A THESIS
Presented to
The Faculty of the Division of Graduate Studies and Research By

Anil K. Jain

In Partial Fulfillment of the Requirements for the Degree Master of Science in Mechanical Engineering

CHANGE IN BLOOD PO_{2} AND PCO_{2} WITH SHORT STORAGE TTME

Dr. J. M. Bradford, Chairman
Dr. D. P. Giddens
Dr. P. V. Desai
Date approved by Chairman: (i/26/73

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to Dr. James M. Bradford, who suggested this topic, and who served as my thesis advisor. I would also like to thank Dr. D. P. Giddens and Dr. P. V. Desai for serving on the reading committee.

Finally, I wish to thank all those who assisted me in many ways during the course of this study.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS ii
LIST OF TABLES iv
LIST OF ILLUSTRATIONS v
SUMMARY vii
Chapter
I. INTRODUCTION. 1
II. LITERATURE SURVEY 7
III. EQUI PMENT 13
Equilibration UnitMeasuring Units
IV. EX PERIMENTATION 17
ProcedureSeries One TestingSeries Two TestingSeries Three TestingSeries Four TestingData Analysis
V. CONCLUSIONS 40
VI. RECOMMENDATIONS 41
APPENDIX
I. MEASURING ELECTRODES 42
II. TEST DATA 49
BIBLIOGRAPHY 57

LIST OF TABLES

Table Page

1. Results of Series One Tests 20
2. Results of Linear Regression Analysis on PO_{2} vs. Time 39
3. Series One Test Data 50
4. Series Two Test Data 51
5. Series Three Test Data 53
6. Series Four Test Data 54
7. Test Data Obtained Using IL-113 56

LIST OF ILLUSTRATIONS

Figure Page

1. Oxyhemoglobin Dissociation Curve 4
2. Instrumentation Arrangement 18
3. Oxygen and Carbon Dioxide Partial Pressuresvs. Storage Time for Blood Equilibrated with$5.3 \% \mathrm{CO}_{2}, 3.2 \% \mathrm{O}_{2}$ and Iced22
4. Partial Pressures of Oxygen and Carbon Dioxidevs. Storage Time for Blood Equilibrated with$4.8 \% \mathrm{CO}_{2}, 7.2 \% \mathrm{O}_{2}$ and Iced in the Same PlasticDisposable Syringes (B.P. 741 mm Hg)24
5. Partial Pressures of Oxygen and Carbon Dioxide vs. Storage Time for Blood Equilibrated with $5.1 \% \mathrm{CO}_{2}, \quad 19.7 \% \mathrm{O}_{2}$ and Iced. 25
6. Partial Pressures of Oxygen and Carbon Dioxide vs. Storage Time for Blood Equilibrated with $5.0 \% \mathrm{CO}_{2}, 95.0 \% \mathrm{O}_{2}$ and Stored in Ice 27
7. Partial Pressures of Oxygen and Carbon Dioxide vs. Storage Time for Blood Equilibrated with $5.1 \% \mathrm{CO}_{2}, 19.7 \% \mathrm{O}_{2}$ and Iced in Plastic Disposable Syringes Containing Air 29
8. Concentrations vs. Storage Time for BloodEquilibrated with $5.3 \% \mathrm{CO}_{2}, 3.2 \% \mathrm{O}_{2}$ andIced in Plastic Disposable Syringes 32
9. Concentrations vs. Storage Time for Blood Equilibrated with $4.8 \% \mathrm{CO}_{2}, 7.2 \% \mathrm{O}_{2}$ and Iced in Same Plastic Disposable Syringe 33
10. Saturations vs. Storage Time for Blood Equilibrated with $5.1 \% \mathrm{CO}_{2}, \quad 19.7 \% \mathrm{O}_{2}$ and Iced in Plastic Disposable Syringes 34
11. Concen rations vs. Storage Time for Blood Equilibrated with $5.0 \% \mathrm{CO}_{2}$, $95.0 \% \mathrm{O}_{2}$ and Iced in Plastic Disposable Syringes 35
12. Oxygen and Carbon Dioxide Partial Pressures vs. Storage Time for Blood Equilibrated with $5.0 \% \mathrm{CO}_{2}$, $95.0 \% \mathrm{O}_{2}$ and Iced in Plastic Disposable Syringes; IL-113 Used for Gas Analysis 37
13. Cross Sections of Calomel and Glass Electrodes
14. Cross Section of Carbon Dioxide and Oxygen Electrodes 47

SUMMARY

The effects of short storage time on the partial pressures of oxygen and carbon dioxide in human blood were studied and the factors producing these effects were explored. Samples of freshly drawn heparinized blood were equilibrated with various oxygen pressures, stored in ice and analyzed at various periods of storage time. An identical experiment was performed using saline instead of blood. This was done to investigate the metabolism and material effects. During the above tests the blood samples were handled anaerobically. Another experiment was conducted to investigate the possibility of air contamination. Syringe material or the presence of small air bubbles seemed to have no effect on the blood samples and did not cause the oxygen partial pressure changes observed. Changes in PO_{2} were found to be due to a shift in the oxyhemoglobin dissociation curve at constant oxygen saturations. The blood pH did not change during the period that the blood was stored and analyzed. Changes in PO_{2} with time were measured and these changes strongly depended on the initial blood PO_{2}. There were no statistically significant changes in the partial pressure of carbon dioxide due to storage time.

CHAPTER I

INTRODUCTION

Blood gas measurements in vitro constitute an important factor in modern clinical diagnosis and medical research (2). Arterial and venous blood samples are usually drawn anaerobically into syringes containing heparine, iced and then sent to the laboratory for analysis. Results obtained from these analyses are used without taking into consideration the effects of the time elapsed between the moment blood is drawn from the subject and that when it is analyzed.

