
1

Analyzing differences between Internet information system
software architectures

Gregory D. Abowd, James E. Pitkow
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

{abowd,pitkow}@cc.gatech.edu

Rick Kazman
Department of Computer Science

University of Waterloo
Waterloo, Ontario
Canada N2L 3G1

rnkazman@watcgl.uwaterloo.ca

Abstract: While the growth and variety of Internet information systems has been dramatic
over the past five years, the methodical consideration of the differences between systems
has not been emphasized. We present a particular scenario-based method for analyzing
different systems in this domain based on their software architecture. We demonstrate this
method, the Software Architecture Analysis Method (SAAM), by applying it to three well-
known Internet information systems—WWW, WAIS and Harvest.

Keywords: Internet Information Systems, Software Architecture, Scenario-based
analysis, WWW, WAIS, Harvest.

1 Introduction

The development of Internet information systems (IISs) within the past five years has been tremendous.
While this growth has produced significant tools that facilitate information dissemination and retrieval, it
has increased the difficulty of identifying exactly how these systems differ. In such a rapidly evolving soft-
ware domain, it would be very useful to provide methodical ways to understand how various systems differ
for two reasons. First, such a method would help determine which among a collection of existing systems
is right for what types of information requirements. Second, a designer would have a way to predict the
value of an alternative design and communicate that rationale to a larger community.

In this paper, we will demonstrate a method for analyzing the difference between a set of existing IISs by
examining their software architectures. In doing this, we will provide an extensible technique for the In-
ternet development community to communicate alternative design decisions and predict their value for us-
ers of an IIS. Though we will not provide a broad analysis of IISs (we will look at only three example
systems) we will provide a structure and depth of analysis that allows for meaningful comparisons across
systems.

1.1 Architectural analysis

The software architecture of a system is a high-level organization of computational elements (called com-
ponents) and the interactions (called connections) between those elements. Software architecture has
emerged as an important sub-field within software engineering in the past few years ([13],[19]), and our
particular concern has been in the use of scenarios to analyze architectural descriptions ([9],[15]). High

2

level system descriptions are useful for communicating to a large audience the general behavior of a sys-
tem, so it is important that these architectural descriptions be understandable and informative. In addition,
designers make claims about qualities that their systems possess (e.g., scalability, portability, modifiabil-
ity), but these claims are frequently vacuous because there is no way to establish their validity.

We have developed a method—the Software Architecture Analysis Method (SAAM)—which uses scenar-
ios, or concrete descriptions of expected use of a system, as benchmarks to compare and contrast different
candidate architectures. The purpose of SAAM is to provide a way to validate claims about system quality
at the architectural level of description and not through vacuous appeal to abstract terms (“Our system is
scalable”). SAAM relies on a description of all candidate architectures that identifies the important com-
ponents and connections and the overall coordinated behavior of the system. These descriptions are then
measured against an agreed set of scenarios to determine the extent to which the candidate architecture
supports each scenario or must be modified in order to support it. Candidate architectures are then com-
pared against each other by noting how they “perform” for similar scenarios.

1.2 Surveys of IISs

IISs are large network-based distributed software systems which are increasingly important in both aca-
demic and commercial computing. Some examples of these systems are the World-Wide Web, Gopher,
WAIS, and Archie. Significant amounts of resources are being devoted to creating information reposito-
ries hosted by servers and clients to browse the repositories. Given the importance and virtual ubiquity of
these systems, it is natural to want to compare and contrast them. Some researchers have provided over-
views and comparisons of the various IISs. We will briefly review some of that previous work.

Schwartz et al. [20] provided an early taxonomy of resource discovery tools. They provided a textual de-
scription of nine different IISs and then defined four different characteristics (granularity, distribution, in-
terconnection topology and data integration scheme) that are used to classify how a given IIS handles both
data and metadata. This survey provides a good set of scenarios (browsing, searching and organizing) from
the perspective of both the consumer and provider of information. The descriptions of each system is fairly
informal and the level of detail provided varies between. There is also no clear connection between these
descriptions and the taxonomic classification provided at the end of the paper. Our approach is not taxo-
nomic; we do not intend to provide a description of the whole space of possible IIS designs. We do, how-
ever, want to provide a means of comparing systems. Schwartz et al. do the comparison by means of how
systems differ on the general characteristics for data and metadata. Our comparison will be based on much
less general characteristics, but will be performed on more consistent and formal system descriptions.

