
Factor Graphs and GTSAM:

A Hands-on Introduction

Frank Dellaert
Technical Report number GT-RIM-CP&R-2012-002

September 2012

Overview

In this document I provide a hands-on introduction to both factor graphs and GTSAM.
Factor graphs are graphical models (Koller and Friedman, 2009) that are well suited to mod-

eling complex estimation problems, such as Simultaneous Localization and Mapping (SLAM) or
Structure from Motion (SFM). You might be familiar with another often used graphical model,
Bayes networks, which are directed acyclic graphs. A factor graph, however, is a bipartite graph
consisting of factors connected to variables. The variables represent the unknown random vari-
ables in the estimation problem, whereas the factors represent probabilistic information on those
variables, derived from measurements or prior knowledge. In the following sections I will show
many examples from both robotics and vision.

The GTSAM toolbox (GTSAM stands for “Georgia Tech Smoothing and Mapping”) toolbox is
a BSD-licensed C++ library based on factor graphs, developed at the Georgia Institute of Technol-
ogy by myself, many of my students, and collaborators. It provides state of the art solutions to the
SLAM and SFM problems, but can also be used to model and solve both simpler and more com-
plex estimation problems. It also provides a MATLAB interface which allows for rapid prototype
development, visualization, and user interaction.

GTSAM exploits sparsity to be computationally efficient. Typically measurements only provide
information on the relationship between a handful of variables, and hence the resulting factor graph
will be sparsely connected. This is exploited by the algorithms implemented in GTSAM to reduce
computational complexity. Even when graphs are too dense to be handled efficiently by direct
methods, GTSAM provides iterative methods that are quite efficient regardless.

You can download the latest version of GTSAM at http://tinyurl.com/gtsam.

1

Contents

1 Factor Graphs 3

2 Modeling Robot Motion 4
2.1 Modeling with Factor Graphs . 4
2.2 Creating a Factor Graph . 4
2.3 Factor Graphs versus Values . 5
2.4 Non-linear Optimization in GTSAM . 6
2.5 Full Posterior Inference . 7

3 Robot Localization 8
3.1 Unary Measurement Factors . 8
3.2 Defining Custom Factors . 8
3.3 Using Custom Factors . 10
3.4 Full Posterior Inference . 10

4 PoseSLAM 12
4.1 Loop Closure Constraints . 12
4.2 Using the MATLAB Interface . 14
4.3 Reading and Optimizing Pose Graphs . 15
4.4 PoseSLAM in 3D . 17

5 Landmark-based SLAM 18
5.1 Basics . 18
5.2 Of Keys and Symbols . 19
5.3 A Larger Example . 20
5.4 A Real-World Example . 21

6 Structure from Motion 22

7 Visual Odometry 23

8 Visual SLAM 23

9 More Applications 24
9.1 Conjugate Gradient Optimization . 24
9.2 Fixed-lag Smoothing and Filtering . 25
9.3 iSAM: Incremental Smoothing and Mapping . 25
9.4 Discrete Variables and HMMs . 25

2

1 Factor Graphs

Let us start with a one-page primer on factor graphs, which in no way replaces the excellent and
detailed reviews by Kschischang et al. (2001) and Loeliger (2004).

Figure 1: An HMM, unrolled over three time-steps, represented by a Bayes net.

Figure 1 shows the Bayes network for a hidden Markov model (HMM) over three time steps.
In a Bayes net each node is associated with a conditional density: the top Markov chain encodes
the prior P (X0) and transition probabilities P (X2|X1) and P (X3|X2), whereas measurements Z

t

depend only on the state X
t

, modeled by conditional densities P (Z
t

|X
t

). Given known measure-
ments z1, z2 and z3 we are interested in the hidden state sequence (X1, X2, X3) that maximizes the
posterior probability P (X1, X2, X3|Z1 = z1, Z2 = z2, Z3 = z3). Since the measurements Z1, Z2,
and Z3 are known, the posterior is proportional to the product of six factors, three of which derive
from the the Markov chain, and three likelihood factors defined as L(X

t

; z) / P (Z
t

= z|X
t

):

P (X1, X2, X3|Z1, Z2, Z3) / P (X1)P (X2|X1)P (X3|X2)L(X1; z1)L(X2; z2)L(X3; z3)

Figure 2: An HMM with observed measurements, unrolled over time, represented as a factor graph.

This motivates a different graphical model, a factor graph, in which we only represent the un-
known variables X1, X2, and X3, connected to factors that encode probabilistic information on
them, as in Figure 2. To do maximum a-posteriori (MAP) inference, we then maximize the product

f(X1, X2, X3) =
Y

f
i

(X
i

)

i.e., the value of the factor graph. It should be clear from the figure that the connectivity of a factor
graph encodes for each factor f

i

on which subset of variables X
i

it depends. In the examples below,
we use factor graphs to model more complex MAP inference problems in robotics.

3

2 Modeling Robot Motion

2.1 Modeling with Factor Graphs

Before diving into a SLAM example, let us consider the simpler problem of modeling robot motion,
which can be done with a continuous Markov chain, and provides a gentle introduction to GTSAM.

x1 x2 x3

f0(x1) f1(x1, x2; o1) f2(x2, x3; o2)

Figure 3: Factor graph for robot localization.

