
NEURO-GENERAL COMPUTING
AN ACCELERATION-APPROXIMATION APPROACH

A Dissertation
Presented to

The Academic Faculty By

Amir Yazdanbakhsh

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology

August 2018

Copyright c© 2018 by Amir Yazdanbakhsh

NEURO-GENERAL COMPUTING
AN ACCELERATION-APPROXIMATION APPROACH

Approved by:

Dr. Hadi Esmaeilzadeh, Advisor
School of Computer Science
Georgia Institute of Technology

Dr. Nam Sung Kim
Department of Electrical and
Computer Engineering
University of Illinois at Urbana-
Champaign

Dr. Milos Prvulovic
School of Computer Science
Georgia Institute of Technology

Dr. Hyesoon Kim
School of Computer Science
Georgia Institute of Technology

Dr. Sudhakar Yalamanchili
School of Computer Science
Georgia Institute of Technology

Date Approved: May 3, 2018

Be humble or else you tumble.

Anonymous

This dissertation is dedicated to all members of my family, especially to my: father,

Mohammad Esmaeil Yazdanbakhsh; mother, Shahla Roosta; and sister, Niloofar

Yazdanbakhsh—my first teacher of my life—who have always loved and supported me

unconditionally and whose good examples have taught me to work hard for the things that

I aspire to achieve.

ACKNOWLEDGEMENTS

This long venture of my PhD journey is a combined effort of many characters, includ-

ing the scholars whom I had the privilege to meet and work with, family members who

constantly supported me and evinced me to finish my PhD, and friends who were always

accessible and guided me through this journey. All of them played a crucial role in one or

another step of this journey and helped me to achieve my goals. None of my achievements,

if any, would have been possible without the unconditional support and help from them.

This thesis would therefore be incomplete without expressing my gratitude to all of them.

First and foremost, I want to thank my marvelous advisors, Hadi Esmaeilzadeh and

Nam Sung Kim, for always trusting me, giving me enough resources and opportunities

to improve my work and excel in my path of learning, as well as my presentation and

writing skills. An special thank to Hadi Esmaeilzadeh (my direct advisor) whom I was

honored to work with for almost four years. He undoubtedly had played a pivotal role in

my life. He was always available and supportive through my PhD journey. He provided

me unparalleled opportunities, supported me in both my academic life and personal life,

and inspired me to work hard and maintain my determination. His commitment to guide

me for carrying out high-impact and high-quality research and instilling his unique creative

vision in research have helped me to form a visionary research personality and be always

ambitious about my goals, something that I will be indebted to him for the rest of my life.

I am proud to say my experience of working with him was intellectually exciting and fun,

and has energized me to continue research. I am also grateful to the members of my PhD

committee: Hyesoon Kim, Sudhakar Yalamanchili, and Milos Prvulovic for their valuable

feedback and for making the final steps towards my PhD very smooth.

I am also grateful to all the current and previous members of Alternative Computing

Technologies (ACT) Lab who taught me new things every day. I will not forget the all-

nighters that we pulled together and the crazy nights that we spent in the lab crunching

v

numbers. Thanks for the fun and support which made my PhD extremely enjoyable and

memorable. Thanks for being patient with me during our heated research discussions and

openly listening to all of my ideas and providing me the most invaluable feedback and

comments. I greatly look forward to having all of you as colleagues in the years ahead.

During my education journey, I was fortunate to be surrounded by some of the most

wonderful people I know. Hooman Tahayori and Farzin Sobhanmanesh, my advisors in

Shiraz University, who motivated me to pursue my studies at graduate level. My late

advisor in University of Tehran, Sied Mehdi Fakhraie, a scholar and a true human being,

who was the one that introduced me to the research world. His death, undoubtedly, is a loss

in my life. Azadeh Davoodi, my advisor in University of Wisconsin-Madison, who gave

me the opportunity to continue my studies in the USA and supported me unconditionally

to become a successful researcher. Pejman Lotfi-Kamran who passionately taught me

the underpinnings of research in Computer Architecture and assisted me to grow in my

chosen career path. I am extremely grateful to work under Gennady Pekhimenko’s close

mentorship. He helped me to better form my ideas and clearly and coherently present them

to others. Gennady was always available for offering his unsolicited advice which helped

me to transcend in my career and become a more mature researcher. He also helped me to

be a better citizen of the Computer Architecture community.

I would like to thank Doug Burger, Luis Ceze, Onur Mutlu, and Todd C. Mowry with

whom I had the opportunity to collaborate. Working with these renowned scholars helped

me to better understand the research in our field and taught me to always set the bar high in

my career and follow my dreams. I am grateful for having the opportunity to work under the

supervision of Karu Sankaralingam for a short period of time. He supported me and took

me under his wing when I needed it the most in my career path. His unwavering support

put me back on the track to pursue my dream in the academic world. Although, working

with Karu was short, his impact on me and my career was tremendous. During working

in his lab, I had the opportunity to work with many great scholars, such as Raghuraman

vi

Balasubramanian and Anthony Nowatzki, from whom I learned much about research in

Computer Architecture. I am grateful for having Mehdi Kamal as my mentor and now

a reliable friend. He helped me to grow when I first joined University of Tehran for my

Master degree and taught me the first steps to become a researcher. I also want to thank

my first grade teacher, Mrs. Farzaneh, who I always remember for the rest of my life. She

patiently taught me how to read and write despite me being a high-maintenance student. I

wish I could see her one more time and thank her for all she has done for me.

During my PhD, I had the opportunity to work in many acclaimed companies as a

research intern. I am grateful to my internship mentors for making my work in their compa-

nies mutually successful for both sides. At Information Sciences Institute, I had the chance

to work with Michel Sika, Jonatan Ahlbin, and Bradley Kiddie. An special thank to Michel

who has faithfully mentored me and taught me how to carry out high impact research. At

Rambus, I had the fortunate to work with David Stork and Craig Hampel. At Microsoft

Research, I had the privilege to closely work with leading researchers in the field, Madan

Musuvathi, Todd Mytkowicz, Saeed Maleki. At NVIDIA Research, I had the privilege to

closely work with Joel Emer, Michael Pellauer, Christopher Fletcher, Angshuman Parashar,

Steve Keckler. I am also thankful to all the companies that financially supported my re-

search and helped me to continue living my dream life. Specially, Microsoft for Microsoft

Research PhD Fellowship and Qualcomm for the Qualcomm Innovation Fellowship.

During my PhD, I had the privilege to mentor and supervise many undergraduate and

graduate students from multiple illustrious universities, including Michael Brzozowski,

Fatemehsadat Mireshghallah, Hajar Falahati, Vahideh Akhlaghi, Manali Kumar, Oleg Fi-

latov, Anandhavel Nagendrakumar, and Sindhuja Sethuraman. Thank you for letting me to

be your mentor, helping me grow as a person and become a better leader, and contributing

significantly to my research. Each day of working with you was a treasured lesson for me.

I can not wait to see what you all do next.

I am also deeply grateful to my friends, colleagues, and mentors for their vital contri-

vii

butions to my personal and academic life (in no particular order), Farshad Firouzi, Hamid

Shojaee, Min Li, Mohammad Fattah, Iman Entezari, Amin Farmahini, Bashir Ebrahimi,

Hamid Noori, Saeed Safari, Solmaz Asanfi, Mostafa E. Salehi, Ali Azarpeyvand, Kia

Bazarga, Hamed Dorosti, Zeinalabedin Navabi, David Palframan, Mikko Lipasti, Ali

Afzali-Kusha, Masoud Pedram, Renée St. Amant, Arjang Hassibi, Saba Amanollahi, Amir

Rostami, Abbas Rahimi, Atieh Lotfi, Rajesh K. Gupta, Kambiz Samadi, Manu Rastogi,

Behnam Khaleghi, Girish Varatkar, Sunjae Park, Ching-Kai Liang, Girish Mururu, Sarah

Cannon, Mohmmadali Rahimian, Bita Darvish Rohani, Mehdi Ahmadi, Tushar Krishna,

Santosh Pande, Sriseshan Srikanth, Amin Momeni, Amirhossein Davoodi, Abolghasem

Beheshti, Mohammad Reza Karami Mehr, Vijay Thiruvengadem, Emmanuel Amaro, Jared

Urban, Emily Faszold, Hadi Mirisaee, Ramtin Raji, Mehdi Askari.

I also thank the wonderful staff in the School of Computer Science as well as in other

departments of Georgia Institute of Technology for always being so helpful and friendly.

People here are genuinely nice and want to help you out and Im glad to have interacted

with many.

Last but not the least, I especially thank my mom, dad, and sister. My hard-working

parents have sacrificed their lives for my sister and myself and provided unconditional love

and care. I love them so much, and I would not have made it this far without them. My

sister has been my best friend all my life and I love her dearly and thank her for all her

advice and support. I know I always have my family to count on when times are rough.

viii

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xv

List of Figures . xvii

Proposal Summary .xxiii

Chapter 1: Limited Precision Neuro-General Computing 1

1.1 Summary . 1

1.2 Introduction . 2

1.3 Overview and Background . 5

1.4 Analog Circuits for Neural Computation 7

1.5 Mixed-Signal Neural Accelerator (A-NPU) 11

1.5.1 ANU Circuit Design . 12

1.5.2 Reconfigurable Mixed-Signal A-NPU 15

1.5.3 Architectural interface for A-NPU 16

1.6 Compilation for Analog Acceleration . 16

1.7 Evaluations . 20

1.8 Limitations and Considerations . 26

ix

1.9 Conclusions . 27

Chapter 2: Neuro-General Computing for GPU Throughput Processors 29

2.1 Summary . 29

2.2 Introduction . 30

2.3 Neural Transformation for GPUs . 33

2.3.1 Safe Programming Interface . 34

2.3.2 Compilation Workflow . 34

2.4 Instruction Set Architecture Design . 37

2.5 Accelerator Design and Integration . 38

2.5.1 Integrating the Neural Accelerator 39

2.5.2 Executing Neurally Transformed Threads 41

2.5.3 Orchestrating Neurally Enhanced Lanes 41

2.6 Controlling Quality Tradeoffs . 43

2.7 Evaluation . 44

2.7.1 Applications and Neural Transformation 44

2.7.2 Experimental Setup . 47

2.7.3 Experimental Results . 48

2.8 Conclusion . 54

Chapter 3: In-DRAM Near-Data Neuro-General Computing 56

3.1 Summary . 56

3.2 Introduction . 57

3.3 Overview . 59

x

3.3.1 Challenges and Opportunities . 59

3.3.2 Approximation for Near-Data Processing 61

3.4 AxRAM Execution Flow and ISA . 62

3.4.1 Neural Acceleration of GPU Warps 63

3.4.2 Execution Flow with AxRAM . 64

3.4.3 ISA Extensions for AxRAM . 65

3.5 AxRAM Microarchitecture . 67

3.5.1 Background: GDDR5 Architecture 67

3.5.2 In-DRAM Accelerator Integration 69

3.5.3 Interfacing the GPU with AxRAM 73

3.6 Data Organization for AXRAM . 74

3.7 Arithmetic Units Simplification . 77

3.8 Memory Model . 78

3.9 Evaluation and Methodology . 79

3.9.1 Methodology . 79

3.9.2 Experimental Results . 82

3.10 Conclusion . 88

Chapter 4: Language Support for Acceleration-Appriximation Hardware Design 89

4.1 Summary . 89

4.2 Introduction . 90

4.3 Approximate Hardware Design with Axilog 91

4.3.1 Design Annotations . 93

xi

4.3.2 Reuse Annotations . 96

4.4 Relaxability Inference Analysis . 99

4.5 Approximate Synthesis . 101

4.6 Evaluation . 103

4.7 Conclusion . 107

Chapter 5: Acceleration-Approximation in Deep Neural Networks 108

5.1 Summary . 108

5.2 Introduction . 109

5.3 SnaPEA Hardware-Software Solution . 112

5.3.1 SnaPEA Software Workflow . 112

5.4 Computation Reduction in SnaPEA . 114

5.4.1 Problem Formulation . 116

5.4.2 Finding the Speculation Parameters 117

5.5 Architecture Design for SnaPEA . 119

5.6 Evaluation . 124

5.6.1 Methodology . 124

5.6.2 Experimental Results . 127

5.7 Conclusion . 132

Chapter 6: Unsupervised Learning Acceleration 135

6.1 Summary . 135

6.2 Introduction . 136

6.3 Flow of Data in Generative Models . 140

xii

6.4 Architecture Design for GANAX . 145

6.4.1 Unified MIMD-SIMD Architecture 147

6.4.2 Decoupled Access-Execute µEngines 151

6.5 Instruction Set Architecture Design (µOps) 154

6.5.1 Algorithmic Observations . 155

6.5.2 Access µOps . 156

6.5.3 Execute µOps . 157

6.6 Methodology . 158

6.7 Evaluation . 160

6.8 Conclusion . 163

Chapter 7: Related Work . 164

7.1 Limited Precision Neuro-General Computing 164

7.2 Neuro-General Computing for GPU Throughput Processors 166

7.3 Acceleration-Approximation in Deep Neural Networks 167

7.4 Unsupervised Learning Acceleration . 169

7.5 In-DRAM Near-Data Neuro-General Computing 171

Chapter 8: Future Work . 173

Chapter 9: Other Work From This Author . 175

9.1 Approximate Computing . 175

9.2 FPGA Acceleration . 179

9.3 Heterogeneous Computing . 180

xiii

References . 203

Vita . 204

xiv

LIST OF TABLES

1.1 The evaluated benchmarks, characterization of each offloaded function,
training data, and the trained neural network. 18

1.2 Area estimates for the analog neuron (ANU). 21

1.3 Error with a floating point D-NPU, A-NPU with ideal sigmoid, and A-NPU
with non-ideal sigmoid. 24

2.1 Applications, accelerated regions, training and evaluation datasets, quality
metrics, and approximating neural networks. 44

2.2 GPU microarchitectural parameters. 48

3.1 Applications (from AXBENCH [126]), quality metrics, train and evaluation
datasets, and neural network configurations. 80

3.2 Major GPU, GDDR5, and in-DRAM neural accelerator microarchitectural
parameters. 81

3.3 Area overhead of the added major hardware components. 81

4.1 Summary of Axilog’s language syntax. 92

4.2 Benchmarks, input datasets, and error metrics. 104

4.3 The energy reduction when the quality degradation limit is set to 10% for
two different PVT corners. Here, we consider temperature variations. 106

5.1 Workloads, their released year, model size, number of convolution (Conv.)
and fully-connected (FC) layers, and baseline classification accuracy. The
model size shows the size of weights in Megabytes. 124

xv

5.2 SNAPEA and EYERISS [111] design parameters and area breakdown. . . . 125

5.3 Absolute and relative energy comparison for different components of SNA-
PEA architecture along with off-chip memory access energy cost. PE
energy includes the cost of Predictive Activation Unit (PAU). 127

5.4 The percentage of convolution layers that operates in the predictive mode,
when classification accuracy drop is set to ≤ 3%. The second and third
column illustrates the average speedup and energy reduction across these
convolution layers. 130

5.5 True negative and false negative rate in predictive mode when classification
accuracy drop is set to ≤ 3%. 130

6.1 The evaluated GAN models, their released year, and the number of convo-
lution (Conv) and transposed convolution (TConv) layers per generative and
discriminative models. 158

6.2 Energy comparison between GANAX microarchitectural units and mem-
ory. PE energy includes the energy consumption of an arithmetic operation
and the strided µindex generators. 159

6.3 Area measurement of the major hardware units with TSMC45nm. 160

xvi

LIST OF FIGURES

1.1 Framework for using limited-precision analog computation to accelerate
code written in conventional languages. 4

1.2 One neuron and its conceptual analog circuit. 8

1.3 A single analog neuron (ANU). 12

1.4 Mixed-signal neural accelerator, A-NPU. Only four of the ANUs are
shown. Each ANU processes eight 8-bit inputs. 14

1.5 A-NPU with 8 ANUs vs. D-NPU with 8 PEs. 22

1.6 Whole application speedup and energy saving with D-NPU, A-NPU, and
an Ideal NPU that consumes zero energy and takes zero cycles for neural
computation. 23

1.7 Application error with limited bit-width analog neural computation. 24

1.8 CDF plot of application output error. A point (x,y) indicates that y% of the
output elements see error ≤ x%. 25

1.9 Speedup/energy saving with limited A-NPU invocations. 26

2.1 Runtime and energy breakdown between neurally approximable regions
and the regions that cannot be approximated. 31

2.2 Slowdown with software-only neural transformation due to the lack of
hardware support for neural acceleration. 32

2.3 Overview of the compilation workflow for neural acceleration in GPU
throughput processors. 35

2.4 SM pipeline after integrating the neural accelerator within SIMD lanes. The
added hardware is highlighted in gray. 40

xvii

2.5 (a) Neural network replacing a segment of a GPU code. (b) Schedule for
the accelerated execution of the neural network. (c) Accelerated execution
of the GPU code on the enhanced SM. 42

2.6 Cumulative distribution function (CDF) plot of the applications output
quality loss. A point (x,y) indicates that y fraction of the output elements
see quality loss less than or equal to x. 47

2.7 NGPU whole application speedup and energy reduction. 48

2.8 Breakdown of (a) runtime and (b) energy consumption between non-
approximable and approximable regions normalized to the runtime and
energy consumption of the GPU, respectively. For each application, the first
(second) bar shows the normalized value when the application is executed
on the GPU (NGPU). 50

2.9 Sensitivity of the total application’s speedup to the neural accelerator delay.
Each bar indicates the total application’s speedup when the neural accel-
erator delay is altered by different factors. The default delay for neural
accelerator varies from one application to the other and depends on the
neural network topology trained for that application. The ideal case (∞
faster) shows the total application speedup when neural accelerator has zero
delay. 50

2.10 Memory bandwidth consumption when the applications are executed on
GPU (first bar) and NGPU (second bar). 51

2.11 The total application speedup with NGPU for different off-chip memory
communication bandwidth normalized to the execution with NGPU with
default bandwidth. The default bandwidth is 177.4 GB/s. 52

2.12 Energy×delay benefits vs output quality (log scale). 53

2.13 Speedup and energy reduction with CPU, GPU, GPU+NPU, and NGPU.(The
baseline is CPU+NPU, which is a CPU augmented with a NPU accelera-
tor [12]). 55

3.1 The fraction of total application runtime and energy spent in off-chip data
transfer for (a) a baseline GPU and (b) an accelerated GPU [38]. 60

3.2 (a) Neural transformation of a code segment from the binarization bench-
mark. (b) Comparison of prior work (bottom diagram) [38] and this work
(top diagram). 62

xviii

3.3 Execution flow of the accelerated GPU code on the in-DRAM accelerator. . 63

3.4 (a) High-Level GDDR5 DRAM organization. (b) Layout of two half bank-
groups (Left Half Bank-Group #0 and Left Half Bank-Group #1) and the
accelerators. The black-shaded boxes show the placement of the accelerators. 68

3.5 Integration of weight register, arithmetic units, accumulation registers, and
sigmoid LUTs. 70

3.6 The data layout for a neural network with 5→2→1 configuration in bank-
group0 and bank-group1 after data shuffling. For simplicity, we assume a
row buffer (256 bits). 75

3.7 (a) Example of the simplified shift-add unit with pre-loaded shift amounts.
(b-c) Two iterations of the shift-add unit. 76

3.8 AXRAM-SHA whole application speedup and energy reduction compared to (a)
baseline GPU and (b) an accelerated GPU (NGPU) [38]. 83

3.9 Breakdown of AXRAM-SHA’s energy consumption between DRAM system,
data transfer, and data computation normalized to NGPU [38]. 84

3.10 Application quality loss with AXRAM-SHA, AXRAM-FXP, and AXRAM-FP compared
to a baseline GPU. 84

3.11 AXRAM whole application (a) speedup and (b) energy reduction with the dif-
ferent microarchitectural options compared to a neurally accelerated GPU
(NGPU [38]). 86

3.12 Off-chip memory bandwidth consumption for AXRAM-SHA, a baseline GPU,
and an accelerated GPU (NGPU) [38]. 86

3.13 AXRAM average DRAM system power with the different microarchitectural
options normalized to a baseline GPU. 86

3.14 The AXRAM-SHA application energy reduction vs. different target output qual-
ity loss (2.5%, 5%, 7.5%, and 10%), normalized to a baseline GPU with
no acceleration. 87

4.1 Synthesis flow for (a) baseline and (b) approximate circuits. 103

4.2 Reductions in (a) energy and (b) area when the quality degradation limit is
set to 5% and 10% in the synthesis flow. 105

xix

4.3 Visual depiction of the output quality degradation with approximate syn-
thesis for the Sobel application. 107

5.1 Fraction of activation input values that are negative. 109

5.2 GoogLeNet [154], in which the intermediate feature maps for two input im-
ages are magnified. The ellipses on the intermediate feature maps highlight
the varying spatial distribution of non-zero values for distinct input images. 110

5.3 Software workflow for SnaPEA. 112

5.4 Example of a 1×3 convolution in (a) unaltered (b) exact, and (c) predictive
modes. In the latter two, the weights and their corresponding inputs are
reordered. The white boxes highlight the operations that are cut. 115

5.5 (a) The unaltered 3D convolution where all the MAC operations (bubbles)
are carried out. (b) The same convolution with SNAPEA, where a signifi-
cant number of operations are eliminated, delineated by the white bubbles. . 115

5.6 (a) The overall structure of the SNAPEA architecture and its multilevel
memory hierarchy, containing an off-chip memory and a distributed on-
chip buffer for input and outputs. (b) The microarchitecture of each PE.
The weights are shared across the compute lanes. 118

5.7 Prediction Activation Unit (PAU). The Predict signal determines the PAU
operation mode (exact or predictive). The Terminate signal, once as-
serted, terminates the computation early. 123

5.8 Overall (a) speedup and (b) energy reduction with exact mode. 127

5.9 Overall (a) speedup and (b) energy reduction with SNAPEA over EYERISS

[111] in the predictive mode. The acceptable classification accuracy drop
is maintained within ≤3% range of its baseline value. 129

5.10 Speedup of convolutional layers in each network for the predictive mode
when the degradation in classification accuracy is set to ≤ 3%. 129

5.11 Speedup vs. loss in the CNN classification accuracy. Each bar indicates
the speedup when the acceptable degradation in the classification accuracy
is 0% (pure exact mode), 1% (predictive mode), 2.0% (predictive mode),
and 3.0% (predictive mode), respectively. 131

xx

5.12 Sensitivity of speedup with SNAPEA over EYERISS to the number of
compute lanes per each PEs. Each bar indicates the speedup when the
number of compute lanes per each PEs is altered by different factors. The
acceptable classification accuracy drop is maintained within ≤3% range of
its baseline value. 132

6.1 The fraction of multiply-add operations in transposed convolution layers
that are inconsequential due to the inserted zeros in the inputs. 138

6.2 High-level visualization of a Generative Adversarial Network (GAN). . . . 140

6.3 (a) Convolution operations decreases the size of data (data reduction). (b)
Transposed convolution increases the size of data (data expansion). 140

6.4 (a) Zero-insertion step in a transposed convolution operation for a 4×4
input and the transformed input. The light-colored squares display zero
values in the transformed input. (b) Using conventional dataflow for per-
forming a transposed convolution operation. 142

6.5 The GANAX flow of data after applying (a) output row reorganization
and (b) filter row reorganization. (c) The GANAX flow of data after ap-
plying both output and filter row reorganization and eliminating the idle
compute nodes. The combination of these flow optimizations reduces the
idle (white) compute nodes and improves the resource utilization. 142

6.6 Top-level block diagram of GANAX architecture. 146

6.7 Organization of decoupled Access-Execute architecture. 148

6.8 Speedup and energy reduction of generative models compared to EYERISS

[111]. 161

6.9 Breakdown of energy consumption of the generative models between dif-
ferent microarchitectural units. The first bar shows the normalized energy
breakdown for EYERISS. The second bar show the energy breakdown for
GANAX normalized to EYERISS. 162

6.10 Breakdown of (a) runtime and (b) energy consumption between discrim-
inative and generative models normalized to the runtime and energy con-
sumption of EYERISS. For each network, the first (second) bar show the
normalized value when the application is executed on EYERISS (GANAX). 162

6.11 Average PE utilization for the generative models in EYERISS and GANAX. 163

xxi

Keywords: Approximate Computing; Machine Learning; Generative Adversarial Net-

works; Convolutional Neural Networks; CNN; Transposed Convolution; Access-Execute

Architecture; GAN; DNN; MIMD; SIMD; Accelerator

xxii

SUMMARY

Neuro-General Computing
An Acceleration-Approximation Approach

A growing number of commercial and enterprise systems rely on compute and power

intensive tasks. While the demand of these tasks is growing, the performance benefits

from general-purpose platforms are diminishing. As the result of the Dark Silicon stud-

ies shows [1, 2, 3, 4, 5] the improvements in per-transistor speed and energy efficiency

diminishing. Moreover, the current paradigm of microprocessor design falls significantly

short of the historical cadence of performance improvements [1, 4, 5]. Performance has

hit the power wall. These challenges have coincided with the big data era where the data

is being generated in such an overwhelming rate that is beyond the capabilities of current

computing systems to match. While data generation is quadrupling each year, modern

processors have seen a performance improvement 15% every two years. Without continu-

ous performance improvements, grand-challenge applications, such as enhanced cognition

and immersive virtual reality, computer vision, machine learning, sensory data processing,

stochastic optimization and big data analytics may stay out of reach due to their need for

significantly higher compute capacity. To address these convoluted challenges, there is

a need to move beyond traditional techniques and explore unconventional paradigms in

computing. This thesis is set to introduce a new paradigm in computing, called neuro-

general computing that leverages the approximibility in many emerging applications (e.g.,

machine learning, physical simulation, data visualization, big data analytics, sensory data

processing, augmented reality, stochastic optimization, and computer vision) for delivering

significant gains in performance and energy efficiency. Furthermore, in this thesis, I study

the symbiosis between accelerator design and approximation in deep neural networks. Fi-

nally, I explore the challenges of accelerating generative adversarial networks, the frontier

of deep networks, and introduce and develop an architecture which accelerate this new

xxiii

class of deep networks. As such, this thesis consists of three main parts:

1. Neuro-general computing. We explore three different design points for this new

paradigm of computing. First, we leverage the simplicity of the operations in neuro-

general paradigm, add and multiplication, to design a mixed-signal accelerator. We in-

troduce a novel architecture that carefully implement the microarchitectural components

in analog or digital domain. Furthermore, we introduce a compiler-circuit co-design

to mitigate the inherent imprecision in analog circuits. Then, we study the potential

benefits of neuro-general computing in GPU throughput processors. Integrating neural

accelerator units within GPUs is fundamentally different from doing so in a CPU, be-

cause of the hardware constraints and the many-thread SIMT execution model in GPUs.

Finally, we observe that neurally accelerating GPU cores increase the pressure on the

already-limited GPU memory bandwidth. As such, we study the integration of neural

accelerators within DRAM. We introduce a novel DRAM architecture that integrates

several low-overhead neural accelerators within DRAM while preserving the SIMT

execution model of GPUs.

2. Accelerator-approximation in deep neural networks. Deep Convolutional Neural

Networks (CNNs) are among the most widely used family of machine learning methods

that have had a transformative effect on a wide range of applications. CNNs require

ample amounts of computation even for a single input query. For instance, assigning

a label to a relatively small RGB image requires billions of multiply-and-accumulate

operations. In this part of thesis, we aim to reduce these copious amount of computation

by exploiting both their runtime information and algorithmic structure. In convolutional

layers of many modern CNNs, each convolution operation is commonly followed by an

activation function called a Rectifying Linear Unit (ReLU) that returns zero for negative

inputs and yields the input itself for the positive ones. Leveraging this insight, we intro-

duce a holistic software-hardware solution, that cuts a large fraction of the computations

short by identifying the zero intermediate values earlier during the runtime.

xxiv

3. Unsupervised learning acceleration. Generative Adversarial Networks (GANs) are

one of the most recent deep learning models that generate synthetic data from limited

genuine datasets. GANs are on the frontier as further extension of deep learning into

many domains (e.g., medicine, robotics, content synthesis) requires massive sets of

labeled data that is generally either unavailable or prohibitively costly to collect. GANs

leverage a new operator, called transposed convolution, that exposes unique challenges

for hardware acceleration. This operator first inserts zeros within the multidimensional

input, then convolves a kernel over this expanded array to augment information to the

embedded zeros. Even though there is a convolution stage in this operator, the inserted

zeros lead to underutilization of the compute resources when a conventional convolu-

tion accelerator is employed. We propose an architecture to alleviate the sources of

inefficiencies associated with the acceleration of GANs using conventional convolution

accelerators, making the first GAN accelerator design possible. We propose a reorgani-

zation of the output computations to allocate compute rows with similar patterns of zeros

to adjacent processing engines, which also avoids inconsequential multiply-adds on the

zeros. This compulsory adjacency reclaims data reuse across these neighboring process-

ing engines, which had otherwise diminished due to the inserted zeros. The reordering

breaks the full SIMD execution model, which is prominent in convolution accelerators.

Therefore, we propose a unified MIMD-SIMD design that leverages repeated patterns

in the computation to create distinct microprograms that execute concurrently in SIMD

mode.

xxv

CHAPTER 1

LIMITED PRECISION NEURO-GENERAL COMPUTING

1.1 Summary

As improvements in per-transistor speed and energy efficiency diminish, radical departures

from conventional approaches are becoming critical to improving the performance and

energy efficiency of general-purpose processors. We propose a solution—from circuit

to compiler—that enables general-purpose use of limited-precision, analog hardware to

accelerate “approximable” code—code that can tolerate imprecise execution. We utilize an

algorithmic transformation that automatically converts approximable regions of code from

a von Neumann model to an “analog” neural model. We outline the challenges of taking an

analog approach, including restricted-range value encoding, limited precision in computa-

tion, circuit inaccuracies, noise, and constraints on supported topologies. We address these

limitations with a combination of circuit techniques, a hardware/software interface, neural-

network training techniques, and compiler support. The results of this work show that

using limited-precision analog circuits for code acceleration, through a neural approach, is

both feasible and beneficial over a range of approximation-tolerant, emerging applications

including financial analysis, signal processing, robotics, 3D gaming, compression, and

image processing. This chapter is based on work presented in ISCA 2014 [6] and IEEE

Micro Top Picks [7]. This work is a result of collaboration with Renée St Amant1, Bradley

Thwaites2, Arjang Hassibi1, Luis Ceze3, Doug Burger, and Hadi Esmaeilzadeh4.

1University of Texas at Austin
2Georgia Institute of Technoloy
3University of Washington
4University of California, San Diego

1

1.2 Introduction

Energy efficiency now fundamentally limits microprocessor performance gains. CMOS

scaling no longer provides gains in efficiency commensurate with transistor density in-

creases [1, 8]. As a result, both the semiconductor industry and the research community

are increasingly focused on specialized accelerators, which provide large gains in efficiency

and performance by restricting the workloads that benefit. The community is facing an

“iron triangle”; we can choose any two of performance, efficiency, and generality at the

expense of the third. Before the effective end of Dennard scaling, we improved all three

consistently for decades. Solutions that improve performance and efficiency, while re-

taining as much generality as possible, are highly desirable, hence the growing interest

in GPGPUs and FPGAs. A growing body of recent work [9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19] has focused on approximation as a strategy for the iron triangle. Many

classes of applications can tolerate small errors in their outputs with no discernible loss

in QoR (Quality of Result). Many conventional techniques in energy-efficient computing

navigate a design space defined by the two dimensions of performance and energy, and

traditionally trade one for the other. General-purpose approximate computing explores a

third dimension—that of error.

Many design alternatives become possible once precision is relaxed. An obvious can-

didate is the use of analog circuits for computation. However, computation in the analog

domain has several major challenges, even when small errors are permissible. First, analog

circuits tend to be special purpose, good for only specific operations. Second, the bit

widths they can accommodate are smaller than current floating-point standards (i.e. 32/64

bits), since the ranges must be represented by physical voltage or current levels. Another

consideration is determining where the boundaries between digital and analog computation

lie. Using individual analog operations will not be effective due to the overhead of A/D and

D/A conversions. Finally, effective storage of temporary analog results is challenging in

2

current CMOS technologies. These limitations has made it ineffective to design analog von

Neumann processors that can be programmed with conventional languages.

Despite these challenges, the potential performance and energy gains from analog exe-

cution are highly attractive. An important challenge is thus to architect designs where a sig-

nificant portion of the computation can be run in the analog domain, while also addressing

the issues of value range, domain conversions, and relative error. Recent work on Neural

Processing Units (NPUs) may provide a possible approach [12]. NPU-enabled systems rely

on an algorithmic transformation that converts regions of approximable general-purpose

code into a neural representation (specifically, multi-layer perceptrons) at compile time.

At run-time, the processor invokes the NPU instead of running the original code. NPUs

have shown large performance and efficiency gains, since they subsume an entire code

region (including all of the instruction fetch, decode, etc., overheads). They have an added

advantage in that they convert many distinct code patterns into a common representation

that can be run on a single physical accelerator, improving generality.

NPUs may be a good match for mixed-signal implementations for a number of reasons.

First, prior research has shown that neural networks can be implemented in analog domain

to solve classes of domain-specific problems, such as pattern recognition [20, 21, 22, 23].

Second, the process of invoking a neural network and returning a result defines a clean,

coarse-grained interface for D/A and A/D conversion. Third, the compile-time training of

the network permits any analog-specific restrictions to be hidden from the programmer.

The programmer simply specifies which region of the code can be approximated, with-

out adding any neural-network-specific information. Thus, no additional changes to the

programming model are necessary.

In this work we evaluate an NPU design with mixed-signal components and develop

a compilation workflow for utilizing the mixed-signal NPU for code acceleration. The

goal of this study is to investigate challenges and define potential solutions to enable ef-

fective mixed-signal NPU execution. The objective is to both bound application error to

3

A-NPU
Circuit	Design

A-NPU
High-Level Model

Annotated	
Source	Code

Programmer

Programming Design

Profiling	Path	for	
Training	Data	
Collec<on

Training	Data

Trained	Neural	
Network

Custom	Training	
Algorithm	for	

Limited-Precision	
Analog	Accelerator

Compila/on

Code	
Genera<on

Instrumented	
Binary

Accelerator	
Config

CORE

A-NPU

Accelera/on

Figure 1.1: Framework for using limited-precision analog computation to accelerate code written in conventional
languages.
sufficiently low levels and achieve worthwhile performance or efficiency gains for general-

purpose approximable code. This study makes the following four findings:

1. Due to range limitations, it is necessary to limit the scope of the analog execution to

a single neuron; inter-neuron communication should be in the digital domain.

2. Again due to range issues, there is an interplay between the bit widths (inputs and

weights) that neurons can use and the number of inputs that they can process. We

found that the best design limited weights and inputs to eight bits, while also restrict-

ing the number of inputs to each neuron to eight. The input count limitation restricts

the topological space of feasible neural networks.

3. We found that using a customized continuous-discrete learning method (CDLM) [24],

which accounts for limited-precision computation at training time, is necessary to

reduce error due to analog range limitations.

4. Given the analog-imposed topology restrictions, we found that using a Resilient

Back Propagation (RPROP) [25] training algorithm can further reduce error over

a conventional backpropagation algorithm.

We found that exposing the analog limitations to the compiler allowed for the compen-

sation of these shortcomings and produced sufficiently accurate results. The latter three

findings were all used at training time; we trained networks at compile time using 8-bit val-

ues, topologies restricted to eight inputs per neuron, plus RPROP and CDLM for training.

Using these techniques together, we were able to bound error on all applications but one to

a 10% limit, which is commensurate with entirely digital approximation techniques. The

4

average time required to compute a neural result was 3.3× better than a previous digital

implementation with an additional energy savings of 12.1×. The performance gains result

in an average full-application-level improvement of 3.7× and 23.3× in performance and

energy-delay product, respectively. This study shows that using limited-precision analog

circuits for code acceleration, by converting regions of imperative code to neural networks

and exposing the circuit limitations to the compiler, is both feasible and advantageous.

While it may be possible to move more of the accelerator architecture design into the

analog domain, the current mixed-signal design performs well enough that only 3% and

46% additional improvements in application-level energy consumption and performance

are possible with improved accelerator designs. However, improving the performance of

the analog NPU may lead to higher overall performance gains.

1.3 Overview and Background

Programming. We use a similar programming model as described in [12] to enable pro-

grammers to mark error-tolerant regions of code as candidates for transformation using a

simple keyword, approximable. Explicit annotation of code for approximation is a common

practice in approximate programming languages [26, 27]. A candidate region is an error-

tolerant function of any size, containing function calls, loops, and complex control flow.

Frequently executed functions provide a greater opportunity for gains. In addition to error

tolerance, the candidate function must have well-defined inputs and outputs. That is, the

number of inputs and outputs must be known at compile time. Additionally, the code region

must not read any data other than its inputs, nor affect any data other than its outputs. No

major changes are necessary to the programming language beyond adding the approximable

keyword.

Exposing analog circuits to the compiler. Although an analog accelerator presents the

opportunity for gains in efficiency over a digital NPU, it suffers from reduced accuracy

and flexibility, which results in limitations on possible network topologies and limited-

5

precision computation, potentially resulting in a decreased range of applications that can

utilize the acceleration. These shortcomings at the hardware level, however, can be exposed

as a high-level model and considered in the training phase.

Four characteristics need to be exposed: (1) limited precision for input and output

encoding, (2) limited precision for encoding weights, (3) the behavior of the activation

function (sigmoid), (4) limited feasible neural topologies. Other low-level circuit behavior

such as response to noise can also be exposed to the compiler. Section 1.6 describes this

necessary hardware/software interface in more detail.

Analog neural accelerator circuit design. To extract the high-level model for the com-

piler and to be able to accelerate execution, we design a mixed-signal neural hardware

for multilayer perceptrons. The accelerator must support a large enough variety of neural

network topologies to be useful over a wide range of applications. As we will show,

each applications requires a different topology for the neural network that is replacing its

approximable regions of code. Section 1.5 describes a candidate A-NPU circuit design,

and outlines the challenges and tradeoffs present with an analog implementation.

Compiling for analog neural hardware. The compiler aims to mimic approximable

regions of code with neural networks that can be executable on the mixed-signal acceler-

ator. While considering the limitation of the analog hardware, the compiler searches the

topology space of the neural networks and selects and trains a neural network to produce

outputs comparable to those produced by the original code segment.