Obraczka, Danzig and Li [18] provide another taxonomic approach to describing 11 different IISs across
8 different characteristics. Their taxonomy extends that of Schwartz et al. with the addition of four yes/no
characteristics (query, browse, organize, directory of services) that are used to determine if an IIS provides
some capability or service. These last four characteristics are similar in flavor to the scenarios that we pro-
pose in this paper, except that we want to go further to explain how a given architecture must be modified
in order to provide some capability or service. They explicitly describe the architecture of a number of
these systems using the familiar box-and-line diagram approach. A brief glance at the different architec-
tural diagrams will show that there is no common interpretation for the diagrams and it is therefore very
difficult to do any analysis based on the architecture. This is more a reflection on the immaturity of soft-
ware architectural description languages than a poor reflection on designers.

3

There are also plenty of technical reports that provide details on any single IIS, some of which we make
use of in this paper. But the overriding concern with all of those papers is that they either provide too much
implementation detail to be communicated effectively to a more general design audience or they do not
provide enough detail (vague box-and-line diagrams) in order that a reader could establish the suitability
of the design for its intended purposes. Another purpose of this paper is to provide an example of suitably
high level yet sufficiently detailed architectural descriptions that can be the basis of analysis across a rap-
idly evolving domain such as IIS.

1.3 Overview

In the remainder of this paper we will define the SAAM method for architectural analysis of the IIS domain
and present a summary of a case study of a SAAM analysis of three IIS candidates—WAIS, WWW and
Harvest. In Section 2, we will define the steps involved in a SAAM analysis (scenario identification, can-
didate architecture description, per scenario evaluation, scenario interaction and overall evaluation). The
full SAAM evaluation is too long for this paper, so we will include a representative sample of the whole
analysis in the following sections. In Section 3, we will describe a subset of the scenarios used as bench-
marks for the analysis. In Section 4, we will provide the architectural descriptions of the three candidate
systems. In Section 5, we will show how the per scenario evaluation proceeds and what concrete rationale
behind the architectures emerges. We will not show the scenario interaction for this case study, but in Sec-
tion 6, we will discuss the conclusions on this case study before discussing in Section 7 our conclusions
concerning the importance of this method for analyzing architectural variants in the IIS domain in general.

2 Overview of SAMM

Our previous work ([15], [6], [16]) was motivated by frequent claims in the literature of how a particular
system satisfied non-functional qualities (modifiability, scalability, security, etc.) without any validation
of those claims. Our concern was not only that the claims were unsupported but also that there seemed to
be no clear way to demonstrate their validity. One reason for this is that most software quality attributes
are too complex and amorphous to be useful for evaluation because they lack proper consideration of the
context of use of a system.

This desire for context-based analysis has led us to adopt scenarios as the descriptive means of specifying
and evaluating quality attributes. SAAM provides a framework to characterize how well a particular ar-
chitectural design responds to the demands placed on it by a particular set of scenarios, where a scenario
is a specified sequence of steps involving the use or modification of the system. It is thus easy to imagine
a set of scenarios that would test what we normally call modifiability (by proposing a set of specific chang-
es to be made to the system), security (by proposing a specific set of threat actions), performance (by pro-
posing a specific set of usage profiles), etc.

In this section, we define the steps of a SAAM evaluation.

1. Develop scenarios.Develop task scenarios that illustrate the kinds of activities the system
must support and the kinds of changes which it is anticipated will be made to the system over
time. In developing these scenarios, it is important to capture all important uses of a system.
Thus scenarios will represent tasks relevant to different roles such as: end user/customer, mar-
keting, system administrator, maintainer, and developer. There is an important distinction be-
tween scenario types that we introduce at this point. Recall that a scenario is a brief description
of some anticipated or desired use of a system. It may be the case that the system directly sup-
ports that scenario, meaning that anticipated use requires no modification to the system in order
to be performed. This would usually be determined by demonstrating how the existing archi-

4

tecture would behave in performing the scenario (rather like a simulation of the system at the
architectural level). If a scenario is not directly supported, that means that there must be some
change to the system that we could represent architecturally. This change could be a change to
how one or more components perform an assigned activity, the addition of a component to per-
form some activity, the addition of a connection between existing components, or a combina-
tion of the above. We refer to the first class of scenarios asdirect scenarios and the second class
as indirect scenarios. The interplay between these first two stages of the SAAM analysis is
greatly aided by the identification of direct scenarios that lead to better understanding of both
static and dynamic architectural descriptions.

2. Describe candidate architecture.The candidate architecture or architectures should be de-
scribed in a syntactic architectural notation that is well-understood by the parties involved in
the analysis. These architectural descriptions need to indicate the system’s computation and
data components, as well as all relevant connections. For our purposes, we have tended to use
very simplistic architectural primitives. A typical representation will distinguish between com-
ponents that are active (transform data) and passive (store data) and also depict data (passing
information between components) and control (one component enabling another component to
perform its function) connections. This simple lexicon provides a reasonable static representa-
tion of the architecture. Accompanying this static representation of the architecture is a descrip-
tion of how the system behaves over time, or a more dynamic representation of the architecture.
This can take the form of a natural language specification (as in this paper) of the overall be-
havior or some other more formal and structured specification (as in some of our other current
case studies).