The factor graph for a simple example is shown in Figure 3. There are three variables x1, x2,
and x3 which represent the poses of the robot over time, rendered in the figure by the open-circle
variable nodes. In this example, we have one unary factor f0(x1) on the first pose x1 that encodes
our prior knowledge about x1, and two binary factors that relate successive poses, respectively
f1(x1, x2; o1) and f2(x2, x3; o2), where o1 and o2 represent odometry measurements.

2.2 Creating a Factor Graph

The following C++ code, included in GTSAM as an example, creates the factor graph in Figure 3:

1 // Create an empty nonlinear factor graph

2 NonlinearFactorGraph graph;

3

4 // Add a Gaussian prior on pose x_1

5 Pose2 priorMean(0.0, 0.0, 0.0);

6 noiseModel::Diagonal::shared_ptr priorNoise =

7 noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1));

8 graph.add(PriorFactor<Pose2>(1, priorMean, priorNoise));

9

10 // Add two odometry factors

11 Pose2 odometry(2.0, 0.0, 0.0);

12 noiseModel::Diagonal::shared_ptr odometryNoise =

13 noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));

14 graph.add(BetweenFactor<Pose2>(1, 2, odometry, odometryNoise));

15 graph.add(BetweenFactor<Pose2>(2, 3, odometry, odometryNoise));

Listing 1: Excerpt from examples/OdometryExample.cpp

Above, line 2 creates an empty factor graph. We then add the factor f0(x1) on lines 5-8 as an
instance of PriorFactor<T>, a templated class provided in the slam subfolder, with T=Pose2. Its

4

constructor takes a variable Key (in this case 1), a mean of type Pose2, created on Line 5, and a
noise model for the prior density. We provide a diagonal Gaussian of type noiseModel::Diagonal

by specifying three standard deviations in line 7, respectively 30 cm. on the robot’s position, and
0.1 radians on the robot’s orientation. Note that the Sigmas constructor returns a shared pointer,
anticipating that typically the same noise models are used for many different factors.

Similarly, odometry measurements are specified as Pose2 on line 11, with a slightly different
noise model defined on line 12-13. We then add the two factors f1(x1, x2; o1) and f2(x2, x3; o2) on
lines 14-15, as instances of yet another templated class, BetweenFactor<T>, again with T=Pose2.

When running the example (make LocalizationExample.run on the command prompt), will
print out the factor graph as follows:

Factor Graph:

size: 3

factor 0: PriorFactor on 1

prior mean: (0, 0, 0)

noise model: diagonal sigmas [0.3; 0.3; 0.1];

factor 1: BetweenFactor(1,2)

measured: (2, 0, 0)

noise model: diagonal sigmas [0.2; 0.2; 0.1];

factor 2: BetweenFactor(2,3)

measured: (2, 0, 0)

noise model: diagonal sigmas [0.2; 0.2; 0.1];

2.3 Factor Graphs versus Values

At this point it is instructive to emphasize two important design ideas underlying GTSAM:

1. The factor graph and its embodiment in code specify the joint probability distribution P (X|Z)

over the entire trajectory X
�
= {x1, x2, x3} of the robot, rather than just the last pose. This

smoothing view of the world gives GTSAM its name: “smoothing and mapping”. Later in
this document we will talk about how we can also use GTSAM to do filtering (which you
often do not want to do) or incremental inference (which we do all the time).

2. A factor graph in GTSAM is just the specification of the probability density P (X|Z), and
the corresponding C++ FactorGraph and its derived classes do not ever contain a “solution”.
Rather, there is a separate type Values that can be used to specify specific values for (in this
case) x1, x2, and x3, which can then be used to evaluate the probability (or, more commonly,
the error) associated with particular values.

The latter point is often a point of confusion with beginning users of GTSAM. It helps to remember
that when designing GTSAM we took a functional approach of classes corresponding to mathemat-

5

ical objects, which are usually immutable. You should think of a factor graph as a function to be
applied to values -as the notation f(X) / P (X|Z) implies- rather than as an object to be modified.

2.4 Non-linear Optimization in GTSAM

The listing below creates a Values instance, and uses it as the initial estimate to find the maximum
a-posteriori (MAP) assignment for the trajectory X:

1 // create (deliberatly inaccurate) initial estimate

2 Values initial;

3 initial.insert(1, Pose2(0.5, 0.0, 0.2));

4 initial.insert(2, Pose2(2.3, 0.1, -0.2));

5 initial.insert(3, Pose2(4.1, 0.1, 0.1));

6

7 // optimize using Levenberg-Marquardt optimization

8 Values result = LevenbergMarquardtOptimizer(graph, initial).optimize();

Listing 2: Excerpt from examples/OdometryExample.cpp

Lines 2-5 in Listing 2 create the initial estimate, and on line 8 we create a non-linear Levenberg-
Marquardt style optimizer, and call optimize using default parameter settings. The reason why
GTSAM needs to perform non-linear optimization is because the odometry factors f1(x1, x2; o1)

and f2(x2, x3; o2) are non-linear, as they involve the orientation of the robot. This also explains
why the factor graph we created in Listing 1 is of type NonlinearFactorGraph. The optimiza-
tion class linearizes this graph, possibly multiple times, to minimize the non-linear squared error
specified by the factors.

