
A Second Generation GENEric SYstems

Simulator (GENESYS) for a Gigascale

System-on-a-Chip (SoC)

A Dissertation
Presented to

The Academic Faculty

by

Steven P. Nugent

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in Electrical Engineering

School of Electrical and Computer Engineering
Georgia Institute of Technology

May 2005

Copyright c© 2005 by Steven P. Nugent

A Second Generation GENEric SYstems

Simulator (GENESYS) for a Gigascale

System-on-a-Chip (SoC)

Approved by:

Prof. James D. Meindl, Advisor
Electrical and Computer Engineering
Georgia Institute of Technology

Prof. D. S. Wills, Co-Advisor
Electrical and Computer Engineering
Georgia Institute of Technology

Prof. Jeffrey A. Davis
Electrical and Computer Engineering
Georgia Institute of Technology

Prof. M. Swaminathan
Electrical and Computer Engineering
Georgia Institute of Technology

Prof. William R. Callen
Electrical and Computer Engineering
Georgia Institute of Technology

Prof. Paul Kohl
Biomolecular and Chem. Engineering
Georgia Institute of Technology

Date Approved: March 30, 2005

This work is dedicated to my beloved parents,

Michael J. and Beryl J. Nugent

iii

ACKNOWLEDGEMENTS

I would like to take this opportunity to offer my sincere gratitude to those who

have made this work possible and who have provided support and guidance for my

efforts. First, Profs. James D. Meindl and D. Scott Wills for their time and efforts in

directing and encouraging the course and aims of this research. The examples that

they have set for me will remain influential for the remainders of my professional

and personal life. I would also like to acknowledge the other members of the reading

committee for assisting in the academic process.

The GSI administrative assistant, Jennifer Tatham, whose tireless guidance

and support have helped to make the GSI group a coherent ’family’ of researchers.

She has greatly enhanced the graduate experience for every student fortunate enough

to be associated with her.

My parents, Michael and Beryl Nugent, brothers, Mark and Robert, have

provided ample encouragement in my personal and academic development. Their

continued love and support will aid me in all my future endeavors.

Dr. John Eble deserves recognition for his ground breaking work in system

modeling which provided the framework upon which my contributions are built. Many

stimulating conversations early in my academic career set the course for much of my

academic efforts.

Finally, I would like to acknowledge both the Defense Advanced Research

Projects Agency (DARPA) and the Semiconductor Research Corporation (SRC) for

sponsoring the bulk of this research.

iv

TABLE OF CONTENTS

DEDICATION iii

ACKNOWLEDGEMENTS iv

LIST OF TABLES viii

LIST OF FIGURES x

SUMMARY xiv

I INTRODUCTION 1
1.1 Motivation and Background . 1
1.2 Problem Statement . 3
1.3 Summary of Contributions . 4
1.4 Dissertation Outline . 5

II SYSTEM LEVEL MODELING 7
2.1 Introduction . 7
2.2 Related Work . 7
2.3 GENESYS . 11

2.3.1 Throughput Estimation in GENESYS 12
2.3.2 GSI Interconnect Architectures in GENESYS 28

2.4 Extending GENESYS to Heterogeneous SoCs 36

III HETEROGENEOUS SOC METHODOLOGY 37
3.1 Introduction . 37
3.2 Block Modeling Methodology . 38
3.3 Global Interconnect Methodology in GENESYS 2k4 43
3.4 Cell Placement . 47

3.4.1 Manual Cell Placement . 47
3.4.2 Automated cell placement 49
3.4.3 Placement effects on efficiency 52

3.5 Validation of the block SoC methodology 57
3.5.1 Methodology . 58
3.5.2 Results . 59

v

3.6 Conclusion . 59

IV PHYSICAL ON-CHIP BUS MODELING 64
4.1 Introduction . 64
4.2 A Generic On-Chip Bus Model . 66

4.2.1 Bus specification in GENESYS 2004 66
4.2.2 Bus Link Models . 67
4.2.3 Calculating the Bus Length 70
4.2.4 Bus Delay . 73
4.2.5 Bus Power dissipation . 76
4.2.6 Bus Routing Area . 78
4.2.7 Bus placement optimization 81

4.3 Bus limitations on system throughput 83
4.3.1 Transaction model . 84
4.3.2 Transaction rate limit . 89

4.4 CoreConnect Chip Example . 96
4.4.1 The IBM CoreConnect Architecture 96
4.4.2 440GP Simulation results . 97
4.4.3 Performance scaling and trends for the 2004 ITRS technologies 99

4.5 Conclusions . 103

V ON-CHIP DRAM MODEL 106
5.1 Introduction . 106
5.2 DRAM Cell Model . 107

5.2.1 Cell area model . 108
5.2.2 Cell energy model . 109
5.2.3 Cell delay . 118

5.3 DRAM Array model . 119
5.3.1 DRAM Array area . 119
5.3.2 DRAM array power dissipation 120

5.4 A Gigabit on-chip DRAM . 122
5.5 Conclusions . 122

VI GIGASCALE CELLULAR ARRAY ARCHITECTURES 126
6.1 Introduction . 126
6.2 Stochastic global network for gigascale array processors 126

6.2.1 Simulation methodology . 127
6.2.2 Global and local interconnect resources 128
6.2.3 Local and global clock frequency 133
6.2.4 Power dissipation . 137

6.3 Design space for global communication 138
6.3.1 Simulation methodology . 138
6.3.2 Shared global bus . 139
6.3.3 Nearest neighbor wiring approach 139

6.4 Conclusion . 141

vi

VII CONCLUSION AND FUTURE RESEARCH 143
7.1 Overview . 143
7.2 Summary of Results . 145
7.3 Future Research . 148

7.3.1 Core Modeling Enhancements 148
7.3.2 System Modeling Enhancements 149

APPENDIX A — 2003 ITRS TECHNOLOGY NODES 151

APPENDIX B — GENESYS 2004 MANUAL 153

APPENDIX C — GENESYS HELP FILE 170

APPENDIX D — MACHINE DESCRIPTION 172

REFERENCES 179

VITA 184

vii

LIST OF TABLES

1 ITRS feature size . 15

2 Global interconnect for the 2013 ITRS microprocessor. 19

3 Cost analysis parameters . 21

4 Parameter values for optimal zone size analysis 24

5 GSI microprocessor parameters . 27

6 Parameters for repeater analysis . 34

7 Relative LDI performance . 34

8 Cell placement efficiencies for generic SoC example containing 18 cells for
manual, in-order, and size based placement. 55

9 Megacell Placement Efficiency for Commercial SoCs. 57

10 Validation results for block methodology 61

11 Bus length calculations for various fanouts and configurations for generic
SoC floorplan of Figure 44. 73

12 Bus delay at 5µm line width for the three generic bus line types from
Figure 41. 75

13 Average bus power comparisons with actual data 77

14 Bus area requirements for example from Figure 45 80

15 Simulation results for 32 bit shared, global bus connecting all cells for a
300mm2, 20 megacell generic SoC. 81

16 Simulation results for bus length and delay for various cell placement
schemes. 82

17 Optimal pipeline depth . 87

viii

18 Effects of bus pipelining on peak data rate 89

19 Parameters for bus throughput analysis 95

20 Comparison of GENESYS results for PPC440 processor core. 104

21 GENESYS simulation results for the IBM 440GP SoC. 104

22 Maximum PLB bus bandwidth for the IBM 440GP SoC 104

23 Technology scaling results for the 440GP example 105

24 Technology scaling simulation results for the 440GP PLB bus illustrated
in Figure 55. 105

25 Voltage swing dependencies for a generic DRAM cell 114

26 DRAM cell leakage states . 116

27 Array area comparison . 120

28 DRAM area comparison . 120

29 DRAM simulation results . 121

30 Giga-bit embedded DRAM . 123

31 2003 ITRS technology . 129

32 Shared bus statistics for processor array 140

33 Bus performance for a nearest neighbor communication network 141

ix

LIST OF FIGURES

1 GENESYS Hierarchy . 11

2 CPI dependencies . 13

3 Parameter extraction for empirical CPI model 14

4 Throughput projections for the ITRS . 16

5 Random logic delay model . 17

6 Global interconnect delay model . 17

7 Throughput vs die size for the 2013 (18nm) ITRS microprocessor. 19

8 Power and clock frequency for 2013 ITRS microprocessor 20

9 Performance-Cost index for 2013 ITRS microprocessor 22

10 Minimum die size vs. gate count . 23

11 CPI variation with gate count . 25

12 Clock frequency variation with gate count 25

13 Raw throughput vs. gate count . 26

14 Throughput vs. gate count for various cache sizes 27

15 Throughput vs gate count for 2013 generation 28

16 Throughput vs tier organization . 31

17 Normalized global interconnect cross-sectional area vs. tier organization . 31

18 Throughput vs. number of wiring levels 33

19 Frequency increase with die size for repeater & single driver schemes . . 35

x

20 Repeater and single driver die size . 36

21 Block diagrams for Uniprocessor and SoC approaches 38

22 Heterogeneous Simulation Flow . 40

23 Global interconnect sizing algorithm . 42

24 Homogeneous interconnect distribution 43

25 Heterogeneous global interconnect distribution 44

26 Cell placement grid example . 48

27 Example cell placement specification . 49

28 Auto-placement algorithm . 53

29 Row assembly for auto-placement . 53

30 Generic SoC for efficiency comparison . 54

31 Generic SoC floorplan with in-order placement 55

32 Generic SoC floorplan for size based cell placement 56

33 Intel Itanium2 die micrograph . 58

34 Emotion engine die micrograph . 59

35 UltraSPARC die micrograph . 60

36 PowerPC die micrograph . 61

37 Die area comparison . 62

38 Clock frequency comparison . 62

39 Power dissipation comparison . 63

40 Speed trends in on-chip/off-chip connections 65

41 Generic Bus Line Models . 68

42 Physical model for bus lines . 69

43 Illustration of bounding box calculation 72

44 Bus length example floorplan . 72

xi

45 Delay trends for generic bus line types 74

46 Average bus power consumption for three link types 78

47 Average bus power consumption at a clock frequency of 200MHz 79

48 Generic SoC processor-memory cores and on-chip bus 84

49 Non pipe-lined bus transaction model . 85

50 Pipelined bus transaction models . 86

51 Bus transaction limit vs latency . 90

52 Bus transaction rate vs miss rate . 93

53 Bus transaction rate vs processor core frequency 94

54 Bus limitations on system throughput 95

55 Block diagram of an SoC implementation based on the IBM 440GP chip 98

56 Power and Frequency for technology scaling example 101

57 Power density technology scaling example 102

58 Breakdown of power dissipation for technology scaling example 102

59 Basic circuit model for a DRAM cell . 107

60 DRAM feature size vs calendar year . 109

61 DRAM cell area vs calendar year . 110

62 DRAM cell area in feature sizes vs calendar year 110

63 Generic DRAM cell layout . 111

64 DRAM cell area model comparison with ITRS data 112

65 Cross-sectional diagram of DRAM cell with leakage currents 117

66 Tunneling current model for DRAM leakage 124

67 Generic DRAM array layout . 125

68 Generic cellular array floorplan . 127

69 Node sizing vs Node count . 128

xii

70 Local interconnect demand vs number of nodes for selected ITRS technol-
ogy generations . 130

71 Global interconnect demand vs number of nodes for selected ITRS tech-
nology generations . 131

72 Global interconnect pitch vs number of nodes for selected ITRS technology
generations . 132

73 Global clock frequency vs number of nodes and technology generation . . 134

74 Local clock frequency vs number of nodes and technology generation . . 135

75 Ratio of local to global clock frequency 136

76 Processor array power dissipation . 137

77 Global network types for processor array 138

78 Technology characteristics for near term years 152

79 Technology characteristics for long term years 152

xiii

SUMMARY

It is the fundamental thesis of the gigascale integration (GSI) research

group that the performance of future multi-billion transistor systems is governed by

a hierarchy of limits. The ability to leverage advancements in materials, devices,

and circuit related technologies for future designs is heavily dependent on limitations

imposed by system level constraints. The emerging dominance of System-on-a-Chip

solutions for complex IC’s necessitates the development of an early performance es-

timation tool specifically geared towards SoC type designs. Future SoC designs will

incorporate many peripherals that were previously off-chip resulting in system which

depart significantly from traditional architectures. A newly enhanced generic systems

simulator, GENESYS 2004, is offered as a fast, flexible approach to exploring system

level limitations for complex GSI systems. GENESYS 2004 incorporates a hierarchi-

cal block-based system modeling methodology based on physical system level design

parameters to rapidly project performance.

The new system methodology is verified by comparing the simulated perfor-

mance and characteristics of existing microprocessors/SoCs against actual data. Sev-

eral simulation methods incorporating the projected system characteristics from the

2003 edition of the ITRS show that a near term limitation on the growth potential of

gigascale SoCs is limited by excessive power dissipation. Beyond the 2006 time frame

the projected power dissipation for GSI systems rapidly exceeds the ITRS maximum

allowable values.

xiv

This thesis presents a methodology for rapidly projecting the performance of

gigascale systems-on-a-chip and exploring limitations on the growth potential of these

future systems.

xv

CHAPTER I

INTRODUCTION

1.1 Motivation and Background

Beginning with the introduction of the integrated circuit in 1958, technology-

scaling trends have driven an exponential increase in on-chip integration over the

previous four decades. Using the Intel line of microprocessors as a key example, the

8086 processor introduced in 1978 supported 29K transistors while the next gener-

ation Itanium processor boasts on the order of 220M transistors [1][2]. This trend

represents an increase of 4 orders of magnitude over the past two decades. With this

increasing integration, the complexity of chip designs has progressed from the sin-

gle issue, sequential processors of the 1970’s to the multiple-pipelined, out-of-order,

speculative systems of the present [2]. The 2003 ITRS projects that by 2018 the num-

ber of transistors integrated on-chip will grow from several hundred million today to

more than 14 billion for high performance processors [3]. The cost of debugging and

validating high complexity designs make reducing design complexity a key goal for

chip architects [4]. In response to the increasing integration and complexity the semi-

conductor industry has moved steadily towards System-on-a-Chip (SoC) solutions for

VLSI systems. This shift in recent years towards SoC designs for complex systems

presents significant challenges for the design and test community [5][6]. While these

issues are of paramount importance to the future viability of SoC designs in GSI

systems, the impact of technology scaling on key system performance metrics such as

1

clock frequency, power dissipation, and chip area cannot be ignored.

The 2003 edition of the ITRS projects that the 14 billion transistor chip of

2018 will operate at a local clock frequency of approximately 53 GHz, occupy an area

of 310mm2, and consume 300W [3]. The challenges to achieving such performance

are daunting when the general tradeoffs are assessed. For example, reaching the tar-

get power dissipation numbers for this node is problematic due to both the increased

integration and higher clock frequencies. Given the relative inflexibility of limitations

arising from lower levels of the GSI hierarchy, the best opportunities for overcoming

barriers to continued performance growth lie at the system level.

SoC design methodologies promise to play a dominant role in the future

of GSI systems. Given the inherent challenges in the design and production of such

systems, it is vital that the interactions between technology and architecture are ex-

plored to identify optimal design spaces for GSI SoCs. It is theorized that potential

performance improvements for GSI systems are governed by a key set of limits that

are organized hierarchically as fundamental, material, device, circuit, and system [7].

The GENEric SYstems Simulator (GENESYS) is designed to take a system descrip-

tion incorporating each level of the GSI hierarchy and produce estimates of key system

performance metrics [8].

As chip designs become increasingly based on SoC methodologies the emer-

gence of intellectual property (IP) core methodologies in which systems are composed

of previously defined blocks or macro-cells from design libraries, results in systems

that are inherently heterogeneous in nature. A traditional homogeneous system model

with an interconnect distribution based on the assumption of a uniform gate-array is

no longer adequate for describing the system architecture on the interconnect level

2

[9][10]. A new system modeling methodology has been developed for explorations of

the SoC design space. This methodology incorporates a system description which

mimics the physical layout of a SoC combined with a dual interconnect distribution

for global and local interconnects to more accurately estimate system performance.

In addition this model allows for novel investigations into the effects of macro-cell

placement on the global interconnect distribution and its impact on the system clock

frequency, power consumption, and throughput for future technology generations.

The system methodology is further extended by the incorporation of explicitly defined

interconnect/busses into the architectural description of the SoC. Another critical ad-

vancement over the generic homogeneous modeling approach is the incorporation of a

new on-chip DRAM model for high density memory storage a key feature on numer-

ous SoCs. GENESYS 2004 uniquely preserves a rich core of empirical and analytical

modeling while providing a highly flexible and generic system level methodology for

making projections of SoC performance into the next decade.

1.2 Problem Statement

Projections of future system performance for gigascale SoCs based on a de-

tailed hierarchy of limits requires a system level methodology that is sufficiently de-

scriptive and flexible enough to provide an accurate basis for simulating systems that

may vary widely in characteristics from one implementation to another. The enabling

observation is that no matter the complexity and design of the system in question, all

of the constituent parts are derived from increasingly simpler components. Devices

are arrangements of semiconductor materials (silicon,dopants,oxides. . .). Circuits are

collections of interconnected devices. Functional units are groupings of circuits. Sys-

tems are collections of inter-related functional units. Changes made at the material,

3

device, or circuit levels may filter up to impact the performance at higher levels of the

hierarchy, but alterations in the system design such as the placement of the megacells

does not modify the behavior at lower levels of the hierarchy. Therefore, a more

flexible system methodology may ’layer’ onto the existing framework.

Based on this observation, a new methodology for describing a fully realized

SoC and then engaging the necessary body of hierarchical modeling to produce pro-

jections that correspond with high fidelity to the specified system is required. This

thesis address the question of how to estimate the system performance of complex

GSI SoCs with a flexible, but generic description, as to enable the exploration of

opportunities and limitations for future designs.

This thesis describes 1) a hierarchical block-based system methodology for a

gigascale SoC that significantly improves upon the performance of the previous system

model featuring a dual distribution approach based upon global and local intercon-

nection networks, 2) a set of physical models for on-chip DRAM, 3) a methodology

for explicitly specifying and simulating the performance of critical global interconnect

networks such as system busses to enhance throughput projection for SoCs.

1.3 Summary of Contributions

The following list is a summary of the contributions presented in this disser-

tation.

• Definition, implementation, and engagement of a machine description for a het-

erogeneous system-on-a-chip.

• Implementation, validation, and engagement of a methodology for projecting

4

the system performance of an SoC implementation.

• Integration of a key global interconnect distribution and algorithm for generat-

ing a complete stochastic global net distribution for GSI SoCs.

• Evaluation of existing SoC designs showing improved fidelity over a previous

system model.

• Derivation, implementation and engagement of bus modeling for critical global

interconnects.

• Development and implementation of a novel automated cell placement routine

for heterogeneous SoCs with constraints for maximizing cell clustering density

and minimizing the length of on-chip busses.

• Derivation, verification, and integration of an on-chip DRAM model into GENESYS

2004.

1.4 Dissertation Outline

Chapter II summarizes previous work in generic system modeling including

the early generation of GENESYS and its capabilities. The early generation simula-

tor is engaged in original studies to highlight key features of the homogeneous system

model utilized.

Chapter III introduces the concept of the hierarchical block-based method-

ology for SoCs. The system description and simulation methodology are discussed

in detail. The algorithm for assessing the global routing requirements is presented.

The impact of cell placement on the global distribution and system performance is

examined from a stochastic viewpoint. The new system methodology is verified by

comparison with existing commercial chips and contrasted with the results from the

5

homogeneous model. A novel ultra-fast automated cell placement algorithm with

optimization constraints for cell clustering density and bus length minimization is

discussed.

Chapter IV presents a novel on-chip bus model for assessing the performance

impact of critical global interconnects. The impact on global routing resources and

delay is examined. The impact of bus performance on system throughput is also

discussed.

The on-chip DRAM modeling is detailed in Chapter V. The generic DRAM

model is introduced and verified by comparison to commercial implementations. In-

tegration into the GENESYS 2004 system framework is discussed.

Chapter VI explores system performance for cellular array architectures using

the 2003 ITRS as a starting point for estimating system configurations. The tradeoff

between local and global interconnect with increasing cell count is examined. The

suitability of three distinct wiring schemes for array architectures is examined. The

power dissipation and clock frequency for each technology generation is evaluated

against projected ITRS data.

The dissertation is summarized and the major conclusions presented in chap-

ter VIII. Promising subjects for future research and extension of the GENESYS 2004

framework are discussed.

Finally, the appendices gather ancillary material such as the GENESYS user’s

guide, sample help file, and example machine description.

6

CHAPTER II

SYSTEM LEVEL MODELING

2.1 Introduction

System performance modeling can be described as consuming key system de-

sign parameters to produce estimates of performance for prediction or early design

feedback [11]. As semiconductor technologies continue to scale toward the nanometer

regime, the impact of device technology, interconnect, and system architecture on chip

performance makes chip/system level modeling vital to identifying key challenges and

opportunities for future GSI systems. Numerous attempts to model the system level

performance of complex ICs have been undertaken with varying degrees of rigor.

This chapter presents a brief overview of earlier research efforts in the area of

chip modeling and exercises the first generation generic systems simulator (GENESYS)

to explore various components of microprocessor performance in a homogeneous en-

vironment.

2.2 Related Work

Bakoglu presented the first system model combining elements of technology,

architecture, and system packaging in SUSPENS (the Stanford University System

Performance Simulator) [12]. This system model is comprised primarily of eleven key

7

expressions and associated parameters. By exercising this system model, the author

estimated the clock frequency, die size, and power dissipation for both CMOS and

GaAs technologies. However, this system model, with its sparse parameter set, fo-

cuses almost exclusively on the circuit and system levels. This model ignores key

contributions made at the lower levels of the GSI hierarchy [7], the design of the

memory hierarchy, and throughput estimation.

Sai-Halasz introduced a generic cycle-time model for projecting performance

trends in uniprocessors [13]. Unlike SUSPENS, this work focused primarily upon

the estimation of maximum clock frequency rather then complete system modeling.

However, Sai-Halasz significantly extended the modeling effort by taking into account

both multi-tier wiring architectures with via-blockage modeling and area requirements

for on-chip memory.

A 1990 effort by Hoppe and Neuendorf [14] focused on circuit level optimiza-

tions but included analytical models for frequency, area, and power. The detailed

critical path model takes into account various gate geometries (NAND,NOR...etc.)

and estimates the wiring capacitance from layout information. The area model is

also based on empirical data for estimating the footprint of a logic gate. The power

dissipation is estimated via the product of the CV 2 energy and clock frequency. The

methodology is highly detailed but the extrapolation from circuit level optimization

and modeling to the system level area and power models neglects the impact of inter-

connect scaling on system performance. The modeling presented in this work is well

suited for circuit level estimations only.

8

A better example of a system modeling methodology is presented by Goel

and Schuermeyer [15]. The authors developed a simulator, NCHIPSIM, for project-

ing the performance indicators of an integrated chip. Like SUSPENS, a key aspect

of the system modeling is the calculation of the wiring distribution and average in-

terconnect length from Rents parameters and the Donath distribution [16][17]. The

authors applied NCHIPSIM to an existing microprocessor design and demonstrated

accurate estimation of the system clock frequency, chip size, and power consumption.

The system modeling in NCHIPSIM is very similar to SUSPENS, but is limited by

the assumption of NMOS as the circuit implementation technology. This model does

not significantly extend the system modeling work presented in [12].

The Rennsselaer Interconnect Performance Estimator (RIPE) was devel-

oped to provide early analysis of the system performance constraints introduced by

interconnect related issues [18][19]. In this capacity RIPE takes an interconnect cen-

tric approach to system modeling. The average wire length is calculated via the Rents

parameters. The interconnect distribution is reduced to average length wire and a

number of maximum length wires. Several IBM, Intel, and Alpha processors are sim-

ulated with RIPE and the results show accurate estimations of clock frequency and

power dissipation. RIPE does not provide a complete system model as the chip area

is an input rather than an output. The primary drawback to RIPE is that the input

set consisting of system, technology, and interconnect requires detailed information

regarding the capacitance, resistance, and area. When projecting performance for

future technology generations, this information may not be readily available.

Another recent system modeling effort is the Berkeley Advanced Chip Per-

formance Calculator (BACPAC) developed by Sylvester [11]. BACPAC incorporates

a set of inputs codified as interconnect, device, and system to produce estimates of

9

the chip area, frequency, and power. Unlike most previous system models, BACPAC

models both the local and global interconnects. The system model assumes that the

wire-length distribution derived by Donath applies to both the local and global in-

terconnect distributions. Furthermore, the BACPAC model assumes that the system

architecture is partitioned into blocks of between 50,000 to 100,00 gates. The power

modeling utilizes a hierarchical approach in which different components of the power

consumption are individually modeled. This approach makes BACPAC one of the

more comprehensive system modeling tools available. The major drawbacks of the

methodology are its reliance on an outmoded interconnect distribution for both local

and global interconnect modeling and a broad assumption regarding the partitioning

of logic at the system level.

The generic model (GenM) for SoC architectures is used for the rapid es-

timation of performance in terms of energy and latency [20]. The core system model

utilized in this work consists of a processor supporting dynamic voltage scaling, re-

configurable logic, and memory . It takes as its key input parameter set an array of

operating states for the processor and memory. Unlike the other modeling approaches

discussed above, the GenM model replaces the technology modeling with a compo-

nent level abstraction. The time and energy costs for specific state transitions and

interactions between the system components are entered as input. With this frame-

work in place, it is possible to map an application to the GenM model and evaluate

its execution time and energy cost. This approach is shown to generate reasonably

accurate results for several sample processors, however the interactions between tech-

nology and architecture are hidden from the user. The GenM system model focuses

solely on energy and execution time without any estimates of physical system char-

acteristics such as die size or clock frequency. In order to utilize this simulator the

application, processor states, and transition time/energy costs must be known. This

10

makes this simulation framework unsuitable for investigating the performance of fu-

ture billion transistor systems.

2.3 GENESYS

DEVICE
 Surface-Channel MOSFET

FUNDAMENTAL CONSTANTS

MATERIAL
PROPERTIES Si, Poly

Al, Cu, Oxide, Polyimide

CIRCUIT
 Static CMOS

PACKAGING
TECHNOLOGY Single-Chip Module

SYSTEM
ARCHITECTURE On-chip Cache, IPC

GENESYS
MODELS

MULTILEVEL INTERCONNECTS
Number of Wiring

Energy

Size

Frequency

Power

GENESY
SOUTPUT
S

Interconnect
Architecture

Throughput

Figure 1: Visualization of GENESYS hierarchical modeling approach

The first system modeling tool to fully incorporate the entire GSI hierar-

chy in its simulation methodology was GENESYS [8][21]. GENESYS established a

uniprocessor system model consisting of a large block of random logic with between

0 to 3 cache memories. Under this model, a newly derived stochastic interconnect

distribution [9][10] improving upon the previously derived method in [17] is utilized

to derive the average wire length for the random logic. In addition to an improved

interconnect distribution, GENESYS introduced detailed modeling of the on-chip

memory. These models include area, access time and power dissipation for numer-

ous physical and logical cache organizations. Furthermore, GENESYS was the first

11

such system modeling tool to incorporate a compact CPI model for estimating the

system throughput [22]. This CPI model incorporates contributions from both the

random logic network (via an empirical model) and the memory hierarchy (as a func-

tion of miss rate tables, bus frequency, and DRAM access time). A diagram of the

GENESYS approach is illustrated in Figure 1.

The following sections provide relevant information regarding GENESYS mod-

eling in the context of original studies of microprocessor performance characteristics.

The primary areas of focus for these studies are throughput estimation, and GSI in-

terconnect architectures.