1) Profile-driven training data collection. During a profiling stage, the compiler

runs the application with representative profiling inputs and collects the inputs and outputs

to the approximable code region. This step provides the training data for the rest of the

compilation workflow.

6

2) Training for a limited-precision A-NPU. This stage is where our compilation

workflow significantly deviates from the framework presented in [12] that targets digital

NPUs. The compiler uses the collected training data to train a multilayer perceptron neural

network, choosing a network topology, i.e. the number of neurons and their connectivity,

and taking a gradient descent approach to find the synaptic weights of the network while

minimizing the error with respect to the training data. This compilation stage does a neural

topology search to find the smallest neural network that (a) adheres to the organization of

the analog circuit and (b) delivers acceptable accuracy at the application level. The network

training algorithm, which finds optimal synaptic weights, uses a combination of a resilient

back propagation algorithm, RPROP [25], that we found to outperform traditional back

propagation for restricted network topologies, and a continuous-discrete learning method,

CDLM [24], that attempts to correct for error due to limited-precision computation. Sec-

tion 1.6 describes these techniques that address analog limitations.

3) Code generation for hybrid analog-digital execution. Similar to prior work [12],

in the code generation phase, the compiler replaces each instance of the original program

code with code that initiates a computation on the analog neural accelerator. Similar ISA

extensions are used to specify the neural network topology, send input and weight values

to the A-NPU, and retrieve computed outputs from the A-NPU.

1.4 Analog Circuits for Neural Computation

This section describes how analog circuits can perform the computation of neurons in

multi-layer perceptrons, which are widely used neural networks. We also discuss, at a

high-level, how limitations of the analog circuits manifest in the computation. We explain

how these restrictions are exposed to the compilation framework. The next section presents

a concrete design for the analog neural accelerator.

As Figure 1.2a illustrates, each neuron in a multi-layer perceptron takes in a set of inputs

7

x0

y = sigmoid(
X

(xiwi))

w0 wi wn

xi xn

X
(xiwi)

… …
I(xi) I(xn)I(x0)

R(wi) R(wn)

ADC

X
(I(xi)R(wi))

y ⇡ sigmoid(
X

(I(xi)R(wi)))

DAC DAC DAC

x0 xi xn

… …

V to I V to I V to I

R(w0)

Figure 1.2: One neuron and its conceptual analog circuit.

(xi) and performs a weighted sum of those input values (∑i xiwi). The weights (wi) are the

result of training the neural network on training data (compile time) and are constant during

the recall phase (execution time). After the summation stage, which produces a linear

combination of the weighted inputs, the neuron applies a nonlinearity function, sigmoid, to

the result of summation.

Figure 1.2b depicts a conceptual analog circuit that performs the three necessary op-

erations of a neuron: (1) scaling inputs by weight (xiwi), (2) summing the scaled inputs

(∑i xiwi), and (3) applying the nonlinearity function (sigmoid). This conceptual design first

encodes the digital inputs (xi) as analog current levels (I(xi)). Then, these current levels

pass through a set of variable resistances whose values (R(wi)) are set proportional to the

corresponding weights (wi). The voltage level at the output of each resistance (I(xi)R(wi)),

is proportional to xiwi. These voltages are then converted to currents that can be summed

quickly according to Kirchhoff’s current law (KCL). Analog circuits only operate linearly

within a small range of voltage and current levels, outside of which the transistors enter

saturation mode with IV characteristics similar in shape to a non-linear sigmoid function.

Thus, at the high level, the non-linearity is naturally applied to the result of summation

when the final voltage reaches the analog-to-digital converter (ADC). Compared to a digital

8

implementation of a neuron, which requires multipliers, adder trees and sigmoid lookup

tables, the analog implementation leverages the physical properties of the circuit elements

and is orders of magnitude more efficient. However, it operates in limited ranges and

therefore offers limited precision.

Analog-digital boundaries. The conceptual design in Figure 1.2b draws the analog-

digital boundary at the level of an algorithmic neuron. As we will discuss, the analog

neural accelerator will be a composition of these analog neural units (ANUs). However, an

alternative design, primarily optimizing for efficiency, may lay out the entirety of a neural

network with only analog components, limiting the D-to-A and A-to-D conversions to the

inputs and outputs of the neural network and not the individual neurons. The overhead of

conversions in the ANUs significantly limits the potential efficiency gains of an analog

approach toward neural computation. However, there is a tradeoff between efficiency,

reconfigurability (generality), and accuracy in analog neural hardware design. Pushing

more of the implementation into the analog domain gains efficiency at the expense of

flexibility, limiting the scope of supported network topologies and, consequently, limiting

potential network accuracy. The NPU approach targets code approximation, rather than

typical, simpler neural tasks, such as recognition and prediction, and imposes higher ac-

curacy requirements. The main challenge is to manage this tradeoff to achieve acceptable

accuracy for code acceleration, while delivering higher performance and efficiency when

analog neural circuits are used for general-purpose code acceleration.

As prior work [12] has shown and we corroborate, regions of code from different

applications require different topologies of neural networks. While a holistically analog

neural hardware design with fixed-wire connections between neurons may be efficient, it

effectively provides a fixed topology network, limiting the scope of applications that can

benefit from the neural accelerator, as the optimal network topology varies with application.

Additionally, routing analog signals among neurons and the limited capability of analog

9

circuits for buffering signals negatively impacts accuracy and makes the circuit susceptible

to noise. In order to provide additional flexibility, we set the digital-analog boundary in

conjunction with an algorithmic, sigmoid-activated neuron. where a set of digital inputs

and weights are converted to the analog domain for efficient computation, producing a

digital output that can be accurately routed to multiple consumers. We refer to this basic

computation unit as an analog neural unit, or ANU. ANUs can be composed, in various

physical configurations, along with digital control and storage, to form a reconfigurable

mixed-signal NPU, or A-NPU.

One of the most prevalent limitations in analog design is the bounded range of currents

and voltages within which the circuits can operate effectively. These range limitations

restrict the bit-width of input and weight values and the network topologies that can be

computed accurately and efficiently. We expose these limitations to the compiler and

our custom training algorithm and compilation workflow considers these restrictions when

searching for optimal network topologies and training neural networks. As we will show,

one of the insights from this work is that even with limited bit-width (≤ 8), and a restricted

neural topology, many general-purpose approximate applications achieve acceptable accu-

racy and significantly benefit from mixed-signal neural acceleration.

Value representation and bit-width limitations. One of the fundamental design choices

for an ANU is the bit-width of inputs and weights. Increasing the number of bits results in

an exponential increase in the ADC and DAC energy dissipation and can significantly limit

the benefits from analog acceleration. Furthermore, due to the fixed range of voltage and

current levels, increasing the number of bits translates to quantizing this fixed value range

to fine granularities that practical ADCs can not handle. In addition, the fine granularity

encoding makes the analog circuit significantly more susceptible to noise, thermal, voltage,

current, and process variations. In practice, these non-ideal effects can adversely affect the

final accuracy when more bit-width is used for weights and inputs. We design our ANUs

10

such that the granularity of the voltage and current levels used for information encoding is

to a large degree robust to variations and noise.

Topology restrictions. Another important design choice is the number of inputs in the

ANU. Similar to bit-width, increasing the number of ANU inputs translates to encoding a

larger value range in a bounded voltage and current range, which, as discussed, becomes

impractical. There is a tradeoff between accuracy and efficiency in choosing the number

ANU inputs. The larger the number of inputs, the larger the number of multiply and

add operations that can be done in parallel in the analog domain, increasing efficiency.

However, due to the bounded range of voltage and currents, increasing the number of

inputs requires decreasing the number of bits for inputs and weights. Through circuit-

level simulations, we empirically found that limiting the number of inputs to eight with

8-bit inputs and weights strikes a balance between accuracy and efficiency. A digital

implementation does not impose such restrictions on the number of inputs to the hardware

neuron and it can potentially compute arbitrary topologies of neural networks. However,

this unique ANU limitation restricts the topology of the neural network that can run on

the analog accelerator. Our customized training algorithm and compilation workflow takes

into account this topology limitation and produces neural networks that can be computed

on our mixed-signal accelerator.

Non-ideal sigmoid. The saturation behavior of the analog circuit that leads to sigmoid-

like behavior after the summation stage represents an approximation of the ideal sigmoid.

We measure this behavior at the circuit level and expose it to the compiler and the training

algorithm.

1.5 Mixed-Signal Neural Accelerator (A-NPU)

This section describes a concrete ANU design and the mixed-signal, neural accelerator,

A-NPU.

11

Current'
Steering'
DAC

x0sx0w0sw0

Resistor'
Ladder

Current'
Steering'
DAC

Resistor'
Ladder

Diff'
Pair

…

V (|w0x0|)

I+(w0x0)

V +
⇣X

wixi

⌘

swn
sxnwn xn

R(|w0|) R(|wn|)

I(|xn|)

V (|wnxn|)

I+(wnxn)

sy

y

Flash
ADC

y ⇡ sigmoid
⇣
V
⇣X

wixi

⌘⌘

I(|x0|)

Diff'
Pair

I�(w0x0)

I�(wnxn)

V �
⇣X

wixi

⌘
Diff'
Amp

+

-

+

;

Figure 1.3: A single analog neuron (ANU).

1.5.1 ANU Circuit Design

Figure 1.3 illustrates the design of a single analog neuron (ANU). The ANU performs the

computation of one neuron, or y≈ sigmoid(∑i wixi). We place the analog-digital boundary

at the ANU level, with computation in the analog domain and storage in the digital domain.

Digital input and weight values are represented in sign-magnitude form. In the figure, swi

and sxi represent the sign bits and wi and xi represent the magnitude. Digital input values

are converted to the analog domain through current-steering DACs that translate digital

values to analog currents. Current-steering DACs are used for their speed and simplicity.

In Figure 1.3, I(|xi|) is the analog current that represents the magnitude of the input value,

xi. Digital weight values control resistor-string ladders that create a variable resistance

depending on the magnitude of each weight (R(|wi|)) . We use a standard resistor ladder

thats consists of a set of resistors connected to a tree-structured set of switches. The digital

weight bits control the switches, adjusting the effective resistance, R(|wi|), seen by the

12

input current (I(|xi|)). These variable resistances scale the input currents by the digital

weight values, effectively multiplying each input magnitude by its corresponding weight

magnitude. The output of the resistor ladder is a voltage: V (|wixi|) = I(|xi|)×R(|wi|). The

resistor network requires 2m resistors and approximately 2m+1 switches, where m is the

number of digital weight bits. This resistor ladder design has been shown to work well for

m≤ 10. Our circuit simulations show that only minimally sized switches are necessary.

V (|wixi|), as well as the XOR of the weight and input sign bits, feed to a differential pair

that converts voltage values to two differential currents (I+(wixi), I−(wixi)) that capture

the sign of the weighted input. These differential currents are proportional to the voltage

applied to the differential pair, V (|wixi|). If the voltage difference between the two gates

is kept small, the current-voltage relationship is linear, producing I+(wixi) =
Ibias

2 + ∆I

and I−(wixi) =
Ibias

2 − ∆I. Resistor ladder values are chosen such that the gate voltage

remains in the range that produces linear outputs, and consequently a more accurate final

result. Based on the sign of the computation, a switch steers either the current associated

with a positive value or the current associated with a negative value to a single wire to be

efficiently summed according to Kirchhoff’s current law. The alternate current is steered to

a second wire, retaining differential operation at later design stages. Differential operation

combats environmental noise and increases gain, the later being particularly important for

mitigating the impact of analog range challenges at later stages.

Resistors convert the resulting pair of differential currents to voltages, V+(∑i wixi) and

V−(∑i wixi), that represent the weighted sum of the inputs to the ANU. These voltages

are used as input to an additional amplification stage (implemented as a current-mode

differential amplifier with diode-connected load). The goal of this amplification stage is

to significantly magnify the input voltage range of interest that maps to the linear output

region of the desired sigmoid function. Our experiments show that neural networks are

sensitive to the steepness of this non-linear function, losing accuracy with shallower, non-

linear activation functions. This fact is relevant for an analog implementation because

13

Column	Selector

8-Wide
Analog	
Neuron

W
ei
gh
t	B

uff
er

8-Wide
Analog	
Neuron

W
ei
gh
t	B

uff
er

8-Wide
Analog	
Neuron

W
ei
gh
t	B

uff
er

8-Wide
Analog	
Neuron

W
ei
gh
t	B

uff
er

Row	Selector

Output	Buffer

Config	Buffer
Input	Buffer

…

Figure 1.4: Mixed-signal neural accelerator, A-NPU. Only four of the ANUs are shown. Each ANU processes eight
8-bit inputs.

steeper functions increase range pressure in the analog domain, as a small range of inter-

est must be mapped to a much larger output range in accordance with ADC input range

requirements for accurate conversion. We magnify this range of interest, choosing circuit

parameters that give the required gain, but also allowing for saturation with inputs outside

of this range.

The amplified voltage is used as input to an ADC that converts the analog voltage to a

digital value. We chose a flash ADC design (named for its speed), which consists of a set of

reference voltages and comparators [28, 29]. The ADC requires 2n comparators, where n

is the number of digital output bits. Flash ADC designs are capable of converting 8 bits at a

frequency on the order of one GHz. We require 2–3 mV between ADC quantization levels

for accurate operation and noise tolerance. Typically, ADC reference voltages increase

linearly; however, we use a non-linearly increasing set of reference voltages to capture the

behavior of a sigmoid function, which also improves the accuracy of the analog sigmoid.

14

1.5.2 Reconfigurable Mixed-Signal A-NPU

We design a reconfigurable mixed-signal A-NPU that can perform the computation of a

wide variety of neural topologies since each requires a different topology. Figure 1.4 illus-

trates the A-NPU design with some details omitted for clarity. The figure shows four ANUs

while the actual design has eight. The A-NPU is a time-multiplexed architecture where

the algorithmic neurons are mapped to the ANUs based on a static scheduling algorithm,

which is loaded to the A-NPU before invocation. The multi-layer perceptron consists of

layers of neurons, where the inputs of each layer are the outputs of the previous layer. The

ANU starts from the input layer and performs the computations of the neurons layer by

layer. The Input Buffer always contains the inputs to the neurons, either coming from the

processor or from the previous layer computation. The Output Buffer, which is a single

entry buffer, collects the outputs of the ANUs. When all of its columns are computed, the

results are pushed back to the Input Buffer to enable calculation of the next layer. The Row

Selector determines which entry of the input buffer will be fed to the ANUs. The output of

the ANUs will be written to a single-entry output buffer. The Column Selector determines

which column of the output buffer will be written by the ANUs. These selectors are FIFO

buffers whose values are part of the preloaded A-NPU configuration. All the buffers are

digital SRAM structures.

Each ANU has eight inputs. As shown in Figure 1.4, each A-NPU is augmented with a

dedicated weight buffer, storing the 8-bit weights. The weight buffers simultaneously feed

the weights to the ANUs. The weights and the order in which they are fed to the ANUs

are part of the A-NPU configuration. The Input Buffer and Weight Buffers synchronously

provide the inputs and weights for the ANUs based on the pre-loaded order.

A-NPU configuration. During code generation, the compiler produces an A-NPU con-

figuration that constitutes the weights and the schedule. The static A-NPU scheduling

algorithm first assigns an order to the neurons of the neural network, in which the neurons

15

will be computed in the ANUs. The scheduler then takes the following steps for each layer

of the neural network: (1) Assign each neuron to one of the ANUs. (2) Assign an order

to neurons. (3) Assign an order to the weights. (4) Generate the order for inputs to feed

the ANUs. (5) Generate the order in which the outputs will be written to the Output Buffer.

The scheduler also assigns a unique order for the inputs and outputs of the neural network

in which the core communicates data with the A-NPU.

1.5.3 Architectural interface for A-NPU

We adopt the same FIFO-based architectural interface through which a digital NPU com-

municates with the processor [12]. The A-NPU is tightly integrated to the pipeline. The

processor only communicates with the ANUs through the Input, Output, Config FIFOs.

The processor ISA is extended with special instructions that can enqueue and dequeue data

from these FIFOs as shown in Figure 1.4. When a data value is queued/dequeued to/from

the Input/Output FIFO, the A-NPU converts the values to the appropriate representation for

the A-NPU/processor.

1.6 Compilation for Analog Acceleration

As Figure 2.3 illustrates, the compilation for A-NPU execution consists of three stages:

(1) profile-driven data collection, (2) training for a limited-precision A-NPU, and (3) code

generation for hybrid analog-digital execution. In the profile-driven data collection stage,

the compiler instruments the application to collect the inputs and outputs of approximable

functions. The compiler then runs the application with representative inputs and collects

the inputs and their corresponding outputs. These input-output pairs constitute the training

data. Section 1.5 briefly discussed ISA extensions and code generation. While compilation

stages (1) and (3) are similar to the techniques presented for a digital implementation [12],

the training phase is unique to an analog approach, accounting for analog-imposed, topol-

ogy restrictions and adjusting weight selection to account for limited-precision computa-

16

tion.

Hardware/software interface for exposing analog circuits to the compiler. As we dis-

cussed in Section 1.4, we expose the following analog circuit restrictions to the compiler

through a hardware/software interface that captures the following circuit characteristics: (1)

input bit-width limitations, (2) weight bit-width limitations, (3) limited number of inputs

to each analog neuron (topology restriction), and (4) the non-ideal shape of the analog

sigmoid. The compiler internally constructs a high-level model of the circuit based on

these limitations and uses this model during the neural topology search and training with

the goal of limiting the impact of inaccuracies due to an analog implementation.

Training for limited bit widths and analog computation. Traditional training algo-

rithms for multi-layered perceptron neural networks use a gradient descent approach to

minimize the average network error, over a set of training input-output pairs, by backprop-

agating the output error through the network and iteratively adjusting the weight values to

minimize that error. Traditional training techniques, however, that do not consider limited-

precision inputs, weights, and outputs perform poorly when these values are saturated to

adhere to the bit-width requirements that are feasible for an implementation in the analog

domain. Simply limiting weight values during training is also detrimental to achieving

quality outputs because the algorithm does not have sufficient precision to converge to a

quality solution.

To incorporate bit-width limitations into the training algorithm, we use a customized

continuous-discrete learning method (CDLM) [24]. This approach takes advantage of

the availability of full-precision computation at training time and then adjusts slightly

to optimize the network for errors due to limited-precision values. In an initial phase,

CDLM first trains a fully-precise network according to a standard training algorithm, such

as backpropagation [30]. In a second phase, it discretizes the input, weight, and output

values according the the exposed analog specification. The algorithm calculates the new

17

Table 1.1: The evaluated benchmarks, characterization of each offloaded function, training data, and the trained
neural network.

Benchmark
Name Description Type

of
Function

Calls

of
Loops

of ifs/
elses

of x86-64
Instructions

Evaluation Input
Set

Training Input
Set

Neural Network
Topology

Fully Digital
NN MSE

Analog NN
MSE (8-bit)

Application
Error Metric

Fully
Digital
Error

A-NPU
Error

Mathematical model
of a financial market

Radix-2 Cooley-Tukey
fast fourier

Inverse kinematics for
2-joint arm

Triangle intersection
detection

JPEG encoding

K-means clustering

Sobel edge detector

blackscholes

fft

inversek2j

jmeint

jpeg

kmeans

sobel

Financial Analysis

Signal-Processing

Robotics

3D Gaming

Compression

Machine Learning

Image Processing

5

2

4

32

3

1

3

0

0

0

0

4

0

2

5

0

0

23

0

0

1

309

34

100

1,079

1,257

26

88

4,096 Data Point from
PARSEC

2,048 Random Floating
Point Numbers

10,000 (x, y) Random
Coordinates

10,000 Random Pairs of
3D Triangle Coordinates

220x220-Pixel Color
Image

220x220-Pixel Color
Image

220x220-Pixel Color
Image

16,384 Data Point from
PARSEC

32,768 Random Floating
Point Numbers

10,000 (x, y) Random
Coordinates

10,000 Random Pairs of
3D Triangle Coordinates

Three 512x512-Pixel
Color Image

50,000 Pairs of Random
(r, g, b) Values

One 512x512 Pixel Color
Image

6 → 8 → 8 → 1

1 → 4 → 4 → 2

2 → 8 → 2

18 → 32 → 8 → 2

64 → 16 → 8 → 64

6 → 8 → 4 → 1

9 → 8 → 1

0.000011

0.00002

0.000341

0.05235

0.0000156

0.00752

0.000782

0.00228

0.00194

0.00467

0.06729

0.0000325

0.009589

0.00405

Average
Relative Error

Average
Relative Error

Average
Relative Error

Miss Rate

Image Diff

Image Diff

Image Diff

6.02%

2.75%

6.2%

17.68%

5.48%

3.21%

3.89%

10.2%

4.1%

9.4%

19.7%

8.4%

7.3%

5.2%

error and backpropagates that error through the fully-precise network using full-precision

computation and updates the weight values according to the algorithm also used in stage

1. This process repeats, backpropagating the ’discrete’ errors through a precise network.

The original CDLM training algorithm was developed to mitigate the impact of limited-

precision weights. We customize this algorithm by incorporating the input bit-width limi-

tation and the output bit-width limitation in addition to limited weight values. Additionally,

this training scheme is advantageous for an analog implementation because it is general

enough to also make up for errors that arise due to an analog implementation, such as a

non-ideal sigmoid function and any other analog non-ideality that behaves consistently.

In essence, after one round of full-precision training, the compiler models an analog-like

version of the network. A second, CDLM-based training pass adjusts for these analog-

imposed errors, enabling the inaccurate and limited A-NPU as an option for a beneficial

NPU implementation by maintaining acceptable accuracy and generality.

Training with topology restrictions. In addition to determining weight values for a

given network topology, the compiler searches the space of possible topologies to find

an optimal network for a given approximable code region. Conventional multi-layered per-

ceptron networks are fully connected, i.e. the output of each neuron in one layer is routed to

the input of each neuron in the following layer. However, analog range limitations restrict

the number of inputs that can be computed in a neuron (eight in our design). Consequently,

network connections must be limited, and in many cases, the network can not be fully

connected.

18

We impose the circuit restriction on the connectivity between the neurons during the

topology search and we use a simple algorithm guided by the mean-squared error of the

network to determine the best topology given the exposed restriction. The error evaluation

uses a typical cross-validation approach: the compiler partitions the data collected during

profiling into a training set, 70% of the data, and a test set, the remaining 30%. The topol-

ogy search algorithm trains many different neural-network topologies using the training set

and chooses the one with the highest accuracy on the test set and the lowest latency on the

A-NPU hardware (prioritizing accuracy). The space of possible topologies is large, so we

restrict the search to neural networks with at most two hidden layers. We also limit the

number of neurons per hidden layer to powers of two up to 32. The numbers of neurons in

the input and output layers are predetermined based on the number of inputs and outputs in

the candidate function.

To further improve accuracy, and compensate for topology-restricted networks, we uti-

lize a Resilient Back Propagation (RPROP) [25] training algorithm as the base training

algorithm in our CDLM framework. During training, instead of updating the weight values

based on the backpropagated error (as in conventional backpropagation [30]), the RPROP

algorithm increases or decreases the weight values by a predefined value based on the sign

of the error. Our investigation showed that RPROP significantly outperforms conventional

backpropagation for the selected network topologies, requiring only half of the number of

training epochs as backpropagation to converge on a quality solution. The main advantage

of the application of RPROP training to an analog approach to neural computing is its

robustness to the sigmoid function and topology restrictions imposed by the analog de-

sign. Backpropagation, for example, is extremely sensitive to the steepness of the sigmoid

function, and allowing for a variety of steepness levels in a fixed, analog implementation

is challenging. Additionally, backpropagation performs poorly with a shallow sigmoid

function. The requirement of a steep sigmoid function exacerbates analog range challenges,

possibly making the implementation infeasible. RPROP tolerates a more shallow sigmoid

19

activation steepness and performs consistently utilizing a constant activation steepness over

all applications. Our RPROP-based, customized CDLM training phase requires 5000 train-

ing epochs, with the analog-based CDLM phase adding roughly 10% to the training time

of the baseline training algorithm.

1.7 Evaluations

Cycle-accurate simulation and energy modeling. We use the MARSSx86 x86-64 cycle-

accurate simulator [31] to model the performance of the processor. The processor is

modeled after a single-core Intel Nehalem to evaluate the performance benefits of A-NPU

acceleration over an aggressive out-of-order architecture5. We extended the simulator to

include ISA-level support for A-NPU queue and dequeue instructions. We also augmented

MARSSx86 with a cycle-accurate simulator for our A-NPU design and an 8-bit, fixed-point

D-NPU with eight processing engines (PEs) as described in [12]. We use GCC v4.7.3 with

-o3 to enable compiler optimization. The baseline in our experiments is the benchmark run

solely on the processor without neural transformation. We use McPAT [32] for processor

energy estimations. We model the energy of an 8-bit, fixed-point D-NPU using results

from McPAT, CACTI 6.5 [33], and [34] to estimate its energy. Both the D-NPU and the

processor operate at 3.4GHz at 0.9 V, while the A-NPU is clocked at one third of the digital

clock frequency, 1.1GHz at 1.2 V, to achieve acceptable accuracy.

Circuit design for ANU. We built a detailed transistor-level SPICE model of the analog

neuron, ANU. We designed and simulated the 8-bit, 8-input ANU in the Cadence Analog

Design Environment using predictive technology models at 45 nm [35]. We ran detailed

Spectre SPICE simulations to understand circuit behavior and measure ANU energy con-

5Processor: Fetch/Issue Width: 4/5, INT ALUs/FPUs: 6/6, Load/Store FUs: 1/1, ROB Entries: 128, Issue
Queue Entries: 36, INT/FP Physical Registers: 256/256, Branch Predictor: Tournament 48 KB, BTB Set-
s/Ways: 1024/4, RAS Entries: 64, Load/Store Queue Entries: 48/48, Dependence Predictor: 4096-entry
Bloom Filter, ITLB/DTLB Entries: 128/256 L1: 32 KB Instruction, 32 KB Data, Line Width: 64 bytes,
8-Way, Latency: 3 cycles L2: 256 KB, Line Width: 64 bytes, 8-Way, Latency: 6 cycles L3: 2 MB, Line
Width 64 bytes, 16-Way, Latency: 27 cycles Memory Latency: 50 ns

20

Table 1.2: Area estimates for the analog neuron (ANU).

Sub-circuit Area
8×8-bit DAC 3,096 T∗

8×Resistor Ladder (8-bit weights) 4,096 T + 1 KΩ (≈ 450T)
8×Differential Pair 48 T
I-to-V Resistors 20 KΩ (≈ 30 T)
Differential Amplifier 244 T
8-bit ADC 2550 T + 1 KΩ (≈ 450 T)
Total ≈ 10,964 T
∗Transistor with width/length = 1

sumption. We used CACTI to estimate the energy of the A-NPU buffers. Evaluations

consider all A-NPU components, both digital and analog. For the analog parts, we used

direct measurements from the transistor-level SPICE simulations. For SRAM accesses,

we used CACTI. We built an A-NPU cycle-accurate simulator to evaluate the performance

improvements. Similar to McPAT, we combined simulation statistics with measurements

from SPICE and CACTI to calculate A-NPU energy. To avoid biasing our study toward

analog designs, all energy and performance comparisons are to an 8-bit, fixed-point D-NPU

(8-bit inputs/weights/multiply-adders). For consistency with the available McPAT model

for the baseline processor, we used McPAT and CACTI to estimate D-NPU energy. Even

though we do not have a fabrication-ready layout for the design, in Table 1.2, we provide

an estimate of the ANU area in terms of number of transistors. T denotes a transistor with

width
length = 1. As shown, each ANU (which performs eight, 8-bit analog multiply-adds in par-

allel followed by a sigmoid) requires about 10,964 transistors. An equivalent digital neuron

that performs eight, 8-bit multiply-adds and a sigmoid would require about 72,456 T from

which 56,000 T are for the eight, 8-bit multiply-adds and 16,456 T for the sigmoid lookup.

With the same compute capability, the analog neuron requires 6.6× fewer transistors than

its equivalent digital implementation.

Benchmarks. We use the benchmarks in [12] and add one more, blackscholes. These

benchmarks represent a diverse set of application domains, including financial analysis,

signal processing, robotics, 3D gaming, compression, image processing. Table 1.1 summa-

rizes information about each benchmark: application domain, target code, neural-network

21

blackscholes fft

inversek2j
jmeint

jpeg
kmeans

sobel

geomean
0.0×
1.0×
2.0×
3.0×
4.0×
5.0×

Im
pr

ov
em

en
t

2.
5×

1.
8× 2.

4×

3.
9×

15
.2
×

2.
4× 2.

7× 3.
3×

9.
5×

3.
7×

4.
5× 28

.2
×

82
.2
×

8.
5×

11
.8
×

12
.0
×

Speedup
Energy Saving

Figure 1.5: A-NPU with 8 ANUs vs. D-NPU with 8 PEs.
topology, training/test data and final application error levels for fully-digital neural net-

works and analog neural networks using our customized RPROP-based CDLM training

algorithm. The neural networks were trained using either typical program inputs, such as

sample images, or a limited number of random inputs. Accuracy results are reported using

an independent data set, e.g, an input image that is different than the image used during

training. Each benchmark requires an application-specific error metric, which is used in

our evaluations. As shown in Table 1.1, each application benefits from a different neural

network topology, so the ability to reconfigure the A-NPU is critical.

A-NPU vs 8-bit D-NPU. Figure 1.5 shows the average energy improvement and speedup

for one invocation of an A-NPU over one invocation of an 8-bit D-NPU, where the A-

NPU is clocked at 1
3 the D-NPU frequency. On average, the A-NPU is 12.1× more energy

efficient and 3.3× faster than the D-NPU. While consuming significantly less energy, the

A-NPU can perform 64 multiply-adds in parallel, while the D-NPU can only perform eight.

This energy-efficient, parallel computation explains why jpeg–with the largest neural

network (64→16→8→64)–achieves the highest energy and performance improvements,

82.2× and 15.2×, respectively. The larger the network, the higher the benefits from A-

NPU. Compared to a D-NPU, an A-NPU offers a higher level of parallelism with low

energy cost that can potentially enable using larger neural networks to replace more com-

plicated code.

22

blackscholes fft

inversek2j
jmeint

jpeg
kmeans

sobel

geomean
0.0×
1.0×
2.0×
3.0×
4.0×
5.0×
6.0×
7.0×
8.0×
9.0×

10.0×

S
pe

ed
up

14
.1
×

1.
1×

7.
9×

2.
3×

1.
5×

0.
5×

2.
4×

2.
4×

24
.5
×

1.
3×

10
.9
×

6.
2×

1.
8×

0.
8×

3.
1× 3.

7×

48
.0
×

1.
6×

14
.9
×

14
.0
×

1.
9×

1.
2×

3.
6×

5.
4×

Core + D-NPU
Core + A-NPU
Core + Ideal

(a) Whole application speedup.
blackscholes fft

inversek2j
jmeint

jpeg
kmeans

sobel

geomean
0.0×
1.0×
2.0×
3.0×
4.0×
5.0×
6.0×
7.0×
8.0×
9.0×

10.0×

E
ne

rg
y

R
ed

uc
tio

n

42
.5
×

1.
6×

25
.8
×

7.
3×

2.
2×

1.
1×

2.
7×

5.
0×

51
.2
×

1.
7×

30
.0
×

17
.8
×

2.
3×

1.
3×

2.
8×

6.
3×

52
.5
×

1.
7×

31
.4
×

18
.8
×

2.
3×

1.
3×

2.
8×

6.
4×

Core + D-NPU
Core + A-NPU
Core + Ideal

(b) Whole application energy saving.

Percentage
Instructions
Subsumed

blackscholes

97.2%

fft

67.4%

inversek2j

95.9%

jmeint

95.1%

jpeg

56.3%

kmeans

29.7%

sobel

57.1%

(c) % dynamic instructions subsumed.

Figure 1.6: Whole application speedup and energy saving with D-NPU, A-NPU, and an Ideal NPU that consumes
zero energy and takes zero cycles for neural computation.

Whole application speedup and energy savings. Figure 1.6 shows the whole applica-

tion speedup and energy savings when the processor is augmented with an 8-bit, 8-PE

D-NPU, our 8-ANU A-NPU, and an ideal NPU, which takes zero cycles and consumes

zero energy. Figure 1.6c shows the percentage of dynamic instructions subsumed by the

neural transformation of the candidate code. The results show, following the Amdahl’s

Law, that the larger the number of dynamic instructions subsumed, the larger the benefits

from neural acceleration. Geometric mean speedup and energy savings with an A-NPU is

3.7× and 6.3× respectively, which is 48% and 24% better than an 8-bit, 8-PE NPU. Among

the benchmarks, kmeans sees slow down with D-NPU and A-NPU-based acceleration. All

benchmarks benefit in terms of energy. The speedup with A-NPU acceleration ranges from

0.8× to 24.5×. The energy savings range from 1.3× to 51.2×. As the results show, the

savings with an A-NPU closely follows the ideal case, and, in terms of “energy”, there is

little value in designing a more sophisticated A-NPU. This result is due to the fact that the

energy cost of executing instructions in the von Neumann, out-of-order pipeline is much

higher than performing simple multiply-adds in the analog domain. Using physics laws

(Ohm’s law for multiplication and Kirchhoff’s law for summation) and analog properties

of devices to perform computation can lead to significant energy and performance benefits.

23

Table 1.3: Error with a floating point D-NPU, A-NPU with ideal sigmoid, and A-NPU with non-ideal sigmoid.

Floating Point
D-NPU

blackscholes

6.0%

fft

2.7%

inversek2j

6.2%

jmeint

17.6%

jpeg

5.4%

kmeans

3.2%

sobel

3.8%

A-NPU +
Ideal Sigmoid

A-NPU

8.4% 3.0% 8.1% 18.4% 6.6% 6.1% 4.3%

10.2% 4.1% 9.4% 19.7% 8.4% 7.3 5.2%

Figure 1.7: Application error with limited bit-width analog neural computation.

Application error. Table 1.3 shows the application-level errors with a floating point D-

NPU, A-NPU with ideal sigmoid and our A-NPU which incorporates non-idealities of the

analog sigmoid. Except for jmeint, which shows error above 10%, all of the applications

show error less than or around 10%. Application average error rates with the A-NPU

range from 4.1% to 10.2%. This quality-of-result loss is commensurate with other work on

quality trade-offs. Among digital hardware approximation techniques, Truffle [13] and

EnerJ [26] shows similar error (3–10%) for some applications and much greater error

(above 80%) for others in a moderate configuration. Green [36] has error rates below

1% for some applications but greater than 20% for others. A case study [37] explores

manual optimizations of the x264 video encoder that trade off 0.5–10% quality loss. As

expected, the quality-of-results degradation with an A-NPU is more than a floating point

D-NPU. However, the quality losses are commensurate with digital approximate computing

techniques.

To study the application-level quality loss in more detail, 1.8 illustrates the CDF (cu-

24

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Error

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f O
ut

pu
t E

le
m

en
ts

blackscholes
fft
jmeint
inversek2j
jpeg
kmeans
sobel

Figure 1.8: CDF plot of application output error. A point (x,y) indicates that y% of the output elements see error ≤
x%.
mulative distribution function) plot of final error for each element of application’s output.

Each benchmark’s output consists of a collection of elements–an image consists of pixels; a

vector consists of scalars; etc. This CDF reveals the distribution of error among an applica-

tion’s output elements and shows that only a small fraction of the output elements see large

quality loss with analog acceleration. The majority (80% to 100%) of each application’s

output elements have error less than 10% except for jmeint.

Exposing circuit limitations to the compiler. Figure 1.7 shows the effect of bit-width

restrictions on application-level error, assuming 8 inputs per neuron. As the results suggest,

exposing the bit-width limitations and the topology restrictions to the compiler enables our

RPROP-based, customized CDLM training algorithm to find and train neural networks

that can achieve accuracy levels commensurate with the digital approximation techniques,

using only eight bits of precision for inputs, outputs, and weights, and eight inputs to the

analog neurons. Several applications show less than 10% error even with fewer than eight

bits. The results shows that there are many applications that can significantly benefit from

analog acceleration without significant output quality loss.

Limited analog acceleration. We examine the effects on the benefits when, due to noise

or pathological inputs, only a fraction of the invocations are offloaded to the A-NPU. In this

case, the application falls back to the original code for the remaining invocations. Figure

1.9 depicts the application speedup and energy improvement when only 80%, 85%, 90%,

25

blackscholes fft

inversek2j
jmeint

jpeg
kmeans

sobel

geomean
0.0×
1.0×
2.0×
3.0×
4.0×
5.0×
6.0×
7.0×
8.0×
9.0×

10.0×

S
pe

ed
up

4.
2×

1.
2×

3.
6×

3.
0×

1.
5×

0.
8×

2.
1×

2.
0×

5.
4×

1.
3×

4.
4×

3.
5×

1.
7×

0.
8×

2.
4×

2.
3×

7.
3×

1.
3×

5.
5×

4.
1×

1.
7×

0.
8×

2.
6×

2.
6×

11
.3
×

1.
3×

7.
3×

5.
0×

1.
8×

0.
8×

2.
8× 3.
0×

24
.5
×

1.
3×

10
.9
×

6.
2×

1.
8×

0.
8×

3.
1× 3.

7×

80% Offloading
85% Offloading
90% Offloading
95% Offloading
100% Offloading

(a) Speedup with limited A-NPU invocations.
blackscholes fft

inversek2j
jmeint

jpeg
kmeans

sobel

geomean
0.0×
1.0×
2.0×
3.0×
4.0×
5.0×
6.0×
7.0×
8.0×
9.0×

10.0×

E
ne

rg
y

R
ed

uc
tio

n

4.
6×

1.
5×

4.
4×

4.
0×

1.
8×

1.
2× 2.

0× 2.
5×

6.
0×

1.
5×

5.
6×

5.
1×

2.
0×

1.
3× 2.

2× 2.
8×

8.
5×

1.
6×

7.
7×

6.
7×

2.
1×

1.
3×

2.
4× 3.

3×

14
.6
×

1.
6×

12
.2
×

9.
7×

2.
2×

1.
3×

2.
6×

4.
2×

51
.2
×

1.
7×

30
.0
×

17
.8
×

2.
3×

1.
3×

2.
8×

6.
3×

80% Offloading
85% Offloading
90% Offloading
95% Offloading
100% Offloading

(b) Energy saving for limited A-NPU invocations.