The relevant output from running the example is as follows:

Initial Estimate:

Values with 3 values:

Value 1: (0.5, 0, 0.2)

Value 2: (2.3, 0.1, -0.2)

Value 3: (4.1, 0.1, 0.1)

Final Result:

Values with 3 values:

Value 1: (-1.8e-16, 8.7e-18, -9.1e-19)

Value 2: (2, 7.4e-18, -2.5e-18)

Value 3: (4, -1.8e-18, -3.1e-18)

It can be seen that, subject to very small tolerance, the ground truth solution x1 = (0, 0, 0), x2 =

(2, 0, 0), and x3 = (4, 0, 0) is recovered.

6

2.5 Full Posterior Inference

GTSAM can also be used to calculate the covariance matrix for each pose after incorporating the
information from all measurements Z. Recognizing that the factor graph encodes the posterior
density P (X|Z), the mean µ together with the covariance ⌃ for each pose x approximate the
marginal posterior density P (x|Z). Note that this is just an approximation as even in this simple
case the odometry factors are actually non-linear in their arguments, and GTSAM only computes a
Gaussian approximation to the true underlying posterior.

The following C++ code will recover the posterior marginals:

1 // Query the marginals

2 cout.precision(2);

3 Marginals marginals(graph, result);

4 cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl;

5 cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl;

6 cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl;

Listing 3: Excerpt from examples/OdometryExample.cpp

The relevant output from running the example is as follows:

x1 covariance:

0.09 1.1e-47 5.7e-33

1.1e-47 0.09 1.9e-17

5.7e-33 1.9e-17 0.01

x2 covariance:

0.13 4.7e-18 2.4e-18

4.7e-18 0.17 0.02

2.4e-18 0.02 0.02

x3 covariance:

0.17 2.7e-17 8.4e-18

2.7e-17 0.37 0.06

8.4e-18 0.06 0.03

What we see is that the marginal covariance P (x1|Z) on x1 is simply the prior knowledge on x1,
but as the robot moves the uncertainty in all dimensions grows without bound, and the y and ✓

components of the pose become (positively) correlated.
An important fact to note when interpreting these numbers is that covariance matrices are given

in relative coordinates, not absolute coordinates. This is because internally GTSAM optimizes for
a change with respect to a linearization point, as do all nonlinear optimization libraries.

7

3 Robot Localization

3.1 Unary Measurement Factors

In this section we add measurements to the factor graph that will help us actually localize the robot
over time. The example also serves as a tutorial on creating new factor types.

x1 x2 x3

f1(x1; z1) f2(x2; z2) f3(x3; z3)

Figure 4: Robot localization factor graph with unary measurement factors at each time step.

In particular, we can use unary measurement factors to handle external measurements. The exam-
ple from Section 2 is not very useful on a real robot, because it only contains factors corresponding
to odometry measurements. These are imperfect and will lead to quickly accumulating uncertainty
on the last robot pose, at least in the absence of any external measurements (see Section 2.5). In
Figure 4 we show a new factor graph where the prior f0(x1) is omitted and instead we added three
unary factors f1(x1; z1), f2(x2; z2), and f3(x3; z3), one for each localization measurement z

t

, re-
spectively. Such unary factors are applicable for measurements z

t

that only depend on the current
robot pose, e.g., GPS readings, correlation of a laser range-finder in a pre-existing map, or indeed
the presence of absence of ceiling lights, see Dellaert et al. (1999) for that amusing example.

3.2 Defining Custom Factors

In GTSAM, you can create custom unary factors by deriving a new class from the built-in class
NoiseModelFactor1<T>, which implements a unary factor corresponding to a measurement likeli-
hood with a Gaussian noise model,

L(q;m) = exp

⇢
�1

2
kh(q)�mk2⌃

�
�
= f(q)

where m is the measurement, q is the unknown variable, h(q) is a (possibly nonlinear) measurement
function, and ⌃ is the noise covariance. Note that m is considered known above, and the likelihood
L(q;m) will only ever be evaluated as a function of q, which explains why it is a unary factor f(q).
It is always the unknown variable q that is either likely or unlikely, given the measurement: many
people get this backwards, because of the (misguided) conditional density notation P (m|q). In
fact, the likelihood L(q;m) is defined as any function of q proportional to P (m|q).

8

Listing 4 shows an example on how to define the custom factor class UnaryFactor which im-
plements a “GPS-like” measurement likelihood:

1 c l a s s UnaryFactor: p u b l i c NoiseModelFactor1<Pose2> {

2 double mx_, my_; ///< X and Y measurements

3

4 p u b l i c:
5 UnaryFactor(Key j, double x, double y, c o n s t SharedNoiseModel& model):

6 NoiseModelFactor1<Pose2>(model, j), mx_(x), my_(y) {}

7

8 Vector evaluateError(c o n s t Pose2& q,

9 boost::optional<Matrix&> H = boost::none) c o n s t
10 {

11 i f (H) (*H) = Matrix_(2,3, 1.0,0.0,0.0, 0.0,1.0,0.0);

12 re turn Vector_(2, q.x() - mx_, q.y() - my_);

13 }

14 };

Listing 4: Excerpt from examples/LocalizationExample.cpp

In defining the derived class on line 1, we provide the template argument Pose2 to indicate the type
of q, and the measurement is stored as the instance variables mx_ and my_, defined on line 2. The
constructor on lines 5-6 simply passes on the variable key and noise model to the superclass, and
stores the measurement values provided. The key function to be implemented by every factor class
is evaluateError, which should return

