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SUMMARY 

 

The objective of the current research was to develop an automated algorithm with 

no or little user assistance for extraction of Subdural Grid Electrodes (SGE) from 

post-implant MRI scans for epilepsy surgery.   

The algorithm utilizes the knowledge about the artifacts created by Subdural 

Electrodes (SE) in MRI scans.  Also the algorithm does not only extract 

individual electrodes, but it also extracts them as a SGE structures.  Information 

about the number and type of implanted electrodes is recorded during the surgery 

[1].  This information is used to reduce the search space and produce better 

results.  Currently, the extraction of SGE from post-implant MRI scans is 

performed manually by a technologist [1, 2, 3].  It is a time-consuming process, 

requiring on average a few hours, depending on the number of implanted SE.  In 

addition, the process does not conserve the geometry of the structures, since 

electrodes are identified individually.  Usually SGE extraction is complicated by 

nearby artifacts, making manual extraction a non-trivial task that requires a good 

visualization of 3D space and orientation of SGE in it.  Currently, most of the 

technologists use 2D slice viewers for extraction of SGE from 3D MRI scans.   

There is no commercial software to perform the automated extraction task.  The 

only algorithm suggested in the literature is [4].  The goal of the proposed 

algorithm is to improve the performance of the algorithm in [4]. 

As a goal, the proposed algorithm performs extraction of SGE not only for 

individual electrodes, but by applying geometric constraints on SGE. 
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CHAPTER 1 

INTRODUCTION 

The objective of the current research was to develop an automated algorithm with 

no or little user assistance for extraction of Subdural Grid Electrodes (SGE) from 

post-implant MRI for epilepsy surgery.   

The algorithm utilizes the knowledge about the artifacts created by SE in MRI 

scans.  Also the algorithm does not only extract individual electrodes, but it also 

extracts them as a SGE structures.  Information about the number and type of 

implanted electrodes is recorded during the surgery [1].  This information is used 

to reduce the search space and produce better results.  Currently, the extraction of 

SGE from post-implant MRI is performed manually by a technologist [1, 2, 3].  It 

is a time-consuming process, requires on average a few hours, depending on the 

number of implanted electrodes.  In addition, the process does not conserve the 

geometry of the structures, since electrodes are identified individually.  Usually 

SGE extraction is complicated by nearby artifacts, making manual extraction non-

trivial task that requires a good visualization of 3D space and orientation of SGE 

in it.  Currently, most of the technologists use 2D slice viewers for extraction of 

SSE and SGE from 3D MRI.   

There is no commercial software to perform the automated extraction task.  The 

only algorithm suggested in the literature is [4].  The goal of the proposed 

algorithm is to improve the performance of the algorithm in [4]. 

As a goal, the proposed algorithm should not only assist technologist working on 

extraction of SGE, but it should replace him completely and make the process 
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fully automated.  In addition, since the extraction is performed by computer not 

only individual electrodes are detected, but by applying geometric constraints one 

can significantly improve the detection of SGE as a structure.  Finally, at the final 

stage technologist can inspect the extracted SGE and make corrections if needed. 

 

Overview of Seizures and Epilepsy Surgery 

Epilepsy is a disease that affects approximately 1% of the United States 

population [5].  It is a process where the patient is having recurrent, unprovoked 

seizures that originate from a chronic neurological disorder.  A seizure is a self-

limited event in which a part of the brain is activated uncontrollably.  In most of 

the cases the seizure is triggered by abnormal, disorderly discharging of the 

brain’s nerve cells, resulting in a temporary disturbance of motor, sensory or 

mental functions [6].  The main causes of seizures are identified as tumor, 

chemical imbalance, head injuries, certain toxic chemicals or drugs abuse, stroke 

(hemorrhage), birth injuries [5].  Some seizures involve only a part of the brain 

and others involve the whole brain.  Partial seizures involve a small area of the 

brain which can then spread to the entire brain, whereas generalized seizures 

involve the whole brain at once.  Treatment options consist of one or more 

medications and for many people this treatment is sufficient to control their 

seizures [7].  Unfortunately some patients will continue to have seizures despite 

taking medications.  For such patients an alternative epilepsy treatment is brain 

surgery.  Brain surgery is the only known cure for epilepsy and one of the safest 

surgeries performed [5]. 
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Even after two or more years of treatment with antiepileptic drugs 20% of the 

patients still have uncontrollable seizures.  Approximately 10% of the epileptic 

population is good candidate for epilepsy surgery [2].  In 2001 it was estimated 

that at least 4 million individuals would be seizure free after epilepsy surgery and 

that less than 0.1% of those potentials candidates have undergone the surgery [5].  

These facts indicate that even though epilepsy surgery is beneficial, it still 

requires improvements in order to gain public awareness and trust. 

Epilepsy surgery is a nonreversible procedure that carries certain risk.  Successful 

resection of the brain tissue requires precise localization of the areas of the brain 

which are the source of the seizures, which are also known as suspected areas.  In 

addition, false or inaccurate localization of the suspected areas can lead to 

dramatic and undesirable results [8].  Therefore, it is important for successful 

epilepsy surgery to have the best estimates on the suspected areas. 