3. Perform scenario evaluations.For each indirect task scenario, list the changes to the archi-
tecture that are necessary for it to support the scenario and estimate the cost of performing the
change. A modification to the architecture means that either a new component or connection is
introduced or an existing component or connection requires a change in its specification. By
the end of this stage, there should be a summary table which lists all scenarios (direct and in-
direct). For each indirect scenarios the impact, or set of changes, that scenario has on the archi-
tecture should be described. In our experience, it is sufficient to list the existing components
that must be altered and the new components and connections that must be introduced. A tab-
ular summary is especially useful when comparing alternative architectural candidates because
it provides an easy way to determine which architecture better supports a collection of scenar-
ios.

4. Reveal scenario interaction.Different scenarios may necessitate changes to the same compo-
nents or connections. Determining scenario interaction is a process of identifying scenarios that
affect a common set of components. Scenario interaction measures the extent to which the ar-
chitecture supports an appropriate separation of concerns. For each scenario determine the
components or connections affected by that scenario. SAAM favors the architecture with the
fewest such scenario contentions.

5. Overall evaluation. Finally, weight each scenario and the scenario interactions in terms of
their relative importance and use that weighting to determine an overall ranking. This is a sub-
jective process, involving all of the stake-holders in the system.

5

Steps 1 and 2 are highly interdependent. Deciding the appropriate level of granularity for an architecture
will depend on the kinds of scenarios you wish to evaluate (though not all scenarios are appropriate, such
as a code size scenario). Determining a reasonable set of scenarios also depends on the kinds of activities
you expect the system to be able to perform, and that is reflected in the architecture.

Rather than offering a single architectural metric, SAAM produces a collection of small metrics (per-sce-
nario analyses). Given this set of mini-metrics, SAAM can be used (and in fact was developed with the
intent to) compare competing architectures on a per-scenario basis. It is left to the users of SAAM to de-
termine which scenarios are most important to them, in order to resolve cases where the candidates out-
score each other on different scenarios. Overall evaluation can only be derived in the context of organiza-
tional requirements.

3 Scenarios for IIS

This section defines a set of task scenarios according to the roles that they affect. These scenarios attempt
to unify other scenario descriptions [Mealling, Daniels & NCSA repository requirements & Library Group
at IITA] as well as contribute new tasks and clarify existing roles. Within the IIS domain, the roles of in-
terest can be specifically named:information consumer, a person who uses an IIS to search for or browse
information from one or a collection of data repositories;information provider , a person who wants to
make some information available on the Internet either as a stand-alone repository or as an addition to an
existing repository; andsystem administrator, a person who modifies or monitors the infrastructure of
the IIS. Here we provide a name and a brief description of the scenario that will be the basis of later eval-
uation. Several more scenarios were done in the actual case study, but we will only do the analysis here
for a subset.

3.1 Information consumer scenarios

C.1. Resource location
The user knows where a document is located and wants to be able to retrieve it, e.g. the user knows
the document is located on the W3C’s ftp server in /pub/www/arena/README.

C.2. Resource discovery
The user wants a particular kind of information, but does not know the information’s location, e.g.
a user might want to find a verified copy of Xmosaic_2.6a, or to find online publications by a cer-
tain author within the past year.

C.3. Browsing
Browsing, or serendipitous discovery ([7]), involves undirected behavior. For example, a user
might want to look to see what information is available across various sites.

3.2 Information provider scenarios

P.1. Adding information of a supported type
The provider wants to include information of a supported type into an existing repository.

P.2. Adding lots of information of a supported type
An important generalization of the previous scenario is to ask how difficult it is to support many
instances of the above task.

P.3. Creating new information of a type not currently supported
The provider wants to create new information of a type (FrameMaker, PhotoShop, etc.) not cur-
rently supported by this IIS.

6

3.3 System administrator scenarios1

A.1. Security from consumers
The administrator wants to prevent information consumers from corrupting the repository, i.e.
causing accidental or intentional changes to the repository that compromise the integrity of the in-
formation from an external consumer’s perspective.

A.2. Security from providers
The administrator wants to prevent information providers from corrupting the repository in the
same manner as describe above.

4 Candidate architectures

We will now present an architectural description of three IISs, the WWW, WAIS, and Harvest. The archi-
tectural description consists of a modified data flow diagram of the system, indicating gross-level compu-
tational and data components2, and the control and data connections between them, together with a textual
description of the overall behavior of the system. Though this is not a fully formal definition, care was
taken to provide an accurate representation of each system at a similar level of detail. In creating these de-
scriptions, the authors referred to recent literature, inspected code, and consulted IIS domain experts.

