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SUMMARY

In this thesis, we will discuss the front-end design and the algorithm optimization
necessary in order to build successful material-stress simulation software that can satisfy
both research needs and educational needs. A precise simulation requires a large amount
of input data such as geometrical descriptions of the crystal structure, the external forces
and loads, and quantitative properties of the material. Although some powerful
applications already exist for research purposes, they are not widely used in education
due to complex structure and unintuitive operation. To cater to the generic user base, a
front-end application for material simulation software is introduced. With a graphic
interface, it provides a more efficient way to conduct the simulation and to educate
students who want to enlarge knowledge in relevant fields. We first discuss how we
explore the solution for the front-end application and how to develop it on top of the
material simulation software developed by mechanical engineering lab from Georgia
Tech Lorraine. The user interface design, the functionality and the whole user experience
are primary factors determining the product success or failure. This material simulation
software helps researchers resolve the motion and the interactions of a large ensemble of
dislocations for single or multi-layered 3D materials. However, the algorithm it utilizes is
not well optimized and parallelized, so its performance of speedup cannot scale when
using more CPUs in the cluster. This problem leads to the second topic on scientific
computing, so in this thesis we offer different approaches that attempt to improve the
parallelization and optimize the scalability. These will be presented in details along with

the comparison of test results.
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CHAPTER 1
INTRODUCTION

With the growing attention to material science over the past years, more and more
researchers have dedicated themselves to developing simulation software to study the
fundamental mechanism of plasticity. NumoDIS [2] has been jointly introduced by CEA
and CNRS, but it’s not accessible to the public due to its limited distribution. Another
popular software, ParaDIS[1,3], has been developed to enable massive dislocations
simulation on a supercluster with more than 1000 CPUs. Its highly parallel and complex
structure makes it difficult to extend. Moreover, these two software packages are
operated through Command-Line Interface (CLI), giving a novice user with limited
knowledge in mechanical engineering and of how the software generally works, a steep
learning curve in creating an input file and running the simulation.

The downsides presented in these two software packages may not be significant
for the researchers in the laboratories because they are generally well trained and
equipped with professional hardware and software. However, for college students, the
complexities discussed definitely reduce the educational effectiveness due to the
inaccessibility and the finite computing resources available to run the software package
on. To resolve this difficulty, we propose a web-based application based on our own
material simulation software. With a simple graphical user interface, it can abstract the
command line operation and thereby help users generate input files intuitively in the
presence of various functions. The entire front-end development mainly involves data
management, Ul Design and server setup. In the following sections, the details
concerning application development will be presented. The objective of this application is

to offer a platform-free tool providing an effective and efficient education for college



students who study in related fields. By distributing it as free software so that everyone
can easily access, download, and learn it.

Discrete Dislocation Dynamics (DDD) code developed by Intermat Lab is a
parallel software package written in Fortran 90 using Message Passing Interface (MPI)
[23] that aims at simulating the motion and interactions of a large ensemble of
dislocations for single or multi-layered 3D materials on which loading conditions are
applied [8,9]. A dislocation is a linear defect in a material. Due to its nature, it
corresponds to a discontinuity in the lattice structure and hence induces strain and stress
fields. When subject to stress, dislocations in a material can glide and interact with each
other. The origin of the stress acting on a dislocation comes from two contributions: 1)
internal stress generated by the dislocations present in the material and 2) external stress
coming from the applied loading conditions. Due to the non-linear behavior of the
dislocation motion and interaction processes, the simulation is performed through an
iterative process. At each time step, the motion of all the dislocations is computed and the
interactions are performed if applicable. Once the dislocation lines are updated, the
mechanical state associated to the newly computed dislocation configuration is evaluated
and the code can proceed to the next step. The software will perform as many steps as
required in order to complete the simulation run.

Moreover, this program is designed to run a small or medium scale dislocation
simulation, so the user can conduct it either with a personal laptop or with a professional
cluster in the laboratory. Knowing that the computational complexity for dislocation
dynamics is O(n”) due to the forces interaction between dislocations, the computation
cost will become enormous if there are a number of dislocations in crystal structure. This
is often the case in real world. Thus, parallelizing the algorithm could use up to 100
processes, thereby reduce computation time significantly reduced when analyzing a more

complex scenario. However, the performance of speedup of the current DDD algorithm



doesn’t scale well. The need to optimize the DDD algorithm along with the approaches of
scientific computing is the second focus of this work.

Over past years, much research has been done in the fields of Algorithm
Engineering and High Performance Computing. For example, cache-oblivious algorithms
[4] are efficient at all levels of the memory hierarchy in theory, but so far these
algorithms are widely used in practice. In [5], a new highly scalable distributed memory
parallel algorithm is designed and implemented for resolving graph matching and vertex
coloring problems. Shared memory parallelization is also introduced in a data mining
algorithm [6] to improve the speed. Nowadays, some incredibly complex problems are
hard to solve even with large resources. In this case, instead of applying an exact
algorithm, a heurist approach [7] can still result in approximate solutions and have
acceptable run time. To sum up, some approaches can be general applied to all kinds of
problems, but others are only used in particular types of problems. In our case, we firstly
studied and analyzed the existing structure of a program, MPI communication and core
algorithms for the mechanical calculation. After identifying the possible causes of poor
performances, we attempted to apply different parallelization schemes with new data
structure, implement better algorithms to deal with graph problems and test other
heuristic approaches. For each modification, we measured the execution time and
compared the test results to previous outcome. This work gave us clear idea of how to
redesign the code as a parallel algorithm and how to construct the program in a more
structured way.

This thesis aims at developing a user friendly portal which allows users (experts,
scholars, college students) to conduct material stress-strain simulations and analyze the
results in an efficient way. A second objective is to provide a variety of insights for the

optimization of DDD algorithm by means of scientific computing.



CHAPTER 2
FRONT-END DESIGN

Before entering the main discussion about the design and development, we need
to explain what kind the advantages the front-end application will bring and how it will
improve the user experiences because these features of the front-end will guide the
functional specification and the architecture. Using the traditional workflow of executing
the material-stress simulation as in Figure 1, the user edits a long input file composed of
around 100 quantitative fields without preliminary guidance. One careless error may
result in the crash of program, and the user must check those 100 lines again to carry out
the modification. Once the simulation is completed, the user needs to open the output
files in a particular folder, and then draw the charts and watch the animation with another
software package. The whole procedure is lengthy for researchers and not efficient for
learning process. Therefore, our team took these important points into the product design
and expected to achieve two major goals: 1) facilitate the generation of the input file and
2) provide an overview of the simulation results. As for the deployment, we would like to
distribute the laptop version to every college student who is interested in material science

and also install the hosted version in the cluster for special research projects.

&
>_

L
——

Create inputfiles (.txt) Execute DDD program Draw charts with gnuplot
(material and interaction through Command Line and watch animation with
geometry) Interface Paraview

Y
Y

Figure 1 Workflow of executing the material-stress simulation



2.1 Architecture

2.1.1 Web based application

As mentioned previously, we need two versions of the application that satisfy the
research needs and educational needs respectively: 1) a laptop version for personal use to
be installed locally 2) a hosted version for professional use to be deployed in the
dedicated cluster. There are a variety of solutions in the industry to use for building a
front-end application. They can be simply divided into two groups, desktop software and
web-based application. For desktop software, we can choose to have DDD binary
executable built-in but this would require that the package is configurable for different
operating systems. Even if the DDD software is excluded, the user is not able to run
complex simulations without extra communication capabilities to access the centralized
cluster that provides more computational resources for research projects. Moreover, our
team wants to develop the first efficient prototype of application with two versions, so we
chose a web-based solution because this method of application design can offer a range
of benefits [11] as follows:

*  Accessible anywhere: Users access the application from any computer connected
to the Internet using a standard browser like IE or Firefox. No installation is
required in advance.

* Effective development: While the user interaction with the application needs to be
thoroughly tested on different web browsers, the application itself needs only be
developed for a single operating system. There is no need to develop and test the
application on all possible operating system versions and configurations.

* Easy customization: Web programming language such as HTML, Javascript and
CSS makes it easier to update the look of the application, or to provide

customized information to different user groups.



* Security & Maintenance: Web-based applications are typically deployed on
dedicated servers. This is more effective than monitoring hundreds or even
thousands of client computers, as is the case with desktop applications.

The above advantages defeat the desktop solution because the web-based
application meets better the needs for users. Everyone can easily access and use it, and
the administrator can also upgrade the application quickly once the new version is
released.