Once brain surgery is chosen as the method of treatment, the patient undergoes a 

series of presurgical evaluations and procedures to localize the suspected areas 

[9].  There is no single procedure that provides sufficient information.  Often 

different procedures that yield similar and repeatable results are used in order to 

choose the best surgical strategy.  Presurgical evaluations typically include 

several modalities: video-EEG monitoring, MRI, fMRI, SPECT, PET, WADA 

testing and neuropsychological testing [1, 2, 7, 9].  Additional tests are required to 

determine if removal of the suspected areas is safe and if it will affect the normal 

functioning of the brain (motor, sensory, vision and etc) [7].   
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One of the techniques to localize the suspected areas causing epilepsy is 

placement of subdural electrodes (SE) on the surface of the brain.  SE can be 

placed with low risk for the patient and can precisely identify seizure areas of the 

brain [8]. The electrode placement depends on the suspected areas and requires 

prior evaluations.  Most of the time, first approximations about the suspected 

areas are made from the results of noninvasive evaluations and imaging, MRI, 

fMRI, PET, SPECT [1, 2, 7, 9]. 

The approach to place SE varies depending on the size of studied region and 

number of electrodes to be implanted.  In general, SGE are placed through a 

craniotomy.  A part of the skull and bone flaps is removed in order to permit 

adequate exposure of the brain surface for the electrodes, as well as for the 

subsequent resection.  The dura is then opened and SE are placed over the 

suspected areas [9].  Most of the time, SGE are placed on either side of the 

hemisphere and in between two hemispheres as shown on Figure 1. 
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Figure 1.  SGE implantation [10] 

SSE are placed in difficult to reach areas of the brain surface and can be 

combined with SGE to cover the suspected areas of the brain.  Also, SSE can be 

implanted not only on the surface but inside the brain.  If such need arises, the 

surgeon performs a small incision and places the SSE inside the tested area [2].  

Once adequate coverage has been obtained each electrode wire is individually 

passed a distance away from the incision to decrease the risk of cerebrospinal 

fluid leak. Each wire is meticulously secured so it does not become dislodged [6]. 

The SGE and SSE can be secured directly to the dura to avoid movement during 

the monitoring period. 
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The MRI scans are taken before and after the electrode implantation procedure for 

future monitoring.  The post-implant MRI scan is used to extract SE and pin point 

the location of each electrode on the brain surface.  The electrode implantation 

surgery is safe and patients usually recover within a day or two [5].  For the next 

two week period they are closely monitored.  Electrode recordings on the surface 

of the brain are correlated with patient’s seizures to precisely identify suspected 

areas of the brain.  Based on the EEG recordings during seizure, surgeons are able 

to conclude which SE are the closest to the affected area and that information is 

used for brain surgery [9].   

Currently the post-implant MRIs are used to perform the mapping from EEG 

reading of the electrode to the areas on the brain.  The process of identifying SE 

and brain surfaces is performed manually by a technologist.  It is a time-

consuming and error prone process that requires a good visualization of 3D space 

and geometric shapes.  SE create spherically shaped image artifacts and 

complicate the process of identifying electrode centers precisely [11].  

With these considerations in mind, this research not only helps the technologist to 

identify SE from post-implant MRI, it also provides accurate information on 

position and orientation of each SE.  Currently there is no commercial software to 

perform automated extraction of SE.  In the literature, there is an algorithm 

proposed by Dr. Skrinjar [4].  The purpose of this research is to improve the 

performance of Dr. Skrinjar’s algorithm.  Another known approach is to extract 

SE from a post-implant CT [2, 7].  Since CT provides very good contrast between 
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SE and brain tissue, image artifacts are smaller and extraction process is manually 

performed by a technologist with better precision.  Post-implant CT is not widely 

used because it exposes the patient to a high level of ionizing radiation and has a 

poor soft tissue contrast [12]. 
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CHAPTER 2 

FUNDAMENTALS ABOUT SUBDURAL ELECTRODES 

 

Terminology  

This section deals with the terminology used in association with epilepsy surgery: 

Subdural Electrodes (SE) come in two types: Subdural Strips and Subdural Grid 

Electrodes. 

Subdural Strip Electrodes (SSE) – strip of electrodes.  The number of electrodes 

on the strip can vary depending on the size of tested area of the brain [8]. 

Subdural Grid Electrodes (SGE) – grid of electrodes shown on Figure 2.  Typical 

sizes are 8x8, 8x6, 8x4, 2x10 and vary depending on the investigated area [8]. 

 

Figure 2.  Grid with Subdural Electrodes [4] 

 

Post-implant MRI scans refers to MRI scans taken after SE were implanted [4]. 

Dark sphere: term used in reference to the sphere-shaped artifact produced by the 

electrode on the MRI scan.  The typical size of the artifact is a sphere with radius 
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of 3mm and characterized by low intensity.  The center of the artifact is 

superimposed on the center of the electrode. 

 

Subdural Grids and Strips 

Before getting into the details of the research, it is essential to discuss the basics 

of subdural grids and strips.  In order to monitor the suspected areas, subdural 

grids and strips are used.  Subdural electrodes are often used because of their 

ability to cover an extensive brain surface and reliably record seizure activities 

[5].  In addition, they are easy to implant compared to depth electrodes and they 

have a low risk of hemorrhage. 

A widely used SE type is shown in Figure 3. 

 

 

Figure 3.  An 8x8 SGE 

SE can be manufactured by different vendors and under different name, but the 

basic geometrical shapes and sizes of the electrode disks and the distance between 
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electrodes is similar.  Electrode materials should be a good conductor of 

electricity, safe for normal brain tissue, MRI and CT safe and resistant to 

corrosion.  The most widely used electrode materials are platinum-iridium alloy 

and stainless steel.  Electrode contacts are usually no more then 2mm in diameter 

and go from center to center of each electrode.  Electrodes and their contacts are 

embedded in a thin (0.5mm) transparent Silastic plate in which they are laid out in 

a rectangular array.  The Silastic plate serves three specific purposes.  First, it is 

designed to keep electrodes in the fixed distance. Secondly, Silastic plate is 

flexible enough to be able to wrap any brain surface.  Thirdly, it is made 

transparent to allow a visual inspection of the covered surface area.  The 

electrodes are arranged in a variety of ways to accommodate for different surfaces 

and sizes [2].  The most common sizes are 8x8, 8x6 and 8x4 (called grids) and 

8x1 and 4x1 (called strips).  In the instance that the area is not accessible by the 

grid, such as in between two hemispheres, subdural strips of electrodes are used.   