During an earlier investigation (1), it was discovered that the partial pressure of oxygen $\left(\mathrm{PO}_{2}\right)$ in blood changes with the storage time. This present investigation is a study of the changes in PO_{2} with time of storage. Molecular oxygen exists in body fluids either free (as dissolved oxygen) or as loosely combined with respiratory pigments like hemoglobin. Hemoglobin is a chromoprotein and loosely combines with oxygen to form an unstable compound called oxyhemoglobin, $\mathrm{O}_{2} \mathrm{Hb}$. Oxygen being extremely insoluble in body fluids, free oxygen is in very low concentrations even in arterial blood and is best considered as an intensity factor which is expressed as the partial pressure of oxygen, PO_{2} (Equation 1).

$$
\begin{equation*}
\mathrm{PO}_{2}=\frac{1}{.03} x \text { Physically dissolved } \mathrm{O}_{2}(\text { in } \mathrm{cc} / \mathrm{L}) \tag{1}
\end{equation*}
$$

As blood flows through a tissue, the partial pressure of oxygen can vary greatly along a capillary - from an arterial PO_{2} of about 100 mm Hg to a venous PO_{2} of about 40 mm Hg (2). The other index of oxygenation of blood usually used in the blood gas analysis is the percentage oxygen saturation, \% Sat (Equation 2).

$$
\begin{equation*}
\text { \% Sat }= \tag{2}
\end{equation*}
$$

$100 \times \frac{\text { Quantity of } \mathrm{O}_{2} \text { bound to the } \mathrm{Hb} \text { of blood sample }}{\text { Quantity of } \mathrm{O}_{2} \text { that can be bound by this } \mathrm{Hb}}$

This index is thus the ratio of oxygen content of the blood (minus physically dissolved O_{2}) to the quantity of O_{2} that can combine with the hemoglobin (minus phisically dissolved O_{2}). In the absence of carboxy-hemoglobin or other abnormal hemoglobin the percentage oxygen saturation can be expressed by Equation 3.

$$
\begin{equation*}
\% \text { Sat }=100 \times \frac{\left[0_{2} \mathrm{Hb}\right]}{\left[\mathrm{O}_{2} \mathrm{Hb}\right]+[\mathrm{Hb}]} \tag{3}
\end{equation*}
$$

where $\left[\mathrm{O}_{2} \mathrm{Hb}\right]$ is the concentration of oxyhemoglobin and $[\mathrm{Hb}]$ is the concentration of reduced hemoglobin that is able to bind O_{2}.

The above two indices of oxygenation, PO_{2} and $\%$ Sat, are related to each other by the oxyhemoglobin dissociation curve shown in Figure 1. This curve represents the relationship between the percentage saturation and the partial pressure of oxygen in the blood at some fixed carbon dioxide level. The pressure that oxygen exerts in blood depends on the concentration of free oxygen in plasma. The blood PO_{2} does not depend simply on the concentration of $\mathrm{O}_{2} \mathrm{Hb}$ nor does it vary linearly with the percent oxygen saturation. PO_{2} may not even change when the total quantity of O_{2} in the blood is changed. This is explained by the shift in the oxyhemoglobin dissociation curve, Bohr's effect (2).

Oxygen, in the body, exists almost exclusively in and is transported in blood as oxyhemoglobin, $\mathrm{O}_{2} \mathrm{Hb}$ (2). Equations 4 and 5

$$
\begin{equation*}
\mathrm{CO}_{2}+\mathrm{H}_{2}^{\mathrm{O} \rightarrow \mathrm{H}^{+}}+\left.\mathrm{HCO}_{3}^{-}\right|_{\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}} ^{\substack{\text { Tissue }}} \stackrel{\text { Lungs }}{\mathrm{HHb}_{2} \rightarrow \mathrm{H}^{+}+\mathrm{O}_{2} \mathrm{Hb} \mid \mathrm{OHb}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{O}_{2}+\mathrm{HHb}} \tag{4}
\end{equation*}
$$

represent the outlines of the major $0_{2}-\mathrm{Hb}$ cycle for the oxygen and the carbon dioxide transport. From the tissue to the lungs, carbon dioxide is carried mostly as bicarbonate $\left(\mathrm{HCO}_{3}{ }^{-}\right)$where it diffuses into the lungs as free carbon

Figure 1. Uxyhemoglobin Dissociation Curve
dioxide. Oxygen from the lungs diffuses into the blood and combines loosely with the reduced hemoglobin (HHb) to form an unstable compound called oxyhemoglobin $\left(\mathrm{O}_{2} \mathrm{Hb}^{-}\right)$which is carried by the blood to the tissue. Here at the tissue, carbon dioxide released reacts with water in the blood to produce H^{+} and HCO_{3}^{-}(Equation 4). HCO_{3} is carried by the blood with a slight increase in its PCO_{2} (Haldane effect). H^{+}is transferred to the $\mathrm{O}_{2} \mathrm{Hb}^{-}$. This fairly strong base becomes much stronger as it unloads its oxygen to the tissue (Equation 3). $\mathrm{O}_{2} \mathrm{Hb}^{-}$as well as the pH decreases as the arterial blood becomes venous. This drop in pH shifts the oxygen dissociation curve to the right so that the blood gives up oxygen with only a slight decrease in PO_{2} (Bohr's effect). H^{+}is known as the Bohr-Haldane proton and its transfer links the two (BohrHaldane) effects (2).

The partial pressures of oxygen and carbon dioxide in the blood are usually measured using electrodes. PO_{2} is measured using polarographic system. This system uses a platinum electrode which is separated from the blood by a membrane permeable to oxygen but impermeable to water and ions. The availability of oxygen molecules at the platinum surface is proportionate to the current resulting from a given voltage applied to the platinum electrode.

The Severinghaus electrode is used to measure PCO_{2} in the blood sample. This consists of a plastic membrane separating the blood from a carbonate solution containing a glass
electrode. Carbon dioxide from the sample (but not from HCO_{3}) diffuses through the membrane. This device responds to the pH , but the scale on the meter is calibrated for PCO_{2}. These two electrodes are discussed in more detail in appendix I.

CHAPTER II

LITERATURE SURVEY

Measurements of $\mathrm{PCO}_{2}, \mathrm{PO}_{2}$ and percent saturation can be made in a few minutes with modern instruments. The accuracy of these measurements depends on how well the instruments are cared for and how carefully they have been calibrated. The gas analysis technique and prehandling of blood samples are also determining factors in the accuracy of measured partial pressures and percent saturation.

Holmes, et al. (3) studied the methods, with particular interest in the accuracy, of calibration of O_{2} and CO_{2} electrodes. They calibrated the blood gas analyzer using a humidified gas and for various lengths of time. It was found that the oxygen and carbon dioxide partial pressures in samples of venous and arterial blood correlated well with those obtained by calibrating the electrodes with humidified gases. The different equilibration time did not result in any significant difference. It was concluded that the calibration of a blood gas apparatus with gas was satisfactory if the gas was properly humidified.