The diagram shown in Figure 2 represents the general architecture of the DDD
portal. For front-end development, there are many options such as
HTMLS5/CSS/Javascript, Ruby on Rails, Django, etc. Due to our familiarity, we chose
HTMLS5/CSS/Javascript to build the user interface adding some useful plugins and
frameworks. To manage the data transfer and carry out the communication between the
portal and the database or the file system, a light weight HTTP server (or DDD server) is
needed. Here we implemented it in Python with which we had more experience, but Java,
C#, node.JS or other programming languages are also available for the server setup. In
addition, an Apache server is in between the DDD server and the DDD portal. This is
because the first prototype of application also aims for a centralized version which an
authorized user can access to conduct complex simulations. Apache server only takes
responsibility for monitoring network security and relays the HTTP request and HTTP
response to the client. More details concerning each module will be presented in the

subsequent sections.
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Figure 2 The architecture of DDD portal

2.1.2 Applied Frameworks & Libraries

To develop the DDD portal more efficiently, a variety of Javascript APIs
providing different basic functionalities is used in this project. On top of that, we
leveraged them to accomplish more advanced goals or tasks required for the user
interface.

Backbone.js [12] gives a fundamental basis to the DDD portal due to its Model-
View-Controller (MVC) structure shown in Figure 3. It provides models with key-value
binding and custom events, collections with a rich Application Programming Interface
(API) of enumerable functions, views with declarative event handling, and connects it all
to the existing API over a Representational State Transfer (RESTful) interface. With its
structure, the template of each page can be quickly created and the contents can be easily

rendered after different user actions.



Backbone.Router

Model Updating

Updating DOM

Events \

User/DOM

Model Events

Figure 3 The relationship between Document Object Model (DOM) and MVC
structure of Backbon.js [12]

Knowing that the configurations of material simulations are the main information
to be displayed, two useful plugins, jQuery Steps and DataTable, are included to organize
the input fields and arrange the tabular data. The user interface is also expected to have
the data visualization, so jgplot [13] is used to build the charts and render 3D graphics.
Apart from those small plugins, a general front-end framework is required. Bootstrap
[14] provides plenty of interface components such as navigation, forms, buttons and even
design templates, which help develop a responsive web application and customize the

layout for each page. Table 1 shows the list of plugins used in the front-end development.

Table 1 The list of JS Plugins

JS Library Purpose Page
Backbone.js MVC structure All
JQuery Steps Wizard building Configuration
DataTable Tabular data arrangement  Simulation
Three.js 3D Rendering Configuration
OrbitControl js 3D Orbit control Configuration
Jjgplot.js Chart plot Report
Bootstrap Interface Components All



2.1.3 Database

Database management systems (DBMSs) can be divided into two categories,
desktop databases and server databases. Desktop databases reside on standard personal
computers mostly for single-user applications and server databases contain mechanisms
to ensure the reliability and consistency of data and are geared toward multi-user
applications. In order to build the first prototype of the DDD portal as fast as possible,
our team chose SQLite as the database due to its efficiency, independence and simplicity.
Moreover, SQLite also provides good portability, allowing data to be easily shared,
duplicated or even removed. Nevertheless, for future version of the DDD portal, a server
database such as MySQL or PostgreSQL may be better for scalability, concurrency and
centralization.

Knowing that a long input file is composed of around 100 different fields, we
divided them into certain high-level groups and created the corresponding tables.
Although most of them share a one-to-one relation with the main table Configuration,
separating them still provides the convenience in managing data more efficiently.
Besides, matrices of different dimensions are frequently used in the input file, so we also
established the additional tables for data reuse. Below Figure 4 and Figure 5 are two
examples of entity-relation diagrams. A simulation (or experiment) has only one
configuration that connects to different groups of quantitative fields such as volume
information, numerical procedure, simulation control, etc. However, a simulation doesn’t
necessarily have one report unless its configuration is completed and is executed. The

second diagram illustrates the surrounding relation of table Material.



Layer_Property
LaPro_ID integer PK FK
Config_ID integer
Mat_ID integer
Thickness integer Numerical_Procedure
Euler_Angles integer NuPro_ID integer PK
Volume_Info ILoop_Time integer
M DTIME_MAX real
Voln_ID integer PK DTIME MIN real
Volume_Size_x integer | MAX_QuaD integer
Volume_Size_y integer | ™. .
Num_Layer integer
Simulation_Control T oo ““ T
SimCo_ID integer PK onflgurafion Experiment Report
Control_Name varchar(100) Config_ID integer PK Exp_ID integer PK PO
Load integer | : \SI'?L%([:DID ‘::gz: Config_ID integer geDOIHDJD integer PK
iRelaxtion integer " = L | 1| Experiment_Name varchar(100) Xp_| integer
iRelaxStep integer SimOp_ID integer ' "] status varchar(10) [0 Report_Name varchar(100)
NuPro_ID integer Filepath varchar(150) Filepath varchar(150)
Out_ID integer
-
T
Simulation_Options
SimOp_ID integer PK
CheckNeiBur integer T Defect
Longlnteraction integer Outputs -
iCrossSlip integer Def_ID integer PK
Out_ID integer PK 1 Config_ID integer
iOutFreq integer ™ sisys_ID integer
iPastFreq integer LayerPos integer
Figure 4 Entity-Relationship diagram for table Configuration
Slip
Slip_ID integer PK
Mat_ID integer
mode integer
Slip_Name  varchar(30)
/ Material Layer_Property
+— Mat_ID integer PK LaPro_ID integer PK
Material_Type integer Config_ID integer
Mu real y | Mqt_ID !nteger
.| Nu real ! | Thickness integer
| EISt_ MTX_ID integer Euler_Angles integer
Elastic_Stiffness_Matrix
EISt MTX_ID integer PK
E 01 real
E 02 real
E 03 real

Figure 5 Entity-Relationship diagram for table Material
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2.1.4 DDD server & Apache Server

The role of the Apache server is to provide the authentication and access control.
For the hosted version of the DDD portal, it can protect the cluster from potential security
issues. A Python HTTP server, called here the DDD server, is implemented to tackle the
HTTP requests and responses, thus the communication is conducted in an indirect fashion
because the Apache server relays the data in the middle.

Considering the example below in Figure 6 of extraction of data, users first press
the button “Load” and the client portal will immediately send an HTTP request with
name-value array. The Apache server relays the request as transformed data in XML
format and the DDD server replies correspondingly by connecting to the database and
packaging data in JSON format to the portal. The other functionalities are all realized in a

similar way with the same communication path.

Client DDD Portal Apache HTTP Server Python HTTP Server DataBase

press button Load

>

send HTTP request
Name-value array format send HTTP request
XML format : extract data

Y.

return data

R GR

return HTTP response

<

return HTTP response JSON format

Figure 6 Communication sequence diagram for extraction of data
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2.2 Ul Design

2.2.1 Principle of design

The importance of good user interface design can be the difference between

acceptance and rejection of a product in the market. If users feel it is not easy to learn nor

intuitive to use, otherwise an excellent product could fail. According to Larry

Constantine and Lucy Lockwood in their usage-centered design [15], the main principles

of design are:

The structure principle: Design should organize the user interface purposefully, in
meaningful and useful ways based on clear, consistent models that are apparent
and recognizable to users, putting related things together and separating unrelated
things, differentiating dissimilar things and making similar things resemble one
another. The structure principle is concerned with overall user interface
architecture.

The simplicity principle: The design should make simple, common tasks easy,
communicating clearly and simply in the user's own language, and providing
good shortcuts that are meaningfully related to longer procedures.

The visibility principle: The design should make all needed options and materials
for a given task visible without distracting the user with extraneous or redundant
information. Good designs don't overwhelm users with alternatives or confuse
with unneeded information.

The feedback principle: The design should keep users informed of actions or
interpretations, changes of state or condition, and errors or exceptions that are
relevant and of interest to the user through clear, concise, and unambiguous
language familiar to users.

The tolerance principle: The design should be flexible and tolerant, reducing the

cost of mistakes and misuse by allowing undoing and redoing, while also
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preventing errors wherever possible by tolerating varied inputs and sequences and
by interpreting all reasonable actions.

* The reuse principle: The design should reuse internal and external components
and behaviors, maintaining consistency with purpose rather than merely arbitrary

consistency, thus reducing the need for users to rethink and remember.

2.2.2 DDD Portal — Graphic Interface

Based on the above guidelines, the DDD portal is seeking simplicity, conciseness
and clearness. The site map in Figure 7 indicates that different pages (or templates) have
been created for the purposes of generating input files and visualizing the simulation
results. In this section, the layout of each page will be presented in detail with an

explanation why it is adopted particularly.

Homepage

Simulation Configuration Report

Figure 7 Site map of DDD portal

* Homepage: It is a page composed of one navigation bar and five primary buttons
in the middle. The user can set up his/her own account, or modify the default
existing materials and simulation controls. Clicking either navigation bar or
button can access the page simulation. A button for resetting the database is also

available if the user wants to remove the simulations created before.
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Discrete Dislocation Dynamics Simulation Software

Home Simulation Documentation

Simulation Control

Reset Database

Parallel Discrete Dislocation Dynamics © 2014
Developped by Georgia Tech Lorraine

Figure 8 The screenshot of homepage

Simulation page: The main components here are two tables of simulations and
reports, and the user can switch the view between them by clicking the tab. With
the plugin DataTable, the user can sort data by different columns and navigate
across different items with the provided pagination. For both of the tables, there

are different sets of buttons at the top of the page for the basic operations.