E(q)
�
= h(q)�m

which is done on line 12. Importantly, because we want to use this factor for nonlinear optimization
(see e.g., Dellaert and Kaess 2006 for details), whenever the optional argument H is provided, a
Matrix reference, the function should assign the Jacobian of h(q) to it, evaluated at the provided
value for q. This is done for this example on line 11. In this case, the Jacobian of the 2-dimensional
function h, which just returns the position of the robot,

h(q) =

"
q
x

q
y

#

with respect the 3-dimensional pose q = (q
x

, q
y

, q
✓

), yields the following simple 2⇥ 3 matrix:

H =

"
1 0 0

0 1 0

#

9

3.3 Using Custom Factors

The following C++ code fragment illustrates how to create and add custom factors to a factor graph:

1 // add unary measurement factors, like GPS, on all three poses

2 noiseModel::Diagonal::shared_ptr unaryNoise =

3 unaryNoise::Diagonal::Sigmas(Vector_(2, 0.1, 0.1)); // 10cm std on x,y

4 graph.push_back(boost::make_shared<UnaryFactor>(1, 0.0, 0.0, unaryNoise));

5 graph.push_back(boost::make_shared<UnaryFactor>(2, 2.0, 0.0, unaryNoise));

6 graph.push_back(boost::make_shared<UnaryFactor>(3, 4.0, 0.0, unaryNoise));

Listing 5: Excerpt from examples/LocalizationExample.cpp

In Listing 5, we create the noise model on line 2-3, which now specifies two standard deviations on
the measurements m

x

and m
y

. On lines 4-6 we create shared_ptr versions of three newly created
UnaryFactor instances, and add them to graph. GTSAM uses shared pointers to refer to factors
in factor graphs, and boost::make_shared is a convenience function to simultaneously construct a
class and create a shared_ptr to it. We obtain the factor graph from Figure 4 on page 8.

3.4 Full Posterior Inference
The three GPS factors are enough to fully constrain all unknown poses and tie them to a “global”
reference frame, including the three unknown orientations. If not, GTSAM would have exited with
a singular matrix exception. The marginals can be recovered exactly as in Section 2.5, and the
solution and marginal covariances are now given by the following:

Final Result:

Values with 3 values:

Value 1: (-1.5e-14, 1.3e-15, -1.4e-16)

Value 2: (2, 3.1e-16, -8.5e-17)

Value 3: (4, -6e-16, -8.2e-17)

x1 covariance:

0.0083 4.3e-19 -1.1e-18

4.3e-19 0.0094 -0.0031

-1.1e-18 -0.0031 0.0082

x2 covariance:

0.0071 2.5e-19 -3.4e-19

2.5e-19 0.0078 -0.0011

-3.4e-19 -0.0011 0.0082

x3 covariance:

0.0083 4.4e-19 1.2e-18

4.4e-19 0.0094 0.0031

1.2e-18 0.0031 0.018

10

Comparing this with the covariance matrices in Section 2.5, we can see that the uncertainty
no longer grows without bounds as measurement uncertainty accumulates. Instead, the “GPS”
measurements more or less constrain the poses evenly, as expected.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) Odometry marginals

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) Localization Marginals

Figure 5: Comparing the marginals resulting from the “odometry” factor graph in Figure 3 and the
“localization” factor graph in Figure 4.

It helps a lot when we view this graphically, as in Figure 5, where I show the marginals on posi-
tion as covariance ellipses that contain 68.26% of all probability mass. For the odometry marginals,
it is immediately apparent from the figure that (1) the uncertainty on pose keeps growing, and (2)
the uncertainty on angular odometry translates into increasing uncertainty on y. The localization
marginals, in contrast, are constrained by the unary factors and are all much smaller. In addition,
while less apparent, the uncertainty on the middle pose is actually smaller as it is constrained by
odometry from two sides.

You might now be wondering how we produced these figures. The answer is via the MATLAB
interface of GTSAM, which we will demonstrate in the next section.

11

4 PoseSLAM

4.1 Loop Closure Constraints

The simplest instantiation of a SLAM problem is PoseSLAM, which avoids building an explicit
map of the environment. The goal of SLAM is to simultaneously localize a robot and map the
environment given incoming sensor measurements (Durrant-Whyte and Bailey, 2006). Besides
wheel odometry, one of the most popular sensors for robots moving on a plane is a 2D laser-
range finder, which provides both odometry constraints between successive poses, and loop-closure
constraints when the robot re-visits a previously explored part of the environment.

x1 x2 x3

x4x5

f0(x1) f1(x1, x2) f2(x2, x3)

f3(x3, x4)

f4(x4, x5)

f5(x5, x2)

Figure 6: Factor graph for PoseSLAM.