2.3.1 Throughput Estimation in GENESYS

Delivered instruction throughput, measured in completed instructions per sec-

ond (IPS), is a widely used metric for comparing processor performance. It is typically

computed using standard benchmarks (e.g. SPEC95...). Instruction throughput is

the product of cycle time (Tc) and cycles-per-instruction (CPI), both of which are

processor implementation dependent.

IPS = (Tc · CPI)−1 (1)

Projections of future microprocessor performance have historically centered on clock

frequency as the primary performance metric [23][24]. However, clock frequency alone

does not fully determine the processor performance. In this section a previously

derived empirical CPI model is exercised to give insight into performance limits for

future GSI microprocessors [25]. The logic-memory model takes into account the CPI

of a random logic block and the impact of the memory subsystem. Figure 2 shows

the globally observable metrics that are correlated to the CPI in this model.

12

Random
Logic
Transistors

I - Cache

D - Cache

L2 - Cache
M

2. Memory Portion

1. Logic Portion

Figure 2: A global view of CPI dependencies for the logic-memory CPI model.

2.3.1.1 Empirical CPI Model for random logic

The first correlation parameter is the number of logic or non-cache transistors

on the chip. This factor influences the logic component of the CPI which is computed

via the following expression:

CPIlogic = EcNgate
−Ee (2)

Where Ec is the empirical coefficient, Ngate is the gate count, and Ee is the empirical

exponent. The formulation of the relationship between the gate count and the CPI

derives from the observation that historically increasing on-chip integration has been

utilized to implement architectural enhancements that reduce the CPI. The values

for Ec and Ee are found by fitting the power law model to actual data taken from an

existing line of microprocessors as shown in Figure 3. The values used in this study

are Ec = 51829 and Ee = 0.7725.

2.3.1.2 Memory CPI Model

The memory component of the CPI model captures the impact of the cache

memory (capacity and logical organization) and the main memory (off-chip memory

13

y = 51829x-0.7725

R2 = 0.9886

1

10

100

10000 100000 1000000

Number of Logic Gates (Nlogic)

B
as

e
C

P
I

Actual Data

CPI Model

Figure 3: Parameter extraction for empirical CPI logic model for Intel x86 processor
family.

access). A simple expression for the memory CPI contribution is listed in the equation

below:

CPImem = MrefsMrateMpenalty (3)

Where Mrefs is the reference frequency expressed as a % of the instructions that

make a reference to the memory subsystem, Mrate is the % of references resulting in a

cache miss, and Mpenalty is the delay in cycles taken to access the main memory to re-

trieve data. GENESYS is capable of considering three distinct cases: a single unified

cache, a split cache (instruction and data),and a split cache with unified level 2 cache.

CPImem = (Miref + Mdref)mrate1

(

⌈tmmfc⌉ +

⌈

8B1

bbus

⌉⌈

fc

fbus

⌉)

(4)

Equation 4 is a more precise calculation of the memory CPI component for the single

unified cache where Miref and Mdref are the instruction and data reference frequen-

cies, mrate1 is the miss rate of the cache, tmm is the main memory access time, fc is

the processor clock frequency, B1 is the size of a cache line in bytes, bbus is the width

of the memory data bus in bits, and fbus is the bus frequency. The expressions for the

14

Table 1: Minimum feature size for ITRS technology generations

1999 180nm
2001 150nm
2003 130nm
2005 100nm
2011 50nm

2 and 3 cache cases are similar to Eq. 4 but with additional terms. The cache miss

rate is determined from the Design Target Miss Rate (DTMR) tables introduced by

Smith and updated by Flynn [26][27][28].

2.3.1.3 Simulation Results for a GSI Microprocessor

The CPI for three different processor implementations (x86, AMD, and RISC)

is calculated from Eqs. 2 and 3 then combined with ITRS projections for cycle time to

determine the throughput trend for the roadmap. The results are shown in Figure 4

taken from [22]. The feature size for each technology generation is given in Table 1.

As bench-marked against the 2x trend the throughput trend for each processor de-

grades significantly at the end of the roadmap. The logic CPI and clock frequency

are linear on a log scale. Therefore, the cause of the degradation must be the memory

component of the CPI. In fact, the contribution of the memory to the total CPI in-

creases from approximately 35% in 1999 to about 65% in 2011. In order to maintain

the 2x/24 month trend the memory CPI must scale at a rate comparable to the logic

component. The increasing gap between core logic and memory performance indi-

cates that the design and implementation of the memory hierarchy will play a vital

role in efforts to increase the performance of future GSI systems.

15

0.1

1

10

100

1999 2001 2003 2005 2007 2009 2011

Calendar Year

B
IP

S

100% every 2 yrs
Intel
AMD
RISC

Figure 4: Throughput projections for Intel, AMD, and RISC processor families for
the ITRS versus 2x improvement every 2 years [22].

2.3.1.4 Effects of Die Size on System Performance

In this study GENESYS is utilized to explore the impact of varying die size

on system performance for a GSI Microprocessor, to develop a cost performance in-

dex for identifying optimal performance per unit cost, and to determine the optimal

size of a random logic block for maximum throughput. The architectural component

of performance is determined via the empirical throughput model discussed in sec-

tion 2.3.1.1 and section 2.3.1.2. The clock frequency is determined by either the delay

through a chain of gates wired by average length interconnects or the delay of the

longest global interconnect [25]. The basic delay models are illustrated in Figures 5

and 6. Repeater insertion is assumed unless otherwise noted.

GENESYS Optimization and Die Size

GENESYS utilizes several optimization methods and metrics. The methods

include gate, interconnect, and both. The gate method makes the device width the

primary variable through which the optimization is performed. The interconnect

16

Average Length

Random Logic
Depth

Figure 5: Random logic delay model utilized in GENESYS. A chain of canonical
gates connect by average length wires.

Lmax
D R

Figure 6: A schematic of the global distributed RC interconnect delay model. The
value Lmax is approximately twice the chip edge length and D/R denote the driver
and receiver respectively. The single driver case is shown but optimal repeater inser-
tion is also an option.

method sets the wiring dimensions as the optimization variable. The metrics are

performance and die size. The constraint for the performance metric is a target die

size specified by the user. GENESYS will attempt to find the gate width/interconnect

dimensions which maximize performance without violating the constraint. The die

size metric constraint is given as a target clock frequency. In this case the simulator

attempts to find the smallest die size for which the target clock frequency is met.

Die Size vs. Throughput

Two of the key metrics determining the viability of a microprocessor design

are the cost per die and the performance. The complete processing of a wafer can be

modeled as a fixed cost, so the first metric is closely related to the die size as the num-

ber of dies per wafer is inversely proportional to the die size. Therefore for this study

the die size will function as our cost metric with larger die sizes indicating increas-

ing cost. The second metric is performance. The ultimate performance metric for

17

a microprocessor is throughput (in instructions/operations per second). GENESYS

incorporates an empirical model for projecting the CPI of a GSI processor. When

combined with maximum clock frequency projections the CPI model allows for esti-

mation of the system throughput that will serve as the performance metric in this

study.

Simulation Methodology

These simulations are performed for a GSI Microprocessor conforming to the

technology and system characteristics specified in the 2001 ITRS for the 2013 tech-

nology generation [23]. The minimum feature size is 18nm while the pertinent system

characteristics are 1.56 billion transistors with 12 metalization layers. For this study,

GENESYS will optimize both the interconnect dimensions and the average device

W/L ratio for maximum clock frequency. The target die size is varied from 55mm2

to 275mm2. This approach allows for the investigation of the trade-offs between die

size and overall system performance.

Simulation Results

Figure 7 shows the response of the system throughput to increasing die size.

A substantial increase in performance of nearly 200% comes at a cost of a 150%

increase in the die size of the processor. The throughput increases sharply between

55-70mm2 with no appreciable performance gain beyond 140mm2. The 55mm2 point

represents the smallest die size for which GENESYS could meet the wiring demand

while 275mm2 is the largest die size practical due to performance saturation. Where

does the performance increase come from? The CPI component of the throughput

is independent of the die size, so the increase in system throughput is the result

of increasing clock frequency. The higher clock frequencies driving the trend from

Figure 7 is primarily the result of GENESYS optimization of interconnect dimensions.

As the target die size is increased, the additional routing area allows for an increase

18

Table 2: Global interconnect for the 2013 ITRS microprocessor.

Die Size 55mm2 275mm2

Length 1.28cm 2.99cm
R (Ohms) 161K 90

Total Delay 2.66ns 0.30ns
ToF Delay 0.06ns 0.14ns

in the cross-sectional area of interconnects. This reduces the resistance of the wire

resulting in lower RC delay. This effect is most prevalent in the global interconnects

because the delay based optimizations run by GENESYS target the wiring levels

with the highest delays. Therefore, the increased routing area is reducing the global

interconnect delay.

5

7

9

11

13

15

17

19

21

23

25

55 75 95 115 135 155 175 195 215 235 255 275

Die Size (mm2)

T
h

ro
u

g
h

p
u

t
(B

IP
S

)

ITRS projected die size
(140mm2)

Figure 7: Throughput vs die size for the 2013 (18nm) ITRS microprocessor.

The data of Table 2 show that even through the interconnect length increases

by more than 100%, the total delay drops by 89%. For a 55mm2 die size the time of

flight delay accounts for only about 2% of the total delay. For the 275mm2 die size

example the time-of-flight delay comprises nearly 47% of the total delay. Figure 8

19

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29

50 75 100 125 150 175 200 225 250 275
Die Size (mm2)

N
o

rm
a

liz
e

d
 P

w
r

&
 C

lk
 l

 Norm Power

Norm Clock

device sizing trend

Figure 8: Normalized power dissipation and clock frequency vs die size for the 2013
ITRS microprocessor. The dotted shows the power dissipation trend due to increasing
device W/L ratio.

shows the normalized clock frequency and power dissipation for these simulations.

The clock frequency saturates as the random logic critical path becomes the domi-

nant contributor to the processor cycle time. The increasing die size allows for larger

width gates. However, the increase in average interconnect length and gate loading

offsets the speed advantage of higher drive current. The power dissipation trend con-

tinues to show increases in the region where the clock frequency has saturated because

GENESYS increases the gate W/L ratios to optimize the critical path delay. Neither

of the two cases presented in Table 2 are optimal. The small die size is low cost

but low performance and the large die size is high performance but high cost. The

initially steep increase in the performance indicates that there may be an optimal die

size for maximizing the performance with respect to cost.

2.3.1.5 Performance-Cost Index

In extension to the work performed in section 2.3.1.4 a performance-cost index

is developed to find the optimal die size for the processor of section 2.3.1.4.

20

Table 3: Cost analysis parameters for microprocessor cost performance index.

Parameter Value
r 15cm
G 0.01
D 0.05cm−2

Wfr Cost $1,000.00

Cost Model for Processor Die

In order to obtain an index that couples the microprocessor performance with

the economic cost rather than the raw die size the cost per die must be evaluated.

The cost calculation begins with the assumption that the total cost for processing a

complete wafer is fixed. Under this assumption the cost per die can be modeled as

the wafer cost divided by the number of good die per wafer. The number of good die

per wafer is the product of two related components: die size and yield. The die size

determines the total number of die per wafer while the yield predicts what percentage

of them are good. The raw die count and yield are defined in the following equations:

N =

⌊

πr2

A

⌋

(5)

Where N is the die count, r is the radius of the wafer, and A is the individual die

area.

Y = (1 − G)e−A·D (6)

Where Y is the yield percentage, G is the gross failure factor representing the portion

of the wafer upon which all circuits fail, A is as in Eq. 5, and D is the defect den-

sity [29]. Table 3 lists the values utilized in this cost analysis. With the dependence

of raw die count and yield on die area established, the cost per die is computed as:

DieCost =
Cwfr

N · Y
(7)

Where DieCost is the cost per die, Cwfr is the fixed wafer cost, N is the raw die

count, and Y is the yield [30]. As can be clearly seen in Eq. 7 the die size is a crucial

21

4

6

8

10

12

14

16

18

20

50 75 100 125 150 175 200 225 250 275

Die Size (mm2)

C
o

st
-P

er
fo

rm
an

ce
 In

d
e

x

ITRS projected die size

Figure 9: Performance-Cost index VS die size for 2013 ITRS microprocessor.

component of the cost per die. An increase in die size decreases both the raw die

count and the yield.

Optimal Die Size for Performance Cost Index

The Performance-Cost index is formulated as the ratio of the raw throughput in

billions-of-instructions per second (BIPS) to the cost per die as formulated in Eq. 7.

The units of this index are BIPS per dollar (BIPS · $−1). This index, as calculated

in Eq. 8, rewards high performance and low cost systems.

PCindex =
throughput

cost per die
(8)

Applying this formulation to the data from Figure 7, the PC index for the ITRS pro-

cessor corresponding to the 2013 (18nm) technology generation is obtained. Figure 9

clearly shows that there is an optimal value for the PC index at a die size of ap-

proximately 70mm2. At die sizes below 70mm2 an increase in the die area results in

performance increases that outstrip the resulting increase in cost. At die sizes above

the optimal value the opposite is true and the performance comes at increasing cost.

The optimal value for the die size as determined via the PC index is about half of

22

the projected ITRS die size of 140mm2[23].

2.3.1.6 Optimal Zone Size for Throughput

This analysis is motivated by the observation that the two components of

throughput (clock frequency and CPI) compete against one another. In sections 2.3.1.4

and 2.3.1.5 the die size is varied directly and its effects on throughput are examined.

The increase in throughput for the larger die sizes is due to reduced interconnect

delay, the CPI remains relatively constant for those analyses. From section 2.3.1.1 we

see that the CPI is primarily dependent on the gate count. In this section, the gate

count rather than the die size is varied. Figure 10 illustrates the correlation between

gate count and die size. The die size increases linearly for gate counts up to 5x106

after which the die size becomes interconnect limited which forces the die size to grow

at an increased rate as the gate count increases. The effects of increasing gate count

on the throughput of a random logic block with and without memory are examined

to determine if an optimal zone size (in number of gates) exists that maximizes the

system throughput.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25
Gates (1e6)

A
re

a
(m

m
2

)

2003 (65nm)

2007 (35nm)

2013 (18nm)

Figure 10: Minimum die size vs gate count for three ITRS technology generations.

23

Table 4: Parameter values for optimal zone size analysis. Ee and Ec are the exponent
and coefficient for the empirical throughput relationship.

Device Width (W/L) 10.0
Logic Depth 12
Num. Caches 0
Interconnects Opt.
Die Size Min.
Ee 51829
Ec -0.7725

Simulation Methodology

This analysis is run under the conditions set in Table 4 for the technology gen-

erations corresponding to the ITRS 2003 (65nm) and 2013 (18nm) years. The device

width to length ratio and logic depth are held constant within each technology gen-

eration for consistency and to maintain a constant packing density. This approach

ensures that the die size increase monotonically increases with respect to gate count.

The interconnect architecture is optimized for maximum clock speed and the die size

held to the minimum allowed by gate layout or interconnect routing concerns. The

empirical CPI parameters are set to values corresponding to the Intel x86 micropro-

cessor family. Finally, the gate count is varied from 1M to 25M gates.

Without Cache present

The effects of gate count variation on the raw throughput of a random logic

block are examined by setting the number of caches present equal to zero. This

eliminates the memory CPI contribution from section 2.3.1.2. This corresponds to an

assumption of perfect data availability. The CPI and clock frequency variation with

gate count are illustrated in Figures 11 and 12. For the 2013 generation parameters

as listed in Table 5, Figures 11 and 12 show the system delay increases by a factor

of three, but the CPI reduces by a factor of six. The historic improvement in the

CPI due to increasing gate count overpowers the opposing increase in cycle time.

24

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
P

I

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 24

Gates (1e6)

Figure 11: CPI variation with gate count for Intel x86 architecture for the empirical
throughput model.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 3 5 7 9 11 13 15 17 19 21 23

Gates (1e6)

D
el

ay
 (

ns
)

Random Logic

LDI

Figure 12: Clock frequency variation with gate count for Intel x86 architecture
showing both the random logic (chain of gates and long distance interconnect (LDI)
delay. The system delay is set by the greater of the two.

25

This result indicates that there is no optimal gate count/die size for throughput for

any gate count between 1 and 25 million gates. If the range is extended to 250M

gates the results do not change as shown in Figure 13. This behavior is due to the

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25
Gates (1e6)

A
re

a
(m

m
2

)

2003 (65nm)

2007 (35nm)

2013 (18nm)

Figure 13: Raw throughput (BIPS) VS gate count for Intel x86 architecture. Ee =
-0.7725.

empirical throughput coefficient, Ee. The extracted value of -0.7725 indicates that the

Intel x86 architecture aggressively takes advantage of higher gate counts to reduce

the CPI. Therefore the CPI trends downward at a faster rate than the cycle time

increases with increasing gate count for any given technology generation.

With Cache

To more accurately gauge the dependence of throughput on the gate count

it is necessary to include the contribution to the CPI from the memory hierarchy.

Section 2.3.1.6 indicated that the throughput would rise monotonically with respect

to increasing gate count. To account for memory CPI degradation the 2003 (65nm)

technology generation was simulated for a range of gate counts from 1 to 100M gates

with cache sizes of 8, 16, 32, and 64KB [31]. The results are shown in Figure 14.

26

Table 5: System and technology parameters for GSI microprocessor corresponding
to the 2013 ITRS node.

GSI Microprocessor

Technology 18nm
Transistors 1.54B
Caches 2
Threshold Voltage 0.2V
Supply Voltage 0.5V
Die Size 140mm2

Interconnect Levels 12

There appears to be an optimal zone size of approximately 25M gates for the 8, 16,

0.5

1

1.5

2

2.5

3

3.5

4

0 25 50 75 100
Gates (1e6)

T
h

ro
u

g
h

p
u

t
(B

IP
S

)

64 KB

32 KB

16 KB

8 KB

Figure 14: Throughput vs gate count for 2003 (65nm) ITRS technology generation
with various cache sizes.

and 32 and 64KB cache sizes. Beyond this optimal value there is a substantial decline

in performance. Too check for any technology dependence, a simulation for the 2013

ITRS generation with a 64KB cache reveals in Figure 15 similar behavior with no

substantial performance increase beyond a gate count of 25M.

27

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70 80 90 100
Gates (1e6)

T
h

ro
u

g
h

p
u

t
(B

IP
S

)

Figure 15: Throughput vs gate count for 2013 (18nm) technology generation with a
64KB cache.

2.3.2 GSI Interconnect Architectures in GENESYS

A primary constraint on the performance of future GSI systems is the increas-

ingly restrictive limits imposed by the interconnect architecture [32]. A key feature of

GENESYS is modeling of the interconnects at the system level. This section analyzes

the performance and characteristics of these GSI interconnect architectures including:

optimal tier organization, number of wiring levels, effects of repeater insertion, and

power dissipation.

2.3.2.1 Overview of the GENESYS Interconnect Architecture

The GENESYS model of the system level interconnect architecture is based

on five key observations/assumptions:

• GENESYS assumes that the length distribution of the interconnect architecture

obeys the stochastic interconnect distribution derived in[9].

• An interconnect level represents a single physical plane on which a metal layer

is routed. An interconnect tier represents a grouping of such levels on a logical

28

basis. For example, an architecture with 6 metal levels may be grouped into a

many as 3 tiers (two orthogonal levels per tier) or as few as one tier (6 levels).

GENESYS constrains all interconnect levels in a tier to the same pitch and are

adjacent to one another.

• A key assumption of GENESYS is that the level on which an interconnect is

routed is determined by the length of the interconnect. The shortest inter-

connects are routed on the lowest level/tier while the longest interconnects are

routed on the uppermost level/tier. This approach is based upon the use of

reverse scaled interconnects in VLSI systems in which the longer interconnects

are routed on the upper tiers with larger cross-sectional dimensions [33].

• GENESYS utilizes a supply and demand algorithm for determining routing

constraints for each interconnect tier.

• The longest interconnect length (global) is assumed to be approximately twice

the chip edge length.

2.3.2.2 Optimal Tier Organization for GSI Systems

The tier organization of the interconnect architecture is an important opti-

mization constraint in GENESYS. A single tier wiring scheme represents a simple

non-reverse scaled architecture with little opportunity for optimizing wiring dimen-

sions due to supply limitations. A multi-tiered system permits GENESYS to optimize

by sizing the tiers and finding the optimal partition lengths by mapping the on-chip

supply to the stochastic distribution. Here the effects of tier organization on an

optimized GSI interconnect architecture are examined.

Simulation Methodology

GENESYS simulations for the GSI microprocessor summarized in Table 5

were conducted for maximum performance at a die size of 140mm2 with 12 levels of

29

interconnect. Optimal repeater insertion is assumed. The key results of interest were

the throughput and cross-sectional areas of the interconnects in the uppermost tier.

Four different tier organizations were considered:

1. 1 tier: All interconnects have the same cross-sectional dimensions.

2. 2 tiers: The first six, second six levels occupy the first, and second tiers re-

spectively.

3. 3 tiers: The four lowest levels occupy the first tier with the four mid levels and

four upper levels occupying the second and third tiers.

4. 6 tiers: Each orthogonal pair occupies a separate tier.

Simulation Results

Figures 16 and 17 show the system throughput and interconnect cross-

sectional area for each tier organization. As can be seen in Figure 16 the full-

optimization case (6 tiers) maximizes the performance. The worst case (1 tier) per-

formance is the result of the small cross-sectional interconnect area as illustrated in

comparison with the other tier organizations in Figure 17. For the 1 tier case the RC

delay dominates due to high interconnect resistance. The 3 and 4 tier organizations

show substantial improvement, but are still less than optimal. Figures 16 and 17

indicate that the majority of the performance increase for the fully optimized case

comes from increased sizing of the global interconnects. Figure 17 shows a substan-

tial 2.5x increase in the cross-sectional area from case three to four. The conclusion

drawn from these results is that tier organizations emphasizing the optimization of

all orthogonal pairs and global interconnects (upper tiers) in particular result in the

greatest performance gains. If the assumption of optimal repeater insertion is re-

laxed, the same trend is observed, however, the throughput is greatly reduced due to

increased interconnect delay.

30

6.86

15.7

17.72

21.5

0

5

10

15

20

25

1 2 3 4

Tier Organization

T
h

ro
u

g
h

p
u

t
(B

IP
S

)

1 Tier

2 Tiers
3 Tiers

6 Tiers

Figure 16: Throughput for each tier organization is listed in section 2.3.2.2.

1

40

202

529

0.1

1

10

100

1000

1 2 3 4

Tier Organization

C
ro

ss
-s

ec
tio

na
l a

re
a

Figure 17: Normalized global interconnect cross-sectional area for each tier organi-
zation is listed in section 2.3.2.2.

31

2.3.2.3 Performance Dependence on Number of Int. Levels

Section 2.3.2.2 examined the relationship between tier organization (focus of

optimization) and performance. Another equally important design variable influenc-

ing the performance of GSI systems is the number of interconnect levels available.

The maximum cross-sectional area of the global interconnects is heavily dependent on

the available on-chip supply. Increased supply allows for heavier interconnect pitch

at the global levels. The interconnect supply, or the maximum interconnect length

available for routing purposes, is estimated by:

Supply =
Nw · Achip

pw

· ηw (9)

Where Nw is the number of wiring levels, Achip is the chip area/die size, pw is the

wiring pitch, and ηw is the wiring efficiency. From Eq. 9, the on-chip supply is directly

proportional to the number of interconnect levels. From Eq. 1, the system throughput

increases linearly with clock frequency for any given value of the CPI. The CPI is held

constant for this analysis, therefore, the throughput represents an indirect measure

of the clock frequency. Figure 18 shows that the throughput increases from less than

three BIPS for two levels of wiring to more than twenty BIPS with twelve wiring

levels. For the ITRS projection of twelve interconnect levels by 2013 the projected

system performance is approximately twenty-two BIPS.

2.3.2.4 Effect of Repeater Insertion on System performance

One of the primary approaches to optimizing the performance of long distance

interconnects (LDI) is the insertion of repeaters to linearize the RC component of

the delay. This section explores the performance benefits of repeater insertion in a

multilevel GENESYS interconnect architecture. The device technology and system

parameters utilized in this analysis are listed in Table 6.

32

2.4

11.9

15.7

20 20.5
22

0

5

10

15

20

25

2 4 6 8 10 12

of interconnect levels

T
h

ro
u

g
h

p
u

t
(B

IP
S

)

Figure 18: System performance in BIPS vs the number of interconnect levels for a
GSI microprocessor.

Comparison at Common Die Size

The performance of repeater driven and single driver LDIs is compared at a

common die size. The point of comparison is the die size for which a system with

repeater driven LDIs achieves a clock frequency of 1 GHz. This die size is held

constant with the only variable being the insertion of repeaters. Given the system

parameters listed in Table 6 the minimum die size for maintaining the target clock

frequency of 1GHz for repeater driven interconnects is approximately 85mm2. The

results listed in Table 7 show that a single driver scheme for LDIs results in a 97%

decline in the clock frequency. For this example, the insertion of repeaters results in

a more than 30x increase in the clock frequency.

Comparison for Large Die Sizes

A comparison of the single driver and repeater LDI schemes at larger die sizes

makes the necessity of repeater insertion plainly clear. Again, the results are shown

for a common die size. This time the ITRS projected die sizes of 140mm2 (production)

33

Table 6: Technology and system simulation parameters for GENESYS repeater anal-
ysis.

Technology & System Parameters

Device
Feature Size (nm) 18
Oxide Thickness (nm) 0.5
Threshold (V) 0.2
Supply V 0.5

System
Xtrs (106) 1546
Num Caches 0
Int. Levels 12
Int. Tiers 6
Target Die Size 85mm2

Table 7: Repeater and single driver LDI performance for minimum die size for a
1GHz target clock frequency (repeater).

Repeater/Single Driver Comparison

Repeater Single Driver
Fclkmax (MHz) 1000 30
Die Size (mm2) 85 85
Global Delay (ns) 0.88 29.0

and 280mm2 (introduction). In comparison with the data in Table 6, Figure 19 shows

that the performance of the repeater driven interconnects increases by 110% while

the single driver performance logs a 400% gain if the die size is increased to the ITRS

projected 140mm2. If the die size is further increased to 280mm2, the performance

of the repeater driven LDI increases by 140% and the single driver case by more than

650%. Despite this relatively large % increase in the single driver clock frequency,

the repeater driven interconnects remains an order of magnitude greater.

34

0

500

1000

1500

2000

2500

3000

85 140 280

(a)

C
lo

ck
 F

re
q

u
e

n
cy

 (
M

H
z)

0

50

100

150

200

250

85 140 280

(b)

C
lo

ck
 F

re
q

u
e

n
cy

 (
M

H
z)

Figure 19: Clock frequency for (a) repeater driven and (b) single driver LDIs at 85,
140, and 280mm2 die sizes.

Comparison at Common Clock Frequency

Comparison at common die sizes illustrates the performance advantage of re-

peater insertion. Another advantage of repeater insertion is highlighted by compari-

son at common clock frequencies. This relaxes the earlier assumption of constant die

size and allows interconnect dimensions to vary. For the processor implementation

utilized for the above analysis there is no overlap in performance; the minimum clock

frequency for the repeater driven example is 253MHz while the maximum frequency

for the single driver case is less than 230MHz. However, Figure 20 for 2001 ITRS

generation (90nm) shows significant (horizontal) overlap in the range of allowable

operating frequencies. At every level of performance from 500 to 1GHz the repeater

driven system has a die size between 40 to 60% than that of the single driver system.

Therefore, over a range of die sizes, the repeaters can provide either smaller die size

for equal performance (if the design is interconnect limited) or higher performance

for equal die size.