«New (@ Edit X Delete w
Simulations Reports
Show | 10 + entries Search:
Simulation Status Directory Last Modified Created
Name
TestConfig pending 2011 2013
X . 2014-09-14 2014-09-14
TestConfig2 pending 22:26:14 22:26:14
) . 2014-09-14 2014-09-14
TestConfig3 pending 22:26:30 22:26:30
testSimulation completed /home/tlin/Micro/7- 2014-07-10 2014-07-10
P NoPlane2/code/Temp/Sim_feZQcb 07:56:40 07:54:18
Showing 1 to 4 of 4 entries Previous 1 Next

Figure 9 Table of simulations in simulation page
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TERTT 2

Simulations Reports

Show | 10 ¥ entries Search:
Simulation . Last
Report Name Name Directory Modified Created
testSimulation. r testSimulation /home/tlin/Micro/7- 2014-07-10 2014-07-10
- NoPlane2/code/Temp/Sim_feZQcb 07:56:20 07:56:20

Showing 1 to 1 of 1 entries Previous 1 Next

Figure 10 Table of reports in simulation page

Configuration page: The role of this page is to provide a form where the user
configures the simulation. The input fields on this form (or wizard) are divided
into several input areas such as Volume & Layer Property, Dislocation,
Simulation Control, etc. There are two types of buttons, general buttons and local
ones. The general buttons in orange are always available when navigating through
different steps, but the local ones in blue only show up in particular steps. They
support a variety of functionalities that will be covered in the section 2.3.3. One
configuration can possess as many layers as the user requires, so we use another
set of buttons (e.g. Layer 1) to toggle the content of each layer. In this way, the

view is more organized for the modification of field values in a particular layer.
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1. Volume & Layer Property 2. Dislocation 3. simulation Control 4. Numerical Procedure 5. Simulation Options & Output 6. Final Step

Volume Size
2476 2476
Number of layers Interface option
1 J(=) [lstop ¢
Material Source
From Database :
Choose material Thickness Euler Angles
Zirconium v 2476 0 0 0
Mu (Pa) Nu Crystal Type Lattice Parameter (m)
33530000000 0.34 HCP1 s 3.231e-10
# nf elin madae Mahilif(Dase) Mahilit(Dase) Anientran.

Previous m

Figure 11 The wizard of configuration - Step 1 Volume & Layer Property

Simulation Name: TestConfig [ | e | (e | e [ | )

olume & Layer Property 2. Dislocation 3. Simulation Contro ‘ ‘ . Numerical Procedure ‘ 5. simulation Options & Output 6. Final Step

Elastic interactions Dislocation interactions Cross-slip ilnertial
Yes + Yes : No s No s
Fully periodic
No v
Internal stress/strain frequency Boxes for internal stress/strain Spline method Displacements nodes
100000 100 No ; 3 3 3
XRD frequency
0
Output frequency Past frequency Debug mode
1 100 ! ¢

Figure 12 The wizard of configuration — Step 5 Simulation Options & Output
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ddd-results.dat Download
InternalStrains.dat Download
InternalStresses.dat Download
internalFields.zip Download
segs.zip Download

material _input.txt Download
interaction_geom_input.txt Download

0.001 1.0

0.00125

0.00100

0.00075 0.0

0.00050

0.00025

0. 1.0
2.5:70000 Se- 7.5e-70000 0.00000100 0.00000125 0.00000150 2.5¢-70000 Se- 7.5e-70000 0.00000100 0.00000125 0.00000150

7.00000000 7.00000000

JliDislocation Densities(m2) sliPlastic Strain Increment(%)

2263931936605.7680 -1.0
2.5e-70000 Se-  7.5e-70008.00000100.000001 2800000150 2.5¢-70000 Se- 7.5e-70000 0.00000100 0.00000125 0.00000150

7.00000000 7.00000000

Figure 13 Report page with download links and charts

* Reports page: A report is created and shows up only after the completion of
simulation. The download links and the charts regarding the simulation results are
the main information in this page. The dashboard gives the user a quick overview

about how the simulation went.

2.2.3 DDD Portal — Functions
Behind the visual design, a variety of functions in the DDD portal have been
developed to support different user actions. They are all listed as follows in order to
explain when and how they will be used.
* Create/Delete a simulation: The user can create a new simulation through the
popup and delete the existing ones from the table.
* Save/Edit configuration: Once a new simulation is created, the user can edit the

configuration anytime by modifying input values on the form and saving them.
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The “global save” is for the whole configuration including all steps in the wizard,
and “local save” is only for a specific step.

Load configuration: 1f the input values are similar to the ones of another
simulation created previously, the user can choose to load the whole configuration
or one specific step without entering the same information again. All the
previously created configurations are always available, so giving similar input

files which have only little differences will be much more efficient.

Load parameters for all steps

TestConfig Stepl Step2 Step3 Step4 Step5

testSimulation
TestConfig2

TestConfig3

# of dislocations
2

Defect 1
LayerPosition Slip System Form Type
1 Prismatic P1 1/3[2-1-10](0- 1

110)

CenterPos

1508.6531124115 1700.797211647 2363.7214794159
LoopRad CenterLoop_01 CenterLoop_02
0 0 0
Coordinate_01 Coordinate_02 Coordinate_01
-869.9516220537 110.9107077722 869.9516220537

Close m

Figure 14 The popup for loading the data from existing simulations

Import material/dislocation input files: The user who are already familiar with
input text files of DDD software can also import those existing files into DDD
portal to configure a simulations.

Visualize 3D microstructure: The user can visualize the distribution of
dislocations inside 3D microstructure defined in configuration. And the
dislocations are represented in different colors based on their individual slip

system.

18



* Generate random dislocation: The user can choose to generate a set of random
dislocations which meet the certain conditions defined in advance.
* Display informative definition of fields: When the user moves the cursor to a

particular input field, the information associated with such field will pop up.

Visualize the microstructure

Close

Figure 15 Visualization of dislocations in 3D microstructure
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Crysal structure

Euler Angles
FCC: face centered cubic (e.g. Cu,
Al,...)
BCC: body centered cubic (e.g. ?-iron,
Crystal Type W, Nb,...)
Default A HCP: hexagonal close-packed with first

and second order pyramidal systems
HCP1: hexagonal close-packed with

Mobility(Pa-s
w ) first pyramidal systems (e.g. Zr)

0 HCP2: hexagonal close-packed with
second order pyramidal system (e.g.
dge mobility(Pa-s) 0 Mg) _ _ e

Figure 16 Display the information for particular field

Crystal managers: This independent manager helps the user configure existing
standard crystals or create new ones. Once the new crystal is created, the user can
add a new slip system on top of it.

Material mangers: The standard materials are provided in Material managers, so
the user can select one of them directly to configure the layer. In addition, the user
is able to modify them or create a new standard material when needed.

Simulation Control managers: The standard simulation controls are provided in
Simulation Control managers, so the user can select one of them directly in the
configuration page (step 3). In addition, the user is able to modify them or create
new standard controls when needed.

Run simulation: After configuring the input fields, the user can launch the
simulation directly from the DDD portal by selecting the number of processors to
use. If it is the laptop version, the reasonable number is between 2 and 8. If it is a
hosted version, the value can be up to 64 or even more.

Download simulation results: Once the simulation is completed, the user can
access the report and download the simulation results including the text files and

animation files.
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Material Manager SO EEE I New Material

Default Material Name
Copper
:
Aluminum Mu (Pa) Nu Crystal Type Lattice Param(m)
45000000000 0.33 FCC 3.634e-10
Magnesium
# of slip modes Mobilityns(Pars) Mobilitys (Pars) Anisotropy
Zirconlum 1 0.000005 0.000005 0
Niobium
Mode index:1, Slip mode: <110>{111}-slip
a-iron 0 0.000005 0.000005 0
Hafnium Elastic stiffness matrix (MPa)
168400 121400 121400 0 0 0
testMat
121400 168400 121400 0 0 0
121400 121400 168400 0 0 0
0 0 0 75600 0 0
0 0 0 0 75600 0

n A a A A seenn

Close Modify

Figure 17 Material manager - modify/delete existing material

Material Manager Existing Material

Material Name

Mu (Pa) Nu Crystal Type Lattice Param (m)
Default :
# of slip modes Mobilityns (Pars) Mobilitys (Pars) Anisotropy
1 v
Mode index Slip mode Friction stress(MPa)/ Edge mobility(Pas)/ Screw mobility(Pa+s)/Magnitude Burger

-«

Elastic stiffness matrix (MPa)

Close Create New Material

Figure 18 Material manager - create new material
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Simulation Control Manager ST New Control

Default Control Name

Uniaxial strain tension X
testControl

o pelexten umber of Relax Steps
1 0 0

Uniaxial strain tension Y
Applied Strain Rate(s™)

Uniaxial strain tension Z 100 0 0
0 0 0
Pure shear strain XY 0 0 0
Pure shear strain YZ Initial Applied Stress
0 0 0
Pure shear strain XZ 0 0 0
0 0 0

Figure 19 Simulation control manager - modify/delete existing control

Crystal Structure Manager S e BGTET | New Crystal Structure
Structure: Cubic
Default
Number of index: 3
FCC
System Name Mode Miller Index Burger Index Action
HCP
Default 1 0 0 0 0 0 0 Modify
HCP1

testSlipSystem 1 1 A 1 1 1 1 -
HCP2 Modify Delete

BCC

System Name Mode Miller index Burger index
Add New Slip System

Close Delete Crystal

Figure 20 Crystal manager — add a new slip system or delete existing crystal
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2. Dislocation 3. simulation Control 4. Numerical Procedure 5. Simulation Options & Output m

Generate Input files

# Run Simulation

Number of Processors

2

Figure 21 Run a simulation by assigning the number of processors

2.3 Deployment

The DDD portal is a package that comprises of a web application, database,
apache server, DDD server and simulation software. The deployment across diverse
platforms (or operating systems) is no easy task since the approaches of installation are
different. In the short-term, our approach uses a virtual appliance as a carrier where all
modules are pre-installed in the distribution as in Figure 22. From the user’s side, a
virtual machine such as virtual box is required. Once the appliance is powered on, the
server will be launched and start to listen for requests. Then the user can access the DDD
portal with a pre-assigned IP address.