Figure 1.9: Speedup/energy saving with limited A-NPU invocations.

95%, and 100% of the invocations are offloaded to the A-NPU. The results suggest that even

limited analog accelerators can provide significant energy and performance improvements.

1.8 Limitations and Considerations

Applicability. Not all applications can benefit from analog acceleration; however, our

work shows that there are many that can. More rigorous optimization at the circuit level,

as well as broadening the scope off application coverage by continued advancements at

the neural transformation step, may provide significant improvements in accuracy and

generality.

Other design points. This study evaluates the performance and energy improvements

of an A-NPU assuming integration with a modern, high-performance processor. If low-

power cores are used instead, we expect to see, and preliminary results confirm, that the

performance benefits of an A-NPU increase, and that the energy benefits decrease.

Variability and noise. We designed the circuit with variability and noise as first-order

concerns, and we made several design decisions to mitigate them. We limit both the

input and weight bit widths, as well as the analog neuron input count to eight to provide

quantization margins for variation/noise. We designed the sigmoid circuit one order of

magnitude more shallow than the digital implementation to provide additional margins for

variation and noise. We used a differential design, which provides resilience to noise by

26

representing a value by the difference between two signals; as noise affects the pair of

nearby signals similarly, the difference between the signals remains intact and the com-

putation correct. Conversion to the digital domain after each analog neuron computation

enforces computation integrity and reduces variation/noise susceptibility, while incurring

energy and speed overheads. As mentioned in Section 1.7, to further improve the quality of

the final result, we can refrain from A-NPU invocations and fall back to the original code

as needed. An online noise-monitoring system could potentially limit the invocation of the

A-NPU to low-noise situations. Incorporating a quantitative noise model into the training

algorithm may improve robustness to analog noise.

Training for variability. A neural approach to approximate computing presents the op-

portunity to correct for certain types of analog-imposed inaccuracy, such as process varia-

tion, non-linearity, and other forms of non-ideality that are consistent for executions on a

particular A-NPU hardware instance for some period of time. After an initial training phase

that accounts for the predictable, compiler-exposed analog limitations, a second (shorter)

training phase can adjust for hardware-specific non-idealities, sending training inputs and

outputs to the A-NPU and adjusting network weights to minimize error. This correction

technique is able to address inter and intra-chip process variation and hardware-dependent,

non-ideal analog behavior.

Smaller technology nodes. This work is the start of using analog circuits for code accel-

eration. Providing benefits at smaller nodes may require using larger transistors for analog

parts, trading off area for resilience. Energy-efficient performance is growing in importance

relative to area efficiency, especially as CMOS scaling benefits continue to diminish.

1.9 Conclusions

For decades, before the effective end of Dennard scaling, we consistently improved perfor-

mance and efficiency while maintaining generality in general-purpose computing. As the

27

benefits from scaling diminish, the community is facing an iron triangle; we can choose

any two of performance, efficiency, and generality at the expense of the third. Solutions

that improve performance and efficiency, while retaining as much generality as possible,

are growing in importance. Analog circuits inherently trade accuracy for significant gains

in energy-efficiency. However, it is challenging to utilize them in a way that is both

programmable and generally useful. As this work showed, the neural transformation of

general-purpose approximable code provides an avenue for realizing the benefits of analog

computation while targeting code written in conventional languages. This work provided an

end-to-end solution for utilizing analog circuits for accelerating approximate applications,

from circuits to compiler design. The insights from this work show that it is crucial to

expose analog circuit characteristics to the compilation and neural network training phases.

The NPU model offers a way to exploit analog efficiencies, despite their challenges, for a

wider range of applications than is typically possible. Further, mixed-signal execution

delivers much larger savings for NPUs than digital. However, this study is not conclusive.

The full range of applications that can exploit mixed-signal NPUs is still unknown, as is

whether it will be sufficiently large to drive adoption in high-volume microprocessors. It is

still an open question how developers might reason about the acceptable level of error when

an application undergoes an approximate execution including analog acceleration. Finally,

in a noisy, high-performance microprocessor environment, it is unclear that an analog NPU

would not be adversely affected. However, the significant gains from A-NPU acceleration

and the diversity of the studied applications suggest a potentially promising path forward.

28

CHAPTER 2

NEURO-GENERAL COMPUTING FOR GPU THROUGHPUT PROCESSORS

2.1 Summary

Graphics Processing Units (GPUs) can accelerate diverse classes of applications, such as

recognition, gaming, data analytics, weather prediction, and multimedia. Many of these

applications are amenable to approximate execution. This application characteristic pro-

vides an opportunity to improve GPU performance and efficiency. Among approximation

techniques, neural accelerators have been shown to provide significant performance and

efficiency gains when augmenting CPU processors. However, the integration of neural

accelerators within a GPU processor has remained unexplored. GPUs are, in a sense, many-

core accelerators that exploit large degrees of data-level parallelism in the applications

through the SIMT execution model. This work aims to harmoniously bring neural and

GPU accelerators together without hindering SIMT execution or adding excessive hardware

overhead. We introduce a low overhead neurally accelerated architecture for GPUs, called

NGPU, that enables scalable integration of neural accelerators for large number of GPU

cores. This work also devises a mechanism that controls the tradeoff between the quality of

results and the benefits from neural acceleration. This chapter is based on work presented

in MICRO 2015 [38]. This work is a result of collaboration with Jongse Park1, Hardik

Sharma1,Pejman Lotfi-Kamran2, and Hadi Esmaeilzadeh3.

1Georgia Institute of Technology
2Institute for Research in Fundamental Sciences
3University of California-San Diego

29

2.2 Introduction

The diminishing benefits from CMOS scaling [1, 8, 39] has coincided with an overwhelm-

ing increase in the rate of data generation. Expert analyses show that in 2011, the amount

of generated data surpassed 1.8 trillion GB and by 2020, consumers will generate 50× this

staggering figure [40]. To overcome these challenges, both the semiconductor industry and

the research community are exploring new avenues in computer architecture design. Two

of the promising approaches are acceleration and approximation. Among programmable

accelerators, GPUs provide significant gains in performance and efficiency. GPUs that were

originally designed to accelerate graphics functions, now are being used for a wide range

of applications, including recognition, learning, gaming, data analytics, weather prediction,

molecular dynamics, multimedia, scientific computing, and many more. The availability of

programming models for GPUs and the advances in their microarchitecture have played a

significant role in their widespread adoption. Many companies, such as Microsoft, Google,

and Amazon use GPUs to accelerate their enterprise services. As GPUs play a major role

in accelerating many classes of applications, improving their performance and efficiency

is imperative to enable new capabilities and to cope with the ever-increasing rate of data

generation. Improving GPU performance is challenging since they have a relatively high

power consumption (e.g., power budget of Fermi GTX 480 is 250 Watts [41]).

Many of the applications that benefit from GPUs are also amenable to imprecise com-

putation [42, 43, 9, 44]. For these applications, some variation in output is acceptable and

some degradation in the output quality is tolerable. This characteristic of many GPU appli-

cations provides a unique opportunity to devise approximation techniques that trade small

losses in the quality of results for significant gains in performance and efficiency. Among

approximation techniques, neural acceleration provides significant gains for CPUs [45,

46, 47, 6, 12] and may be a good candidate for GPUs. Neural acceleration relies on an

automated algorithmic transformation that converts an approximable segment of code4 to a

4Approximable code is a segment that if approximated will not lead to catastrophic failures in execution (e.g.,

30

0%

20%

40%

60%

80%

100%

F
ra

nc
ti

on
R

un
ti

m
e/

E
ne

rg
y

bin
ar

iza
tio

n

R
u

n
ti

m
e

E
n

er
g

y
blac

ks
ch

oles

R
u

n
ti

m
e

E
n

er
g

y

co
nvo

lu
tio

n

R
u

n
ti

m
e

E
n

er
g

y

in
ve

rse
k2

j

R
u

n
ti

m
e

E
n

er
g

y

jm
ein

t

R
u

n
ti

m
e

E
n

er
g

y

lap
lac

ian

R
u

n
ti

m
e

E
n

er
g

y

m
ea

nfilte
r

R
u

n
ti

m
e

E
n

er
g

y

new
to

n-ra
ph

R
u

n
ti

m
e

E
n

er
g

y

so
bel

R
u

n
ti

m
e

E
n

er
g

y

sra
d

R
u

n
ti

m
e

E
n

er
g

y

av
er

ag
e

R
u

n
ti

m
e

E
n

er
g

y

Non-Approximable Approximable

Figure 2.1: Runtime and energy breakdown between neurally approximable regions and the regions that cannot be
approximated.
neural network. This transformation is called the neural transformation [12]. The compiler

automatically performs the neural transformation and replaces the approximable segment

with an invocation of a neural hardware that accelerates the execution of that segment.

To examine the potential benefits of neural acceleration in GPUs, we first study5 its

applicability to a diverse set of representative CUDA applications. Figure 2.1 illustrates

the results and shows the breakdown of application runtime and energy dissipation between

neurally approximable regions and the regions that cannot be neurally approximated6. The

neurally approximable segments are the ones that can be approximated by a neural network.

On average, applications spend 56% of their runtime and 59% of their energy in neurally

approximable regions. Some applications such as inversek2j and newton-raph spend more

than 93% of their runtime and energy in neurally approximable regions. These encouraging

results demonstrate the significant potential of neural acceleration for GPU processors.

Why hardware acceleration? As previous work [48] suggested, it is possible to apply

neural transformation with no hardware modifications and replace the approximable region

with an efficient software implementation of the neural network that mimics the region. We

explored this possibility and the results are presented in Figure 2.2. On average, the appli-

segmentation fault) and its approximation may only lead to graceful degradation of the application output
quality.

5Section 2.7.1 presents our experimental methodology with the GPGPU-Sim cycle-accurate simulator.
6The annotation procedure is discussed in Section 2.3.

31

binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad

geomean
0.0×
2.0×
4.0×
6.0×
8.0×

10.0×

S
lo

w
do

w
n

Figure 2.2: Slowdown with software-only neural transformation due to the lack of hardware support for neural
acceleration.
cations suffer from 3.2× slowdown. Only inversek2j and newton-raph, which spend more

than 93% of their time in the neurally approximable region, see 3.6× and 1.6× speedup,

respectively. The slowdown with software implementation is due to (1) the overhead of

fetching/decoding the instructions, (2) the cost of frequent accesses to the memory/register

file, and (3) the overhead of executing the sigmoid function. The significant potential

of neural transformation (Figure 2.1) and the slowdown with the software-only approach

(Figure 2.2) necessities designing GPU architectures with integrated neural accelerators.

Why not reuse CPU neural accelerators? Previous work [12] proposes an efficient

hardware neural accelerator for CPUs. One possibility is to use CPU Neural Processing

Unit (NPU) in GPUs. However, compared to CPUs, GPUs contain (1) significantly larger

number of cores (SIMD lanes) that are also (2) simpler. Augmenting each core with a NPU

that harbors several parallel processing engines and buffers imposes significant area over-

head. Area overhead of integrating NPUs to a GPU while reusing SIMD lanes’ multiply-

add units is 31.2%. Moreover, neural networks are structurally parallel. Hence, replacing

a code segment with neural networks adds structured parallelism to the thread. In the CPU

case, NPU’s multiple multiply-add units exploit this added parallelism to reduce the thread

execution latency. GPUs, on the other hand, already exploit data-level parallelism and

leverage many-thread execution to hide thread latencies. One of the insights from this work

is that the added parallelism is not the main source of benefits from neural acceleration in

GPUs. Therefore, neural acceleration in GPUs leads to a significantly different hardware

design as compared to CPUs.

Contributions. To this end, the following are the major contributions of this work.

32

• While this work is not the first to explore neural acceleration, it is the first to evaluate

tight integration of neural acceleration within GPU cores. Integrating neural acceler-

ators within GPUs is fundamentally different from doing so in a CPU because of the

hardware constraints and the many-thread SIMT execution model in GPUs.

• We observe that, unlike CPUs, the added parallelism is not the main source of benefits

from neural acceleration in GPUs. The gains in GPUs come from (1) eliminating the

fetch/decode during neural execution, (2) reducing accesses to the memory/register

file by storing the parameters and the partial results in small buffers within the SIMD

lanes, and (3) implementing sigmoid as a lookup table. This insight leads to a low

overhead integration of neural accelerators to SIMD lanes by limiting the number of

ALUs in an accelerator to only the one that is already in a SIMD lane.

• Through a combination of cycle-accurate simulations and a diverse set of GPU appli-

cations from different domains (finance, machine learning, image processing, vision,

medical imaging, robotics, 3D gaming, and numerical analysis), we rigorously eval-

uate the proposed NGPU design. Compared to the baseline GPU, NGPU achieves

a 2.4× average speedup and a 2.8× average energy reduction within a 10% quality

loss margin. These benefits are achieved with less than 1% area overhead.

• We also devise a mechanism that controls the tradeoff between the quality loss and

performance and efficiency gains. The quality control mechanism retains a 1.9×

average speedup and a 2.1× energy reduction while reducing the quality loss to 2.5%.

2.3 Neural Transformation for GPUs

To enable the integration of neural accelerators within GPUs, we need to develop a compila-

tion workflow that automatically performs the neural transformation on GPU code. We also

need to design a programming interface that enables developers to delineate approximable

regions as candidates for the neural transformation.

33

2.3.1 Safe Programming Interface

Any practical approximation technique, including ours, needs to provide execution safety

guarantees. That is, approximation should never lead to catastrophic failures such as out-

of-bound memory accesses. In other words, approximation should never affect critical data

and operations. The criticality of data and operations is a semantic property of the program

and can only be identified by the programmer. The programming language must therefore

provide a mechanism for programmers to specify where approximation is safe. This re-

quirement is commensurate with prior work on safe approximate programming languages

such as EnerJ [26], Rely [27], FlexJava [49], and Axilog [50]. To this end, we extend the

CUDA programming language with a pair of #pragma annotations that mark the start and

the end of a safe-to-approximate region of GPU code. The following example illustrates

these annotations.

#pragma (begin approx , ” min max ”)

mi = min (r , min (g , b)) ;

ma = max (r , max (g , b)) ;

r e s u l t = ((ma + mi) > 127 ∗ 2) ? 255 : 0 ;

#pragma (end approx , ” min max ”)

This segment of the binarization benchmark is approximable and is marked as a candidate

for transformation. The #pragma(begin approx,"min max") marks the segment’s beginning

and names it the "min max" segment. The #pragma(end approx,"min max") marks the end of

the segment that was named "min max".

2.3.2 Compilation Workflow

As discussed, the main idea of neural algorithmic transformation is to learn the behavior of

a code segment using a neural network and then replace the segment with an invocation of

an efficient neural hardware. To implement this algorithmic transformation, the compiler

needs to (1) identify the inputs and outputs of the segment, (2) collect the training data

34

Identifier Trainer

1 2
Input/Output Identification

3
Code Observation

Trained Neural Network

Neurally Accelerated
Execution on the
Enhanced GPU

Code Generation

Code
Generator

4

Training Data

Segment Input/Outputs

Input Datasets

Topology Selection and Training

uchar4'p'='tex2D(img,'x,'y);
…
#pragma(begin_approx)
a=min(r,'min(g,b));
b=max(r,'max(g,b));
z=((a+b)'>'254)'?'255:'0;
#pragma(end_approx)
…
dst[img.width'*'y'+'x]'='z;

Annotated CUDA Code

r, g, b
Inputs Outputs

z Observer

Topology Weights
w0 = 0.03
w1 = 1.91

w8 = 0.10

...

uchar4'p'='tex2D(img,'x,'y);
…
send.n_data5%r0;
send.n_data5%r1;
send.n_data5%r2;
recv.n_data5%r4;
…
dst[img.width'*'y'+'x]'='z;

Application

Accelerator Config
w0 = 0.03, …, w8=0.10

SM
Accl

SM
Accl

SM
Accl

SM
Accl

...

Inputs Outputs
018, 022, 112

037, 000, 012

0

255

0

255, 122, 127
...

Figure 2.3: Overview of the compilation workflow for neural acceleration in GPU throughput processors.

by observing (logging) the inputs and outputs, (3) find and train a neural network that

mimics the observed behavior, and finally (4) replace that region of code with instructions

that configure and invoke the neural hardware. These steps are illustrated in Figure 2.3.

Our compilation workflow is similar to the one described in prior work that targets neural

acceleration in CPUs [12]. However, we specialize these steps for GPU applications and

add the automatic input/output identification step to the compilation workflow to further

automate the transformation.

1 Input/output identification. To train a neural network that mimics a code segment,

the compiler needs to collect the input-output pairs that represent the functionality of the

region. The first step is identifying the inputs and outputs of the delineated segment.

The compiler uses a combination of live variable analysis and Mod/Ref analysis [51] to

automatically identify the inputs and outputs of the annotated segment. The inputs are the

intersection of live variables at the location of #pragma(begin approx,...) with the set

of variables that are referenced within the segment. The outputs are the intersection of

live variables at the location of #pragma(end approx,...) with the set of variables that are

modified within the segment. In the previous example, this analysis identifies r, g, and b as

the inputs to the region and result as the output.

2 Code observation. After identifying the inputs and outputs of the segment, the compiler

instruments these inputs and outputs to log their values in a file as the program runs. The

compiler then runs the program with a series of representative input datasets (such as the

ones from a program test suite) and logs the pairs of input-output values. The collected

set of input-output values constitutes the training data that captures the behavior of the

35

segment.

3 Topology selection and training. This step needs to both find a topology for the neural

network and train it. In finding the topology, the objective is to strike a balance between the

network’s accuracy and its efficiency. Theoretically, a larger, more complex network offers

better accuracy potential but is likely to be slower and less efficient. However, enlarging

the network does not improve its accuracy beyond a certain point. Thus, the compiler

considers a search space for the neural topology and picks the smallest network that delivers

comparable accuracy to the largest network in the space. The neural network of choice is

Multilayer Perceptron (MLP) that consists of a fully-connected set of neurons organized

into layers: input layer, a number of hidden layers, and output layer. The number of neurons

in the input and output layers is fixed and corresponds to the number of inputs and outputs

of the code segment. The challenge is finding the number of hidden layers and the number

of neurons in each hidden layer.

The space of possible topologies is infinitely large. Therefore, we restrict the search

space to the neural networks with at most two hidden layers. The number of neurons per

hidden layer is also restricted to powers of two, up to 32 neurons. These choices limit the

search space to 30 possible topologies. The maximum number of hidden layers and the

maximum neurons per hidden layer are compilation options and can be changed if needed.

These neural networks are trained independently in parallel. To find the best fitting neural

network topology, we partition the application input datasets into a training dataset (2
3 of the

programmer-provided application input datasets), and a selection dataset, (the remaining

1
3). The training datasets are used during training, and the selection datasets are used to

select the final neural network topology based on the application’s desired quality loss.

Note that we use completely separate input datasets to measure the final quality loss .

To train the networks for neural acceleration, we use the standard backpropagation [30]

algorithm. Our compiler performs 10-fold cross-validation for training each neural net-

work. The output from this phase consists of a neural network topology – specifying the

36

number of layers and the number of neurons in each layer – along with the weights for the

inputs of each neuron that are determined by the backpropagation training algorithm.

4 Code generation. After identifying the neural network and training it, the compiler

replaces the code segment with special instructions to send the inputs to the neural ac-

celerator and retrieve the results. The compiler also configures the neural accelerator. The

configuration includes the weights and the schedule of the operations within the accelerator.

This information is loaded into the integrated neural accelerators once when the program

loads for execution.

2.4 Instruction Set Architecture Design

To enable neural acceleration, the GPU ISA should provide three instructions: (1) one for

sending the inputs to the neural accelerator, (2) one for receiving outputs from the neural

accelerator, and finally (3) one for sending the accelerator configuration and the weights.

To this end, we extend the PTX ISA as follows:

1. send.n data %r: This instruction sends the value of register %r to the neural accelerator

as an input.

2. recv.n data %r: This instruction retrieves a value from the accelerator and writes it to the

register %r.

3. send.n cfg %r: This instruction sends the value of register %r to the accelerator and

indicates that the value is for configuration.

We use PTX ISA 4.2 which supports vector instructions that can read or write two or four

registers instead of one. We take advantage of this feature and introduce two vector versions

for each of our instructions. The send.n data.v2 {%r0, %r1} sends two register values to

the accelerator and a single send.n data.v4 {%r0, %r1, %r2, %r3} sends the value of four

registers to the neural accelerator. The vector versions for recv.n data and send.n cfg have

similar semantics. These vector versions reduce the number of instructions that need to be

fetched and decoded to communicate with the neural accelerator. This reduction lowers

37

the overhead of invoking the accelerator and provides more opportunities for speedup

and efficiency gains. As follows, these instructions will be executed in SIMT mode as

other GPU instructions. GPU applications typically consist of kernels and GPU threads

execute the same kernel code. The neural transformation approximates segments of these

kernels. That is, each corresponding thread will contain the aforementioned instructions to

communicate with the neural accelerator. Each thread only applies different input data to

the same neural network. GPU threads are grouped into cooperative thread arrays (a unit of

thread blocks). The threads in different thread blocks are independents and can be executed

in any order. The thread block scheduler maps them to GPU processing cores called the

streaming multiprocessors (SMs). The SM divides threads of a thread block into smaller

groups called warps, typically of size 32 threads. All the threads within a warp execute

the same instruction in lock-step. The three new instructions, send.n data, recv.n data, and

send.n cfg follow the same SIMT model. That is, executing each of these instructions,

conceptually, communicates data with 32 parallel neural accelerators.

A typical GPU architecture, such as Fermi [52], contains 15 SMs, each with 32 SIMD

lanes. That is, to support hardware neural acceleration, 480 neural accelerators need to be

integrated. Hence the GPU-specific challenge is designing a hardware neural accelerator

that can be replicated many times within the GPU without imposing extensive hardware

overhead.

2.5 Accelerator Design and Integration

To describe our neural accelerator design and its integration into the GPU architecture, we

assume a GPU processor based on the Nvidia Fermi. Fermi’s SMs contain 32 double-

clocked SIMD lanes that execute two half warps (16 threads) simultaneously, where each

warp executes in lock-step. Ideally, to preserve the data-level parallelism across the threads

and preserve the default SIMT execution model, each SM needs to be augmented with 32

neural accelerators. Therefore, the objective is to design a neural accelerator that can be

38

replicated 32 times within each SM for a minimal hardware overhead. These two require-

ments fundamentally change the design space of the neural accelerator from prior work

that aims at accelerating single-thread cores with only one accelerator.

A naı̈ve approach is to replicate and add the previously proposed CPU neural acceler-

ator to each SM [12]. These CPU specific accelerators harbor multiple processing engines

and contain significant amount of buffering for weights and control. Such a design not

only imposes significant hardware overhead, but also is an overkill for data-parallel GPU

architectures as our results in Section 2.7.3 show. Instead, we tightly integrate a GPU

specific neural network in every SIMD lane.

The neural algorithmic transformation uses Multilayer Perceptrons (MLPs) to approx-

imate CUDA code segments. As Figure 2.5a depicts, an MLP consists of a network of

neurons arranged in multiple layers. Each neuron in a layer is connected to all of the

neurons in the next layer. Each neuron input is associated with a weight value that is

generated after training. All neurons are identical and each neuron computes its output

(y) based on y = sigmoid(∑i(wi× xi)), where xi is a neuron input and wi is the input’s

associated weight. Therefore, all the computations of a neural network are a set of multiply-

add operations followed by the nonlinear sigmoid operation. The neural accelerator only

needs to support these two operations.

2.5.1 Integrating the Neural Accelerator

Each SM has 32 SIMD lanes, divided into two 16-lane groups that execute two half warps

simultaneously. The ALU in each lane supports floating point multiply-add operation.

We reuse these ALUs while enhancing the lanes for neural computation. We leverage the

existing SIMT execution model to minimize the hardware overhead for the weights and

control. We refer to the resulting SIMD lanes as neurally enhanced SIMD lanes.

In Figure 2.4, the added hardware components are numbered and highlighted in gray.

The first component is the Weight FIFO (1) that is a circular buffer and stores the synaptic

39

Fetch

I-Cache

Active Mask
Interconnection N

etw
ork

Decode Operand
Collection

LSU Pipeline
Streaming Multiprocessor (SM)

L2
Cache

Off-chip
DRAM

Memory
PartitionSIMT

Stack

Issue
Sigmoid

Unit

Acc Reg

src_reg3 src_reg2 src_reg1 dst_reg

SP
Pipeline

W
ei
gh
t F
IF
O

Co
nt

ro
lle

r

Output FIFO

Input FIFO

Write
back

L1
Cache

2

1
3

45
6

Figure 2.4: SM pipeline after integrating the neural accelerator within SIMD lanes. The added hardware is high-
lighted in gray.

weights. Since all of the threads are approximated by the same neural network, we only

add one Weight FIFO, which is shared across all SIMD lanes. The Weight FIFO has two

read ports corresponding to the two 16 SIMD lanes that execute two half warps. Each port

supplies a weight to 16 ALUs. The second component is the Controller (2) which controls

the execution of the neural network across the SIMD lanes. Again, the Controller is shared

across 16 SIMD lanes that execute a half warp (two controllers per SM). The Controller

follows the SIMT pattern of execution for neural computation and enables the ALUs to

perform the computation of the same input of the same neuron in the network.

We augment each of the SIMD lanes with an Input FIFO (3) and an Output FIFO

(4). The Input FIFO stores the neural network inputs. The Output FIFO stores the output

of the neurons including the output neurons that generate the final output. These two are

small FIFO structures that are replicated for each SIMD lane. Each of the SIMD lanes

also harbors a Sigmoid Unit (5) that contains a read-only lookup table. This lookup table

implements the nonlinear sigmoid function and is synthesized as combinational logic to

reduce the area overhead. Finally, the Acc Reg (6), which is the accumulator register

in each of the SIMD lanes, retains the partial results of the sum of products (∑i(wi× xi))

before passing it to the Sigmoid Unit.

One of the advantages of this design is that it limits all major modifications to the

execution part of the SIMD lanes (pipelines). There is no need to change any other part of

40

the SM except for adding support for decoding the ISA extensions that communicate data

to the accelerator (i.e., input and output buffers). Scheduling and issuing these instructions

are similar to arithmetic instructions and do not require specific changes.

2.5.2 Executing Neurally Transformed Threads

Figure 2.5c illustrates the execution of a neurally transformed warp, which contains normal

precise and special approximate (i.e., send.n data/recv.n data) instructions, on its neurally

enhanced SIMD lanes. The other simultaneously executing warp (similarly contains both

normal and special instructions) is not shown for clarity. In the first phase (1), SIMD lanes

execute the precise instructions as usual before reaching the first send.n data instructions.

In the second phase (2), SIMD lanes execute the two send.n data instructions to copy the

neural network inputs from the register file to their input buffers. These instructions cause

SIMD lanes to switch to the neural mode. In the third phase (3), the enhanced SIMD lanes

perform the neural computation and store the results in their output buffers. At the same

time, the SM issues recv.n data, but since the output of the neural network is not ready yet,

the SM stops issuing the next instruction and waits for the neurally-enhanced SIMD lanes

to finish computing the neural network output. In the fourth phase (4), once the neural

network output is ready, recv.n data instruction copies the results from the output buffer

to the register file and then in the fifth phase (5) normal execution resumes. As there is

no control divergence or memory access in the neural mode, our design does not swap the

running warp with another warp in the neural mode to avoid the significant overhead of

dedicated input/output buffers or control logic per active warp (SMs support 48 ready-to-

execute warps).

2.5.3 Orchestrating Neurally Enhanced Lanes

To efficiently execute neural networks on the neurally enhanced SIMD lanes, the compiler

needs to create a static schedule for the neural computation and arrange the weights in

41

n0

in0$(%r0) in1$(%r1)
w0 w1 w2 w3

w4 w5

n1

n2

out0$(%r2)
(a) Neural Network

w0

n0$=sigmoid
w2

w1

n1$=sigmoid
w3

w4

n2$=sigmoid
w5

(b) Schedule

(
(
(

sigmoid)
)
)

send.n_data/%r0
send.n_data/%r1

recv.n_data/%r2 The
accelerated
SIMD.lanes

autonomously
calculate.
the.neural
outputs

in.lock8step
while.

the.weights,
the.schedule,

and.
the.control
is.shared
across

the.SIMD.lanes

The.SM
waits.for

the.
neurally
enhanced
SIMD.lanes
to.finish

calcula>ng
the

neural
outputs

The.SM
sends.
the

inputs.to
the.each.of.the.
SIMD.lanes

2

…

in0/,/in0/,/…/,/in0
in1/,/in1/,/…/,/in1

3

in0/,/in0/,/…/,/in0
in1/,/in1/,/…/,/in1

(
(
(

sigmoid)
)
)in0/,/in0/,/…/,/in0

in1/,/in1/,/…/,/in1

…

()w4/⤫ n0/,//n0/,/…/,///n0

…

…

()+/w5/⤫ n1/,//n1/,/…/,///n1

w0 ⤫
w2 ⤫+

w1 ⤫

w3 ⤫+

(sigmoid)…

out1,out1,…,out14
The.SM.
retrieves

the.outputs

ld.global/%r1,/[addr1]
The.SM
performs
precise

computa>on

1

The.SM.
resumes.
precise

execu>on

SIMD.lanes
enter
neural
mode

SIMD.lanes
exist
neural
mode

SIMD.lanes
are.in
normal
mode

SIMD.lanes
are.in
normal
mode

add/%r2,/%r2,/constant2
st.global/[addr2],/%r2/

5

ld.global/%r0,/[addr0]

mul/%r0,/%r0,/constant0

ld.global/%r1,/[addr1] …

th0 th1 th31
…

…
…

(c) Accelerated Execution on the Enhanced SM

Figure 2.5: (a) Neural network replacing a segment of a GPU code. (b) Schedule for the accelerated execution of
the neural network. (c) Accelerated execution of the GPU code on the enhanced SM.

42

proper order. This schedule and the preordered weights are encoded in the program bi-

nary and are preloaded to the Weight FIFO (Figure 2.4 1) when the program loads for

execution. The compiler generates the execution schedule based on the following steps:

1. The computations for the neurons in each layer are dependent on the output of the neu-

rons in the previous layer. Thus, the compiler first assigns a unique order to the neurons

starting from the first hidden layer down to the output layer. This order determines the

execution of the neurons. In Figure 2.5a. n0, n1, and n2 show this order.

2. Then, for each neuron, the compiler generates the order of the multiply-add operations,

which are followed by a sigmoid operation. This schedule is shown in Figure 2.5b for

the neural network in Figure 2.5a. The phase (3) of Figure 2.5c illustrates how the

neurally enhanced SIMD lanes execute this schedule in SIMT mode while sharing the

weights and control.

The schedule that is presented in 2.5b constitutes the most of the accelerator configura-

tion and the order in which the weights will be stored in Weight FIFO (1 in 2.4). For each

accelerator invocation, SIMD lanes go through these weights in lock-step and perform the

neural computation autonomously without engaging the other parts of the SM.

2.6 Controlling Quality Tradeoffs

To be able to control the quality tradeoffs, any approximation technique including ours,

needs to expose a quality knob to the compiler and/or runtime system. The knob for our

design is the accelerator invocation rate. That is the fraction of the warps that are offloaded

to the neural accelerator. The rest of the warps will execute the original precise segment

of code and generate exact outputs. In the default case, without any quality control, all the

warps that contain the approximable segment will go through the neural accelerator which

translates to 100% invocation rate. With quality control, only a fraction of the warps will go

through the accelerator. Naturally, the higher the invocation rate, the higher the benefits and

the lower the quality. For a given quality target, the compiler predetermines the invocation

43

Table 2.1: Applications, accelerated regions, training and evaluation datasets, quality metrics, and approximating
neural networks.

rate by examining the output quality loss on a held-out evaluation input dataset. Starting

from 100% invocation rate, the compiler gradually reduces the invocation rate until the

quality loss is less than the quality target. During runtime, a quality monitor, similar to the

one proposed in SAGE [9], stochastically checks the output quality of the application and

adjusts the invocation rate. We also investigated a more sophisticated approach that uses

another neural network to filter out invocations of the accelerator that significantly degrade

quality. The empirical study suggested that the simpler approach of reducing the invocation

rate provides similar benefits.

2.7 Evaluation

We evaluate the benefits of the proposed architecture across different bandwidth and ac-

celerator settings. We use a diverse set of applications, cycle-accurate simulation, logic

synthesis, and consistent detailed energy modeling.

2.7.1 Applications and Neural Transformation

Applications. As Table 4.2 shows, we use a diverse set of approximable GPU applications

from the Nvidia SDK [53] and Rodinia [54] benchmark suites to evaluate the integration of

neural accelerators within GPU architectures. We added three more applications to the mix

44

from different sources [55, 56, 57]. As shown, the benchmarks represent workloads from

finance, machine learning, image processing, vision, medical imaging, robotics, 3D gam-

ing, and numerical analysis. We did not reject any benchmarks due to their performance,

energy, or quality shortcomings.

Annotations. As described in Section 2.3.1, the CUDA source code for each application

is annotated using the #pragma directives. We use theses directives to delineate a region

within a CUDA kernel that has fixed number of inputs/outputs and is safe to approximate.

Although it is possible and may boost the benefits to annotate multiple regions, we only

annotate one region that is easy to identify and is frequently executed. We did not make

any algorithmic changes to enable neural acceleration.

As illustrated by the numbers of function calls, conditionals, and loops in Table 4.2,

these regions exhibit a rich and diverse control flow behavior. For instance, the target region

in inversk2j has three loops and five conditionals. Other regions similarly have several

loops/conditionals and function calls. Among these applications, the region in jmeint has

the most complicated control flow with 37 if/else statements. The regions are also diverse

in size and vary from small (binarization with 27 PTX instructions) to large (jmeint with

2,250 PTX instructions).

Evaluation/training datasets. As illustrated in Table 4.2, the datasets that are used for

measuring the quality, performance, and energy are completely disjoint from the ones used

for training the neural networks. The training inputs are typical representative inputs (such

as sample images) that can be found in application test suites. For instance, we use the

image of lena, peppers, and mandrill for applications that operate on image data. Since

the regions are frequently executed, even a single application input provides large number

of training data. For example, in sobel a 512×512 pixel image generates 262,144 training

data elements.

Neural networks. The “Neural Network Topology” column shows the topology of the neu-

ral network that replaces the region of code. For instance, the topology for blackscholes is

45

6→ 8→ 1. That is the neural network has 6 inputs, one hidden layer with 8 neurons, and 1

output neuron. These topologies are automatically discovered by our compiler and we use

the 10-fold cross validation technique to train the neural networks. As the results suggest,

different applications require different topologies. Therefore, the SM architecture should

be changed in a way that is reconfigurable and can accommodate different topologies.

Quality. We use application-specific quality metrics, shown in Table 4.2, to assess the

quality of each application’s output after neural acceleration. In all cases, we compare the

output of the original precise application to the output of the neurally accelerated applica-

tion. For blackscholes, inversek2j, newton-raph, and srad that generate numeric outputs,

we measure the average relative error. For jmeint that determines whether two 3D triangles

intersect, we report the misclassification rate. The convolution, binarization, laplacian,

meanfilter, and sobel that produce image outputs, we use the average root-mean-square

image difference. In Table 4.2, the “Quality Loss” column reports the whole-application

quality degradation based on the above metrics. This loss includes the accumulated errors

due to repeated execution of the approximated region. The quality loss in Table 4.2 rep-

resents the case where all of the dynamic threads with the safe-to-approximate region are

neurally accelerated.

Even with 100% invocation rate, the quality loss with neural acceleration is less than

10% except in the case of jmeint. The jmeint application’s control flow is very complex and

the neural network is not able to capture all the corner cases to achieve below 10% quality

loss. These results are commensurate with prior work on CPU-based neural acceleration [6,

46]. Prior work on GPU approximation such as SAGE [9] and Paraprox [42] reports similar

quality losses in the default setting. EnerJ [26] and Truffle [13] show less than 10% loss

for some applications and even 80% loss for others. Green [36] and loop perforation [58]

show less than 10% error for some applications and more than 20% for others. Later, we

will discuss how to use the invocation rate to control the quality tradeoffs, and achieve even

lower quality loss when desired.

46

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Error

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f O
ut

pu
t E

le
m

en
ts

binarization
blackscholes
convolution
inversek2j
jmeint

laplacian
meanfilter
newton-raph
sobel
srad

Figure 2.6: Cumulative distribution function (CDF) plot of the applications output quality loss. A point (x,y) indicates
that y fraction of the output elements see quality loss less than or equal to x.

To better illustrate the application quality loss, Figure 2.6 shows the Cumulative Distri-

bution Function (CDF) plot of the final quality loss for each element of the output. Each

application output is a collection of elements – an image consists of pixels; a vector consists

of scalars; etc. The loss CDF shows the distribution of output quality loss among the output

elements and shows that very few output elements see a large loss. As shown, the majority

of output elements (from 78% to 100%) see a loss less than 10%.

2.7.2 Experimental Setup

Cycle-accurate simulations. We use the GPGPU-Sim cycle-accurate simulator version

3.2.2 [59]. We modified the simulator to include our ISA extensions and include the extra

microarchitectural modifications necessary for the integration of neural accelerators within

GPUs. The overhead of ISA extensions that communicate with the accelerator are modeled.

For baseline simulations that do not include any approximation or acceleration, we use the

unmodified GPGPU-Sim. We use one of the GPGPU-Sim’s default configurations that

closely models the Nvidia GTX 480 chipset with Fermi architecture. Table 3.2 summarizes

the microarchitectural parameters of the chipset. We run the applications to completion.

We use NVCC 4.2 with -O3 to enable aggressive compiler optimizations. Moreover, we

optimize the number of thread blocks and number of threads-per-block of each kernel for

the simulated hardware.

Energy modeling and overheads. To measure GPU energy, we use GPUWattch [60],

47

Table 2.2: GPU microarchitectural parameters.