A factor graph example for PoseSLAM is shown in Figure 6. The following C++ code, included in
GTSAM as an example, creates this factor graph in code:

1 NonlinearFactorGraph graph;

2 noiseModel::Diagonal::shared_ptr priorNoise =

3 noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1));

4 graph.add(PriorFactor<Pose2>(1, Pose2(0,0,0), priorNoise));

5

6 // Add odometry factors

7 noiseModel::Diagonal::shared_ptr model =

8 noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));

9 graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2, 0, 0), model));

10 graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2, 0, M_PI_2), model));

11 graph.add(BetweenFactor<Pose2>(3, 4, Pose2(2, 0, M_PI_2), model));

12 graph.add(BetweenFactor<Pose2>(4, 5, Pose2(2, 0, M_PI_2), model));

13

14 // Add pose constraint

15 graph.add(BetweenFactor<Pose2>(5, 2, Pose2(2, 0, M_PI_2), model));

Listing 6: Excerpt from examples/Pose2SLAMExample.cpp

12

As before, lines 1-4 create a nonlinear factor graph and add the unary factor f0(x1). As the robot
travels through the world, it creates binary factors f

t

(x
t

, x
t+1) corresponding to odometry, added

to the graph in lines 6-12 (Note that M_PI_2 refers to pi/2). But line 15 models a different event:
a loop closure. For example, the robot might recognize the same location using vision or a laser
range finder, and calculate the geometric pose constraint to when it first visited this location. This
is illustrated for poses x5 and x2, and generates the (red) loop closing factor f5(x5, x2).

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−0.5

0

0.5

1

1.5

2

2.5

Figure 7: The result of running optimize on the factor graph in Figure 6.

We can optimize this factor graph as before, by creating an initial estimate of type Values,
and creating and running an optimizer. The result is shown graphically in Figure 7, along with
covariance ellipses shown in green. These covariance ellipses in 2D indicate the marginal over
position, over all possible orientations, and show the area which contain 68.26% of the probability
mass (in 1D this would compare to one standard deviation). The graph shows in a clear manner that
the uncertainty on pose x5 is now much less than if there would be only odometry measurements.
The pose with the highest uncertainty, x4, is the one furthest away from the unary constraint f0(x1),
which is the only factor tying the graph to a global coordinate frame.

The figure above was created using an interface that allows you to use GTSAM from within
MATLAB, which provides for visualization and rapid development. We discuss this next.

13

4.2 Using the MATLAB Interface

A large subset of the GTSAM functionality can be accessed through wrapped classes from within
MATLAB 1. The following code excerpt is the MATLAB equivalent of the C++ code in Listing 6:‘

1 graph = NonlinearFactorGraph;

2 priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);

3 graph.add(PriorFactorPose2(1, Pose2(0, 0, 0), priorNoise));

4

5 %% Add odometry factors

6 model = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);

7 graph.add(BetweenFactorPose2(1, 2, Pose2(2, 0, 0), model));

8 graph.add(BetweenFactorPose2(2, 3, Pose2(2, 0, pi/2), model));

9 graph.add(BetweenFactorPose2(3, 4, Pose2(2, 0, pi/2), model));

10 graph.add(BetweenFactorPose2(4, 5, Pose2(2, 0, pi/2), model));

11

12 %% Add pose constraint

13 graph.add(BetweenFactorPose2(5, 2, Pose2(2, 0, pi/2), model));

Listing 7: Excerpt from examples/matlab/Pose2SLAMExample.m

Note that the code is almost identical, although there are a few syntax and naming differences:

• Objects are created by calling a constructor instead of allocating them on the heap.

• Namespaces are done using dot notation, i.e., noiseModel::Diagonal::SigmasClasses be-
comes noiseModel.Diagonal.Sigmas.

• Vector and Matrix classes in C++ are just vectors/matrices in MATLAB.

• As templated classes do not exist in MATLAB, these have been hardcoded in the GTSAM
interface, e.g., PriorFactorPose2 corresponds to the C++ class PriorFactor<Pose2>, etc.

After executing the code, you can call whos on the MATLAB command prompt to see the objects
created. Note that the indicated Class corresponds to the wrapped C++ classes:

>> whos

Name Size Bytes Class

graph 1x1 112 gtsam.NonlinearFactorGraph

priorNoise 1x1 112 gtsam.noiseModel.Diagonal

model 1x1 112 gtsam.noiseModel.Diagonal

initialEstimate 1x1 112 gtsam.Values

optimizer 1x1 112 gtsam.LevenbergMarquardtOptimizer

1GTSAM also allows you to wrap your own custom-made classes, although this is outside the scope of this manual

14

In addition, any GTSAM object can be examined in detail, yielding identical output to C++:

>> priorNoise

diagonal sigmas [0.3; 0.3; 0.1];

>> graph

size: 6

factor 0: PriorFactor on 1

prior mean: (0, 0, 0)

noise model: diagonal sigmas [0.3; 0.3; 0.1];

factor 1: BetweenFactor(1,2)

measured: (2, 0, 0)

noise model: diagonal sigmas [0.2; 0.2; 0.1];

factor 2: BetweenFactor(2,3)

measured: (2, 0, 1.6)

noise model: diagonal sigmas [0.2; 0.2; 0.1];

factor 3: BetweenFactor(3,4)

measured: (2, 0, 1.6)

noise model: diagonal sigmas [0.2; 0.2; 0.1];

factor 4: BetweenFactor(4,5)

measured: (2, 0, 1.6)

noise model: diagonal sigmas [0.2; 0.2; 0.1];

factor 5: BetweenFactor(5,2)

measured: (2, 0, 1.6)

noise model: diagonal sigmas [0.2; 0.2; 0.1];

And it does not stop there: we can also call some of the functions defined for factor graphs. E.g.,

>> graph.error(initialEstimate)

ans =

20.1086

>> graph.error(result)

ans =

8.2631e-18

computes the sum-squared error 1
2

P
i

kh
i

(X
i

)� z
i

k2⌃ before and after optimization.

