README

Contact: Lewis Wheaton

Email: lewis.wheaton@ap.gatech.edu

Phone: (410) 207-9419

Methods: Electroencephalography, motion capture, signal analysis, statistical tests

Format: text and binary

Source code:

.m MATLAB source code

.Rmd R source code

.csv Comma-separated variables

.xlsx Excel data

Location where data collected: 575 14th ST NW, Atlanta, Ga 30318

Time period during which data were collected: 2017-01-23 to 2019-08-27

Uncertainty: electroencephalographic data were collected at 1000Hz, motion capture data were collected at 100Hz

Description of parameters/variables: see details below in File Information

Software: Matlab 2021b, RStudio 1.4.869, R 4.0.2, EEGLAB v2021.0, Excel 16.49

Code and data files are grouped by the figures or statistical results that they created.

aim2_settings.m path and global defines for other Matlab functions.

Fig. 3

(a) Time-normalized grasp aperture from movement begin to movement end

Left: bootstrap (n=2000) mean ± 95% bootstrap confidence in...

- aperture_cache.mat
 - Variables:
 - apr_profile: grasp aperture data. condition x movement x normalized time
 - apr_profile_cnt: counts of the valid elements for each condition
 - bs_apr_cis_nf: bootstrap confidence intervals for the nf condition
 - bs_apr_cis_vf: bootstrap confidence intervals for the vf condition
 - bs_apr_means_nf: bootstrap mean for the nf condition
 - bs_apr_means_vf: bootstrap mean for the vf condition
 - * COND_NF: 1
 - COND_VF: 2 constant index definitions for the first dimension of the apr_profile matrix
- plot_nf_vf_cont_grasp_profile.m processes aperture_cache.mat and produces the plot

Right: bar plots of bootstrap means ±95 % CI in 10 % bins with differences of p<0.05 denoted by overbars.

kine_apr_profiles.csv

Aperture measurements during executing the task. Time-normalized to 200 units.

- * Columns:
- subject: the subject (participant) number
- condition: the condition, nf, vf
- epoch: the epoch number
- move: move number within the epoch

- apr_ndx: index (1-200) of the time-normalized movement
- apr_profile: aperture measurement
- extract_mean_apr_profiles.m reads kine_apr_profiles.csv, calculates the mean by bin, and produces kine_apr_mean_profiles.csv.
- kine apr mean profiles.csv

Aperture profile mean values calculated in 10% of the time-normalized movement increments

- Columns:
- subject: the subject (participant) number
- condition: the condition, nf, vf
- epoch: the epoch number
- apr_ndx: index (1-200) of the time-normalized movement (10% increments)
- apr_mean: aperture mean during this 10% of the movement
- trimmed mean: not used
- se_trimmed_mean: not used
- aperture_sig_test.R
 - Reads kine_apr_mean_profiles.csv, runs statistical tests, and creates kine_apr_mean_profiles_nf_vf_p-values.csv.
- kine_apr_mean_profiles_nf_vf_p-values.csv

Measures of statistical difference between the nf and to conditions.

- Columns:
- pct: percent of the time-normalized movement
- pvalue: measure of statistical difference at the time interval
- tvalue: as pvalue
- df: degrees of freedom

- cilow:
- cihigh: low and high confidence invent values
- effsize: measure of effect size (Wilcox's Q)
- plot_nf_vf_grasp_bars.m creates the bar graph and marks significant differences.
- (b) Peak grasp aperture during reach to grasp phase, by disc size and condition. Horizontal bars indicate mean values. Dots represent data points. Disc sizes denoted by dashed horizontal lines (sml=small (2.2cm), med=medium (3.7cm), lrg=large (5.0cm)). Conditions: nf = no vibrotactile feedback during transport phase, vf = with vibrotactile feedback during transport phase. No statistically significant difference between feedback conditions (p > 0.05)
 - kinematics_nf_vf.csv
 - Columns:
 - group not used
 - subject subject number
 - condition nf or vf
 - trial trial number (1-30)
 - move_num move number within trial (1-6)
 - move_begin_time button release time