System Overview: No. of SMs: 15, Warp Size: 32 threads/warp; Shader Core Config: 1.4 GHz, GTO scheduler [61], 2
schedulers/SM; Resources / SM: No. of Warps: 48 Warps/SM, No. of Registers: 32,768; Interconnect: 1 crossbar/di-
rection (15 SMs, 6 MCs), 700 MHz; L1 Data Cache: 16KB, 128B line, 4-way, LRU; Shared Memory: 48KB, 32 banks;
L2 Unified Cache: 768KB, 128B line, 16-way, LRU; Memory: 6 GDDR5 Memory Controllers, 924 MHz, FR-FCFS [fcfs];
Bandwidth: 177.4 GB/sec.

binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad

geomean
1.0×

1.5×

2.0×

2.5×

3.0×

S
pe

ed
up

9.
8×

14
.3
×

(a) Speedup
binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad

geomean
1.0×

1.5×

2.0×

2.5×

3.0×

E
ne

rg
y

R
ed

uc
tio

n 3.
0×

18
.9
×

14
.8
×

(b) Energy Reduction

Figure 2.7: NGPU whole application speedup and energy reduction.

which is integrated with GPGPU-Sim. To measure the accelerator energy, we also generate

its event log during the cycle-accurate simulations . Our energy evaluations use a 40 nm

process node and 1.4 GHz clock frequency. Neural acceleration requires the following

changes to the SM and SIMD lanes and are modeled using McPAT [32] and CACTI

6.5 [33]. In each SM, we add a 2 KB weight FIFO. The extra input/output FIFOs are

256 bytes per SIMD lane. The sigmoid LUT which is added to each SIMD lane contains

2048 32-bit entries. Since GPUWattch also uses McPAT and CACTI, our added energy

models, which use the same tools, provide a unified and consistent framework for energy

measurement.

2.7.3 Experimental Results

Performance and energy benefits. Figure 2.7a shows the whole application speedup when

all the invocations of the approximable region are accelerated with the neural accelerator.

The remaining part (i.e., the non-approximable region) is executed normally. The results

are normalized to the baseline where the entire application is executed on the GPU with

no acceleration. The highest speedup is observed for newton-raph (14.3×) and inversek2j

(9.8×), where the bulk of execution time is spent on approximable parts (see Figure 2.1).

The lowest speedup is observed for blackscholes and srad (about 2% and 5%) which are

48

bandwidth-hungry applications. While a considerable fraction of the execution time in

blackscholes and srad is spent in the approximate region (See Figure 2.1), the speedup

of accelerating these two applications is modest. That is because these applications use

most of the off-chip bandwidth, even when they run on GPU (without acceleration). Due to

bandwidth limitation, neural acceleration cannot reduce the execution time. Next, we study

the effect of increasing the off-chip bandwidth on these two applications and show that with

reasonable improvement in bandwidth, even these benchmarks observe significant benefits.

On average, the evaluated applications see a 2.4 × speedup through neural acceleration.

Figure 2.7b shows the energy reduction for each benchmark as compared to the baseline

where the whole benchmark is executed on GPU. Similar to the speedup, the highest energy

saving is achieved for inversek2j (18.9×) and newton-raph (14.8×), where bulk of the

energy is consumed for the execution of approximable parts (see Figure 2.1). The lowest

energy saving is obtained on jmeint (30%) since for this application, the fraction of energy

consumed on approximable parts is relatively small (See Figure 2.1). On average, the

evaluated applications see a 2.8 × reduction in energy usage. The quality loss when all

the invocations of the approximable region get executed on neural accelerators (i.e., the

highest quality loss) is shown in Table 4.2 (labeled Quality Loss). We study the effects of

our quality control mechanism for trading off performance and energy savings for better

quality later in this section.

Area overhead. To estimate the area overhead, we synthesize the sigmoid unit using

Synopsys Design Compiler and NanGate 45 nm Open Cell library, targeting the same

frequency as the SMs. We extract the area of the buffers and FIFOs from CACTI. Overall,

the added hardware requires about 0.27 mm2. We estimate the area of the SMs by

inspecting the die photo of GTX 480 that implements the Fermi architecture. Each SM

is about 22 mm2 and the die area is 529 mm2 with 15 SMs. The area overhead per

SM is approximately 1.2% and the total area overhead is 0.77%. The low area overhead

is because our architecture uses the same ALUs that are already available in each SIMD

49

0%

20%

40%

60%

80%

100%

N
or

m
al

iz
ed

R
un

ti
m

e

bin
ar

iza
tio

n

G
P

U
N

G
P

U

bla
ck

sc
hol

es

G
P

U
N

G
P

U

co
nvo

lu
tio

n
G

P
U

N
G

P
U

in
ve

rs
ek

2j

G
P

U
N

G
P

U

jm
ein

t

G
P

U
N

G
P

U

la
pla

cia
n

G
P

U
N

G
P

U

m
ea

nfilte
r

G
P

U
N

G
P

U

new
to

n-ra
ph

G
P

U
N

G
P

U

so
bel

G
P

U
N

G
P

U

sr
ad

G
P

U
N

G
P

U

av
er

ag
e

G
P

U
N

G
P

U

Data Transfer Compute

(a) Runtime

0%

20%

40%

60%

80%

100%

N
or

m
al

iz
ed

E
ne

rg
y

bin
ar

iza
tio

n

G
P

U
N

G
P

U

bla
ck

sc
hol

es

G
P

U
N

G
P

U

co
nvo

lu
tio

n

G
P

U
N

G
P

U

in
ve

rs
ek

2j

G
P

U
N

G
P

U

jm
ein

t

G
P

U
N

G
P

U

la
pla

cia
n

G
P

U
N

G
P

U

m
ea

nfilte
r

G
P

U
N

G
P

U

new
to

n-ra
ph

G
P

U
N

G
P

U

so
bel

G
P

U
N

G
P

U

sr
ad

G
P

U
N

G
P

U

av
er

ag
e

G
P

U
N

G
P

U

Data Transfer Compute

(b) Energy

Figure 2.8: Breakdown of (a) runtime and (b) energy consumption between non-approximable and approximable
regions normalized to the runtime and energy consumption of the GPU, respectively. For each application, the first
(second) bar shows the normalized value when the application is executed on the GPU (NGPU).

0.0×
0.5×
1.0×
1.5×
2.0×
2.5×
3.0×

S
p

ee
du

p

binarization blackscholes convolution inversek2j jmeint laplacian meanfilter newton-raph sobel srad geomean

3.
2

6.
4

6.
3

12
.2

9.
8

14
.2

9.
8

14
.2

9.
8

14
.3

10
.0

14
.3

10
.0

14
.3

10
.0

14
.3

16x slower 8x slower 4x slower 2x slower Default 2x faster 4x faster ∞ faster (Ideal)

Figure 2.9: Sensitivity of the total application’s speedup to the neural accelerator delay. Each bar indicates the total
application’s speedup when the neural accelerator delay is altered by different factors. The default delay for neural
accelerator varies from one application to the other and depends on the neural network topology trained for that
application. The ideal case (∞ faster) shows the total application speedup when neural accelerator has zero delay.

lane, shares the weight buffer across the lanes, and implements the sigmoid unit as a read-

only lookup table, enabling the synthesis tool to optimize its area. This low area overhead

confirms the scalability of our design.

Opportunity for further improvements. To explore the opportunity for further improving

the execution time by making the neural accelerator faster, Figure 2.8a shows the time

breakdown of approximable and non-approximable parts of applications when applications

run on GPU (no acceleration) and NGPU (neurally accelerated GPU), normalized to the

case where the application runs on GPU (no acceleration). As Figure 2.8a depicts, NGPU

is effective at reducing the time that is spent on approximable parts for all but two ap-

plications: blackscholes and srad. These two applications use most of the bandwidth of

the GPU, and consequently, do not benefit from the accelerators due to the bandwidth

wall. The rest of the applications significantly benefit from accelerators. On some ap-

plications (e.g., binarization, laplacian, and sobel), the execution time of approximable

parts on NGPU is significantly smaller than the execution time of the non-approximable

50

binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad

geomean0%
10%
20%
30%
40%
50%
60%
70%
80%

B
an

dw
id

th
U

til
iz

at
io

n GPU NGPU

Figure 2.10: Memory bandwidth consumption when the applications are executed on GPU (first bar) and NGPU
(second bar).
parts. Hence, no further benefits are possible with faster accelerators. For the rest of the

applications, the execution time of approximable parts on NGPU, although considerably

reduced, is comparable to and sometimes exceeds (e.g., inversek2j) the execution time of

non-approximable parts. Thus, there is a potential to further speed these applications up

with faster accelerators.

We similarly study the opportunity to further reduce the energy usage with more energy-

efficient accelerators. Figure 2.8b shows the energy breakdown between approximable and

non-approximable parts when applications run on GPU and NGPU, normalized to the case

where the application runs on GPU. These results clearly shows that neural accelerators are

effective in reducing the energy usage of applications when executing the approximable

parts. For many of the applications, the energy that is consumed for running approx-

imable parts is modest as compared to the energy that is consumed for running the non-

approximable parts (e.g., blackscholes, convolution, jmeint, etc.). For these applications, a

more energy-efficient neural accelerator may not bring further energy savings. However,

there are some applications, such as binarization, laplacian, and sobel, for which the frac-

tion of energy that is consumed on neural accelerators is comparable to the fraction of

energy consumed on non-approximable parts. For these applications further energy saving

is possible with a more energy-efficient implementation of neural accelerators (e.g., analog

neural accelerators [6]).

Sensitivity to accelerator speed. To study the effects of accelerators’ speed on perfor-

mance gains, we vary the latency of neural accelerators and measure the overall speedup as

51

0.9×
1.0×
1.1×
1.2×
1.3×
1.4×
1.5×
1.6×

S
p

ee
du

p
binarization blackscholes convolution inversek2j jmeint laplacian meanfilter newton-raph sobel srad geomean

2x Bandwidth 4x Bandwidth 8x Bandwidth

Figure 2.11: The total application speedup with NGPU for different off-chip memory communication bandwidth
normalized to the execution with NGPU with default bandwidth. The default bandwidth is 177.4 GB/s.

shown in Figure 2.9. We decrease the delay of the default accelerators by a factor of 2 and

4 and also include an ideal neural accelerator with zero latency. Moreover, we show the

speedup numbers when the latency of the default accelerators increases 2×, 4×, 8× and

16×. Unlike Figure 2.8a that suggests performance improvement for some applications by

benefiting from faster accelerators, Figure 2.9 shows virtually no speedup benefit by mak-

ing neural accelerators faster beyond what they offer in the default design. Even making

accelerators slower by a factor of two does not considerably change the speedup. Slowing

down the accelerators by a factor of four, many applications observe performance loss.

(e.g., laplacian). To explain this behavior, Figure 2.10 shows the bandwidth usage of GPU

and NGPU across all applications. While on the baseline GPU, only two applications

use more than 50% of the off-chip bandwidth (i.e., blackscholes and srad), on NGPU,

many applications use more than 50% of their off-chip bandwidth (e.g., inversek2j, jmeint,

and newton-raph). As applications run faster with accelerators, the rate at which they

access data increases, which puts pressure on off-chip bandwidth. This phenomena shifts

the bottleneck of execution time from computation to data delivery. As computation is

no longer the major bottleneck after acceleration, speeding up thread execution beyond

a certain point has marg-inal effect on the overall execution time. Even increasing the

accelerator speed by a factor of two (e.g., by adding more multiply-and-add units) has

marginal effect on execution time. We leverage this insight to simplify the accelerator

design and reuse available ALUs in the SMs as described is Section 2.5.1.

Sensitivity to off-chip bandwidth. To study the effect of off-chip bandwidth on the

benefits of NGPU, we increase the off-chip bandwidth up to 8× and report the perfor-

mance numbers. Figure 2.11 shows the speedup of NGPU with 2×, 4×, and 8× band-

width over the baseline NGPU (i.e., 1× bandwidth) across all benchmarks. As NGPU

52

binarization blackscholes convolution
inversek2j jmeint laplacian
meanfilter newton-raph sobel
srad geomean

Quality Loss

Im
p

ro
v
e

m
e

n
t
in

 E
n

e
rg

y

D

e
la

y
×

1×

2×

3×

5×

10×

20×

100×

110×

1000×

0.0% 2.5% 5.0% 10.0%7.5%

60×

Figure 2.12: Energy×delay benefits vs output quality (log scale).
is bandwidth limited for many applications (See Figure 2.10), we expect a considerable

improvement in performance as the off-chip bandwidth increases. Indeed, Figure 2.11

shows that bandwidth-hungry application (i.e., blackscholes, inversek2j, jmeint, and srad)

observe speedup of 1.5× when we double the off-chip bandwidth. After doubling the off-

chip bandwidth, no application remains bandwidth limited, and therefore, increasing the

off-chip bandwidth to 4× and 8× has little effect on performance. It may be possible to

achieve, the 2× extra bandwidth by using data compression [62] with little changes to the

architecture of existing GPUs. While technologies like 3D DRAM that offer significantly

more bandwidth (and lower access latency) can be useful, they are not necessary for pro-

viding the off-chip bandwidth requirements of NGPU for the range of applications that we

studied. However, even without any of these likely technology advances (compression or

3D stacking), the NGPU provides significant benefits across most of the applications.

Controlling quality tradeoffs. To study the effect of our quality control mechanism,

Figure 2.12 shows the energy-delay product of NGPU normalized to the energy-delay

product of the baseline GPU (without acceleration) when the output quality loss changes

from 0% to 10%. The quality control mechanism enables navigating the tradeoff between

the quality loss and the gains. All applications see declines in benefits when invocation rate

decreases (i.e., output quality improves). Due to the Amdahl’s Law effect, the applications

53

that spend more than 90% of their execution in the approximable segment (inversek2j and

newton-raph), see larger declines in benefits when invocation rate decreases. However,

even with 2.5% quality loss, the average speedup is 1.9× and the energy savings is 2.1×.

Comparison with prior CPU neural acceleration. Prior work [12] has explored im-

proving CPU performance and efficiency with NPUs. Since NPUs offer considerably

higher performance and energy efficiency with CPUs, we compare our NGPU proposal

to CPU+NPU and GPU+NPU. For the evaluation, we use MARSSx86 cycle-accurate

simulator for the single-core CPU simulations with a configuration that resembles Intel

Nehalem (3.4 GHz with 0.9 V at 45 nm) and is the same as the setup used in the most

recent NPU work [6].

Figure 2.13 shows the application speedup and energy reduction with CPU, GPU,

GPU+NPU, and NGPU over CPU+NPU. Even without using neural acceleration, GPU

provides significant performance and efficiency benefits over NPU-accelerated CPU by

leveraging data level parallelism. GPU offers 5.6× average speedup and 3.9× average

energy reduction compared to CPU+NPU. A GPU enhanced with our proposal (NGPU)

increases the average speedup and energy reduction to 13.2× and 10.8×, respectively.

Moreover, as GPUs already exploit data-level parallelism, our proposal offers virtually the

same speedup as the area-intensive GPU+NPU. However, accelerating GPU with the NPU

design imposes 31.2% area overhead while our NGPU imposes 1.2%. GPU with area-

intensive NPU (GPU+NPU) offers 17.4% less energy benefits compared to NGPU mostly

due to more leakage. In summary, our proposal offers the highest level of performance

and energy efficiency across the examined benchmarks with the modest area overhead of

approximately 1.2% per SM.

2.8 Conclusion

Many of the emerging applications that can benefit from GPU acceleration are amenable to

inexact computation. We exploited this opportunity by integrating an approximate form

54

binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad

geomean
0.0×
2.0×
4.0×
6.0×
8.0×

10.0×
12.0×
14.0×
16.0×

S
pe

ed
up

28
.8
×

26
.9
×

16
.9
×

34
.7
×

21
.0
×

30
.2
×

26
.8
×

16
.9
×

34
.3
×

21
.0
×

30
.2
×

CPU GPU GPU + NPU NGPU

(a) Speedup
binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad

geomean
0.0×
2.0×
4.0×
6.0×
8.0×

10.0×
12.0×
14.0×
16.0×

E
ne

rg
y

R
ed

uc
tio

n

22
.7
×

22
.4
×

28
.8
×

27
.4
×

CPU GPU GPU + NPU NGPU

(b) Energy Reduction

Figure 2.13: Speedup and energy reduction with CPU, GPU, GPU+NPU, and NGPU.(The baseline is CPU+NPU,
which is a CPU augmented with a NPU accelerator [12]).

of acceleration within GPU architectures. Our neurally accelerated GPU architecture,

provides significant performance and efficiency benefits while providing reasonably low

hardware overhead. The quality control knob and mechanism also provided a way to

navigate the tradeoff between the quality and the benefits in efficiency and performance.

Even with as low as 2.5% quality loss, our neurally accelerated GPU architecture (NGPU)

provides average speedup of 1.9× and average energy savings of 2.1×. These benefits are

more than 10× in several cases. These results suggest that hardware neural acceleration

for GPU throughput processors can be a viable approach to significantly improve their

performance and efficiency.

55

CHAPTER 3

IN-DRAM NEAR-DATA NEURO-GENERAL COMPUTING

3.1 Summary

GPUs are bottlenecked by the off-chip communication bandwidth and its energy cost;

hence near-data acceleration is particularly attractive for GPUs. Integrating the acceler-

ators within DRAM can mitigate these bottlenecks and additionally expose them to the

higher internal bandwidth of DRAM. However, such an integration is challenging, as it

requires low-overhead accelerators while supporting a diverse set of applications. To enable

the integration, this work leverages the approximability of GPU applications and utilizes

the neural transformation, which converts diverse regions of code mainly to Multiply-

Accumulate (MAC). Furthermore, to preserve the SIMT execution model of GPUs, we

also propose a novel approximate MAC unit with a significantly smaller area overhead. As

such, this work introduces AXRAM—a novel DRAM architecture—that integrates several

approximate MAC units. AXRAM offers this integration without increasing the memory

column pitch or modifying the internal architecture of the DRAM banks. This chapter

is based on work presented in Approximate Computing Workshop 2016 [63] and PACT

2018 [64]. This work is a result of collaboration with Choungki Song1, Jacob Sacks2,

Pejman Lotfi-Kamran3, Nam Sung Kim4, and Hadi Esmaeilzadeh5.

1University of Wisconsin-Madison
2Georgia Institute of Technology
3Institute for Research in Fundamental Sciences
4University of Illinois at UrbanaChampaign
5University of California-San Diego

56

3.2 Introduction

GPUs are one of the leading computing platforms for a diverse range of applications—

from artificial intelligence to medical prognosis. They are architected to exploit large-scale

data-level parallelism in these workloads through simultaneous many-thread execution.

However, this processing capability is hindered by the bandwidth wall [65, 66, 67] and

bottlenecked by overwhelming numbers of concurrent memory requests. Yet, offering

higher bandwidth with either conventional DRAM or HBM is challenging due to package

pin and/or power constraints. Moreover, raising the pin data transfer rate deteriorates signal

integrity and superlinearly increases power [68]. Additionally, the data transfer energy cost

is orders of magnitude higher than on-chip data processing [69, 70, 71]. Such a limitation

makes near-data acceleration alluring for GPUs. There are two main options for such

an integration: (1) 3D/2.5D stacking [72, 73, 74] and (2) integration within DRAM. The

former option may incur a significant cost to expose higher internal bandwidth to 3D/2.5D-

stacked accelerators than the external bandwidth exposes to the GPU [75], as the TSVs for

standard HBM already consume nearly 20% of each 3D-stacked layer [76]. For example,

to provide 2× higher bandwidth to the logic layer of High Bandwidth Memory (HBM)

compared with the external bandwidth, each 3D-stacked HBM layer requires 2× more

TSVs. However, the TSVs for standard HBM already consume nearly 20% of each 3D-

stacked layer [76]. Exposing the same internal bandwidth to the HBM logic6 layer requires

adding 6×more TSVs. That is, it may require an additional logic layer to place a sufficient

number of accelerators and/or expose higher internal bandwidth by placing more TSVs,

which are expensive in terms of many design metrics. By analyzing the die photo of the

SK Hynix HBM, which 3D-stacks four DRAM and one logic dies [76], a recent study [75]

unveils that there is not enough space to place the accelerators on the logic die. First, the

logic die is substantially occupied by (a) the 1024 PHYs–which connect to the GPU through

2.5D silicon interposers; (b) the Through Silicon Vias (TSVs)–which connect the PHYs

6A recent HBM architecture [75, 76] provides 1024 TSVs to the logic layer.

57

to the 1024 I/O signals of the four 3D-stacked DRAMs; (c) the decoupling capacitors–

which mitigate the large power fluctuations that may occur when concurrently driving the

1024 PHYs; and (d) the Memory Built-In Self-Test (MBIST) units and logic/ports–which

enable external testing. Second, the number of TSVs on the logic die needs to be more

than doubled to provide higher bandwidth to the accelerators. For instance, an Nvidia

GTX 480 architecture [52] has six memory channels, each offering 1024 bits of internal

I/O. Exposing the same internal bandwidth to the HBM logic layer requires adding 6×

more TSVs. The TSVs for standard HBM already consume nearly 20% of the logic die

area [75]. Therefore, the HBM logic layer does not have sufficient area to integrate an

effective number of accelerators. Altogether, effectual near-data acceleration for GPUs may

require a separate die, which is a non-trivial overhead. In addition, GPUs utilize increasing

amounts of memory (Maxwell Titan X has 12GB of GDDR5 memory [77]), while the most

recent Samsung HBM2 memory offers 4GB capacity [78] (3× less capacity). As HBM

is on-package, it offers limited capacity due to package-level power, thermal, and space

constraints in contrast to off-chip DRAM. Due to these limitations, we set out to tightly

integrate accelerators within DRAM modules to utilize their higher internal bandwidth

and larger capacity. Such a tight integration can be attractive if it incurs little overhead

while enables the acceleration of a diverse range of applications. However, integrating

many complex accelerators within DRAM is not practical, since DRAM is under tight area,

power, and thermal constraints [79, 80, 81, 82, 83, 84]. Moreover, even the number of metal

layers for routing is limited [85, 86, 87], which severely hinders integrating complex ac-

celerators. Finally, it is highly desirable to avoid changing the innards of DRAM banks, as

they have been optimized over decades of engineering. This work tackles these challenges

by exploiting the approximability of many GPU applications. We leverage the neural trans-

formation [38, 46, 45, 6, 12], which can accelerate diverse applications by approximating

regions of GPU code and converting them into a neural representation comprised of only

two types of operations: Multiply-and-Accumulate (MAC) and Look-Up Table (LUT) ac-

58

cesses for calculating the nonlinear function. Hence, the accelerator architecture becomes

relatively simple. To further minimize the power and area overhead and enable a low-

overhead integration of many in-DRAM accelerators, we further approximate the MAC

units. Specifically, these approximate MAC units convert the multiplication into limited

iterations of shift-add and LUT access operations with early termination by exploiting a

unique property of neural transformation, i.e., one of the operands for each MAC operation

is fixed. While the accelerators merely comprise simple shift, add, and LUT access oper-

ations, they are able to support a wide variety of applications. We attach these simplified

units to the wide data lines, which connect the DRAM banks to the global I/O, to avoid

altering the banks and memory column pitch. Note that our approach, which significantly

simplifies the accelerator design, has merits even when accelerators are placed on logic

layers of 3D/2.5D-stacked DRAM. Specifically, package-level power/thermal constraints

get more stringent with more stacked-DRAM dies while processors powerful enough to

fully exploit high-internal bandwidth will consume high power. Also, the challenges of

tying DRAM design to accelerators that only cover few applications may be limiting for

DRAM manufacturers. AXRAM tackles this dilemma by introducing a significantly simple

and power-efficient design while supporting diverse applications as well as neural networks

that are being adopted in various domains. As such, this work defines AXRAM, a novel

accelerated DRAM architecture with the following contributions.

3.3 Overview

In this section, we first overview the challenges and opportunities of in-DRAM acceleration

for GPUs and how approximation plays an enabling role.

3.3.1 Challenges and Opportunities

Opportunity to reduce data transfer cost. Off-chip data transfer imposes a significant en-

ergy cost relative to data processing. With a 45 nm process, a 32-bit floating-point addition

59

binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad
average

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

O
ff-

ch
ip

D
at

a
Tr

an
sf

er
C

on
tr

ib
ut

io
n

Runtime Energy

(a) Baseline GPU
binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad
average

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

O
ff-

ch
ip

D
at

a
Tr

an
sf

er
C

on
tr

ib
ut

io
n

Runtime Energy

(b) Accelerated GPU

Figure 3.1: The fraction of total application runtime and energy spent in off-chip data transfer for (a) a baseline GPU
and (b) an accelerated GPU [38].

costs about 0.9 pJ, while a 32-bit DRAM memory access costs about 640 pJ [70, 69]. As

such, off-chip data transfer consumes over 700×more energy than on-chip data processing.

This cost becomes even more pronounced in GPU applications, since they typically stream

data and exhibit low temporal locality (i.e., high cache miss rates) [88, 89, 90, 91, 92,

93]. Moreover, off-chip data transfer assumes a significant portion of application runtime.

Near-data processing provides an opportunity to cut down this cost. To concretely examine

the potential benefits of near-data processing, we conducted a study which teases apart the

fraction of runtime and energy consumption spent on off-chip data transfer7. As Figure 3.1a

illustrates, on average, applications spend 42% of their runtime and 39% of their energy

dissipation on off-chip data transfer on a GPU. In Figure 3.1b, we further examine this trend

with a neurally accelerated GPU (NGPU [38]), to speed up the data processing portion of

each thread. The acceleration reduces the data processing time of each thread, in turn

increasing the rate of accesses to off-chip memory. This increased rate exacerbates the

contribution of data transfer to the application runtime and energy. Moreover, accelerating

the GPU further compounds the already significant pressure on the off-chip communication

bandwidth [38, 66, 65]. On average, applications spend 83% (85%) of their runtime (en-

ergy) on off-chip data transfer on neurally accelerated GPU (NGPU). These results indicate

a significant opportunity for near-data processing to address the overhead of off-chip data

transfer in GPUs.

Challenges of near-data processing on GPUs. GPUs present unique challenges for near-

data processing, as they comprise many cores simultaneously running many threads. To

7Section 3.9 presents our experimental methodology and settings.

60

preserve the SIMT execution model of GPUs, we need to integrate many accelerator units

near the data. There are two options for where to integrate the accelerator units: (1) the on-

chip memory controller or (2) inside the DRAM itself. Option (1) provides the accelerator

units with no additional bandwidth, as the on-chip memory controller receives the same

bandwidth from memory as the rest of the GPU. Furthermore, placing the accelerator units

in the memory controller only circumvents data transfer through the on-chip caches. In

addition, integration within the memory controller requires large buffers for holding the

accelerators’ data, which would impose a significant area overhead. Option (2), which

integrates the accelerators in DRAM, reduces the data transfer distance and exploits the

high internal bandwidth of the memory. Moreover, integrating the accelerators in DRAM

enables us to utilize DRAM as buffers for the accelerators’ data. However, this design

point can introduce a substantial area and power overhead to the space-limited and power-

constrained DRAM. In this work, we integrate the accelerator units in DRAM and leverage

the approximability of many GPU applications to significantly simplify the accelerator

architecture. These simplifications enable the accelerator to minimize changes to the un-

derlying DRAM architecture and overhead to the DRAM power consumption.

3.3.2 Approximation for Near-Data Processing

Among approximation techniques, the neural transformation [12] is an attractive, yet un-

explored, approach for near-data processing in DRAM. The neural transformation converts

a code segment into a neural representation comprising only two operations: multiply-

and-accumulate (MAC) and sigmoid. Reducing computation to two operations provides

an opportunity to significantly simplify the accelerator. This simplified design minimizes

changes to the DRAM and can be replicated many times to preserve the GPUs’ SIMT

execution model.

The neural transformation trains a neural network to replace an approximable region of

conventional code [38, 6, 12, 45]. Figure 3.2(a) illustrates the transformation of a code seg-

61

short	r	=	pixel[i][0];
short	g	=	pixel[i][1];
short	b	=	pixel[i][2];
short	result	=	0;

out[i]	=	result;

(a)

short	r	=	pixel[i][0];
short	g	=	pixel[i][1];
short	b	=	pixel[i][2];
short	result	=	0;
#pragma(begin_approx,
														“min_max”)
mi	=	__min(r,	__min(g,	b));
ma=	__max(r,	__max(g,	b));
result	=	((ma	+	mi)	
													>	127	*	2)	?	255	:	0;
#pragma(end_approx,
														“min_max”)
out[i]	=	result;

Neural Transformation converts complex
region of code to simple operations

(i.e., multiplication, addition, and sigmoid)

×+

Simple
Operations

Prior work targets data processing

This work targets data transfer

Accelerated DRAMGPU

Accelerated GPU Unmodified DRAM

Th
is

 W
or

k
Pr

io
r W

or
k

(b)

SM
Accelerator

SM
Accelerator

SM
Accelerator

SM
Accelerator

SM SM

SM SM

Bank
Accelerator

Bank
Accelerator

Bank
Accelerator

Bank
Accelerator

Bank Bank

BankBank

Figure 3.2: (a) Neural transformation of a code segment from the binarization benchmark. (b) Comparison of prior
work (bottom diagram) [38] and this work (top diagram).
ment, where the approximable region is highlighted in gray. An approximable region is a

segment that, if approximated, will not lead to any catastrophic failures (e.g., segmentation

fault). Its approximation will only gracefully degrade of the application output quality. As

is customary in approximate computing [49, 50, 26, 27], the programmer only annotates the

code region(s) that can be safely approximated. The compiler then automatically performs

the transformation and replaces the code segment with a neural hardware invocation [38].

As shown in Figure 3.2(b), prior work addresses data processing by integrating neural

accelerators within the GPU cores and defines a neurally accelerated architecture for GPUs

(NGPU) [38]. This work, on the other hand, develops a neurally accelerated architecture

for DRAM, dubbed AXRAM, which addresses off-chip data transfer. Moving the neural

acceleration to DRAM enables AXRAM to reduce the data transfer overhead and supply

more bandwidth to the accelerators. Moreover, we leverage the approximability of the GPU

applications to further simplify the architecture of the accelerator units (Section 3.7).

3.4 AxRAM Execution Flow and ISA

This section discusses the execution flow and instruction set architecture (ISA) extensions

which enable the seamless integration of AXRAM with the GPU’s SIMT execution model.

Unlike prior work [38, 6, 12, 45, 46], AXRAM is disjoint from the processor core and is

62

Streaming
Multiprocessor

On-chip
Cache

Memory
Controller AXRAM

Normal Execution

Normal Execution

In-DRAM
Neural Acceleration

(
(
(

sigmoid)
)
)in0	,	in0	,	…	,	in0

in1	,	in1	,	…	,	in1
…

w0 ⤫
w2 ⤫+

Bypass
Invalidate
and

Translate

n0

in0	(%r0) in1	(%r1)
w0 w1 w2 w3

w4 w5

n1

n2

out0	(%r2) (
(
(

sigmoid)
)
)in0	,	in0	,	…	,	in0

in1	,	in1	,	…	,	in1
…

w4 ⤫
w5 ⤫+

DRAM Banks DRAM Banks

DRAM Banks DRAM Banks

in0 = a + b;…

c = 2 * out0;
…

…
…

Figure 3.3: Execution flow of the accelerated GPU code on the in-DRAM accelerator.
instead integrated into DRAM. Hence, the ISA extensions must enable the on-chip memory

controller to configure and initiate the in-DRAM accelerator.

3.4.1 Neural Acceleration of GPU Warps

GPU applications consist of one or more kernels, which are executed by each of the GPU

threads. Threads are executed on GPU processing cores called streaming multiprocessors

(SMs), which divide the threads into small groups called warps. A warp executes the same

instruction of the same kernel in lock-step but with different input data. The neural trans-

formation approximates segments of the GPU kernels and replaces the original instructions

of these segments with the computation of a neural network, as shown in Figure 3.3. A

neurally accelerated warp computes the same neural network, one neuron at a time, across

all the threads for different inputs. Due to the neural transformation, this computation

only consists of MAC and lookup (sigmoid) operations. Specifically, the output y of each

neuron is given by y = sigmoid(Σi(wi× ini)), where ini is the input to the neuron and wi is

the weight of the connection. The neural computation portion of the threads are offloaded

to the in-DRAM neural accelerator. Instructions which invoke and configure the in-DRAM

neural accelerator are added to the GPU’s ISA (Section 3.4.3). These instructions are

added by the compiler to the accelerated kernel and are executed by the threads in SIMT

mode like other GPU instructions. Thus, the accelerated warp comprises both the normal

precise instructions of the unmodified code segments and approximate instructions which

communicate with the in-DRAM accelerator. Before explaining these ISA extensions, we

provide a high level picture of the execution flow of AXRAM.

63

3.4.2 Execution Flow with AxRAM

Figure 3.3 illustrates the execution flow of the neurally accelerated warp and communi-

cation amongst the GPU, on-chip memory controller, and in-DRAM neural accelerator in

one GDDR5 chip. We assume that all data for the neural computation of a given warp is

located on one GDDR5 chip. This assumption is enabled by a series of data organization

optimizations discussed in Section 3.6. First, the SM fetches the warp and begins the

execution of the precise instructions normally without any in-DRAM acceleration. The

warp then reaches the approximable region, which instructs the SM to send an initiation

request directly to the on-chip memory controller. Once the initiation request has been sent,

the issuing warp goes into halting mode. This is not an active warp waiting mechanism but

is similar to a load miss in the cache. The core may switch to the execution of another

warp while the in-DRAM neural computation proceeds, provided the warp does not have

any conflicts with the ongoing in-DRAM computation.

Augmented logic in the on-chip memory controller first sends invalidate signals to the

on-chip caches and nullifies dirty data to be modified by the neural computation. The inval-

idate signals are sufficient to prevent GPU cores from using stale data. As most GPU caches

use a write-through policy [94], it is guaranteed that in-DRAM accelerators have access to

the most up-to-date data. Then, the on-chip memory controller configures and initiates the

in-DRAM accelerators (Figure 3.3). Specifically, the on-chip memory controller translates

the initiation request and instructs the in-DRAM accelerator where the inputs to the neural

network are located in memory and to where the accelerator should store its final outputs.

Furthermore, the on-chip memory controller blocks any other memory commands to that

particular DRAM chip to ensure the atomicity of the in-DRAM neural computation. The

on-chip memory controller also does not assign any other neural computations to a GDDR5

chip with an ongoing neural computation. We added a simple on-chip queue per memory

controller to keep track of in-flight requests for in-DRAM approximate acceleration. The

area overhead of these queues to the GPU die is modest (≈1%). Similar to [72], the on-chip

64

memory controller allows critical memory operations such as refreshing to be performed

during in-DRAM neural computation.

During neural computation, the in-DRAM accelerator takes full control of accessing

and issuing commands to the banks. The in-DRAM accelerator performs the MAC and

sigmoid operations (Figure 3.3). Neural computation for the threads of the neurally ac-

celerated warp is performed in lock-step by the many integrated arithmetic units. Once

neural computation is completed, the in-DRAM accelerator writes its results back to the

banks in locations dictated by the memory controller. We consider two options for noti-

fying GPU that in-DRAM computation has completed: waiting a fixed number of cycles

and polling. The former approach requires pre-determining the execution time of each

invocation and exposing that to the compiler. The memory controller would then wait

for this pre-determined number of cycles before notifying the warp to continue precise

execution. However, the execution time of an in-DRAM invocation depends on the neu-

ral network topology and the accelerator’s DRAM accesses patterns. Anticipating the

DRAM’s accesses patterns necessitates exposing DRAM microarchitectural parameters to

the compile. These details are not always readily available, making this design point less

desirable. Instead, we choose the polling approach, in which the accelerator sets the DRAM

memory-mapped mode register MR0 [95], similar to [72]. The on-chip memory controller

periodically polls this register to determine if the computation has finished. Once it detects

that the register has been set, the on-chip memory controller notifies the GPU that the neural

computation for the specific warp is finished and the warp can continue precise execution.

To enable the controller to properly initiate and configure the in-DRAM accelerator, we

need to extend the ISA with instructions that communicate the configuration data.

3.4.3 ISA Extensions for AxRAM

We augment the ISA with three instructionswhich bypass the on-chip caches and commu-

nicate directly with the memory controller. The proposed ISA extensions are as follows:

65

1. config.axram [%start addr], [%end addr]

reads the preloaded neural network configuration from the memory region [%start addr]

to [%end addr] and sends it to the in-DRAM accelerator. The configuration includes both

the weight values and the topology of the neural network.

2. initiate.axram [%start addr], [%end addr]

sends the start ([%start addr]) and end ([%end addr]) addresses of a continuous mem-

ory region which constitutes the neural network inputs for the warp and then initiates

the in-DRAM accelerator.

3. wrt res.axram [%start addr], [%end addr]

informs the in-DRAM accelerator to store the computed value(s) of the neural com-

putation in a continuous memory region defined by the start ([%start addr]) and end

([%end addr]) addresses.

Both invoke.axram and wrt res.axram use virtual addresses like normal CUDA instruc-

tions.

The dimensionality of the different neural network layers is statically identified at com-

pile time and used to configure the in-DRAM accelerator. Thus, the in-DRAM accelerator

knows how many neurons to expect per layer, and specifying sufficient memory regions to

ensure proper execution. However, this means that input order is important and necessitates

a series of data organization optimizations to ensure correct execution (See Section 3.6).

As with other GPU instructions, these ISA extensions are executed in SIMT mode. That

is, each thread in a warp will communicate its input/output data regions to the in-DRAM

neural accelerator. Additionally, the weights and the topology of each neural network are

embedded by the compiler in the “.data” section of the ELF-formatted CUDA binary code

(cubin) [96] during compilation. Along with the CUDA binary code, the weight values

and the topology of the trained neural network are copied in a preallocated memory region.

Using the config.axram instruction, the in-DRAM accelerator pre-loads these weights and

topology configuration of the trained neural network from memory before starting the

66

neural computation. These ISA extensions unify the execution flow of AXRAM and the

GPU. The microarchitectural modifications to the DRAM need to support such a unified

execution flow while minimizing changes to the DRAM architecture.

3.5 AxRAM Microarchitecture

To describe our design, we use a GDDR5 DRAM architecture [86, 87, 97]. High Band-

width Memory (HBM), a 3D-stacked DRAM architecture, has also recently been employed

as the memory for high-end GPUs (e.g., AMD’s Fiji architecture [98, 99]). HBM is a 3D-

stacked DRAM architecture which is placed side-by-side with the GPU and connects to

it through 2.5D interposers. Since HBM generally stacks GDDR5-like DRAM [100], our

modifications can potentially be extended to such memory architectures, in which the logic

die does not have sufficient space to expose higher internal bandwidth (cf. Section 3.2).