It is important to define as much of the suspected areas as possible prior to SE 

placement.  Some of the noninvasive evaluations such as MRI, fMRI, PET, 

SPECT and skull EEG can be used to localize the suspected areas.  For some 

patients, these techniques have been known to provide little or no information 

about suspected areas [7].  Often over a hundred SE are placed to cover the 

suspected areas of seizure origin as determined by noninvasive examination.  

There are several different approaches to the surgical implantation of SE.  A 

majority of them depend on the investigated area and require a craniotomy [9].  

Scalp and bone flaps are cut depending on the investigated area, the dura is 
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opened and SE are placed by visual inspection.  Once the investigated areas are 

covered with sufficient number of SE arrays, the dura is closed and contacts are 

carried out to the skull. To prevent movement of SE once the dura and skull are 

closed, SE can be securely attached to dura [9].  After a successful surgical 

implantation procedure, the contacts located on the top of the patient’s skull are 

attached to an EEG monitoring unit.  The patient is monitored and SE recordings 

are analyzed for variety of normal and abnormal patterns [7]. 

The task of precisely identifying the location of SE is difficult.  In most cases, 

post-implant MRI scan of the patient with an SE implant is used to visualize SE 

and their location.  The artifacts of the electrodes in MRI scan make this task 

difficult [11].  In this research, the electrode artifacts were studied and the 

algorithm was developed to yield a visualization of SE in post-implant MRI scan.  

The algorithm was developed to be automatic and requires minimal user 

interaction to initialize the growing of the grids. 

    

Post-implant MRI scan and Artifacts 

In this research T1-weighted MRI scans were used [12].  The algorithm was 

tested on MRI scans acquired at Emory (Atlanta, GA) and Yale (New Haven, CT) 

hospitals and should be easily adopted to perform on MRI scans from other 

hospitals.   

An example of post-implant MRI scan is shown on Figure 4.   
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Figure 4.  Post-implant MRI scan displayed using Rex3Dviewer 

 

It shows patient’s head with internal soft tissue structures.  The contrast of MRI 

scans studied in this research was good.  The implanted SE caused image artifacts 

on the MRI scans.  The image artifacts are caused by the corruption of the 

magnetic field in the MR scanner by the metal electrodes [13].  The nature and 

cause of the artifacts was not studied in this research.  Due to widespread use of 

existing SE during a surgery, the current research was based on the study of the 

artifacts and not on their cause.   

The artifacts of post-operative MRI scans were studied in-depth and the results 

are shown in Table 1 and Table 2. 
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Table 1.  Information about SGE and SSE 

Geometry of SGE and SSE 

 Disk radius 1.9mm 

 Disk width 0.5mm 

 Distance between two closest disks 10mm 

 

Table 2.  Information about artifacts 

    Geometry of artifact 

  Shape Sphere 

  

Minimum allowed radius of ‘dark 

spheres’ 2.5mm 

  Maximum radius of  'dark spheres' 3.5mm 

    Intensity    

  4mm away from center below 75% 

  7mm away from center above 75% 

    SSE structure  

  Minimum distance 6mm 

  Maximum distance 14mm 

    SGE structure  

  Minimum distance 6mm 

  Maximum diagonal distance 14mm 

  Minimum angle  35 degrees 

    Thresholds    

  Brain 80% 

  Black and White 75% 
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Structure of Subdural Electrodes 

As mentioned earlier there are two types of subdural electrodes: grids and strips.  

Grids are typically composed of the array of 8x8, 8x6 and 8x4 electrodes.  The 

dimensions and relative sizes for a typical 8x8 grid are shown on Figure 2 and 

Table 1.  Although the electrodes create artifacts in the post-implant MRI scans, 

dimensions such as the distance between two electrodes and their relative position 

do not change as shown in Table 2. 

Typically strips are used in the areas with limited access or implanted inside the 

brain for the investigation of suspected areas [5].  The extraction of the strips is 

easier process than extracting grids.  It is primarily due to the fact that the view of 

the individual electrode artifact in the grid is obstructed by neighboring artifacts.  

In most cases, the strips that were located in the areas with high contrast did not 

interfere with other structures and electrode artifacts were easily identified.  

Currently, the task of extracting SE from MRI scan is performed by a technologist 

[11].  This task is time-consuming and error-prone due to noise and distortion 

caused by artifacts.  In addition, it requires a good visualization of 3D space and 

geometric shapes.  In addition, it is non-trivial to estimate the position of the 

electrodes and their orientation.  The goal of this research is to develop a SGE 

model and then register it on the MRI scan. 
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CHAPTER 3 

DETECTION OF INDIVIDUAL SE 

 

Brief Overview of the Approach 

This research was based on the MRI scans provided by Emory (Atlanta, GA) and 

Yale (New Haven, CT) hospitals.  The MRI scans were not identical in terms of 

the resolution, intensity values, or orientation of the planes.  This research was 

designed to support MRI scans taken with different sequences [11] and it used a 

few parameters that can be adjusted by the user.  Two of these parameters are 

threshold values for brain segmentation and sphere detection.  Currently, the brain 

threshold is defined as the 80th percentile of the intensity values in MRI scan.  