The virtual appliance solution is generally intended for personal use so that every
college student can install it and test different configurations with a small set of
dislocations. For the professional projects requiring the use of the cluster, another DDD
portal is deployed as a hosted solution, so only authorized users are able to access it and

run the simulation with the computational resources of the cluster.
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Linux Ubuntu ISO (appliance)

Ve ™\ Ve
Virtual Machine
(Medium) Web application Server Database software

o / . J . / AN

Mac OS Windows Linux
’ - a0
Figure 22 Virtual appliance solution for DDD portal package

2.4 User Experience Evaluation

ISO 9241-210 defines user experience (UX) as "a person's perceptions and
responses that result from the use or anticipated use of a product, system or service".
Hence, the evaluation needs to consider all the users' emotions, beliefs, preferences,
physical and psychological responses that occur before, during and after using the
product. As in Figure 23, a user experience is also affected by external factors [16] such
as social factors, cultural factors and context of use. We produce an overall score or

degree of satisfaction for the product through certain quantitative methods.
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User Experience

values, usability,
emotions, ﬁ functions,
expectations, size, weight,
prior expenences, language, symbols,
physical characteristics, user product aesthetic charactenistics,
motor functions, usefulness,
personality, reputation,
motivation, adaptivity,
skalls, social factors cultural factors \context of use mobility,

age, etc. etc.

time pressure, sex, fashion, habits, time, place,

pressure of success and fail, noms, language, accompanying persons,

explicit and implicit requirements, etc. symbols, religion, etc.

temperature, etc.

Figure 23 User experience forms in interaction with user and product in the particular
context including social and cultural factors [16]

The QSA-GQM questionnaire is a technique based on the Goal-Question-Metric
paradigm, used in Software Engineering to assess software quality. The Repertory Grid
Technique (RGT) elicits and evaluates people's subjective experiences of interacting with
technology through the individual way they construe the meanings of those experiences
under investigations. The semi-structured experience interview is to make arrangements
for a meeting in which the interviewer asks questions, listens and records the answers. In
general, a diversity of evaluation methods exists in research and in industry, but the
specific purpose for each must be determined.

To date, user experience studies have mostly focused on short-term assessment of
the initial adoption of new products. The UX curve method [17], a long-term evaluation,
has also been introduced because the relationship between products and users evolves
over a long period. According to [18], the actual experience of usage doesn’t cover all
relevant UX concerns. Instead, people can have indirect experiences before their first

encounter through expectations formed by existing experiences of related technology,
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presentation and demonstrations and extend these expectations similarly after usage.

Figure 24 explains this relationship.

When: Before usage During usage After usage Over time
What: Anticipated UX Momentary UX Episodic UX Cumulative UX
How: Imagining Experiencing Reflecting on Recollecting multiple

experience an experience

periods of use

Figure 24 Time spans of user experience, the terms to describe the kind of user
experience related to the spans, and the internal process taking place in the different time

spans [18]

Web as software interface Concrete Completion Web as hypertext system
................................. Aoieoss Y A 0006 0000060A00300060060000600600

5 . f Visual Design: visual treatment of text
Visual Design: graphic treatment of interface - o o
elements (the "look" in *look-and-feel") Hszer/ m G D QT2 I U

components
Interface Design: as in traditional HCI: Navigation Design: design of interface
design of interface elements to facilitate elements to facilitate the user's movement
user interaction with functionality through the information architecture
Information Design: in the Tuftean sense: Information Design: in the Tuftean sense:
designing the presentation of information designing the presentation of information
to facilitate understanding to facilitate understanding
ion Design: p of V07, Y7 27 g Inf 5 - a
—— e formation Architecture: structural design

Rl il i Ll U s, Lesgyy AhiiE = of the information space to facilitate
defining how the user interacts with =S (D T
site functionality
Functional Specifications: "feature set": Content Requirements: definition of
detailed descriptions of functionality the site content elements required in the site
must include in order to meet user needs in order to meet user needs
‘User Needs: externally derived goals || | 1| User Needs: externally derived goals

for the site; identified through user research,
ethno/techno/psychographics, etc.

Site Objectives: business, creative, or other
internally derived goals for the site

task-oriented

|
S e

Conception

for the site; identified through user research,
ethno/techno/psychographics, etc.

Site Objectives: business, creative, or other
internally derived goals for the site

information-oriented

Figure 25 The elements of user interface [19]

Since our product is a web-based application, user experience can be studied in
five consecutive levels [19] which include visual design, information design, interaction
design, functional specifications, and site objectives as in Figure 25. As a concrete
objective, the focus is on how users feel about the look of interface and how the
presentation of information facilitates the understanding. More abstract topics include

how users interact with the functions of the application, whether the functionalities meet
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the original specification, and whether the objective of application is fulfilled according
to user needs identified through relevant research.

The first version of the DDD portal has been developed and will be deployed for
academic use in the near future. A structured UX evaluation plays a significant role in the
improvement of functions and the evolution of the whole application, because it can help
the developer team discover what users like and dislike and what they expect from the
product. In the short-term, our team will collect the feedback and the remarks from
college students or researchers by adopting the questionnaire approach. Based on the
prior discussion, the questionnaire in Appendix A covers a range of subjects from
accessibility, usability, quality, and user expectation. The long-term goal is to keep track
of user responses to the new features of the application, and eventually to reflect the

potential future needs and evolve the product.
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CHAPTER 3
SCIENTIFIC COMPUTING

Scientific computing (or computational science) is an interdisciplinary field in
which mathematical models and quantitative analysis techniques are applied to solve
real-world scientific problems. It often requires the availability of a massive number of
computers for performing large-scale experiments. Researchers use high-performance
computing solutions and installed facilities such as clusters and super computers to

analyze the complexity of problems and attempt to resolve them.

3.1 Purpose

The DDD algorithm aims to solve the dislocation dynamics and provide the
material stress metrics for the study of plasticity. The main computation involves an
iterative process of forces interaction between dislocations within the crystal structure.
Although the current version of the algorithm is already parallelized, the resulting
speedup of the program doesn’t increase proportionally with the computational resources
and even stagnates when using too many processors. This limit makes the software
unable to tackle complex simulations in which there are a massive number of dislocations
configured.

This problem leads us to the discussion on high performance computing. The poor
scalability may result from unstructured parallelization, communication between
processors, inefficient data structures, the algorithms used in mechanical computation,
etc. In the second part of this thesis, we analyze certain parts of the DDD algorithm that
take major portions of computation cost (or execution time), and identify the possible
causes for poor performance. A variety of solutions are proposed regarding the nature of

the problem and the best fit into the original structure of the program. Last but not least,

28



some ideas worth trying but not yet tested will be presented as well for future extensions

of the product.

3.2

3.2.1 Program Flow

I Initialization

N|
i

Box method

X

Dynamics

X

Compute plastic strain

X

Update mechanics

X

X

Node dissociation

X

Interactions

X

Remeshing

X

I
|
|
|
| compute densities
|
|
I
|

Output

yes

End of
simulation?

Introduction of DDD algorithm

‘ Initialize simulation variables
Siminitialization.f90

Compute long-range stresses, done every reebox steps
Box.fo0

| Compute new node positions
Dynamics.f90

Compute plastic strain from new node positions
ComputeStrain.f90

Udpate material stress-strain response
Update.f90

| Compute dislocation densities
Update.f90

| Perform node dissociation on multi-connected nodes
Dissociation.f90

Perform dislocation-dislocation interactions
Interaction.f90

Remesh dislocation lines
Remesh.f90

Output current simulation state
Update.f90 & Output.f90

Figure 26 The flow chart of DDD algorithm

The major operations performed by DDD are shown in Figure 26. The program

starts with initializing the MPI environment and reading the input files, and then

distributes the data to all the assigned processors. The Box method [28] computes far-

field elastic stresses for each box that contains an ensemble of dislocations. The

interactive forces between dislocations are calculated during the dynamic process. As
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soon as the overall force applied on each dislocation node is calculated, its new position
will be determined correspondingly.