Furthermore, AxRAM is appropriate for these 3D-stacked structures, because, as our evalu-

ations show (see Section 3.9), our design does not increase the DRAM power consumption

due to data transfer. Our main design objectives are to (1) preserve the SIMT execution

model while (2) keeping the modifications to the baseline GDDR5 minimal and (3) lever-

aging the high internal bandwidth of DRAM. AxRAM achieves these goals by integrating

many simple arithmetic and sigmoid units into GDDR5. To describe the microarchitecture

of AXRAM, we first give an overview of the GDDR5 architecture.

3.5.1 Background: GDDR5 Architecture

While GDDR5 has a I/O bus width of 32 bits per chip, it has a much higher internal bus

width of 256 bits per bank. This provides an 8× higher bitwidth that would significantly

benefit GPUs, which already place significant pressure on the off-chip bandwidth [65, 66,

101]. Furthermore, the bank-group organization of GDDR5 provides intrinsic parallelism

which can be leveraged to feed data to a large number of arithmetic units. By exploiting

the attribute of the bank-group organization, we can further utilize 1024 bits of internal bus

67

Left Half
Bank-Group #2

Right Half
Bank-Group #2

Left Half
Bank-Group #3

Right Half
Bank-Group #3

Left Half
Bank-Group #0

Right Half
Bank-Group #0

Left Half
Bank-Group #1

Right Half
Bank-Group #1

Control &
Command Logic

× 16
I/O Interface

× 16
I/O Interface

(a) High-level GDDR5 DRAM

Co
lu

m
n

De
co

de
rsALeft

Row
Decoder

BLeft
Row

Decoder

ELeft
Row

Decoder

FLeft
Row

Decoder Co
lu

m
n

De
co

de
rsCLeft

Row
Decoder

DLeft
Row

Decoder

GLeft
Row

Decoder

HLeft
Row

Decoder

Global
Sense Amplifier

Global
Sense Amplifier

I/O
Co

nt
ro

lle
r

× 16
I/O Interface

Accelerator

Accelerator

128 bits 128 bits

128 bits 128 bits

(b) Two Half Bank-Groups

Figure 3.4: (a) High-Level GDDR5 DRAM organization. (b) Layout of two half bank-groups (Left Half Bank-Group #0
and Left Half Bank-Group #1) and the accelerators. The black-shaded boxes show the placement of the accelera-
tors.

width (32× higher bitwidth than the I/O bus).

Figure 3.4a shows the GDDR5 DRAM architecture, which consists of four bank-

groups, each with four banks. Each bank-group can operate independently, meaning re-

quests to different bank-groups can be interleaved. The bank-groups are organized into

upper and lower pairs partitioned by the I/O interface and control and command logic.

Moreover, each bank-group contains four banks, which are subdivided into two half-banks.

Subdividing the banks splits each bank-group into a left and right half, each with four

half-banks. Two upper-left half bank-groups (i.e., Left Half Bank-Group #0 and Left Half

Bank-Group #1) are depicted in Figure 3.4b. In each half bank-group, the four half-banks

are split into pairs (e.g., ALeft and BLeft vs. CLeft and DLeft) by a global sense amplifier and

shared I/O controller. Each half-bank has its own row decoder, while column decoders are

shared between the half-bank pairs of the two adjacent half bank-groups. Both the right

and left half bank-groups provide a bus width of 128 bits for a total of 256 bits. However,

this higher internal bus width is serialized out through the right and left 16-bit I/O interface.

For instance, when the DRAM receives a memory command to access Bank A in Bank-

Group #0, both the half-banks, ALeft and ARight, process the command in unison to supply

the data. For the sake of simplicity, we focus on the left half of Bank-Group #0 shown in

Figure 3.4b. The global row decoder of the half-bank decodes the address and accesses

the data. The shared column decoder asserts the column select lines, which drives the data

68

onto a 128-bit global dataline shared between half-banks ALeft and BLeft. Since the global

dataline is shared between the pairs of half-banks, only one may send or receive data at a

time. The global sense amplifier then latches the data from the global dataline and drives

the data on the bank-group global I/O through the I/O controller. The right and left I/O

interfaces then serialize the 256-bit (128-bit each) data on the Bank-Group #0’s global I/O

before sending them through the 32-bit data I/O pins. By placing the accelerators inside

the DRAM, we aim to exploit the higher internal bandwidth instead of relying on the lower

bandwidth of the data I/O pins.

We next discuss how AXRAM integrates the accelerators into the GDDR5. Addi-

tionally, we describe how the accelerator uses the aforementioned GDDR5 attributes to

preserve the SIMT execution model and minimize changes while providing data to all the

arithmetic units each cycle.

3.5.2 In-DRAM Accelerator Integration

To minimize DRAM changes yet benefit from its high internal bandwidth, AXRAM inte-

grates a set of arithmetic and sigmoid units within each half-bank group (Figure 6.5). These

arithmetic and sigmoid units are connected to the half-bank groups’ global sense amplifiers.

Below we discuss the design choices, structure, and components of this integration.

Accelerator architecture. As mentioned, the accelerator is a set of arithmetic and sigmoid

units. Each pair of arithmetic and sigmoid units is assigned to a thread of the neurally

accelerated warp. The sigmoid units are implemented as a read-only LUT synthesized as

combinational logic to minimize the area overhead. We will further simplify the arithmetic

units in Section 3.7. Here, we discuss how we guarantee SIMT execution of the neurally

accelerated warp with these units. Each arithmetic unit can execute one MAC operation

each clock cycle with a 32-bit input and 32-bit weight. The banks need to be able to

feed a 32-bit input to each of the integrated arithmetic units at the same time, such that

the arithmetic units can perform the neural computation for all the threads within a warp

69

Sigmoid
LUT

Arithmetic
Unit

C
ol

um
n

D
ec

od
er

s

B
an

k

Row
Decoder

Inputs / Weights
Temporary Results / Outputs

Global Sense Amplifier

Weight Register

128 bits

Arithmetic
Unit

Arithmetic
Unit

Arithmetic
Unit

Acc. Reg.

Sigmoid
LUT

Sigmoid
LUT

Sigmoid
LUT

Acc. Reg. Acc. Reg. Acc. Reg.

32 bits 32 bits 32 bits 32 bits

32
 b

its

32
 b

its

32
 b

its

32
 b

its

128 bits
Figure 3.5: Integration of weight register, arithmetic units, accumulation registers, and sigmoid LUTs.

simultaneously. As mentioned before, each bank-group in the baseline GDDR5 has a 256-

bit wide global I/O, 128-bit per each half bank-group. Since each bank group can function

independently, the DRAM can provide a total of 1024 bits (32×32 bits) of data from the

banks at a time. Thus, we integrate 32 pairs of arithmetic and sigmoid units in each GDDR5

chip, 8 pairs per each bank-group. In Section 3.6, we describe a data organization which

enables us to read and write 1024 bits of data simultaneously.

Unit placement. There are multiple design points for integrating arithmetic units within

a GDDR5 chip. To minimize changes to the DRAM architecture, we aim to avoid mod-

ifying the underlying mat8 and bank design. One option is to add arithmetic units close

to each half-bank to utilize their high internal bandwidth. However, this would require

cutting the global datalines shared between pairs of half-banks (Figure 3.4b) and adding

a separate sense amplifier per half-bank. Therefore, this design point imposes a large

area overhead and necessitates significant changes to each GDDR5 chip. Another option

is to add arithmetic units in a central manner close to the I/O interface in Figure 3.4a.

Although this option does not suffer from the drawbacks of placing the accelerators close to

each half-bank, it requires extensive routing. Because the aforementioned options require

such extensive modifications, they are infeasible design points. Instead, AXRAM adds

four arithmetic units per half bank-group after the shared sense amplifier within the I/O

controller boundary, for a total of eight arithmetic units per bank-group. The accelerators’

8A mat constitutes an array of 512×512 DRAM cells. Each mat comes with its own row decoder, datalines,
and sense amplifiers.

70

placement is illustrated in Figure 3.4b, while the specific accelerator logic layout, including

the arithmetic units, is shown in Figure 6.5. This design choice imposes minimal changes

to the DRAM architecture and avoids altering the design of the mats or banks.

Design optimizations. Each of the arithmetic units implements the neural network MAC

operations. However, to properly supply and retrieve data from the arithmetic units, we

need storage for the (1) inputs, (2) weights, (3) temporary results, and (4) outputs of the

network. Generally, neural accelerators use dedicated buffers as storage [38, 12]. However,

placing the arithmetic units near the data allows AXRAM to perform a series of design

optimizations which minimize the modifications to the baseline GDDR5. As Figure 6.5

shows, AXRAM is able to instead use the GDDR5 banks as buffers. Input data is read

directly from the GDDR5 banks and fed to the arithmetic units for processing. AXRAM

leverages the large number of sense amplifiers within the DRAM banks to store temporary

results in pre-allocated memory regions during in-DRAM computation. Outputs from the

arithmetic units are written directly back to the GDDR5 banks. By not using dedicated

buffers, we avoid adding large registers to each GDDR5 chip and reduce the area overhead.

We only add dedicated weight registers to supply weights to all the arithmetic units. This

enables AXRAM to avoid having to read the weights from the memory banks each cycle

and instead utilize the internal buses to supply all the arithmetic units with inputs. Thus,

we can simultaneously provide each arithmetic unit with an input and weight each cycle.

Weight register. Since all threads within a warp perform the computation of the same

neuron in lock-step, the weights are the same among all the threads for a given neural

network. Therefore, AXRAM can use one weight at a time and share it among the arithmetic

units within a half-bank group. We add a weight register (shown in Figure 6.5) per half

bank-group, or for each group of four arithmetic units. As shown in Figure 6.5, the weights

are pre-loaded into the weight register before the computation starts. If the number of

weights exceeds the capacity of the register, the next set of weights are loaded after the first

set has been depleted. This weight register has 8×32-bit entries per each half bank-group.

71

Since each half bank-group can provide 128 bits of data at a time, the weight register should

have at least four entries to fully utilize the provided bandwidth. We increase the number of

weight register entries to allow computation to move forward while the next set of weights

are loaded and avoid unnecessary stalls.

GDDR5 timing constraints. Adding arithmetic units to the half bank-groups increases

the load to the half bank-groups’ global I/Os.The only timing constraint affected by the

increased load is the column access latency (tCL). To estimate the timing impact of tCL by

HSPICE simulation, we measure the increase in load due to the accelerator on the GIOs after

the placement and routing. Based on our evaluation, the extra loading on the half bank-

groups’ global I/Os increases the tCL by ≈ 20 ps. This increase is 0.16% of the typical

value for tCL, which is around 12.5 ns to 15 ns [102, 103], and is less than the guardband

which accounts for various design variations [104]. Thus, the 20 ps increase has virtually

no effect on the timing of GDDR5.

Connection between DRAM banks and arithmetic units. The internal half bank-groups’

global I/Os need to support two different modes: (1) normal mode and (2) in-DRAM accel-

eration mode. When the accelerator performs the computation, the half bank-group’s global

I/Os are connected to the arithmetic units to transmit input data. Once the computation of

a neuron completes, the arithmetic unit inputs arithmetic units are disconnected from the

half bank-group’s global I/Os. The arithmetic units outputs are then connected to the global

datalines through the global I/Os for storing the computed data into the memory banks. We

use a series of pass transistors to control the connection between the inputs and outputs

of the arithmetic units and the GDDR5 half bank-groups. Supporting a direct connection

between the arithmetic units and the GDDR5 banks also requires additional routing paths in

the DRAM. To enable the in-DRAM accelerator to gain access of the GDDR5 chip, we also

modify the internal address/command bus. In normal mode, the on-chip memory controller

has the full access of the address/command bus. However, in in-DRAM acceleration mode,

the accelerator gains access to the address/command bus. A set of pass transistors supports

72

this functionality in memory as well. We evaluate the overhead of pass transistors and

routing paths in Section 3.9. To orchestrate the flow of data in the banks to and from the

in-DRAM accelerator, we add an in-DRAM controller. Furthermore, we augment the on-

chip memory controller with additional logic to translate the ISA extensions and properly

initiate and configure the in-DRAM accelerator.

3.5.3 Interfacing the GPU with AxRAM

Memory controller. We extend the on-chip memory controllers to send invalidation sig-

nals to the on-chip caches upon receiving AXRAM instructions. Moreover, we extend

the on-chip memory controller to translate the AXRAM instructions (Section 3.4) to a

sequence of special memory instructions. These memory instructions (1) configure the in-

DRAM accelerator and (2) initiate the in-DRAM neural computation. The on-chip memory

controller is augmented with customized address mapping logic to perform this translation.

Upon receiving AXRAM instructions, the implemented address mapping logic inside each

on-chip memory controller sends a series of special memory commands to the in-DRAM

accelerator to configure and initiate the in-DRAM acceleration. We also add a one-bit flag

inside each memory controller to keep track of the status of its corresponding GDDR5 chip.

During in-DRAM neural computation, the flag is set so that the memory controller knows

not to issue any further memory commands to the memory chip.

However, the memory controller may regain the ownership of the memory chip for

performing mandatory memory operations such as refreshing [105]. Similar to prior

work [72], the memory controller sends a suspend command to the in-DRAM controller if

the GDDR5 chip is in neural computation mode. Upon receiving the suspend command, the

in-DRAM control unit stores any temporary results in the DRAM and stops computation.

Once the refresh period finishes, the memory controller instructs the in-DRAM controller

to continue the suspended neural computation.

In-DRAM controller. Previous work [106] has proposed integrating an on-DIMM con-

73

troller and a handful of specialized microcontrollers in memory to accelerator associa-

tive computing. However, since the neural network does not require a complicated con-

troller [38, 12], we instead add a simple control unit inside each GDDR5 chip. This in-

DRAM controller (1) marshals data and weights between memory banks and the in-DRAM

accelerator and (2) governs the sequence of neural network operations. Specifically, it

fetches input data from the banks and sends them to the arithmetic units, reads weights from

memory and loads them into the weight buffers, and stores temporary results and neural

output(s) into the banks. When the in-DRAM controller receives instructions from the on-

chip memory controller, it gains full control of the internal DRAM buses. As discussed,

the memory controller only re-gains ownership of the internal DRAM buses when neural

computation completes and for performing mandatory memory operations such as random

refreshing.

3.6 Data Organization for AXRAM

Our proposed architecture (Section 3.5) leverages bank-group level parallelism to supply

all arithmetic units with inputs simultaneously. For this design to comply with the SIMT

execution model, we require data to be laid out in a specific order on a single GDDR5 chip.

Recent work [107, 108, 109] has shown the benefits of data organization in improving the

efficiency of near-data processing for certain applications. A neural network execution has

consistent and predictable memory access patterns [110, 111]. Similar to recent work [108],

we leverage the predictability of the memory access patterns in neural network execution

to perform a series of data organization optimizations to fully utilize the inherent bank-

group and bank-level memory parallelism in memory. Since the weights of the network are

shared amongst all the threads and loaded into the weight register before in-DRAM neural

computation, we only need to ensure that the input data is properly placed in memory.

Data partitioning. We logically divide a warp into four partitions, each with eight threads.

The data for all the eight threads of each partition is allocated within each bank-group.

74

in0,0 in0,1 in0,7

Row4

Bank0

B
an

k-
G
ro
u
p
0

in2,0 in2,1 in2,7

Row1 in1,0 in1,1 in1,7

Row8

Bank1
in3,0 in3,1 in3,7

Row4

in4,0 in4,1 in4,7

Row4

Bank2
h1,0 h1,1 h1,7

Row2 h0,0 h0,1 h0,7

Row8

Bank3
out0,0 out1,1 out1,7

Row1

in0,8 in0,9 in0,15

Row4

Bank4
B
an

k-
G
ro
u
p
1

in2,8 in2,8 in2,15

Row1 in1,8 in1,9 in1,15

Row8

Bank5
in3,8 in3,9 in3,15

Row4

in4,8 in4,8 in4,15

Row4

Bank6
h1,8 h1,8 h1,15

Row2 h0,8 h0,9 h0,15

Row8

Bank7
out0,8 out1,9 out1,15

Row1

Figure 3.6: The data layout for a neural network with 5→2→1 configuration in bank-group0 and bank-group1 after
data shuffling. For simplicity, we assume a row buffer (256 bits).
That is, the data for the first partition of threads (e.g., thread0−7) is allocated to the first

bank-group. Similarly, the data for thread8−15, thread16−23, thread24−31 is allocated to the

second, third, and fourth bank-group, respectively. If there is shared data between warps,

we replicate it during the data partitioning. On average, the overhead of duplicated data is

≈2% in terms of storage.

Data shuffling. Within a partition, the data has to be organized in such a way that we

can read and write all the data for the 32 arithmetic units at a time and efficiently utilize

the bank-level parallelism. Specifically, AXRAM requires two constraints to be met for

the data layout: (1) the row and column addresses of a given neuron’s inputs for all the

32 threads have to be the same across the bank-groups and (2) the addresses of a neuron’s

inputs for each thread in a given partition have to be consecutive. Furthermore, similar to

address mapping in baseline GPU [112], data for different neurons for a given partition is

distributed among the banks to enable interleaving requests to different banks on the chip.

We illustrate this scheme with an example (Figure 3.6), assuming a topology with a

5→2→1 configuration. For simplicity, we assume banks with 256-bit sense amplifiers and

only show the layout for thread0−15 of a warp. Input neuron i has an input ini, j for the

jth thread. Similarly, hi, j and outi, j represent inputs for the ith hidden and output neuron,

respectively, for the jth thread. Due to the first constraint, inputs for the 0th input neuron

75

 Simplified Unit(a)

Shifter

W
ei

gh
t R

eg
is

te
r

W00 = (00110)2
W01 = (00100)2

W02 = (00011)2

W03 = (00001)2

W10 = (00111)2

W11 = (00101)2

W12 = (00100)2

W13 = (00000)2

(125)10

(8,000)10

Xi

Shifter

+

W00 = (00110)2

W01 = (00100)2
W02 = (00011)2

W03 = (00001)2

W10 = (00111)2

W11 = (00101)2

W12 = (00100)2

W13 = (00000)2

(125)10

(10,000)10

Xi

W
ei

gh
t R

eg
is

te
r

Shifter

Input

Output

Xi

W
ei

gh
t

Re
gi

st
er

Iteration #1(b) Iteration #2(c)

Wij
++

Figure 3.7: (a) Example of the simplified shift-add unit with pre-loaded shift amounts. (b-c) Two iterations of the
shift-add unit.

for all threads are located in row1 for both bank-groups. Following the second constraint,

inputs in0,0-in0,7 and in0,8-in0,15 are consecutively placed in the same row in bank0 and

bank1 respectively. The same constraints are met for the other neurons as well. Due to

bank interleaving, inputs in0,0-in0,7 are stored in bank0, while the inputs in1,0-in1,7 are in

bank1.

Memory management APIs. Similar to AMD’s early generation APUs [113], we adopt a

memory model which provides a single physical memory space divided into two separate

and non-overlapping logical memory spaces for the GPU and in-DRAM neural accelerator

respectively. The separation between the GPU and in-DRAM accelerator data and the

proposed data partitioning and shuffling schemes are performed on-the-fly when the host

transfers the data to the GPU memory during kernel initialization using customized mem-

ory management APIs. We use an approach similar to prior work [114, 115] and modify

the CUDA driver API (e.g. cuMemCopyHtoD(), cuMemCopyDtoH()) to implement the proposed

data organization optimizations (e.g. data partitioning and shuffling) for in-DRAM neural

acceleration. The overhead of performing the proposed data organization is amortized over

the long CUDA kernel execution time and is accounted for in Section 3.9.

76

3.7 Arithmetic Units Simplification

There exist two options for the arithmetic units. The first option is to use floating-point

arithmetic units to perform the neural computation. Another option is to use fixed-point

arithmetic units for energy gains and a smaller area overhead. We propose a third option to

approximate the arithmetic units to further reduce the area overhead and keep the impact

on the overall DRAM system power low. These simplified arithmetic units break down the

MAC operations into iterations of add and shift operations. More iterations of this shift-

add unit offers higher precision at the expense of the throughput of the unit. Since the

weights Wi remain constant after training a neural network, the shift amounts can be pre-

determined based off the bit indices of ones within the 32-bit weight value, starting with

the most significant one. Figure 3.7a shows an implementation of this simplified shift-add

unit. Xi represents the input of a neuron and Wi j is the shift amount for the ith weight in its

jth iteration. The weight register stores these predetermined shift amounts. Since the shift

amounts are indices of bits within a 32-bit weight value, the maximum shift amount is 32,

which can be represented by a 5 bit value. Thus, each 32-bit entry in the weight register

can hold a total of five shift amounts.

Figure 3.7 shows the design using an example in which Wi = 010110102(9010) and

Xi = 011111012 (12510). Multiple iterations of the simplified shift-add unit execution are

shown in Figure 3.7b and 3.7c. The Wi j shift amount can be pre-determined by obtaining

the bit index of the jth leading one of Wi. In this example, the most significant one in Wi

is in the sixth bit position, meaning Xi is shifted by W00 = 610 = 1102. The result is then

accumulated to the sum, which is initialized to zero. The first iteration (Figure 3.7b) yields

800010, which achieves 71% accuracy to the actual sum 1125010. More iterations leads to

higher accuracy at the cost of higher energy consumption. The second (Figure 3.7c), third,

and fourth iterations achieve 89%, 98%, and 100% (e.g. zero accuracy loss) accuracy,

respectively. We evaluate the trade-offs between different arithmetic units for in-DRAM

77

neural acceleration in Section 3.9.

3.8 Memory Model

Virtual memory. Current GPUs support simple virtual memory [116, 117, 118, 119, 120,

121]. AXRAM instructions use virtual addresses similar to CUDA instructions. Once a

GPU core issues an AXRAM instruction, the virtual addresses are translated to physical

addresses through TLBs/page tables placed in the on-chip memory controllers, similar to

other CUDA instructions [116, 121]. Then, the physical addresses are sent to the memory

for in-DRAM neural computation. Virtual address support in AXRAM instructions expels

the need to modify the underlying GPU virtual memory management system.

As mentioned in Section 3.6, to fully utilize the inherent parallelism in memory,

AXRAM requires the data to be allocated in a consecutive memory region. Most CUDA-

enabled GPUs do not support on-demand paging [122, 123]. Thus, all the virtual memory

locations are backed by actual physical memory before the kernel initialization. To guaran-

tee that a contiguous virtual memory is translated to a consecutive physical memory, we use

our proposed custom memory management API to copy the allocated data to consecutive

physical pages before the kernel execution. Additionally, AXRAM may be extended to

HSA-enabled GPUs [124]. One potential solution is to raise a page fault exception if the

data for an in-DRAM invocation is not in the memory. The in-DRAM accelerator will then

stall until all the demanded pages are loaded into the memory. Exploring the challenges

and opportunities for integrating in-memory accelerators to HSA-enabled GPUs is outside

the scope of this work.

Cache coherency. We adopt a similar technique as [108] to guarantee the cache coherency

in AXRAM. The AXRAM instructions bypasses the on-chip caches and communicate

directly with on-chip memory controller. A GPU core always pushes all of its memory

update traffic to memory before issuing any of the AXRAM instructions. Sending memory

update traffic along with write-through policy used in most GPUs [125] ensure that the

78

in-DRAM accelerators have access to the most up-to-date data. wrt res.axram is the only

AXRAM instruction that updates the data in memory. Upon receiving this instruction and

in order to guarantee cache coherency, the on-chip memory controller sends a series of

invalidate signals to on-chip caches and nullify any cache block that will be updated by

the offloaded in-DRAM computation. The invalidate signals ensure that GPU cores never

consume stale data. On average, it takes ten cycles to invalidate all the cache lines related

to one neural execution. Based on our evaluation, the overhead of sending the invalidate

signals to guarantee cache coherency is, on average, only 1.9%.

Memory consistency. The neural transformation does not introduce additional memory

accesses to the approximable region. Therefore, there is no need to alter the applications.

AXRAM simply maintains the same memory consistency model as the baseline GPU.

3.9 Evaluation and Methodology

We evaluate AXRAM with our simplified shift-add units (AXRAM-SHA), fixed-point arith-

metic units (AXRAM-FXP), and floating-point arithmetic units (AXRAM-FP).

3.9.1 Methodology

Applications and datasets. As Table 6.1 shows, we use a diverse set of benchmarks from

the AXBENCH suite [126] to evaluate AXRAM. AXBENCH comprises a combination of

memory- (blackscholes, jmeint, and srad) and compute-intensive applications and comes

with annotated source code, the compiler for neural transformation, separate training and

test data sets, and quality measurement toolsets [126]. These benchmarks represent work-

loads from image processing, finance, machine learning, robotics, 3D gaming, vision, nu-

merical analysis, and medical imaging. Datasets used for measuring quality, performance,

and energy are completely disjoint from those used to train the neural networks.

Neural networks. Table 6.1 shows the neural network topology automatically discovered

by the AXBENCH compiler [126] which replaces the annotated code region. For instance,

79

Table 3.1: Applications (from AXBENCH [126]), quality metrics, train and evaluation datasets, and neural network
configurations.

Applications
Name

binarization
blackscholes
convolution
inversek2j
jmeint
laplacian
meanfilter
newton-raph
sobel
srad

Domain Quality Metric

Image Processing
Finance
Machine Learning
Robotics
3D Gaming
Image Processing
Machine Vision
Numerical Analysis
Image Processing
Medical Imaging

Image Diff.
Avg. Rel. Error
Avg. Rel. Error
Avg. Rel. Error
Miss Rate
Image Diff.
Image Diff.
Avg. Rel. Error
Image Diff.
Image Diff.

Input Dataset
Training

Three 512 ✕ 512 pixel images
8,192 options
8,192 data points
8,192 2D coordinates
8,192 3D coordinates
Three 512 ✕ 512 pixel images
Three 512 ✕ 512 pixel images
8,192 cubic equations
Three 512 ✕ 512 pixel images
Three 512 ✕ 512 pixel images

Evaluation

Twenty 512 ✕ 512 pixel images
262,144 options
262,144 data points
262,144 2D coordinates
262,144 3D coordinates
Twenty 512 ✕ 512 pixel images
Twenty 512 ✕ 512 pixel images
262,144 cubic equations
Twenty 512 ✕ 512 pixel images
Twenty 512 ✕ 512 pixel images

Neural Network
Topology

3→4→2→1
6→8→1
17→2→1
2→16→3
18→8→2
9→2→1
7→4→1
5→2→1
9→4→1
5→4→1

the topology for blackscholes is 6→ 8→ 1 (6 input neurons, 1 hidden layer with 8 neurons,

and 1 output neuron). These topologies were automatically discovered by the AXBENCH

compiler [126]. As shown by the results, different applications require different topologies

to minimize quality loss.

Quality. As shown in Table 6.1, we use application-specific quality metrics provided by

AXBENCH [126] to assess the output quality of each application after in-DRAM accelera-

tion (Section 3.9.2). This quality loss is due to accumulated errors from repeated execution

of the approximated region.

Cycle-level microarchitectural simulation. We use the GPGPU-Sim 3.2.2 cycle-level mi-

croarchitectural simulator [59] modified with our AXRAM ISA extensions with the latest

configuration which closely models an NVIDIA GTX 480 chipset with a Fermi architecture.9

For the memory timing, this configuration models the GDDR5 timing from Hynix [95].

Additionally, we augmented the simulator to model the microarchitectural modifications

in the GPU, the memory controller, and the GDDR5 for in-DRAM neural acceleration.

The overheads of the extra instructions and logics in AXRAM, on-chip memory controller

invalidate signals, and the data partitioning and shuffling are faithfully modeled in our

simulations. For all the baseline simulations that do not include any approximation or

acceleration, we use a plain version of GPGPU-Sim. Table 3.2 summarizes the microarchitec-

tural parameters of the GPU and GDDR5 DRAM. We use NVCC 4.2 with -O3 to enable

aggressive compiler optimizations. Furthermore, we found optimal kernel parameters,

such as number of thread blocks and threads per block of each kernel, separately for each

9NVIDIA GTX 480 is the latest configuration in GPGPU-Sim as of time of submission.

80

Table 3.2: Major GPU, GDDR5, and in-DRAM neural accelerator microarchitectural parameters.

System Overview 15 SMs, 32 Threads/Warp, 6 ✕ 32-bit P2P Memory Channels

Shader Core 1.4 GHz, 1,538 Threads (48 Warps), 32,768 registers, GTO Scheduler [84]
Two Schedulers / SM

L1 Data Cache 16 KB, 128B Cache Line, 4-Way Associative, LRU Replacement Policy [44]
Write Policy: Write-Evict (hit), Write No-Allocate (Miss)

Shared Memory 48 KB, 32 Banks
Interconnect 1 Crossbar/Direction (15 SMs, 6 MCs), 1.4 GHz

L2 Cache 768 KB, 128B Cache Line, 16-Way Associative, LRU Replacement Policy [44]
Write Policy: Write-Evict (hit), Write No-Allocate (Miss)

Memory Model
6 ✕ GDDR5 Memory Controllers (MCs), Double Data Rate ✕32 mode
64 Columns, 4K Rows, 256 Bits/Column, 16 Banks/MC, 4 Bankgroups
2KB Row Buffer/Bank, Open Row Policy, FR-FCFS Scheduling [81, 82]
177.4 GB/Sec Off-Chip Bandwidth

GDDR5 Timing [40]
tWCK = 3,696 MHz, tCK = 1,848 MHz, tCL = 12, tRP = 12, tRC = 40
tRAS = 28, tRCD = 12, tRRD = 6, tCDLR = 5, tWR = 12, tCCD = 2, tCCDL = 3
tRTPL = 2, tFAW = 23, t32AW = 184

GDDR5 Energy RD/WR without I/O = 12.5 pJ/bit [40], Activation = 22.5 pJ/bit [40]
DRAM I/O Energy = 2 pJ/bit, Off-Chip I/O Energy = 18 pJ/bit [70, 95]

Arithmetic Unit Energy [26, 34] 32-bit Floating-Point MAC = 0.14 nJ, 32-bit Fixed-Point MAC = 0.030 nJ
32-bit Approximate MAC = 0.0045 nJ, 32-bit Register Access = 0.9 pJ

Table 3.3: Area overhead of the added major hardware components.

Hardware Units

AXRAM-SHA (32 ✕ 32-bit Approximate MACs)
AXRAM-FXP (32 ✕ 32-bit Fixed-Point MACs)
AXRAM-FP (32 ✕ 32-bit Floating-Point MACs)
64 ✕ 32-bit Weight Registers
32 ✕ Sigmoid LUT ROMs
In-DRAM Controller

Area (mm2)
8 Metal Layers 3 Metal Layers

0.09 0.15
0.40 0.76
0.54 0.97
0.03 0.06
0.19 0.34
0.23 0.40

benchmark in our simulated architecture. In all the experiments, we run the applications to

completion.

Circuit and synthesis. We use the Synopsys Design Compiler (J-2014.09-SP3) with a

NanGate 45nm library [127] for synthesis and energy analysis of our architecture. Addi-

tionally, we use Cadence SoC Encounter (14.2) for placement and routing. As DRAM

technology has only three metal layers, naı̈vely taking the area numbers from the Synopsys

Design Compiler underestimates the area. To account for this, we restrict the number of

metal layers to three in Cadence SoC Encounter for I/O pins and routing. We measure and

report the area overhead of the added hardware components after the placement and routing

stage with three metal layers. Similarly, for the added registers, we extract the area after

the placement and routing stage while restricting the number of metal layers to three. With

this infrastructure, we analyze the proposed arithmetic units, in-DRAM controllers, routing

multiplexers, bypass transistors, and sigmoid LUTs.

Energy modeling. To measure the energy numbers, we use GPUWattch [60]. We also

modified the GPGP-Sim to generate an event log of the in-DRAM neural accelerator and all

the other added microarchitectural components. We use the collected event logs to measure

81

the energy of the in-DRAM neural acceleration. Our energy evaluations use a NanGate

45nm [127] process node and 1.4GHz clock frequency for the shader core (see Table 3.2

for further details). In-DRAM AXRAM changes are modeled using McPAT [32] and CACTI

6.5 [33]. Since GPUWattch uses the results from McPAT and CACTI, our added energy models

provide a unified and consistent framework for energy measurement.

3.9.2 Experimental Results

Performance and energy benefits with AXRAM-SHA. Figure 3.8 shows the whole ap-

plication speedup and energy reduction when all the warps undergo approximation, nor-

malized to a baseline GPU with no acceleration and an accelerated GPU (NGPU) [38],

respectively. The highest speedups are in inversek2j and newton-raph, where a large portion

of their execution time is spent in the approximable region. The speedup with AXRAM-

SHA compared to NGPU is modest, because in AXRAM-SHA, we use up to four iterations

of shift and add operations. On average, AXRAM-SHA provides 2.6× (1.1×) speedup

compared to GPU (NGPU).

Figure 3.8 also shows the energy reduction benefit of using AXRAM-SHA normal-

ized to a baseline GPU and NGPU, respectively. The maximum energy reduction are

in applications–inversek2j and newton-raph–with the highest contribution of off-chip data

transfer to the whole application energy (cf. Figure 3.1). The off-chip data transfer contri-

bution in jmeint is also high (90%). However, this application has a large neural network

topology (cf. Table 6.1) which leads to a higher number of accesses to the DRAM banks to

read and write temporary data, diminishing the energy reduction. On average, the studied

benchmarks enjoy 13.3× (4.8×) energy reduction compared to a baseline GPU (NPU).

Energy reduction breakdown. To better understand the source of energy savings, Fig-

ure 3.9 shows the energy breakdown of the DRAM system, data transfer, and data compu-

tation for AXRAM-SHA, normalized to NGPU [38]. The first bar shows the breakdown of

energy consumption in NGPU [38], while the second bar shows the breakdown of energy

82

binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad

geomean
0.0×
1.0×
2.0×
3.0×
4.0×
5.0×
6.0×
7.0×

Im
pr

ov
em

en
t

11
.8
×

17
.1
×

19
.0
×

14
7.

7×

8.
2×

11
9.

8×

8.
5×

13
.3
×

Speedup Energy Saving

(a) Baseline GPU
binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad

geomean
0.0×
1.0×
2.0×
3.0×
4.0×
5.0×
6.0×
7.0×

Im
pr

ov
em

en
t

7.
8×

8.
1×

Speedup Energy Saving

(b) Accelerated GPU (NGPU)

Figure 3.8: AXRAM-SHA whole application speedup and energy reduction compared to (a) baseline GPU and (b) an
accelerated GPU (NGPU) [38].

consumption in AXRAM-SHA normalized to NGPU [38]. As the first bar shows, the

NPGU [38] significantly reduces the contribution of the data computation in the overall

system energy. Therefore, the contribution of the other main parts (e.g., data transfer

and DRAM system) increases. The second bar illustrates how AXRAM-SHA significantly

reduces the contribution of data transfer between the GPU cores and memory to the overall

energy consumption of the system. On average, AXRAM-SHA reduces the energy con-

sumption of data transfer by a factor of 18.5 ×. AXRAM-SHA also reduces the average

energy consumption of the DRAM system by a factor of 2.5 × due to (1) decreased I/O

activity and (2) a higher row-buffer hit rate. Based on our evaluation, the proposed data

organization improves the row-buffer hit rate by 2.6×. Finally, the use of simplified shift-

add units reduces the average contribution of data computation to the whole application

energy consumption by a factor of 1.7 × compared to NGPU. These results elucidate how

AXRAM reduces the overall energy consumption compared to a neurally accelerated GPU

(NGPU) [38].

Design overheads. Table 3.3 shows the area overhead of the major hardware components

added to ea ch DRAM chips. We implement the added hardware units in Verilog and syn-

thesize them with Design Compiler using the NanGate 45nm library. Similar to other DRAM

architecture research work [128, 129], we use two or three generation older logic technol-

ogy to have conservative estimations. Then, we use Cadence SoC Encounter to perform the

placement and routing on the synthesized designs using only three metal layers, similar to

the baseline DRAM layout, for both routing and I/O pins. We increase the area up to a point

83

binariz
atio

n

blackscholes

convolutio
n

inverse
k2j

jm
eint

laplacian

meanfilte
r

newton-ra
ph

sobel
sra

d

average
0%

20%

40%

60%

80%

100%

N
or

m
a

li
ze

d
E

n
er

g
y N

G
P

U

N
G

P
U

N
G

P
U

N
G

P
U

N
G

P
U

N
G

P
U

N
G

P
U

N
G

P
U

N
G

P
U

N
G

P
U

N
G

P
U

A
x
R

a
m

-S
h
A

A
x
R

a
m

-S
h
A

A
x
R

a
m

-S
h
A

A
x
R

a
m

-S
h
A

A
x
R

a
m

-S
h
A

A
x
R

a
m

-S
h
A

A
x
R

a
m

-S
h
A

A
x
R

a
m

-S
h
A

A
x
R

a
m

-S
h
A

A
x
R

a
m

-S
h
A

A
x
R

a
m

-S
h
A

DRAM System Data Transfer Data Computation

Figure 3.9: Breakdown of AXRAM-SHA’s energy consumption between DRAM system, data transfer, and data
computation normalized to NGPU [38].

binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad
average

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

Q
ua

lit
y

Lo
ss

AxRam-ShA AxRam-FxP AxRam-FP

Figure 3.10: Application quality loss with AXRAM-SHA, AXRAM-FXP, and AXRAM-FP compared to a baseline GPU.
where no placement and routing violations are identified by Cadence SoC Encounter. We

also obtain the area overhead numbers with 8 metal layers. On average, the area overhead

with three metal layers is ≈1.9× higher than with eight metal layers (Table 3.3). In total

(including extra routing for power distribution and clock network), AXRAM-SHA con-

sumes 1.28mm2 (2.1%) per each GDDR5 chip with a 61.6mm2 area [86, 87]. AXRAM-FXP

and AXRAM-FP impose 2.0× and 2.4× higher area overhead compared to AXRAM-SHA.

Recent work [72, 75] has proposed the integration of CGRA-style [130] accelerators atop

commodity DRAM, either through TSVs or to the global I/Os. Based on our evaluation,

such an integration on each DRAM chip incurs ≈47.8% area overhead. This large area

overhead makes such integration an inefficient design point in GPUs. In contrast, our work

leverages approximation to integrate many simplified shift-add units inside each GDDR5

chip to enable in-DRAM acceleration.