This parameter was chosen by tuning.  It has a direct relationship to the amount of 

background present in the MRI scan.  The threshold to detect spheres was set to 

75th percentile of the intensity values.  The brain requires higher threshold values 

because it appears to be lighter compared to the dark spheres.   

All of the programming and algorithm development was performed in MATLAB.  

MRI data was converted, loaded and displayed using Rex3DViewer program 

provided by Dr. Skrinjar.   

The artifacts created by SE in the MRI scans were studied in depth.  Based on that 

study it was concluded that the artifacts appeared as darker (low intensity) spheres 

in MRI scans.  Therefore, the first step was to find all the dark spheres which 

could represent SE.  The result was presented as a list of 3D coordinates of the 

centers of the dark spheres.  The search for dark spheres yielded the list of 
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coordinates that contained the centers not only of SE but also of any soft tissue 

that fit the mask of the dark sphere.  It typically contained from of 20,000-50,000 

entries with only 100-150 SE present in MRI scan.  These results needed 

additional processing, although there were some important conclusions drawn 

from it.  Most of the SSE were well detected and could be sorted out using a smart 

search technique.  The basic steps of this part of the algorithm are shown on 

Figure 5. 

 16



 

 

Load MRI scan 

Find B/W threshold Find skull threshold 

B/W image Skull segmentation 

 AND 

Convolution with 
R=2.5mm sphere 

Convolution with 
R=3.5mm sphere 

 Spheres with radius 
2.5mm<R<3.5mm

Compute CPE for 
each potential center

Figure 5.  Block diagram of the search algorithm for the dark spheres. 

 

Detection of Dark Spheres 

There are various ways to detect dark spheres but in this research the correlation 

with a mask of the sphere was done [13].  To perform the correlation, a binary 

convolution of the MRI scan with a sphere mask was performed.  Since the sphere 
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mask is symmetric the results of correlation and convolution are identical.  The 

MRI scan was converted to binary image using dark sphere threshold, where 0 – 

indicated brighter intensity and 1 – darker intensity.  

 In addition the skull mask was created to remove outer edges.  The skull mask 

was created by repeated dilation and erosion of the binary scan of the brain.  To 

create the binary scan, the brain threshold was applied since the threshold for dark 

spheres was too low.  Use of a skull mask significantly reduced the amount of 

false positive detections without removing any information about implanted 

electrodes.  Prior to applying the skull mask some of the false positive results 

were located on the skull bone, in subdural and subarachnoid spaces.  The most 

successful skull segmentation method was found to be dilation with 3D cross 

followed by a 3D cube, repeated four times.  The largest object was then eroded 

with 3D cross followed by 3D cube repeated six times [14].  The resulting mask 

contained the initial MRI scan with an outer skull of approximately 4~6mm 

removed.  Skull mask was combined with a threshold image to perform a search 

for the dark spheres.   

From an extensive analysis of post-implant MRI scans it was concluded that an 

electrode artifact appears on the scan as a dark sphere (under threshold) and has a 

radius in the range of 2.5mm and 3.5mm.  Therefore the search for the dark 

spheres with radius of 2.5mm is performed. The result of this search is a list of 

sphere centers.  In order to reduce the number of false positives, a search is 

performed for the centers of dark spheres with a radius of 3.5 mm.  Any center 

that is common to both lists is removed.  This step reduces a list of sphere centers 
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with 2.5mm radius by at least 30%.  This can also lead to losing some of the 

centers of SE because they were located very close together and could appear as 

black structures under a threshold and larger than 3.5mm.   

A sphere mask is shown in Figure 6. 

 

Figure 6.  A sphere mask (R=2.5mm) 

The mask of the sphere was computed by using sphere equation: 

2222 Rzyx =++  

The computation was performed for the specified radius, which is one of the 

parameters.  To perform the correlation of the binary scan with the mask, 3D 

convolution was performed.  MATLAB N-dimensional convolution from DSP 

toolbox was profiled and determined to be slow since it performed convolution in 
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time domain.  To speed up the computation, custom 3D convolution function was 

written.  It performed 3D convolution in the frequency domain, utilizing 

optimized 3D FFT in MATLAB.  The function executed zero pad, 3D FFT, 

multiplication and 3D IFFT and was significantly faster then N-dimensional 

convolution function in MATLAB [15].  The computational speed up for a single 

MRI scan was from 30min to 2min. 

The result of convolutions with 2.5mm and 3.5mm was a list of the centers of the 

potential dark spheres.  Although the list was two orders of magnitude bigger then 

the number of implanted electrodes, it included all the features that were under 

threshold and had a spherical shape with a radius ranging from 2.5mm to 3.5mm.  

This list required additional sorting to determine which of these centers could be 

potential electrodes and which represented noise and other features inside the 

patient’s head.  In order to sort the list, the measure value was defined.   

 

Computation of Counter of Positive Edges (CPE) 

For each potential electrode center the CPE value was computed.  The CPE was 

designed to correspond to the likelihood that the potential center was the center of 

the sphere.  The idea of CPE was developed based on Hough transform [16].  

Based on the artifact geometry from Table 1 the CPE value is defined as the 

number of intensity changes from bright to dark on the surfaces of two spheres 

with radii of 7mm and 4mm.   
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 a.  Two spheres surfaces (Rin=4 and Rout=7mm) 

 

b.  Example of CPE computation (intensity change is computed along radial 

vector shown in green) 

Figure 7.  Calculation of CPE 
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There are different ways to define the CPE.  Most of them were studied in this 

research and their performance was compared.   