35

0

50

100

150

200

250

300

350

400 600 800 1000 1200

Clock Frequency (MHz)

D
ie

 S
iz

e
 (

m
m

2
)

l

Repeater

Single Driver

Figure 20: Die size comparison of repeater and single driver LDI schemes at common
frequency.

2.4 Extending GENESYS to Heterogeneous SoCs

As can be clearly seen from the above examples, GENESYS is a flexible and

powerful tool for exploring system level limits and the interaction between technology

and architecture in determining potential system performance. However, even with

the depth of modeling at every level of the GSI hierarchy and the novel through-

put modeling, the uni-processor system model is inadequate for accurately modeling

emerging SoC design methodologies. In the following chapter, a key advancement of

the GENESYS modeling framework is discussed in detail.

36

CHAPTER III

HETEROGENEOUS SOC METHODOLOGY

3.1 Introduction

GENESYS 2004 is designed to project future trends and performance metrics

for gigascale systems by applying a core set of analytical and physical models derived

from first principles and established empirical knowledge to a set of input parameters

spanning all levels of the GSI hierarchy [7][8][21]. Through this set of models and

parameters GENESYS assimilates the structure of the GSI hierarchy and assesses key

performance metrics such as die size, power dissipation, and clock frequency. An ear-

lier system level model utilized in GENESYS assumed a homogeneous uniprocessor

architecture consisting of a large core of random logic and on-chip cache as illustrated

in Figure 21a. A key feature of the homogeneous assumption for a block of random

logic is that the interconnect wire length distribution obeys a stochastic model [9][10].

This allowed for the estimation of clock frequency and power based on an average

wire length model derived from [9]. In relation to SoC designs, this model has several

drawbacks. First, SoCs are not sufficiently modeled as homogeneous systems. The

emerging dominance of IP core methodologies for SoC design results in inherently het-

erogeneous systems. This is an important consideration when evaluating the wiring

resources. The global wire-length distribution for a cluster of heterogeneous mega-

cells (cores) obeys a different distribution [34]. Second, the homogeneous assumption

’flattens’ the system eliminating all micro-architectural detail and allowing only the

37

calculation of average values for metrics such as power dissipation that may experi-

ence significant variation across the chip (i.e. hot spots). Therefore, a new model

for describing and analyzing heterogeneous SoCs via GENESYS 2004 is developed.

Figure 21 below provides comparison between the homogeneous system model and

an actual chip implementation [35].

 Clock

FP

Fetch

Integer

Instr decode

Cache & Tag

Interface

TLB

Grad Unit &
Address
Queue

Random
Logic

I-Cache

D-Cache

(a) (b)

Figure 21: Part (a) homogeneous system description in GENESYS with little micro-
architectural detail and part (b) a commercial chip implementation with 20 megacells
on-chip from [35].

3.2 Block Modeling Methodology

Many SoC systems are designed from pre-defined megacells in order to sim-

plify and speed up the design process. The choice of a block-based modeling scheme

is natural. Figure 21b illustrates a heterogeneous block diagram. The modeling of an

38

SoC via GENESYS begins with the definition of the global/technology parameters

that provide a listing of all GENESYS inputs for use as default values. Any of these

parameters may be overridden, but most of them such as feature size, oxide thick-

ness...etc. will not change from cell to cell. These GENESYS inputs are descriptive

of the technology resources allocated to the system. The next step is the formulation

of a system description for the SoC as a collection of megacells. Each megacell is de-

fined by a set of inputs and/or instances of other cells. This is where the hierarchical

nature of the block-based methodology takes shape. A simple example definition of

a block looks similar to this:

Entity block B1 is

num transistors = 1.5e6;

logic depth = 20;

num wiring levels = 6;

device width = 10;

block A1 a1;

block A2 a2:(logic depth = 15, device width = 15);

end Entity B1;

The above entry defines a block of random logic containing 1.5M transistors, 6

levels of wiring, an average device W/L ratio of 10, and logic depth (number of gate

delays between latches) of 20. Additionally, the block B1 contains two instances of

other blocks (A1 and A2). The instance a1 of block A1 is exactly as defined elsewhere

in the SoC description, but instance a2 overrides several of the parameters inherited

from parent A2 with new values. A1 and A2 are referred to as the parent cells for

instances a1 and a2. In this manner the SoC may be composed of a large number

of smaller cells each with its own set of GENESYS parameters. The hierarchical

39

structure of the machine description can be utilized to describe the on-chip resources

of the SoC with varying degrees of granularity.

System Description

 IR

Simulation
Core

Megacell
Statistics

 System
Statistics

Technology

Cell Placement

Figure 22: Block diagram of the simulation flow for the GENESYS 2003 heteroge-
neous methodology. IR is internal representation.

Figure 22 illustrates the basic program flow of a simulation run, beginning with

the system description. Unlike the global and technology parameter files, which are

simply listings of parameter names and values, the SoC description has an associated

grammar. This requires a front-end compiler for reading the SoC specification and

generating an internal representation (IR) of the SoC structure for use in GENESYS.

The IR maintains the hierarchical structure as listed in the specification. Each cell

defined is a separate object in the IR. The cell object contains all of the parameters

associated with that cell, a list of any other cells that are instantiated within, and

the simulation results for the cell. Because the entire specification is read into the IR

before any simulation steps occur, all instances are linked to their parent cells before

running the GENESYS core. This removes restriction on the ordering of cell entries

40

in the machine specification file.

Once the IR is constructed, GENESYS 2004 loads the global input param-

eters then queries the first cell object for its input parameters. GENESYS then runs

a simulation for the individual cell as a homogeneous system utilizing its core set

of material, device, and circuit models and the stochastic interconnect distribution

from [9][10]. On the first simulation pass all cells with instances of other cells within

them are skipped. Once all parent cells are simulated, a second run generates simula-

tion results for any instance that contains overridden parameters. Instances without

override parameters assume the simulation results from the parent cell.

When the initial simulation runs are complete, GENESYS compiles the sim-

ulation results for any composite cells (cells containing instances of other cells). The

performance statistics for the three primary metrics (area, speed, and power) are de-

termined via the following expressions. The cell area is simply the sum of the areas

for each of its constituent cells:

Acell =
∑

i≤n

Ai (10)

Where Acell is the cell area and Ai is the contribution from the ith constituent cell.

The clock frequency is assumed to be limited by the slowest constituent cell such

that:

fcell = min(fi) (11)

Where fcell is the maximum clock frequency for the composite cell and fi is the clock

frequency of the ith cell. The power dissipation in the composite cell must be adjusted

to account for differences in the maximum clock frequency between cells:

Pcell =
∑

i≤n

Pi
fcell

fi

(12)

41

Min pitch = 2f Supply > Demand

Y

N

Increase Pitch

Delay

Figure 23: Supply and Demand sizing algorithm for global interconnects

Where Pi is the power dissipation of cell i operating at frequency fi and fcell is the

frequency of the composite cell.

The final step in evaluating the performance of the SoC is the construction

of the heterogeneous global wiring distribution. The number of gates and Rents pa-

rameters in the megacell combined with placement and routing information as given

in [34] allows GENESYS to calculate the global wire length distribution for the design.

A key property of the heterogeneous methodology is the consideration of cell place-

ment. GENESYS 2004 takes cell placement information and calculates the average

cell placement efficiency for the system. This heterogeneous distribution (demand) is

then mapped to the global wiring resources (supply). The dimensions of the global

wires are determined via a simplified supply/demand optimization routine as illus-

trated in Figure 23. The clock frequency for a SoC under the assumption of a single

global clock is determined via the maximum delay of either the random logic or the

global interconnect (whichever is larger).

The relevant output statistics at this stage include power, chip area, maxi-

mum clock frequency, and numerous others regarding technology related parameters

and the interconnect architecture. Because the simulation results are available for

every level of the SoC specification, inhomogeneities in maximum clock frequencies

42

Figure 24: Interconnect density function derived under assumption of a homogeneous
gate array. Expected number of interconnects vs. length in gate pitches [9].

and power dissipation can now be addressed. This represents an important advance

of the previous homogeneous modeling approach.

3.3 Global Interconnect Methodology in GENESYS

2k4

Under the homogeneous uni-processor model originally advanced in GENESYS

the interconnects are expected to obey the stochastic distribution derived by Davis [9].

This assumption is good for relatively small blocks of random logic in which the as-

sumption of homogeneity holds approximately true. The properties of this distribu-

tion are illustrated in Figure 24.

This distribution has proven useful in estimating routing requirements for pro-

jecting system performance, however, for large systems constructed from groupings

43

Figure 25: Interconnect net length distribution: Expected number of interconnects
vs. physical wire length [34].

of heterogeneous megacells such as the system in Figure 21b the homogeneous as-

sumption no longer holds true. The most promising solution for estimating system-

level routing requirements for SoCs is a previously derived stochastic distribution for

multi-terminal global nets [34]. The characteristics of this distribution are illustrated

in Figure 25.

The homogeneous distribution is dominated by short interconnects, but still

predicts large numbers of global interconnects up to the maximum of two chip-edge

lengths. The heterogeneous distribution on the other hand is dominated by mid-

length global nets with very few short or long nets.

44

The block modeling methodology for heterogeneous SoCs takes advantage of

both distributions to improve the accuracy of system performance projections. The

homogeneous distribution is assumed to apply only to interconnects within cells (lo-

cal) interconnects and the heterogeneous distribution is reserved for inter cell nets

which are designated to be global.

The local distribution can be represented by a closed-form expression allow-

ing for relative ease in integration to calculate total or average interconnect length.

The global distribution, however, requires the calculation of routing requirements for

multiple fanouts and the determination of the global placement efficiency. The cal-

culation of the net distribution (number of expected nets for each fanout from 2 to

Nmeg (number of megacells) is relatively straightforward, but the global placement

efficiency requires megacell placement and global net list information. The cell place-

ment information can be reasonably approximated apriori but the net list information

is not assumed to be available. The dependence of the global interconnect length on

the cell placement efficiency demands that a suitable algorithm be developed for es-

timating the efficiency in the absence of global net list information. From [34] the

average megacell placement efficiency (ηp) is computed via the following expression:

ηp =
1

Nnet

∑

i∈Netlist

1 − Bounding Area
Total Area

1 − mi

Nm

(13)

where Nnet is the total number of global nets, the bounding area is the area of a

box drawn about the cells connected by a net, the total area is the sum of the indi-

vidual cell area, mi is the net fanout, and Nm is the number of megacells in the system.

45

The average placement efficiency is the weighted average of the placement ef-

ficiencies of the individual nets. The resulting placement efficiency influences the

bounding area of a net in the following manner:

â = b̂ =

√

Ameg(mηp + Nm(1 − ηp)) (14)

Ameg is the average megacell area, and m is the fanout of the net. The calculation

of the average net length for a given fanout is a function of the net bounding area

computed above and empirically determined parameters:

Lave = (αmγ − β)
âb̂

â + b̂
+ (â + b̂) (15)

Where α = 1.1, β = 2.0, and γ = 0.5.

GENESYS 2004 handles the calculation of the average global placement ef-

ficiency by generating a random cluster of nets for each fanout and calculating the

individual placement efficiencies for each net in the cluster. This placement efficiency

is then averaged and weighted by the total number of nets of that fanout. Once the

weighted efficiencies are known for all fanouts, the average placement efficiency is

calculated as follows:

ηp =
1

Nnet

∑

i

Nnetiηpi (16)

Where Nneti is the number of nets of fanout i, and ηpi is the average efficiency for

fanout i. Once this calculation is complete the derivation of the complete stochastic

global distribution is enabled by calculating the average bounding box dimensions

for each fanout as in Equation 14. Next, GENESYS 2004 computes the average net

46

length from Eq. 15. The total global interconnect demand is expressed in Equation 17.

Ltotal =
∑

i

NnetiLavei (17)

This procedure allows GENESYS 2004 to accurately gauge the required global

routing resources for an arbitrary heterogeneous collection of cells with nothing more

than the cell placement information. With knowledge of the routing requirements es-

timates of global interconnect dimensions, parasitics, energy consumption, and delay

become possible. The key feature of this algorithm is that apriori knowledge of the

net list information is not necessary.

3.4 Cell Placement

One of the key design considerations in core based SoCs is the physical place-

ment of the megacells. The placement efficiency metric discussed in section 3.3 re-

quires information regarding the physical layout of the SoC. With this information,

GENESYS 2004 can compute the placement efficiency for estimating the required

global interconnect resources. GENESYS 2004 provides several methods for specify-

ing the cell placement: manual and automated.

3.4.1 Manual Cell Placement

The manual cell placement for an existing SoC implementation is constructed

by superimposing a sufficiently fine grid over a floorplan/die micrograph and recording

the upper-left and lower-right coordinates of the corners of each cell in the design.

The grid is numbered from its lower-left corner [0,0] to its upper-right [N,N], where N

is the grid factor indicating the number of rows/columns. The grid should be chosen

47

(a) (b)

Figure 26: Example of grid choice for manual cell placement: (a) an grid value of 5
is insufficient to accurately locate the cell corners, (b) a grid factor of 20 provides a
much closer fit to the SoC floorplan allowing for an accurate assignment of cell-corner
coordinates.

sufficiently fine that the coordinates for the cell corners are distinct and representative

of the position and dimensions of the actual SoC layout. Figures 26a and b illustrate

the grid placement for N=5 and N=20 grids. From inspection, the N=5 grid of

Figure 26a is too coarse to place all the cells in their proper positions with respect

to one another or to maintain the proper cell dimensions. The N=20 grid, however,

is fine enough to properly specify the physical layout of the SoC with acceptable

accuracy. In general, any grid factor of N=20 or greater is sufficient for an accurate

placement specification.

An example placement specification is illustrated in Figures 27a and b. The

format utilized to specify the cell coordinates is: cell name (upper,left:lower,right).

GENESYS 2004 reads the specification in Figure 27b and constructs an internal list

which is compared against the list of megacells comprising the system entity. With

the specification in place GENESYS utilizes the information to calculate the average

cell placement efficiency as described in section 3.3.

48

Megacell placement is
 grid_value = 50;
 MCell_1 (50,0:25,25);
 MCell_2 (50,25:38,50);
 MCell_3 (38,25:25,50);
 MCell_4 (24,0:0,12);
 MCell_5 (24,13:12,25);
 MCell_6 (12,13:0,25);
 MCell_7 (24,25:12,38);
 MCell_8 (12,25:0,38);
 MCell_9 (24,38:12,50);
 MCell_10 (12,38:0,50);
end placement;

MCell_1 MCell_2

MCell_3

MCell_4

MCell_5

MCell_6

MCell_7 MCell_9

MCell_8 MCell_10
_

(a) (b)

Figure 27: Cell placement specification: (a) layout with cell Mcell 1 corners marked,
(b) GENESYS 2004 megacell placement specification for (a) with a grid factor of
N=50.

3.4.2 Automated cell placement

The alternative to manually specifying the coordinates of each cell in an SoC

design is to utilize the auto-placement algorithm to generate an approximate SoC

floorplan. The primary inputs to the auto-placement algorithm is the grid factor

(as defined in section 3.4.1) and a placement constraint. The placement constraint

allows the user to specify several different criteria for creating the SoC floorplan. The

available placement criteria are listed below:

• in order

• cell size

• bus length optimization

The in-order constraint forces GENESYS 2004 to place the cells in the same

order that the cell instances are listed in the system level entity of the block SoC

description. The resulting floorplan is organized from left to right and top to bottom.

49

An SoC with M megacells would have cell 1 occupying the upper left corner of the

chip and cell N in the lower right corner. This constraint gives the user the ability

to fine-tune the placement by altering the ordering without having to manually alter

cell coordinates. The cell-size constraint orders the cells from smallest to largest.

The goal of size based cell ordering is to cluster small cells together to increase the

effective placement density and reduce interconnect length for connections within the

cluster. The bus length optimization constraint is used in conjunction with the bus

specification as described in Chapter 4. The goal of this constraint is to minimize the

physical length of the bus by placing all cells connected by the bus in adjacent po-

sitions. Simulation results on the effectiveness of this technique are given in Chapter 4.

The algorithm for generating the individual cell coordinates is illustrated in

Figure 28. Once the simulations for each block in the system description are com-

pleted the auto-placement algorithm accesses the system level entity and retrieves the

cell names and area. Because no information regarding the geometry of the cells is

given, the aspect ratio of each cell is initially assumed to be unity. The height and

width of each cell are calculated and stored. Next, the placement constraint is applied

and the ordering of the cells is adjusted. Once the cells are ordered for placement,

the required number of cell rows is estimated via the following expression:

Nrow =

Ncell
∑

i=1

Wcelli

√

Achip

(18)

where Nrow is the number of rows that cells will be grouped into, Ncell is the total

number of megacells present in the SoC, Wcelli is the width of cell i, and Achip is the

total chip area. Once the row count is known, the cells are grouped and tiled across

until the row is filled and the next row is assembled beginning with the next cell in

50

the placement list. The newly assembled rows contain cells with varying dimensions

as illustrated in Figure 29. After the rows are assembled a vertical squeeze operation

is performed to equalize the height of the cells by compressing the larger cells to equal

height with the smallest cell. Because the area of each cell must remain constant, the

aspect ratios of the larger cells are altered to compensate. The vertically squeezed

row may now have a width that is substantially longer than the width of the chip.

To return the row to its proper width an horizontal squeeze operation is performed

to reduce the width of the cells. Again, because the area must remain constant, the

aspect ratios of the cells increase as the cell height increases. This second squeeze

operation reduces the row width to match the width of the chip. If the row width is

less than the chip width, it is stretched to match the chip width. The final step is to

stack the rows and assign the corner coordinates. The upper cell coordinates for the

first (upper) row is assigned the maximum value of N (grid value) and the first cell

in each row is given a left coordinate of 0. The remaining coordinates are assigned in

the following manner:

Upperi = Upperi−1 − ⌊
Hi−1

dgrid
⌋ (19)

Loweri = Upperi − ⌊
Hi

dgrid
⌋ (20)

Leftj = Leftj−1 + ⌊
Wj−1

dgrid
⌋ (21)

Rightj = Leftj + ⌊
Wj

dgrid
⌋ (22)

Where Upperi, Loweri, Leftj , Rightj are the cell coordinates for row i and cell j

respectively. The value dgrid is the grid dimension used to convert the physical height

and width of the cells (in units of mm) to grid units. It is calculated via the following

expression:

51

dgrid =

√

Achip

N2
(23)

This methodology is intended to produce an approximate floorplan for estimating

the placement efficiency in lieu of empirical cell placement data. In typical SoC de-

signs the individual macrocells are optimized and placed according to specific design

criteria. The auto-placement routine does not preserve cell geometry and (depending

on the placement constraint and cell count/area) will typically produce suboptimal

efficiencies. If information regarding cell geometries is available, the manual cell place-

ment technique is utilized to explicitly define the SoC floorplan for calculating the

placement efficiency with a higher degree of accuracy.

Once all of the cell coordinates have been defined, GENESYS 2004 is ready

to generate the average cell placement efficiency. The following section examines the

effects of the various cell placement schemes on the placement efficiency.

3.4.3 Placement effects on efficiency

The dependence of the cell placement efficiency on the placement scheme is

assessed by constructing a generic SoC description and engaging GENESYS 2004 to

produce estimates of the placement efficiency and global interconnect demand (total

length of global interconnect). In this case, the SoC is assumed to consist of several

large megacells and numerous smaller megacells in various arrangements. Figure 30

illustrates the floorplan of the example SoC.

52

Collect cell
statistics

Calculate cell
dimensions

assume unity
aspect ratio

Apply
constraint
criteria and
re-order cells

system
area
bus

Estimate row count and
assemble rows

chip width

Squeeze operations (vertical
and horizontal)

Assign row/cell
coordinates

grid
value

Stack rows and re-assign
coordinates

Output
coordinates

area

area_cellheight

area_cellwidth

=

=

chip

ave_cellcell

W

WN
rows

⋅
≈

2

chip

upper

value_grid

A

height_row
C =

Figure 28: Algorithm for generating the cell coordinates for an SoC floorplan. On
the left are key expressions and illustrations, the middle block diagram describes each
step of the algorithm, and the inputs to the algorithm are shown to the right.

Figure 29: An assembled row of four cells of varying sizes prior to row squeezing
operations. The total width of the row is approximately equal to the chip width.

53

 Figure 30: A generic SoC floorplan for examining the effects of placement schemes
on the cell placement efficiency metric. The SoC consists of 18 megacells with a
manually entered floorplan.

The smaller cells contain 20K gates each while the two larger cells contain

300K gates each. The smaller cells are arranged around the periphery so that the

any global nets connecting groups of small cells will likely be spread out, yielding a

relatively low placement efficiency for this approach. In addition to this placement

scheme, two other placements are examined: the in-order and size based schemes. The

in-order scheme is specified to place a grouping of smaller cells between the two larger

cells. The resulting floorplan is shown in Figure 31. The cell size placement scheme

attempts to maximize the placement efficiency for the generic SoC by producing a

floorplan in which the smaller cells are tightly clustered and the larger cells remain

adjacent. This floorplan is illustrated in Figure 32.

The simulation results for the placement efficiencies of each placement

scheme are listed in Table 8:

54

Figure 31: The floorplan of the generic SoC from Figure 30 under the in-order
placement strategy where the two larger cells are separated by a grouping of smaller
cells.

Table 8: Cell placement efficiencies for generic SoC example containing 18 cells for
manual, in-order, and size based placement.

Cell Placement Efficiency

Placement Type Ncell = 18
Manual 73%
In Order 62%
Size 81%

The size ordered cell placement produces the highest placement efficiency of

81% for the example SoC. The clustering of the small cells takes advantage of local-

ity by reducing the length of nets connecting the smaller cells without substantially

increasing the average distance from the larger cells in the design. The in-order place-

ment scheme in which the larger cells are separated while maintaining a wide spread

between the smaller cells produces a placement efficiency of only 62%. The original

floorplan of Figure 30 has an intermediate efficiency of 73% because the distance be-

tween the large cells and the smaller cells is minimized while maintaining adjacency

55

 Figure 32: The floorplan for the generic SoC from Figure 30 under the size based
placement strategy in which the smaller cells are closely clustered together.

between the large cells. Another manually entered floorplan placing the large cells at

the top and bottom of the chip and clustering the smaller cells between them pro-

duces a placement efficiency of 72%. This value is very close to the results for the

original floorplan, indicating that the impact of separating either the large or small

cells in a fully interconnected stochastic distribution is roughly equal.

The size based automated placement scheme produces optimal cell placement

efficiencies for the generic SoC illustrated in Figure 30. However, most SoC designs

do not exhibit the same characteristic mix of cell sizes. The question remains as

to whether these placement schemes produce similar results for more realistic SoC

implementations as shown in Figure 21. The five system implementations featured in

section 3.5 were simulated with each of the placement schemes utilized above. The

results are listed in Table 9.

56

Table 9: Megacell Placement Efficiency for Commercial SoCs.

Placement Type

Processor Manual In Order By Block Size
MIPS R2000 86% 83% 84%
Itanium2 83% 78% 81%
PowerPC 78% 74% 73%
Emotion 78% 79% 89%
UltraSPARC 81% 78% 80%

These results indicate that the manual placement taken from the die micro-

graphs of each chip produces the highest placement efficiency in almost every case.

For the MIPS R2000, Itanium2, PowerPC, and UltraSPARC systems there is little

variation in the cell placement efficiency for the different placement schemes. Only

the Emotion chip shows any significant improvement in placement efficiency. An

inspection of the floorplan in Figure 34 shows a number of smaller cells spread out

across the bottom and top edges of the chip. In this situation the placement efficiency

is increased by reordering the cells.

3.5 Validation of the block SoC methodology

In order to develop confidence in the block modeling methodology the relative

accuracy of the resulting performance projections with respect to the homogeneous

model are examined. Both the heterogeneous and homogeneous system models are

applied to five commercial SoC implementations, a Mips R2000 RISC microproces-

sor [35], the Intel Itanium2 processor, the Emotion engine graphics renderer, an Ul-

traSPARC implementation, and a PowerPC RISC processor. The Mips processor is

depicted in Figure 21b. The block diagrams of the remaining 4 processors are illus-

trated in Figures 33 through 34.

57

1

2

3

4

7

5

6

8
9

14

10
11

12
13

15

16

17

1) IA32 core
2) Branch
3) L1 Cache – Instruction
4) L1 Cache – Data
5) Floating Point
6) Pipeline Control
7) HPW
8) ALAT
9) Integer Datapath
10) Int RF
11) Multimedia
12) DTLB
13) Clock
14) L2 Cache
15) L3 Tag
16) Bus Logic
17) L3 Cache

Figure 33: Die micrograph for a 1.1 GHz Intel Itanium2 microprocessor

3.5.1 Methodology

The homogeneous simulations are run with the proper technology and system

level inputs to estimate the die size, clock frequency, and power dissipation for each

of the designs. The heterogeneous system description is built by observing a die mir-

crograph for the block level layout. The cache transistor budget is subtracted from

the total transistor count to estimate the number of logic transistors remaining. If no

data on individual cell transistor counts is known, it is estimated by comparing the

area of the cell to the total remaining chip area and assuming that the cell transistor

budget is proportional. The individual cell placement is determined by superimposing

a grid over the die micrograph and determining the coordinates of each cell. Once all

cell data is compiled in the system description, simulations are run to yield the final

results as described in the following section.

58

Vector
Unit

RAM
16KB

RAM
16KB

GIF IPU

RAC

RAC

PGIF

RMC

PLL

4KB

DMAC

ALU

16KB

RISC CORE

16KB TLB fmult

fdiv

Figure 34: Die micrograph for a 300MHz Emotion graphics renderer

3.5.2 Results

The results of simulations of the five example SoCs for both system models

are shown in Table 10. When compared against actual data the heterogeneous block-

based system model produces estimates with higher accuracy than the homogeneous

modeling. In particular, the homogeneous system model tends to underestimate the

clock frequency. This is due to an overestimation of the average interconnect length

resulting in increased critical path delay in the random logic network. These same

results are presented in graphical form in Figures 37 through 39.

3.6 Conclusion

This chapter introduces the block modeling methodology utilized in GENESYS

2004 to accurately model the power, area, and clock frequency for complex SoCs. This

59

L2 Cache L2 Cache
Tag

PLL

MCU
Data Cache

Instruction Cache

Inst. Issue Unit

Floating Point /
Graphics

L2
Cntrl

L2
Cntrl

Pre-
Fetch

&
Cntrl

Write Cache /
Control

Data Cache /
Control

Instr. Exec
Unit

Data
Tag /
TLB

Bus
Cntrl

L2
Cntrl

Figure 35: Die micrograph for a 1GHz UltraSPARC microprocessor

methodology preserves the core modeling at the fundamental, material, device, and

circuit levels of the GSI hierarchy while extending the system level methodology to

a broad class of system designs. The application of a stochastic distribution for

modeling global interconnect resources is highlighted. A methodology for specifying

the SoC floorplan to generate an average cell placement efficiency is introduced. An

automated cell placement algorithm for floorplanning utilizing three different design

constraints is introduced and applied to several example systems. Results show that

the manual placement approach typically produces the highest placement efficiency.

Finally, the performance data for five example systems is compared against simulation

data for both the block SoC methodology and the older homogeneous system model

with results for the power, area, and clock frequency showing significant improvement

in accuracy for the block SoC methodology.

60

D-Cache

I-Cache

I-Tag

D-Tag

L2 Tag L2 Cntrl Sequencer

Integer
Unit

Floating
Point
Unit

Load/Store
Unit

MMU

MMU

PLL

Figure 36: Die micrograph for a 250MHz PowerPC microprocessor

Table 10: Comparison of GENESYS simulation results for the heterogeneous system
modeling methodology against actual data and homogeneous simulation results. The
die size is in mm2, the frequency is in MHz, and the power dissipation is in Watts.