4.3 Reading and Optimizing Pose Graphs

The ability to work in MATLAB adds a much quicker development cycle, and effortless graphical
output. Figure 8 was produced by the following code, in which load2D reads TORO files:

15

−10 −5 0 5

−4

−2

0

2

4

6

Figure 8: MATLAB plot of small Manhattan world example with 100 poses (due to Ed Olson).
The initial estimate is shown in green. The optimized trajectory, with covariance ellipses, in blue.

1 %% Initialize graph, initial estimate, and odometry noise

2 datafile = gtsam.findExampleDataFile(’w100-odom.graph’);

3 model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 5*pi/180]);
4 [graph,initial] = gtsam.load2D(datafile, model);

5

6 %% Add a Gaussian prior on pose x_0

7 priorMean = Pose2(0, 0, 0);

8 priorNoise = noiseModel.Diagonal.Sigmas([0.01; 0.01; 0.01]);

9 graph.add(PriorFactorPose2(0, priorMean, priorNoise));

10

11 %% Optimize using Levenberg-Marquardt optimization and get marginals

12 optimizer = LevenbergMarquardtOptimizer(graph, initial);

13 result = optimizer.optimizeSafely;

14 marginals = Marginals(graph, result);

Listing 8: Excerpt from examples/matlab/Pose2SLAMExample-graph.m

16

4.4 PoseSLAM in 3D

PoseSLAM can easily be extended to 3D poses, but some care is needed to update 3D rotations.
GTSAM supports both quaternions and 3⇥ 3 rotation matrices to represent 3D rotations.

−40
−20 0

20
40

−40
−20

0
20

40
60

−100

−80

−60

−40

−20

0

Figure 9: 3D plot of sphere example (due to Michael Kaess). The very wrong initial estimate,
derived from odometry, is shown in green. The optimized trajectory is shown red. Code below:

1 %% Initialize graph, initial estimate, and odometry noise

2 datafile = findExampleDataFile(’sphere2500.txt’);

3 model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 0.1; 0.1; 0.1]);

4 [graph,initial] = load3D(datafile, model);

5 plot3DTrajectory(initial,’g-’,false); % Plot Initial Estimate

6

7 %% Read again, now with all constraints, and optimize

8 graph = load3D(datafile, model);

9 graph.add(NonlinearEqualityPose3(0, initial.at(0)));

10 optimizer = LevenbergMarquardtOptimizer(graph, initial);

11 result = optimizer.optimizeSafely();

12 plot3DTrajectory(result, ’r-’, false); a x i s equal;

Listing 9: Excerpt from examples/matlab/Pose3SLAMExample-graph.m

17

5 Landmark-based SLAM

5.1 Basics

x1 x2 x3

l1 l2

Figure 10: Factor graph for landmark-based SLAM

In landmark-based SLAM, we explicitly build a map with the location of observed landmarks,
which introduces a second type of variable in the factor graph besides robot poses. An example
factor graph for a landmark-based SLAM example is shown in Figure 10, which shows the typical
connectivity: poses are connected in an odometry Markov chain, and landmarks are observed from
multiple poses, inducing binary factors. In addition, the pose x1 has the usual prior on it.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 11: The optimized result along with covariance ellipses for both poses (in green) and land-
marks (in blue). Also shown are the trajectory (red) and landmark sightings (cyan).

The factor graph from Figure 10 can be created using the MATLAB code in Listing 10. One
thing to notice immediately is that the factor graph created on line 2 is now of type planarSLAM-

Graph, which is specialized towards Pose2 poses and Point2 landmarks. Lines 8-18 create the
prior/odometry chain we are now familiar with, but the code on lines 20-26 is new: it creates three
measurement factors, in this case “bearing/range” measurements from the pose to the landmark.

18

1 % Create graph container and add factors to it

2 graph = planarSLAMGraph;

3

4 % Create keys for variables

5 i1 = symbol(’x’,1); i2 = symbol(’x’,2); i3 = symbol(’x’,3);

6 j1 = symbol(’l’,1); j2 = symbol(’l’,2);

7

8 % Add prior

9 priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin

10 priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);

11 % add directly to graph

12 graph.add(PriorFactorPose2(i1, priorMean, priorNoise));

13

14 % Add odometry

15 odometry = Pose2(2.0, 0.0, 0.0);

16 odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);

17 graph.add(BetweenFactorPose2(i1, i2, odometry, odometryNoise));

18 graph.add(BetweenFactorPose2(i2, i3, odometry, odometryNoise));

19

20 % Add bearing/range measurement factors

21 degrees = pi/180;
22 noiseModel = noiseModel.Diagonal.Sigmas([0.1; 0.2]);

23 graph.add(BearingRangeFactor2D(i1, j1, Rot2(45*degrees), s q r t(8),
24 noiseModel));

25 graph.add(BearingRangeFactor2D(i2, j1, Rot2(90*degrees), 2, noiseModel));

26 graph.add(BearingRangeFactor2D(i3, j2, Rot2(90*degrees), 2, noiseModel));

Listing 10: Excerpt from examples/matlab/PlanarSLAMExample.m

5.2 Of Keys and Symbols

The only unexplained code is on lines 4-6: here we create integer keys for the poses and landmarks
using the symbol function. In GTSAM, we address all variables using the Key type, which is just
a typedef to size_t

2. The keys do not have to be numbered continuously, but they do have to be
unique within a given factor graph. For factor graphs with different types of variables, we provide
the symbol function in MATLAB, and the Symbol type in C++, to help you create (large) integer
keys that are far apart in the space of possible keys, so you don’t have to think about starting the
point numbering at some arbitrary offset. To create a a symbol key you simply provide a character

2a 32 or 64 bit integer, depending on your platform

19

and an integer index. You can use base 0 or 1, or use arbitrary indices: it does not matter. In the
code above, we we use ’x’ for poses, and ’l’ for landmarks.