The descriptions distinguish between data and control connections, even though these are frequently im-
plemented by the same mechanism, e.g. a procedure call. A data connection between two components in-
dicates that tokens of data are passed between these components. A control connection between two
components indicates that one component causes the other to perform some of its main computation. For
example, when one executes a procedure call in a standard procedural language, one typically passes data
tokens as the arguments and return value of the procedure call and a “life” token that enables the called
procedure to become active, with the calling procedure being suspended until the called procedure returns
the “life” token. Some connection types involve only a single type of connection. For example, TCP/IP
connections are pure data: neither procedure can force the other procedure to become active or inactive by
sending or not sending data. On the other hand, a Unix “virtual fork”, is mainly a control connection.

4.1 WWW

The Web is a distributed hypermedia system organized as a loosely connected set of clients and servers
that share a common set of communication protocols and markup languages. Servers make Internet re-
sources available to a community of clients that speak a common protocol. In addition, WWW clients typ-
ically understand a number of other protocols ([2],[3],[4],[12]). Figure 1 depicts the WWW software
architecture. In this example, we only consider the connection between a WWW client and WWW server,
even though it is possible for a WWW client to natively speak to other IISs (Gopher, FTP, etc.).3

WWW clients provide a User Interface Manager.4 This manager can be graphical or character based. The
User Interface Manager captures user’s request for information retrieval in the form of a Uniform Re-

1. These scenarios do not refer to encryption, traffic analysis, or any other information content based notion of security. Rather, the security
scenarios listed deal directly with the architectures vulnerability to various roles of intruder.
2. We also use boxes in the diagrams to delineate important system boundaries, such as the client-server distinction.
3. The use of the Common Gateway Interface (CGI) provides another way for a WWW server to simulate other access protocols while still
communicating with the WWW client using HTTP. This ability does not reduce the overall functional capability of WWW system presented.

7

source Locator (URL) and passes the information to the Access Manager. The Access Manager determines
if the requested URL exists in cache and also interprets history-based navigation, e.g. ‘back’. If the file is
cached, it is retrieved from the Cache Manager and passed to the Presentation Manager for display to either
the User Interface or an external viewer. If the file is not cached, the Protocol Manager determines the type
of request and invokes the appropriate protocol suite to service the request. This protocol is used by the
client Stream Manager for communicating the request to the server. Once the client Stream Manager re-
ceives a response from the server in the form of a document, this information is passed to the Presentation
Manager for appropriate display. The Presentation Manager consults a static View Control configuration
file (mimerc, mailcap, etc.) that aids in the mapping of document types to external viewers.

Currently, the WWW servers available implement a subset of defined HTTP requests. This subset allows
for: the retrieval of documents; the retrieval of document meta-information; and server-side program ex-
ecution via the Common Gateway Interface (CGI).

When a request is received by the server Stream Manager, the type of request is determined and the path
of the URL is resolved via the Path Resolver. The HTTP Server consults an Access List to determine if
the requesting client is authorized to access the data pointed to by the URL. The HTTP Server might ini-
tiate a password authentication session with the client to permit access to secured data. Assuming authen-
tication succeeds, the HTTP Server accesses the File System (which is outside the WWW Server
boundary) and writes the requested information to stream. If a program is to be executed, a process is made
available (either new or polled) through the CGI and the program is executed, with the output written by
the server Stream Manager back to the WWW Client.

4. In this description and later descriptions of WAIS and Harvest, we use capitalization to refer to components in the architectural descrip-
tion.

WWW Client

WWW Server

UI

Protocol

CGI Path

Stream

HTTP

Access

Cache

Figure 1: A graphical description of the World-Wide Web
architecture

Presentation
Manager

Manager

Manager

Manager

Manager

Manager

 Data

Function Control
Data

()
()

Components Connections

Stream
Manager

Server

Resolver

File

list
Access

System

External
Viewer Control

View

HTTP
protocol

8

4.2 WAIS

Wide Area Information Server (WAIS)5 is a network publishing and retrieval system designed to help us-
ers find distributed networked information using a mixture of natural language and boolean queries ([8],
[21],[22]). Communication between client and server adheres to the NISO standard protocol Z39.50.
Searching for information via the WAIS client-server model is a two step process. The directory of servic-
es—a centralized index of all registered WAIS servers—is queried to locate potential databases that con-
tain information on a user-specified topic. The user then selects a subset of these potential databases and
formulates a query to locate specific relevant documents. WAIS ranks all returned hits for a query, indi-
cating which documents most closely meet the user’s query. WAIS allows for an iterative search strategy
in which a user can indicate that subsequent searches on a database should look for files that most nearly
match some previously identified file. Once the user finds a document of interest, a request can be made
to retrieve that document from its database. The architecture of WAIS is depicted in Figure 2.