Based on those new changes, the program computes plastic strain and updates
material stress-strain responses and dislocation densities. The next step is to perform
node dissociations, interactions between dislocations and the remeshing process if certain
mechanical conditions are met. To finalize the simulation, the program writes output files

and provides the desired information concerning the current simulation state.

3.2.2 Variables

Dislocation node and dislocation segment are two major variable types used in the
program to represent the graph relation of dislocations. The dislocation node variable
stores information about the forces, the connections, the position, and the slip system.
And the dislocation segment variable shows the coordinate, and the number of neighbor
segments and two nodes of the segment. Table 2 and Table 3 present the detail of these
two variable types, and Figure 27 shows an example of dislocation configuration with the

associated data.

Table 2 Variable type - dislocation node

PROPERTY | TYPE DESCRIPTION

iID integer Node identifier

iLoopID integer Loop in which the node belongs
iGroupID integer Group in which the node belongs
iLayerID integer Layer in which the node lies

Node type: iDPTypeFree: free moving node,
iType integer iDPTypeFixed: fix node (generally end node),
iDPTypelnter: interaction (junction) node

Set to 1 if the node has exited the volume for no

ited int
extte reger PBCs simulation (finiteBox=1), 0 otherwise
tvPG type(vector) Global coordinates of the node (x,y,z)
TG type(vector) Tangent direction at the node, used for spline

method (iSplineFe=1)
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tvPreV type(vector) Global node velocity
PreVT type(vector) Global node tangential velocity (not used
anymore)
Node acceleration, used for inertial computation
tvAcce type(vector) )
(not implemented)
force type(vector) Nodal force
dpMass double Nodal mass, used for inertial computation (not
implemented)
) ) Number of node connections. Upper limit set by
N t
iNumConn integer MAX_CONN.
iConnP MAX CONN-*integer | IDs of connected node.
iConnBurgers | MAX CONN*integer | IDs of the Burgers vector for each connection
Miller inteer Reference plane of the node, corresponds to the
& first plane of the iListMiller plane list.
iNumMiller integer Number of planes the node belongs to (max=3)
iListMiller 3*integer List of the planes the node belongs to.
Node flag, used to check if node has been
IStat boolean ..
already visited.
IMovingNode | boolean Useq in dynamics to know if the node should be
moving.
Table 3 Variable type - dislocation segment
PROPERTY TYPE DESCRIPTION
iID integer Segment identifier
iLoopID integer Loop in which the segment belongs
iGroupID integer Group in which the segment belongs
iLayerID integer Layer in which the segment lies
iBox integer Box in which the segment lies
Nodel integer ID of the first node of the segment
Node2 integer ID of the second node of the segment
Global coordinates of the middle of the segment
tvPG type(vector)
(x,y,2)
iNumNei integer Number of segment neighbors
iNeilD *Integer IDs of segment neighbors
IStat boolean Segment flag, used to check if segment has been

already visited
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Data associated with Node 3:
DPoints (3) %iID=3
DPoints (3) $iLoopID=-1
DPoints (3) $iGroupID=1

DPoints (3) $iType=iDPTypelnter
DPoints (3) $iNumConn=3
DPoints (3) $iConnP (1) =2
DPoints (3) %$iConnP(2)=4
DPoints (3) $iConnP(3)=7

4™ DPoints (3) $iConnBurgers (1) =2

Miller slip
";2 plane normal

intersection of slif

6 planes n

-b - - K DPoints (3) $iConnBurgers (2)=5

1 cl 2 1 F

/ 5 —b / , c2 i DPoints (3) $iConnBurgers(3)=4
c1 a 2 ¢ ! i DPoints (3) $iConnNumMiller (1)=1

. ‘)'(1) ) 5 DPoints (3) $iConnMiller(1l,1)=1

DPoints (3) %iConnNumMiller (2)=2
1 bl 7 DPoints (3)%iConnMiller(2,1)=1
DPoints (3) %iConnMiller(2,2)=2
DPoints (3) $iConnNumMiller (3)=1
DPoints (3) %iConnMiller(3,1)=2

Figure 27 Example of dislocation configuration and the associated data

3.2.3 Existing MPI framework

In this section, the existing communication flow of DDD is presented. The master
processor distributes global variables and boxes in the initialization process and then
executes the main body of the program where there are two main computation,

*  DynamicsSolver: A parallel function composed of 4 main steps: 1) distribute the
dynamic dislocation segments 2) compute the nodal force 3) derive the overall
force through MPI AllReduce 4) resolve the new position of dislocation nodes.

* Update Output Statistics: With parallelized sub-functions, it computes the
important mechanical metrics for the changes, and performs short-range
interaction calculations such as node dissociation and the remeshing process.

The parallelization is already implemented in these two high-level functions
because they account for the major fraction of execution time at each iteration. Many
MPI communications are also contained in the program as shown in Figure 28 because of
the need for data transfer and work distribution. DDD is a master-slave program which
heavily relies on the master process to distribute tasks and update changes. In general, the

program uses MPI Bcast, MPI Reduce and MPI AllReduce to broadcast and collect the
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data respectively. For point-to-point data transfer, MPI Isend (non-blocking
communication) is also used with the advantage that the function call can return
immediately without waiting for an acknowledgement from the receiver. To ensure the
reception of data and the completion of calculation at each step, MPI Barriers are

inserted in many places for the purpose of synchronization.

Master Slave

DistributeGV [Bcast]

Initialization DistributeBoxes [Isend, Recv]

BceastAlIDPs, JunctionBurgers, Segments [Bcast]

BoxStress [AllIReduce]

NewDistributesDynamicSegments [Isend, Recv]

(Calculation)
Reduceforce [AllReduce]

DynamicsMain

(Calculation)
UpdateMasterDis [Isend, Recv]
Simulation <
(iterative) BceastAlIDPs [Beast] o

DistributeAllSegments [Isend. Recv]

v

(Calculation)
DistributeMultiNodes [Isend, Recv]

v

Update_Output_stats
(Calculation)

UpdateNodeChanges [Isend, Recv]

A

(Calculation)

Figure 28 The communication flow of parallel DDD program

3.3 Performance Metrics

Execution time, speedup are two metrics commonly used to measure the
performance of MPI programs [25]. These metrics are affected by several factors such as
the sequential part’s fraction of the program, the complexity of the problem, the number
of processors, and inter-processor communications. For the subsequent sections, we
generally use speedup as the main indicator to reveal the performance of the DDD
parallel program.

Execution time
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Execution time is defined as the time elapsed from the start of the first processor
in the execution of the program to the completion of the last processor. The execution
time 7 is given by:

T = T(:omp + Teomm + Tiate

where Top 18 the computation time, Tiopms, is the communication time consumed by

processors to send and/or receive messages, and T4, 1s the time a process spends waiting

for the other processors.

Speed up
Speedup is another indicator that takes processors count p, and problem size n,
into account. The total parallel execution time of a program is given by:

¢(n)
Tparallel =o(n) + T + k(n, p)

where o(n) is the execution time of the serial part of program, ¢ (n) is the execution time
of the parallel part of program, and x(n, p)is the communication time. Generally, speed
up is the ratio of the time taken to solve a problem on a single processor to the time
required to solve the same problem on a parallel computer with multiple processors. The
speedup metric for solving an n-size problem using p processors is expressed by:

l/)(n p) < Tserial

parallel

Amdahl's Law [26] is used to predict the maximum achievable speedup for a
given program. The law assumes that a fraction f of a program's execution time was
infinitely parallelizable with no overhead, while the remaining fraction, 1-f, was totally

serial. According to this law, the speedup of n-size problem on p processors is governed

by:

1
<f<1

YR = a0 S
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Amdahl's law considers problem size as a constant and hence the execution time
decreases as the number of processors increases. Gustafson’s law [27] gives another
formula for predicting maximum achievable speedup which is described by:

Y(,p) =p+ 1A -p)s
where s is the fraction of total execution time spent in serial code. Both of these two laws

ignore the communication cost, so the maximum speedup will be overestimated.

3.4 Experimental Setup

We ran the benchmarks of the DDD program on the research cluster Cameron of
SUPELEC, Metz Campus with 16 nodes (or machines) that are interconnected across a
10-Gbit/s Ethernet switch (an OmniSwitch Alcatel 6900-X20-F) with up to twenty
10Gbit/s ports. Each node has an Intel Xeon E5-1650 processor clocked at 3.2GHz
composed of 6 physical hyperthreaded CPU cores (12 logic cores), and equipped with 8
GBytes of global DDD3 RAM on a 1600MHz memory bus. This cluster utilizes the
Linux 64 bits, fedora core 16 operating system.