Rhodes and Mosers (4) studied several sources of error in the measurement of blood oxygen partial pressure by the polarographic system incorporating a microelectrode. Their (4)
study was mainly confined to the investigation of three sources of error in the determination of PO_{2} in blood (a) the characteristics of the polarographic measuring system (particularly the membrane used to cover the electrode); (b) changes in the blood oxygen partial pressure prior to measurement; and (c) properties of blood which might change the measured oxygen partial pressure. They (4) compared the oxygen partial pressures of the tonometered blood and the tonometer gas. A range of 10 to 700 mm Hg was covered using both polyethylene and polypropylene membranes. Saline and buffers were substituted for blood to determine the correction factor and effect of varing pH on the response of the electrodes using polyethylene membrane only. They (4) also studied the effect of temperature with time of storage on PO_{2} of blood. This study was extended to investigate the properties of blood that may change the blood PO_{2}. This was done by adjusting the hemocrits of blood. From their study, Rhodes and Mosers (4) found that the PO_{2} of blood samples and gas was such that, over the range 0 65 mm Hg , using polyethylene membrane,

$$
\text { Actual } \mathrm{PO}_{2}=1.24 \times \text { measured } \mathrm{PO}_{2}
$$

and above approximately 65 mm Hg ,

$$
\text { Actual } \mathrm{PO}_{2}=1.08 \times \text { measured } \mathrm{PO}_{2}+10
$$

When the polypropylene membrane was used, over the entire $10-700 \mathrm{~mm} H g$ range, it was found that

$$
\text { Acutal } \mathrm{PO}_{2}=1.05 \times \text { measured } \mathrm{PO}_{2}
$$

This behavior was attributed to the difference in the characteristics of the membrane used. Comparison of the PO_{2} in the blood samples maintained at three temperatures showed a significant difference. No change in the PO_{2} was observed in blood samples maintained at $0^{\circ} \mathrm{C}$ but the PO_{2} declined with time in samples maintained at ambient temperature and fell more rapidly in samples kept at $37^{\circ} \mathrm{C}$. The drop in PO_{2} was considerable in samples of high PO_{2}. They (4) also found that hemocrit values ranging from $15-60 \%$ and heparine did not influence the PO_{2} whether polyethylene or polypropylene membranes were used. It was concluded by them (4) that nature and extent of the error is dependent upon the specific characteristics of the polarographic system (electrode, cuvette design. membrane materials and amplifying-recording etc.) and the magnitude and the manner of correction should vary with details of instrumentation and technic. The rate of PO_{2} decline was found to be a function of metabolic activity of cellular blood components which has been described by Rhodes and Mosers (4) to be dependent upon the temperature at which the blood is stored.

Evers, et al. (5) and Hilti, et al. (6) worked independepently on the effects of syringe materials on the PO_{2} in stored blood. Samples of equilibrated human blood were stored for various periods of time at room temperature or at $0^{\circ} \mathrm{C}$. In addition to this, Hilti, et al. (6) repeated the same experiments with ringer's solution as a control to evaluate the contribution of metabolic changes in the blood as well as material effects.

The results of the study conducted by Evers, et al. (5) showed that the pH of blood in both glass as well as plastic syringes dropped slightly with the drop somewhat more rapid in plastic syringes. The PCO_{2} in both types of syringes showed a similar pattern with no significant difference. It dropped in the first thiry minutes followed by steady rise. The PO_{2} in both types of syringes, within the first thiry minutes, dropped with no further marked change. The PO_{2} loss in the plsatic syringes was less than that in the glass syringes, but the difference was insignificant. This brought Evers, et al. (5) to the conclusion that there was no difference in the use of plastic (polypropylene) or glass syringes and diffusion of gases through the syringe walls was not statistically or clinically significant.

The study conducted by Hilti and Karendal (6) showed that the use of glass syringes and immediate chilling of blood samples did not change the partial pressure of oxygen, whereas the plastic syringes under certain conditions had too high a
diffusion capacity for storing blood or solutions for gas analysis as they tend to come in equilibrium with the ambient oxygen pressure. Metabolic consumption was found to be dependent on the temperature but diffusion rather than metabolic consumption and other physiological changes was found to be dominant. As a general conclusion glass syringes (non-interchangeable) proved to be the best for storing blood for gas analysis, especially if immersed in iced water.

Earlier some work was done on gas diffusion between plastic syringes and room air by Laver and Seifen (7) in 1965 and by Fletcher and Jergen (8) in 1966. Comparing glass with plastic syringes Fletcher and Jergen (8) found a three fold greater oxygen loss from the plastic syringes. Laver and Seifen (7) on the other hand, stated that the plastic syringes can be used for blood gas analysis if no delay in reading the results is foreseen.

In short, from this literature survey, it is concluded that all authors agree with each other about the fact that storage of blood in iced water reduces the loss of oxygen from it, whereas the opinions differ in the case of comparing the use of different syringes (plastic or glass) for the storage of blood for gas analysis. Furthermore all authors have based and conducted their study on the assumption that diffusion of gases through the walls of the syringes is the major factor affecting the PO_{2} in blood when stored in these syringes for gas analysis. Evers, et al. (5) came to the conclusion that
there was no difference whether the glass syringes were used or the plastic syringes. On the other hand Hilti and Karendal (6) suggested the use of glass syringes for storing blood and not that of plastic syringes. Other factors such as physiological changes in the blood have either been ignored or not been given much attention by them $(5,6,7 \& 8)$.

On this basis it was decided to conduct a study to investigate the effects of short storage time on the partial pressures of oxygen and carbon dioxide in human blood and to explore the reasons in order to attempt to explain any changes in oxygen and carbon dioxide partial pressures found during the short storage time. This study is described in detail in the following chapters.

EQUIPMENT

Various instruments used during the study are described as follows:

Equilibration Unit

Equilibration of the blood samples with a desired gas was obtained utilizing a tonometer (IL-237). This unit humidified the gas, brought it to a constant temperature $\left(37^{\circ} \mathrm{C}\right)$ and equilibrated the blood with the humidified gas that was fed to the tonometer. Blood samples from 0.5 to 8.0 milliliters in volume could effectively and precisely be equilibrated for a desired pre-set time in this equipment. These samples could be drawn from the tonometer directly into the syringes without the blood coming in contact with the air, thus making this process of blood transfer from the tonometer into the syringes anaerobic,

Measuring Units

Two measuring units were used, one Instrumentation
Laboratories' model IL-182 co-oximeter and the other IL-313 ph Blood gas analyzer. Co-oximeter (IL-182)

The co-oximeter (IL-182) was used for the measurements
of various concentrations (oxyhemoglobin, total hemoglobin and carboxy-hemoglobin) in the blood. It performs spectrophotometric analyses of blood oxygen, carbon monoxide and hemoglobin concentrations. It processes and analyzes samples automatically. A peristallic pump anaerobically draws up and moves blood samples into the measuring cuvette.