The CPE could represent the change between total intensities on the outer 

(R=7mm) and inner (R=4mm) spheres.  The CPE defined this way was biased 

towards higher intensity values on outer sphere.  In addition, it did not represent 

individual intensities on the surface of the sphere. The CPE value was 

cumulatively represented, which could be biased by a high intensity on a side or 

even on a quarter of the sphere.   

The CPE was redefined to represent intensity changes between two spheres along 

a radial vector that went through the investigated center point and intersected the 

two spheres.  Numerous radial vectors were computed.  They were evenly spaced 

to ensure an even weight in all quadrants of both spheres.  The CPE value was 

computed as a cumulative sum of intensity changes along each vector between the 

outer and inner sphere.  The redefined CPE produced better results than the 

previous measure, but it still was biased towards high intensity on the outer 

spheres.  Then the CPE was adjusted to count the number of positive edges.  

Positive edge was defined as positive difference between intensities on the surface 

of outer and inner spheres along each vector.  This CPE put even weight on the 

positive edges that had relatively high and low difference of intensities.  It 

allowed artifacts that did not have very high intensity changes to have a relatively 

high measure quantity.  This is because the transition from white to black or from 

gray to black now had even weight [17]. 
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“Smart” Search Technique 

A “smart” search technique was successful in SSE detection, but for SGE it was 

found to be insufficient.  The smart search is a sorting technique based on the 

CPE.  The list of the dark sphere centers was sorted based on the CPE values.  

The first 200 potential centers with the highest CPE were displayed [17].  The 

only constraint imposed on the displayed points was that they be at least 10mm 

apart.  Since it is known that electrodes placed 10mm apart and that distance is 

kept fixed (see Table 1).  Next, research was concentrated on increasing accuracy 

and performance in detecting SGE. 
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CHAPTER 4 

DETECTION OF SGE USING A MODEL OF THE GRID 

 

User Interactions 

This research aimed to design a fully automated algorithm to extract Subdural 

Grid Electrodes.  However after extensive research and development of different 

ideas for the algorithm, it was concluded that the extraction of SGE is a non-

trivial process and little of user interaction is required to yield best results.  The 

user interaction is required to ensure correct orientation of the model prior to the 

growing process and this interaction is minimal.   

The user is asked to pick a point that is approximately the center of an electrode 

on the grid.  The relative position of the selected electrode to the grid is irrelevant, 

it is only required for a select electrode to be inside the grid and not on the edges.  

Once the user has selected an electrode, the algorithm uses it as a center of a 3x3 

grid.  First, the algorithm attempts to model the 3x3 grid as a plane.  Then it uses 

the plane to initialize the calculations of the grid as a part of the cylinder.  Once 

the calculations have converged, the best fit of 3x3 grid is displayed and the user 

is asked to confirm that the grid has proper orientation.  The confirmation is 

required due to the fact that a computed grid can possibly have the wrong 

orientation.  The growing process consists of using previous steps and information 

about initial grids in order to find the whole grid.  Therefore, the correct 

initialization and proper orientation of the initial grid is vital for successful 

growing.  There are two ways for the user to fix the orientation.  One way is to 
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manually adjust the orientation of the grid or ask the user to pick a new point and 

repeat the computations until a correct orientation is achieved.  Since choosing the 

wrong orientation occurs in one out of five cases, the user is asked to pick a 

different point on the grid for the purposes of this research.  The basic steps for 

this part of the algorithm are shown on Figure 8. 
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Figure 8.  Block diagram to extract 3x3 grid of SE based on the model 

User picks an electrode – a center of the 3x3 grid 

Find 8 or less neighbor electrodes that form plane 

Compute vectors going from user’s electrode to each neighbor  

Compute normal vectors between each combination of 
the vectors

Compute angles between each combination of vectors 

Is there more than 7 normals? 

NoYes

Find the vector 
which was used 

most to compute 7 
normals 

Throw away normal with 
highest mean squared 

angles 

Find mean 
between 7 
normals 

  Cross Product

First vector in plane 

Cross Product 

  

Second vector in plane 
  

 26



Approximating 3x3 grid with a plane 

This is the most important step of the extraction of the SGE.  Since the results of 

this step are used for the growing process, it is crucial to perform this step 

correctly.  To ensure that this step is performed accurately, user interaction is 

required.   

First the user is presented with a MRI scan and asked to identify (click or specify) 

coordinates of a single electrode.  This electrode would be used as a center of a 

3x3 grid.  Therefore the user has to pick an electrode inside the grid and not on 

the edges.  The next steps are based on the assumption that the selected electrode 

will have 8 neighbors. If the user specifies the electrode on the edge of the grid it 

could lead to incorrect results and sometimes to complete failure of the algorithm.  

Although the user specified the position of the electrode, it is only an 

approximation.  Therefore, the user is not required to specify the exact center of 

the electrode; the algorithm will later adjust the center according to image 

information. 

Once the user has specified the center of the electrode (referred to as the center 

point) the algorithm will begin searching for the best fit of the 3x3 grid.  The first 

step is to find a best fit for a grid as a flat plane.  To specify a plane one needs to 

know a point and a normal vector [18].  To model grid as a plane, the center point 

is used as a point on the plane and computation of the normal vector is performed 

next. 

Initially, 8 neighbors are chosen around the center point.  The criteria used to 

select those neighbors are described below. 

 27



First, the search space was limited so that it is inside two spheres.  The radius of 

the outer sphere was 14mm and radius of the inner sphere was 6mm.  The sizes of 

the spheres were chosen based on the original grid and maximum/minimum 

allowed distances between two electrodes (see Table 1 and 2).  Second, only 

potential centers with the highest CPE value were considered.  Finally, the 

potential centers that made an angle between each other and center point of at 

least 35 degrees were chosen.  The result of this step was 8 or less potential 

centers that were ‘dark spheres’ and had relatively high CPE.  Since some of the 

potential centers can be missing, the next steps were designed to perform well 

even for less then 8 neighbors. 