The WAIS client provides the user interface as a Query Panel that is used to formulate a query and indicate
the data sources (WAIS databases, including the Directory of Services) that the user wishes to search. The
Query Panel also displays the ranked results of queries. Each Database provides descriptive information
including its location, name and summary of contents which is accessible through the consumer-browsable
Source Descriptions file. This information is used to establish the connection from the client to the server.
After the user formulates a query, it is passed to the client’s Stream Manager, which handles communica-

5. WAIS and Wide Area Information Servers are both registered trademarks of WAIS Inc. There are public domain versions of WAIS, called
freeWAIS and ZDist. For the purposes of this paper, the differences between these systems is not significant. Most of the technical documen-
tation for freeWAIS has been consulted in our analysis, but we will still refer to the system as WAIS.

Source

WAIS Client

WAIS Server
Query

Stream

Presentation
Search Path

 Data

Function Control
Data

()
()

Components Connections

Descriptions

Panel

Manager

Manager

External
Viewer

Stream
Manager

Engine Resolver
WAIS
Index

Index Access
ListDatabase

external user

Z39.50
protocol

Figure 2: WAIS architecture for single server hosting
several databases

9

tion with the WAIS Server. Information returned to the client’s Stream Manager is then passed to the Pre-
sentation Manager, which either sends the query result to the Query Panel or directs the document
information to an External Viewer, thus enabling the viewing of various document formats.

The WAIS Server services the requests from the WAIS Client. Two types of requests are serviced: queries
and document retrievals. Each server can host more than one database. Each database has an associated
inverted keyword Index and Access List. This Index facilitates the matching of queries to documents. The
Access List identifies those clients with permission to access the databases. For a query, the Search Engine
determines which documents are relevant for the search using the Index and Access List. It then retrieves
the documents from the Database itself and ranks the documents according to some relevance criteria
based on the user’s query.6 The Search Engine then writes to stream an ordered list of documents with
header information (including relevance to the original query) to the client for display to the user. For doc-
ument retrieval, the client sends a request to the server, the Search Engine checks access privileges and
retrieves the file if access by the client is allowed, compresses the data and writes it to stream.

4.3 Harvest

Harvest is a resource discovery tool which leverages off of much of the functionality of the Web [6]. Un-
like the Web, it attempts to provide mechanisms to facilitate global resource discovery amongst heterog-
enous Internet based services like FTP, Gopher, UseNet News, & the WWW. While Harvest does not
introduce any new client technologies (WWW Browsers are the default Harvest client) and many compo-
nents speak existing protocols (HTTP) and generate existing markup (HTML), Harvest does provide an
architecture for global search and retrieval across existing network-based, information providers.

The architecture of Harvest (shown in Figure 3) which extends WWW is based up the notion of informa-
tion “Gatherers” and “Brokers.” A Gatherer resides either in an existing repository server (e.g., a WWW
server or WAIS server) or interacts remotely via a network protocol (currently HTTP) and collects sum-
maries of metadata for various Brokers to store. This collection is done by the Typer recognizing types of
information in the repository and then the Summarizer extracting useful content metadata. Gatherers and
Brokers use a specialized protocol (SOIF) for efficient communication and storage of metadata. Informa-
tion from one Broker to another is replicated in a hierarchical manner, this organization being maintained
by a Replication Manager (not shown). Periodically, the Collector component in the Broker will request
updates of metadata from each Gatherer or Broker it services. Any updates are passed to the Registry,
which records unique object identifiers and time-to-live values for the data. Identifiers are provided to the
IR/Search Engine and the Store Manager is requested to archive a copy of summary metadata in the Meta-
data DB on the file system for later retrieval by the IR/Search Engine.

The Broker responds to queries from clients (currently only WWW clients) by returning the location
(URLs) of the items of interest. The query is accepted by the Query Manager, which then translates the
request into the Harvest Query Language (HQL) and passes it onto the IR/Search Engine. The IR/Search
Engine then provides a response to the query by accessing the Metadata DB according to its own searching
strategy.

6. Though the WAIS documentation suggests that a WAIS query can span across several Databases at different sites, we do not see in the
documentation of this system any indication that the relevance ratings span across sites, that is, the individual WAIS Servers all produce rel-
evance criteria for information in their databases and no attempt is made in the WAIS Client to do further ranking.

10

5 Scenario evaluations

In this section, we will evaluate the three candidate scenarios against each of the consumer and provider
scenarios defined in Section 3. For reasons of space, we will not discuss the administrator scenarios here.