A 400 microliter blood sample is introduced and momentarily stored in a spiral reservoir at the front of the instrument. This is automatically drawn from the reservoir when the peristallic pump is activated. The mixed specimen is then passed through a mechanically hemolyzing assembly, brought to a constant temperature and passed to the cuvette for the measurement of the absorbance. After the measurements are completed, the pump is once again activated with zeroing solution, a trade product of the Instrumentation Laboratories, in the reservoir. After leaving the cuvette, sample is passed through the pump and out as waste. The oxygen concentration is maintained throughout the process. After each sample run, the co-oximeter was cleaned by running two or three samples of zeroing solution through the instrument.

The units of three blood concentrations $\left(\mathrm{O}_{2} \mathrm{Hb}, \mathrm{Hb}\right.$ and COHb) displayed on the instrument (IL-182) are percent, grampercent and percent respectively. Oxyhemoglobin and carboxyhemoglobin are expressed as the ratio of oxyhemoglobin or carboxy-hemoglobin to the total hemoglobin whereas the total hemoglobin is expressed as grams of total hemoglobin per hun-
dred milliliters of blood. The instrument has a sensitivity of one tenth of a percent for $\mathrm{O}_{2} \mathrm{Hb}$ and COHb , and one tenth of a gram for total hemoglobin.
pH Blood Gas Analyzer (IL-313)
The Blood gas analyzer (IL-313) of Instrumentation Laboratories was used to measure the pH and the partial pressures of oxygen and carbon dioxide in the tonometered blood samples.

This instrument (IL-313) has the capability for calibration with two different gases and separately adjusting the balance and the slope of calibration. Selection of any one of the three modes (Standby, Calibrate and Sample) of gas analysis operation calls into operation various individual functions such as flushing and washing of sample chamber and flow lines, introduction of gases and sample handling automatically and in precise timed sequence. The flush cycle washes the sample chamber and the sample lines with the cleaning solution equilibrated with the desired gas. This flush solution removes protein deposits and prevents occlusion of the lines. After the flush cycle, calibration gas starts flowing through the sample chamber. This gas is saturated with water as it bubbles through the bubble chamber. This calibration cycle automatically checks the calibration after each flush cycle that follows the sample cycle. The sensitivity of the instrument (IL-313) is 0.001 for the pH and one tenth of a millimeter of Hg for PCO_{2}. For PO_{2}, in the low range (0 to 200 mm
$\mathrm{Hg})$ the sensitivity is one tenth of a millimeter Hg and the high range (200 to 2000 mm Hg) has a sensitivity of one mm Hg . Some of the test runs in the study were xepeated on a Blood gas analyzer (IL-113) in order to study the repeatability of the data from one instrument to another. The IL-113 is an older non-automated version of IL-313 but uses the same electrode configuration. This study was performed at the Pulmonary Laboratory, Grady Memorial Hospital in Atlanta, Georgia.

CHAPTER IV

EXPERIMENTATION

Procedure

This study was conducted using freshly drawn venous blood. Sodium heparine was used as the anticoagulant with the blood samples to be analyzed for PO_{2} and PCO_{2} using the Blood gas analyzer (IL-313) and for the blood samples to be ana-lyzed using the co-oximeter, EDTA was used because its use with co-oximeter is recommended by the Instrumentation Laboratories. EDTA could not be used in the first case because it changes the acidic properties of the blood thereby changing its PO_{2} and PCO_{2} values. Sodium heparine does not have this effect on the blood.

Approximately eight milliliters of blood was equili-brated for each experiment, with a gas of desired composition $\left(\mathrm{O}_{2}, \mathrm{CO}_{2}\right.$ and $\left.\mathrm{N}_{2}\right)$ keeping each time the CO_{2} content at about five percent of the total. This was done to avoid any side effects of CO_{2} on the acidic properties of the blood and also because the main study was oriented towards the PO_{2} measurements. While blood was being equilibrated in the tonometer, the IL-313 and the co-oximeter were set for calibration. The complete instrumentation set up is shown schematically in Figure 2.

Figure 2. Instrumentation Arrangement

Series One Testing

The study was completed in a series of segments. Seone was conducted to determine the reproducibility of the data. This was achieved using the blood and different gases in separate identical experiments. In each experiment the blood was equilibrated with a gas of known composition for thirty minutes. One milliliter of the equilibrated blood was drawn anaerobically into a three milliliter plastic disposable syringe and immediately analyzed on the Blood gas analyzer. The syringe was flushed ten times with the equilibration gas before the blood was drawn into it. Preflushing of the syringes was done during all experiments except one discussed in a later series. At intervals of ten to fifteen minutes, one milliliter blood samples were drawn from the tonometer and immediately analyzed for PO_{2} and PCO_{2}. Similar experiments were performed using saline in place of the blood. The results of these tests are given in appendix II, Table 3. Number of data points, calculated oxygen partial pressure, standard deviation and the mean PO_{2} are given in Table 1 . Comparison of the mean PO_{2} with the calculated PO_{2} shows that the mean PO_{2} in each experiment is lower than the calculated one. This difference is due to the solubility factor of the gas in blood and saline, and is also dependent on the diffusion characteristics of the electrode membrane (4).

The standard deviation of $1.3 \mathrm{~mm} H g$ for saline, 1.4 for the blood in one experiment and 2.3 mm Hg in another indi-

Table 1. Results of Series One Tests

Specimen	No, of Data Points	Calculated PO_{2} $(\mathrm{~mm} \mathrm{Hg})$	Standard Deviation (σ)	Mean PO_{2} $(\mathrm{~mm} \mathrm{Hg})$
Saline	7	136.3	1.3	119.6
Blood	9	137.7	1.4	123.4
Blood	8	136.1	2.3	125.8

cates that the data obtained on the Blood gas analyzer (IL313) was accurate and reproducible within the manufacturer ${ }^{\dagger}$ s specifications.