Chip Simulation Results

Actual Homogeneous SoC
Chip Size Freq. Power Size Freq. Power Size Freq. Power
RISC 295 200 30 350 180 33 304 197 28.5
Itanium 421 1,000 130 345 810 105 411 1,065 131
Emotion 225 300 18 318 245 31 200 311 20
Ultra SPARC 180 1100 53 248 790 36 188 1150 60
Power PC 67 250 5 109 194 8.4 60 240 7.4

61

Emotion

Ultra SPARC

Power PC

Itanium2

RISC
Emotion

Ultra SPARC

Power PC

Itanium2RISC

Emotion
Ultra SPARC

Power PC

Itanium2

RISC

0

50

100

150

200

250

300

350

400

450

D
ie

 S
iz

e
(m

m
2)

Actual Data

Homogeneous

SoC

Figure 37: Validation of die area [mm2] projections for the homogeneous and block
based system methodology (SoC)

Emotion

Ultra SPARC

Power PC

Itanium2

RISC
Emotion

Ultra SPARC

Power PC

Itanium2

RISC

Emotion

Ultra SPARC

Power PC

Itanium2

RISC

100

1000

10000

C
lo

ck
 F

re
q

ue
nc

y
(M

H
z)

Actual Data

Homogeneous

SoC

Figure 38: Validation of clock frequency [MHz] projections for the homogeneous and
block based system methodology (SoC)

62

Emotion

Ultra SPARC

Power PC

Itanium2

RISCEmotion
Ultra SPARC

Power PC

Itanium2

RISC

Emotion

Ultra SPARC

Power PC

Itanium2

RISC

0

20

40

60

80

100

120

140

P
ow

er
 (

W
)

Actual Data

Homogeneous

SoC

Figure 39: Validation of power dissipation [W] projections for the homogeneous and
block based system methodology

63

CHAPTER IV

PHYSICAL ON-CHIP BUS MODELING

4.1 Introduction

Traditional system bus architectures are primarily designed for implementa-

tion at the printed circuit board (PCB) level to connect various peripherals and

memory to the central processing unit. With increasing on-chip integration density

and functionality, the ultimate performance of these systems is limited less by the

processor than by the speed of the system bus. The design and performance of the

off-chip system bus is limited by large PCB trace widths, limited pin count, and the

distance between on-board components. Historically, the growth rate for processor

speed has greatly outstripped speed increases for the off-chip interface as illustrated

in Figure 40 [36] [37]. The peripheral component interface (PCI) bus has remained

at 33MHz since its introduction in 1993. Memory bus speeds have increased from

33MHz to 200MHz in the time period captured in Figure 40. In the same time, how-

ever, processor core speeds have sky-rocketed by a factor of nearly 50 from 66MHz

to over 3 GHz in the preceding decade. SoC is intended to provide a solution to the

increasing gap between on-chip and off-chip communication speeds.

The SoC design methodology places processor(s), memory, and peripherals

on a single-chip. This allows the system designer to take advantage of small wire

64

1

10

100

1990 1995 2000 2005

Calendar Year

N
o

rm
al

iz
ed

 s
p

ee
d

Processor

Memory bus

PCI bus

Figure 40: Historical speed trends for the growth of on-chip vs off-chip frequencies
normalized to the 1993 calendar year.

dimensions, virtually unlimited pin count, and the tightest possible integration be-

tween components. The prevalent method for designing SoCs involves the use of

pre-designed intellectual property (IP) cores/megacells. Under this design methodol-

ogy numerous megacells are placed on-chip and wired together often utilizing custom

glue logic to coordinate communication between megacells. The drawback of glue

logic is the verification time required to ensure proper operation between the custom

logic and the IP cores connected to it [38]. Several commercial implementations of

on-chip bus architectures such as the IBM CoreConnect, PalmChip CoreFrame, and

ARM AMBA are designed to reduce or eliminate the use of custom glue logic by

providing IP based bus cores for rapid design and verification [39][40][41]. The per-

formance of future SoC systems is heavily dependent upon the ability of the on-chip

bus to provide sufficient bandwidth for data flow between the processor(s) and pe-

ripheral components.

65

Chapter 3 outlined the global interconnect architecture for a generic SoC based

upon a stochastic distribution for multi-terminal nets. This global distribution as-

sumes full interconnection between all of the cells in the SoC. This approach is useful

for a quick estimation of global wiring requirements in the absence of detailed wiring

information such as a global netlist, but the global wiring of IP based SoCs utilizing a

bus based protocol is more reflective of system design choices such as the design of the

bus architecture. In order to project the resource requirements and potential perfor-

mance of on-chip bus architectures, GENESYS must specifically model this critical

class of interconnects. This chapter details the methodology for modeling on-chip

system buses in GENESYS 2004.

4.2 A Generic On-Chip Bus Model

In GENESYS 2004 buses are considered as a specific class of interconnects

which are explicitly defined by the user/system designer. In this case, the bus is mod-

eled as a grouping of global interconnects or nets with a defined set of sources/sinks.

The observation behind this generic model is that no matter the specifics of the ar-

chitectural design of the bus, it consists of devices and wires.

4.2.1 Bus specification in GENESYS 2004

On-chip buses are specified in a manner similar to the declaration of blocks

and megacells discussed in Section 3.2. The example below illustrates the declaration

of a bus:

entity BUS sys bus is

physical width = 1.0 [um];

logical width = 32 [bits];

66

aspect ratio = 1.0 [];

spacing = 1.0 [um];

driver size = 25.0 [W/L];

line type = 2 [0-unbuffered,1-buffered/unidirectional,2-buffered/bidirectional];

bus list (cell 1,cell 2,cell 3. . . cell n);

end entity sys bus;

The above definition differs from the declaration of a megacell only by the parameter

names and the special parameter bus list. The parameters physical width, spacing,

and aspect ratio govern the physical dimensions of the bus wires. The parameter log-

ical width sets the number of bit lines for the bus and driver size adjusts the width

to length ratio of the gate(s) driving the bus lines. The parameter line type selects

one of the three link types discussed in the following section and bus list parameter

is a listing of the cell instances connected to the bus. In short, the above declaration

can be viewed as a bus netlist. Multiple buses may be specified on chip to model

the physical structure of hierarchical bus architectures such as the IBM CoreConnect

standard. Bus entities are not instantiated within the system level entity because

GENESYS 2004 handles all bus related calculations after completing the simulations

for individual cells.

4.2.2 Bus Link Models

GENESYS 2004 models three basic types of bus lines: an unbuffered bi-

directional link with multiple fan-out, a buffered unidirectional link with conventional

repeater insertion, and a buffered bi-directional link utilizing coupled bi-directional

repeaters. The basic circuit model for each type of bus line is shown in Figures 41a-

41c.

67

R

D

R

D

R

D

R

D

D R

(a)

(b)

(c)

Figure 41: The circuit level model for three generic bus line types: (a) an unbuffered
bi-directional line, (b) a buffered uni-directional line, and (c) a buffered bi-directional
bus line utilizing coupled repeaters.

Each type of bus has advantages and disadvantages. The unbuffered bus

provides bi-directionality at no further cost, but is substantially slower than a buffered

line. The buffered bus with standard repeaters inserted is the fastest option but is

uni-directional. It may be operated in a bi-directional mode if the number of lines is

doubled to provide outgoing and incoming channels, however, this option doubles the

expected bus power dissipation and area utilization. The buffered bus with coupled

repeaters provides bi-directionality with half the bus lines of the unbuffered case,

but experiences greater delay due to increased loading from the coupled repeaters.

The bus line segment between repeaters (if a buffered line is chosen) is modeled as a

distributed RC line. Each node of the bus is terminated with a twin driver/repeater.

68

Gnd. Plane

Gnd. Plane

W

S

H

T

Cgnd

Cline

Figure 42: The physical model for the bus lines assumes ground planes above and
below as well as coupling to the nearest neighbors.

The physical model for the bus lines segments between coupled repeaters is

similar to the standard pt-pt interconnects for the local interconnect distribution.

Figure 42 illustrates the structure and environment of a bus line. This model idealizes

the on-chip wiring with the assumption of ground planes above and below the active

lines as opposed to orthogonal wires.

Where Cgnd and Cline are the ground capacitance and line to line parasitic ca-

pacitance respectively. The total capacitance of each type of bus line including the

bi-directional repeaters is calculated as in Equations 24-26:

Cbus1 = 2(Cline + Cgnd)Lnet + Nn(Cinrec + Coutdrv) (24)

Cbus2 = 2(Cline + Cgnd)Lnet + Nrep(Cin + Cout) + NnCinrec (25)

Cbus3 = 2(Cline + Cgnd)Lnet + 2Nrep(Cin + Cout) + Nn(Cinrec + Coutrec) (26)

Where Lnet is the length of the bus line, Nrep is the number of repeaters, Nn is the

number of nodes connected by the bus line, and Cin/Cout are the input and output

capacitances of the repeaters. As can be seen from the above equations, the loading

on the bus lines increases with the addition of repeaters and receiver/driver circuits.

69

4.2.3 Calculating the Bus Length

Before any estimation of the required routing resources or bus performance

can be made, the physical length of the bus lines must be estimated. The length

of a bus line is determined by two criteria: the number of cells connected and the

placement of those cells within the SoC. The first step in calculating the bus length

is to collect the cell placement information described in Section 3.4. The location of

all the cells in the SoC floorplan is now known. The second step is to collect infor-

mation regarding the cell connected to the bus. Once the connected cells and their

coordinates are known, a bounding box enclosing the correct region is found via the

following expressions utilizing the cell placement information:

a = max(ri) − min(li) (27)

b = max(ui) − min(lwri) (28)

where a and b are the bounding box dimensions, and ri, li, ui, lwri are the right, left,

upper and lower coordinates respectively. The index i refers to all cells within the

bus netlist.

These dimensions entirely enclose every megacell connected to the bus. The

likelihood of the bus terminals begin placed at the far edges of the bounding box is

not high. Therefore some adjustment needs to be made to the bounding box. The

net bounding box, the box enclosing the actual terminals of the bus, is estimated

by applying the formula for the dimensions of an m node net with randomly placed

terminals within the megacells. The expressions below compute the expected net

bounding dimensions from [34]:

70

â =
m − 1

m + 1
a (29)

b̂ =
m − 1

m + 1
b (30)

Where a and b are the net bounding dimensions. Given this information, the length

of the bus lines can be calculated via Equation 15:

Lline = (αmγ − β)
â · b̂

â + b̂
+ (â + b̂)

Where Lline is the physical line length, m is the number of bus terminals, and α, γ,

and β are empirical parameters. The first term containing the empirical parameters

represents the expected length of the lines to the branch terminals while the second

term, â + b̂, is the corner to corner length of the net bounding box. From [34] the

proper values for good agreement with observed data are: α = 1.1, γ = 1

2
and β = 2.

An example of the bounding box calculation for a generic SoC is shown in Figure 43.

An example of the variation in bus length for various fanouts and bus netlists

is presented below. The generic SoC floorplan from Figure 43 is utilized. The bus

length is evaluated for m values from 2 (minimum) to 5 (maximum) for various con-

figurations. The five cells present in the generic SoC are numbered according to the

block diagram of Figure 44.

The configuration numbers such as (1,2,3) mean that cells 1, 2, and 3 are connected

on the bus. For this example 12 different configurations are examined. The results

are presented in Table 11.

The bus length increases with the number of terminals from a minimum of 5mm for

71

busbit LNDemand =

a

b b̂

â

Figure 43: An illustration of the determination of the net bounding box. The cell
bounding box dimensions are determined by enclosing the bus connected cells to yield
the dimensions a and b. Equations 29 and 30 are applied to get the final net bounding
box dimensions â and b̂.

1

2

3

5

4

Figure 44: Example of bus length calculation for generic SoC floorplan

72

Table 11: Bus length calculations for various fanouts and configurations for generic
SoC floorplan of Figure 44.

Terminals Config. Length [mm]

m = 2

(1,2) 5.0
(1,3) 6.5
(1,4) 6.8
(1,5) 8.7

m = 3

(1,2,3) 10.8
(1,2,4) 12.2
(1,3,5) 14.6
(2,4,5) 14.6

m = 4
(1,2,3,4) 18.9
(2,3,4,5) 18.9
(1,3,4,5) 18.9

m = 5 (1,2,3,4,5) 22.3
Achip = 225mm2 (15x15mm)

two adjacent cells to 22.3mm for a bus connecting all five cells. For each given fanout,

the maximum bus length is found for any combination of cells which span the entire

chip. With m = 4 and only 5 cells, there is no combination that does not span the

chip, therefore, the expected length of the bus remains constant. The increase in

length for the m = 5 case is due to both the extra terminal and the increase in the

expected dimensions of the net bounding box.

4.2.4 Bus Delay

Depending upon the choice of line type chosen from section 4.2.2 the delay of

the bus line is calculated in one of two ways. If the unbuffered line from Figure 41a

is used, the delay is calculated taking the branch capacitances into account along

the full length of the bus line. If either of the buffered lines from Figures 41b/c are

chosen, the delay is calculated through the longest point to point path between the

furthest cells.

73

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3

Line width (um)

L
in

e
d

el
ay

 (
n

s)

Unbuffered

Uni-directional

Bi-directional

Spacing = 1.5um
Height = 3um
Net Length = 30mm
Pt-Pt Length = 25mm

Figure 45: The delay vs line width for the three different types of bus lines from
Figure 41. The spacing, height, and length of the bus are kept constant as shown
in the lower corner. The unbuffered line shows significantly greater delay. The pt-pt
length is the distance between the two farthest nodes. The number of nodes connected
by the bus in this example is 7.

The delay trends for each type of bus are plotted against increasing line width

in Figure 45. The chip area is 300mm2 with a total of 20 megacells of which seven

are connected via a bus. The line with the lightest capacitive loading, the unbuffered,

case also exhibits the greatest delay. There are two primary effects which penalize

the unbuffered line. first, the delay is proportional to the square of the length in an

unbroken RC line. Additionally, the branch capacitances from the Nn nodes produce

additional delay at the farthest node. The buffered lines produce lower delay times

because they break up the square dependence on the length and because the buffers

allow the branches to charge in parallel with one another. This permits us to calculate

the delay of the multi-terminal net along its longest point to point path. For the

74

Table 12: Bus delay at 5µm line width for the three generic bus line types from
Figure 41.

Line Config. Delay [ns] % increase

Unbuffered 9.53 13.8
Uni-directional 8.37 –
Bi-directional 8.9 6.3
Lnet = 30mm, Spacing = 1.5µm, Height = 3µm

example shown in Figure 45 this corresponds to 25mm vs 30mm for the unbuffered

case. For small line dimensions, the buffered lines have an obvious advantage over

the unbuffered line, but for larger dimensions this advantage is eroded. For example,

at a line width of 5µm the delay of the unbuffered line is only 14% greater as shown

in Table 12. The results from these simulations indicate that the preferred generic

bus link for connecting large clusters of cells.

If the delay and logical width of the bus are known, the peak bandwidth is calculated

via the following expression:

BWpeak = Nbit · fbus (31)

Where Nbit is the number of bus lines and fbus is the maximum bus frequency. The

peak bandwidth for the example of Figure 45 assuming a 32 bit bus ranges from

less than 14 Gbps for the unbuffered line to more than 37Gbps for the buffered uni-

directional bus.

75

4.2.5 Bus Power dissipation

The average power dissipation in an active bus line can be calculated by as-

sessing the energy requirements for transmission of a bit. The general formula for

calculating the average dynamic power is given below:

P =
1

2
CV 2fcaf (32)

Where C is the total switching capacitance, V is the voltage, fc is the operating

frequency, and af is the activity factor or percentage of cycles where active switching

occurs. If Equations 24 - 26 are substituted, the expressions for calculating the bus

power dissipated for each type of bus link under active switching are as follows:

Pbus1 =
Nbit

2
{2(Cline + Cgnd)Lnet + Nn(Cinrec + Coutdrv)}Vdd

2 ·
af

τbus
(33)

Pbus2 =
Nbit

2
{2(Cline + Cgnd)Lnet + Nrep(Cin + Cout) + NnCinrec}Vdd

2 ·
af

τbus

(34)

Pbus3 =
Nbit

2
{2(Cline + Cgnd)Lnet + 2Nrep(Cin + Cout)

+ Nn(Cinrec + Coutrec)}Vdd
2 ·

af

τbus

(35)

Where τbus is the delay of the bus line. GENESYS 2004 calculates the power dissi-

pation for a bus operating at maximum frequency. If the bus speed is faster than

the system clock, the bus may be constrained to operate at the system frequency. In

this case, the power would be adjusted dividing by the ratio of the bus frequency to

76

Table 13: Average bus power comparison with data for different signaling techniques
from [42] with GENESYS simulation. The logical bus width is 32 bits implemented
in a 0.35µm technology.

Bus type/mode Power Dissipation (mW)

Current mode 225
Voltage mode 125

Adaptive mode 100
GENESYS 175

af = 15, Lbus =1 cm, Fbus = 1GHz

the system clock frequency. For random logic an activity factor of 10% is typically

assumed and provides excellent agreement with empirical data for chip power dissi-

pation. The activity factor for individual bus lines depends heavily upon numerous

factors, but data obtained from simplescalar simulations and reported in literature [42]

indicates an average activity factor of about 15% for individual bus lines under the

transmission of instruction address streams. The behavior for data address streams

which exhibit more random behavior with an average activity factor of approximately

20%. An examination of bit patterns for both instruction and data indicates that a

large percentage of bits are static (retaining the same value for numerous cycles) so

that even with high bus utilization the average activity factor will often remain low.

Using an activity factor of 15% for a 32 bit bus with a line length of 1cm operating

at 1GHz produces bus power results that agree with published data from [42].

For the example from Figure 45 the power is calculated for various line widths

and plotted in Figures 46 and 47. Clearly, from Figure 46, the unbuffered line gives

the lowest power dissipation of the three cases. The buffered bi-directional link expe-

riences the greatest average power dissipation due to additional loading from the cou-

pled repeaters. The peak power for the bi-directional buffered line is nearly 600mW

at 1GHz. Much of the difference in power dissipation between the three is accounted

77

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2 2.5 3
Line Width (um)

A
vg

 P
o

w
er

 (
W

)
Bi-directional

Uni-directional

Unbuffered

Figure 46: The average bus power consumption (W) for a 32 bit, 30mm bus for
each link type detailed in section 4.2.2 plotted against physical line width (µm). The
activity factor is set to 15%.

for by the respective line delays for each link type. Figure 47 adjusts for this difference

by assuming that the link delay is limited to the system clock delay of 5ns (200MHz).

The results show that the unbuffered line dissipates approximately 25mW less than

the uni-directional line at the same frequency and Wline = 0.5µm. The effective band-

width is 6.4 Gbps for all three cases, therefore, under the assumption of a limited bus

frequency speed the unbuffered bus is the superior choice due to lower power dissipa-

tion at equal performance. This is true up to a clock frequency of 950MHz and peak

bandwidth of 30Gbps where the unbuffered bus achieves its maximum speed for the

maximum line width of 2.5µm, if more than 30Gbps is desired, buffered lines must

be utilized.

4.2.6 Bus Routing Area

A complete bus (or bus segment) is a collection or grouping of individual bus

lines sharing identical node destinations. The logical width of the bus is the number

78

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.5 1 1.5 2 2.5 3
Line Width (um)

A
vg

 P
o

w
er

 (
W

)
Bi-directional

Uni-directional

Unbuffered

Figure 47: The average bus power consumption (W) for a 32 bit, 30mm bus for each
link type at a common clock frequency of 200MHz. The activity factor is set to 15%.

of bits or bus lines comprising the bus segment. The routing resources required to

wire the bus are dependent upon the length of the bus lines, the physical width and

spacing of the lines, and the logical width of the bus. The expression for calculating

the bus wiring area is given in Equation 36:

Abus = Nbit(Wline + Sline)Lline (36)

Where Nbit is the logical bus width, Wline/Sline are the physical width and spacing,

and Lline is the length of the bus line. From 36 it is clear that the area requirement

increases linearly for each of the key dimensions. The area requirements for the

example of Figure 45 and Table 12 for a 32 bit, 30mm bus are given in Table 14.

GENESYS 2004 assumes that any specified bus wiring is routed in addition to

the stochastic wiring distribution detailed in Section 3.3. This means that the area

reserved for bus wiring is subtracted from the available area to route any remaining

79

Table 14: Bus area requirements for example from Figure 45

Line width [µm] Bus area [mm2]

0.5 1.91
1.0 2.38
1.5 2.86
2.0 3.34
2.5 3.81
5.0 6.19

Spacing = 1.5µm, Height = 3µm

global interconnects. The total available routing area, and supply (maximum length

of routable interconnect) for global interconnects is calculated via the following ex-

pressions:

Aroute = AchipNwglb (37)

Supply = ew
Aroute

pw

(38)

Where Achip and Nwglb are the chip area and number of global wiring levels. ew and

pw are the wiring efficiency (usually about 40%) and the wiring pitch. The wiring

pitch for the stochastic global interconnect is determined via the algorithm from Fig-

ure 23. The impact of the bus routing on the global interconnect routing area is

determined as follows:

Aroute = AchipNwglb − Abus (39)

The impact of bus routing in a generic SoC is examined by defining a single

shared global bus connecting all 20 megacells in the example from Figure 45 and ob-

serving the performance of global interconnects. Because this is a maximum length

bus, the link type chosen is the buffered bi-directional line from Figure 41c.

80

Table 15: Simulation results for 32 bit shared, global bus connecting all cells for a
300mm2, 20 megacell generic SoC.

Width [µm] Abus [mm2] bus delay [ns] global pitch [µm] globaldelay[ns]

0.35 1.2 3.0 7.0 1.0
0.5 1.7 2.3 7.0 1.0
1.0 3.4 1.44 7.0 1.0
2.0 6.8 1.0 7.0 1.0
3.0 10.7 0.93 7.0 1.0
4.0 13.6 0.9 7.0 1.0
5.0 17.0 0.89 6.8 1.0

Wline = Sline, Length = 53mm,Fc=200MHz, Nwglb=2

These results show that for reasonable line dimensions the area required for

routing the 32bit global bus does not significantly impact the performance of the

stochastic global network. Further simulations with an increased logical bus width

show that the global distribution can support a maximum length bus of up to 256

bits before any significant increase (10%) in the global delay. For this example the

processor clock speed is limited by the delay through the random logic to 200MHz,

therefore the bus if operated independently of the core processor, could achieve up to

5 bus cycles per processor cycle with a bus line pitch of 4µm.

4.2.7 Bus placement optimization

As discussed briefly in Section 3.4.2, GENESYS provides a method for generat-

ing automatic floorplans with a placement constraint designed to reduce the length of

the bus by placing bus connected cells with a high degree of adjacency. The effective-

ness of this technique is examined by applying the various cell placement schemes to

the floorplans of Figures 21 and 33, the MIPS R2000 and Intel Itanium2 respectively.

The technology implementations for the two examples are 0.35µm and 0.18µm. The

81

Table 16: Simulation results for bus length and delay for various cell placement
schemes.

Chip placement efficiency bus length bus delay bus area

R2000

manual 85.7% 29.8mm 0.77ns 13.3mm2

inorder 82.3% 28.6mm 0.75ns 12.8mm2

size 84.6% 29.1mm 0.75ns 13.0mm2

bus driven 85.6% 21.53mm 0.64ns 9.7mm2

Itanium2

manual 83.4% 29.3mm 0.68ns 6.8mm2

inorder 82.9% 34.0mm 0.77ns 7.8mm2

size 81.8% 34.4mm 0.77ns 7.9mm2

bus driven 80.5% 21.8mm 0.56ns 5.0mm2

generic bus superimposed upon these floorplans is assumed to connect the functional

units/processor core to the memory subsystem. The number of nodes connected by

the R2000 and Itanium2 floorplan buses are 7 and 6 respectively. Both buses are

wired at a pitch equal to 20 times the minimum pitch afforded by the minimum fea-

ture size. Simulation results are presented in Table 16.

These simulation results show that the bus driven placement scheme substan-

tially reduces the length of bus signal lines in the above example. The reduced bus

delay for each of the two cases presented results in an increase in the peak bandwidth

of 20%. This method is most effective in SoCs where a bus connects a small enough

number/area that a higher degree of cell adjacency results in a cell bounding area

substantially smaller than the unoptimized case. The example from Table 15 cannot

benefit from the bus driven placement scheme because all of the cells are connected

leaving no room for optimization.

82

4.3 Bus limitations on system throughput

As discussed in Section 4.1 the performance of a bus-based SoC architecture

is heavily dependent upon the performance of the bus. In traditional microprocessor

systems, GENESYS determines the expected throughput via the use of an empiri-

cally based logic-memory model detailed in Section 2.3.1. This logic-memory model

is applicable to standard uni-processor families such as the Intel and AMD x86 based

systems, but does not extend to a generic SoC model in which there may be multiple

processors and integrated peripherals, nor does it consider the performance of on-

chip busses. The models developed in this section address the impact of on-chip bus

performance on the system level throughput measured in instructions/ops per second.

The architectural design space for SoCs is extraordinarily wide, ranging from

uni-processor cores with integrated peripherals to mixed signal/RF applications to

complex multiprocessor systems. The physical system level modeling utilized in

GENESYS 2004 works for a large portion of the SoC design space because there is

commonality with regard to the underlying technology. However, there is no generic

throughput model that adequately addresses the vast difference in design and func-

tionality for the SoC design space because there is such little commonality at the

architectural or programming level. Therefore, this section focuses on a specific class

of SoC designs in which a processor core and on-chip memory are the key components

along with on-chip peripherals. A block diagram of the generic SoC core is illustrated

in Figure 48.

The throughput model developed for exploring the effects of the bus design on

the system performance focuses on the interaction of the processor core and memory.

The processor core can be treated in a manner similar to the uni-processor model

and the overall throughput for the processor core is determined by evaluating the

83

I

D

Control

Datapath

P P P

On-Chip Bus

SRAM

Processor Core Peripheral components

Figure 48: A generic SoC processor-memory core connected to peripheral components
and SRAM memory via an on-chip bus.

average penalty for bus transactions arising from instruction or data references that

miss in the processor local memory. The primary assumption for this analysis of bus

limitations on system throughput is that the processor core is the key performance

determining component such that the relative performance for the SoC mirrors the

processor core. The basic model for the processor core throughput is listed in Equa-

tion 40.

Throughput = Fc(CPIbase + Cbus + Cmem) (40)

Where Fc is the core clock frequency, CPIbase is the ideal cycles-per-instruction or

operation, Cbus is the average penalty for bus accesses per op, Cmem is the average

penalty for memory access.

4.3.1 Transaction model

A model for a generic bus transaction is needed to evaluate the individual

components of the throughput model. The transaction model adopted for use in

GENESYS 2004 considers both pipelined and non-pipelined bus transactions.

84

4.3.1.1 Non pipelined bus transactions

Figure 49 illustrates the bus transaction model for a non-pipelined (only one

outstanding transaction permitted) bus. The tenure in units of bus cycles is formu-

lated for each component. Bword is the number of bytes per word, Wbus is the logical

width of the bus in bits, Fbus is bus operating frequency, Taccess is the memory access

latency, Bdata is the size of the data stream transferred over the bus, and the X fol-

lowing the data transfer represents the null cycle terminating the data tenure. The

transaction width is the total number of cycles between the request (A) and the end

of the data tenure (X).