Quality loss. Figure 3.10 shows the quality loss of AXRAM-SHA, AXRAM-FXP, and

AXRAM-FP. The quality loss is compared with that of the original precise application exe-

cuted on a baseline GPU with no acceleration and an unmodified DRAM. Using fixed-point

84

arithmetic units in AXRAM-FXP has negligible impact on the quality loss compared to

using floating-point arithmetic units in AXRAM-FP. These results are commensurate with

other work [46, 6]. Furthermore, the quality loss due to AXRAM-FP and AXRAM-FXP

are the same as with NGPU. To achieve an acceptable output quality in AXRAM-SHA, we

use up to four iterations of shifts and adds operations. On average, using AXRAM-SHA

increases the output quality loss by 2.1% compared to the two other AXRAM microarchi-

tectures.

Sensitivity study of AXRAM with different arithmetic units. We perform a sensitivity

study of AXRAM with different arithmetic unit options. Figure 3.11a compares the whole

application speedup with AXRAM-SHA, AXRAM-FXP, and AXRAM-FP normalized to

the NGPU. Since AXRAM-SHA performs multiple iterations of shifts and adds for each

MAC operations its average speedup is less than the other two AXRAM microarchitec-

tures. AXRAM-SHA, with multiple iterations per each multiply-accumulate operation,

still provides a 1.1× speedup on average. We see the same speedup across the evaluated

applications for AXRAM-FP and AXRAM-FXP, which both take the same number of cy-

cles to compute an in-DRAM neural accelerator invocation. On average, AXRAM-FP and

AXRAM-FXP provide 2.0× speedup for the evaluated benchmarks. Figure 3.11b shows

the whole application energy reduction of the three AXRAM options normalized to NGPU.

On average, AXRAM-SHA achieves 4.8× energy reduction, which is 1.6× and 1.2×more

than that of AXRAM-FP and AXRAM-FXP, respectively. AXRAM-SHA achieves a higher

energy reduction by simplifying the integrated arithmetic units and trading off the speedup

and output quality loss.

Off-chip bandwidth utilization. In Figure 3.12, we compare the off-chip bandwidth

of AXRAM-SHA with a baseline GPU with no acceleration and an accelerated GPU

(NGPU) [38]. NGPU can accelerate the data processing part of GPU applications, but

it increases the off-chip bandwidth utilization by 2.2×. However, AXRAM-SHA signifi-

cantly can reduce the off-chip bandwidth pressure by performing the neural computation in

85

binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad

geomean
0.0×
0.5×
1.0×
1.5×
2.0×
2.5×
3.0×
3.5×

S
pe

ed
up

AxRam-ShA AxRam-FxP AxRam-FP

(a) Speedup
binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad

geomean
0.0×
1.0×
2.0×
3.0×
4.0×
5.0×
6.0×
7.0×
8.0×

E
ne

rg
y

R
ed

uc
tio

n AxRam-ShA AxRam-FxP AxRam-FP

(b) Energy Reduction

Figure 3.11: AXRAM whole application (a) speedup and (b) energy reduction with the different microarchitectural
options compared to a neurally accelerated GPU (NGPU [38]).

binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad
average

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%

O
ff-

ch
ip

B
an

dw
id

th
U

til
iz

at
io

n

AxRam-ShA Basline GPU Accelerated GPU (NGPU)

Figure 3.12: Off-chip memory bandwidth consumption for AXRAM-SHA, a baseline GPU, and an accelerated GPU
(NGPU) [38].
DRAM. This effectively eliminates most of the data transfer of the approximable region

between GPU cores and DRAM. Yet, there is still a small amount of communication

between the GPU cores and memory for initializing the in-DRAM execution and transfer-

ring the control messages. On average, AXRAM-SHA can effectively reduce the off-chip

bandwidth by a factor of 7.3× (16×) compared to NGPU (baseline GPU).

DRAM power. In this work we aim to offset that the increase in power due to integrating

the arithmetic units with the decrease in overall DRAM power due to the reduction in

memory I/O activity and increased row-buffer hit rate. To determine if AXRAM is able to

remain power neutral within DRAM, we analyze DRAM power consumption with three

AXRAM options in Figure 3.13. The reduction in the data communication and the increase

in row-buffer hit rate for all the three AXRAM options is the same (see Figure 3.12). How-

binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad

geomean
0.0×
0.5×
1.0×
1.5×
2.0×
2.5×
3.0×

O
ve

ra
ll

D
R

A
M

S
ys

te
m

Po
w

er

AxRam-ShA AxRam-FxP AxRam-FP

Figure 3.13: AXRAM average DRAM system power with the different microarchitectural options normalized to a
baseline GPU.

86

binarization

blackscholes

convolution

inversek2j
jmeint

laplacian

meanfilter

newton-raph
sobel

srad

geomean
0.0×
2.0×
4.0×
6.0×
8.0×

10.0×
12.0×
14.0×

E
ne

rg
y

R
ed

uc
tio

n

14
.1
×

10
1.

4×

10
3.

2×

15
.2
×

11
5.

3×

11
5.

7×

19
.0
×

13
2.

5×

11
9.

8×

19
.0
×

14
6.

9×

11
9.

8×

2.5% 5.0% 7.5% 10.0%

Figure 3.14: The AXRAM-SHA application energy reduction vs. different target output quality loss (2.5%, 5%, 7.5%,
and 10%), normalized to a baseline GPU with no acceleration.

ever, as we simplify the arithmetic units, the contribution of the in-DRAM accelerators to

the overall DRAM power decreases. AXRAM-FP and AXRAM-FXP increase the overall

DRAM system power consumption by 70% and 5% on average, respectively. On the other

hand, AXRAM-SHA with its simplified shift-add units effectively decreases the average

overall DRAM power consumption by 26%.

Quality control. Similar to prior work [131, 9, 132, 65, 38, 133], we propose a quality

control mechanism that enables the user to trade off the output quality for additional gains.

We use the in-DRAM invocation rate as our quality knob for controlling the output. The

in-DRAM invocation rate (α) indicates the fraction of warps that are offloaded to the

memory for in-DRAM neural computation. Given the desired quality requirement for

an application, the AXRAM compiler pre-determines the invocation rates. The compiler

examines the output quality of the application by executing the application with a user-

provided evaluation dataset while varying the invocation rate until the target output quality

is met. Then the compiler generates two versions of the kernel. One version contains

the unmodified and precise implementation of the kernel without any modifications and

the other one contains the neurally transformed version of the kernel. At runtime, the

quality control mechanism decides which version of the code to execute based on the pre-

determined invocation rate. For the same output quality loss, the invocation rate may be

different from one application to another. This behavior is attributed to the characteristic

of each application [134].

Figure 3.14 shows the energy reduction of AXRAM when the target output quality loss

87

varies from 2.5% to 10%, normalized to a baseline GPU with no acceleration. For any

given output quality loss, the compiler finds an invocation rate α for each application. A

higher output quality translates to a lower invocation rate (e.g. fewer warps offloaded to the

memory). Thus, the amount of data transfer between the GPU cores and DRAM increases.

However, even with a 2.5% output quality loss, the applications experiences 8.0× energy

reduction on average over a baseline GPU with no acceleration.

3.10 Conclusion

PIM and approximate computing are two promising approaches for higher performance

and energy efficiency. Prior to this work, these techniques were explored disjointly. This

work developed AXRAM, a low-overhead accelerated memory architecture that represents

the confluence of these two approaches. AXRAM delivers 1.1× speedup and 4.8× higher

energy efficiency over even an accelerated GPU with with less than 2.1% added area to

each DRAM chip. These results confirm that approximation can play an enabling role for

in-DRAM near-data acceleration and pave the way for its further intellectual development

and technological adoption.

88

CHAPTER 4

LANGUAGE SUPPORT FOR ACCELERATION-APPRIXIMATION HARDWARE

DESIGN

4.1 Summary

Relaxing the traditional abstraction of “near-perfect” accuracy in hardware design can lead

to significant gains in energy efficiency, area, and performance. To exploit this opportunity,

there is a need for design abstractions that can systematically incorporate approximation in

hardware design. We introduce Axilog, a set of language annotations, that provides the nec-

essary syntax and semantics for approximate hardware design and reuse in Verilog. Axilog

enables the designer to relax the accuracy requirements in certain parts of the design, while

keeping the critical parts strictly precise. Axilog is coupled with a Relaxability Inference

Analysis that automatically infers the relaxable gates and connections from the designer’s

annotations. The analysis provides formal safety guarantees that approximation will only

affect the parts that the designer intended to approximate, referred to as relaxable elements.

Finally, this work describes a synthesis flow that approximates only the relaxable elements.

Axilog enables applying approximation in the synthesis process while abstracting away

the details of approximate synthesis from the designer. We evaluate Axilog, its analysis,

and the synthesis flow using a diverse set of benchmark designs. The results show that

the intuitive nature of the language extensions coupled with the automated analysis enables

safe approximation of designs even with thousands of lines of code. This chapter is based

on work presented in DATE 2015 [50] and IEEE Micro 2015 [135]. This work is a result

89

of collaboration with Divya Mahajan1, Bradley Thwaites1, Jongse Park1, Anandhavel Na-

gendrakumar1, Sindhuja Sethuraman2, Kartik Ramkrishnan2, Nishanthi Ravindran2, Rudra

Jariwala2, Abbas Rahimi3, Hadi Esmaeilzadeh3, and Kia Bazargan2.

4.2 Introduction

Emerging applications such as data analytics, machine learning, multimedia, search, and

cyber physical systems are inherently approximate and can tolerate imprecision in many

parts of their computation. The prevalence of these applications has coincided with dimin-

ishing performance and energy returns from traditional CMOS scaling [1, 16]. Several pio-

neering works have shown significant benefits with approximation at the circuit level [136,

137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 16, 150] Most of these

techniques focus on optimization of individual functional units and approximate synthesis

algorithms, opening avenues for utilizing approximation at the circuit level. However,

there is a lack of abstractions that enable designers to methodically control which parts

of the circuit can be synthesized approximately while keeping critical elements, such as

the control logic, precise. Thus, there is a need for approximate hardware description

languages for systematic approximate hardware design.

In this work, we introduce Axilog—a set of concise, intuitive, and high-level

annotations—that provides the necessary syntax and semantics for approximate hardware

design and reuse in Verilog. Axilog enables designers to reason about and delineate which

parts of a hardware system or circuit design are critical and cannot be approximated. A

key factor in our language formalism is to abstract away the details of approximation while

maintaining the designer’s oversight in deciding which circuit elements are synthesized ap-

proximately. Axilog is also devised with modular reusability as a first order consideration.

In general, hardware systems implementation relies on modular design practices where

1Georgia Institute of Technology
2University of Minnesota
3University of California-San Diego

90

the engineers build libraries of modules and reuse them to build more complex hardware

systems. Axilog provides a specific set of annotations to support reusability. Section 4.3

elaborates on the Axilog annotations for approximate hardware design and reuse.

There are a number of approximate software programming languages including En-

erJ [26] and Rely [27]. We do not extend EnerJ or Rely’s language constructs to Verilog

because they require a large number of manual annotations. Instead, we introduce a new set

of annotations and couple them with a Relaxability Inference Analysis that automatically

infers which circuit elements are relaxable with respect to the designer’s annotations. The

Relaxability Inference Analysis formally guarantees that approximation will only affect the

circuit elements that the designer intended to approximate. Section 4.4 details this analysis.

In Section 4.5, we describe an approximate synthesis flow that leverages a commercial syn-

thesis tool (Synopsys Design Compiler) to apply approximation to the parts of the design

that are deemed safe to approximate by the analysis. Section 4.6 evaluates Axilog, its

analysis, and the synthesis flow using a set of benchmark designs from domains including

arithmetic units, signal processing, robotics, machine learning, and image processing. The

evaluations use TSMC 45-nm multi-Vt libraries at the slowest PVT corner and show that by

setting the quality loss to 5%, our framework achieves, on average, 45% energy savings and

1.8× area reduction. Allowing a quality loss of 10% results in 54% average energy savings

and 1.9× area reduction. Further, we evaluate the robustness of our approach across a wide

range of temperature variations (∆T=125◦C). Axilog yields these significant benefits while

only requiring between 2 and 12 annotations even with complex designs containing up to

22,407 lines of code. These results confirm the effectiveness of Axilog in incorporating

approximation in the hardware design cycle.

4.3 Approximate Hardware Design with Axilog

Our principle objectives for approximate hardware design in Axilog are (1) to carefully

craft a small number of Verilog annotations which provide the designer with complete

91

Table 4.1: Summary of Axilog’s language syntax.

Phase Annotations Arg Description

D
es

ig
n

relax

wire, reg, output,
inout

Declare an argument as relaxable. Any design element that
exclusively affects the argument is safe to approximate.

relax_local Similar to relax but the approximation does not cross module
boundaries.

restrict

restrict_global

Any design element that affects the argument is made
precise unless explicitly relaxed with another annotation.

All the design elements affecting the argument are precise.

R
eu

se

approximate

critical

bridge

output, inout

input

wire, reg

Indicates the output carries relaxed semantics.

Indicates the input is critical and approximate elements
cannot drive it.

Allows connecting an approximate element to a critical input.

oversight and governance over the approximation; (2) to minimize the number of manual

annotations while relying on the Relaxability Inference Analysis to automatically infer

the designer’s intent for approximation; (3) to relieve the designer from the details of the

approximate synthesis process by providing an intuitive separation between approximate

design and synthesis and (4) to support the reuse of Axilog modules across different designs

without the need for reimplementation. Furthermore, Axilog is a backward-compatible

extension of Verilog. That is, an Axilog code with no annotations is a normal Verilog

code and the design carries the traditional semantics of strict accuracy. Axilog provides

two sets of language extensions, one set for the design and the other for the reuse and

interfacing of hardware modules. Table 4.1 summarizes the syntax for the Axilog annota-

tions. The annotations for design dictate which operations and connections are relaxable

(safe to approximate) in the module. Henceforth, for brevity, we refer to operations and

connections as design elements. The annotations for reuse enable designers to use the

annotated approximate modules across various designs without the need for reimplementa-

tion. The back-end flow then uses these annotations to determine where in the design to use

less costly hardware resources that allow relaxed accuracy (see section 4.4). We provide

detailed examples to illustrate how designers are able to appropriately relax or restrict the

approximation in hardware modules. Using these examples, we elucidate the interplay

92

between annotations and language constructs for hardware design, such as instantiation,

concurrent assignment, and vector declaration. In the examples, we use background shading to

highlight the relaxable elements inferred by the analysis.

4.3.1 Design Annotations

Axilog allows each design element to be precise or approximate. The designer’s annota-

tions provide the guidelines to identify the design elements that are safe to approximate.

Relaxing accuracy requirements. By default, all design elements (operations and connec-

tions) are precise. The designer can use the relax(arg) statement to implicitly approximate

a subset of these elements. The variable arg is either a wire, reg, output, or inout. De-

sign elements that exclusively affect signals designated by the relax annotation are safe to

approximate. The use of relax is illustrated using the following example.
module full_adder(a, b, c_in, c_out, s);

input a, b, c_in; output c_out; approximate output s;

a s s i g n s = a ˆ b ˆ c_in;

a s s i g n c_out = a & b + b & c_in + a & c_in; r e l a x(s);

endmodule

In this full adder module, s is the sum of the three inputs, a, b, and c in. The

relax(s) statement shows the designer’s intent to relax the accuracy requirement of the

design elements that exclusively affect s, while keeping the unannotated c out (carry out)

signal precise. The relax(s) statement implies that the analysis can automatically ap-

proximate the XOR operations. Adhering to the designer’s intent, the unannotated c out

signal and the logic generating it will not be approximated. Furthermore, since s will carry

relaxed semantics, its corresponding output is marked with the approximate annotation. In

general any output port that carries approximate semantics needs to be marked with the

approximate annotation. The approximate annotation is necessary for reusing modules and

will be discussed in Section 4.3.2. With these annotations and the automated analysis, the

designer does not need to individually declare the inputs (a, b, c in) or any of the XOR

(
∧
) operations as approximate. Thus, while designing approximate hardware modules,

93

this abstraction significantly reduces the burden on the designer to understand and analyze

complex data flows within the circuit.

Scope of approximation. Scope of the relax annotation crosses the boundaries of instanti-

ated modules. The code on the left side of the following example illustrates this character-

istic. The relax(x) annotation in the nand gate module implies that the AND (&) operation in

the and gate module is relaxable. In some cases, the designer might not prefer the approx-

imation to cross the scope of the instantiated modules. For example, the designer might

not want the approximation to affect a third-party IP core. Axilog provides the relax local

annotation to limit the scope of approximation and its effects on the logic within the same

module in which the annotation is declared. The code on the right side shows that the

relax local annotation does not affect the semantics of the instantiated and gate module,

a1. In this case, the AND(&) operation in the and gate module is not relaxable. However the

NOT(˜) operation which shares the scope of the relax local annotation is relaxable. The

scope of approximation for both relax and relax local is the module in which they are

declared. Relax penetrates the boundary of the module instantiations but relax local does

not. The relax local and relax annotations can also be applied selectively to certain bits

of a vector.

module and_gate(n,a,b);

input a, b; output n;

a s s i g n n = a & b;

endmodule

module nand_gate(x, a, b);

input a, b;

approximate output x;

wire w0;

and_gate a1(w0, a, b);

a s s i g n x = ˜ w0;

r e l a x(x);

endmodule

module and_gate(n,a,b);

input a,b; output n;

a s s i g n n = a & b;

endmodule

module nand_gate(x, a, b);

input a, b;

approximate output x;

wire w0;

and_gate a1(w0, a, b);

a s s i g n x = ˜ w0;

r e l a x l o c a l(x);

endmodule

Restricting approximation. In some cases, the designer might want to explicitly restrict

approximation in certain parts of the design. Axilog provides the restrict(arg) annotation

94

that ensures that any design element that affects the annotated argument (arg) is precise, un-

less a preceding relax or relax local annotation has made the driving elements relaxable.

module and_gate(n, a, b);

input a,b; output n;

a s s i g n n = a & b;

endmodule

module nand_gate(x, a, b);

input a, b;

approximate output x;

wire w0;

and_gate a1(w0, a, b);

a s s i g n x = ˜ w0;

r e l a x(w0)

r e s t r i c t (x);

endmodule

module and_gate(n, a, b);

input a,b; output n;

a s s i g n n = a & b;

endmodule

module nand_gate(x, a, b);

input a, b;

approximate output x;

wire w0;

and_gate a1(w0, a, b);

a s s i g n x = ˜ w0;

r e s t r i c t (w0)

r e l a x(x);

endmodule

The above examples show the interplay between the relax and restrict annotations. On

the left side, the designer intends to relax the accuracy of the elements that affect w0 while

keeping the ones that affect x precise; hence relax(w0) and restrict(x). With these two

declarations, the NOT(˜) operation is not approximated but the AND(&) operation will be

approximated. Conversely, in the example on the right, the designer relaxes the accuracy

of the elements that affect x excluding that which affects w0. The pair of restrict(w0) and

relax(x) imply that the NOT operation is approximated while the and gate and its AND(&)

operation remains precise. The restrict annotation crosses the boundary of instantiated

modules. In both examples, the output x carries approximate semantics and needs to be

annotated with approximate.

Restricting approximation globally. The restrict annotation does not have precedence

over relax. However, there might be cases where the designer intends to override preceding

relax annotations. For instance, the designer might intend to reuse a third-party approx-

imate IP core in a precise setting. Certain approximate outputs of the IP core might be

used to drive critical signals such as the ones that feed to the controller state machine,

write enable of registers, address lines of a memory module, or even clock and reset.

95

These signals are generally critical to the functionality of the circuit and the designers

would want to avoid approximating them. To ensure the precision of these signals Axilog

provides the restrict global annotation that has precedence over relax and relax local.

The restrict global(arg) implies that any design element that affects arg shall not be

subject to any approximation. Note that restrict global penetrates through the bound-

aries of instantiated modules. The following code snippet illustrates the semantics of the

restrict global annotation.

module and_gate(n,a,b);

input a,b;

approximate output n;

a s s i g n n = a & b;

r e l a x(n);

endmodule

module nand_gate(x, a, b);

input a, b; output x; wire w0;

and_gate a1(w0, a, b);

a s s i g n x = ˜w0;

r e s t r i c t global(x);

endmodule

In the code, restrict global(x) precedes the relax(n) in the and gate module. The

restrict global annotation does not allow any form of relaxation to affect the logic that

drives x and therefore it is not declared approximate. The rest of this section discusses

language annotations, similar to the approximate annotation, that enable reusability in

Axilog.

4.3.2 Reuse Annotations

This section describes the abstractions that are necessary for reusing approximate modules.

Our principle idea for these language abstractions is maximizing the reusability of the ap-

proximate modules across designs that may have different accuracy requirements. Axilog’s

reuse annotations concisely modify the module interface. These annotations declares which

outputs carry approximate semantics and which inputs cannot be driven by relaxed wires

without explicit annotations.

Outputs carrying approximate semantics. As mentioned, the designers can use annota-

tions to selectively approximate the design elements in a module. These design elements

96

might have a direct or indirect effect on the accuracy of some of the output ports. An

approximate module could be given to a different vendor as an IP core. In this case the

reusing designer needs to be aware of the accuracy semantics of the input/output ports

without delving into the details of the module. To enable the reusing designer to view the

port semantics, Axilog requires that all output ports that might be influenced by approxi-

mation to be marked as approximate. Below, the code snippets illustrate the necessity of

the approximate annotation. On the left side, output n carries relaxed semantics due to the

relax annotation and is therefore declared as an approximate output. Consequently, the a1

instance in the nand gate module will cause its x output to be relaxed. Therefore, the x

marked as an approximate output. On the right side, the x output is explicitly relaxed and

x is marked as an approximate output. Relaxing x also implies that the AND operation is

relaxable in the a1 instance. However, the and gate module here does not carry approximate

semantics by default. Therefore, the output of the and gate is not marked as approximate

and the approximation is only specific to the a1 instance.

module and_gate(n,a,b);

input a,b;

approximate output n;

a s s i g n n = a & b;

r e l a x(n);

endmodule

module nand_gate(x, a, b);

input a, b;

approximate output x;

wire w0;

and_gate a1(w0, a, b);

a s s i g n x = ˜ w0;

endmodule

module and_gate(n,a,b);

input a, b;

output n;

a s s i g n n = a & b;

endmodule

module nand_gate(x, a, b);

input a, b;

approximate output x;

wire w0;

and_gate a1(w0, a, b);

a s s i g n x = ˜ w0;

r e l a x(x);

endmodule

Critical inputs. At design time, the designer of a module may have no knowledge of the

circumstances in which the module will be used. The designer may want to prevent ap-

proximation to affect certain inputs, which are critical to the functionality of the circuit. To

97

mark these input ports, Axilog provides critical annotation. Wires that carry approximate

semantics cannot drive the critical inputs without designer’s explicit permission at the

time of reuse.

module multiplexer(select, x0, x1, z);

c r i t i c a l input select;

input x0, x1; output z;

a s s i g n z = (s == 1) ? x1 : x0;

endmodule

In this example, the select input of the multiplexer is declared as critical to prevent

approximation to affect it.

Bridging approximate modules to critical inputs. As of yet, Axilog does not allow any

wire that is affected by approximation to drive a critical input. However, we recognize

that there may be cases when the reusing designer entrusts critical input with an approxi-

mate driver. For such situations, Axilog provides an annotation called bridge, which shows

designer’s explicit intent to drive a critical input by an approximate signal and certifies this

connectivity. The example below shows the use of the bridge annotation.In this code, the

designer annotation relaxes the logic driving s that is connected to a critical input select

of multiplexer. This connectivity therefore requires designer’s consent. The bridge(s)

annotation certifies the connectivity of approximated signal s to the select critical input

of the m1 instance of the multiplexer module.

module top(x0, x1, z);

input x0, x1;

approximate output z; wire s;

and a1(s, x0, x1);

r e l a x(s); br idge(s);

multiplexer m1(s, x0, x1, z);

endmodule

In summary, the semantics of the relax and restrict annotations provides abstractions

for designing approximate hardware modules while enabling Axilog to provide formal

guarantees of safety that the approximation will only be restricted to the design elements

98

that are specifically selected by the designer. Moreover, the approximate output, critical

input, and bridge annotations enable reusability of the modules across different designs. In

addition to the modularity, the design and reuse annotations altogether enable approxima-

tion polymorphism in hardware design. That is, with Axilog, the modules with approximate

semantics can be used in a precise manner without reimplementation and conversely precise

modules can be instantiated with approximate semantics. These abstractions provide a nat-

ural extension to the current practices of hardware design and enable the designer to apply

approximation with full control without adding substantial overhead to the conventional

hardware design and verification cycle.

4.4 Relaxability Inference Analysis

After the designer provides annotations, the compiler needs to perform a static analysis

to find the approximate and precise design elements in accordance with these annotations.

This section presents the Relaxability Inference Analysis, a static analysis that identifies

these relaxable gates and connections. To simplify the implementation, we first translate

the RTL Verilog design to primitive gates, while maintaining the module boundaries. We

then apply the Relaxability Inference Analysis at the gate level. The Relaxability Inference

Analysis is a backward slicing algorithm that starts from the annotated wires and iteratively

traverses the circuit to identify which wires must carry precise semantics. Subtracting

the set of precise wires from all the wires in the circuit yields the relaxable set of wires.

The gates that immediately drive these relaxable wires are the ones that the synthesis can

potentially approximate. Algorithm 1 illustrates the procedure that identifies the precise

wires.

This procedure is a backward-flow analysis that operates in three phases: (1) The first

phase starts by identifying a set of sink wires. The sink wires are either unannotated

outputs or wires that are explicitly annotated with restrict. The procedure identifies

the gates that are driving the sink wires and adds their input wires to the precise set if

99

Algorithm 1 Backward flow analysis for finding precise wires.

Inputs:
K: Circuit-under analysis
M: Set of all the modules within the circuit
R: Set of all the globally restricted wires

Output:
P: Set of precise wires
Initialize P← /0
for each mi ∈M do

I: Set of all the inputs ports in mi
A: Set of all the relaxed wires in mi
LA: Set of all the locally relaxed wires in mi
Sink: Set of all the restricted wires in mi ∪ Set of unannotated output ports
UW : Set of wires driven by modules that are instantiated within mi

//Phase1: This loop identifies the mi module’s local precise wires (wi)
Initialize N ← /0
while (Sink 6= /0) do

wi ← dequeue(Sink)
if (wi /∈ I & wi /∈ (A ∪ LA)) then

if (wi ∈UW) then
N.append(wi)

else
P.append(wi)

end if
enqueue(Sink, for all the input wires of the gate that wi in mi)

end if
end while

//Phase2: This loop identifies the relaxed wires (w j) that are driven by the m j submodules; the m j
submodules are the instantiated modules in mi

for (w j ∈UW) do
if (w j /∈ N & w j drives wire ∈ A) then

m j = module driving the wire w j
m j.A.append(w j)

end if
end for

end for
//Phase3: This loop identifies the precise wires (wk) that are globally restricted
while (R 6= /0) do

wk ← dequeue(R)
P.append(wk)
R.append(Set of all the input wires of the gate that is driving wk)

end while

100

they are not explicitly annotated as relaxed. The algorithm repeats this step for the newly

added wires until it reaches an input or an explicitly relaxed wire. However, this phase

is only limited to the scope of the module-under-analysis; (2) In the second phase, the

algorithm identifies the relaxed outputs of the instantiated submodules. Due to the semantic

differences between relax and relax local, the output of a submodule will be considered

relaxed if the following two conditions are satisfied. (a) The output drives another explicitly

relaxed wire, which is not inferred due to a relax local annotation; and (b) the output is not

driving a wire already identified as precise. The algorithm automatically annotates these

qualifying outputs as relaxed. The analysis repeats these two phases for all the instantiated

submodules. For correct functionality of this analysis, all the module instantiations are

distinct entities in the set M and are ordered hierarchically; (3) In the final phase, the

algorithm marks any wire that affects a globally restricted wire as precise. This final phase

allows the restrict global to override any other annotations in the design.

Finally, the Relaxability Inference Analysis–part of which is presented in Algorithm 1–

identifies the safe-to-approximate subset of the gates and wires with regards to the designer

annotations. An approximation-aware synthesis tool can then generate an optimized netlist,

with the approximation applied to only the safe-to-approximate circuit elements.

Axilog’s language semantics and the Relaxability Inference Analysis are independent

of the approximate synthesis. That is, Axilog abstracts away the details of the approximate

synthesis and relieves the designer from its specifics. Axilog can be used with virtually any

approximate synthesis tool.

4.5 Approximate Synthesis

In our framework, the synthesis tool first takes in the annotated Verilog source code and

produces a gate-level netlist without employing any approximate optimizations. However,

the synthesis tool preserves the approximate annotations. Then, the Relaxability Inference

Analysis identifies the safe-to-approximate subset of the gates and wires with regards to the

101

designer annotations. In the next step, the synthesis tool applies approximate synthesis and

optimization techniques only to the safe-to-approximate circuit elements. The tool has the

liberty to apply any approximate optimization technique including gate substitution, gate

elimination, logic restructuring, voltage over-scaling, and timing speculation as it deems

prudent. The objective is to minimize a combination of error, delay, energy, and area

considering final quality requirements. Figure 4.1 shows one such approximate synthe-

sis technique. Our synthesis technique uses commercial tools to selectively relax timing

requirements on safe-to-approximate paths of the circuit. As shown in Figure 4.1a, we

first use Synopsys Design Compiler to synthesize the design with no approximation. We

perform a multi-objective optimization targeting the highest frequency while minimizing

power and area. We will refer to the resulting netlist as the baseline netlist and its frequency

as the baseline frequency. We account for variability by using Synopsys PrimeTimeVX

which, given timing constraints, provides the probability of timing violations due to varia-

tions. In case of violation, the synthesis process is repeated by adjusting timing constraints

until PrimeTimeVX confirms no violations.

Second, as shown in Figure 4.1b, we selectively relax the timing constraints and provide

more slack on the safe-to-approximate paths. For the precise paths, the timing constraints

are set to the most strict level (the baseline frequency). We then extract the post-synthesis

gate delay information in Standard Delay Format (SDF) and perform gate-level timing

simulations with a set of input datasets. We use the baseline frequency for the timing

simulations even though some of the safe-to-approximate paths are synthesized with more

timing slack. The timing simulations yield a set of output values that may incur quality

loss since the approximated paths in the circuit may not generate the correct output at the

baseline frequency. We then measure the quality loss and if the quality loss is more than de-

signer’s requirements, we tighten the timing constraints on the safe-to-approximate paths.

We repeat this step until the designer quality requirements are satisfied. This methodology

has a potential to reduce energy and area by utilizing slower and smaller gates in the safe

102

Verilog
Code

Strict Timing
Constraints

Design
Compiler PrimeTime VXSynthesized

Netlist
Timing

Violation

yes

Baseline
Netlist

no

(a)

Timing
Simulation

Quality
Measurement

SDF File

Synthesized
Approximate

 Netlist

Verilog
Code

Strict & Relaxed
Timing

Constraints

Design
Compiler

Synthesis Phase Quality Observation Phase

Input Data Set

Quality
Requirement

Satisfied

no

Final
Approximate

 Netlist

yes

(b)

Figure 4.1: Synthesis flow for (a) baseline and (b) approximate circuits.
to approximate paths in which we use relaxed timing constraints.

4.6 Evaluation

To evaluate the effectiveness of Axilog, we annotate several benchmark designs and apply

our Relaxability Inference Analysis and synthesis flow.

Benchmarks and Code Annotation. Table 4.2 lists the design benchmarks implemented

in Verilog. We use Axilog annotations to judiciously relax some of the circuit elements.

The benchmarks span a wide range of domains including arithmetic units, signal pro-

cessing, robotics, machine learning, and image processing. Table 4.2 also includes the

input datasets, application-specific quality metrics, number of lines, and number of Axilog

annotations for design and reuse.

Axilog annotations. We annotated the benchmarks with the Axilog extensions. The de-

signs were either downloaded from open-source IP providers or developed without any

initial annotations. After development, we analyzed the source Verilog codes to identify

relaxable parts. The last two columns of Table 4.2 show the number of design and reuse

annotations for each benchmark. The number of annotations range from 2 for Brent-Kung

with 352 lines to 12 for InverseK with 22,407 lines. The Axilog annotation coupled with

the Relaxability Inference Analysis has enabled us to only use a handful of annotations to

effectively approximate designs that are implemented with thousands of lines of Verilog.

103

Table 4.2: Benchmarks, input datasets, and error metrics.

Benchmark
Name Description Domain

32-bit adder

8-bit FIR filter

Forward kinematics
for 2-joint arm

Inverse kinematics
for 2-joint arm

K-means clustering

32-bit adder

32-bit multiplier

Brent-Kung

FIR

ForwardK

InverseK

K-means

Kogge-Stone

Wallace Tree

Arithmetic
Computation

Signal
Processing

Robotics

Robotics

Machine
Learning

Arithmetic
Computation

Arithmetic
Compuation

Neural
Network

sobel

Feedforward neural
network

Edge detection

Machine
Learning

Image
processing

Quality
Metric

Average
Relative Error

Average
Relative Error

Average
Relative Error

Average
Relative Error

Image Diff

Average
Relative Error

Average
Relative Error

Image Diff

Image Diff

Input Data Set

1,000,000 32-bit
integers

1,000,000 8-bit
integers

1,000,000 32-bit
fixed-point values

1,000,000 32-bit
fixed-point values

1024x1024-pixel
color image

1,000,000 32-bit
integers

1,000,000 32-bit
integers

1024x1024-pixel
color image

1024x1024-pixel
color image

Lines

352

113

18,282

22,407

10,985

353

13,928

21,053

143

Design

1

6

5

8

7

1

5

4

6

Reuse

1

5

4

4

3

1

3

3

3

Annotations

The relaxable parts are more common in datapath of the benchmarks designs rather

than their control logic. For example, K-means involves a significant number of multiplies

and additions before the calculated result can be written in a memory module. We used

the relax annotations to declare these arithmetic operations approximable; however, we

used restrict to ensure the precision of all the control signals. For smaller benchmarks,

such as Brent-Kung, Kogge-Stone and Wallace Tree, only a subset of the least significant

output bits were annotated to limit the quality loss. To be able to reuse some of the design,

we also annotated the benchmarks with reuse annotations. The number of this type of

annotation are listed in the last column of Table 4.2. For example, the add sub signal that

selects the addition and subtraction operation for an ALU is annotated with the critical

reuse annotation. Overall, one graduate student was able to annotate all the benchmarks

within two days without being involved in their design. The intuitive nature of the Axilog

extensions makes annotating straightforward.

Application-specific quality metrics. Table 4.2 shows the application-specific error met-

rics to evaluate the quality loss due to approximation. Using application-specific quality

104

Brent-Kung FIR ForwardK InverseK K-means Kogge-Stone Wallace TreeNeural Networks Sobel Geomean
1.0×

1.2×

1.4×

1.6×

1.8×

2.0×

E
ne

rg
y

R
ed

uc
tio

n

Error ≤ 5% Error ≤ 10%

(a)

Brent-Kung FIR ForwardK InverseK K-means Kogge-Stone Wallace TreeNeural Networks Sobel Geomean
1.0×
1.2×
1.4×
1.6×
1.8×
2.0×
2.2×
2.4×
2.6×

A
re

a
R

ed
uc

tio
n

Error ≤ 5% Error ≤ 10%

(b)
Figure 4.2: Reductions in (a) energy and (b) area when the quality degradation limit is set to 5% and 10% in the
synthesis flow.

metrics is commensurate with prior work on approximate computing and language de-

sign [26, 27]. In all cases, we compare the output of the original baseline application to the

output of the approximated design. For the benchmarks which generate numeric outputs,

including brent-kung adder, FIR filter, forward kinematics, inverse kinematics, kogge-stone

adder, and wallace tree multiplier, we measure the average relative error. For the neural

network, kmeans clustering, and sobel edge detection applications, which produce images,

we use the average root-mean-square image difference.

Tools and experimental setup. We use Synopsys Design Compiler (G-2012.06-SP5) and

Synopsys PrimeTime (F-2011.06-SP3-2) for synthesis and energy analysis, respectively.

We use Cadence NC-Verilog (11.10-s062) for timing simulation with SDF back annotations

extracted from various operating corners. We use the TSMC 45-nm multi-Vt standard cells

libraries and the primary results are reported for the slowest PVT corner (SS, 0.81V, 0◦ C).

Experimental results. Figure 4.2 illustrates the energy savings (4.2a) and area reduction

(4.2b) when the quality loss limit is set to 5% and 10% in our synthesis flow. The baseline is

synthesis with no approximation. With the 5% limit, our framework achieves, on average,

105

Table 4.3: The energy reduction when the quality degradation limit is set to 10% for two different PVT corners. Here,
we consider temperature variations.

PVT Corners

(SS, 0.81V, 0 C)◦

(SS, 0.81V, 125 C)◦

Brent-
Kung

34%

32%

FIR

11%

7%

ForwarK

78%

72%

InverseK

87%

79%

K-means

69%

65%

Kogge-
Stone

24%

21%

Wallace
Tree

65%

63%

Neural
Network

83%

72%

Sobel

57%

41%

Geomean

54%

48%

45% energy and 1.8× area reduction, respectively. When the quality loss limit is set to

10%, the average gains grow to 54% energy reduction and 1.9× area reduction. The

Axilog annotations force the control logic in these benchmarks to be precise. Therefore, the

benchmarks such as InverseK, Wallace Tree, Neural Network, and Sobel–that have a larger

datapath–provide a larger scope for approximation and are usually the ones that see larger

benefits. The structure of the circuit also affects the potential benefits. For instance, Brent-

Kung and Kogge-Stone adders benefit differently from approximation due to the structural

differences in their logic trees. The FIR benchmark shows the smallest energy savings since

it is a relatively small design which does not provide many opportunities for approximation.

Nevertheless, FIR still achieves 11% energy savings and 7% area reduction with 10% qual-

ity loss. This result suggests that even designs with limited opportunities for approximation

can benefit significantly from the precisely targeted relaxation that Axilogprovides. We

evaluate the effectiveness of our technique in the presence of temperature variations for a

full industrial range of 0◦ C to 125◦ C. We measured the impact of temperature fluctuations

on the energy benefits for the same relaxed designs. Table 4.3 compares the energy benefits

at the lower and higher temperatures (the quality loss limit is set to 10%). In this range

of temperature variations, the average energy benefits ranges from 54% (at 0◦ C) to 48%

(at 125◦ C). These results confirm the robustness of our framework that yields significant

benefits even when temperature varies.