- grasp_begin_time when aperture begins increasing
- trans_begin_time when prosthesis grasps disc
- trans_peak_vel peak velocity during transport
- trans_peak_vel_time when peak transport velocity occurs
- trans end time when the disc is released
- app_peak_time when the peak aperture occurs during reach to grasp
- app_peak_amount size of the aperture at peak grasp aperture
- app_peak_ratio not used
- app_overshoot_norm not used
- app_peak_vel not used
- app_move_peak_vel not used
- diameter_and_aperture_by_disc_nf_vf.R reads kinematics_nf_vf.csv and produces the pirate plot of peak apertures during reach to grasp.
- peak_aperture_by_disc_cond_p-values.txt statistical results of comparing peak grasp apertures between nf and vf conditions.

Peak Aperture Timing Statistics

- kinematics_nf_vf.csv See above for column description
- kine_aperture_timing.R statistical analyses of aperture peak time
- kine_aperture_timing.txt results of statistical analyses

Fig. 4

(a) Time-normalized movement velocity during the reach to grasp phase (from move begin to disc grasp), bootstrap (n=2000) mean ± bootstrap confidence interval. Velocity is above zero because the participant has released the button and is in motion at the beginning of the reach.

Left: plots of time-normalized bootstrap means ±95 % Cl.

- velocity_cache.mat cached velocity data
 - Variables
 - BOOT_B number of bootstrap iterations
 - COND_NF constant to index arrays
 - * COND_VF constant to index arrays
 - bs_rtg_cis_nf bootstrap reach to grasp confidence intervals for the nf condition
 - bs_rtg_cis_vf bootstrap reach to grasp confidence intervals for the vf condition
 - bs_rtg_means_nf bootstrap reach to grasp means for the nf condition
 - bs_rtg_means_vf bootstrap reach to grasp means for the vf condition
 - bs_trans_cis_nf bootstrap transport confidence intervals for the nf condition
 - bs_trans_cis_vf bootstrap transport confidence intervals for the vf condition
 - bs_trans_means_nf bootstrap transport means for nf conditions
 - bs_trans_means_vf bootstrap transport means for vf conditions
 - rtg_vel_profile_cnt number of profiles for each condition
 - rtg_vel_profiles velocity profiles for each condition

- subject_cnt number of subjects for each condition
- trans_vel_profile_cnt number of profiles for each condition
- trans_vel_profiles transport velocity profiles for each condition
- plot_nf_vf_cont_rtg_vel.m plot the continuous reach to grasp velocity profile for each condition

Right: bar plots of bootstrap means ±95 % Cl in 10 % bins wit...

- kine_rtg_velocity.csv
 - Columns
 - subject subject number
 - condition nf or vf
 - epoch trial (epoch) number
 - move move number within the trial (1–6)
 - rtg_ndx bin of this sample (1-200)
 - rtg_vel mean velocity at sample bin
- extract_mean_rtg_vel.m calculates mean across moves for each subject
- kine_rtg_velocity_mean.csv
 - Columns
 - subject subject number
 - condition nf or vf
 - epoch trial (epoch) number
 - rtg_ndx bin of this sample (1-200)
 - * rtg_vel mean velocity at sample bin
- rtg_vel_sig_test.R Performs statistical tests between conditions

- kine_rtg_velocity_mean_nf_vf_p-values.csv results of statistical tests
 - Columns
 - pct percent of time-normalized movement
 - pvalue the statistical difference between the two conditions
 - tvalue as the pvalue
 - df degrees of freedom for the comparison
 - cillow, cihigh the confidence interval
 - effsize the Wilcox's Q effect size
- Reach to grasp velocity statistics.xlsx Summarized statistics
- plot_nf_vf_rtg_vel_bars.m plot the bar graph plot of reach to grasp velocity with statistical significance marked
- (b) Time-normalized movement velocity during the transport phase (from disc grasp to disc release), bootstrap (n=2000) mean ± bootstrap confidence interval

Left: plots of time-normalized bootstrap means ±95 % Cl.