A Mem. Access Data Transfer X A Mem. Access ������
bus

word

W

B8 � �
accessbusTF �����	

bus

data

W

B8

Transaction Width

Figure 49: A generic bus transaction model for a non-pipelined bus. The transaction
begins with the transmittal of the address information followed by the memory access
latency and the return of multiple bytes of data. The transaction ends with a null
cycle to separate data and address tenures. The expressions for the tenure (in bus
cycles) for each component are listed.

In a non-pipelined bus, a bus transaction can only be initiated when there

are no other outstanding transactions. For this case the total penalty assessed for a

bus transaction is simply the sum of the individual components. Every subsequent

transaction is assessed the same penalty, but any contention for bus resources results

in additional penalties while subsequent transactions await completion of preceding

transactions.

85

4.3.1.2 Pipelined bus transactions

A pipelined bus utilizes separate address and data buses to allow multiple

outstanding transactions as a method for hiding the latency of preceding transactions.

This method is illustrated in Figure 50.

Addr

Data

Penalty

Addr/ Data

Addr

Data

(a)

(b)

(c)

Figure 50: A generic bus transaction model for a pipelined bus. (a) non-pipelined
bus for comparison, (b) a bus with suboptimal (level 1) pipelining allowing up to 2
outstanding transactions, and (c) an bus with optimal pipelining.

An optimally pipelined bus is capable of supporting enough outstanding

bus transactions to fully hide the latency of previously scheduled transactions as in

Figure 50c. Sub-optimal pipelining occurs when the number of permitted address

requests cannot cover the transaction latency as illustrated in 50b. Ideally, each

address request would be separated by a number of bus cycles no greater than data

tenure. If only two simultaneous transactions are supported and the latency is greater

86

Table 17: The optimal pipeline depth assuming 32 byte data transfers over a 200MHz
bus for various bus widths and memory latencies.

Taccess (ns) Bus width (bits)

32 64 128 256
50 2 3 4 6
45 2 2 4 5
40 1 2 3 5
35 1 2 3 4
30 1 2 3 4
25 1 2 2 3
20 1 1 2 3
15 1 1 2 2
10 1 1 1 2
5 1 1 1 1

than the ideal spread, a third transaction would have to await completion of the first.

The optimal pipeline depth is a function of the memory latency and data tenure and

can be calculated via the following expression:

Dpipe =

⌊

(TaccessFbus) +
(

8Bdata

Wbus

)

+ 1
(

8Bdata

Wbus

)

+ 1

⌋

(41)

From equation 41 it can be seen that the optimal pipeline depth increases with increas-

ing memory latency or decreasing data tenure (due to either smaller data transfers

or wider buses). The optimal pipeline depth for a number of bus widths and memory

latencies is shown in Table 17.

Deep pipelines are most advantageous for buses with high latency memories (with

respect to the bus speed) and fast data transfers (a 32 byte data transfer requires

only a single cycle on a 256 bit bus). The peak data rate for an optimally pipelined

bus can be computed via a simple relationship between the bus frequency and data

tenure by multiplying the ideal bus bandwidth by the fraction of a bus transfer spent

87

actively transferring data:

Drate =
FbusBdata(

8Bdata

Wbus

)
(

8Bdata

Wbus

)

+ 1
(42)

Using the data from Table 17 as a reference, the peak data rate for a 32 bit

bus with a pipeline depth of 2 and a 10 cycle memory latency transferring 32 bytes

of data is approximately 711MB/s. By comparison, the peak bandwidth of a 32bit

200MHz bus is 800MB/s. A 256 bit bus with a 1 cycle transfer penalty has a peak

data rate of 3.2GB/s or about half the peak bandwidth. The limit set by the peak

bandwidth is not reached in either case because of the null cycle terminating each

data tenure.

For pipelined buses that have a depth less than the optimal value determined

via equation 41 the peak data rate must be determined by evaluating the penalty paid

for sub-optimal pipelining. This is clearly illustrated in the example of Figure 50b

with a pipeline depth of one. Because the third transaction could not initiate until

the first completed, it issued later and could not hide its latency with the data tenures

of the previous transactions. This results in a 5 cycle penalty. This pattern repeats

for every two transactions, so the average penalty is 2.5 bus cycles per transaction.

The formula for computing the average penalty and peak data rate for a sub-optimal

pipeline is:

Ppipe =
TaccessFbus +

(

8Bdata

Wbus

)

+ 2 − (Dpipe + 1)
(

8Bdata

Wbus

)

+ 1)

Dpipe + 1
(43)

Drate =
FbusBdata

(

8Bdata

Wbus

)

+ 1 + Ppipe

(44)

88

The effect of sub-optimal pipelining on the peak data rate of the bus is shown in

Table 18. The worst case is the non-pipelined bus with a peak data rate of 2.5GB/s.

Allowing just two pending transactions nearly doubles the peak data rate. Every

increase in the pipeline depth significantly increases the performance of the bus. This

is particularly true for data streaming operations that pass large amounts of data

between cores. The fully pipelined bus will be nearly eight times as fast.

Table 18: The transaction penalty (in bus cycles) and peak data rate for a 1 GHz,
256 bit bus transferring 32 Byte lines from memory with a 10 cycle access penalty.

Optimal pipeline depth = 6

Depth Penalty Data Rate (GB/sec)
0 11 2.5
1 4.5 4.9
2 2.33 7.4
3 1.25 9.8
4 0.6 12.3
5 0.17 14.7
6 0 16.0

4.3.2 Transaction rate limit

The maximum number of bus transactions per processor clock cycle is deter-

mined in a manner similar to the peak data rate from equation 42. This value is

the maximum rate at which the processor core and other peripherals can issue bus

requests without incurring additional penalties due to contention for bus resources.

The bus transaction limit for an arbitrarily pipelined bus is defined below:

Tlimit =
Drate

BdataFc
(45)

89

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25

Memory latency (ns)

B
u

s
tr

an
sa

ct
io

n
 li

m
it

(t
ra

n
sa

ct
io

n
s

p
er

 c
yc

le
)

5

4

3

2

1

0

Figure 51: The bus transaction limit (transactions per cycle) for a bus with Fc = Fb

= 1GHz, Bdata = 32 Bytes, and Wbus = 256 bits. The memory latency is varied from
1 to 20 cycles for pipeline depths ranging from 0 (non-pipelined) to 5.

Figure 51 illustrates the dependence of the transaction rate limit on memory

latency and pipeline depth. Clearly, the pipelined buses show a considerably higher

rate limit for increasing pipeline depth up to the optimal value of 0.5 transactions per

cycle. The buses with deeper pipelining are able to maintain the optimal data rate

for higher memory latencies.

There is assumed to be no additional penalty for bus access if the total trans-

action rate is less than the maximum set by the rate limit. However, if the total bus

loading from the processor core and peripherals exceeds the transaction rate limit,

then an average penalty per access is assessed in the following manner:

Prate =
Trate

Tlimit

(46)

90

The value of the rate penalty,Prate, is assumed to be 1 if required transaction rate,

Trate, is less than Tlimit. For example, if the required transaction rate is twice the

limit, then every bus request made by the processor core must wait an additional

bus penalty before it may issue. Substituting the various components for bus access

penalty into equation 40 yields an expression for the relative system throughput.

TPsys = Fc

(

CPIbase + Mrate

[

Prate

(8Bdata

Wbus
+

Bword

Wbus

)⌈ Fc

Fbus

⌉

+ ⌈TaccessFc⌉
])

(47)

The overall transaction rate generated by the processor core is dependent primar-

ily upon the effective miss rate, Mrate from the processor local memory, the bus/access

penalty, and the relative speed of the processor core with respect to the bus operat-

ing frequency. The transaction rate produced by the processor core is self-limiting.

Because bus accesses contribute to processor stall cycles, an increased transaction

rate results in a greater number of clock cycles between transactions. The effective

transaction rate for the processor core to memory arising from misses in the processor

local cache is estimated by dividing the miss rate (effective rate at which the processor

issues read transactions) by the average number of cycles per instruction/operation)

as in equation 48.

Trate =
(CPIave

Mrate

)−1

(48)

The effect of bus transaction rate limits on the processor-memory transaction rate

with respect to increasing miss rate is illustrated in Figure 52. The non-pipelined

bus reaches the limit of 1 transaction every 4 processor cycles at a miss rate of about

50 percent. Beyond that value the saturation penalty from equation 46 is assessed

91

resulting in increased CPI. The transaction rate limit for the pipelined bus is con-

siderably higher (1 transaction every 3 processor cycles) such that the transaction

rate continues to increase permitting a higher total system throughput. It should be

noted however, that the miss rates for which this effect is felt are very high. The

expected miss rate from a 32KB instruction or data cache averages at 2%, so the bus

transaction rate should remains below the limit. In this case, the primary benefit of

the the bus pipelining is to increase the bus resources available for communication

with peripheral components. Figure 53 shows a similar analysis with a fixed miss rate

and varying processor clock frequency. Unlike the previous case where the transaction

rate limit was static with respect to the miss rate, the limit is directly proportional to

the processor cycle time as in equation 45. The transaction rate from the processor

core is limited by the increasing penalty for bus accesses as the gap between the bus

and processor speed increases. The transaction rate asymptotically approaches the

limit for the non-pipelined case. This result implies that for systems with a large

mismatch between the core speed and bus speed the processor core may monopolize

the system bus severely reduce the bus resources available to the peripheral cores.

The effect of finite bus resources on throughput is illustrated in Figure 54.

The key system and bus metrics used to generate this plot are listed in Table 19.

The base CPI of 0.5 is the ideal value for the example SoC from Section 4.4.2. The

average throughput for each bus width at 1GHz is approximately 1.6BIPS (billions

of instructions/operations per second). For smaller bus sizes (32bits) the throughput

quickly saturates at a value of approximately 4BIPS as the processor and bus speeds

diverge. The smaller bus transfers data slowly and the bus transfer penalty becomes

the dominant contributor to the increase in the processor CPI. The larger bus sizes

resist saturation much more effectively, but still begin to lag noticibly at higher clock

frequencies. The 256bit bus experiences a nearly ideal speed up of 1.81 as the clock

92

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Miss Rate (misses per op)

T
ra

n
sa

ct
io

n
 R

at
e

Transaction limit (P)

Pipe depth = 1

Transaction limit (NP)

Pipe depth = 0

Figure 52: Bus transaction rates vs miss rate for pipelined (depth = 1) and non
pipelined (depth = 0) buses compared to the transaction rate limits for each type of
bus.

93

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20
Processor Clk (GHz)

T
ra

n
sa

ct
io

n
 R

at
e

Transaction limit (P)

Transaction limit (NP)

Transaction rate

Figure 53: Bus transaction rates vs processor core frequency compared to the trans-
action rate limits for each type of bus (P=pipelined, NP = non-pipelined). The miss
rate, memory access time, bus speed, and bus width are 2%, 1ns, 1GHz, and 256 bits
respectively

frequency doubles from 1 to 2 GHz, but the speed up from 10 to 20 GHz is only 1.24.

In order for multi-GHz systems to properly leverage the advantages offered

by continued technology scaling, the performance of the on-chip bus must keep pace

with the performance of the system cores. There are numerous potential solutions

for the specific SoC design space explored in this section. Obviously, increasing the

bus width and frequency to minimize the penalty incurred for each bus transaction

is a straightforward approach. Additionally, the processor local cache size may be

increased to reduce the effective miss rate. Another approach is to arrange the larger

memory such that the processor core has direct access for handling memory trans-

actions without putting the traffic on the shared bus. The ideal throughput for a

32 bit system with a base CPI of 0.5 operating at 20 GHz is 40BIPS. An ideal bus

design for this system has a 256 bit width (equal to the size of the data transfers)

94

Table 19: Parameters for bus throughput analysis

Parameter Value

Fbus 1GHz
Bdata 32bytes
Taccess 1ns
Cache 32KB I/D
Mrate 0.02

CPIbase 0.5

1

3

5

7 9 11 1
3 1
5 1
7 1
9

3
26
4

1
2

8
2

5
6

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

Throughput
(BIPS)

Clock Speed (GHz)Bus
Width
(bits)

Figure 54: Bus limited throughput for increasing processor clock speed (1-20 GHz)
and bus width (32-256bits). The colored bands indicate the regions between z-axis
gridlines as projected onto the surface.

95

operating at the core clock frequency of 20 GHz. If a 4 cycle penalty is assessed for

memory access at a miss rate of 0.02, the peak throughput is approximately 32BIPS.

Clearly, the performance of the on-chip bus is a key component in determining the

overall system performance for a gigascale SoC. Aggressive design practices for these

on-chip buses for gigascale SoCs will be required to realize the performance potential

inherent in the underlying technology.

4.4 CoreConnect Chip Example

In this section, the hierarchical block methodology introduced in Chapter 3

is applied to an existing implementation of a bus-based SoC, the IBM 440GP. The

simulation results for both the processor core and chip are compared with actual data.

The simulated bus statistics are given for both operation at specified frequency and at

maximum potential bus frequency. Finally, GENESYS 2004 is exercised to determine

the performance scaling of this design for various technology implementations.

4.4.1 The IBM CoreConnect Architecture

The IBM CoreConnect bus architecture is a commercially available solution

for developing SoC systems utilizing on-chip buses for communication between com-

ponent cores [39]. The CoreConnect bus architecture utilizes three on-chip buses:

the processor local bus (PLB), on-chip peripheral bus (OPB), and the device con-

trol register (DCR) bus to exchange data between the core processor and peripheral

components. The primary components of the CoreConnect architecture are described

below:

96

• PLB: The processor local bus provides the high performance communications

pathway between an embedded processor core and peripherals. The PLB has

separate read and write buses with widths of 32, 64, and 128 bits. The bus

operates at frequencies of 66, 133, and 183MHz.

• OPB: The on-chip peripheral bus is designed to alleviate performance bottle-

necks by providing a secondary bus for connecting additional peripherals to the

processor core and memory via a bridge unit connecting the OPB and PLB. The

OPB provides separate 32 bit read and write buses operating at a frequency of

50MHz.

• DCR: The device control register bus is a low performance bus designed for

communicating system configuration data between the processor core and PLB

slaves. The DCR bus provides 10 address and 32 data lines.

4.4.2 440GP Simulation results

Figure 55 illustrates the block diagram for an example SoC implementation

based upon the IBM 440GP chip [43]. The system consists of a PowerPC440 processor

core connected with various peripherals via the CoreConnect bus architecture. The

embedded processor core is composed of the PPC440 microprocessor and two 32KB

instruction and data caches. The example of Figure 55 is implemented in a 0.18µm

process utilizing 4 levels of wiring at a supply voltage of 1.8V. GENESYS simulations

for the 440 processor core (PPC440 CPU in Figure 55) is listed in Table 20 against

actual data. These results indicate that block SoC methodology produces relatively

close agreement with the actual data for the processor core. The homogeneous system

model estimates the total local interconnect demand at 72 meters of wiring as op-

posed to 11 meters for the heterogeneous SoC model (IBM does not provide data for

the wiring demand). The higher estimation of wiring demand for the homogeneous

97

system model results in the increased die size, greater power dissipation and slower

clock speed as seen in Table 20. The area estimate from the SoC methodology is

double the indicated 4mm2 from, however, this data was listed as estimated by IBM,

so a precise comparison of accuracy is not possible.

On-Chip Peripheral Bus (OPB) – 32bit

Processor Local Bus (PLB) – 128 bit PLB
Aribiter

OBP
Aribiter

SRAM

SRAM
Controller

Custom
Logic RESET

PCI
Bridge

SDRAM
Controller

PPC440
CPU

Interrupt
Control

OPB
Bridge

DMA
Controller

MAL /
Ethernet

P1 P2 P3 P4

DCR
bus

Figure 55: A block diagram for an example SoC implementation based on the IBM
440GP using the CoreConnect bus architecture.

Simulation results for the complete SoC illustrated in Figure 55 is simulated

via GENESYS and listed against actual performance data in Table 21. The simu-

lated area, frequency, and power dissipation for the example system are shown to be

in good agreement with the empirical data. This application of the GENESYS SoC

modeling methodology to a non-traditional microprocessor design is indicative of the

flexibility afforded by the block modeling methodology introduced in Chapter 3. The

uni-processor system model supported by the earlier generation tool again overesti-

mates the wiring demand (280 meters) when compared to the block methodology (66

98

meters for local and global interconnect).

The bus statistics for the PLB of the simulated 440GP SoC are listed in Ta-

ble 22. The bus operating frequencies are held to the specified frequencies permitted

by the CoreConnect specification. The expected average power dissipation for the

15mm bus length increases by a factor of 10 as the number of bit lines and bus fre-

quency are increased.

Many current on-chip bus standards are limited to operating at frequencies

well below the core processor speed. If the bus is permitted to operate at the max-

imum frequency permitted by the delay of the bus line, the bus frequency increases

to about 1.5GHz with a peak bandwidth ranging from nearly 50Gbps for the 32 bit

bus to nearly 200Gbps with a 128 bit bus. The price in increased power dissipation

is 217mW and 885mW respectively. The 1.5GHz frequency exceeds the core pro-

cessor clock by a factor of three. Theoretically, this would permit up to three bus

transactions per bus for every one clock cycle. This indicates that the potential for

exploiting the increases in bandwidth afforded by on-chip integration is substantial.

4.4.3 Performance scaling and trends for the 2004 ITRS technologies

A key feature of the GENESYS 2003 simulator is the ability to rapidly asses

the impact of technology changes on key performance metrics of integrated systems.

The SoC of Figure 55 is simulated for the technology implementations corresponding

to selected ITRS [3] technology generations. All system and circuit level parameters

remained unchanged with the exception of interconnect dimensions which are assumed

to scale with the minimum feature size such that the first two interconnect levels are

routed at minimum pitch (2F) and the upper tier at 2x minimum pitch to reflect

99

typical interconnect scaling (longer wires have larger dimensions) [33]. The bus line

dimensions are set to 10x minimum pitch for consistency with previous simulation

results. The results for the critical system performance metrics are listed in Tables 23

and 24.

The projected performance of the simulated IBM 440GP increases rapidly with

each advancing technology implementation. The maximum system clock frequency

and average power dissipation are plotted in Figure 56. The clock frequency increases

steadily, but the power dissipation saturates at a value of close to 7 Watts. The

decrease in feature size between technology generations results in a decrease in the

total power dissipation for the 2003 to 2005 nodes, but beyond 2005 the static power

(leakage) increases by three orders of magnitude as the oxide thickness reduces from

1.8nm to 1.3nm. Beyond 2007, the oxide thickness stabilizes and increases in the gate

leakage current density are offset by reduced gate area. Therefore, as the dynamic

power continues to decrease, the static power increases at a rate sufficient to offset

the improvement in dynamic power. A power dissipation of only 7W does not seem

problematic until the resulting power density is taken into account as illustrated in

Figure 57. The power density for the example SoC exceeds a reasonable limit of

100W/cm2 beyond the 2005 time frame. The expected average power dissipation for

the PLB is seen to decline monotonically for each successive generation despite a five

fold increase in the maximum operating frequency. This effect follows from two key

effects: a reduction in the bus length as the chip area scales down, and advances in

low-k dielectrics for reducing line capacitance.

Figure 58 displays a breakdown of the power dissipation into its dynamic and

static components. The static contribution percentage of the total system power for

the 2003 and 2005 nodes is expected to be less than 10%, but by 2007 this increases

100

0

5

10

15

20

25

30

2003 2006 2009 2012 2015 2018

Calendar Year

F
re

q
u

en
cy

/P
o

w
er

Freq (GHz)

Power (W)

Figure 56: Power dissipation and maximum clock frequency for selected ITRS tech-
nology nodes applied to the 440GP example. See Table 23 for feature size information.

sharply and continues until fully 80% of the total power is from leakage. This implies

that merely slowing the clock and sacrificing performance is not enough. The majority

of the leakage current is electron and hole tunneling through the gate dielectric [44].

Simulations for the 2018 technology node applied to the example SoC indicate

that increasing the effective oxide thickness to 2.1nm (from 0.9) and increasing the

effective threshold voltage to 250mV (from 200) results in a total static power dissi-

pation of 5mW . This approach requires the use device structures resistant to drain

induced barrier lowering in order to control sub-threshold leakage current. Addition-

ally, high permitivitty materials may permit an increase in the physical thickness

without reducing the gate capacitance. The new total power dissipation is 590mW

at a die size of 0.16mm2. The power density is still too high at 368W/cm2. The

clock frequency must be reduced to 4.8GHz in order to achieve a power density of

100W/cm2. The expected performance for the example is reduced by 80% in order

to achieve a realistic power budget. The key result to be taken from this analysis is

101

10

100

1000

10000

2003 2006 2009 2012 2015 2018

Calendar Year

P
ow

e
r

D
e

n
si

ty
 (

W
/c

m
2)

Figure 57: Power density for selected ITRS technology nodes applied to the 440GP
example.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2003 2005 2007 2009 2012 2015 2018

Calendar Year

%
 o

f T
o

ta
l P

o
w

er

Static Power

Dynamic Power

Figure 58: A breakdown of the total power dissipation between the dynamic and
static components for the 440GP example.

102

that beyond the 2007 technology node (max Fc = 4.7GHz), there is no appreciable

gain in performance due to limitations imposed by power density requirements. In

this instance, GENESYS has been utilized to simulated the projected performance

of a complex SoC for future technology generates and identify a key limitation on

the scaling potential of the system and assess the performance trade-off required to

a achieve a practical solution.

4.5 Conclusions

This chapter introduces the modeling of generic on-chip buses for SoC appli-

cations via the hierarchical block-based SoC methodology introduced in Chapter 3.

The model treats the on-chip bus (or bus segments) as a set of performance critical

interconnects requiring definition of the physical (line width/spacing) and logical re-

sources (bus netlist). Three different types of generic bus links are introduced with an

examination of the power/delay trade-offs associated with each. Methods for estimat-

ing the length, and average power dissipation for the generic bus lines are introduced.

An automated cell placement method for optimizing bus bandwidth is introduced and

shown to reduce the length of bus lines by up to 30% and increase the bandwidth by

approximately 25%. A model for the transaction rate and bus limited throughput was

introduced and utilized to explore the effects of bus performance for a processor-core

based SoC with an on-chip bus. The throughput analysis confirms that the bus per-

formance is a key target of optimization for maximizing the performance for a subset

of bus-based SoC designs. The block-based SoC model was applied to an existing

bus-based SoC with a high degree of accuracy in projecting the area, clock speed,

and power dissipation when compared to the previous uni-processor system model.

103

Table 20: Comparison of GENESYS simulation results for the PowerPC440 embed-
ded processor core. Both the block methodology (SoC model) and the homogeneous
(uni-processor) system model are utilized for comparison purposes. The core contains
5.5M transistors, approximately 1.5M for logic and 4M for cache. The 4mm2 die size
listed is only an estimate, but the heterogeneous SoC model produces much closer
agreement than does the homogeneous model.

PPC440 SoC Model Homogeneous Model

Area [mm2] 4.0* 8.0 59.6
Freq. [MHz] 500 502 390
Power [W] 1.25 1.24 6.8

*Estimated by IBM

Table 21: Comparison of GENESYS simulation results for the IBM 440GP SoC
implementation comprised of 17 megacells connected via the CoreConnect bus ar-
chitecture. The simulation results for the uni-processor system model are listed for
comparison purposes.

440GP SoC Model Uni-processor Model

Area [mm2] 64 59.1 238
Freq. [MHz] 500 502 330
Power [W] 5 5.9 19.6

Table 22: Bus maximum bandwidth, average power dissipation, and area utilization
for the PLB for various PLB widths for the IBM 440GP SoC. The bus lines are
assumed routed at 10x minimum pitch (W=S=1.8/mum).

Processor Local Bus
PLB width BW [Gbps] Avg. Pwr [mW] Area [mm2]

32bit 2.11 9.56 3.53
64bit 8.5 38.7 7.05
128bit 23.4 108 14.1

fbus=66, 133, and 183MHz for the 32, 64, and 128 bit bus.

104

Table 23: Technology scaling simulation results for the 440GP example of Figure 55.

440GP CHIP

Year F Fc [GHz] Achip [mm2] Pwr [W]
2003 65nm 2.3 6.4 3.8
2005 45nm 3.4 3.1 3.0
2007 35nm 4.8 1.8 4.8
2009 28nm 6.9 1.2 6.7
2012 20nm 11 0.6 6.23
2015 14nm 18 0.3 7.0
2018 10nm 26 0.15 6.8

Table 24: Technology scaling simulation results for the 440GP PLB bus illustrated
in Figure 55.

PLB BUS

Year F Fbus [GHz] Lbus [mm] Pwr [mW]
2003 65nm 5.3 5.2 450
2005 45nm 7.2 3.6 320
2007 35nm 9 2.8 270
2009 28nm 11 1.7 230
2012 20nm 15 1.6 170
2015 14nm 22 1.1 120
2018 10nm 27 0.8 70

105

CHAPTER V

ON-CHIP DRAM MODEL

5.1 Introduction

Since the introduction of on-chip caching with the Intel 80386 processor in

1985, the design space for on-chip memory arrays has been dominated by SRAM.

The size of on-chip memory storage has grown considerably in that time, from a mere

16Bytes to 9MB for the Intel Itanium2 microprocessor [45]. For much of this time,

the integration of DRAM and logic on-chip was hindered by the difficulties in merging

two different process technologies. However, the incorporation of DRAM on-chip has

been demonstrated as early as 1996 [46]. As the demand for on-chip memory capac-

ity continues to increase, the incorporation of DRAM on-chip is becoming a common

design practice for achieving high storage density [47] [48]. Therefore, this chapter

attempts to extend the GENESYS cache modeling framework to incorporate on-chip

DRAM.

The key observation concerning the modeling of on-chip memory arrays for

SRAM and DRAM is that the surrounding support logic (line drivers, multiplexors,

comparators, sense amplifiers...etc) for addressing/accessing the array is the same.

The primary difference between the two types of storage is the design of the memory

storage cell. The SRAM cache routines developed for GENESYS in [25] exhaustively

model the area, power, and delay for each of these components. The approach taken

106

in this chapter focuses on the characterization of a standard single transistor storage

cell and extrapolating the area, power, and delay at the array level.

5.2 DRAM Cell Model

The single transistor DRAM cell forms the basic unit of memory storage in a

DRAM array. The cell consists of single transistor and capacitor pair with bit and

word line connections. The capacitor forms a simple storage node and the transistor

provides access to the charge stored on the node. The cell is accessed via the word

line connection to the gate of the transistor and the stored charge is sampled via the

bit line connection to the drain of the access transistor. A basic circuit model for

this standard DRAM cell is illustrated in Figure 59. The primary characteristics of

the cell targeted for modeling are the layout footprint (area), switching and storage

energy, and the capacitor discharge rate.

WL

BL

Cs

WL

BL

Cs

WL

BL

Cs

Figure 59: The basic circuit model utilized for the characterization of a simple DRAM
storage cell. BL = bit line, WL = word line, and Cs is the storage node capacitance.

107

5.2.1 Cell area model

Figures 60 through 62 show the historical sizing trends in DRAM cells [49].

The feature size and cell area reduce rapidly with advancing technology generations,

but the area in terms of square feature sizes has remained steady at an average of

approximately 10F 2. The cell area model utilized in GENESYS 2004 is based upon

the layout footprint for a standard storage cell. The layout for a typical DRAM cell

utilizing a trench capacitor as the storage node is illustrated in Figure 63. The total

length of the cell layout is simply the sum of the transistor and capacitor dimensions:

Lcell = Ls + αF + Ld + Lcap (49)

Where Ls and Ld are the source and drain lengths respectively, α is a factor relating

the transistor channel length to the minimum feature size (α > 1), F, and Lcap is

the layout length of the trench capacitor. The channel length of the DRAM access

transistor is typically greater than the minimum in order to control leakage from

the storage node, therefore, the α parameter is utilized to adjust the drawn channel

length. From 49 the bounding area for the individual cell is calculated using the

width of the DRAM cell as in the following expression:

Acell = LcellWcell (50)

The actual cell footprint for a DRAM cell in an array must take into account the de-

sign rule specifications of at least 1F spacing between adjacent bit lines and isolation

between the storage capacitors of adjacent cells. The modified expression for the cell

footprint area is given in equation 51.