We visually examine the output of the Sobel application,which generates an image.

Figure 4.3 displays the output with 0% (no approximation), 5%, and 10% quality degrada-

tion. Interestingly, even 10% quality loss is nearly indiscernible to the eye. Nevertheless,

for the 10% error level approximate synthesis provides 57% energy saving and 1.82× area

106

(a) 0% Quality Loss (b) 5% Quality Loss (c) 10% Quality Loss

Figure 4.3: Visual depiction of the output quality degradation with approximate synthesis for the Sobel application.

reduction. These results suggest that Axilog can achieve significant savings while preserv-

ing the application functionality. This tradeoff is attainable because the high-level language

annotations and design abstractions allow the designer to target approximation where it is

most effective without compromising the critical parts of the computation. Furthermore, the

synthesis tunes the approximate parts of the circuit within the quality constraints specified

by the designer. Axilog thereby achieves a balance between quality and efficiency which is

advantageous for the specific application.

4.7 Conclusion

Axilog provides a less arduous framework compared to a mere extension of existing ap-

proximate programming models for hardware design. Axilog’s automated analysis en-

ables the designers to approximate hardware without delving deeper into the intricacies of

synthesis and optimization. Furthermore, all the abstractions presented in this thesis are

concrete extensions to the mainstream Verilog HDL providing designers with backward

compatibility. We evaluated Axilog, its automated Relaxability Inference Analysis, and the

presented approximate synthesis and demonstrate 54% average energy savings and 1.9×

area reduction with merely 2 to 12 annotations per benchmark. These results confirm that

Axilog is a methodical step toward practical approximate hardware design and reuse.

107

CHAPTER 5

ACCELERATION-APPROXIMATION IN DEEP NEURAL NETWORKS

5.1 Summary

Deep Convolutional Neural Networks (CNNs) perform billions of operations for classify-

ing a single input. To reduce these computations, this work offers a solution that leverages

a combination of runtime information and the algorithmic structure of CNNs. Specifically,

in numerous modern CNNs, the outputs of compute-heavy convolution operations are fed

to activation units that output zero if their input is negative. By exploiting this unique

algorithmic property, we propose a predictive early activation technique, dubbed SNA-

PEA. This technique cuts the computation of convolution operations short if it determines

that the output will be negative. SNAPEA can operate in two distinct modes, exact and

predictive. In the exact mode, with no loss in classification accuracy, SNAPEA statically

re-orders the weights based on their signs and periodically performs a single-bit sign check

on the partial sum. Once the partial sum drops below zero, the rest of computations can

simply be ignored, since the output value will be zero in any case. In the predictive mode,

which trades the classification accuracy for larger savings, SNAPEA speculatively cuts the

computation short even earlier than the exact mode. To control the accuracy, we develop

a multi-variable optimization algorithm that thresholds the degree of speculation. As such,

the proposed algorithm exposes a knob to gracefully navigate the trade-offs between the

classification accuracy and computation reduction. This chapter is based on work presented

in ISCA 2018 [151]. This work is a result of collaboration with Vahideh Akhlaghi1, Kambiz

1University of California-San Diego

108

AlexNet

GoogLeNet

SqueezeNet

VGGNet

Average
0%

20%

40%

60%

80%

100%

N
eg

at
iv

e
In

pu
ts

to
th

e
A

ct
iv

at
io

n
La

ye
rs

Figure 5.1: Fraction of activation input values that are negative.
Samadi2, Rajesh K. Gupta1, and Hadi Esmaeilzadeh1.

5.2 Introduction

Deep Convolutional Neural Networks (CNNs) are among the most widely used family

of machine learning methods that have had a transformative effect on a wide range of

applications. CNNs require ample amounts of computation even for a single input query.

For instance, assigning a label to a relatively small RGB image (224×224×3) from the

ImageNet database [152] requires billions of multiply-and-accumulate operations [111,

153, 70]. This work aims to reduce these copious amount of computation by exploiting

both their runtime information and algorithmic structure. In convolutional layers of many

modern CNNs, each convolution operation is commonly followed by an activation function

called a Rectifying Linear Unit (ReLU) that returns zero for negative inputs and yields the

input itself for the positive ones.

We observe that a large fraction of ReLU outputs are zero, indicating a large number

of negative convolution outputs. Figure 5.1 illustrates this trend among several modern

CNNs where ReLU nullifies 42%-68% of inputs. In addition, comparing the outputs of

intermediate convolutional layers for different input images shows the zero values vary

spatially across the images. Figure 5.2 illustrates this insight across two images passing

through GoogLeNet [154]. The highlighted differences in the output of the intermediate

convolutional layer attest to the varying spatial distribution of zeros. Harnessing these

2Qualcomm Technologies, Inc.

109

C
on

v
R

eL
U Convolution

Softmax
Pooling

Concatenation

Normalization
ReLU

Intermediate
Feature Maps

ReLU
Activation

Convolution
Operation

C
on

v
R

eL
U

C
on

v
R

eL
U C

on
v

R
eL

U
C

on
v

R
eL

U

C
on

v
R

eL
U

C
on

v
R

eL
U

C
on

v
R

eL
U

C
on

v
R

eL
U

C
on

v
R

eL
U

C
on

v
R

eL
U

C
on

v
R

eL
U

C
on

v
R

eL
U

C
on

v
R

eL
U

C
on

v
R

eL
U

Figure 5.2: GoogLeNet [154], in which the intermediate feature maps for two input images are magnified. The
ellipses on the intermediate feature maps highlight the varying spatial distribution of non-zero values for distinct
input images.
insights, we devise SNAPEA3, a holistic software-hardware solution, that cuts a large

fraction of the computations short by identifying the zero intermediate values earlier during

the runtime.

SNAPEA operates in two distinct modes, namely exact and predictive. In the exact

mode, in which the classification accuracy remains unchanged, SNAPEA detects the zero

values by static re-ordering of weights along with a low-overhead sign-bit monitoring of

partial sums. A negative partial sum triggers early termination of convolution operations.

SNAPEA, in the predictive mode, trades off the classification accuracy for larger compu-

tation savings by predicting the zero values. Predictive mode results in earlier termination

of the convolution operations compared to the exact mode, further reducing the amount

of computation. Notwithstanding the higher benefits of predictive mode, an undisciplined

prediction of zero values leads to significant loss compared to the nominal CNN classi-

fication accuracy. To minimize this loss while maximizing the reduction in computation,

we propose a co-designed hardware-software solution that (1) statically pre-arranges the

weights, (2) determines a threshold for triggering predictive early activation, and (3) uses

a low-overhead runtime monitoring mechanism to apply the early activation. As such,

SNAPEA makes the following contributions:

1. SNAPEA leverages the algorithmic structure of CNNs to to reduce their compu-
3SnaPEA: Snappy Predictive Early Activation

110

tation. This work provides an insight that the amount of computation in CNNs can

be significantly reduced by using a combination of runtime information along with

the algorithmic structure of CNNs, which feeds many negative inputs to the activation

function.

2. SNAPEA is a runtime technique that cuts the CNN computations short. Exploiting

the aforementioned insight, this thesis devises an exact runtime approach that relies on

a single-bit sign-check to cut the computation short without losing any accuracy. In

addition, SNAPEA comes with a predictive mode that speculates on the outcome of

sign-check and terminates the computation even earlier, trading off accuracy for less

computation.

3. SNAPEA provides hardware-software solution to control the accuracy trade-offs.

We develop a multi-variable optimization algorithm that systematically thresholds the

degree of speculation based on the sensitivity of the CNN output to each layer. The

threshold becomes a knob for controlling the accuracy-computation tradeoff.

To evaluate the effectiveness of the proposed technique, we evaluate it on a number

of modern CNNs. In the exact mode, which has no effect on the classification accuracy,

SNAPEA, on average, delivers 28% (maximum of 74%) speedup and 16% (maximum of

51%) energy reduction over EYERISS [111], a state-of-the-art CNN accelerators. With

3% loss in classification accuracy, on average, 67.8% of the convolutional layers can

operate in the predictive mode. The average speedup and energy saving of the layers in

the predictive mode over EYERISS are 2.02× and 1.89×, respectively. GoogLeNet sees

the maximum benefit of 3.59× speedup and 3.14× energy reduction. Finally, we evaluate

the benefits of SNAPEA along with static pruning techniques using the already pruned

SqueezeNet CNN [155]. In the exact mode, SqueezeNet achieves 30% speedup and 15%

energy reductions with no loss of accuracy, demonstrating the complimentary nature of

SNAPEA’s dynamic approach to the static pruning techniques. Overall, these benefits

suggests that coalescing runtime information with algorithmic insights can lead to new

111

Kernel₁,₁

Kernel₂,₁

KernelL,₁

…

Co
nv

ol
u/

on

La
ye

r E
xt

ra
c/

on

Ke
rn

el

Pr
ofi

lin
g

 Specula/on Params
for Kernel₁,₁

 Specula/on Params
for Kernel₂,₁

 Specula/on Params
for KernelL,₁

…

Lo
ca

l
O

p/
m

iza
/o

n

Gl
ob

al

O
p/

m
iza

/o
n

 Specula/on Params
for Layer₁

 Specula/on Params
for Layer₂

 Specula/on Params
for LayerL

…

Si
gn

-B
as

ed
 W

ei
gh

t
Re

or
de

rin
g

 W
ei

gh
t

Re
or

de
rin

g

 Specula/on Params
for Network

 Reordered Weights
for Kernel₁,₁

 Reordered Weights
for Kernel₂,₁

 Reordered Weights
for KernelL,₁

…

 Sign-Reordered
Weights for Kernel₁,₁

 Sign-Reordered
Weights for Kernel₂,₁

 Sign-Reordered
Weights for KernelL,₁

…

…

…
…

Acceptable Loss in
Classifica/on Accuracy

Op/miza/on
Dataset

Co
nv

ol
u/

on
al

Ne
ur

al
 N

et
w

or
k

Ex
ac

t M
od

e
Pr

ed
ic/

ve
 M

od
e

Figure 5.3: Software workflow for SnaPEA.
avenues for reducing the heavy computations of CNNs.

5.3 SnaPEA Hardware-Software Solution

SNAPEA provides a hardware-software solution to reduce the computation in a given

CNN. The software part of SNAPEA, illustrated in Figure 5.3, is comprised of two distinct

passes: one for the exact mode, and the other for the predictive mode. In the latter pass,

the solution finds the thresholds for speculation while considering the acceptable loss in

accuracy. In both cases, the task is to reorder weights of the convolution kernels, depending

on the operating mode. To utilize these transformations, the SNAPEA comes with an

accelerator design that can efficiently execute the CNN with reordered convolution weights

with support for early termination of convolution. This section overviews the hardware and

software components of SNAPEA.

5.3.1 SnaPEA Software Workflow

Figure 5.3 depicts the software workflow of SNAPEA which takes a CNN model, an ac-

ceptable accuracy loss, and an optimization dataset as its inputs. The CNN goes through

the multiple passes of this workflow. The first pass, called Convolution Layer Extraction,

elicits the convolution kernels of the CNN. Then, the weights of each kernel are re-ordered

through the remaining passes, depending on the operating mode, exact or predictive.

Software workflow in the exact mode. To develop this flow, we leverage the observation

that in the CNNs with ReLU activation layers, the inputs to the convolution layers are

112

positive. Consequently, in these layers, the convolution output remains positive by per-

forming Multiply-Accumulate (MAC) operations with the positive subset of the weights.

Only performing the remaining MAC operations with the negative subset of the weights can

turn the convolution output negative. Given this insight, in the exact mode, Sign-Based

Weight Reordering pass reorders the weights of convolution kernels based on their sign

such that the positive subset are followed by the negative subset. The reordering enables

SNAPEA to first perform MAC with the positive subset and then cut the computation and

apply activation function earlier in the case of observing a negative partial output during

the computation with negative weights.

Software workflow in the Predictive mode. To reduce the computations further, SNA-

PEA in the predictive mode, speculates on the sign of the convolution outputs before start-

ing to go through the negative weights. A thresholding mechanisms controls the aggres-

siveness of the speculation. The intuition is that if the partial output of a convolution after a

certain number of MAC operations is less than a threshold, the final convolution output will

likely be negative. In this mode, since SNAPEA may misspeculate a positive convolution

output as negative, the final classification accuracy may decline. Therefore, to utilize this

intuition effectively, the software part of SNAPEA needs to deliberately determine: (1) a

threshold value and (2) its associated number of MAC operations, such that the loss in the

classification accuracy remains below the acceptable level while the computation reduction

is maximized. These two speculation parameters need to be determined for as many layers

as possible to maximize the benefits. To determine a proper set of parameters, SNAPEA

formulates the problem as a multi-variable constrained optimization problem, and provides

a greedy algorithm to solve it (See Section ?? for more details). The algorithm is run by the

software part on the Optimization Dataset through the following three passes. This triad

of passes is to mange the complexity of accounting for the combined effects of the layers

without an exponential explosion of the search space. First, the software statically runs a

characterization pass, named Kernel Profiling, that measures the sensitivity of the accuracy

113

to the imprecision introduced in each kernel in isolation. According to this sensitivity, the

Kernel Profiling pass determines a set of speculation parameters for each kernel. Then,

the next pass (Local Optimization) consolidates the kernel parameters of each layer and

identifies a set of speculation parameters for the layer. This pass also considers the effects

of speculation in each layer in isolation. Finally, the Global Optimization pass iteratively

adjusts the speculation parameters of all layers such that the cross-layer effect yields an

acceptable accuracy with the maximal computation reduction. The optimization algorithm

runs once offline and does not impose additional runtime overhead during the execution of

CNNs. Based on the obtained speculation parameters for the entire network, the weights of

each kernel are reordered by the Weight Reordering pass. This pass reorders the kernel

weights by placing the ones determined by the speculation parameters ahead of the others.

Then, the remaining weights are reordered based on the same procedure used for the Sign-

Based Weight Reordering pass, which puts the negative weights after the positive ones.

Finally, these reordered weights determine the execution of the CNN on the SNAPEA

hardware.

5.4 Computation Reduction in SnaPEA

Figure 5.4 demonstrates how SNAPEA reduces the computation by an example of 1×3

convolution. Figure 5.4a performs the unaltered convolution in which all of the MAC

operations are performed and yields “-9” as the output. Figure 5.4b illustrates convolu-

tion in the exact mode. In this mode, SNAPEA reorders the weights based on their sign,

and starts the computation with the positive weights. The computation is terminated after

performing only two MAC operations as the results is already negative, “-3”. The simple

sign check stops the computation. Although the partial sum after two MAC operations (“-

3”) has not reached the final convolution output (“-9”), it will be converted to zero by the

following ReLU operation. As such, the results is the same as the unaltered convolution.

Therefore, the exact SNAPEA does not change the final output after ReLU and does not

114

Weight:

Input:

-5 +1 -1

+1 +2 +6
CONV -9 0ReLU-9

(a)

+1 -5 -1

+2 +1 +6

Weight:

Input:
CONV -3 SnaPEA 0ReLU-3

(b)

Weight:

Input:

+1 -5 -1

+2 +1 +6
CONV +2 SnaPEA 0ReLU-1

(c)
Figure 5.4: Example of a 1×3 convolution in (a) unaltered (b) exact, and (c) predictive modes. In the latter two, the
weights and their corresponding inputs are reordered. The white boxes highlight the operations that are cut.

ReLUConv

nX

i=0

xi ⇥wi

(a)

ReLUConv

nX

i=0

xi ⇥wi

(b)
Figure 5.5: (a) The unaltered 3D convolution where all the MAC operations (bubbles) are carried out. (b) The
same convolution with SNAPEA, where a significant number of operations are eliminated, delineated by the white
bubbles.

lead to accuracy degradation.

Figure 5.4c illustrates how predictive mode cuts the operations earlier than the exact

mode. As shown, after performing the MAC operations on only one weight, SNAPEA

predicts that the convolution value will eventually be negative. Even though the corre-

sponding partial sum value is positive (“+2”), SNAPEA speculatively triggers the ReLU

function early with a negative value (e.g., “-1”) and puts out zero. This speculation reduces

the computation from two in the exact mode to one. In real-world CNNs, convolution is

most often 3D and requires a relatively large number of MAC operations as depicted in

Figure 5.5a. Using these methods, SNAPEA can forgo a significant number of the MAC

operations as illustrated in 5.5b.

115

5.4.1 Problem Formulation

The problem of finding the speculation parameters (i.e., (Th,N)) to maximize the compu-

tation reduction with an acceptable loss can be formulated as an optimization problem. In

order to formulate the problem, we measure the computation reduction by subtracting the

number of MAC operations that are performed by SNAPEA from the one performed by an

unaltered CNN. However, since the number of MAC operations in the unaltered CNN is

constant across various inputs, maximizing the computation reduction becomes equivalent

to minimizing the number of MAC operations performed by SNAPEA. Accordingly, we

define a function that calculates the number of MAC operations in SNAPEA as follows.

Let od
l,k be the result of a single convolution window obtained by kernel k in layer l

with the speculation parameters Thk
l and Nk

l for the input image d. The number of MAC

operations to compute od
l,k can be calculated by the function Op shown in (5.1). Let assume

that the reordered weights are stored in a 1D array such that the Nk
l speculation weights are

placed at the beginning of the array while the remaining positive weights followed by the

remaining negative weights are placed at the end.

The function in (5.1) returns Nk
l if the value of partial sum after performing Nk

l oper-

ations (i.e., PartialSumNk
l
) is less than the threshold value Thk

l . Otherwise, the number

of operations is determined by checking the sign of the partial sum value obtained by

performing operations with the negative weights (i.e., PartialSumw−). If a negative partial

sum is observed, the function returns the index of the corresponding negative weight in

the array (i.e., Idxw−). If none of the above cases occurs (last part in 5.1), the number of

operations is set to the total number of weights in the kernel. Total number of weights of

the kernel is Cin,l×Dk
l ×Dk

l , in which Cin,l is the number of input channels of the layer l,

116

and Dk
l is the kernel width.

Op(od
l,k,Thk

l ,N
k
l) =

Nk
l , if PartialSumNk

l
≤ Thk

l ,

Idxw−, if PartialSumNk
l
> Thk

l and PartialSumw− ≤ 0,

Cin,l×Dk
l ×Dk

l , otherwise

(5.1)

The amount of computation to produce all the convolution outputs is the sum of the

number of MAC operations required to produce each individual output. Based on this

definition, the problem is translated into finding the speculation parameters that minimize

total number of MAC operations and meet the constraint on the accuracy loss, which can

be formulated as the following constrained optimization problem.

Let L be a set of all the layers in a given CNN, Kl a set of all the kernels in layer l, D an

optimization dataset, ε an acceptable accuracy loss, Thk
l and Nk

l the speculation parameters

of kernel k of layer l, Od
l,k the outputs of the convolution generated by kernel k in layer

l for the input image d from D , and AccuracyCNN and AccuracySNAPEA the classification

accuracy of the CNN and the classification accuracy obtained by SNAPEA, respectively.

Now, (Th,N) can be determined by solving the following problem:

min
Th,N

∑
d∈D

∑
l∈L

∑
k∈Kl

∑
o∈Od

l,k

Op(o,Thk
l ,N

k
l)

Subject to AccuracyCNN−AccuracySNAPEA ≤ ε

(5.2)

5.4.2 Finding the Speculation Parameters

In order to solve the optimization problem formulated as (5.2), we devise a greedy algo-

rithm (i.e., Algorithm 2), which is run by the software part. The algorithm takes a CNN,

an optimization dataset D , and an acceptable accuracy loss ε and returns a list named

ParamCNN that stores the value of the speculation parameters (Th,N). The algorithm

first characterizes the sensitivity of the CNN to the speculation performed in each kernel in

isolation. Then, it adjusts the speculation parameters for all the kernels through a greedy

117

(b) PE Microarchitecture

In
pu

t
Bu

ff
er

Threshold

Start	Index
OpsIndex	Buffer

>

>

Pooling
Units

		
M
A
C

		
M
A
C

Weight	Buffer

Memory

O
ut
pu

t
Bu

ff
er

Memory

PredicAon	
AcAvaAon	
Unit	(PAU)

(a) Block Diagram of SnaPEA Architecture

		MAC		MAC

PAU

PE00

PAU

		MAC		MAC

PAU

PE10

PAU

		MAC		MAC

PAU

PE0n

PAU

		MAC		MAC

PAU

PE1n

PAU

		MAC		MAC

PAU

PEm0

PAU

		MAC		MAC

PAU

In
pu

t
Bu

ff
er

O
ut
pu

t
Bu

ff
er

W
ei
gh
t

Bu
ff
er

In
de

x
Bu

ff
er

In
pu

t
Bu

ff
er

O
ut
pu

t
Bu

ff
er

W
ei
gh
t

Bu
ff
er

In
de

x
Bu

ff
er

In
pu

t
Bu

ff
er

O
ut
pu

t
Bu

ff
er

W
ei
gh
t

Bu
ff
er

In
de

x
Bu

ff
er

In
pu

t
Bu

ff
er

O
ut
pu

t
Bu

ff
er

W
ei
gh
t

Bu
ff
er

In
de

x
Bu

ff
er

In
pu

t
Bu

ff
er

O
ut
pu

t
Bu

ff
er

W
ei
gh
t

Bu
ff
er

In
de

x
Bu

ff
er

In
pu

t
Bu

ff
er

O
ut
pu

t
Bu

ff
er

W
ei
gh
t

Bu
ff
er

In
de

x
Bu

ff
er

PEmn

PAU

M
em

or
y

PredicAon	
AcAvaAon	
Unit	(PAU)

Compute	Lane	0

Compute	Lane	k

Compute	Lanes

Figure 5.6: (a) The overall structure of the SNAPEA architecture and its multilevel memory hierarchy, containing an
off-chip memory and a distributed on-chip buffer for input and outputs. (b) The microarchitecture of each PE. The
weights are shared across the compute lanes.
search such that they cooperatively minimize the computation while keeping the loss less

than ε . Accordingly, we break the algorithm into two main stages (i.e., the profiling and

the optimization stage) as follows:

Profiling stage. Function KernelProfilingPass in Algorithm 2 profiles the number of

operations (op) and the accuracy loss (err) corresponding to various values of (Thk
l ,N

k
l)

for the kernel k in layer l. The process is repeated for all the kernels in the CNN. The

acceptable profiling results in terms of the accuracy loss, are accumulated in a list called

ParamK. Each sub-list ParamK[l][k] in the list ParamK is sorted in ascending order based

on the value of op.

Optimization stage. The optimization stage evaluates the combined effects of kernels and

determines the proper speculation parameters for them. To avoid the complexity of evalu-

ating the combined effects, the optimization stage consists of two functions: LocalOp-

timizationPass and GlobalOptimizationPass. The function LocalOptimizationPass

in Algorithm (2), aims to evaluate the combined effects of kernels in each layer when

the speculation is performed in the layer in isolation. Then, the function identifies a set

of speculation parameters for each individual layer separately that leads to acceptable

accuracy with minimum operations. To do this, the function LocalOptimizationPass

generates T configurations for layer l such that in the t-th configuration, the speculation

parameters of kernel k is set to t-th profiled parameters from the sorted list ParamK[l][k].

The configurations yielding an acceptable accuracy are selected as the set of configurations

118

for the layer l. The acceptable configurations of all layers are populated in a list called

ParamL, and passed to the next function.

The second function, GlobalOptimizationPass, evaluates the effect of speculation

performed in all the layers simultaneously and adjusts their speculation parameters with

respect to the cross-layer effect on the classification accuracy and computation reduction.

The output of the function is the final speculation parameters for all the kernels in the

CNN which is stored in the list ParamCNN. To find the final parameters, the function

first initializes the ParamCNN by setting the speculation parameters of each layer l to

ParamL[l][0]. This initialization leads to the maximum computation reduction given the

configurations stored in ParamL. However, the accuracy loss obtained by the initial setting

may not be acceptable. In case of meeting the desired accuracy, the current parameters

in ParamCNN is returned. Otherwise, the parameters are adjusted iteratively until the

accuracy loss becomes less than ε . For adjusting the parameters, in the next iteration, those

parameters are of interest that lead to small increase in the number of operations while large

improvement in the classification accuracy. Hence, we define a merit value as −∆err/∆op,

where the larger the ∆err and the smaller the ∆op are, the larger the merit is. Accordingly,

the function GlobalOptimizationPass selects the configuration with the maximum merit

value among all the configuration in ParamL and updates the corresponding speculation

parameters in the list ParamCNN.

5.5 Architecture Design for SnaPEA

SNAPEA provides an accelerator architecture in order to efficiently execute the CNN with

the transformed convolution operations. Modern CNNs consist of several back-to-back

layers including convolution, ReLU activation, pooling, and fully-connected. To provide

an end-to-end solution, the accelerator architecture consists of several units to execute the

computation of all layers in the CNN. In order to efficient execution of CNNs, the archi-

tecture, specifically, targets to optimize the hardware of the convolution layers because of

119

the following reasons. The first reason is that the computation of the convolution layers

dominates the overall runtime of modern CNNs [110, 111, 156, 157, 153, 158]. The

second reason is to execute the convolutions with the reordered weights and to support the

predictive early activation at the hardware level. To perform the computations of the fully-

connected layers, the same hardware unit designed for the convolution layers is employed.

The fully-connected layers are mainly used to perform the actual classification. CNNs

usually have much smaller number (i.e. one or two) of fully-connected layers compared

to the convolution layers at the final stage of the network. For example, GoogleNet has

57 convolution layers and only one fully-connected layer. On average, the computation of

fully-connected layers accounts for ≈1% of the total number of computations performed

in CNNs [110, 111, 153]. Therefore, using the same hardware unit for the fully-connected

layers has virtually no impact on the total runtime of the CNNs. Finally, the SNAPEA

architecture consists of dedicated units to support the computations of ReLU activation

and pooling layers as well. Figure 5.6 (a) illustrates the high-level block diagram of the

proposed accelerator architecture. The accelerator consists of a 2D array of identical

Processing Engines (PEs). Each PE is equipped with an input and output buffer that com-

municates with the off-chip memory. The weights of kernels and the inputs—coming from

an off-chip memory—are stored in the dedicated buffers within each PE. In the following,

we explain each unit of the accelerator architecture in more details.

Processing Engine (PE). Figure 5.6 (b) depicts the microarchitecture of one PE in the

SNAPEA architecture. Each PE comprises multiple compute lanes, a weight and index

buffer, an input/output buffer, and multiple Predictive Activation Units. Each compute

lane consists of one dedicated Multiply-and-Accumulate (MAC) unit and one Predictive

Activation Unit (PAU). The weight, index, and input/output buffers are shared across all

the compute lanes within each PE. The computation of a convolution layer in each PE

starts upon receiving a block of input features, their corresponding weights, and the weight

indices from the off-chip memory. In every cycle, the PE controller reads one weight value

120

from the weight buffer and broadcasts it to all the compute (MAC units) lanes. The PE

controller also reads one weight index from the index buffer and sends the fetched index to

the input buffer. Upon receiving the index, the input buffer reads a set of values (one value

per each MAC unit) and sends them to the MAC unit for processing. Each compute lane is

dedicated to perform all the computations of one convolution window. That is, each MAC

unit performs the multiplication of one input and weight for each convolution window and

sends the results to the accumulation register. The accumulation register accumulates the

partial sums for each convolution window. At the same time, the Predictive Activation Unit

(PAU) checks the values of the partial sums to determine whether further computations for

each convolution window is required. If the PAU determines that no further computations

for a convolution window is required, it data gates the corresponding multiplier and ac-

cumulator to save energy. This process continues until either all the computations for the

current convolution window are performed or the PAU determines to apply the activation

early.

Weight and index buffers. The weight buffer contains the weight values of the convolution

kernels in the pre-determined order. The weights are ordered offline and loaded into the

memory with the proper ordering. Since the ordering of the weights are changed, we also

need to add an index buffer to properly index the input buffer. This index is used to load

a value from the index buffer. In every cycle, the controller fetches one weight from the

weight buffer and broadcasts it to all the compute lanes. Simultaneously, the controller

reads an index and sends it to the input buffer to read the corresponding input value. The

input buffer delivers the inputs to each compute lane to perform one multiplication for

adjacent convolution windows.

Input/Output Buffers. The input buffer holds a portion of input data for each convolution

layer. Upon completion of all the computations, the results are written into the output

buffer. We use one physical buffer for inputs and outputs. However, the buffer is logically

divided into two sub-buffers for holding the input and output data of each layer. The logical

121

partitioning allows us to use each of the sub-buffers as an input or an output buffer. The

results of a layer l stored in the output buffer may be used by the next layer l+1 in . In this

case, the data of each sub-buffers are logically swapped without wasting additional cycles

for data transfers.

Predictive Activation Unit (PAU). Figure 5.7 illustrates the microarchitecture of the Pre-

dictive Activation Unit (PAU). One PAU unit is added to each compute lane to support

the convolution operations in the exact and predictive mode. Performing the convolution

operations in the exact mode only requires to check the sign of the partial sum value during

the MAC operations with the negative weights. Accordingly, in the exact mode, the signal

Predict is set to zero which allows the sign-bit of the partial sum stored in the register Acc

Reg to determine the termination of the convolution operations. Once the sign-bit becomes

one, the signal terminate is asserted and notifies the controller to terminate the rest of

computations for the underlying convolution window.

In the predictive mode, the sign of the convolution output is speculated through the

threshold value (th) and its associated number of operations (n) which are statically de-

termined through the software part (See Algorithm 2). To perform speculation, PAU first

checks the partial sum value, coming from the accumulator register, after a pre-determined

number of MAC operations against a threshold value. Here, the controller set the signal

Predict to one. If the partial sum value is less than the pre-determined threshold value, PAU

predicts that the final value of this convolution window will eventually become negative. In

this case, the PAU performs the following tasks: (1) notifies the controller that no further

computations are required for this convolution window and (2) performs the early ReLU

activation and sends zero to the output buffer. If the partial sum value is larger than the pre-

determined threshold, the compute lane continues the computations for the convolution

window normally until it reaches the negative weights. The next check on the partial

sum starts upon starting the MAC operations with the negative weights. Here, the signal

Predict is de-asserted, and PAU periodically performs a simple one-bit sign check on the

122

M
A
C

Wi

Ai

A
cc
	R
eg 0

Terminate
PredictThreshold

Output

PAU

>=

Sign	Bit

0

1

0

1

Figure 5.7: Prediction Activation Unit (PAU). The Predict signal determines the PAU operation mode (exact or
predictive). The Terminate signal, once asserted, terminates the computation early.
partial sum values after each MAC operations, similar to the process mentioned in the exact

mode. Once the sign-bit becomes one, the PAU terminates the convolution operations of

the current window and sends a zero value to the output.

The mechanism of dynamically checking the partial sum values might lead to idle

computation lanes. These computation lanes remain idle until the rest of the lanes finish

the computations of their assigned convolution window. On the other hand, increasing

the computation lanes provides higher parallelism between the convolution windows. In

Section 5.6, we evaluate the effect of increasing computation lanes on the idle cycles and

how it affects the performance and energy savings.

Pooling unit. Once the computations of a group of convolution windows complete, the PE

performs the pooling operation on the results. Once done, the PE writes the results back

into the output buffer. These results are either used in the computations of the next layers

of CNNs or written back to the off-chip memory, if no further computations is required.

Organization of PEs. As shown in Figure 5.12, the SNAPEA architecture contains mul-

tiple identical PEs organized in a 2D array. The PEs are logically grouped both vertically

and horizontally. The input data are partitioned between the horizontal PEs and the kernels

are partitioned between the vertical PEs. The PEs in the same horizontal and vertical

groups work on the same portion of the input data and kernels, respectively. Before the

computation starts, a portion of input data are broadcasted to all the PEs within the same

horizontal group. Similarly, one or more kernels are broadcasted to the PEs within the same

vertical group. After the input and kernel data distribution, the PEs start and proceed their

computations independent from other PEs. Once the computations for all the PEs within

123

Network Year Model Size
(MB)

AlexNet
GoogLeNet
SqueezeNet
VGGNet

2012
2015
2016
2014

224
54
6

554

of Layers
Conv. FC

Classification
Accuracy

5
57
26
13

3
1
1
3

72.6%
84.4%
74.1%
83.0%

Table 5.1: Workloads, their released year, model size, number of convolution (Conv.) and fully-connected (FC)
layers, and baseline classification accuracy. The model size shows the size of weights in Megabytes.
the same horizontal group end, the on-chip buffer delivers the next portion of input data.

In this partitioning, some of the PEs may finish their computations earlier than other PEs

within the same horizontal group. These PEs remain idle until all the other PEs complete

their computations for all the assigned kernels and input data portion. This synchronization

mechanism reduces the cost of multiple data broadcasting among the PEs while having a

small impact on the performance. We evaluate the impact of this synchronization mecha-

nism in Section 5.6.2 by analyzing the sensitivity of performance to the number of compute

lanes per each PE.

5.6 Evaluation

5.6.1 Methodology

Workloads. To evaluate SNAPEA, we use several popular medium to large scale dense

CNN workloads. We also include SqueezeNet [155] that maintains AlexNet-level accuracy

with 50× fewer parameters through a static pruning approach. The fewer parameters

in SqueezeNet are attained using an iterative pruning and re-training of the convolution

weights. Including SqueezeNet in our set of evaluated workloads shows the effectiveness

of our approach in further reducing the number of computations of the convolution layers

in statically-pruned CNNs. Table 5.1 summarizes the evaluated networks and some of

the most pertinent parameters such as model size, number of convolution layers (Conv.),

number of fully-connected layers (FC), and the baseline classification accuracy. In all of

the evaluations, we use ILSVRC-2012 [159] validation dataset.

System setup. We use Caffe v1.0 [160] to run the pre-trained networks on a GPU. We

124

Table 5.2: SNAPEA and EYERISS [111] design parameters and area breakdown.

PE

Compute Lanes / PE
Partial Sum Register
Input Register
Weight Buffer
Index Buffer
Input / Output RAM
Predictive Activation Units

Ac
cl

. Number of PEs
Global Buffer

SnaPEA EYERISS
Size Area (mm2) Size Area (mm2)

4 0.012 1 0.003
N/A 0 48 B 0.002
N/A 0 24 B 0.001

0.5 KB 0.014 0.5 KB 0.014
0.5 KB 0.007 N/A 0
20 KB 0.250 N/A 0

4 0.008 N/A 0
64 18.62 256 4.94

N/A 0 1.25 MB 12.9
Total Area 18.6 mm2 17.8 mm2

compile Caffe using NVCC v8.0.62 and GCC v4.8.4 with maximum architecture-specific and

compiler optimizations enabled. We configure Caffe to use Nvidia cuDNN v6.0, a highly

tuned GPU-accelerated deep neural network library.

Training/testing datasets. To learn the threshold values and their associated set of op-

erations for each kernel, we implement Algorithm 2 through updating the data of convo-

lutional layers in Caffe v1.0. We uniformly sample a subset of images from each of the

1,000 classes in ImageNet [159] to obtain the training and testing datasets for the proposed

algorithm. The uniform sampling among all the classes enables us to cover images from

distinct classes during the training and testing phases of Algorithm 2.

Architecture design and synthesis. We implement the microarchitectural units of the

proposed architecture including the controllers, PEs, predictive activation unit (PAU), and

registers in Verilog. We use Synopsys Design Compiler (L-2016.03-SP5) and a TSMC 45-nm

standard-cell library to synthesize the proposed architecture and obtain the area, delay, and

energy numbers of the logic hardware units.

SNAPEA and baseline architecture configurations. In this thesis, we explore an 8×8

array of PEs in SNAPEA, each with four compute lanes, with a total of 256 MAC units.

However, the SNAPEA architecture can be scaled up to larger numbers of PEs. Table 5.2

lists the major architectural parameters of the SNAPEA design. We add a weight buffer and

an index buffer, each 0.5 KB per each PE. Both weight and index buffers are shared across

all the compute lanes within each PE. Each PE is also equipped with a 20 KB buffer, that

125

is evenly divided between input and output. The total capacity of the buffers therefore is

1.25 MB. Similar to the weight and index buffers, both input and output buffers are shared

across all the compute lanes within a PE. Sharing the on-chip memories across multiple

PEs enables us to reduce the overhead of index buffers. We size the input and output buffer

so that the activations of all the CNN models, except VGGNet, fit within these on-chip

buffer. This sizing eliminates the need of draining and filling the on-chip buffers during the

execution. For VGGNet, which has deeper and larger layers, however, SNAPEA has to spill

the activations to memory during the accelerations. We consider the overhead of spilling

the data to the off-chip memory in our experiments. For the baseline architecture, we use

the EYERISS [111] accelerator. Table 5.2 shows the major architectural components for

EYERISS. To have the same peak throughput in both accelerators, we configure EYERISS

to have the same number of MAC units (256) as ours. In addition, we allocate the same

on-chip memory size (1.25 MB) to both accelerators. The frequency of both accelerators are

fixed to 500 MHz. Table 5.2 summarizes the area of the major microarchitectural components

in SNAPEA and EYERISS. Overall, the SNAPEA accelerator needs ≈4.5% more area

compared to the EYERISS architecture with the specified configurations (Table 5.2). This

increase in the area is mainly attributed to the added predictive activation units (PAUs) in

the PEs and the controllers.

Energy measurements. Table 6.2 lists the energy consumption of SNAPEA microarchi-

tectural units. For hardware units, we use the synthesis results with TSMC 45-nm and reported

numbers in TETRIS [110], which uses the same technology node and has a similar PE

architecture as EYERISS. We include the energy overhead of the predictive activation unit

in the energy cost of PE (second row in Table 6.2). However, for the baseline architecture

(EYERISS), we exclude the energy consumption of the predictive activation unit and use a

relative cost of 1.0 in the evaluations. We use the publicly available Micron’s DDR4 system

power calculator [161] to estimate the energy cost of accesses to the off-chip memory.

Cycle-level microarchitecture simulation. We develop a cycle-level microarchitectural

126

Table 5.3: Absolute and relative energy comparison for different components of SNAPEA architecture along with
off-chip memory access energy cost. PE energy includes the cost of Predictive Activation Unit (PAU).

