda web page at CMU (http://www.cs.cmu.edu/afs/cs/project/coda/Web/coda.htmi(

12 Demers, A., Pertersen, K., Spreitzer, M., Terry, D., Theimer, M., Welch, B. The
Bayou Architecture: Support for Data Sharing Among Mobile Uséobile Computing

13 HIKTNIBHA2G at Xerox PARC
(http://lwww.cs.cmu.edu/afs/cs/project/coda/Web/coda.html)

14 Watson, T. Wit: An Infrastructure for Wireless Palmtop Computing. Qualifier
Presentation, slides (Oct 1994).

15 Watson, T. Wit Il - Overview (from web page,
http://snapple.cs.washington.edu/wit/witll/).

89

16 Schilit, W.A System Architecture For Context-Aware Mobile Compuidp Thesis,
Columbia University, 1995.

17 Want, R., Schilit, B., Adams, N., Gold, R., Petersen, K., Goldberg, D., Ellis, J.,
Weiser, M.The ParcTab Ubiquitous Computing Experiment.

18 Schilit, B., Adams, N., Gold, R., Tso, M., Want, R. The ParcTab Mobile Computing
System. IrProceedings Fourth Workshop on Workstation Operating Syg@ms

193(?09\/33’_ L. Resource Management In Federated Computing Environments. PhD Thesis,
Princeton University, October 1990.

20 Tait, C.A File System For Mobile ComputinghD Thesis. Columbia University,
1993.

21 Guy, R. Ficus: A Very Large Scale Reliable Distributed File System. PhD Thesis,
University of California, Los Angeles, June 1991.

22 HP Omni-go web page
(http:/mww.hp.com:80/handheld/communicators/communicators.html)

23 Psion web page (http://www.psion.com/)

24 Revelar Connection Utilities web page (http://www.revelar.com/rcu.html)
25 OpenDoc web page at Apple Computer (http://www.opendoc.apple.com)
26 The OpenDoc Revolution web page (http://opendoc.macintosh.net)

27 Apple ComputeThe OpenDoc Programmer’s Guidgddison Wesley, 1995.

28 CyberTalk web page
(http://mvww.cc.gatech.edu/classes/cs3302_97_spring/projects/team7/notebook.html)

29 Apple ComputefNewton Desktop Integration Librarie$997.

30 Metrowerks, IncThePowerPlant Programmer’s Guide

31 Netwave’s web page (http://www.netwave.com/)

32 Dayna’s web page (http://www.dayna.com/)

33 Newton Internet Enabler web page
(http://mvww.newton.apple.com/product_info/SW/nie/nie.html)

34 Apple’s HotSauce home page (http://hotsauce.apple.com/)

35 Want, R., Hopper, ARersonal Interactive Computing Objects

36 Bellotti, V., Sara Bly ConsultingValking Away From The Desktop Computer:
Distributed Collaboration and Mobility in a Product Design Te4906

90

37 Spreitzer, M., Theimer, M. Architectural Considerations for Scalable, Secure, Mobile
Computing With Location Information. It4th International Conference on Distributed
Computing Systemdune 1994.

38 Steiner, J.G., Newman, C, Schiller, J.I. Kerberos, an authentication service for open
network systems. IRroceedings of the 14th ACM Symposium on Operating Systems
Principles Dec 1993.