There are several important terms which will be used in subsequent sections to
explain the performance of scalability. A node is a machine which can contain multiple
processors (or CPU cores). The total number of processes possible is the product of the
number of nodes and the number of processes available per node. For example, 16
processes may be created using two nodes with 8 processes per node, or 16 nodes with 1

process per node.

3.5 Problems in DDD algorithm

In advance of changing the parallelization and refactoring the code, it is important
to identify existing problems in the DDD algorithm. These problems can provide the
hints as to improve and how to carry out the modifications. For this work, we used

Vampir [20], a popular profiling tools to analyze the MPI communications between
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processors with the aid of statistical charts such as function summary, message summary,
communication matrix, call tree, etc. A screenshot of Vampir interface is shown in Figure
30. Moreover, we manually measured the execution time and the volume of message

transfer to discover more possible causes and support the findings from Vampir.

3.5.1 Analysis by Vampir

Vampir requires a working monitoring system with built-in support for the
performance data file format. We use Score-P [21] as the code instrumentation and run-
time measurement framework because it supports the generation of trace log files with
the Open Trace Format Version 2 (OTF2). Figure 39 illustrates the overview of Score-P

measurement system architecture.

il 1N | T

Event traces (OTF2) C(g'ufgz p{‘{'t'ff

- Online interface
Score-P measurement infrastructure

Hardware ccunter (PAPI, rusage)

Application (MPIxOpenMPxCUDA)

T T T T T

OPARI 2 CUDA Compiler PDT User

Instrumentation wrapper

Figure 29 Overview of the Score-P measurement system architecture and the tools
interface [21]
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Figure 30 The interface of Vampir with a number of statistic charts.

Even though the timeline of events, the message transfer between processors and the
execution time of subroutine can be easily traced with the aid of the visualization tools,
there are still some limitations in the trial version: 1) Inability to display all the events
once the number of iterations of the program exceeds a certain limit, 2) Inaccuracy in the
execution time of functions due to extra code instrumentation. Those constraints only
allow the parallel program to be executed with 2 to 16 processes. Moreover, the number
of iterations in the simulation is set to 2 in order to avoid an excess of event information
that Vampir cannot handle. In spite of all the inconveniences, it can still help us to
identify the following anomalies that may explain why the performance doesn’t scale up
well in the presence of distributed-memory parallelization.

Non-negligible MPI barriers

In the DDD parallel program, MPI Barriers account for a non-negligible fraction
of the total execution time. From Figures 31 and 32, we noticed that with 2 processes, the

fraction is less than 25%. However, when the number of processes increases, it becomes
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a more and more important component of delay and even reaches more than 50% with 8
processes. This tendency seems reasonable because the execution time of a parallel part
of algorithm is reduced with more processes while the time consumed by MPI Barrier is
roughly the same. The purpose of MPI Barrier is to synchronize processes to prevent
some processors from running faster than the others, but this call are overused in our
program as the check points to ensure that every processor reach the same step of

calculation.
All Processes, Accumulated Exclusive Time per Function

Others [0.166 s]

MPI_Barrier [0.459 s]
lookforneighbors_ [38.362 ms]

regrouploops_ [44.409 ms]
MPI_Recv [48.236 ms]

findconnectionindex_ [49.91 ms] _dynamicss...ighborforce [0.355 s]

__vectors..._minus_v2 [55.851 ms]
getdist_[60.663 ms]

__dynamicss...ighborforce [83.998 ms] —dynamicsso...rceintegrals [0.312 s]

__vectors_MOD_v1 plus v2 [95.975 ms]

Idistneighbor2_[0.162 5 _ dynamicssolve...MOD_segsegforce [0.306 s]

Figure 31 Execution time per functions with 2 processes, 1 process per node
(~1000 dislocations)

All Processes, Accumulated Exclusive Time per Function

Others [0.358 s

Idistneighbor2_[0.166 s]
MPI_Recv [0.218 s]

__dynamicss...segsegforce [0.313 s] MPI_Barrier [3.752 s]

__dynamicsso...rceintegrals [0.319 s]

__dynamicssolv...gneighborforce [0.366 s]
MPI_Bcast [0.371 s

Figure 32 Execution time per function with 8 processes, 1 process per node
(~1000 dislocations)
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Non-parallel functions:

The master timeline in Figure 33 indicates that the function shortrangeinter is not
yet parallelized, so the master processor is the only worker that carries out the
computation. There may be more non-parallelized parts in the program which will hinder

the performance of speedup by introducing extra MPI Barrier calls in our program.

Mast...ad:
Mast...ad:
Mast...ad:

Mast...ad:

Master thread:1

1

EI - R - N TR N

Figure 33 The function shortrangeinter is only executed by the master processor
(~1000 dislocations)

Bad Load Balancing:

The function dynamicMain is a core parallel part of the DDD algorithm that
consumes the largest fraction of execution time. Its speedup does scale up but is not as
good as theory would predict. We noticed that the computational load for the dislocation
dynamics may not be evenly distributed, so some processors complete their work earlier
than the others and then begin to idle. Figure 34 below is an example that contains
approximately 1000 dislocations. The master processor has more computation to do, so

the other processors wait for significant time to begin the next step.
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Figure 34 Imbalance of the work distribution between processors (~1000 dislocations)

3.5.2 Analysis by manual measurement

Along with the analysis from the profiling software, we also conducted manual
measurement of execution time and message volume. The results provided further
information regarding the computational complexity of dislocation dynamics, the overall
speedup of the DDD algorithm and message volume transferred among processors.

Computational complexity

The computational complexity of dislocation dynamics is O(n’) because every
force induced by each pair of segments needs to be calculated. In the DDD algorithm, the
box method is applied to focus on short-range interaction and thereby divide the crystal
volume into a certain number of boxes. Every segment belongs to a particular box and
only the segments contained in 26 neighbor boxes will be considered as neighbor
segments for the ones in central box. In this way, using more boxes to partition the crystal
volume will result in less dislocation segments in each box, so the computation can be

significantly reduced. Figure 35 shows the 2D schematic of the Box method [28]. The
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central red box is surrounded by the neighbor boxes marked in green. For the red
dislocation, the elastic stress field induced by green dislocation segments in the neighbor

boxes will be accurately computed.

*)

N

Figure 35 2D schematic of the Box method. For the red dislocation, the elastic stress field
induced by green dislocation segments in the neighbor boxes will be accurately
computed.

w

4 e=g==ComputeNodalForce

Execution time(s)

5 10 20

Number of segments in one box

Figure 36 The computational complexity of dislocation dynamics. Using 1000 boxes

(10x10x10) to partition the crystal volume and varying the total number of dislocation

segments from 5000 to 20000 leads to distinct number of dislocation segments in one
box.
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Based on the box method, the computational complexity still remains the same,
however the problem size n becomes the average amount of dislocation segments in one
box instead of total amount of dislocation segments in crystal. The curve in Figure 36

hints at the quadratic relationship O(n”) between the execution time and the problem size.

Overall speedup

In order to measure overall speedup, we inserted timers at the beginning of
initialization and in the last iteration of simulations to measure the total execution time.
The performance with different number of processes is depicted in Figure 37. We
conducted the measurement using 2 to 8 processes. With this configuration set, the
speedup closely follows the theoretical line, whereas it starts to deviate when using more
than 16 processes. This trend suggests that a previously unknown serial part of algorithm
exists or that the increasing cost of MPI communication negatively impacts the
scalability.

2 /

16

==Theory

/ =2 nodes

4 nodes

) / =8 nodes
/ o
8 1

Speedup

2 4 6 32 64

Number of processes

Figure 37 The overall speedup of DDD algorithm (~20000 dislocations, 30 iterations)
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Parallel computation — Dynamic solver

Since the parallel function DynamicSolver accounts for the major part of
simulation time, the overall speedup will be significantly impacted by its performance.
Figure 38 shows that in the case of 20000 dislocations, the time spent in DynamicSolver
is more than 90% when using 2 processes. We made use of two configurations, 2000
dislocations and 20000 dislocations, to verify its scalability. Figures 39 and 40 are the
results of the measurement. For 2000 dislocations, the performance is close to theoretical
predictions when using fewer processes. However, in the case of 20000 dislocations, the
speedup doesn’t increase proportionally at all with the number of processors. The
possible reason for the performance with 20000 dislocations being worse than the one
with 2000 dislocations is that the serial code for distributing dynamic segments consumes

more of the total execution time and it limits the maximum achievable speedup.

100.0%
80.0%
60.0%
40.0%

20.0%

DynamicSolver Update Output Stats Others

0.0%

Figure 38 DynamicSolver accounts for more than 90% of execution time for each step
(~20000 dislocations, 2 processes)
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Figure 39 The speedup of function DynamicSolver (~2000 dislocations, 1000 iterations)
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Figure 40 The speedup of function DynamicSolver (~20000 dislocations, 30 iterations)



Message Volume

As message exchange can comprise a large part of communication delay, so we also
tracked the message volume in different important steps in order to verify if bottlenecks

exist over the network in the cluster. We identify several important points associated with

MPI processes constantly exchange messages (or data) over program execution.

message passing in the program as indicated by Figures 41 and 42:

The message volume in the initialization phase is less significant compared to the

message passing that takes place during the iterative loops.