Vectors going from the center point to each potential centers were computed.  

Then a cross product was used to compute the normal between each pair of 

vectors.  For example, if one had 8 potential centers it would yield 28 normal 

vectors.  Although there are 28 normals, only a few of them have approximately 

the same direction.  If a potential center was not located on the plane with others, 

its normal would be significantly deviated from others.  Next, the angles between 

each normal are computed.  Using the computation of mean square deviation from 

the zero, the vectors with the highest deviation are eliminated until there are only 

7 normals left [19].  It is based on the assumption that there are at least 4 potential 

electrodes that form a plane.  

The average between 7 normals is computed, and it is considered to be a normal 

to the plane.  The next step is to compute two orthogonal vectors that span the 

plane.  In this step, 7 normals are analyzed and each vector that was used to 
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compose those normals is considered.  The vector which was used more than any 

other to compute the normal is considered to be the first vector that spans the 

plane.  The cross product between the normal vector and the first vector is used to 

compute the second vector.  Then the cross product between the second vector 

and normal is used to refine the first vector.  It is performed to ensure that all 

three vectors are orthogonal [18].   

Each vector was normalized.  Now there is a center point, and a set of three 

orthonormal vectors where one is normal to the plane and the other two span the 

plane.  The next step is to find the orientation of the model on the plane.  The 

potential centers used to create the last 7 normals are considered to be a part of 

3x3 grid.  The model is rotated around the center point and the distance of the 

model to the closest potential centers is computed.  The orientation that yielded 

the smallest mean square distance is considered the best.  The biggest error in this 

step can happen if the orientation of the 3x3 grid is more then 20 degrees away 

from the true orientation. 

This plane is used to initialize the cylindrical model. 

 

Modeling 3x3 grid as a part of the cylinder 

The plane model of 3x3 grid has yielded some important information such as 

normal and orientation of the model.  In addition, it has numerous drawbacks.  

The plane model does not take into account the curvature or bending of the grid as 

a whole or just a portion of the grid.  Therefore, the next approach was to design a 

model that would support smooth bending of a grid.  The model was developed 
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based on the knowledge of SGE and their structure.  Since SE that formed SGE 

were embedded in a thin transparent Silastic plate [2] the distances between SE 

were fixed.  In addition, since each SE was connected with a wire, these wires 

created a flexible canvas for Silastic plate.  The canvas was flexible and allowed 

twisting and bending, but it did not allow stretching/shrinking and flexibility of 

the canvas was constrained.  With the canvas in mind the idea to model a grid as a 

part of a cylinder was proposed.  This model requires more parameters than a 

plane model.  The plane model is used to initialize some of those parameters.  In 

addition to support bending and curving, the model’s center point can be adjusted 

to insure the best registration in the MRI scan.  The following parameters are used 

to implement the cylindrical model [20]: 

xc, yc, zc – coordinates of the center point 

ψθϕ ,,  – orientation of the model (roll, pitch and yaw) 

α  – orientation of the cylinder, angle between x-axis and central axis of the 

cylinder 

k – curvature, equals to inverse of the cylinder radius 
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    a.  k=0, α =0, ϕ =0, θ =0, ψ =0                b. k=0.08, α =0, ϕ =0, θ =0, ψ =0 
 

            
c.  k=0.08, α =32 , o ϕ =0, θ =0, ψ =0        d.  k=0.08, α =90 , o ϕ =0, θ =0, ψ =0     
                     

            
e. k=0.08, α =90 , o ϕ =32 , o θ =0, ψ =0   f. k=0.08, α =90 , o ϕ =0, θ =40 , o ψ =0                         
 

            
 g.  k=0.08, α =90 , o ϕ =0, θ =0, ψ =18    h.  k= -0.17, o α =0, ϕ =0, θ =0, ψ =0                  

Figure 9.  Examples of the model with different parameters 
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The approximation of the grid as a plane has yielded two very important 

parameters: two orthonormal vectors that span the plane.  Those vectors create a 

local coordinate system (vectors and ). 
→

u
→

v

The following equations were developed based on the local coordinates and then 

converted to the global coordinate system of MRI scan [21]. 

 

Step 1.  Initial rotation of the model prior to applying the curvature: 

)sin()cos(1 αα ∗−∗= vux  

)cos()sin(1 αα ∗+∗= vuy  

z1 = 0 

Step 2.  Computation of the model once the curvature was applied: 

If k=0 

x2 = x1, y2 = y1, z2 = z1 

if k  0≠

12 xx = , )sin(1
12 yk

k
y ∗∗= , ))cos(1(*1

12 yk
k

z ∗−=  

Step 3.  Undo initial rotation and introduce the angle of cylinder orientation: 

)sin()cos( 223 αα ∗+∗= yxx  

)cos()sin( 223 αα ∗+∗−= yxy  

23 zz =  

Step 4.  Rotation of the model and translation to global coordinates: 
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where R( ψθϕ ,, ) is the rotation matrix.  The rotation matrix R can be computed 

in two ways: 

),(),(),( ψθϕ zRyRxRR ∗∗=  

and this multiplication yields: 

⎥
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where 

ϕ  - rotational angle around x-axis 

θ  - rotational angle around y-axis 

ψ  - rotational angle around z-axis 

in addition R can be specified as  

⎥
⎥
⎥

⎦
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=
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zyx
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R , where 

→

u , - orthonormal vectors that span a plane 
→

v

→

n - unit normal vector to the plane. 