- velocity_cache.mat see above
- plot_nf_vf_cont_trans_vel.m plot the continuous transport velocity profile for each condition

Right: bar plots of bootstrap means ±95 % CI in 10 % bins with differences of p<0.05 denoted by overbars.

- kine_trans_velocity.csv
 - Columns
 - subject subject number

- condition nf or vf
- epoch trial (epoch) number
- trans_ndx bin of this sample (1-200)
- trans_vel mean velocity at sample bin
- extract_mean_trans_vel.m calculates mean across moves for each subject
- kine_trans_velocity_mean.csv
 - Columns
 - subject subject number
 - condition nf or vf
 - epoch trial (epoch) number
 - trans_ndx bin of this sample (1–200)
 - trans_vel mean velocity at sample bin
- * trans vel sig test.R Performs statistical tests between conditions
- kine_trans_velocity_mean_nf_vf_p-values.csv
 - Columns
 - pct percent of time-normalized movement
 - pvalue the statistical difference between the two conditions
 - tvalue as the pvalue
 - df degrees of freedom for the comparison
 - cillow, cihigh the confidence interval
 - effsize the Wilcox's Q effect size
- Transport velocity statistics.xlsx Summarized statistics
- plot_nf_vf_trans_vel_bars.m plot the bar graph plot of reach to grasp velocity with statistical significance marked

Error and Trial Time Statistics

kine_error_stats.m reads raw movement data files and summarizes number of errors

kine_stats.txt the summary

kine_error_stats.csv errors and trial times by subject, condition, trial, and vf status

- Columns
- subject the subject number
- first_condition whether the subject received nf or vf in the first half of the trials
- trial_num trial number (1-30)
- vf_status whether vf was on for this trial
- errors number of errors committed in this trial
- trial_time how long the trial took

kine_error_stats.R run statistical tests on the number of errors, sending output to kine error stats.txt

kine_error_stats.txt summary statistics

kine_trial_time_stats.R run statistical tests on the trial times, sending output to kine_trial_time_stats.txt

kine_trial_time_stats.txt summary statistics

Fig. 5 Mean spectral alpha (10–14 Hz) power ±95 % confidence interval for cortical regions of interest for prosthesis users (NF, VF). Regions with differences of p<0.05 denoted with

annoronooo or proioo aonotoa mitimi

(a) grasp peak aperture.

fams_gpa_spec_out.csv

- Columns
- * subject the subject number
- condition nf or vf
- which_half which set of trials, 1 or 2
- epoch epoch or trial number
- move move number
- channel EEG electrode
- frequency frequency in Hz
- app_overshoot_norm not used
- spec_power_db power in dB not used
- spec_power_abs power

(b) transport peak velocity

fams_tpv_spec_out.csv

- Columns
- subject the subject number
- condition of or vf
- which_half which set of trials, 1 or 2
- epoch epoch or trial number
- move move number
- channel EEG electrode

- frequency frequency in Hz
- trans_peak_vel not used
- spec_power_db power in dB not used
- spec_power_abs spectral power

export_mean_abs_power_at_gpa_and_tpv_rois.m combine fams_gpa_spec_out.csv and fams_tpv_spec_out.csv by electrode montage and frequency range to produce abs_alpha_power_at_gpa_and_tpv_rois.csv

abs_alpha_power_at_gpa_and_tpv_rois.csv

- Columns
- montage electrode montage, Frontal, Left Parietal, or Left Motor
- freq_range low and high frequency limits for the spectral power measure
- channels channels included in the montage
- subject subject number
- condition nf or vf
- which_half 1 for first set of trials, 2 for the second half
- epoch epoch or trial number
- move move number (1–6)
- phase gpa (grasp peak aperture), or tpv (transport peak velocity)
- mean_power_abs mean spectral power

eeg_power_statistics.R perform statistics on the spectral power at gpa and tpv, writing eeg_power_statistics.txt

eeg_power_statistics.txt statistical results

eeg_power_statistics.xlsx spreadsheet used to create graphs