Series Two Testing

Series two was conducted after it was made certain t at th data obtained on IL-313 could be reproduced. The experiments in this series investigate any change in the PO_{2} and PCO_{2} that may occur due to the storage of blood in ice. A part of this series was to determine if there was any differe ce in storing blood in a large syringe and analyzing the blood from the same syringe periodically or storing small samples in individual syringes. Equilibrated blood was collected in one ten milliliters plastic disposable syringe or separate three milliliters syringes and was stored in ice. The first analysis of each experiment was performed with no elapse of time after the blood was drawn from the tonometer. Other samples were analyzed at different intervals of time. During he measurements on $I L-313$ one of the gases used for the calibration of $I L-313$ was the same as that used for equilibrating blood. The flush solution was also equilibrated constantly with this gas. The purpose of this procedure was to expose the measuring electrodes in the $I L-313$ to the same gas as that used for the equilibration of the blood.

Data from the series two experiments is given in appendix II, Table 4. These results are shown in Figures 3-6. Fig-

Figure 3. Oxygen and Carbon Dioxide Partial Pressures vs. Storace Time for Blood Equilibrated with 5.3ri CO_{2}, $3.2^{\circ} \mathrm{O}_{2}$ and I ced
ure 3 shows the variations in PO_{2} and PCO_{2} with storage time with the blood equilibrated with $5.3 \% \mathrm{CO}_{2}$ and $3.2 \% \mathrm{O}_{2}$. Plastic disposable syringes were used for storing blood in ice. No change in either PO_{2} or PCO_{2} is observed over a period of fifty five minutes irrespective of whether the same syringe was used or the separate syringes. The PO_{2} varies within a range of $20-23 \mathrm{~mm} H g$ whereas the PCO_{2} varies within $36-39 \mathrm{~mm}$ Hg. Figure 4 shows the results for blood equilibrated with $4.8 \% \mathrm{CO}_{2}$ and $7.2 \% \mathrm{O}_{2}$. It is again seen that there is no appreciable change in either PO_{2} or PCO_{2}. During fourty minutes the scatter of PO_{2} data is found to be within $51-53 \mathrm{~mm} \mathrm{Hg}$ while that of PCO_{2} is within $32-34 \mathrm{~mm} \mathrm{Hg}$. Figure 5 shows the results for blood equilibrated with $5.1 \% \mathrm{CO}_{2}$ and $19.7 \% \mathrm{O}_{2}$. A marked increase in the PO_{2} with storage time is observed whereas the PCO_{2} does not show any variation. The PO_{2} started out at about $136 \mathrm{~mm} H g$ and after a storage period of sixty minutes it increased to a maximum value of about 147 mm Hg . Although there is a scatter among the data of various experiments, the PO_{2} increased steadily with the storage time. Inspite of the scatter in the PCO_{2} data, no significant change is observed.

The behavior of PO_{2} and PCO_{2} for the high pressure of oxygen with storage time is seen in Figure 6. The data shown in this figure is for the same syringe as well as separate syringes when the blood was equilibrated with $5.0 \% \mathrm{CO}_{2}$ and $95.0 \% \mathrm{O}_{2}$. In this range $(600-650 \mathrm{~mm} \mathrm{Hg})$ the data is clearly

Figure 4. Partial Pressure of oxygen and Carbon Dioxide ws. Storage Time for 131 ood Equilibrated with 4 . sc? CO2. 7.2 , U_{2} and leed in the Same Plästic Disposable Syinge. ($B . P$. 741 ma $\left.\mathrm{Hg} ; ~ \mathrm{o}, \mathrm{PCO}_{2} ; \circ, \mathrm{PO}_{2}.\right)$

Figure 5. Partial Presstires ot Oxswan and Carbon Dioxius vs. Sturame T:ame for Blood Vquilibrat"川 wil! 亏. lf $\mathrm{CO}_{2}, 19.7 \mathrm{O}_{2} \mathrm{O}_{2}$ and Imen
seen to be declining with the time of blood storage. Although there is some scatter in the data, the decline observed is distinct. Once again no change in the PCO_{2} is seen. To summarize this, it is indicated from the results of these experiments that the equilibrated blood when stored in ice behaves in a manner depending upon the oxygen pressure with which the blood has been equilibrated.

As mentioned earlier in Chapter I, these changes in the partial pressure of oxygen in the blood can be caused by the following reasons:

1. Variations in the pH of the blood.
2. Air contamination or diffusion of gases through the syringe walls.
3. Shift in the oxyhemoglobin dissociation curve.

Series Three Testing

This series was performed to investigate the effects of air contamination and syringe material on the oxygen partial pressure of blood. The effect of syringe material was studied through two sets of experiments. The blood was equilibrated with $5.0 \% \mathrm{CO2}$ and $95.0 \% \mathrm{O}_{2}$. It was then collected in a ten milliliters syringe preflushed with the equilibration gas. Each set consisted of two experiments, one using a plastic disposable syringe and the other using a glass reusable syringe. The first set was conducted similarly as those described in series two. The only difference in the procedure

of the second set was that the IL-313 was left in the standby mode between consecutive sample runs. This was done to prevent the electrode membrane from drying due to a constant flow of gas through the measuring chamber and also to determine if this produced any changes in the measured PO_{2}.

The results of these two sets are given in appendix II, Table 5. From Figure 6 it is indicated that the results of these two sets are not significantly different than those obtained in series two. Also the plastic as well as the glass syringes show the same pattern of PO_{2} variations with the blood storage time. This is in agreement with the findings of Evers, et al. (5) and Laver, et al. (7) but does not agree with those of Hilti, et al. (6) and Fletcher (8).

The effect of air contamination was studied with particular attention given to the carbon dioxide partial pressure because the equilibration gas ($5.1 \% \mathrm{CO}_{2}, 19.7 \% 0_{2}$ and balance N_{2}) was used to equilibrate the blood. This gas is nothing but a mixture of carbon dioxide and air in the ratio of one to nineteen. Moreover equilibrated blood was collected and iced in syringes containing approximately one milliliter of room air. The first analysis of the experiment was performed with blood sample taken directly from the tonometer. Subsquent analyses were conducted at intervals of time using the blood stored in ice.

The results of this test are given in appendix II, Table 5. These results are shown in Figure 7. It is seen that

Figure 7. Parital Pressures of oxygen and Carbon Dioxide vs. Storace Time for Blood fiquilhrated with 5. le $\mathrm{CO}_{2}, 19.7 \mathrm{r}_{\mathrm{f}} \mathrm{O}_{2}$ and Terd in Plasitic Disposable ssringes containing Air. O, PO2; \triangle, $\mathrm{PCO}_{2} ; \mathrm{B} \cdot \mathrm{P} .733 \mathrm{~mm}$ Hg
the PO_{2} increases consistently with the blood storage time. It starts out at 134.5 mm Hg and is seen to reach a value of 164 mm Hg during a time interval of fifty-five minutes. This behavior of PO_{2} is seen to be similar to that observed in previous experiments. Looking at the PCO_{2} it is seen that there is no appreciable change, whereas it would be expected to drop had there been exchange of gases between air and the blood. This indicates that there is neither any effect of air contamination nor any diffusion of gases from the blood and through the syringe walls. This finding is in agreement with the conclusions of Hilti, et al. (6). It is also seen from the data (Table 5) that the pH of the blood does not change when the blood is stored for a short period of time. This indicates that changes in the partial pressure of oxygen in blood are not caused by the pH of the plasma.