The optimized result for the factor graph created by Listing 10 is shown in Figure 11, and it is
readily apparent that the landmark l1 with two measurements is better localized. In MATLAB we
can also examine the actual numerical values, and doing so reveals some more GTSAM magic:

>> result

Values with 5 values:

l1: (2, 2)

l2: (4, 2)

x1: (-1.8e-16, 5.1e-17, -1.5e-17)

x2: (2, -5.8e-16, -4.6e-16)

x3: (4, -3.1e-15, -4.6e-16)

Indeed, the keys generated by symbol are automatically detected by the print method in the Values

class, and rendered in human-readable form “x1”, “l2”, etc, rather than as large, unwieldy integers.
This magic extends to most factors and other classes where the Key type is used.

5.3 A Larger Example

0 10 20 30 40 50

0

5

10

15

20

25

30

35

Figure 12: A larger example with about 100 poses and 30 or so landmarks, as produced by gt-
sam_examples/PlanarSLAMExample_graph.m

20

GTSAM comes with a slightly larger example that is read from a .graph file by PlanarSLAMEx-
ample_graph.m, shown in Figure 12. To not clutter the figure only the marginals are shown, not
the lines of sight. This example, with 119 (multivariate) variables and 517 factors optimizes in less
than 10 ms.

5.4 A Real-World Example

Figure 13: Small section of optimized trajectory and landmarks (trees detected in a laser range
finder scan) from data recorded in Sydney’s Victoria Park (dataset due to Jose Guivant, U. Sydney).

A real-world example is shown in Figure 13, using data from a well known dataset collected in
Sydney’s Victoria Park, using a truck equipped with a laser range-finder. The covariance matrices
in this figure were computed very efficiently, as explained in detail in Kaess and Dellaert (2009).
The exact covariances (blue, smaller ellipses) obtained by our fast algorithm coincide with the exact
covariances based on full inversion (orange, mostly hidden by blue). The much larger conservative
covariance estimates (green, large ellipses) were based on our earlier work in Kaess et al. (2008).

21

6 Structure from Motion

Figure 14: An optimized “Structure from Motion” with 10 cameras arranged in a circle, observing
the 8 vertices of a 20 ⇥ 20 ⇥ 20 cube centered around the origin. The camera is rendered with
color-coded axes, (RGB for XYZ) and the viewing direction is is along the positive Z-axis. Also
shown are the 3D error covariance ellipses for both cameras and points.

Structure from Motion (SFM) is a technique to recover a 3D reconstruction of the environment
from corresponding visual features in a collection of unordered images, see Figure 14. In GTSAM
this is supported through the visualSLAM namespace, which defines a ProjectionFactor that cal-
culates the reprojection error f(x

i

, p
j

; z
ij

,K) for a given camera pose x
i

(a Pose3) and point p
j

(a
Point3). The factor is parameterized by the 2D measurement z

ij

(a Point2), and known calibration
parameters K (of type Cal3_S2). The following listing shows how to create the factor graph:

1 %% Create an empty factor graph

2 G = visualSLAMGraph;

3

4 %% Add factors for all measurements

5 noise = gtsamnoiseModelDiagonal_Sigmas(2,measurementNoiseSigma);

6 f o r i=1: l e n g t h(Z)
7 f o r k=1: l e n g t h(Z{i})
8 j = J{i}{k};

9 G.addMeasurement(Z{i}{k}, noise, symbol(’x’,i), symbol(’p’,j), K);

10 end
11 end

Listing 11: Excerpt from examples/matlab/SFMExample.m

22

In Listing 11, after creating the factor graph on lines 1-2, we add measurement factors in the
double loop below it. We loop over images with index i, and in this example the data is given
as two cell arrays: Z{i} specifies a set of measurements z

k

in image i, and J{i} specifies the
corresponding point index. The method visualSLAMGraph::addMeasurement then creates the
factor, using symbol keys just as in landmark-based SLAM (Section 5), except we now use the
character ’p’ to denote points, rather than ’l’ for landmark.

Important note: a very tricky and difficult part of making SFM work is (a) data association,
and (b) initialization. GTSAM does neither of these things for you: it simply provides the “bundle
adjustment” optimization. In the example, we simply assume the data association is known (it is
encoded in the J sets), and we initialize with the ground truth, as the intent of the example is simply
to show you how to set up the optimization problem.

7 Visual Odometry

A gentle introduction to vision-based sensing is Visual Odometry (abbreviated VO, see e.g. Nistér
et al. (2004)), which provides pose constraints between successive robot poses by tracking or asso-
ciating visual features in successive images taken by a camera mounted rigidly on the robot.

8 Visual SLAM

Visual SLAM (see e.g., Davison (2003)) is a SLAM variant where 3D points are observed by a
camera as the camera moves through space, either mounted on a robot or moved around by hand.