5.1 Information consumer scenarios

C.1. Resource location

WWW: The user can explicitly communicate the known URL via the User Interface to the Access Man-
ager. This scenario, therefore, is directly supported.

WAIS: The notion of a universal name does not exist with WAIS, therefore the user would have to know
the Database where the information resides as well as the handle to the file that contained the information.
This scenario, therefore is only indirectly supported by the architecture. In order to support this scenario,
the Query Panel would have to be modified to allow sending explicit document retrieval directives without
first having to perform a search.

Harvest: Since Harvest is currently built on top of WWW clients, this scenario is directly supported.

C.2. Resource discovery

WWW: The current Web implementation does not directly enable users to find information on a topic. It
is possible for WWW to provide other protocol services, including WAIS, either via CGI or the common
library of protocols.

Broker

Query

Figure 3: The Harvest architecture Data

Function Control
Data

()
()

Components Connections

Manager

Collector

Provider

IR/Search
Engine

Typer

Summarizer

RegistryStore
Manager

Gatherer

Metadata
DB

Broker

(e.g., WWW Server)

Client

(e.g., WWW Client)

Provider + Gatherer

HTTP

HTTP

SOIF

SOIF

HTTP

HQL

11

WAIS: WAIS supports a two-phase search strategy which allows a narrowing of the search to a set of po-
tential databases and then an actual search of those databases. The effectiveness of this two-pass strategy
depends on the accuracy of meta-information stored in the directory of services. We conclude that WAIS
directly supports this scenario.

Harvest: The arrangement of topic-specific Gatherers and Brokers allows Harvest to directly support this
scenario.

C.3. Browsing

WWW: Browsing is enabled to the extent that the User Interface component makes available locations of
information (ar URLs) at various places on the Web. WWW supports this scenario directly, though there
is no support for organized browsing.

WAIS: A limited form of browsing is possible in WAIS. The Source Descriptions file is accessible from
the Query Panel. But this information is restricted to a particular site’s repository. It is also possible to view
a catalog on each server, but this is still more restrictive than the scenario suggests and cannot be explicitly
requested by the Query Panel. Any form of browsing to be supported by WAIS would have to modify the
Query Panel and the Search Engine.

Harvest: This scenario is direct for the same reasons as WWW. We note that it is not currently possible
to browse metadata in the Brokers, but the scenario was not referring to that capability.

5.2 Information provider scenarios

P.1. Adding information of a supported type

WWW: The Web servers attempt to be a MIME Content Type File System, so any existing MIME typed
digital information can be made accessible. Permission to write new information to the File System is the
only other provider requirement. Once that information is in the File System, it can instantly be accessed.
This scenario is directly supported by WWW.

WAIS: The repositories are the Databases that the Server accesses. These are typed, allowing WAIS to
perform its indexing, query response and text retrieval more efficiently. The entries in the databases are
stored as files in the underlying file system, so there is no real difficulty introducing a new piece of infor-
mation (again, assuming the provider has correct file system privileges). Even though the Index must be
updated to make the new data available to the consumer, this scenario is directly supported.

Harvest: The information can be added to the repository, just as with WWW. The Gatherer must then de-
tect the presence of the new information (either by automatic polling or explicit invocation) to extract the
SOIF summary. When the Broker next requests updates from the Gatherer, this new information will be
passed along and made available to a consumer. This scenario is direct, though we now have two points
of delay in making information available to the user.new information has to be gathered and then forward-
ed on upon request by an interested Broker.7

7. Both WAIS and Harvest introduce delays in making new information available to the consumer. Though immediate availability of infor-
mation is an important feature of an IIS, it is not a matter considered by the P.1 scenario, and so we ignore it in our overall ranking of the can-
didates for this scenario.

12

P.2. Adding lots of information of a supported type to a single repository

WWW: The architecture indirectly supports this scenario. Efficient support of this scenario hinges on how
well the underlying operating system supports adding numerous new files. Modifications would be re-
quired to the File System.

WAIS: Adding lots of information to the Database is similar to the WWW case, depending on the oper-
ating system for efficiency. The Index allows for incremental updating, meaning that the whole Index does
not have to be recomputed after every addition. What is not clear from the technical documentation on the
Index is how efficient the incremental indexing is over time. We therefore consider this scenario indirectly
supported with potential bottlenecks at the Database and Index.

Harvest: Similar to WWW with added bottlenecks at the Gatherer and Broker. If Gatherer is local to re-
pository, then efficient automated gathering can occur. If Gatherer is remote, then there is a network bot-
tleneck. Broker-Gatherer communication depends on performance of high-level SOIF protocol, which is
communicated in compressed form to speed transmission. There is an additional step involved here which
is equivalent to the WAIS step for updating the Metadata DB for use by the IR/Search Engine. The effi-
ciency of that step depends on the IR/Search Engine in place (which could be WAIS Search Engine).