Series Four Testing

Series four was conducted in order to determine if the percent saturation of oxyhemoglobin was also changing with the storage time. This information with the PO_{2} data taken earlier will determine if there is a shift in the oxyhemoglobin dissociation curve with the storage time or not. This series was confined only to the plastic disposable syringes. Tests were conducted with blood stored in separate as well as same syringe. The procedure of blood equilibration and its storage was similar to that described in earlier series. EDTA was
used as the anticoagulant and the blood saturation measurements were made using the co-oximeter (IL-182).

Results of these experiments are given in appendix II, Table 6. Figure 8 shows the percent blood saturation at differstorage times for blood equilibrated with $5.3 \% \mathrm{CO}_{2}$ and 3.2% 0_{2}. It is seen that there is no significant change in the oxyhemoglobin saturation. Also there seems to be no difference in the use of same or separate syringes. Figures 9-11 show the data for blood equilibrated with $7.2 \%, 19.7 \%$ and 95% oxygen respectively but none of them show any appreciable change in blood saturation. This indicates that $\mathrm{O}_{2} \mathrm{Hb}, \mathrm{Hb}$ and COHb saturations are independent of the equilibration gas, time of blood storage and use of same syringe or separate syringes for the blood gas analysis.

One experiment was conducted using sodium heparine in place of EDTA as the anticoagulant in the blood which was equilibrated with $5.1 \% \mathrm{CO}_{2}$ and $19.7 \% \mathrm{O}_{2}$. It was then collected anaerobically in a ten milliliter plastic syringe and analyzed in the same manner as described earlier in this series. The results from this experiment are shown in Figure 10 along with the results obtained using EDTA. From this figure it is indicated that the data from this experiment agrees well with that obtained using EDTA as anticoagulant in the blood. This indicated that the choice of anticoagulant does not affect the blood saturation with short storage time.

The last two experiments of the study were similar to

Figure 8. Concentrations vs. Storage Time for Blood Equilibrated with $5.3 \% \mathrm{CO}_{2}$, 3.2602 and Lced in Plastic Disposable syringés

Figure 9. Concentrations is. Storage Time for Equilibrated with $4 . C_{c}$ CO. 2 . $7.20^{\circ} 0_{2}$ and Iced in Same Plastio Disposable Syinge. (o. HbO_{2};
D. Hb; D. IthCO and B. P. T 41 mmHg.)

Figure 10. Saturations vs. Time of Storage for Blood Equilibrated with $5.1 \% \mathrm{CO}$, $19.7 \% \mathrm{O}_{2}$ and Iced in Plastic Disposabie Syringes; (B. P. 739 mm llg)

Figure 11. Concentrations vs. Storage Time for Blood Equilibrated with 5.O. CO_{2}. $95 . \mathrm{O}^{\circ}$ 个 O_{2} and leed in Plastic Disposable syringes
the experiments described in series two except that IL-313 Blood gas analyzer was replaced by IL-113 Blood gas analyzer. Blood was equilibrated with $5.0 \% \mathrm{CO}_{2}$ and $95.0 \% 0_{2}$, and iced in separate plastic syringes. The IL-113 was checked for calibration after each sample run. This data is given in appendix II, Table 7 and shown in Figure 12. This figure shows the variation of PO_{2} and PCO_{2} with time of storage for equilibrated blood using the IL-113. It is seen that the partial pressure of oxygen in the blood immediately after it is equilibrated is in the range of six hundred $\mathrm{mm} H g$. After storing the blood in ice for a period of fifty minutes, the PO_{2} dropped down to 578 mm Hg . Comparing Figures 6 and 12 it is seen that the drop in PO_{2} in both cases is similar and does not make any difference whether the IL-313 or the IL-113 is used for the measurements of blood gases.

Data Analysis

A linear regression analysis was performed on each PO_{2} group (very low, low, medium and high) separately. The correlation coefficient for the PO_{2} group (very low) is 0.1519 . Except for this particular group, the correlation coefficients for all other groups are significantly high (0.8928 for low; 0.6661 for medium and 0.8479 for high). This indicates that there is a strong dependence of blood oxygen partial pressure on the blood storage time and also on the initial PO_{2} of the blood. If the blood is equilibrated with a gas, then the par-

Figure 12. Oxygen and Carbon Dioxide Partial Pressures vs. Storage Time for Blood Equifincated with 5.0r cog. 95.0r 02 and lead in Plastic Disposable stringes; It-ble Thed for fas Anatrons
tial pressure of oxygen varies depending on the oxygen content of the equilibration gas. This is indicated by the slope of the regression line (Table 2). A negative slope indicates a drop while a positive slope indicates an increase in the PO_{2}. The partial pressure of oxygen in the high pressure range (approx. 600 mm Hg) is seen to drop with time (Figure 6) and is also indicated by a negative slope (Table 2). When PO_{2} is around 150 mm Hg or below, it is found to increase (Figures $3-5$ and Table 2). The rate of increase in PO_{2} is proportional to the initial $\mathrm{P}_{2} 2$ of the blood (Table 2). Considering Figure 1. it is seen that at constant oxyhemoglobin saturation PO_{2} increases with a shift in the curve to the left while it decreases with a rightward shift.

This shift in the oxyhemoglobin dissociation curve is caused either by a change in the pH value of the blood or by a change in the $2,3 \mathrm{DPG}$ concentration. It is generally accepted (2) that $2,3 \mathrm{DPG}$ is the most important regulator of the oxyhemoglobin dissociation at constant temperature and pH of the plasma. Lenfant, et al. (9) concluded that the PO_{2} in the blood is directly dependent on the $2,3 \mathrm{DPG}$ concentration. Mikeal Rorth (10) found that the 2,3 DPG concentration depended on the intracellular pH which increases with deoxygenation of the blood. The phenomenon of P_{2} variation with storage time might then be caused by a change in the $2,3 \mathrm{DPG}$ concentration with storage time.