108

Acellfoot = (Lcell + Lbitiso)(Wcap + Wcapiso) (51)

Where Lbitiso and Wcapiso are the widths of the cell isolation regions between bit

lines and storage capacitors. If typical values for the cell dimensions (Ls = Ld = 1F ,

γ = 1.5, Lcap = 2F , Wcap = 2F , and Wbitiso = Wcapiso = 1F) are chosen, the re-

spective cell and footprint areas are 11F 2 and 19.5F 2 respectively. The 11F 2 feature

size is in agreement with the historical trend illustrated in Figure 62. cell footprint

is plotted against the ITRS projections of the area for each of the roadmap years in

Figure 64. The results obtained from 51 closely matches the ITRS projections.

0.1

1

1985 1990 1995 2000 2005

Calendar Year

M
in

im
um

 F
ea

tu
re

 S
iz

e
(u

m
)

Figure 60: The historical trend for minimum feature size for DRAM technologies vs
calendar year.

5.2.2 Cell energy model

The energy/power consumption of the DRAM cell is a function of the device

and circuit level technologies (the operating voltage, oxide thickness, device dimen-

sions...etc). The overall cell power is determined by evaluating both the static and

109

0.1

1

10

1985 1990 1995 2000 2005

Calendar Year
C

el
l A

re
a

(u
m

2)

Figure 61: The historical trend for DRAM cell area vs calendar year.

1

10

100

1985 1990 1995 2000 2005

Calendar Year

C
el

l S
iz

e
(F

^2
)

Figure 62: The historical trend for DRAM cell area in units of square feature sizes
(F 2) vs calendar year.

dynamic components. The dynamic component is the energy required to operate the

DRAM cell while the static power is the average power lost due to leakage. The

dynamic energy is only dissipated during switching transitions while the static power

is present at all times while charge is stored.

110

Lcap

Ld Ls
 F

Lcell

Figure 63: A layout for a generic DRAM cell with trench capacitor. Ls is the length
of the source junction, αF is the drawn gate length of the access transistor, Ld is
the drain length, and Lcap is the length of the trench capacitor. All the lengths are
specified in units of the feature size (F).

5.2.2.1 Dynamic energy

The first step in determining the average dynamic power dissipation in a

DRAM cell is to define the operating conditions (voltages and procedures for read-

ing/writing data into the cell). The energy model utilized in this chapter is derived

under the following assumptions:

• Word lines are charge pumped to a voltage of Vdd + Vth (device threshold

voltage) on all cell accesses to ensure that the storage node holds Vdd when a

’1’ is written.

• Bit lines are precharged to Vdd/2 prior to read operations.

• Writing to the cell: the word line is charged to Vdd+Vth and the bit line

(Vdd/0) depending on the value of the data.

• Reading from the cell: the bit line is charged to Vdd/2 and the word line to

Vdd+Vth.

111

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

2003 2006 2009 2012 2015 2018

Calendar Year (ITRS)

C
el

l A
re

a
(u

m
2

)

ITRS

Area Model

Figure 64: A comparison of the cell footprint model from 51 with ITRS 2003 pro-
jections for cell area (µm2).

• Cell refresh: a read operation is conducted and the result is fed back to the bit

line while the word line is held high. An automatic refresh is performed after

every read operation.

The various contributors to the cell dynamic energy are the bit and word line

capacitances, the gate and junction capacitances of the access transistor, and the

storage capacitor. The expressions used to calculated each of these components are

given below:

Clbit = Cline(Wcell + Wcapiso) + CjLsWcell (52)

Clword = Cline(Lcell + Lbitiso) +
ǫox

tox
αFWcell (53)

Cs = CjLdWcell +
ǫox

tox
(2td + Lcap)Wcell (54)

Where Clbit the total bit line capacitance, Cline is the line capacitance per unit

length, Cj is the junction capacitance per unit area, ǫox and tox are the permitivitty

112

and thickness of the oxide respectively, and td is the depth of the trench capacitor.

Once the cell capacitance is determined, the cell dynamic energy is assessed

via the 1

2
CV 2 metric for switching energy. The expressions for the dynamic switching

energy for an individual DRAM cell are given below:

Ebl =
ClbitVbl

2

2
(55)

Ewl =
Clword(Vdd + Vth)

2

2
(56)

Es =
CsVs

2

2
(57)

Where the storage capacitor voltage swing Vs is dependent upon the operation (read/write)

and the data value on the storage node. For example, the value of Vs for writing a

’1’ onto a cell already holding a ’1’ is 0 (no charge is transfered). Table 25 shows the

total voltage swing across the bit and storage capacitor for each different operation

and data value. The bit line voltage swing is Vdd/2 for operations reading or writing

a 0, but the energy penalty is incurred twice: once for the precharge operation and

when the bit line is discharged to refresh the cell after the destructive read operation.

Utilizing the data in Table 25 the energies for the read and write operations

performed on a single DRAM cell are summarized in the following expressions:

Ewrite00 =
ClbitVdd

2

4
(58)

113

Table 25: The voltage swing for the bit lines and storage capacitor for each type of
operation and data value.

Op Data Vbl Vs Vwl

WRITE
0 → 0 Vdd/2 0 Vdd + Vth

1 → 1 Vdd 0 Vdd + Vth

1 ↔ 0 Vdd Vdd Vdd + Vth

READ
0 Vdd/2 ∆Vc Vdd + Vth

1 Vdd ∆Vc Vdd + Vth

REFRESH
0 Vdd/2 ∆Vc Vdd + Vth

1 Vdd ∆Vc Vdd + Vth

Ewrite11 =
ClbitVdd

2

2
(59)

Ewrite01 =
ClbitVdd

2

4
+

CsVdd
2

2
(60)

Ewrite10 =
ClbitVdd

2

2
+

CsVdd
2

2
(61)

Eread0 =
ClbitVdd

2

8
+

Clbit + Cs

2

(Vdd

2
− ∆Vbl

)2

(62)

Eread1 =
ClbitVdd

2

8
+

Clbit + Cs

2

(3

4
Vdd

2 − Vdd∆V − ∆V 2
)

(63)

Erefresh0/1 = Eread0/1 (64)

114

The value ∆V is the difference in the voltage on the bit line before and after the data

in the cell is sampled. This value is calculated below in equation 65. If it is deemed

that the data read out of or written into a cell is equally like to be a one or a zero

the average dynamic energy for a DRAM cell read and write operation is computed

via equations 66 and 67.

∆V =
(Clbit

Clbit + Cs

)Vdd

2
(65)

Ewrite =
Ewrite00 + Ewrite01 + Ewrite10 + Ewrite11

4
(66)

Eread =
Eread0 + Eread1

2
(67)

The word line energy consumption Ewl does not change with respect to the opera-

tional state of the cell and is considered separately from the read and write average

power when calculated the total array power dissipation.

5.2.2.2 Static power dissipation

The previous section dealt with determining the dynamic power dissipation

for read and write operations for a single DRAM cell. In this section the static power

drain for a DRAM cell under several conditions is calculated. The leakage current

requires that every DRAM cell in the array be periodically refreshed. The refresh

period (time between updates) is governed primarily by the magnitude of the leakage

115

Table 26: The leakage state of a DRAM cell with regards to the storage value and
bit line bias. 1 means that there is an applied bias to the bit line or a ’1’ stored on
the capacitor, 0 means no voltage or no charge on the capacitor.

Storage BL Tunneling Subthreshold

1
1 YES NO
0 YES YES

0
1 NO YES
0 NO NO

current and the size of the storage capacitor. A high leakage current and small ca-

pacitor requires a short refresh period which negatively impacts the dynamic power

consumption. This is an effect that standard SRAM memories do not have to con-

tend with. Therefore, determining the leakage currents in the DRAM cell is vital to

assessing the power dissipation of the entire DRAM array.

The primary sources of leakage considered in this work is the sub-threshold

leakage across the source/drain junctions of the access transistor and the tunneling

leakage current through the storage capacitor oxide. The cross-sectional diagram of a

generic trench capacitor DRAM cell of Figure 65 illustrates the flow of these leakage

currents [50]. The leakage currents only flow when there is a potential difference across

the source/drain terminals or the storage capacitor plates. Therefore the leakage is

dependent upon the state of the DRAM cell. The leakage state of the DRAM cell

with respect to the operating state is summarized in Table 26. The state of interest

for assessing the impact of the leakage currents on the power and refresh period is

the quiescent state when the node is storing a 1. This is assumed to be that state in

which the cell spends the most time. All other states either experience no discernible

leakage or are transient.

116

WL

BL GND

Figure 65: A cross-sectional view of a trench capacitor DRAM cell with the sub-
threshold leakage and direct tunneling current shown.

The required ∆Vsense for sensing a read on the cell sets a limit on minimum

storage capacity for the cell. Typically, the sense amps require on the order of a few

hundred mV to properly sample the cell [57] [58]. The limit on the storage capacity

is formulated in the following expression:

Csmin =
∆VsenseClbit
Vdd

2
− ∆Vsense

(68)

This expression, however, leaves no room for error. If any charge leaks off, there

will not be enough left on the node to reach ∆Vbl >= ∆Vsense. Therefore in order

to ensure proper operation the actual storage capacitance should be larger. With a

lower bound set on the capacity of the storage cell, the maximum rate at which the

voltage decays in the quiescent state is determined via equation 69.

dV

dt
=

Ileak

Cs
(69)

117

If the maximum voltage decay permitted is ∆Vr, the maximum time between refresh

operations, ∆Tr, for the DRAM cell is:

∆Tr =
∆VrCs

Ileak
(70)

Where the leakage current, Ileak is the sum of the sub-threshold and direct tunneling

currents. The sub-threshold leakage current through the access transistor can be de-

termined either via the use of a transregional MOSFET drain current model [51] or

estimated via the ITRS specifications for the device off current. The direct tunneling

current through the capacitor oxide is assessed via a previously derived model that

takes into account electron and hole tunneling in both the valence and conduction

bands [44]. The tunneling current model is listed in Figure 66.

5.2.3 Cell delay

The complex components of the DRAM critical path delay (decoders, com-

parator, sense amps) are already modeled extensively with respect to the cache SRAM

modeling. Because the bit and word lines connect to the DRAM cell via the source

and gate of the access transistor in the same manner as a 6 transistor SRAM cell, the

bit line and word line delay models are identical to the existing cache SRAM models

in GENESYS [25]. A key advantage of on-chip DRAM is that it can leverage the

same high performance transistors and aggressive design techniques such as splitting

word and bit lines utilized in SRAM design. Simulation results for the DRAM access

time are compared against actual data in the following section.

118

5.3 DRAM Array model

The DRAM Array model is an extension of the cell models introduced in the

previous sections. The total area, power, and delay for the DRAM array is found by

extrapolating up from the cell level models.

5.3.1 DRAM Array area

The total DRAM array area is the sum of the individual components such as

the address drivers, decoders, sense amps, output drivers, and the active cell area.

Figure 67 shows a generic array layout for two cases. Figure 67a shows a single 1Mb

DRAM array with an aspect ratio of 1. Figure 67b is the same cache divided into 4

sub-arrays. As in SRAM caches, dividing the array into sub-arrays by splitting the

bit and word lines is done to reduce the access time by shortening the length of the

lines. The SRAM area model assumes that the 6 transistor cell has a fixed footprint

of 250F 2. The footprint for the DRAM cell as modeled in Section 5.2.1 is an order

of magnitude smaller. The total active array area for the on-chip DRAM is:

NcellAcellfoot (71)

Where Ncell is the size of the array in bits. For a feature size of 0.1µm and a

cell footprint of 15F 2 the projected area for a 1Mb array is 0.157mm2 vs 2.62mm2

for the equivalent SRAM cell. Table 27 show a comparison of total DRAM array

area against an equivalent SRAM for various array sizes. Initially, the array size for

both the SRAM and DRAM cells is dominated by the area consumed by the support

logic, but as the cache size increases beyond 4KB, the size of the SRAM cell begins to

grow linearly with cache size. The DRAM array size begins increasing in size linearly

beyond a cache size of 32KB. For a 1MB array the DRAM achieves a relative density

of approximately 7X when compared to the equivalent SRAM. This is in agreement

119

Table 27: A comparison of DRAM array area against cache SRAM area. The
implementation technology is 0.13µm.

Area (mm2)
(KB) SRAM DRAM

1 0.32 0.21
2 0.41 0.22
4 0.53 0.25
8 0.9 0.3
16 1.5 0.39
32 2.71 0.56
64 5.1 0.93
128 9.9 1.6
256 19 2.9
512 38 5.5
1024 75 11

Table 28: A comparison of estimated DRAM area with reported data from [52] for
a 0.18/mum technology. C is the cache size in MB, and A is the associativity.

DRAM (C,A) HPA-RISC-2.0 GENESYS

12MB-6way 195mm2 180mm2

20MB-5way 117mm2 111mm2

with data reported in [52].

5.3.2 DRAM array power dissipation

The power dissipation for an embedded DRAM array is calculated via the

expressions for the per cell energy dissipation. The primary differences in the total

array power dissipation for a DRAM arise from the requirements for refreshing de-

structive reads and the periodic refresh. The power dissipation in the active DRAM

array (cells only) is calculated by combining the energy costs in Equations 56, 64, 66,

and 67 with array geometry parameters.

120

Table 29: GENESYS simulation of on-chip DRAM compared with embedded macro
implementations at 0.18 and 0.13µm technologies. The cores used for comparison
purposes are the Samsung LD18 and LD13 eDRAM.

Metric Actual GENESYS 2K4

LD18
- 4Mb

Area (mm2) 3.87 3.44
Taccess(ns) 50 38

Power (mW) 54 88

LD18
- 4Mb

Area (mm2) 2.64 2.17
Taccess(ns) 50 38

Power (mW) 36 47
refresh period = 4ms

Parrayave = αffcNsubarray

(8BnsprEwl

ndwl
+

C(Eread + Ewrite)

2Bnsprndbl

)

+
8CErefresh

∆Tr
(72)

Where αf is the memory activity factor, fc is the DRAM cycle time, B is the set/block

size in bytes, nspr is the number of sets per row, ndbl and ndwl are the bit and word

line divisions. The number of sub-arrays, Nsubarray, is the product of the word and

bit line divisions as illustrated in Figure 67. The above expression assumes that the

frequency of reads and writes are equal, so that their energy is weighted equally when

averaged. If necessary, separate parameters for the read and write frequency (% of

operations that are reads/writes). A typical value for the activity factor of random

logic is approximately 0.1, but accesses to memory may occur at a much higher fre-

quency. Therefore, the recommended activity factor for a memory array is given a

range of 0.4 to 0.5 [25]. The cost for the periodic refresh is determined by averaging

the energy required to refresh all bits in the array over a period of ∆tr. The results

of simulations for all three components of the on-chip DRAM modeling (power, area,

access time) are compared with an actual embedded DRAM macro in Table 29.

121

5.4 A Gigabit on-chip DRAM

Utilizing the modeling developed in the previous sections of this chapter, the

performance for a 1Gb on-chip DRAM is projected for selected ITRS technology gen-

erations. The simulated DRAM is a 128MB, 8-way set associative array with 1024

byte blocks. The total area, power dissipation, and DRAM cycle time for each ITRS

generation are collected in Table 30. The projected area for a 128MB DRAM imple-

mented in 65nm technology is approximately 110mm2. If the 0.18µm 4Mb DRAM

used from Table 29 is scaled down to 65nm and adjusted for the difference in capacity,

the resulting area is 120mm2, a value close to the GENESYS projection. The power

dissipation remains relatively steady across the roadmap. This implies that the power

reducing advantages of small feature sizes are not enough to overcome the increased

power dissipation from the lower cache cycle time afforded by the reduction in the

access time. From these results it can be seen that the cache power is proportional

to the area covered by the cache and inversely proportional to the access time. If

the array area and the access time are halved there is little change in the overall

dynamic power dissipation. The use of low-K materials results in some reduction in

the dynamic power from the 2003 to the 2012 node. Beyond 2012 increasing static

power dissipation results in an increase in the total power dissipation. Just as in the

scaling case for the 440GP example from Chapter 4, the power density rises rapidly

increasing from an already high 227W/cm2 for the 65nm node to over 1KW/cm2 at

the 2018 technology node.

5.5 Conclusions

In this chapter, a DRAM model for on-chip memories is developed for use with

the GENESYS 2K4 SoC modeling methodology. The modeling approach focuses upon

the characterization of the individual DRAM cell and leverages pre-existing models

122

Table 30: GENESYS 2K4 simulation results for a 1Gb embedded DRAM

C = 128MB, B = 1024, A = 8

Year 2003 2006 2009 2012 2015 2018
Fmin (nm) 65 40 28 20 14 10

Area (mm2) 110 42 20.3 10.3 5.0 2.6
Pwr (W) 25 22 18 17 21 24
Tc (ns) 1450 510 220 100 50 20

for the logic components and driver circuits of the memory array. The modeling for

the DRAM array is physically based upon the properties of a trench capacitor single

transistor DRAM cell. The model takes into account numerous aspects of the DRAM

cell topology to calculate a cell area that closely matches the historical trends for

cell sizing. The energy models introduced for estimating the power dissipation in

a DRAM array are derived from the physical properties of the cell layout and the

DRAM read/write procedures. Simulation results for the cell area show significant

reductions in the silicon usage for larger array sizes when compared to a cache SRAM.

The area, access time, and power dissipation are shown to be in good agreement with

an existing embedded DRAM macro. The on-chip DRAM model is then applied to a

theoretical 1Gb embedded DRAM showing significant improvement in the area and

access time for each successive ITRS technology node. The results for the power

dissipation indicate that increasing power density may be a key barrier to taking full

advantage of the opportunities afforded by technology scaling for large on-chip mem-

ories.

123

() �������

�������
� �������� ������� −−−

⋅=
ox

b

ox
box

boxoxg
oxb

n Ehq

V
m

EXPTVVC
h

q
J

3

1128

,,,
8

2/3

2/3

3 φ
φπ

φ
εφπ

 (a)

N
T

VVV
EXPTVVC

ox

g

b

ox

bo

box

b
boxoxg �������� ���� !" −

���� !" +
−

=
φφ

φ
φ

φ
α

11
20

),,,((b)

() () #$#%&#'#() **+,--./ 012345 −−
++

**+,--./ 012345 −
+=

tacc

FBg
tacc

tinv

thge
tinv

ox

ox

vn

VV
EXPvn

vn

VV
EXPvn

T
N 1ln1ln

ε
 (c)

() 667899:; −
−−

+++ 1
22

12
2

2
2

oxpolysi

fFBgox
oxpolysifge

TNq

VV
TNqV

ε
φε

εφ (d)

FBVVV sgeox −−= φ (e)

() 2

2
1

41

2 <<=>??@A BBCDEEFG −
−−+

=
γ

γφ FBgeg
s

VVV
 (f)

ox

subsi

C

qNε
γ

2
= (g)

 Figure 66: The tunneling current model developed in [44] for tunneling through

ultra-thin oxides.

124

(a) (b)

1024b

1024b

512b

512b
1Mb

256Kb

Figure 67: A generic layout for a 1Mb DRAM array for: (a) 1 sub-array, and (b) 4
256Kb sub-arrays.

125

CHAPTER VI

GIGASCALE CELLULAR ARRAY

ARCHITECTURES

6.1 Introduction

The previous chapters developed a modeling framework for projecting the

performance of SoC based designs, taking into account core-IP design methodologies,

on-chip buses, and embedded DRAM. In this chapter, the system model is utilized

to explore the design space for a gigascale SoC based on a cellular array architecture.

The generic system type under evaluation is illustrated in Figure 68. The system

consists of a large array of interconnected processing elements, each possessing their

own local memory. The system performance is evaluated for several interconnect

schemes: a stochastic global net list, a single shared bus and fully systolic network

of local buses. ITRS projections for future technology generations are utilized to

forecast operating frequencies and power dissipation for this system.

6.2 Stochastic global network for gigascale array

processors

The primary assumption made for this analysis is that the stochastic global

netlist discussed in Section 3.3 applies to the system architecture of Figure 68. There-

fore, the wiring distribution is a series of multi-terminal nets of varying fanouts and

126

I

 D

Processor
Core

I/O

Figure 68: The generic floorplan for a cellular array of processors with local memory.

lengths connecting clusters of chips together.

6.2.1 Simulation methodology

The block modeling methodology implemented in GENESYS 2K4 is ideal for

describing an array of identical cells because it is only necessary to define the cell

characteristics once and they can be instantiated in the system entity as many times

as needed, enabling a rapid exploration of the design space for the generic processor

array. The key parameter for characterizing the system of Figure 68 is the number

of processing nodes comprising the array. Simulations were run for selected ITRS

nodes and the number of nodes is varied from 4 to 128. The key assumptions made

regarding the simulation of the array are listed:

127

• The ITRS projects that nearly 80% of on-chip devices will be devoted to memory

storage, the chip array does not contain any large memory cells (only local

memory), so the total chip transistor count for each technology generation is:

Xtrchip = 0.8Xtritrs. The data values for each ITRS node are summarized in

Appendix A.

• The chip area and transistor count remain constant as the number of nodes

is increased. This means that the number of transistors per node declines as

the node count increases. The approximate transistor count for each node is:

Xtrnode = Xtrchip/Nnode. This is illustrated in Figure 69.

(a) (b)

Figure 69: A block diagram of the generic architecture from Figure 68 for various

cell counts: (a) four large cells, and (b) numerous smaller cells.

The minimum feature size data for each of the following figures utilizing the calendar

year on an axis is summarized in Table 31.

6.2.2 Global and local interconnect resources

The total length of interconnect routed on chip is divided between local inter-

connects within the individual nodes and global interconnects between nodes. The

trends for local and global wiring resources are plotted in Figures 70 and 71.

128

Table 31: Minimum feature size for the 2003 ITRS technology generations adapted
from Table A.
.

2003 65nm
2006 40nm
2009 28nm
2012 20nm
2015 14nm
2018 10nm

The local interconnect demand increases sharply with increasing transistor count and

shows a weak dependence on the cell count. The increase is due to both the increas-

ing number of transistors and the reduction in gate pitch as the minimum feature

size is reduced. As the node count increases and each node is reduced in size the

average interconnect length also shortens. This means that a large number of small

cells results in reduced wiring demand for any given technology generation.

Unlike the local wiring demand, the global interconnect length increases with both

the gate and node count. The increase in the gate count from one technology node to

the next requires more interconnects between any pair of cells to satisfy the stochas-

tic distribution. Additionally, the increase in the cell count also requires more global

interconnects to fully wire the chip. The net effect is that the global interconnect

resources become more constricted with increasing system complexity (where system

complexity is defined as proportional to the number of nodes and total gate count).

This effect is illustrated in Figure 72. As the system complexity increases the global

interconnect pitch is reduced by a factor of 5. Unlike the local interconnect distri-

bution, there is no reduction in the interconnect length to offset the smaller wiring

dimensions. Additionally, the high fanout nodes are penalized with increasing length

due to increasing fanout.

129

4
8

16
32

64
128

20
03 20

06 20
09 20

12 20
15 20

18

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

3.50E+09

4.00E+09

4.50E+09

5.00E+09

L
oc

al
 In

t.
D

em
an

d
[G

P
]

Cell Count Year

Figure 70: The total length (in terms of the gate pitch) of interconnect within
nodes vs the node count and technology generation. The colored bands represent the
regions between z-axis grid lines as projected onto the surface. Minimum feature size
information is listed in Table 31.

130

4
8

16
32

64
128 2003

2006

2009

2012

2015

2018
1.00E+07

1.00E+08

1.00E+09

1.00E+10

G
lo

ba
l I

nt
 D

em
an

d
 [G

P
]

Number of Cells
Year

 Figure 71: The total length (in terms of the gate pitch) of interconnects between
nodes vs the node count and technology generation. The colored bands represent the
regions between z-axis grid lines as projected onto the surface. Minimum feature size
information is listed in Table 31.

131

4
8

16
32

64
128

20
03

20
06

20
09

20
12

20
15

20
18

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

G
lo

ba
l I

nt
. P

itc
h

(u
m

)
Number of CellsYear

Figure 72: The wiring pitch for interconnects between nodes vs the node count and
technology generation. The colored bands represent the regions between z-axis grid
lines as projected onto the surface. Minimum feature size information is listed in
Table 31.

132

6.2.3 Local and global clock frequency

The wiring resource trends discussed in the previous section have a significant

impact on the overall performance for the processor array. Figures 73, 74, and 75 plot

the global frequency , the local frequency, and the ratio of the local to global clock.

The global clock frequency plotted in Figure 73 clearly does not scale with increasing

system complexity. The reduction in pitch and increasing line length result in a

nearly 90% reduction in the maximum speed of across chip communication. The

local clock frequency, however, increases by a factor of 40 with increasing system

complexity. The increasing gap between global and local clock frequency illustrated

in Figure 76 shows that by the 2018 ITRS node, the local clock is over two orders of

magnitude faster. This reduction in performance is due to both increasing wire length

for high fanout nets and reduced line dimensions required by the increasing demand.

The only viable solution to this problem is the use of shorter wires and/or lower

density wiring schemes. Observations made in Chapter 4 regarding limitations on

throughput with regard to global communication imply that a stochastic net-length

distribution does not meet requirements for the efficient use of system resources.

The assumption that the net-length distribution applies to this system appears to be

unfounded. A cellular array architecture like the one considered here is the product of

high level system design in that the organization and placement of system resources

and communications channels have been defined by the system designers rather than

the type of place and route tools used to wire random logic inside custom blocks.

Stochastic distributions tend to break down when the wiring schemes begin to reflect

the design choices of system architects.

133

4 8 16 32 64 128
2003

2006
2009

2012
2015

2018

0

500

1000

1500

2000

2500

3000

3500

4000

G
lo

ba
l C

lo
ck

Number Cells

Calendar Year

Figure 73: The global clock speed in MHz for increasing node count and ITRS
technologies. The colored bands represent the regions between z-axis grid lines as
projected onto the surface. Minimum feature size information is listed in Table 31.

134

4 8 16 32 64 128
2003

2006

2009

2012

2015

2018

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

L
oc

al
 F

re
qu

en
cy

 [M
H

z]

Cell Count

Year

 Figure 74: The maximum frequency of the local clock vs the node count and tech-
nology generation. The colored bands represent the regions between z-axis grid lines
as projected onto the surface. Minimum feature size information is listed in Table 31.

135

4 8 16 32
64 128

2003

2009

2015

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

1.20E+02

1.40E+02

F
cl

oc
al

/F
cg

lo
ba

l

Cell Count

Year

 Figure 75: The ratio of the local to global clock frequency vs node count and ITRS
technologies. The value of the ratio at N = 4 for the 2003 ITRS generation is 0.82.
Minimum feature size information is listed in Table 31.

136

6.2.4 Power dissipation

The expected power dissipation for the array architecture is plotted in Fig-

ure 76. Clearly the dominant contribution to the power is the increase in gate count

and clock speed as the technology advances. The peak power of 1KW is unsustainable

and it is reasonable to assume that the performance of this system will be limited

primarily by the requirement that the average power dissipation not exceed 300W as

noted in the ITRS.