P.3. Creating new data repository of a type not currently supported

WWW: Since WWW servers attempt to use MIME Content Types, the addition of an unregistered type
would result in no header information being passed to the Client, unless the HTTP Server were modified.
If the client was unable to type the file, it would default to ‘application/octet-stream’. If the HTTP Server
adds a new MIME Content Type that the Client does not understand, the behavior of the client is unde-
fined, unless the View Control is modified and an External Viewer application is provided.

WAIS: Modifying WAIS to support this task would require changing the Index because it currently needs
to have the format of new types hard coded as a parsing routine.

Harvest: Harvest relies on having a SOIF format for data in order to operate effectively. For new types of
information, the provider can use the Essence system [14] to change how the Typer recognizes data types
and how the Summarizer extracts metadata. Since Essence is used at the core of defining the behavior of
the Typer and Summarizer, we consider this scenario directly supported.

13

6 Overall evaluation

The results of the scenario evaluations are given in Table 1. The final three columns indicate the extent of

architectural modification that is required for indirect scenarios. The second column provides a relative
ranking for that scenario (curly brackets {} indicate a tie, W=WWW, A=WAIS, H=Harvest).This table
can be used to reveal the scenario interactions discussed as Step 4 in Section 2, but we will not discuss that
here. We also do not consider weighting the scenarios in this paper, as that depends on the intended use of
the IIS, which can vary based on consumer, provider and administrator preferences. Given a relative rank-
ing of scenarios, however, it should be clear how one could use the summary analysis in Table 1 to justify
choosing one IIS over another.

7 Conclusions

We have described a Software Architecture Analysis Method (SAAM) that provides a scenario-based
analysis technique for comparing different software architectures within the same domain, and we dem-
onstrated this by comparing three different IISs—WWW, WAIS and Harvest. Whereas some of the con-
clusions of our analysis might be debatable, we would like to focus attention on the value of the process
behind the evaluation, because that offers the most promise to the growing community of IIS users and
developers. We have provided a procedure and first attempt toward understanding the differences between
systems in this rapidly evolving domain. The results of SAAM can be used to choose between various IISs
(for the consumer). to establish rationale for proposed changes to the general IIS infrastructure and to doc-
ument the rapid evolution of software architecture for IISs.

Table 1: Summary of evaluation of WWW and WAIS

Scenario Rank Changes/additions necessary

WWW WAIS Harvest

Information consumer

C1. Resource location {H,W},A direct Query panel direct

C2. Resource discovery {A,H},W Protocol Manager
CGI

direct direct

C3. Browsing {H,W},A direct Query Panel
Search Engine

direct

Information provider

P1. Adding information of
supported type

{A,H,W} direct direct direct

P2. Adding lots of informa-
tion of supported type

W,A,H File System Database
WAIS Index

Provider repository
Gatherer
Broker-Gatherer SOIF
Broker

P3. Creating new data of a
type currently unsupported

H,A,W HTTP Server
View Control
External Viewer

Database
WAIS Index

direct

14

The majority of the benefit of SAAM is people-oriented. We are forcing an analysis across a variety of
systems using a common architectural representation. Our experience in other case studies has shown that
this helps to reinforce a common understanding within a larger community and is the first step toward de-
veloping canonical representations. That we are describing systems at the architectural level is important
for highlighting major structural or behavioral differences. But we acknowledge that significant differenc-
es between systems exist at more detailed levels of description and these can be just as important as the
high level decomposition.

SAAM is a scenario-based method for analyzing software architectures. We have demonstrated an evalu-
ative use of scenarios on existing systems to understand their differences. It has long been recognized that
scenarios are an effective way to capture requirements before proceeding to later stages of design. Scenar-
ios can therefore be the basis of more generative design activities, as developers consider changes to the
basic infrastructure or architecture of next-generation IISs. But whether the use of scenarios is generative
or evaluative, we are here demonstrating the importance of establishing the important scenarios for IIS
analysis. In this paper, we defined eight different possible scenarios from three different perspectives. This
list is in no way complete, nor do we even claim that it represents the most important concerns of the IIS
community. There has been activity in the IIS community to document scenarios (see, for example, the
draft report on URC scenarios [10]), and that activity would be the best input for improving the relevance
of this SAAM analysis.

Expertise in the domain of IIS (in our case provided by Pitkow and lots of publicly available documenta-
tion) was vital to the success of this case study, as was expertise in describing and analyzing software ar-
chitecture. Without IIS expertise, many of the scenarios in this case study would have gone unanswered.
The importance of SAAM is that it forces the IIS evaluator to answer many questions about the architec-
tural design and potential changes to that design that would otherwise go undeclared.