 

Gradient ascent search 

The 3x3 grid model was created.  It was based on the geometric shape and size of 

SGE.  The distance between two neighboring centers was set to 10mm and 

 33



diagonal distance was 10 2∗ .  The approximation of the grid as a plane was 

used to compute initial values for roll, pitch and yaw.   

To find the best fit of the grid model in MRI scan, the exhausted search for 

optimum parameters was required.  Although after analyzing all eight parameters 

of the cylindrical model, it was experimentally found that six out of eight 

parameters, namely roll, pitch, yaw and center point (xc, yc, zc), can be 

successfully determined by using a gradient ascent search [17].  The cumulative 

CPE value of all 9 electrodes is used as an energy function for the gradient search.  

The other two parameters: orientation of the cylinder angle and curvature were 

determined not to be suitable for the gradient ascent search.  It was observed that 

varying these two parameters by a small amount would not necessarily improve 

the cumulative CPE.   

To perform a search for the best fit of the model in MRI scan orientation of the 

cylinder angle and curvature were varied independently for a wide range of 

possible values.  The angle of cylinder’s orientation was varied from 0  to 180  

with a step of 18 .  The curvature was varied in the range between -0.09 and 0.09 

with the step of 0.01.  For a given pair of the cylinder’s orientation angle and 

curvature the gradient ascent search was performed on roll, pitch, yaw and center 

point.  The roll, pitch and yaw were initialized based on the plane model.  The 

CPE value was computed for initial orientation of the model, then one of the 

angles was varied by 

o o

o

ε±  keeping other two at their initial value and the CPE 

values were recorded.  Value of ε   was set to be arctan(reference_distance/10), 

where reference_distance is the maximum distance between two closest voxel 
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centers.  The angle increment guarantees that a point 10 mm from center point 

would move by at least one voxel.  Similarly, the CPE computations were 

repeated for the other two angles, while varying one of them at a time.  The CPE 

values were compared and the direction of the steepest ascent was determined.  

The values of roll, pitch and yaw were recomputed according the direction of 

maximum CPE.  The roll, pitch and yaw were set to new values and these values 

would be used for the next iteration.  Similar procedure was done for the center 

point.  Initially, the adjustment of the center point (xc, yc, zc) was set to all zeros. 

Then each coordinate was independently varied by ∆± .  Value of  was set to 

be reference_distance/6.  The value was determined experimentally and chosen to 

move an investigate point by one voxel.  The direction of the steepest ascent was 

determined based on comparison of CPE values.  The new offset of the center 

point was recorded.  The gradient ascent search is an iterative process and was 

repeated until no changes of angles and center point offsets were determined.  The 

final iterative values of angles and center point offsets were recorded with their 

appropriate orientation of the cylinder angle, curvature and cumulative CPE.  

Then computations were repeated for new set of values for orientation of the 

cylinder angle and curvature, the values of roll, pitch, yaw were reset to their 

initial values based on the plane model and center point offsets were nulled. 

∆

The result of the gradient ascent search was a 3x3 grid model with maximized 

cumulative measure quantity. 

 

Growing process 
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The user was asked to pick an initial point on the grid and confirm that the initial 

3x3 grid had a proper orientation.  Once the first 3x3 grid was approved by user, 

the growing process was started.  The growing process is an independent process 

and can be parallelized to speed-up grid computations.  The growing process 

consists of two major steps: growing vertically and growing horizontally.  These 

two processes are independent.  In this research I suggest averaging the result of 

the vertical and horizontal growing to improve the final result.  The growing 

process is shown on Figures 10 and 11.   

 

 

Figure 10.  Computation of new local coordinate system ( are scaled and 

shown in green) 

→→

vandu
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a.  Initial orientation of the new 3x3 grid (in red) as extrapolated current 3x3 

grid(in blue) 

 

b.  Searching for the best fit of the new 3x3 grid (in red), varying all 8 parameters 

Figure 11.  Growing of the grid 

The growing process consists of extrapolation of the grid and performing gradient 

ascent search on it.  The most logical approximation of new 3x3 grid seemed to be 
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with 4x3 (or 3x4) grid using parameters of current grid.  The new 3x3 grid was 

initialized as the extrapolated part of old 3x3 grid.  The initialization was based on 

the assumption that the curvature and angle of the valley orientation would not 

change.  The roll, pitch and yaw values had to be recomputed since the center of 

the model was moved.  The approximation of the roll, pitch and yaw was done by 

computing  since they are as a local coordinate system in which 3x3 

model is specified.  To compute the roll, pitch and yaw the rotational matrix R 

was calculated.  The rotational matrix R consisted of three vectors: two 

orthonormal vectors within plane and the normal vector.  To compute two 

orthonormal vectors at the center of the new grid, the slopes in all three directions 

were computed [22].  The slope was approximated by: 

→→

vandu
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The computation of the slope in the direction of the vector was done similarly.  

Next, vectors were normalized and their cross product yielded the normal 

vector n .  The rotational matrix R was computed as following 

→

v
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Based on the rotational matrix, the values of roll, pitch and yaw were computed 

for new 3x3 grid.   

Next ascent gradient search similar to the one described above was performed to 

find the best fit of the 3x3 grid that maximizes the cumulative CPE.  To combine 

current 3x3 grid and new 3x3 grid their overlapping electrode coordinates were 

averaged. 