4 8 16 32 64 128
2003

2006

2009

2012

2015

2018

0

200

400

600

800

1000

P
ow

er
 (

W
)

Cell Count

Year

Figure 76: The average power dissipation for the array processor of Figure 68 vs
node count and ITRS technology generation. Minimum feature size information is
listed in Table 31.

137

(a) (b)

Figure 77: The two global interconnect networks for the processor array: (a) a single
shared global bus, and (b) a systolic array network.

6.3 Design space for global communication

The limitations of the stochastic approach to modeling system level intercon-

nects is apparent from Section 6.2.3. Realisticly, the nodes in this type of processor

array would be connected via a bus or switched network. The bus modeling developed

in Chapter 4 permits exploration of the global communication design space. In this

section the processor array architecture of Figure 68 is simulated for two different

global networks that span the design space: a shared bus connecting all nodes to one

another and a nearest neighbor network in which only neighboring nodes communi-

cate directly. These two approaches are illustrated in Figure 77.

6.3.1 Simulation methodology

In Section 6.2 simulations of the array processor were run under the assump-

tion of a stochastic net-length distribution for both various ITRS technologies and

node counts. Here, the technology will be restricted to the 2012 node (28nm) while

the number of processor nodes is increased from 4 to 128. The wiring scheme is set

via the bus specification defined in Section 4.2.1. The global shared bus is created by

defining a bus entity with a list of every cell instantiated in the system entity. The

138

nearest neighbor case is simulated by defining a single bus between adjacent cells and

extrapolating to determine the aggregate bandwidth and power consumption.

6.3.2 Shared global bus

The simulations are run for a 32 bit bus with both buffered and unbuffered

bus lines. The relevant system statistics are collected in Table 32. The processor

frequency saturates at 10.6 GHz due to the delay through the random logic network.

The performance of the unbuffered bus line, however, degrades considerably as the

node count increases. Even with only 8 nodes on the bus, the frequency is less

than 200MHz. The bus length increases by a factor of 4 accounting for much of

the performance degradation with the rest due to increased capacitive loading at the

terminals. The buffered bi-directional bus is able to maintain a 1GHz frequency even

with 128 nodes. Clearly, unbuffered bus lines quickly become prohibitively expensive

for communicating over all but the shortest distances. If there are any more than 4

nodes on the bus, the system will experience a significant slowdown. Even the 1GHz

frequency achieved by the buffered bus will be inadequate for hosting a large number

of nodes as the processor speed is an order of magnitude greater than the maximum

bus frequency.

6.3.3 Nearest neighbor wiring approach

The relative performance of the processor array vs the global communication

bandwidth for a shared bus indicates that single shared bus architectures are not

suited for efficiently wiring the chip for high performance. An alternative to this

approach is the use of a bus architecture that reduces line length by breaking the

bus into separate bus segments. At the extreme end of this design space is a nearest

neighbor wiring scheme in which only adjacent nodes are connected as in Figure 77.

139

Table 32: The simulation results for a single shared bus connecting Nnode processors.

System Unbuffered Bus Buffered Bus
Nnode Power(W) Fc(GHz) Fbus(GHz) Pave(mW) Lbus Fbus(GHz) Pave(mW)

4 533 8.56 1.0 131 14.1 3.72 102
8 374 10.6 0.18 8.2 19.9 2.2 153
16 414 10.6 0.05 4.36 27.3 1.5 196
32 414 10.6 0.02 2.69 37.4 1.22 242
64 406 10.6 0.01 2.3 54 1.2 293
128 378 10.6 0.005 1.3 68.4 1.08 357

This wiring scheme closely resembles the wiring of a systolic array. Communication

across the chip is handled by routing data from node to node in multiple clock cycles.

The simulation results for the bus performance are listed in Table 33. The total bus

power and aggregate bandwidth, BWtotal, are calculated by multiplying the power

and effective bandwidth of a bus segment by the number of bus segments between

nodes in the array (a 32 bit bus segment operating at 1GHz has a 32 Gbps band-

width, if there are 4 bus segments the total bandwidth is 128 Gbps). The expression

for computing the aggregate bandwidth is given in Equation 74. The effective band-

width, BWeff , is calculated by assuming a 32 bit non-pipelined bus transferring 32

byte data with a 1 cycle node access penalty and applying equations 43 and 44. The

number of bus segments for an m by n array is calculated as:

Nseg = 2(mn) − m − n (73)

BWtotal = NseqfbusWbus (74)

The latency of global communication for the global shared bus is determined

140

Table 33: The bus performance statistics for an processor array implemented in the
ITRS 2012 technology with a processor local clock of 10GHz. The effective bandwidth
is calculated via the aggregate bandwidth (Equation 74) and

Nnode Lbus(mm2) Fbus(GHz) Pave(mW) Ptotal(W) BWeff(Gbps)

4 5.6 6.5 70 0.28 604
8 3.9 6.6 83 0.99 1843
16 2.5 7.1 83 2.0 2883
32 1.7 8.7 76 3.72 7215
64 1.3 10.1 67 7.5 19141
128 0.8 13.4 61 14.2 52741

primarily by the delay of the bus, so that a 10GHz array running on a 1GHz bus

takes 10 processor clock cycles to communicate with other nodes. The maximum

global communication latency for the nearest neighbor wiring scheme is dependent

on the maximum number of nodes traversed to reach the opposite corner of the m

by n array. For the 8x8 array of 64 nodes the latency, assuming 1 cycle per hop at

10GHz, is 1.6ns. For the 128 node array the required number of hops is approximately

24 for a total delay of 2.4ns. This provides a clear performance advantage over the

shared global bus. The data in Table 33 indicates that the potential performance of

a system wired with multiple, fast bus segments provides a substantial benefit in the

maximum speed and bandwidth of global communication for a modest increase in the

total system power.

6.4 Conclusion

In this chapter the performance potential for a generic gigascale array of pro-

cessors is simulated via GENESYS 2K4 to determine the suitability of three different

wiring schemes for a system of increasing complexity. The stochastic net-length dis-

tribution is found to be prohibitively expensive with respect to the global wiring

resources and delay. Furthermore, it is determined that the stochastic network does

141

not adequately reflect the impact of architectural design on the system level distribu-

tion. A shared global bus is simulated and is shown to exhibit poor scaling properties

with increasing system complexity. The other end of the design spectrum, a nearest

neighbor wiring scheme is shown to scale well with increasing complexity. While the

performance advantages of this wiring scheme are obvious, many system applications

and implementations do not support the level of synchronization required for efficient

communication between nodes. The most likely global wiring solution for a generic

gigascale SoC is a hierarchical bus design [59] that accomplishes the goal of reducing

the bus length and loading while providing a communication data-path suitable for

the SoC architecture and target application. This example shows that GENESYS is

capable of estimating system characteristics and providing an indication of the future

direction of bus-based high performance SoCs.

142

CHAPTER VII

CONCLUSION AND FUTURE RESEARCH

7.1 Overview

The continued scaling of semiconductor technologies into the nanometer regime

will enable the design and implementation of high performance systems containing

multiple billions of transistors integrated on a single substrate [3]. Concurrent with

the exponential growth of the chip transistor count is an increase in relative system

complexity as chip designers attempt to take full advantage of larger and larger tran-

sistor budgets. Costs associated with the validation of these highly complex systems

are driving a significant portion of the semiconductor industry to adopt SoC design

solutions for VLSI systems. The GSI Hierarchy promotes the basic thesis that future

limitations and opportunities for gigascale systems are codified as fundamental, ma-

terial, device, circuit, and system. The system level limitations can shift significantly

with fundamental changes to the architectural implementation and design methodol-

ogy at the system level. This dissertation asserts the thesis that a next generation

generic systems simulator (GENESYS 2K4) is a viable platform for exploring system

limits for a broad spectrum of the SoC design space. GENESYS 2K4 leverages earlier

work in regarding the modeling of lower levels of the GSI hierarchy as codified in the

original GENESYS simulator [25]. The development of a new system level model suit-

able for SoC designs permits the rapid exploration of chip level performance trends

with respect to changes at any level of the hierarchy.

143

A key element for a wide class of present and future SoC implementations

is the design of the on-chip communication networks for connecting processors and

peripheral components. The substantial increase on available resources and maxi-

mum clock frequency means the ultimate performance of complex, high performance

SoCs will be governed by the ability to rapidly transfer data to and from system

components. Historically, the design of system buses has been at the printed circuit

board (PCB) level. As formerly off-chip components are integrated in a single chip,

the design of the system bus becomes an issue for chip level design. The advantages in

on-chip integration for buses include ultra-high available pin count for implementing

wider data channels and higher on-chip frequencies. This work attempts to explore

limits on the performance for an important class of SoC designs by correlating the

system throughput to the relative performance of on-chip buses with respect to an

integrated processor core. A methodology for specifying design and modeling the

physical performance limits of on-chip buses has been derived to model the primary

chip communication paths separate from stochastically derived interconnect distribu-

tions in either random logic blocks or globally between cells in an SoC design.

The limitations and opportunities for future performance trends of SoC ap-

plications are governed primarily at the system level by the properties of the SoC

design methodology and effectiveness of on-chip busing. The goal of this work is to

develop and exercise a modeling framework for providing a quantitative analysis of

the impact these have on system performance.

144

7.2 Summary of Results

To date, no generic methodology for modeling the physical performance of

SoC taking into account the impact of core-based design methodologies and on-chip

busing on the overall system throughput has been reported. A quantitative assess-

ment of the impact of on-chip bus designs for SoC implementations provides insight

into the performance scaling properties of SoCs into the next decade.

To model a core-based heterogeneous SoC, a new system methodology is imple-

mented. The new system methodology incorporates a hierarchical system description

based on the definition of individual megacells and the collections of megacells com-

prising the chip level system. The simulation of the SoC requires the application of

the core GENESYS models for the fundamental, material, device and circuit levels of

the GSI hierarchy to each defined megacell for evaluating the maximum operating fre-

quency, power dissipation, and area for each type of cell in the specified design. The

system level performance statistics for the collection of megacells is determined by

combining the performance statistics for the simulated megacells. The global wiring

resources are estimated via the use of a previously derived stochastic global net-list

distribution [34]. The estimation of the global net length incorporates a description

of the physical chip floorplan for estimating the impact of cell placement on the global

wiring resources. The projections of frequency, power, and area for 5 commercial SoCs

against both actual data and projections utilizing the earlier GENESYS uniprocessor

system model confirm that the block-based methodology significantly improves the

accuracy of the performance projections.

In order to assess the impact of on-chip bus performance on overall system

throughput, GENESYS 2K4 combines an explicitly bus definition with a compact

set of analytical and empirical models for calculating the length, area, delay, average

145

power dissipation, and peak bandwidth for a bus. The bus description defines the

physical attributes (line width and spacing, and driver circuit sizing) as well as the

logical attributes (data width, and net-list). The modeling supports several differ-

ent physical implementations (unbuffered, uni-directional, and bi-directional) for the

individual bus lines. Simulation results show significant performance advantages for

buffered bus lines over unbuffered lines. A novel cell placement algorithm is adapted

for optimizing the length of on-chip buses using adjacent placement of cells on the bus

net-list. Applying an optimal bus driven cell placement to several examples shows

significant reductions in bus length and delay when compared to several different

placement schemes. A generic model for bus transactions is introduced for deter-

mining the optimal bus pipelining and maximum data rate. A modified expression

for the average cycles-per-instruction/operation is introduced to determine the ef-

fects of bus design based on penalties for memory access and bus data transfer. This

model is applied to an example generic processor-bus-memory system to show that

the relative bus performance strongly limits the maximum throughput. An optimal

bus design is proposed and is shown to permit a significant increase in the maximum

achievable throughput. The modeling is then applied to an example bus-based SoC

(IBM 440GP) utilizing a commercially available on-chip bus architecture and shows

agreement with published performance specifications. The performance scaling of the

example design with respect to the ITRS technology nodes shows significant increases

in the maximum operating speed for both the core megacells and bus lines, with corre-

sponding reductions in the area and power consumption. The average power density,

however, is shown to increase beyond acceptable limits. This result indicates that

managing power dissipation is a key barrier to achieving the optimal performance

afforded by nano-scale technology.

146

A feature of many embedded systems is the incorporation of high den-

sity DRAM memory arrays on-chip to increase performance in systems where high

storage capacity is desired without incurring the high area cost of cache SRAM. A

generic model for on-chip DRAM is introduced and implemented in GENESYS 2K4.

The DRAM array model is based upon the characterization of an individual trench

capacitor single transistor DRAM cell. An area model based upon physical layout pa-

rameters is developed and shown to match historical trends in DRAM cell sizing. The

power model for the on-chip array is determined via analytical models for the average

energy cost for the basic DRAM read/write operations. The DRAM methodology

leverages existing models for the array access, decoding, and sensing, and output

logic to produce estimates of the DRAM array area, average power, and access time.

Comparisons against data for several commercial embedded DRAM macros show that

the model projections agree reasonably well with published data. The modeling is

then applied to project the performance of a 1Gb DRAM array for selected road

map years. The simulation results show significant reductions in the array access

time, and area, but no corresponding improvement in the power dissipation. Again,

power dissipation is projected to be a limiting factor on the achievable performance

improvement from technology scaling.

Finally, the GENESYS 2K4 SoC model is applied to a generic gigascale

array of processors utilizing different global interconnection schemes. The scaling

properties of the stochastic net-list distribution for global interconnects are shown

to be poor. This calls in to question the suitability of applying stochastic distribu-

tions to multi-processor based SoCs where the actual wiring schemes are a function

of high-level architecture design choices. Simulations for a global shared bus likewise

indicate that course bus architecture cannot maintain acceptable performance with

respect to increasing system complexity. A fine grain approach based on connections

147

between adjacent cells shows substantial improvements in scalability and maximum

on-chip bandwidth. These results indicate that the most efficient bus architectures

will be hierarchical in nature with multiple on-chip bus segments to reduce line length

and increase the available bandwidth for providing on-chip cores with adequate com-

munication resources.

In conclusion, the GENESYS 2K4 SoC modeling methodology is shown to

be suitable for exploring system performance limits for a broad class of SoC designs

and identifying roadblocks and potential solutions for future gigascale systems.

7.3 Future Research

Future opportunities for enhancement of the GENESYS 2K4 framework can

be divided into two primary areas: core modeling and system methodology. Core

modeling efforts relate to the development of new models at the material, device,

and circuit levels of the GSI hierarchy. System methodology involves extending or

augmenting the GENESYS SoC/Bus modeling framework at the architectural level.

7.3.1 Core Modeling Enhancements

The following elements have been identified as key areas of development for

future efforts in modeling at the lower levels of the GSI hierarchy.

• Circuit and device level modeling for mixed-signal analog applications

• A more detailed analysis of Rent parameters for megacells based on cell func-

tionality rather than assuming one value for all random logic and another for

memory

148

• Modeling for multiple threshold logic for low power circuit operation

• More accurate modeling of interconnect parasitics including fringing and relax-

ation of the assumption of ground planes capacitances for multilevel intercon-

nect architectures

• Improved repeater delay/sizing models taking into account sub-optimal place-

ment and floor-planning

• Device modeling support for complex device structures and material systems

other than bulk silicon

• Modeling for key circuit macros such as latches and clock driver circuits for

estimation of area utilization and power

• Improvements to the bus line modeling including tri-state logic and distributed

multiplexor implementation

7.3.2 System Modeling Enhancements

The following areas are key research goals required for expanding the applica-

bility and accuracy of the GENESYS 2K4 system methodology.

• Modeling for bus traffic based upon connectivity and net list cell functionality

(i.e processor core, memory, i/o, control, DMA blocks...)

• Bus modeling support for hierarchical bus architectures (support logic, bus

bridges)

• Modeling of on-chip switched networks (cross bar, ring, butterfly...) for multi-

processor throughput

149

• Explicit modeling for chip multi-processor CPI based on processor size, number,

and bus/network

• Incorporation of power reducing techniques for overcoming key system level

power density limits

• Performance modeling for mixed/signal applications

• System level optimization routines for power density constraints

• Improved floor-planning/cell placement algorithms for optimal wire-lengths and

performance

The key area for investigation is the modeling of chip-multiprocessor perfor-

mance. Support for modeling the CPI in conjunction with the bus architecture and

complexity of the system would make GENESYS uniquely qualified for assessing the

impact of technology and architectural design choices on the key performance metrics

for an important class of gigascale SoC designs. Insights into the performance scaling

of billion transistor architectures gained utilizing the approach taken in GENESYS

2K4 should yield compelling evidence for the direction of future SoC designs.

150

APPENDIX A

2003 ITRS TECHNOLOGY NODES

151

Year 2003 2004 2005 2006 2007 2008 2009
F (nm) 65 53 45 40 35 32 28
Xtrs 10^6 (CP) 180 226 285 360 453 571 719
Xtrs 10^6 (HP) 439 553 697 878 1106 1393 1756
Die Size (mm2) 280 280 280 280 280 280 280
Die Size (HP) 310 310 310 310 310 310 310
Wiring Levels (max) 13 14 15 15 15 16 16
Wiring Levels (min) 9 10 11 11 11 12 12
Local Clock (MHz) 2976 4171 5204 6783 9285 10972 12369
Vdd 1.2 1.2 1.1 1.1 1.1 1 1
Max Power (HP) 149 158 167 180 189 200 210
Max Power (CP) 80 84 91 98 104 109 114
Oxide Thickness (nm) 1.3 1.2 1.1 1 0.9 0.8 0.8
Elec. Ox. Thick. (nm) 2.1 2 1.8 1.7 1.3 1.2 1.2
Sub. Current (mA/um) 0.03 0.05 0.05 0.05 0.07 0.07 0.07
Gate Leakage (A/cm2) 220 450 520 600 930 1100 1200
Drive Current (A/m) 980 1110 1090 1170 1510 1530 1590
Dielectric constant 3.3 3.1 3.1 3.1 2.7 2.7 2.7
Resistivity (um-cm) 2.2 2.2 2.2 2.2 2.2 2.2 2.2
Expected Global (MHz) 1064.7 1492.2 1861.8 2426.7 3321.8 3925.3 4425.1

Figure 78: Technology characteristics for near term years

Year 2010 2012 2013 2015 2016 2018
F (nm) 25 20 18 14 13 10
Xtrs 10^6 (CP) 1546 2454 3092 4908 6184 9816
Xtrs 10^6 (HP) 2212 3511 4424 7022 8848 14045
Die Size (mm2) 280 280 280 280 280 280
Die Size (HP) 310 310 310 310 310 310
Wiring Levels (max) 16 16 16 17 18 18
Wiring Levels (min) 12 12 12 13 14 14
Local Clock (MHz) 15079 20065 22980 33403 39683 53207
Vdd 1 0.9 0.9 0.8 0.8 0.7
Max Power (HP) 218 240 251 270 288 300
Max Power (CP) 120 131 138 148 158 168
Oxide Thickness (nm) 0.7 0.7 0.6 0.6 0.5 0.5
Elec. Ox. Thick. (nm) 1.1 1.1 1 1 0.9 0.9
Sub. Current (mA/um) 0.1 0.1 0.3 0.3 0.5 0.5
Gate Leakage (A/cm2) 1900 2400 7700 10000 19000 24000
Drive Current
(mA/mm) 1900 1790 2050 2110 2400 2190
Dielectric constant 2.3 2.3 2 2 1.7 1.7
Resistivity (um-cm) 2.2 2.2 2.2 2.2 2.2 2.2
Expected Global (MHz) 5394.7 5620 6020 6020 6530 6530

Figure 79: Technology characteristics for long term years

152

APPENDIX B

GENESYS 2004 MANUAL

CONTENTS

1 Introduction

1.1 GSI Heirarchy

1.2 GENESYS

2 GENESYS System Modeling

2.1 Homogeneous chip model

2.2 Heterogeneous chip model

3 Installation

3.1 Requirements

3.2 Installing GENESYS

4 Running GENESYS

4.1 Command line switches

4.2 Homogeneous simulation

4.3 Heterogeneous SoC simulation

4.4 Creating plot files

5 GENESYS Input Files

5.1 Technology File

5.2 Global Parameters File

5.3 Machine Description

153

5.3.1 Syntax and keywords

5.3.2 Specifying tech and glb files

5.3.3 Declaring Entities

5.3.4 Instantiation

5.3.5 Declaring Busses

5.3.6 The System Entity

5.3.7 Cell Placement

5.4 Plot Configuration File

1. Introduction

1.1 GSI Heirarchy

It is the fundamental thesis of the gigascale intergration (GSI) group that future

opportunities for multi-billion transistor chips/systems are governed by a heirachy of

limits that can be codified as:

• fundamental

• material

• device

• circuit

• system

Each of the levels of the GSI hierarchy are described in more detail below.

154

Fundamental:

The fundamental limits arise from thermodynmics, quantum mechanics, and electro-

magnetics. A key example from electro-magnetics is the fundamental time- of-flight

limit on signal propogation. The minimum propogation delay of a signal is deter-

mined by the maximum velocity of the signal, in this case the speed of light in free

space. This limitation is fundamental in nature becuase it applies universally without

consideration from any other level of the hierarchy.

Material:

The material limits comprise the next level of the heirarchy and are more restric-

tive than the fundamental limits. A clear example is the dielectric properties of a

material. The speed of light in a medium is inversely proportional to the square

root of the relative dielectric constant of the material. Therefore, the material limit

imposes an additional restriction on the minimum propogation time.

Device:

The device limits arise from the geometry and physics of semiconductor devices.

A key device limit for MOSFET devices is minimum channel length. This is the min-

imum source/drain seperation for which the gate-stack maintains adequate control

of the channel to turn the device off when zero gate voltage is applied. This limit is

often evaluated via the measurment/projection of the drain-induced-barrier-lowering

(DIBL) effect.

Circuit:

The circuit limits are much more numerous than the limits at the lower levels

of the hierarchy. A comparison of two key circuit designs utilized in current method-

ologies serves to highlight the relative limitations. CMOS logic is noted for being

155

relatively low power, but domino logic is inherently faster although it consumes more

power. Other key circuit design limits involve noise margin and stability which are

dependent to some extent upon the circuit design methodology.

System:

The system level of the GSI hierarchy is the most nebulous and ill-defined of

the set of limitations governing future prospects for GSI chips. Some system design

considerations affecting key performance metrics is the global/local interconnect dis-

tribution, the degree of pipelining/logic depth, the number of metalization levels...

etc.

1.2 GENESYS

The GENEric SYstems Simulator (GENESYS) was developed to explore future

trends and tradeoffs between technology and architecture. The core concept behind

GENESYS is that a system can be described by a set of inputs that encapsulate the

GSI heirarchy. A key set of analytical and empirical models consume these inputs to

project key system performance metrics such as power dissipation, die size, and clock

frequency in addition to a host of other information.

2. GENESYS System Modeling

A core consideration in GENESYS simulations is the assumptions made in se-

lecting a system model for projecting the key performance metrics. Currently, there

are two different system modeling methodolgies incorporated in GENESYS. These are

discussed briefly in the following subsections. The Homogeneous and Heterogeneous

system models draw thier names from the type of stochastic interconnect distribution

156

utilized by the model.

2.1 Homogeneous chip model

The homogeneous chip model is the original system model used in earlier ver-

sions of the simulator. A fixed generic uniprocessor architecture is modeled. Under

this model, the system consists of cache and random logic. There are key assumptions

made concerning both the memory and logic portions of the system.

Between 0 and 3 caches are permitted in this system model and specific assump-

tions regarding the organization of the cache hierarchy are made according to the

number of caches present. If only one cache is specified, it is assumed to be a unified

level one cache for both instruction and data. If two caches are present, they are still

assumed to be level one, but are split caches: one resevered for instruction address

information, the other for data. With three caches present the assumption is that

there is the split level one cache and a single unified level 2 cache. These distinctions

are not vitally important for estimating the physcial performance of the system, but

are neccessary for assessing the impact of the memory heirarchy on the overall system

throughput.

The far more important assumption of this system model concerns the random

logic portion of the chip. The key assumption here is that the processor’s logic can

be modeled as a homogeneous Sea-of-Gates. The interconnect distribution utilized

by this model was derived under the assumption that the local wiring characteris-

tics of small groupings of gates does not vary across the chip. This means that the

Rents parameters derived from an examination of one section of the random logic

are applicable to the entire random logic network. At the very least this supposition

157

implies that there exists an average value for the Rent’s exponent and coefficient that

adequately describes the wiring distribution from the local level to the global level.

Under this system model, detail is sacrificed for simplicity. This modeling is

compact and powerfull because the user can quickly asses the projected impact of

changes to the technology at the system level, but only within a confined design

space. The homogeneous model is also less flexible when examining the impact of

changes made to the system architecture as it is confined to specific design space and

too generic within that space to transparently compare different design methdolgies.

2.2 Heterogeneous chip model

A newer modeling methodology was developed for GENESYS to overcome the

limitations of the homogeneous uniprocessor model. There were two primary goals

to be met by this new methodology: that it be capable of describing a wide class of

architectures and that it provide adequate detail for assessing architectural trade-offs

between architectures.

Both the homogeneous and heterogeneous modeling methodologies are based

upon the same premise: that no matter the system architecture, the technology is the

foundation upon which it is built and any such system can be described as a collection

of devices and wires for the purpose of electrical modeling. This means that the core

models used to calculate the system performance metrics are unchanged and that the

new system model is superimposed over the homogeneous modeling.

The hierarchical block modeling methodology provides a framework for de-

scribing the system as a collection of distinct components or megacells. Each megacell

158

is itself described with the full set of GENESYS inputs. These cells are then simulated

in GENESYS seperately and the total system metrics collected from the results for

each indvidual cell. At the lowest level of the specification where a defined block/cell

contains no other blocks, it is assumed to be homogeneous in nature. Once the ini-

tial simulation is complete, GENESYS applies a heterogeneous wiring distribution to

the global interconnects between cells to estimate the total wiring length and inter-

connect dimensions. Becuase the system description allows for cells to contain other

cells, the user has the flexibility of determinng the fineness of the system specification.

This methodology closely approximates the physical design aspect of large scale

systems-on-a-chip (SoC) in which pre-designed megacells are fabricated on the chip to

form the complete system. A primary advantage of this methodology is that each cell

may have its own distinct design parameters. Additionally, almost any sort of archi-

tecture may be specified. For example a user may describe an on-chip multiprocessor

by defining a single processing element, replicating it as needed, and adding as many

or as few caches as desired (distributed or shared memory). A uniproccessor can be

modeled with higher fidelity than the homogeneous model by explicitly defining each

of the functional components such as integer and floating point units.

Further reading on the block modeling methodology and the heterogeneous wiring

distribution can be found in [53]

3. Installation

3.1 Requirements

GENESYS was developed on SUN Ultra workstations but may be compiled from

159

source code to run on any system. An installation script is provided for ease in cre-

ating the GENESYS executable. This script is specific to UNIX systems and may

require slight modification to run properly.

The following applications are required to use the installation script (UNIX/Linux)

• make

• gzip

• tar

• g++

3.2 Installation

If the system (UNIX/Linux) and application requirements are met then GENESYS

may be installed by invoking the installation script included with this release. First,

copy the installation script and archive file to a directory of your choice. Then simply

type the name of the script (geninstall) at the command prompt.

Example: running the installation script

> geninstall

The installation script performs the following actions:

1) unzips the compressed archive

2) extracts the source files from the archive

3) runs the make utility to compile and link the executable

160

4) cleans up installation files

The end result should be the GENESYS executabe, genesys, residing in the same

directory from which the installation script was invoked.

4. Running GENESYS

Once installation has been completed, the application is ready to run. This ver-

sion of GENESYS was developed to run from the command prompt.