At each iteration, the MPI Broadcast accounts for the largest fraction of message

transfer because it sends the complete dataset of dislocation nodes.

If more dislocations are added in the simulation scenario and the total message
volume will certainly increase. However, the maximum capacity of a typical

switch is at least 100Mbit/s (our cluster is 10Gbit/s), so the message volume

should not be the cause of poor scalability.

Initialization

0 5 10 15 20
KBits

W BCastGVs M Distribution box

Figure 41 Message volume in the initialization phase (~1000 dislocations)
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Figure 42 Message passing during the iterative loops (~1000 dislocations)

3.6 Proposed Solutions

The findings in previous section provide significant information of where
refactoring of the algorithm will be possible. Considering the nature of these types of
problems and the best fit into the structure of existing program, we have tried a variety of
solutions and compared the performances after each modification. Some of the indicated
solutions make sense for performance improvement and the algorithm structure, but some
are not suitable because they increase the execution time or need to trade massive
memory for the speed of numerical calculation. The details of these solutions will be

explained along with the statistical charts showing results of each.

3.6.1 Dynamic Load Balancing
The first challenge in creating MPI programs is to determine how to divide the
main problem into several smaller problems. The goal to data partition is to divide the

data into pieces of roughly the same size and distributed these smaller data sets to
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different MPI processors. Each of these MPI processors only operates on the assigned
data. Also, because the data required for the problem solution may be dynamic during
different iterations of the algorithm, tracking these changes dynamically and rebalancing
them efficiently is very challenging. For the existing strategy in the DDD program, we
consider the load as the computation of short-range interactive forces induced by the
neighbor segments, so we count the total number of them for each dislocation segment
based on the definition in the Box method. After sorting them in descending order by
means of an insertion-sort algorithm, the dislocation segments are assigned to different
MPI processors in round-robin fashion. Each processor only computes the interactive

force for a portion of dislocation segments.

Table 4 Example of the load of dislocation segments. The dislocation segments are
distributed to different MPI processors in round-robin fashion

Segment ID | No. of neighbor segments Load Processor ID
408 1000 1000 1
407 1000 1000 2
99 1000 1000 3
100 1000 1000 4
101 980 980 1
102 980 980 2
33 770 770 3
34 770 770 4

This approach has two drawbacks. First the insertion-sort algorithm is not
efficient enough due to its complexity of O(n’). The sorting is the serial part of
DynamicSolver, so it will affect the best achievable speedup when the number of
dislocations is massive. Therefore, we replaced it with a heap-sort algorithm which has a
better complexity of O(nlogn). Next the round-robin model cannot reach the best
construction. The first processor always takes the largest data set and the last one takes

the smallest data set during the cycle of distribution, so the disparity between these two
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processors is most likely very large. In order to achieve an even distribution, we created
an array called processor load to track the amount of data already assigned to a particular
processor. The processor that has the least load will take the next data set in the cycle of
distribution, so the possible difference of load between processors will be minimized.
Furthermore, the original scheme of load balancing in the DDD program is static.
It means that the load for each dislocation segment needs to be re-estimated and re-
assigned at each iteration by repeating the steps, counting the number of neighbor
segments, sorting them, assigning them, etc. To avoid redundant calculations, we have
attempted to apply a dynamic balancing scheme for which the partition of load is based
on dislocation nodes instead of dislocation segments due to the constraint of existing data
structure of the DDD program. However, the definition of load remains unchanged, so
the number of neighbor segments is calculated indirectly. Each dislocation node may
have one or more connections (or segments) and we add up the number of neighbor
segments for connections to derive the load. Table 5 is an example of this idea. Inspired

by the strategy and the concept in [29], we built the scheme as shown in Figure 43:

Table 5 Example of the load of dislocation nodes. The load is calculated indirectly by
adding up the number of neighbor segments of connections

Node ID Connection ID No. of neighbor segments Load Processor ID

407 1000

1 2000 1
408 1000
99 1000

2 2000 2
100 1000

10 33 770 770 3

11 34 770 770 4

12 123 130 130 3

97 125 130 130 4
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Figure 43 The scheme of dynamic load balancing on dislocation nodes

At the beginning of each iteration, we decide if there is a need to re-estimate the
load. If yes, the calculation of neighbor segments for all the dislocation nodes will be
carried out. Then these nodes will be assigned to different MPI processors for the next
step. If not, we only take into consideration the new dislocation nodes created in the prior
iteration, derive the load for them, and make the additional assignments. With this
scheme, we can dynamically track the new incoming load and rebalance it. However, the
difference in the loads between dislocation nodes can be immense because of the way we
calculate it. Suppose that there are two dislocation nodes, one has many connections and
each connection has many neighbor segments, but another only has one connection and
this connection has few neighbor segments. In this case, an uneven distribution of the
load to the processors will likely occur. As a result, more time is consumed in
DynamicSolver and therefore the scalability is worse (as previously noted) when using

more processes. In Figure 44, the speedup with the heap-sorting algorithm is significantly
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improved as opposed to Figure 37 because the time spent in serial code is reduced.
Meanwhile, Figure 45 indicates that the performance remains roughly the same because

the extra execution time is introduced by the uneven distribution of the load whereas the
scheme of dynamic load balancing can save time for assignment.
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Figure 44 The overall speedup with heap-sorting and static load balancing on dislocation
segments (~20000 dislocations, 30 iterations)
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Figure 45 The overall speedup with heap-sorting and dynamic load balancing on
dislocation nodes (~20000 dislocations, 30 iterations)
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To sum up, utilizing dynamic load balancing is generally better than static load
balancing because it prevents the repetitive re-estimation of the load and then the
necessary re-assignment of this load to different processors. However, a new and more
organized data structure for dislocation segments is needed to allow us to dynamically

track the change of load based on dislocation segments.

3.6.2 Tabularization for the mathematical functions

Knowing that there are a massive number of numerical computations in the
function DynamicSolver, we also used another profiling tool, Valgrind, to identify which
parts of the calculation in this program consume the most computation time. The tree
map from Kachegrind in Figure 46 reveals that the mathematical functions /og and atan
are called approximately 7 million and 3 million times, respectively, in the case of 1000
dislocations and 20 iterations. Those amounts of calls represent respectively 10% and 4%

of the total computation time in calculating the interactive force.
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Figure 46 The functions /og and atan consume the significant time for solving the
dislocation dynamics (Tree map from Kachegrind)
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Because of this significant time of computation, we generated a model based
tabularization. This model attempts to create the arrays beforehand to store the output
values given the possible inputs for the function /og and atan. Since the domain of input
is continuous without boundaries, we only target a certain range and evenly partition it
into several intervals. Each interval is represented by the value in its center, and we pre-
compute the output values based on those representatives. Tabularization provides the
convenience of direct memory access so that the output value can be determined simply
by which interval the input value falls in. In this way, we expect that the total time spent
in solving the dislocation dynamics could be significantly reduced. Figures 47 and 48

illustrate how we define the representative and the precision for the tabularization.

/././*
representative

1F \4 @ 7
05 1
precision

] !

1 3 |

interval

atan(x)
o

-05f

Figure 47 Tabularization for atan. Here the range is between -5 and 5 and the number of
intervals is 10. Each blue point is the representative of its interval, and the precision is
defined as the maximum possible difference between the exact mathematical calculation
and the approximation
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Figure 48 Tabularization for /og. Here the range is between 0.001 and 0.1 and the number
of intervals in 10.

The tabularization can only be implemented for a certain range of values, so it is
first necessary to analyze the distribution of possible input values for these two
mathematical functions during the program. With the aid of the histograms in Figures 49
and 50, we noticed that the possible inputs for afan are centered between -100 and 100
and the ones for log are less than 0.1. Although the tabularization has the performance in
direct memory access, it also introduces a precision problem that may affect the whole
simulation. In the general sense, the larger size the array has, the more precision that can

be achieved for a fixed range of inputs.
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Figure 49 The distribution of input values for atan
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Figure 50 The distribution of input values for log
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Figure 51 The relationship between the array size and the precision for atan. The range of
tabularization is between -100 and 100.
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Figure 52 The relationship between the array size and the precision for /og. The range of
tabularization is between 10 " and 0.1

Figures 51 and 52 reveal the relationship between the array size and the precision.
To verify if the precision of tabularization provides a significant impact on the material-
stress simulation, we used two specific configurations requiring very high precision to

compute the dynamic interaction among the dislocations. The results showed us that the
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function DynamicSolver requires a precision of 10”7 for the function atan and 10™ for the
function log. A bad approximation could lead to wrong timing of the evolution of
dislocations or unstable force interactions. Figures 53 and Figure 54 are the screenshots

of animations of these two different test simulations.