 

Growing and Detection of the edges 

Since the position of the initial grid relative to the grid is unknown, it was 

proposed to grow 6 times in vertical and horizontal direction.  Step-by-step 

procedure of growing process is shown on the Figures 12, 13 and 14 below. 
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a. Computation of the initial 3x3 grid             b.  Growing in horizontal positive 

 direction 

            

         c. Growing in horizontal negative                d.  Growing in vertical positive   

                  direction                                                        direction 

Figure 12.  Computation of the extensions from center point 
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a.  All extensions of initial grid in                      b.  Growing in vertical positive  

       vertical and horizontal directions                     using cross as starting point 

          

c.  Growing in vertical direction                      d.  Growing in vertical direction 

   using new center point on the cross              further away from origin 

Figure 13.  Computation of vertical extensions of the cross 
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a.  More growing in vertical direction                b.  Growing in vertical positive  

       direction is complete 

 

c. Similarly growing was performed in vertical negative direction 

Figure 14.  Computation of all vertical extensions 

Grid was computed as vertical extensions of initial grid.  First the vertical and 

horizontal extensions of the initial grid were computed as shown on Figure 12.  

The computed extensions create a cross which was used for computation of the 

full grid.  The full grid was computed in two ways and results were averaged.  

The full 15x15 grid was computed as vertical extension from the initial cross 

using the cross as a new starting point of growing process as shown on Figure 13.  

The growing process was performed in such a way that two neighboring grown 
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extensions would have overlapping edges as shown on Figures 13 and 14.  The 

edges were overlapped to ensure consistent result during growing process.  The 

overlapping points were averaged to insure smoothness of final grid.   

Secondly, the cross was used as starting point of extension growing in horizontal 

direction as shown on Figure 15.  Similarly, two neighboring extensions were 

overlapped and averaged to insure smoothness as shown on Figure 16.  Finally, 

result of vertical and horizontal growing were combined and averaged as shown 

on Figure 17.  The process of averaging between results of vertical and horizontal 

growing makes each individual extension in either direction to contribute equally 

to the final result.  The final result is less dependent on the errors during 

computations of the individual 3x3 grids. 

         

                 a.  Initial grid        b.  Computed cross 

Figure 15.  Preliminary computations 
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a.  Growing from the cross to the right          b.  Growing from the cross to the left 

         

c.  Growing in positive horizontal direction d.  Growing in negative horizontal 

         further away from center point                   further away from center point 

Figure 16.  Growing in the horizontal direction 
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a.  More growing in positive horizontal          b.  Growing in positive horizontal 

                 direction         is complete 

        

c.  Growing in horizontal direction                 d.  Averaging result between 

                    is complete            horizontal and vertical extensions 

Figure 17. Computation of all horizontal extensions and averaging 

 

In this case, no matter where initial grid was located all of the grid would be 

detected.  In addition, the computed grid would extend far beyond the implanted 

grid and needs to be cropped.  To perform cropping of true grid out of grown grid, 

the search for two rows and two columns with minimum count of dark centers is 
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performed.  For example, if 8x8 grid is being implanted, the search starts to look 

from left to right for a column with small count of dark spheres followed by the 

column with relative high dark sphere count.  This would indicate  - the left 

edge of the real grid.  In addition, since the length/height of the grid is known, the 

search also checks for the edge 

1x

Lxx += 12 , where L is length of the implanted 

grid.  If the right edge of the grid is not confirmed by the low number of dark 

spheres, is varied.  Once both vertical edges were confirmed by the significant 

decrease in the number of dark spheres in the columns outside of the grid, the 

extended grid is cropped.  Since edges of the grid were initially averaged with the 

3x3 grids outside of the implanted, they need to be recomputed.  Therefore the 

two columns of electrode on each side of the cropped grid are computed as 

horizontal extensions from inside.  Similarly, the grid horizontal boundaries were 

computed, the grid was trimmed to the proper height and edges were recomputed. 

1x

To insure uniformity and smoothness of the grid the vertical edges were 

recomputed by averaging with the vertical extension of the 3x3 grid from the 

center.  Similarly for the horizontal edges, they were averaged with horizontal 

extension of the 3x3 grid from the center. 

The final result of LxW grid is displayed in Rex3DViewer where its performance 

is visually evaluated. 
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CHAPTER 5 

VALIDATION OF THE RESULTS 

The validation of the results was done by comparing the results of the algorithm 

with the electrode centers manual extracted from MRI scan.  Due to lack of 

resources and access to MR scanner, I manually identified and extracted SE from 

MRI scans.  It was a time-consuming, exhaustive and non-trivial process.  Some 

of the artifacts were corrupted by noise to such a high degree that it was 

unfeasible to recover the electrode center.  After the manually extracted electrode 

centers were compared with the centers generated by the algorithm, numerous 

mistakes like missing electrodes or electrodes located either too far or too close 

were discovered in manually extracted data set.  The most severe errors were 

fixed and the distances between manually extracted electrodes and electrode 

center generated by this algorithm were computed.  The statistics of the distances 

between corresponding points are shown in Table 3. 

Table 3.  Evaluation of the algorithm against manually extracted points 

Statistics of the relative 

distance in mm 

Case 1 Case 3 Case 4 

Min .3584 .4213 .3741 

Max 4.5527 4.8953 6.3862 

Mean 2.1390 2.4313 2.6432 

Median 2.0031 2.2076 2.3128 

Standard deviation 1.2518 1.0833 1.4563 
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In addition, the computed grid was displayed on the screen and visually inspected.  

The captures for each case are shown on Figures 18, 19 and 20. 

 

Figure 18.  Case 1 with detected 8x10 grid shown (colored electrodes show 

functional areas) 
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Figure 19.  Case 3 with detected 8x8 grid shown (colored electrodes show 

functional areas) 
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 Figure 20.  Case 4 with detected 7x9 grid shown (colored electrodes show 

functional areas) 
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