4.1 Command line switches

A listing and explanation of the GENESYS command line arguments is given

in the help file. To access the help file simply type either of the following at the

command prompt:

> genesys -h

> genesys -help

This command will list the GENESYS help file on screen. To save the help

information to a file type the following:

> genesys -h > help.txt

4.2 Homoegeneous simulation

161

If the -soc option is not selected GENESYS uses the homogeneous system mod-

eling and requires the specification of the *.tech and *.gen input files.

4.3 Heterogeneous simulation

If the -soc option is selected GENESYS utilizes the heterogenous sytem mod-

eling and requires only the name of the machine description file as further input.

4.4 Creating plot files

When used in the homogeneous mode GENESYS can create plot data files. These

data files contain data for plotting 4 different x-y plots. This option is selected by

setting the variable plotting parameter to a value of 1 and by specifying the name

of the plot configuration file in the *.gen input file. The plot configuration file is

explained in more detail in section 5.4.

5. GENESYS input files

5.1 Technology file

The GENESYS technology file (*.tech) contains the key input parameters de-

scribing the technology in which the simulated system is implemented. There are a

total of 15 associated inputs in the technology file. This file contains a simple list of

parameter names and associated values.

5.2 Global parameters/*.gen file

162

These files contain all of the GENESYS input parameters that are not in the

technology file. The global parameters file (*.glb) specified in the machine descrip-

tion for the heterogenous system modeling lists the default values for any GENEYSS

parameters not specified in the definition of a block or entity. In homogeneous system

modeling the file is named *.gen. Like the technology file, the global parameters file

is a listing of parameter names and values.

5.3 Machine description

Unlike the *.tech and *.glb files the machine description requires a syntax and

grammar for specifying system. This grammar and syntax are described in the fol-

lowing subsection.

5.3.1 Keywords and Syntax

The keywords used in the machine description language are as follows:

• use specifies the use of another file.

• global file contains global parameters.

• tech file contains technology parameters.

• entity used to define new component.

• block,bus,megacell defines the entity type. Used in both the definition and

instantiation.

• is,end used with entity to begin and close definitions

• placement used to begin specification of megacell placement for the system

entity.

163

• bus used for definition of a chip level bus.

• bus-list defines a set of cells connected to a bus.

• system used for definition of the chip level system entity.

The syntax of a GENESYS machine description is modeled loosely on standard

VHDL. All parameter assignments, declarations, and instantiations in the machine

file are terminated with a semi-colon.

5.3.2 Specifying tech and global files

Before running any simulations, GENESYS must first load a set of appropriate pa-

rameters and values for both the technology inputs (feature size, oxide thickness. . .)

and other global parameters (number of interconnect tiers,inverter area. . .). The two

valid file types are loaded in the following manner:

use tech <filename1>;

use global <filename1>;

NOTE: The technology and global parameters file must be terminated with the *.tech

and *.glb extensions respectively for use with the hetergeneous system model.

5.3.3 Declaring entities

An entity is declared in the machine description file by opening the definition

using the entity and is keywords followed by a series of entity specific parameter

assignments. The entity definition is closed with the end and entity keywords. A

simple entity declaration is shown below:

164

entity block <name> is

<parameter1> = <value>;

<parameter2> = <value>;

end entity <name>;

The above example creates a simple entity of type block and redefines two param-

eters with values that are specific to that entity. All other parameters remain as

defined in the global and technology parameter files.

5.3.4 Instantiation

A newly defined entity is not limited to containing a series of parameter/value

strings. In addition to redefined parameters, an entity may contain any number of

instances of other entities. An example is used to illustrate this below:

entity block <name> is

<parameter1> = <value>;

<parameter2> = <value>;

block <name2> <instance name1>;

block <name3> <instance name2>;

end entity <name>;

The above example differs from the previous in that it contains two instances of

other entities. These instances will contribute to the power and area results for the

defined entity. To change parameters for an entity instance define it in the following

manner:

165

block <name2>(<parameter1> = <value>,...);

The list of parameters and values in the parentheses overides any values for those

parameters either in the entity definition or in the global parameters file.

5.3.5 Declaring buses

While much of the global interconnect resources are treated stochastically via a

previously defined distribution [34], the user may specify explicit connections between

megacells in a system. This is accomplished via the definition of an entity of type bus.

entity bus <name> is

<parameter1> = <value>;

<parameter2> = <value>;

bus-list (<name1>,<name2>,<name3>,. . .);

end entity <name>;

In the above example the bus is defined similarly to an entity with the exception

of the special keyword, bus-list. This keyword is used to begin the definition of a

list of cells that are connected to the net. The list is contained in parentheses with

commas seperating cell names. Becuase bus entities are simulated outside of the

GENESYS core, they are not instantiated within the system entity. Bus definitions

act as their own instances.

5.3.6 The system entity

166

The chip level system entity is essentially a list of cell/block instances comprising

the complete System-on-a-Chip. The definition follows the following form:

entity system <name> is

megacell <name2> <instance name1>;

megacell <name2> <instance name2>;

megacell <name3> <instance name3>;

megacell <name4> <instance name4>;

megacell <name5> <instance name5>;

end entity <name>;

The above system is comprised of five megacells. The first two are identical (in-

stances of the same entity). As in all other instantiations, the parameters may be

redefined for each megacell in the system entity. Also, the block and megacell key-

words are interchangeable.

5.3.7 Megacell Placement

In order to properly estimate the global wiring requirements, knowledge of the place-

ment of megacells on the chip is required. The placement is specifed by superimposing

a grid on the chip surface and specifying the lower-left and upper-right coorinates of

the cell corners (cells are assumed to be roughly rectangular in shape). There are

several specific parameters associated with the placement specification. An example

is given below:

megacell placement is

grid value = 100;

placement type = <type>

167

constraint = <constrain>

<cell name1>

<cell name2>

<cell name2>

<cell name3>

. . .

<cell nameN>

end placement

5.4 Plot Configuration File

The plot configuration file is used only with the homogeneous simulation mode

and controls the output of plot data to a specified file. The configuration file is uti-

lized by setting the parameter Plotting Parameter to one and specifying the name

of the configuration file. The data specified in the configuration file is shown in the

example below:

Plot Type <value> [0-Length/Delay, 1-Recip/Delay, 2-Power/Delay,3-user selected]

Start <value> [0-1 meters, 2 seconds, 3 user selected]

Stop <value> [0-1 meters, 2 seconds, 3 user selected]

Num points <value>

Scale <value> [0-linear, 1-log]

Input Parameter <parameter name>

Output Parameter <parameter name>

Plot File <filename>

The Plot Type variable allows the user to select from among four types of plots:

168

interconnect length vs. delay, the reciprocal length2-delay plane, the power-delay

plane, and user selected. The reciprocal length2-delay plot is usefull for assessing the

performance of local and global interconnect with respect to various limits related to

the GSI heirarchy. The power-delay plane similarly evaluates the energy cost with

respect to the GSI limits. The user selected option activiates the Input and Output

parameters in which the user specifies which input will vary and which output will be

monitored. The Start and Stop parameters set the range overwhich the input vari-

able(s) is varied. The Num Points parameter adjusts the density of collected data

points. The type of plot scale for the x-axis data can be chosen as either log or lin-

ear. Finally, the Plot File parameter is used to specify the filename under which the

resulting plot data will be stored.

Once the plot data is collected, the results may be plotted via a third party ap-

plication such as Grace (xmgr) or Excel.

169

APPENDIX C

GENESYS HELP FILE

GENESYS 2004 Help File

Command Line switches: -i, -t, -o, -default, -info, -help -soc

-i required if -soc not used:

This switch instructs GENESYS to load the following file as input.

USAGE: genesys -i <filename>

-t required if -soc not used:

This switch is used to specify the name of the input

file containing the technology (global) inputs.

USAGE: genesys -t <filename>

-o optional:

This option allows the user to specify the name of

the file in which the output will be saved. If not

specified the name of the output file will be the

the same as the -i input file but with the .out extension

USAGE: genesys -o <filename>

-default optional:

This option allows the user to create a default input file

170

NOTE: This will create a .gen and .tech file

USAGE: genesys -default

-info optional:

The -info switch instructs GENESYS to print intermediate

simulation information to the screen. This may also be

redirected to file output by the user.

USAGE: genesys -info

-help optional:

This option displays the help page.

USAGE: genesys -help

-soc required if *.soc file used:

This option enables genesys for SoC analysis using a properly

GENESYS machine description file <*.soc>.

All other arguments except for the -info switch are ignored

USAGE: genesys -soc <filename>.soc

EXAMPLE: the following examples run GENESYS. The first example saves the

output to test.out while redirecting the run-time

information to test.log. The second example does the

same but for a heterogeneous system description.

> genesys -i in.gen -t in.tech -o test.out -info > test.log

> genesys -soc machine.soc -o test.out -info > test.log

171

APPENDIX D

MACHINE DESCRIPTION

SOC Description for 200 MHz RISC Example

use global risc.glb;
use tech risc.tech;

entity block I Cache is
type cache;
num transistors = 2.28e6;
external rent = 0.2;
ext rent const = 4.12;
internal rent = 0.2;
rent const = 4.12;
num caches = 1;
Cache C 1 = 32768;
Cache B 1 = 32;
Cache A 1 = 2;
Cache ndwl 1 = 4;
Cache ndbl 1 = 1;
Cache nspd 1 = 1;
Cache nfoldd 1 = 1;
Cache ntwl 1 = 1;
Cache ntbl 1 = 1;
Cache nspt 1 = 1;
Cache nfoldt 1 = 1;
initial width = 25;
inverter size = 3600;

end entity I Cache;

entity block D Cache is
type cache;
num transistors = 2.1e6;

172

external rent = 0.2;
ext rent const = 4.12;
internal rent = 0.2;
rent const = 4.12;
num caches = 1;
Cache C 1 = 32768;
Cache B 1 = 32;
Cache A 1 = 2;
Cache ndwl 1 = 4;
Cache ndbl 1 = 1;
Cache nspd 1 = 1;
Cache nfoldd 1 = 1;
Cache ntwl 1 = 1;
Cache ntbl 1 = 1;
Cache nspt 1 = 1;
Cache nfoldt 1 = 1;
initial width = 25;
inverter size = 3600;

end entity D Cache;

entity block I Cache Tag is
num transistors = 1.08e5;
external rent = 0.47;
ext rent const = 3.80;
activity factor = 12.0;
internal rent = 0.47;
rent const = 3.8;

end entity I Cache Tag;

entity block D Cache Tag is
num transistors = 1.53e5;
external rent = 0.47;
ext rent const = 3.80;
activity factor = 12.0;
internal rent = 0.47;
rent const = 3.8;

end entity D Cache Tag;

entity block TLB is
num transistors = 1.344e5;
external rent = 0.35;
ext rent const = 3.80;
activity factor = 15.0;
internal rent = 0.35;
rent const = 3.8;

173

end entity TLB;

entity block Cache Cntrl is
num transistors = 9.42e4;
external rent = 0.6;
ext rent const = 3.20;
internal rent = 0.6;
rent const = 3.2;

end entity Cache Cntrl;

entity block Ext Interface is
num transistors = 1.104e5;
external rent = 0.60;
ext rent const = 3.20;
internal rent = 0.6;
rent const = 3.2;

end entity Ext Interface;

entity block Sys Buffers is
num transistors = 1.356e5;
external rent = 0.60;
ext rent const = 3.20;
internal rent = 0.6;
rent const = 3.2;

end entity Sys Buffers;

entity block Free List is
num transistors = 5.88e4;
external rent = 0.60;
ext rent const = 3.20;
internal rent = 0.6;
rent const = 3.2;

end entity Free List;

entity block Grad Unit is
num transistors = 1.578e5;
external rent = 0.60;
ext rent const = 3.20;
internal rent = 0.6;
rent const = 3.2;

end entity Grad Unit;

entity block Instr Fetch Addr is
num transistors = 9.9e4;
external rent = 0.60;

174

ext rent const = 3.20;
internal rent = 0.6;
rent const = 3.2;

end entity Instr Fetch Addr;

entity block Instr Fetch DP is
num transistors = 8.28e4;
external rent = 0.60;
ext rent const = 3.20;
internal rent = 0.6;
rent const = 3.2;

end entity Instr Fetch DP;

entity block Instr Fetch Cntrl is
num transistors = 5.7e4;
external rent = 0.60;
ext rent const = 3.20;
internal rent = 0.6;
rent const = 3.2;

end entity Instr Fetch Cntrl;

entity block Addr Queue is
num transistors = 1.32e5;
external rent = 0.60;
ext rent const = 3.20;
internal rent = 0.6;
rent const = 3.2;

end entity Addr Queue;

entity block Instr Decode is
num transistors = 2.71e5;
external rent = 0.60;
ext rent const = 3.20;
activity factor = 15.0;
internal rent = 0.6;
rent const = 3.2;

end entity Instr Decode;

entity block Int DP is
num transistors = 2.62e5;
external rent = 0.60;
ext rent const = 3.20;
internal rent = 0.6;
rent const = 3.2;

end entity Int DP;

175

entity block Int Queue is
num transistors = 1.182e5;
external rent = 0.60;
ext rent const = 3.20;
activity factor = 15.0;
internal rent = 0.6;
rent const = 3.2;

end entity Int Queue;

entity block Float DP is
num transistors = 1.956e5;
external rent = 0.60;
ext rent const = 3.20;
activity factor = 12.0;
internal rent = 0.6;
rent const = 3.2;

end entity Float DP;

entity block Float Queue is
num transistors = 3.06e5;
external rent = 0.60;
ext rent const = 3.20;
activity factor = 12.0;
LDI Scheme = 2;
Target = 1.0;
Opt Method = 0;
internal rent = 0.6;
rent const = 3.2;

end entity Float Queue;

entity block Float Mult is
num transistors = 1.158e5;
external rent = 0.60;
ext rent const = 3.20;
activity factor = 12.0;
LDI scheme = 2;
internal rent = 0.6;
rent const = 3.2;

end entity Float Mult;

entity BUS sys bus is
physical width = 2.5 [um];
logical width = 32 [bits];
aspect ratio = 1.1 [];

176

spacing = 1.5 [um];
activity factor = 0.15 [];
driver size = 25.0 [w/l];
bus list (float q,float mult,float dp,int dp,int q,grad unit,cache cntrl);

end entity sys bus;

entity system RISC CHIP is
block I Cache i cache;
block D Cache d cache;
block I Cache Tag i tag;
block D Cache Tag d tag;
block TLB tlb;
block Cache Cntrl cache cntrl;
block Ext Interface ext inter;
block Sys Buffers sys buffer;
block Free List free list;
block Grad Unit grad unit;
block Instr Fetch Addr int addr;
block Instr Fetch DP int fetch dp;
block Instr Fetch Cntrl int fetch cntrl;
block Addr Queue addr q;
block Instr Decode instr decode;
block Int DP int dp;
block Int Queue int q;
block Float DP float dp;
block Float Queue float q;
block Float Mult float mult;

end entity RISC CHIP;

Megacell placement is
grid value = 70;
placement type = manual;
constraint = inorder;
i cache (69,1:48,26);
d cache (54,44:33,69);
ext inter (69,27:63,54);
sys buffer (69,55:55,69);
i tag (63,27:55,37);
cache cntrl (63,38:55,54);
d tag (54,27:42,34);
tlb (54,35:33,43);
int addr (47,13:33,26);
int fetch dp (47,1:33,12);
int fetch cntrl (32,1:24,12);
free list (32,13:22,22);

177

grad unit (32,23:22,41);
addr q (32,42:20,56);
int dp (32,57:1,69);
instr decode (21,13:12,41);
int q (19,42:12,56);
float mult (15,1:1,12);
float dp (11,13:1,41);
float q (11,42:1,56);

end placement;

178

REFERENCES

[1] S. Morse, B. Ravenel, S. Mazor, and W. Pohlman, “Intel microprocessors 8008-
8086,” Computer, vol. 13, pp. 42–60, Oct. 1980.

[2] S. Naffziger and G. Hammond, “The implementation of the next-generation
64b itanium microprocessor,” Proc. 2002 Int. Solid-State Circuits Conf., vol. 1,
pp. 344–472, Feb. 2002.

[3] C. Semiconductor Research Association, San Jose, “International technology
roadmap for semiconductors,” tech. rep., 2003.

[4] M. Tremblay, G. Grohoski, B. Burgess, et al., “Challenges and trends in processor
design,” Computer, vol. 31, pp. 39–48, Jan. 1998.

[5] G. Gao, “Bridging the gap between isa compilers and silicon compilers: a chal-
lenge for future soc design,” Int. Sym. on System Synthesis, p. 93, 2001.

[6] K. Ruparel, “Soc test: the devil is in the details,” Proc. Int. Test Conf., p. 1143,
2001.

[7] J. Meindl, “Low power microelectronics: Retrospect and prospect,” Proc. of the
IEEE, vol. 83, pp. 619–635, Apr. 1995.

[8] J. Eble, V. De, and J. Meindl, “A first generation generic system simu-
lator (genesys) and its relation to the itrs,” Proc. 11th Biennial Univer-
sity/Goverment/Industry/Microelectronics Symposium, pp. 147–154, 1995.

[9] J. Davis, V. De, and J. Meindl, “A stochastic wire-length distribution for gigas-
cale integration(gsi). i. derivation and validation,” IEEE Transactions on Elec-
tron Devices, vol. 45, pp. 580–9, Mar. 1998.

[10] J. Davis, V. De, and J. Meindl, “A stochastic wire-length distribution for gigas-
cale integration(gsi). i. applications to clock frequency, power dissipation, and
chip size esitmation,” IEEE Transactions on Electron Devices, vol. 45, pp. 590–
7, Mar. 1998.

[11] D. Slyvester and C. Hu, “Analytical modeling and characterization of deep-
submicron interconnect,” Proc. of the IEEE, vol. 89, pp. 634–663, May 2001.

179

[12] H. Bakoglu and J. Meindl, “A system level circuit model of multi- and single
chip cpus,” 1987 Int. Solid State Circuits Conf., pp. 308–309 439–440, 1987.

[13] G. Sai-Halasz, “Performance trends in high-end processors,” Proc. of the IEEE,
vol. 83, pp. 20–36, Jan. 1995.

[14] B. Hoppe, G. Neuendorf, D. Schmitt-Landsiedel, and W. Specks, “Optimization
of high-speed cmos logic circuits with analytical models for signal delay, chip
area, and dynamic power dissipation,” IEEE Transactions on Computer-Aided
Design, vol. 9, pp. 236–47, Mar. 1990.

[15] A. Goel and F. Schuermeyer, “Nchipsim - a microcomputer simulator of nmos
chip performance indicators,” Proc. First Great Lakes Symposium on VLSI,
pp. 332–333, 1991.

[16] B. Landman and R. Russo, “On a pin versus block relationship for partitions of
logic graphs,” IEEE Trans. on Computers, vol. C-20, pp. 1469–79, Dec. 1971.

[17] W. Donath, “Placements and average interconnection lengths of computer logic,”
IEEE Trans. on Circuits and Systems, vol. CAS-26, pp. 272–277, Apr. 1979.

[18] R. Mangaser and K. Rose, “Facilitating interconnect-based vlsi design,” Proc.
1997 IEEE Int. Conf. on Microelectronic Systems Education, pp. 139–140, 1997.

[19] P. Ghosh, R. Mangaser, C. Mark, and K. Rose, “Interconnect dominated vlsi
design,” Proc. 20th Annual Conf. on Advanced Research in VLSI, pp. 114–121,
1999.

[20] S. Mohanty and V. Prasanna, “Rapid system-level performance evaluation and
optimization for application mapping onto soc architectures,” Proc. IEEE Int.
ASIC/SoC Conf., vol. 15, pp. 160–67, Sept. 2002.

[21] J. Eble, V. De, and J. Meindl, “A generic system simulator (genesys) for asic
technology and architecture beyond 2012,” Proc. 9th Annual IEEE ASIC Con-
ference, pp. 193–196, 1996.

[22] S. Nugent, J. Eble, D. Wills, and J. Meindl, “An ultra-compact empirical model
for throughput projection for gigascale integration,” Proc. TechCon 2K, Sept.
2000.

[23] C. Seminconductor Research Association, San Jose, “International technology
roadmap for semicondictors,” tech. rep., 2001.

[24] G. Sai-Halasz, “Performance trends in high-end processors,” Proc. of the IEEE,
vol. 83, pp. 20–36, Jan. 1995.

[25] J. Eble, A Generic System Simulator with Novel On-Chip Cache and Throughput
Models for Gigascale Integration. PhD thesis, Georgia Institute of Technology,
Atlanta, Georgia, 1998.

180

[26] A. Smith, “Cache evaluation and the impact of workload choice,” Intl. Sympo-
sium on Computer Architecture, pp. 64–73, June 1985.

[27] A. Smith, “Line (block) size choices for cpu cache memories,” IEEE Transactions
on Computers, vol. C-36, pp. 1063–1075, Sept. 1987.

[28] M. Flynn, Computer Architecture: Pipelined and Parrallel Processor Design.
Boston, MA: Jones and Bartlett, 1995.

[29] J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology: Funda-
mentals, Practice, and Modeling. New Jersey: Prentice Hall, 2000.

[30] P. R. Gray and R. G. Meyer, Analysis and Design of Analog Integrated Circuits.
New York: John Wiley & sons, inc., 1993.

[31] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach.
San Francisco, CA: Morgan Kaufmann, 1996.

[32] J. Davis, R. Venkatesan, A. Kaloyeros, M. Bylansky, S. Souri, K. Banerjee,
A. Rahman, A. Reif, and J. Meindl, “Interconnect limits on gigascale integration
(gsi) in the 21st century,” Proc. IEEE, vol. 89, pp. 305–324, Mar. 2001.

[33] H. Bakoglu, Circuits, Interconnections and Packaging for VLSI. Reading, MA:
Addison-Wesley, 1990.

[34] P. Zarkesh-Ha, J. Davis, and J. Meindl, “Prediction of global net-length dis-
tribution for global interconnects in a heterogeneous system-on-a-chip,” IEEE
Transactions on Very Large Scale Integration, vol. 8, pp. 649–659, Dec. 2000.

[35] N. Vasseghi, K. Yeager, E. Sarto, and M. Seddighnezhad, “200-mhz superscalar
risc microprocessor,” IEEE Journal of Solid State Circuits, vol. 31, pp. 649–59,
Nov. 1996.

[36] D. Lundell, “Squeesing through the von neumann bottleneck,” Available online
at: http://www.knozall.com/squeezingthrougthevonneuman.htm, 2001.

[37] T. Womack, “Tom’s x86 faq,” Available online at:
http://www.tom.womack.net/x86FAQ/faq time.html, 2004.

[38] W. Badawy, “System-on-chip: Issues, challenges and trends,” Canadian Journal
of Electrical and Computer Engineering, vol. 26, pp. 85–90, Oct. 2001.

[39] IBM, “Coreconnect bus architecture,” Available Online: http://www-
306.ibm.com/chips/products/coreconnect/.

[40] B. Cordan, “An efficient bus architecture for systems-on-chip design,” Proc.
IEEE Custom Integrated Circuits Conf., pp. 623–6, 1999.

[41] R. Weiss, “Advanced microprocessor bus architecture (amba) bus system,” Elec-
tronic Design, vol. 49, pp. 114–15, Mar. 2001.

181

[42] R. Bashirullah, “Low power design methodology for an on-chip bus with adaptive
bandwidth capability,” Design Automation Conf., pp. 628–33, June 2003.

[43] IBM, “Powerpc 440 embedded processor,” Available Online: http://www-
306.ibm.com/chips/products/powerpc/processor/processors.html.

[44] W. Lee and C. Hu, “Modeling cmos tunneling current through ultrathin gate
oxide due to conduction- and valence-band electron and hole tunneling,” IEEE
Transactions on Electron Devices, vol. 48, pp. 1366–72, July 2001.

[45] J. Chang, “A 0.13um triple-vt 9mb third level on-die cache for the itanium2
microprocessor,” Proc. IEEE Int. Solid State Circuits Conf., pp. 496–52, 2004.

[46] T. Shimizu and J. Korematu, “A multimedia 32b microprocessor with 16mb
dram,” Proc. IEEE Int. Solid State Circuits Conf., pp. 216–217, 1996.

[47] J. Gebis, “Trends in merged dram-logic computing,” Proc. SPIE - Int. Soc. Opt.
Eng., vol. 4109, pp. 198–205, July 2000.

[48] K. Hardee, F. Jones, D. Butler, M. Parris, and M. M. et al, “A 0.6v 205mhz
19.5ns trc 16mb embedded dram,” IEEE Int. Solid-State Circuits Conf., pp. 320–
322, Feb. 2004.

[49] J. Mandelman and R. Denard, “Challenges and future directions for the scal-
ing of dynamic random access memory (dram),” IBM Journal of Research and
Development, no. 2/3, pp. 187–212, 2002.

[50] T. Rajeevakumar and G. Bronner, “A novel trench cpacitor structure for ulsi
drams,” Symposium on VLSI Technology, pp. 7–8, May 1991.

[51] B. Austin, K. Bowman, X. Tang, and J. Meindl, “A low power transregional
mosfet model for complete power-delay analysis of cmos gigascale integration,”
Proc. Int. ASIC Conf., pp. 125–9, Sept. 1998.

[52] P. Kelcher, S. Richardson, and S. Siu, “An equal area comparison of embedded
dram and sram memory architectures for a chip multi-processor,” tech. rep., HP
Labs Palo Alto, Apr. 2000.

[53] S. Nugent, D. Wills, and J. Meindl, “A hierarchical block-based modeling
methodology for soc in genesys,” Proc. IEEE Int. ASIC/SoC Conf., vol. 15,
pp. 239–243, Sept. 2002.

[54] S. Rusu, “Vlsi scaling trends and challenges,” IEEE int. symposium on circuits
and systems, pp. 10.1.1–10.1.10, May 2001.

[55] P. Zarkesh-Ha, Global Interconnect Modeling for a Gigascale System-on-a-Chip
(GSoC). PhD thesis, Georgia Institute of Technology, Atlanta, Georgia, 2001.

[56] M. Ghoneima, “Optimum positioning of interleaved repeaters in bi-directional
buses,” Design Automation Conf., pp. 586–91, June 2003.

182

[57] T. Inaba, “A 250mv bit-line swing scheme for 1-v operating gigabit scale drams,”
IEICE Transactions on Electronics, vol. E79-C, pp. 1699–706, Dec. 1996.

[58] J. Poulton, “An embedded dram for cmos asics,” Proceedings. 17th Conf. on
Advanced Research in VLSI, vol. 17, pp. 288–302, Sept. 1997.

[59] K. Ryu, E. Shin, and V. Mooney, “A comparison of five different multiprocessor
soc bus architectures,” Proc. Euromicro symposium on digital systems design,
pp. 202–9, 2001.

183

VITA

Steven Paul Nugent was born in Charelston S.C. to Michael and Beryl Nugent in

September 1973. His family moved to Lawrenceville, Georgia in 1977, where he at-

tended high school graduating in 1993. In December 1997 he received a Bachelor in

Electrical Engineering with highest honors from the Georgia Institute of Technology.

In May of 2002 he graduated with a designated Masters degree in Electrical Engi-

neering. While in graduate school, he worked as a graduate research assistant in the

Gigascale Integration Group in the School of Electrical and Computer Engineering

at Georgia Tech. His research interests include computer architecture, semiconductor

devices, and VLSI circuit design. His doctoral research focused on the extension of

a generic system simulator, GENESYS, to heterogeneous systems-on-a-chip for pro-

jecting key performance metrics for future billion transistor systems.

184