8 Acknowledgments

The authors would like to thank Len Bass and Paul Clements of the Software Engineering Institute and
Rob Allen of the Computer Science Department at Carnegie Mellon University and various anonymous
referees for their comments on earlier drafts of this paper.

9 References

[1] G. Abowd and L. Bass, “Software Architecture: A tutorial introduction”, Tutorial presented at 1995 Motorola Software
Engineering Symposium, Ft. Lauderdale, FL, June 28, 1995. Copies available from authors upon request.

[2] T. Berners-Lee, R. Cailliau, J.-F. Groff, “The World-Wide Web”,Computer Networks and ISDN Systems,25, North-
Holland, 1992, pp. 454-459.

[3] T. Berners-Lee, R. Cailliau, J. Groff, B. Pollermann, “World-Wide Web: The Information Universe”,Electronic Net-
working: Research, Applications and Policy, 2(1), Meckler Publishing, 1992, pp. 52-58.

[4] T. Berners-Lee, R. Cailliau, A. Luotonen, H. Nielsen, and A. Secret, “The World-Wide Web”,Communications of the
ACM, 37(8), 1994, pp. 76-82.

[5] C. M. Bowman, P. Danzig, U. Manber, M. Schwartz, “Scalable Internet Resource Discovery: Research Problems and
Approaches”,Communications of the ACM,37(8), 1994, pp. 98-107.

[6] C. M. Bowman, P. B. Danzig, D.R. Hardy, U. Manber, M. F. Schwartz and D. P. Wessels, “Harvest: A scalable, cus-
tomizable discovery and access system”, Department of Computer Science, University of Colorado, Technical Report

15

CU-CS-732-94. March, 1995 revision of original August 1994 draft.

[7] L. Catledge and J. Pitkow, “Characterizing Browsing Behaviors on the World-Wide Web”,Computer Networks and
ISDN Systems,27, North-Holland, 1995 (in press).

[8] The Center for Networked Information Discovery and Retrieval, “freeWAIS Technical Documentation”, On-line docu-
mentation. URL ftp://ftp.cnidr.org/pub/NIDR.tools/freewais/.

[9] P. Clements, L. Bass, R. Kazman, G. Abowd, “Predicting Software Quality by Architecture-Level Evaluation”, In the
proceedings of theInternational Conference on Software Quality, Austin, TX, October 1995. To appear.

[10] R. Daniel and M. Mealling, “URC scenarios and requirements”, IETF Internet Draft report, June 27, 1995. URL http://
www.acl.lanl.gov/URI/Scenarios/.

[11] H. Frystyk, “WWW Library Internals—Overview”, On-line documentation, URL http://info.cern.ch/hypertext/WWW/
Library/User/Guide/Overview.html.

[12] H. Frystyk, H. Lie, “Towards a Uniform Library of Common Code: A Presentation of the CERN World-Wide Web
Library”, Proceedings of the Second International World-Wide Web Conference, 1994.

[13] D. Garlan and M. Shaw, An Introduction to Software Architecture.Advances in Software Engineering and Knowledge
Engineering, Volume I, World Scientific Publishing, 1993.

[14] D. R. Hardy and M. F. Schwartz, “Customized information extraction as a basis for resource discovery”, Department of
Computer Science, University of Colorado, Technical Report CU-CS-707-94, March 1994.

[15] R. Kazman, L. Bass, G. Abowd, S.M. Webb, “SAAM: A Method for Analyzing the Properties Software Architectures”,
Proceedings of the 16th International Conference on Software Engineering, (Sorrento, Italy), May 1994, pp. 81-90.

[16] R. McCool, “The Common Gateway Interface”, On-line documentation, URL http://hoohoo.ncsa.uiuc.edu/cgi/
overview.html.

[17] B. Neuman, “The Virtual System Model: A Scalable Approach to Organizing Large Systems”, PhD Thesis, University
of Washington, 1992.

[18] K. Obraczka, P. Danzig, and S. Li, “Internet Resource Discovery Services”,IEEE Computer,26(9), 1993, pp. 8-22.

[19] D. Perry and A. Wolf. “Foundations for the study of software architecture”,SIGSOFT Software Engineering Notes,
17(4), October 1992, pp. 40-52.

[20] M. Schwartz, A. Emtage, B. Kahle, B. Neuman, “A Comparison of Internet Resource Discovery Approaches”,Comput-
ing Systems,5(4), 1992, pp. 461-493.

[21] WAIS, Inc., “WAIS Server, WAIS Workstation, WAIS Forwarder for Unix: Technical Description”, Technical Descrip-
tion, Release 1.1, 1993.

[22] WAIS, Inc., “WAIS for UNIX”, On-line documentation, URL http://www.wais.com/company/Tech_TOC.html.