Table 2. Results of Linear Regression Analysis on PO_{2} vs. Time

No, of data points	Equilibration gas $(\%)$		Slope	Intercept	Correlation coefficient R
CO_{2}	O_{2}				
12	5.3	3.2	.006	22.02	.1519
5	4.8	7.2	.026	51.5	.5928
15	5.1	1.9 .7	.369	138.3	.6661
39	5.0	95.0	-.585	600.7	-.8479

* R is the correlation coefficient which (as defined in Lectures on Biostatistics (12)) gives the degree of correlation between the variables $- \pm 1.0$ indicating a perfect correlation, and 0 indicating no correlation.

CHAPTER V

CONCLUSTONS

From the results of the experiments performed during this study, it is concluded that

1. there is no statistical difference between the plastic disposable and glass reusable syringes when they are used for the storage of blood for short periods of time.
2. the change in blood PO_{2} occur without any change in the pH value of the plasma.
3. the carbon dioxide partial pressure in the blood does not change with short storage time.
4. the blood saturation remains unaltered and is independent of short storage time.
5. with short storage time the blood oxygen partial pressure changes depending on the initial PO_{2} to which the blood is saturated.

CHAPTER VI

RECOMMENDATIONS

The slopes of the regression lines (Table 2) present an interesting phenomenon. The magnitude and the direction of this slope show a dependence on the initial partial pressure of oxygen in the blood. If the blood is equilibrated with a gas then this slope bears a marked dependence on the oxygen content of the equilibration gas. This phenomenon can occur due to changes in the $2,3 \mathrm{DPG}$ concentration and the slope of the regression line could be a measure of this change in the 2,3 DPG Ievel.

If an experiment is designed for the measurements of the 2,3 DPG and carried out similarly as those for the measurements of PO_{2}, it would be possible to relate to it the findings of this study. In case the changes in $2,3 \mathrm{DPG}$ are not found, some factors other than this must be sought to explain the drop or the xise in blood oxygen partial pressure with short storage time.

APPENDIX I

MEASURING ELECTRODES

MEASURING ELECTRODES

The partial pressures of oxygen and carbon dioxide in the blood are usually measured using electrodes. Principles involved behind these measurements are as follows.
pH Electrode
The blood pH is measured using a pH meter. It determines the potential difference between an indicator electrode and a reference electrode, amplifies this voltage difference and shows it on a meter either as pH or as millivolts. Figure 13 shows typical electrodes.

The most commonly used reference electrode is the Calomel electrode. This consists of metallic mercury in contact with a paste of calomel (mercuric chloride) and a solution of KCl saturated with calomel, as shown in Figure 13. As this electrode has the function to provide a steady reference voltage against which voltage changes at the glass pH membrane are referred, it is protected from contamination and dilution by the unknown solution, by housing it separately. This electrode makes contact with the unknown solution through a porous ceramic plug which allows current to flow without exchange of solution to the electrode.

The glass electrode is the most commonly used indicator electrode. The active element of a glass electrode is a special

CALOMEL ELECTRODE

GLASS ELECTRODE

Figure 13. Cross Sections of Calomel and Glass Electrodes
glass membrane. Contained on one side of this membrane is a solution of constant pH and on the other side is the solution of unknown pH. These two solutions differing in hydrogen ion concentration, produce across the glass membrane a potential difference (voltage) proportional to the difference in pH between the two solutions. The glass electrode has a small bulb of sensitive pH responsive glass filled with a solution of known pH . This solution is in contact with a wire of silversilver chloride.

PCO_{2} Electrode

The direct measurement of PCO_{2} potentiometrically is an adaptation of pH measurement. A combination pH glass and reference electrode (Figure 14) is used. The pH glass electrode is covered by a Teflon membrane. This membrane is permeable to gas $\left(\mathrm{CO}_{2}\right)$ but not to ions. Nylon strands between the electrode glass and the membrane provide a space for a thin layer of KCl and a bicarbonate solution. This layer acts both for solution of CO_{2} and to act as a liquid junction between glass and reference electrode. This reference electrode (silver - silver chloride) is located as shown in Figure 14. The combination electrode is inserted into the lucite jacket filled with KCl - Bicarbonate solution. Electric contact between the reference electrode and the measuring electrode is made via the port opening the reference chamber to the jack-
et electrolyte.
Carbon dioxide diffuses across the membrane in either direction in response to the partial pressure difference and in the electrolyte water it produces carbonic acid causing a change in the hydrogen ion concentration (See Equation 6).

$$
\begin{equation*}
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3} \leftrightharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \tag{6}
\end{equation*}
$$

The pH electrode picks up the change in CO_{2} concentration as a change in pH of the electrolyte and develops a voltage exponentially related to the carbon dioxide partial pressure, PCO_{2}.

PO_{2} Electrode

Determination of PO_{2} is made amperometrically. The PO_{2} electrode produces a current, at a constant polarizing voltage (0.6 V), which is directly proportional to the oxygen partial pressure $\left(\mathrm{PO}_{2}\right)$ diffusing to the reactive surface of this electrode. Figure 14 shows the general arrangement of the PO_{2} electrode system. The PO_{2} electrode consists of a platinum wire sealed in glass with its tip exposed. This platinum cathode is covered with an oxygen permeable membrane that is usually made of polypropylene, teflon or polyethylene. A thin film of KCl - phosphate buffer seperates the membrane from the platinum wire. Inside the membrane and in contact with the KCl buffer is the silver - silver chloride reference

Figure 14. Cross Section of Carbon Dioxide and Oxygen Electrodes
electrode (anode). A voltage of (-)0.6 volts applied to the platinum cathode gives rise to a current directly proportional to the oxygen available at the membrane surface (Equation 7).

$$
\begin{equation*}
\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \rightarrow 40 \mathrm{H}^{-} \tag{7}
\end{equation*}
$$

This shows that each molecule of oxygen reacts with four electrons and to provide for these electrons at the platinum cathode, silver at silver chloride anode is oxidized providing these electrons (Equation 8).

$$
\begin{equation*}
\mathrm{Ag}+\mathrm{Cl}^{-} \rightarrow \mathrm{AgCl}+\mathrm{e}^{-} \tag{8}
\end{equation*}
$$

It is this flow of electrons that is measured.