23

9 More Applications

While a detailed discussion of all the things you can do with GTSAM will take us too far, below is
a small survey of what you can expect to do, and which we did using GTSAM.

9.1 Conjugate Gradient Optimization

Figure 15: A map of Beijing, with a spanning tree shown in black, and the remaining loop-closing
constraints shown in red. A spanning tree can be used as a preconditioner by GTSAM.

GTSAM also includes efficient preconditioned conjugate gradients (PCG) methods for solving
large-scale SLAM problems. While direct methods, popular in the literature, exhibit quadratic con-
vergence and can be quite efficient for sparse problems, they typically require a lot of storage and
efficient elimination orderings to be found. In contrast, iterative optimization methods only require
access to the gradient and have a small memory footprint, but can suffer from poor convergence.
Our method, subgraph preconditioning, explained in detail in Dellaert et al. (2010); Jian et al.
(2011), combines the advantages of direct and iterative methods, by identifying a sub-problem that
can be easily solved using direct methods, and solving for the remaining part using PCG. The easy
sub-problems correspond to a spanning tree, a planar subgraph, or any other substructure that can
be efficiently solved. An example of such a subgraph is shown in Figure 15.

24

9.2 Fixed-lag Smoothing and Filtering

GTSAM can easily perform recursive estimation, where only a subset of the poses are kept in the
factor graph, while the remaining poses are marginalized out. In all examples above we explicitly
optimize for all variables using all available measurements, which is called Smoothing because the
trajectory is “smoothed” out, and this is where GTSAM got its name (GT Smoothing and Mapping).
When instead only the last few poses are kept in the graph, one speaks of Fixed-lag Smoothing.
Finally, when only the single most recent poses is kept, one speaks of Filtering, and indeed the
original formulation of SLAM was filter-based (Smith et al., 1988).

9.3 iSAM: Incremental Smoothing and Mapping

GTSAM provides an incremental inference algorithm based on a more advanced graphical model,
the Bayes tree, which is kept up to date by the iSAM algorithm (incremental Smoothing and Map-
ping, see Kaess et al. (2008, 2012) for an in-depth treatment). For mobile robots operating in
real-time it is important to have access to an updated map as soon as new sensor measurements
come in. iSAM keeps the map up-to-date in an efficient manner.

9.4 Discrete Variables and HMMs

Finally, factor graphs are not limited to continuous variables: GTSAM can also be used to model
and solve discrete optimization problems. For example, a Hidden Markov Model (HMM) has the
same graphical model structure as the Robot Localization problem from Section 2, except that in an
HMM the variables are discrete. GTSAM can optimize and perform inference for discrete models.

Acknowledgements

GTSAM was made possible by the efforts of many collaborators at Georgia Tech and elsewhere,
including but not limited to Doru Balcan, Chris Beall, Alex Cunningham, Alireza Fathi, Eohan
George, Viorela Ila, Yong-Dian Jian, Michael Kaess, Kai Ni, Carlos Nieto, Duy-Nguyen Ta,
Manohar Paluri, Christian Potthast, Richard Roberts, Grant Schindler, and Stephen Williams. In
addition, Paritosh Mohan helped me with the manual. Many thanks all for your hard work!

25

References

Davison, A. (2003). Real-time simultaneous localisation and mapping with a single camera. In
Intl. Conf. on Computer Vision (ICCV), pages 1403–1410.

Dellaert, F., Carlson, J., Ila, V., Ni, K., and Thorpe, C. (2010). Subgraph-preconditioned conjugate
gradient for large scale slam. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

Dellaert, F., Fox, D., Burgard, W., and Thrun, S. (1999). Using the condensation algorithm for
robust, vision-based mobile robot localization. In IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR).

Dellaert, F. and Kaess, M. (2006). Square Root SAM: Simultaneous localization and mapping via
square root information smoothing. Intl. J. of Robotics Research, 25(12):1181–1203.

Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localisation and mapping (SLAM): Part I
the essential algorithms. Robotics & Automation Magazine.

Jian, Y.-D., Balcan, D., and Dellaert, F. (2011). Generalized subgraph preconditioners for large-
scale bundle adjustment. In Intl. Conf. on Computer Vision (ICCV).

Kaess, M. and Dellaert, F. (2009). Covariance recovery from a square root information matrix for
data association. Robotics and Autonomous Systems.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., and Dellaert, F. (2012). iSAM2:
Incremental smoothing and mapping using the Bayes tree. Intl. J. of Robotics Research, 31:217–
236.

Kaess, M., Ranganathan, A., and Dellaert, F. (2008). iSAM: Incremental smoothing and mapping.
IEEE Trans. Robotics, 24(6):1365–1378.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques.
The MIT Press.

Kschischang, F., Frey, B., and Loeliger, H.-A. (2001). Factor graphs and the sum-product algo-
rithm. IEEE Trans. Inform. Theory, 47(2).

Loeliger, H.-A. (2004). An introduction to factor graphs. IEEE Signal Processing Magazine, pages
28–41.

Nistér, D., Naroditsky, O., and Bergen, J. (2004). Visual odometry. In IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR), volume 1, pages 652–659.

Smith, R., Self, M., and Cheeseman, P. (1988). A stochastic map for uncertain spatial relationships.
In Proc. of the Intl. Symp. of Robotics Research (ISRR), pages 467–474.

26