Figure 53 Precision test — Evolution of dislocations (Activation of a Frank Read source)

Figure 54 Precision test — Stable force interaction (Dislocation dipole)

In order to achieve such high precision, we can either reduce the range of inputs
or increase the array size in order to have more possible inputs. For the former solution,
the improvement on speed is limited because inputs outside the range still need to be
calculated through mathematical functions. And for the latter one, a very large memory
space, more than 1GB, must be consumed in order for the improvement to realized, so it

is not practical for most of machines. Apart from the tabularization, the article [30] offers
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a means for fast and convenient calculation of the logarithmic function to essentially four
significant digits. In this way, no extra memory is demanded during any phase of pre-
computation, but the precision is still not sufficient for the numerical computation in

dislocation dynamics.

3.6.3 Algorithm tuning - regrouploop

The function regrouploop is used for the segmentation of dislocations during the
process of remeshing and node dissociation. This function finds the total number of
groups and loops of dislocations and assigns the corresponding loop ID and group ID to
each dislocation node. Figures 55 and 56 show the examples of groups and loops. Since
the relationship among dislocation segments and dislocation nodes is a graph, it makes
more sense to resolve this problem by applying particular graph algorithms.

A group of dislocations is considered as an independent connected component in
which any two nodes are connected to each other by a path and which is connected to no
additional nodes in the graph. A graph that is itself connected has exactly one connected
component consisting of the whole graph. To find groups, we can either use depth first
search (DFS) or breath first search (BFS). Here, we implemented DFS because it can be
reused to tackle the problem of finding loops with its searching priority. A search that
begins at some particular node v will find the entire group containing v before returning.
By looping through all the nodes and marking the ones that have been visited to avoid re-

traversal, we can identify all groups in the dislocation graph.
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group 1 group 2

group 3

group 4

Figure 55 Example of groups in dislocation graph

loop 1 loop 2

loop 3

’ loop 5
loop 4 . . .

loop 7

loop 8 loop 11

Figure 56 Example of loops in dislocation graph

The solution for finding loops is not as straightforward as the one for finding
groups. A loop can be seen as a branch in the graph in which any node has two
connections except the end nodes that may have only one connection or more than two.
So there are more possible cases like the examples in the previous figure. Basically, the

shape of the loop is either a path or a circuit. In order to find all of them, we initially
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decompose each group into several sub-groups by duplicating the nodes with more than
two connections and decoupling them from each other. This method of decomposition is
shown in Figure 57. With the new graph composed of several sub-connected components,
we can do the same traversal to find the total number of loops. Furthermore, DFS also
brings one additional convenience, namely the prevention of wrongly counting the

circuits since it always visits the child nodes before the neighbor nodes.

loop 3

loop 4

loop 11

Figure 57 Decompose the group by duplicating the nodes with more than two
connections and decouple them from each other

To sum up, the two main objectives of the function regrouploop can be
accomplished by DFS. Its complexity is O(|V]+|E]), where |V] is the number of nodes and
|E| is the number of edges, so the cost of computation is linear which is much better than
the old algorithm. Figure 58 shows the execution time of new regrouploop and old one.
Due to the fact that the old algorithm is designed informally, we cannot compare them

directly in terms of complexity.
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Figure 58 The average execution time of new regrouploop and old regrouploop (~20000
dislocations, 10 iterations)

3.6.4 Operating points

In this section, we focus on the relation between the overall speedup and the
problem size of dislocation dynamics. In the Box method, two important parameters, the
total number of dislocation segments and the box size, determine the problem size n (the
number of dislocation segments in one box). For instance, with around 1000 dislocations
in crystal volume, a box size of 3 is the special case where all the dislocation segments
except the ones in central box are considered as neighbor segments. If the box size is 4,
we can derive n roughly as 16 (~1000/4%). And if the box size is 5, n is 8. Nevertheless, if
the box is 6, n is less than 5, leading to over-approximation. In general, the box size is
always greater or equal to 3 and less than the number that results in the problem size less
than 5.

As Gustafson’s law says, with the increasing problem size and the roughly fixed
fraction of execution time for serial code such as data partition and I/O operations, the
best achievable speedup will increase as well. In our case, we still need to consider the
MPI communication cost, but the performance will not change drastically based on these

cost since the bandwidth of network in the cluster is sufficient. Knowing that most of the
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material-stress simulations for research projects are lengthy and time-consuming, it is
better to know the suitable operating points where we can launch the simulation with the
proper number of processors according to different problem size. Figure 59 is an example
of 10000 dislocations for which we varied the number of processes and the box size to
obtain the best achievable speedups respectively. The contour chart gives a clear view of
different levels of speedup marked in corresponding colors. Other than the configuration
of 1000 dislocations, there are three more practical ones (5000, 10000, and 20000

dislocations) and their contour charts are shown in Figures 60, 61 and 62.
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Figure 59 The overall speedup with different combinations of the number of processes
and the box size (~1000 dislocations)
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Figure 60 The overall speedup with different combinations of the number of processes
and the box size (~5000 dislocations)
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Figure 61 The overall speedup with different combinations of the number of processes
and the box size (~10000 dislocations)
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Figure 62 The overall speedup with different combinations of the number of processes
and the box size (~20000 dislocations)
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3.6.5 Efficient use of memory

From the experimental results, we see that some of the serial code consume more
time when using more processes per node. For those functions, the memory allocation
and deallocation occur very frequently, so these operations can be very expensive under
the structure of MPI which does the parallelization in distributed memory fashion. When
the separate processors in the same node attempt to demand memory space, it takes a
fixed amount of time for the node to carry out the arrangement. Therefore, with more
than one process per node, the extra time for the organization of memory space is

required.
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CHAPTER 4
CONCLUSION

In this thesis, we made the following contributions to 1) the development of front-
end application for material-stress simulation software and 2) the optimization of the
parallel DDD algorithm. Compared to the command line interface based software such as
ParaDIS and NumoDIS, the DDD portal with a graphic interface provides more intuitive
and efficient operations. A person who is either an expert or a novice user in relevant
fields can easily generate the long input file for the material-stress simulation and analyze
the simulation results with the aid of a rich set of functions available in the software. As
for the deployment, we distribute two versions of application. The laptop version is
intended for any user who has the interest in material science and the hosted version
which is intended to be installed in a computer cluster with limited access for the
professional use. Apart from the front-end development, the optimization of the DDD
algorithm must also deal with the complicated simulation scenarios with appropriate
performance characteristics. The analysis performed using both manual measurement and
profiling identified the potential root causes of poor performance and scalability. Based
on these important findings, we proposed various solutions such as dynamic load
balancing, tabularization and algorithm tuning. The best achievable speedup was found to
depend on the problem size, so we ran a number of simulations for different
configurations to derive the proper operating points. These valuable insights can help us

understand how to improve the parallel DDD algorithm.
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CHAPTER S
FUTURE WORKS

The DDD portal is the first prototype of a simulation tool using a front-end
application, so room for the improvement still exits regarding the architecture, the choice
of programming languages, the functions and the deployment. For instance, the
visualization of simulation results might in the future be implemented in a real-time
fashion, allowing the user to see the instant change in the curves reflecting the important
indicators for the plasticity. Also, using an appliance to package a front-end application is
only intended as a temporary solution, so future work would customize the package for
different unique operating systems. An innovative application can be only created
through having a good understanding of the needs of the user and strong in-depth
knowledge about the new technologies of front-end development. For future work of
optimizing the DDD algorithm, a focus can be placed on the data structures and the
computation of dislocation dynamics since these two elements determine how the
parallelization scheme is constructed and thereby impacts the performance and speedup.
More organized data structures will help enforce the dynamic load balancing on
dislocation segments to avoid the repetitive re-estimation of load and re-assignment of
work to different processors. Because the problem of dislocation dynamics involves a
great quantity of geometric computation, we can make use of some existing libraries such
as CGAL (Computational Geometry Algorithms Library) to deal with this computation.
Although CGAL is a C++ library, we can combine it with Fortran code and integrate
these together into a single executable that knows how to interface the function calls. In
addition, a hybrid solution of OpenMP [24] and MPI should also be investigated because
it includes the benefits of distributed memory system in a high level and shared-memory

system in each local machine.
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APPENDIX A

SOFTWARE EVALUATION QUESTIONNAIRE

DDD portal Evaluation Form

Name: Department:
Trainer: Class Name:
Role: professor researcher student
Accessibility 5 4 3 2 1

Easy to access the documentation

Easy to download the software

Easy to install the software

Usability: 5 4 3 2 1

Navigation

Does the site provide the clear indication of
current location

Are all major parts of the site accessible from
homepage

Is the site simple without unnecessary levels

Function
Are all necessary functions available and
clearly labeled
Do all functions perform their intended tasks
Quality: 5 4 3 2 1

How user-friendly is our software's interface
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How easily do you find particular information
in our documentation

How successful is our software in performing
its intended task

How often do you find our software freeze or
crash

How helpful is the support service of our team

Expectation:

How can we improve the software?

What other functions (capabilities) we should
add?

What other sections or information we should
add in our documentation?

5: Excellent, Extremely often

3: Good, Moderately often

1: Poor, Moderately often
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