APPENDIX II
TEST DATA

Table 3. Series One Test Data

Specimen	$\begin{array}{cc} \mathrm{B} \cdot & \mathrm{P} . \\ (\min & \mathrm{Hg}) \end{array}$	$\begin{gathered} \text { Time } \\ \text { (Mins.) } \end{gathered}$	$\begin{aligned} & \mathrm{IL}-313 \\ & (\mathrm{~mm} \mathrm{Hg}) \end{aligned}$	
			PCO_{2}	PO_{2}
Saline	739.0	0	25.3	122.6
		20	28.8	112.3
		30	30.3	117.4
		40	31.7	119.0
		50	30.8	117.1
		60	30.9	120.2
		70	31.2	119.2
Blood	746.0	0	34.1	125.1
		5	32.4	123.0
		10	32.1	123.2
		15	31.9	120.7
		20	32.4	124.6
		30	32.2	123.5
		40	32.5	124.7
		50	32.9	122.2
		60	32.7	123.4
Blood	738.0		36.1	
		5	33.8	122.4
		10	34.0	123.6
		20	34.2	127.8
		30	33.4	126.8
		40	32.8	124.0
		50	33.4	126.0
		60	33.8	129.4

Table 4. Series Two Test Data

Syringes	B. $(\mathrm{mm}$. $\mathrm{Hg})$	Time (Mins.)	TL-313 $(\mathrm{mm} \mathrm{Hg})$

Equilibration Gas:	5.3%	CO_{2},	3.2%	0_{2}.
Same	742.0	0	36.8	22.3
(plastic		7	36.1	22.6
disposable)		18	36.0	22.9
	25	36.0	23.0	
		40	36.0	23.0
		55	35.7	23.1
Separate				
(plastic	743.0	0	37.0	21.7
disposable)		10	36.7	21.5
	20	37.5	21.8	
	30	36.9	21.1	
	40	37.1	20.8	
		60	33.2	22.3

Equilibration Gas:	4.8%	CO_{2},	7.2%	$\mathrm{O}_{2} \cdot$
Same	740.5	0	33.6	51.7
(plastic	10	33.1	51.5	
disposable)		20	32.9	51.9
	30	32.5	52.5	
	40	32.5	52.5	

Equilibration Gas: $5.1 \% \mathrm{CO}_{2}, 19.7 \% \mathrm{O}_{2}$.

Same	740.5	0	36.4	-136.1
(plastic		10	35.9	138.3
disposable)		25	36.2	140.8
		45	35.4	146.8
Separate	739.0	0	38.2	136.3
(plastic		10	35.4	141.9
disposable)		20	35.5	143.2
	30	35.4	141.8	
		45	34.9	146.8

Equilibration Gas: $5.0 \% \mathrm{CO}_{2}, 95.0 \% \mathrm{O}_{2}$.

Same	739.0	0	34.9	607
(plastic		13	33.1	581
disposable		28	33.3	573
	45	34.6	567	

Syringes	$\begin{array}{cc} \mathrm{B} \cdot \mathrm{P} . \\ (\mathrm{mm} & \mathrm{Hg}) \end{array}$	$\begin{aligned} & \text { Time } \\ & \text { (Mins.) } \end{aligned}$	$\begin{aligned} & \text { IL-313 } \\ & (\mathrm{mmHg}) \end{aligned}$	
			PCO_{2}	PO_{2}

Equilibration Gas: $5.0 \% \mathrm{CO}_{2}, ~ 95.0 \% \mathrm{O}_{2}$.

Separate	730.0	0	34.4	614
(plastic		10	33.9	611
disposable)		20	34.4	600
		30	34.6	600
		45	34.8	588

```
Table 5. Series Three Test Data
```


Table 6. Series Four Test Data

Table 7. Test Data Obtained Using IL-113

Syringes	$\begin{array}{cc} \text { B. } & \mathrm{P} \\ (\mathrm{~mm} & \mathrm{Hg}) \end{array}$	$\begin{aligned} & \text { Time } \\ & \text { (Mins.) } \end{aligned}$	$\begin{aligned} & I L-113 \\ & (\mathrm{~mm} \mathrm{Hg}) \end{aligned}$	
			$\overline{\mathrm{PCO}}_{2}$	PO_{2}
Separate	736.0	0	34.5	605
(plastic		15	34.0	600
disposable)		35	34.5	585
Separate	742.0	0	34.8	610
(plastic		15	34.0	590
disposable)		25	34.0	580
		50	34.8	578

BIBLIOGRAPHY

1. Davis, J. A.: Master's Thesis. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia.
2. Filley, Giles F.: Acid-Base and Blood Gas Regulation. Philadelphia, Lea \& Febiger. 1971.
3. Holmes, Paulette L., Green, Hattie E., and Lopez-Mojano, Vincent.: Evaluation of Methods of Calibration of 02 and CO_{2} Electrodes. Amer. J. Clin. Path. 54: 566-569. 1970.
4. Rhodes, P. Gregg, and Moser, Kenneth M., Sources of Error in Oxygen Tension Measurement. J. Appl. Physiol. 21(2): 729-734. 1966.
5. Evers, William, Racz, Gabor B., and Levy, Ashley, A.: A Comparitive Study of Plastic (Polypropylene) and Glass Syringes in Blood Gas Analysis. Anesth. Analg. (Cleveland). 51: 92-97. Jan.-Feb. 72.
6. Hilti, H., and Karendal, Bifgitta: Effects of Syringe Material on Oxygen Tension in Stored Blood. Acta Soc. Med. Upsal. 193-205. 1969.
7. Laver, M. B., and Seifen, A.: Measurement of Blood Oxygen Tension in Anesthesia. Anesthesiology. 26: 73-101. 1965.
8. Fletcher, G., and Jergen L. Barber: Effect of Sampling Technic on the Determination of PaO_{2} During Oxygen Breathing. J. Appl. Physiol. 21: 463-468. 1966.
9. LenFant, C., J. D. Torrance, and Reynafarje, C.: Shift of $\mathrm{O}_{2}-\mathrm{Hb}$ Dissociation Curve at Altitude: Mechanism and Effect. J. Appl. Physiol. 30(5): 625-631. 1971.
10. Rorth, Mikeal: Dependence of Oxyhemoglobin on Acid-Base Status of Blood, I. In Vitro Studies on Reduced and Oxygenated Blood. Red Cell Metabolism and Function. Edited by G. Brewer. New York. Plenum. 57-65. 1970
11. Kamath, S. H.: Clinical Biochemistry for Medical Technologists. Chapter I. Boston. Little, Brown and Co. First Edition. 1972.
12. Colquhoun, D.: Lectures on Biostatics. 277. London, Oxford University Press. 1971.