AlexNet

GoogLeNet

SqueezeNet

VGGNet

Geomean
1.00×

1.10×

1.20×

1.30×

1.40×

S
pe

ed
up

(a)

AlexNet

GoogLeNet

SqueezeNet

VGGNet

Geomean
1.00×

1.05×

1.10×

1.15×

1.20×

E
ne

rg
y

R
ed

uc
tio

n

(b)
Figure 5.8: Overall (a) speedup and (b) energy reduction with exact mode.

simulator that closely model the architecture of EYERISS and SNAPEA hardware to mea-

sure the performance and energy savings of both hardware. We integrate the microarchi-

tectural components explained in Section 5.5 into the simulator in a cycle-level manner. To

measure the energy savings, we use the synthesis results and the reported energy numbers

from some of the recent works [110, 111, 162]. Furthermore, we use CACTI-P [163] to

calculate the area and power of the register files and on-chip buffers. In the case of any

inconsistency in terms of technology node, we properly scaled the area, delay, and energy

numbers to make them consistent with our synthesis flow. We integrate the delay and

energy numbers collected from the aforementioned sources into our cycle-level simulator.

The simulator takes the configuration of a CNN architecture as input and generates an

event log for each hardware component. Finally, using the generated event log along the

integrated delay and energy numbers, the simulator reports the number of cycles and energy

numbers for the whole network.

5.6.2 Experimental Results

Overall benefits in the exact mode. Figure 5.8 illustrates the speedup and energy re-

127

ductions when the predictive activation is disabled (i.e. exact mode). In this approach,

SNAPEA hardware only applies the early activation when the value of partial sum drops

below zero. As there is no prediction, the CNN classification accuracy will not be deterio-

rated. That is, the classification accuracy is maintained the same as that in the baseline

(Table 5.1). In this setting, SNAPEA, on average, delivers 1.3× speedup and 1.16×

energy reductions over EYERISS, respectively. Even for SqueezeNet [164]—a statically

pruned convolutional neural network—SNAPEA yields 1.3× and 1.14×. These savings

for SqueezeNet show that static pruning techniques are complimentary to the dynamic

approach of SNAPEA. Overall, the results in the exact mode show the practicality of

SNAPEA in delivering speedup and energy reductions even in the pure exact mode, in

which the CNN classification accuracy remains untampered (Table 5.1).

Overall benefits in predictive mode. Figure 5.9a illustrates the performance of SNAPEA

over EYERISS in the predictive mode while maintaining the classification accuracy within

3% range of its baseline value (See Table 5.1). In this configuration, the predictive acti-

vation units (PAUs) might mis-predict a positive activation value as negative and squashes

its value to zero; hence, imposing inaccuracy into the convolutional layers. The injected

error in the convolutional layers may lead to a drop in the final classification accuracy.

The highest speedup (2.08×) is observed in GoogLeNet, in which a large fraction of the

features are negative, and hence the saving is larger.

Figure 5.9b illustrates the energy reduction with SNAPEA in predictive mode over EY-

ERISS [111]. Similar to the simulation settings for speedup, the degradation in classification

accuracy is maintained within 3%. Among all the CNN models, GoogLeNet enjoys the

highest energy reductions (1.63×). Also, in SqueezeNet [164], a statically pruned CNN

model, our technique yields 1.80× and 1.42× speedup and energy reductions, respec-

tively. On average, SNAPEA delivers 1.9× speedup and 1.4× energy reductions across the

studied CNN models. This result endorses the effectiveness of SNAPEA, even compared to

static pruning techniques [164], in exploiting the runtime information to provide significant

128

AlexNet

GoogLeNet

SqueezeNet

VGGNet

Geomean
0.00×
0.50×
1.00×
1.50×
2.00×
2.50×

S
pe

ed
up

(a)

AlexNet

GoogLeNet

SqueezeNet

VGGNet

Geomean
0.00×

0.50×

1.00×

1.50×

2.00×

E
ne

rg
y

R
ed

uc
tio

n

(b)
Figure 5.9: Overall (a) speedup and (b) energy reduction with SNAPEA over EYERISS [111] in the predictive mode.
The acceptable classification accuracy drop is maintained within ≤3% range of its baseline value.

Alex
Net

Goo
gLe

Net

Squ
eez

eNe
t

VGG
Net

1.00✕

1.50✕

2.00✕

2.50✕

3.00✕

3.50✕

Sp
ee

du
p

conv4

conv3

inception_4e/5x5_reduce

inception_4e/1x1

fire5/squeeze1x1

fire6/expand3x3

conv4_2

conv5_3

Figure 5.10: Speedup of convolutional layers in each network for the predictive mode when the degradation in
classification accuracy is set to ≤ 3%.
savings.

Figure 5.10 illustrates the speedup of convolutional layers in different networks when

accuracy drop is set to 3%. The maximum range of speedup is observed in GoogLeNet,

in which the maximum speedup is 3.59× achieved by convolution layer inception 4e/1x1,

and the minimum speedup is 17% achieved by the layer inception 4e/5x5 reduce.

Moreover, in the predictive mode, to achieve acceptable accuracy drop, a fraction of the

convolutional layers can operate in the predictive mode, which are specified by the software

part. Table 5.4 summarizes the percentage of convolutional layers that operate in the pre-

dictive mode in each network when the accuracy drop is set to 3%. The average speedup

and energy saving across those layers are also brought in the table. The results show that, on

average, 67.8% of the convolutional layers operate in the predictive mode, and the average

speedup and energy saving across these layers are 2.02× and 1.89×, respectively.

Prediction accuracy. We study how effective the predictive mode is in predicting the

negative values. Table 5.5 shows the average true negative and false negative rate across

129

Table 5.4: The percentage of convolution layers that operates in the predictive mode, when classification accuracy
drop is set to ≤3%. The second and third column illustrates the average speedup and energy reduction across
these convolution layers.

Network

AlexNet
GoogLeNet
SqueezeNet
VGGNet

% of Convolution
Layers Average Speedup

60.0%
84.21%
65.38%
61.50%

2.11✕
2.17✕
1.94✕
1.87✕

Average Energy
Reduction

1.97✕
2.04✕
1.84✕
1.73✕

Table 5.5: True negative and false negative rate in predictive mode when classification accuracy drop is set to ≤
3%.

all the convolutional layers in the studied CNN models. The true negative rate measures

the proportion of negative values that are correctly identified as negative. Applying early

activation on these values does not have any effect on final classification accuracy. The

false negative rate measures the proportion of the positive values that are mis-predicted as

negative and squashed to zero; hence, might lead to degradation in the final classification

accuracy. On average, the true (false) negative rate of our proposed prediction mechanism is

56.26% (20.41%). Due to our optimization technique (See Algorithm 2), on average, more

than 86% of the error occurs on the small positive values. The small positive values in the

activations generally have slight effect on the final classification accuracy. The main reason

for this is attributed to the fact that each convolutional layer is commonly accompanied by

a max-pooling layer, in which the small values are filtered out. The high true negative

rate enables us to apply the activation on the negative values early and significantly reduce

the ineffectual operations. Furthermore, the high true negative rate along the modest false

negative rate exhibits the capability of SNAPEA in utilizing the runtime information to

predict the negative values while meticulously injecting errors mainly on small positive

values.

Sensitivity to the degree of speculation. To study the effect of our proposed predictive

early activation technique, Figure 5.11 illustrates the speedup with SNAPEA over EYE-

130

AlexNet GoogLeNetSqueezeNet VGGNet Geomean0.0×

0.5×

1.0×

1.5×

2.0×

S
pe

ed
up

Quality Loss = 0.0%

Quality Loss = 1.0%

Quality Loss = 2.0%

Quality Loss = 3.0%

Figure 5.11: Speedup vs. loss in the CNN classification accuracy. Each bar indicates the speedup when the ac-
ceptable degradation in the classification accuracy is 0% (pure exact mode), 1% (predictive mode), 2.0% (predictive
mode), and 3.0% (predictive mode), respectively.
RISS [111] when the classification accuracy loss varies from 0% to 3%. The 0% classifi-

cation accuracy loss is when we do not use any prediction mechanism (exact mode). The

remaining classification accuracy loss levels (e.g., 1.0%, 2.0%, 3.0%) is when we use the

predictive early activation mechanism (predictive mode). In fact, supporting distinct levels

of loss in the classification accuracy is one of the contributions of our work. The proposed

predictive early activations technique exposes a knob for the user to gracefully navigate the

trade-offs between CNN classification accuracy and performance and efficiency gains. On

average, SNAPEA delivers 1.3×, 1.38×, 1.63×, and 1.9× speedup when we relax the

constraint on the acceptable degradation of classification accuracy to 0.0%, 1.0%, 2.0%,

and 3.0%, respectively. As we increase the acceptable degradation in the classification

accuracy all the evaluated CNNs enjoy a boost in the speedup and energy reductions.

Sensitivity to the number of compute lanes. Figure 5.12 illustrates the impact of varying

the number of compute lanes within each PE on speedup with SNAPEA over EYERISS.

We present the results for the predictive mode when the maximum loss in the CNN clas-

sification accuracy is set to 3%. The second bar (Default) shows the speedup in the

baseline SNAPEA system (i.e., four compute lanes) over EYERISS with the same number

of compute elements. The rest of the bars (first, third, and fourth bar) show the speedup of

SNAPEA when the number of compute lanes per each PE is altered uniformly across all the

PEs by a factor of half, two, and four, respectively. Increasing the number of compute lanes

potentially increases the parallelization level between different convolutional windows.

131

AlexNet GoogLeNetSqueezeNet VGGNet Geomean0.0×

0.5×

1.0×

1.5×

2.0×

S
pe

ed
up

PEs / Lane = 0.5×
PEs / Lane = Default

PEs / Lane = 2× more
PEs / Lane = 4× more

Figure 5.12: Sensitivity of speedup with SNAPEA over EYERISS to the number of compute lanes per each PEs.
Each bar indicates the speedup when the number of compute lanes per each PEs is altered by different factors.
The acceptable classification accuracy drop is maintained within ≤3% range of its baseline value.
However, due to the synchronization overhead between the compute lanes per each PE

(See Section 5.5, Organization of PEs), the improvements diminish. The results show that

increasing the number of lanes two times and four times hurts the performance by ≈ 36%

and ≈ 45%, respectively. Also, if we reduce the number of lanes by 0.5×, the performance

decreases by ≈ 26%. The reason for this behavior is mostly because of an uneven amount

of computations performed by each compute lane. In contrast to EYERISS [111], in SNA-

PEA the number of operations in each convolution window varies due to its runtime early

activation. Therefore, increasing the number of arithmetic units reduces the utilization of

the compute lanes and diminishes the benefit of higher parallelization.

5.7 Conclusion

Traditionally, layers of deep neural networks have been thought to work in separation while

handing each other their results. However, our work took a disparate approach in consider-

ing the most common sequence of layers in emerging deep networks to reduce the amount

of computation. As such, SNAPEA has devised a predictive early activation that operates

in two distinct modes, namely exact and predictive mode. In the exact mode, in which the

nominal classification accuracy remains untampered, SNAPEA uses a combination of static

re-ordering of the weights and low-overhead sign check to determine when to terminate the

computation. SNAPEA further improves the performance and efficiency of convolution

operations in the predictive mode by speculatively cutting the computation of convolution

132

operations if it predicts its output is negative, immediately applying activation. Compared

to a recent CNN accelerator, SNAPEA in the exact mode yields 28% speedup (maximum of

74%) and 16% (maximum of 51%) energy reductions across various modern CNNs without

affecting their classification accuracy. With 3% loss in classification accuracy, on average,

67.8% of the convolutional layers operate in the predictive mode, and the average speedup

and energy saving across these layers are 2.02× and 1.89×, respectively. The significant

gains due to the computation and memory access reduction across several modern CNNs

show the effectiveness of our approach that conjoins runtime information and algorithmic

insights into a unified accelerator.

133

Algorithm 2 Finding the threshold value and its associated number of operations for all
kernels in a CNN

1: Inputs: CNN: a CNN model, D : an optimization dataset,
ε: Acceptable loss in classification accuracy

2: Outputs: ParamCNN: Speculation parameters (Th,N) for the CNN

3: // Analyze each kernel individually
4: function KERNELPROFILINGPASS(CNN,D ,ε)
5: Initialize ParamK[l][k]→ /0
6: for ∀ layer l in CNN do
7: for ∀ kernel k in layer l do
8: for a set of values (th,n) do
9: op, err = Simulate(CNN, D , k, th, n)

10: if err≤ ε then
11: ParamK[l][k].append((th,n,op))
12: end if
13: end for
14: Sort ParamK[l][k] based on op
15: end for
16: end for
17: return ParamK
18: end function
19: // Local Optimizer to find a set of params for each layer individually
20: function LOCALOPTIMIZATIONPASS(CNN,D ,ε,ParamK)
21: for layer l in CNN do
22: for t in range(0,T) do
23: for k in layer l do
24: param = ParamK[l][k][t]
25: end for
26: op, err = Simulate(CNN,D ,ε,param)
27: if err ≤ ε then
28: ParamL[l].append((param,op,err))
29: end if
30: end for
31: end for
32: return ParamL
33: end function
34: // Parameter tuning to accommodate for cross-kernel effect
35: function ADJUSTPARAM(CNN,ParamCNN,ParamL)
36: for ∀ layer l in CNN do
37: for ∀ t in range(len(ParamL[l])) do

38: meritL[l][t] =
-(ParamL[l][2]-ParamCNN[l][2])
(ParamL[l][1]−ParamCNN[l][1])

39: end for
40: end for
41: l,t = Argmax(meritL)
42: remove ParamL[l][t] from ParamL[l]
43: return (l,t)
44: end function
45: // Global Optimizer to find the parameters for the entire network
46: function GLOBALOPTIMIZATIONPASS(CNN,D ,ε ,ParamL)
47: for ∀ layer l in CNN do ParamCNN[l] = ParamL[l][0]
48: end for
49: err = Simulate(CNN,D ,ParamCNN)
50: while err> ε do
51: l,t=ADJUSTPARAM(CNN,ParamCNN,ParamL)
52: ParamCNN[l] = ParamL[l][t]
53: err = Simulate(CNN,D ,ε ,ParamCNN)
54: end while
55: return ParamCNN
56: end function
57: Initialize ParamCNN[l]→ /0
58: ParamK = KERNELPROFILINGPASS(CNN,D ,ε)
59: ParamL = LOCALOPTIMIZATIONPASS(CNN,D ,ε ,ParamK)
60: ParamCNN =GLOBALOPTIMIZATIONPASS(CNN,D ,ε ,ParamL)

134

CHAPTER 6

UNSUPERVISED LEARNING ACCELERATION

6.1 Summary

Generative Adversarial Networks (GANs) are one of the most recent deep learning models

that generate synthetic data from limited genuine datasets. GANs are on the frontier as

further extension of deep learning into many domains (e.g., medicine, robotics, content

synthesis) requires massive sets of labeled data that is generally either unavailable or pro-

hibitively costly to collect. Although GANs are gaining prominence in various fields, there

are no accelerators for these new models. In fact, GANs leverage a new operator, called

transposed convolution, that exposes unique challenges for hardware acceleration. This

operator first inserts zeros within the multidimensional input, then convolves a kernel over

this expanded array to augment information to the embedded zeros. Even though there

is a convolution stage in this operator, the inserted zeros lead to underutilization of the

compute resources when a conventional convolution accelerator is employed. We propose

the GANAX architecture to alleviate the sources of inefficiencies associated with the accel-

eration of GANs using conventional convolution accelerators, making the first GAN accel-

erator design possible. We propose a reorganization of the output computations to allocate

compute rows with similar patterns of zeros to adjacent processing engines, which also

avoids inconsequential multiply-adds on the zeros. This compulsory adjacency reclaims

data reuse across these neighboring processing engines, which had otherwise diminished

due to the inserted zeros. The reordering breaks the full SIMD execution model, which

135

is prominent in convolution accelerators. Therefore, we develop and introduce a unified

MIMD-SIMD design for GANAX that leverages repeated patterns in the computation to

create distinct microprograms that execute concurrently in SIMD mode. The interleaving

of MIMD and SIMD modes is performed at the granularity of single microprogrammed

operation. To amortize the cost of MIMD execution, we propose a decoupling of data ac-

cess from data execute in GANAX. This decoupling leads to a new design that breaks each

processing engine to an access micro-engine and an execute micro-engine. The proposed

architecture extends the concept of access-execute architectures to the finest granularity of

computation for each individual operand. This chapter is based on work presented in ISCA

2018 [165] and FCCM 2018 [166]. This work is a result of collaboration with Michael

Brzozowski1, Behnam Khaleghi2, Philip J. Wolfe1, Soroush Ghodrati1, Hajar Falahati3,

Kambiz Samadi4, Nam Sung Kim5, and Hadi Esmaeilzadeh2.

6.2 Introduction

Deep Neural Networks (DNNs) have been widely used to deliver unprecedented levels of

accuracy and performance in various applications. However, they rely on the availability of

copious amount of labeled training data, which can be costly to obtain as it requires human

effort to label. To address this challenge, a new class of deep networks, called Generative

Adversarial Networks (GANs), have been developed with the intention of automatically

generating larger and richer datasets from a small initial labeled training dataset. GANs

combine a generative model, which attempts to create synthetic data similar to the original

training dataset, with a discriminative model, a conventional DNN that attempts to discern

if the data produced by the generative model is synthetic, or belongs to the original training

dataset [167]. The generative and discriminative models compete with each other in a

1Georgia Institute of Technology
2University of California-San Diego
3Institute for Research in Fundamental Sciences
4Qualcomm Technologies, Inc.
5University of Illinois at Urbana-Champaign

136

minimax situation, resulting in a stronger generator and discriminator. As such, GANs

can create new impressive datasets that are hardly discernible from the original training

datasets. With this power, GANs have gained popularity in numerous domains, such

as medicine, where overtly costly human-centric studies need to be conducted to collect

relatively small labeled datasets [168, 169]. Furthermore, the ability to expand the training

datasets has gained considerable popularity in robotics [170], autonomous driving [171],

and media synthesis [172, 173, 174, 175, 176, 177, 178] as well.

Currently, advances in acceleration for conventional DNNs are breaking the barriers to

adoption [179, 180, 181, 111, 153, 182]. However, while GANs are set to push the frontiers

in deep learning, there is a lack of hardware accelerators that address their computational

needs. This work sets out to explore this state-of-the-art dimension in deep learning from

the hardware acceleration perspective. Given the abundance of the accelerators for conven-

tional DNNs [183, 184, 156, 110, 185, 186, 187, 188, 181, 189, 190, 111, 191, 153, 157,

192, 193, 194, 195, 196, 46, 197, 38, 198, 6, 182, 199, 12, 200], designing an accelerator

for GANs will only be attractive if they pose new challenges in architecture design. By

studying the structure of emerging GAN models [172, 173, 174, 175, 176, 177, 178],

we observe that they use a fundamentally different type of mathematical operator in their

generative model, called transpose convolution, that operates on multidimensional input

feature maps.

The transposed convolution operator aims to extrapolate information from input feature

maps, in contrast to the conventional convolution operator which aims to interpolate the

most relevant information from input feature maps. As such, the transposed convolution

operator first inserts zeros within multidimensional input feature maps and then convolves

a kernel over this expanded input to augment information to the inserted zeros. The trans-

posed convolution in GANs fundamentally differs from the operators in the backward pass

of training conventional DNNs, as these do not insert zeros. Moreover, although there

is a convolution stage in the transposed convolution operator, the inserted zeros lead to

137

3D-GAN
ArtG

AN
DCGAN

DiscoGAN

GP-GAN
MAGAN

Average
0%

20%

40%

60%

80%

100%

Fr
ac

tio
n

of
O

pe
ra

tio
ns

in
Tr

an
sp

os
ed

C
on

vo
lu

tio
n

La
ye

rs
Figure 6.1: The fraction of multiply-add operations in transposed convolution layers that are inconsequential due
to the inserted zeros in the inputs.
underutilization of the compute resources if a conventional convolution accelerator were to

be used. The following highlights the sources of underutilization and outlines the contribu-

tions of this work, making the first GAN accelerator design possible.

1. Performing multiply-add on the inserted zeros is inconsequential. Unlike conven-

tional convolution, the accelerator should skip over the zeros as they constitute more

than 60% of all the multiply-add operations as Figure 6.1 illustrates. Skipping the zeros

creates an irregular dataflow and diminishes data reuse if not handled adequately in the

microarchitecture. To address this challenge, we propose a reorganization of the output

computations that allocates computing rows with similar patterns of zeros to adjacent

processing engines. This forced adjacency reclaims data reuse across these neighboring

compute units.

2. Reorganizing the output computations is imperative but breaks the SIMD exe-

cution model. The inserted zeroes, even with the output computation reorganization,

create distinct patterns of computation when sliding the convolution window. As such,

the same sequence of operations cannot be repeated across all the processing engines,

breaking the full SIMD execution model. Therefore, we propose a unified MIMD-SIMD

accelerator architecture that exploits repeated patterns in the computations to create

different microprograms that can execute concurrently in SIMD mode. To maximize the

benefits from both levels of parallelism, we propose an architecture, called GANAX,

that supports interleaving MIMD and SIMD operations at the finest granularity of a

single microprogrammed operation.

138

3. MIMD is inevitable but its overhead needs to be amortized. Changes in the dataflow

and the computation order necessitate irregular accesses to multiple different memory

structures while the operations are still the same. That is, the data processing part

can be SIMD but the irregular data access patterns prevent using this execution model.

For GANAX, we propose the decoupling of data accesses from data processing. This

decoupling leads to breaking each processing engine into an access micro-engine and

an execute micro-engine. The proposed architecture extends the concept of access-

execute architecture [201, 202, 203, 204] to the finest granularity of computation for

each individual operation.

Although GANAX addresses these challenges to enable efficient execution of the trans-

posed convolution operator, it does not impose extra overhead, but instead offers the same

level of performance and efficiency. To establish the effectiveness of our architectural

innovation, we evaluate GANAX using six recent GAN models, on distinct applications.

On average, GANAX delivers 3.6× speedup and 3.1× energy savings over a conventional

convolution accelerator. These results indicate GANAX is an effective step towards de-

signing accelerators for the next generation of deep networks.

Generative Adversarial Networks (GANs) have revolutionized modern machine learn-

ing by significantly improving generative models while using only limited number of la-

beled training data. Figure 6.2 shows an overall visualization of a GAN, consisting of

two deep neural network models, a generative model and a discriminative model. These

two neural network models oppose each other in a minimax situation. Specifically, the

generative model tries to generate data that will trick the discriminative model to believ-

ing the data is from the original training dataset. Meanwhile, the discriminative model

is handed data from either the generative model or the training data and tries to discern

between the two. After these networks compete with each other, they refine their abilities

to generate and discriminate, respectively. This process creates a stronger generative model

and discriminative model than could be obtained otherwise [167]. This arrangement of

139

Tr
an

sp
os

ed
C

on
vo

lu
tio

n

Tr
an

sp
os

ed
C

on
vo

lu
tio

n

C
on

ve
nt

io
na

l
C

on
vo

lu
tio

n

Generative Model Discriminative Model

C
on

ve
nt

io
na

l
C

on
vo

lu
tio

n

Figure 6.2: High-level visualization of a Generative Adversarial Network (GAN).

(a) Conventional Convolution (Data Reduction) (b) Transposed Convolution (Data Expansion)

Figure 6.3: (a) Convolution operations decreases the size of data (data reduction). (b) Transposed convolution
increases the size of data (data expansion).

neural networks has opened up many applications, some of which include music generation

with accompaniment [175] and the discovery new drugs to cure diseases [205]. GANs are

enabling our future by pushing forward development in autonomous vehicles, allowing us

to imitate human drivers [206] and simulate driving scenarios to save testing and training

costs [171]. GANs enable imagination [207], a major advancement for machine learning

and a key step towards true general artificial intelligence. Here, we overview the challenges

and opportunities that were encountered while designing hardware accelerators for GANs.

6.3 Flow of Data in Generative Models

Challenges and opportunities for GAN acceleration. The generative models in GANs

140

are fundamentally different from the discriminative models. As Figure 6.2 illustrates,

while the discriminative model mostly consists of convolution operations, the generative

model uses transposed convolution operations. Accelerating convolution operations has

been the focus of a handful of studies [183, 184, 156, 110, 185, 186, 187, 188, 181, 189,

190, 111, 191, 153, 157, 192, 193, 194, 195, 196, 46]; however, accelerating transposed

convolution operations has remained unexplored. Figure 6.3 depicts the fundamental dif-

ference between the conventional convolution and transposed convolution operations. The

convolution operation performs data reduction and generally transforms the input data to

a smaller representation. On the other hand, the transposed convolution implements a data

expansion and transforms the input data to a larger representation. The transposed convolu-

tion operation expands the data by first transforming the input data through inserting zeros

between the input rows and columns and then performing the computations by sliding a

convolution window over the transformed input data. Due to this fundamental difference

between convolution and transposed convolution operations, using the same conventional

convolution dataflow for generative model may lead to inefficiency. The main reason for

such inefficiency can be attributed to the variable number of operations per each convolu-

tion window in the transposed convolution. The variable number of operations per each

convolution window is the main result of zero insertion step in transposed convolution.

Because of this zero-insertion step, distinct convolution windows may have a different

number of consequential multiplications between inputs and weights.6 This discrepancy in

the number of operations is the root cause for inefficiency in the computations of generative

models, if the same convolution dataflow is used. As such, we aim to design an efficient

flow of data for GANs by focusing on: (1) managing the discrepancy in the number of oper-

ations per each convolution window in order to mitigate the inefficiencies in the execution

of generative models, (2) leveraging the similarities between convolution and transposed

convolution operations in order to accelerate both discriminative and generative models

6A consequential multiplication is a multiplication in which none of the source operands are zero and con-
tributes to the final value of the convolution operation.

141

Transformed Input

Input

Inserting
Zeros

Filter
Row 1

Filter
Row 2

Filter
Row 3

Filter
Row 4

Filter
Row 5

Output
Row 2
Output
Row 3
Output
Row 4
Output
Row 5

(a) Zero Insertion (b) Conventional Convolution Dataflow

c

c

c

c
c

c
c

c
c c

Figure 6.4: (a) Zero-insertion step in a transposed convolution operation for a 4×4 input and the transformed
input. The light-colored squares display zero values in the transformed input. (b) Using conventional dataflow for
performing a transposed convolution operation.

Filter
Row 1

Filter
Row 3

Filter
Row 5

Filter
Row 2

Filter
Row 4

Output
Row 2
Output
Row 4
Output
Row 3
Output
Row 5

c
c

c
c

c
c

c
c c

c
Filter

Row 2
Filter

Row 4

c c Output
Row 2
Output
Row 4c c

Filter
Row 1

Filter
Row 3

c c Output
Row 3
Output
Row 5c c

Filter
Row 5

c
c

Filter
Row 1

Filter
Row 2

Filter
Row 3

Filter
Row 4

Filter
Row 5

Output
Row 2
Output
Row 4
Output
Row 3
Output
Row 5

c
c

c
c

c

c
c

c
c
c

(a) Output Row Reorganization (b) Filter Row Reorganization (c) GANAX Flow of Data

Figure 6.5: The GANAX flow of data after applying (a) output row reorganization and (b) filter row reorganization. (c)
The GANAX flow of data after applying both output and filter row reorganization and eliminating the idle compute
nodes. The combination of these flow optimizations reduces the idle (white) compute nodes and improves the
resource utilization.

on the same hardware platform, and (3) improving the data reuse in discriminative and

generative models.

Why using a conventional convolution dataflow is not efficient for transposed convolu-

tion? Going through a simple example of a 2-D transposed convolution, we illustrate the

main sources of inefficiencies in performing transposed convolution, if a conventional con-

volution dataflow is used. Figure 6.4(a) illustrates an example of performing a transposed

convolution operation using a conventional convolution dataflow. In this transposed con-

volution operation, a 5×5 filter with stride of one and padding of two is applied on a 4×4

2D input. In the initial step, the transposed convolution operation inserts one row and one

column of zeros between successive rows and columns (white squares). Performing this

zero-insertion step, the input is expanded from a 4×4 matrix to a 11×11 one. The number

of zeros to be inserted for each transposed convolution layer in the generative models may

vary from one layer to another and is a parameter of the network. After performing the

142

zero-insertion, the next step is to slide a convolution window over the transformed input and

perform the multiply-add operations. Figure 6.4(b) illustrates performing this convolution

operation using a conventional convolution dataflow [184, 110, 111]. To avoid clutter in

Figure 6.4(b), we only show the dataflow for generating the output rows 2-5.

Each circle in Figure 6.4(b) represents a compute node that can perform vector-vector

multiplications between a row of the filter and a row of the zero-inserted input. The filter

rows are spatially reused across each of the computation nodes in a vertical manner. Once

a vector-vector multiplications finish, the partial sums are aggregated horizontally to yield

the results of performing transposed convolution operation for each output row. The black

circles represent the compute nodes that are performing consequential operations, whereas

the white circles which represent the compute nodes performing inconsequential opera-

tions. As depicted in Figure 6.5(b), there will be inconsequential operation (white circles)

if a conventional convolution dataflow is used for the execution of transposed convolution

operations. Because of the inserted zeros, some of the filter rows are not used to compute

the value of an output row. For example, since the 1st, 3rd, and 5th rows of the input are

zero, the 2nd output row only needs to perform the operations for non-zero elements; hence

using only the 2nd and 4th filter rows, leaving three compute nodes idle. Overall, in this

example, 50% of the compute nodes remain idle during the execution of this transposed

convolution operation. Analyzing this transposed convolution operation reveals three main

sources of inefficiency when a conventional convolution dataflow is used.

(1) Coarse-grain resource underutilization: Since the consequential filter rows vary

from one output row to another, a significant number of compute nodes remain idle.

In the aforementioned example, this underutilization applies to 50% of the compute

nodes, which perform vector-vector multiplications.

(2) Fine-grain resource underutilization: Even within a compute node a large fraction

of the multiply-add operations are inconsequential due to the columnar zero insertion.

(3) Reuse reduction: While the compute units pass along the filter rows for data reuse,

143

the inserted zeros render this data transfer futile.

We address the first two sources of inefficiencies with a series of optimizations on the flow

of data in GANs. Then, to address the last source of inefficiency that arises because of

the inconsequential multiply-add operations within each compute node, we introduce an

architectural solution (Section 6.4).

Flow of data for generative models in GANAX. Figure 6.5 illustrates the proposed flow

of data optimizations for generative models in GANAX. To mitigate the challenges of us-

ing conventional convolution dataflow for transposed convolution operations in generative

models, we leverage the insight that even though the patterns of computation may vary

from one output row to another, they are still structured. Taking a closer look at Figure 6.4,

we learn that there are only two distinct patterns7 in the output row computations. In this

example, the even output rows (i.e., 2nd and 4th) use one pattern of computation, whereas

the odd output rows (i.e., 3rd and 5th) use a different pattern for their computations. Build-

ing upon this observation, we introduce a series of flow of data optimizations to mitigate

the aforementioned inefficiencies in the computation of transposed convolution operation,

if a conventional convolution dataflow used.

The first optimization maximizes the data reuse by reorganizing the computation of the

output rows in a way that the rows with the same pattern in their computations become

adjacent. Figure 6.5(a) illustrates the flow of data after applying this output row reorga-

nization. Applying the output row reorganization in this example, make the even-indexed

(2nd and 4th output rows) output rows adjacent. Similar adjacency is established for odd-

indexed (3rd and 5th output rows) output rows. Although this optimization addresses the

data reuse problem, it does not deal with the resource underutilization (i.e., idle compute

nodes (white circles) still exist). To mitigate this resource underutilization, we introduce the

second optimization that reorganizes the filter rows. As shown in Figure 6.5(b), applying

the filter row reorganization establishes an adjacency for the 1st, 3rd, and 5th filter rows.

7The location of white and black circles (compute nodes) defines each pattern.

144

Similarly, the 2nd and 4th filter rows become adjacent. After applying output and filter row

reorganization, as shown in Figure 6.5(b), the idle compute nodes can be simply eliminated

from the dataflow. Figure 6.5(c) illustrates the GANAX flow of data after performing

both optimizations, which improves the resource utilization for transposed convolution

operation from 50% to 100%.

The proposed GANAX flow of data also addresses the inefficiency in performing the

horizontal accumulation of partial sums. As shown in Figure 6.4(b), the conventional con-

volution dataflow requires five cycles to perform the horizontal accumulation for each out-

put row, regardless of their locations. However, comparing Figure 6.4(b) and Figure 6.5(c),

we observe that after applying output and filter row reorganization optimizations, the num-

ber of required cycles for performing the horizontal accumulation reduces from five to two

for even-indexed output rows and from five to three for odd-indexed output rows. While

the proposed flow of data optimizations effectively improve the resource utilization for

transposed convolution, there arises an interesting architectural challenge: how to fully

utilize the parallelism between the computations of the output rows that require different

number of cycles for horizontal accumulation (two cycles for even-indexed and three cycles

for odd-indexed output rows)? If a SIMD execution model is used, some of the compute

nodes have to remain idle until the accumulations for the output rows that require more

cycles for horizontal accumulation, finish. The next section elaborates on the GANAX

architecture that exploits the introduced flow of data for transposed convolution and fully

utilize the parallelism between distinct output rows by conjoining the MIMD and SIMD

execution models.

6.4 Architecture Design for GANAX

The execution flow of the generative model (i.e., zero-insertion and variable number of

operations per each convolution window) in GANs poses unique architectural challenges

that the traditional convolution accelerators [110, 184, 111, 153, 182] can not adequately

145

Strided Index
Generators

Ac
ce

ss
μ-

En
gi

ne
Buffer

Ex
ec

ut
e

μ-
En

gi
ne

MAC

PE
11

Strided Index
Generators

Ac
ce

ss
μ-

En
gi

ne

Buffer

Ex
ec

ut
e

μ-
En

gi
ne

MAC

PE
12

Strided Index
Generators

Ac
ce

ss
μ-

En
gi

ne

Buffer

Ex
ec

ut
e

μ-
En

gi
ne

MAC

PE
1N

Local μOp Buffer

G
lo

ba
l μ

O
p

Bu
ffe

r

Memory

Strided Index
Generators

Ac
ce

ss
μ-

En
gi

ne

Buffer

Ex
ec

ut
e

μ-
En

gi
ne

MAC

PE
M

1

Strided Index
Generators

Ac
ce

ss
μ-

En
gi

ne

Buffer

Ex
ec

ut
e

μ-
En

gi
ne

MAC
PE

M
2

Strided Index
Generators

Ac
ce

ss
μ-

En
gi

ne

Buffer

Ex
ec

ut
e

μ-
En

gi
ne

MAC

PE
M

N

Local μOp Buffer

G
lo

ba
l D

at
a

Bu
ffe

r

PV1

PVM

Memory

Figure 6.6: Top-level block diagram of GANAX architecture.

address. There are two fundamental architectural challenges for GAN acceleration as fol-

lows:

Resource underutilization. The first challenge arises due to the variable number of op-

erations per each convolution window in transposed convolution operation. In most of

recent accelerators [184, 110, 153, 182], which mainly target conventional convolution

operation, the processing engines generally work in a SIMD manner. The convolution

windows in conventional convolution operation follow a regular pattern and the number of

operations per each of these windows remains invariable. Due to these algorithmic char-

acteristics of conventional convolution operation, a SIMD execution model is an efficient

and practical model. However, since the convolution windows in transposed convolution

operations exhibit a variable number of operations, a SIMD execution model is not an

adequate design choice for these operations. While using a SIMD model utilizes the data

parallelism between the convolution windows with the same number of operations, its

146

efficiency is limited in exploiting this execution model for the windows with a different

number of operations. That is, if one uses a convolution accelerator with a SIMD execution

model for transposed convolution operations, the processing engines that are performing

the operations for a convolution window with fewer number of operations have to remain

idle until the operations for other convolution windows finish. To address this challenge,

we introduce a unified MIMD-SIMD architecture to accelerate the transposed convolution

operation without compromising the efficiency of conventional convolution accelerators

for convolution operations. This unified MIMD-SIMD architecture effectively maximizes

the utilization of accelerator compute resources while effectively utilizing the parallelism

between the convolution windows with different number of operations.

Inconsequential computations. The second challenge emanates from the large number

of zeros inserted in the multidimensional input feature map for transposed convolution

operations. Performing MAC operations on these zeros is inconsequential and wastes

accelerator resources (See Figure 6.1), if not skipped. We address this challenge by lever-

aging an observation that even though the data access patterns in transposed convolution

operations are irregular, they are still structured. Furthermore, these structured patterns are

repetitive across the execution of transposed convolutional operations. Building upon these

observations, the GANAX architecture decouples the operand access and execution. Each

processing engine in this architecture consists of a simple access engine that repetitively

generates the addresses for operand accesses without interrupting the execute engine. In

the next sections, we examine these architectural challenges in details for GAN acceleration

and expound the proposed microarchitectural solutions.

6.4.1 Unified MIMD-SIMD Architecture

In order to mitigate the resource underutilization, we devise a unified SIMD-MIMD archi-

tecture that reaps the benefits of SIMD and MIMD execution models at the same time. That

is, while our architecture executes the operations for convolution windows with distinct

147

Input Strided
Addr. Generator

Weight Strided
Addr. Generator

Output Strided
Addr. Generator

Input Addr.
FIFO

Weight Addr.
FIFO

Output Addr.
FIFOAc

ce
ss

μ-
En

gi
ne

Output
Buffer

Ex
ec

ut
e

μ-
En

gi
ne

ALU

Acc Reg.

μOp
FIFO

Input
Buffer

Weight
BufferAd

dr
.

Ad
dr

.

Ad
dr

.Data

Non-Linear
Unit M

od
ul

o
Ad

de
r

Pr
im

ar
y

Ad
dr

es
s

0

1

Initiate

+ -

 Repeat
Stop

EndStep

Addr.

Offset

+

Data Address

De
cr

em
en

t

(a) GANAX Decoupled Access-Execute Architecture (b) Strided μIndex Generator

Figure 6.7: Organization of decoupled Access-Execute architecture.

computation patterns in a MIMD manner, it performs the operations of the convolution

windows with the same computation pattern in a SIMD manner. Figure 6.6 illustrates the

high-level diagram of the GANAX architecture, which is comprised of a set of identical

processing engines (PE). The PEs are organized in a 2D array and connected through

a dedicated network. Each PE consists of two µ-engines, namely the access µ-engine

and the execute µ-engine. The access µ-engine generates the addresses for source and

destination operands, whereas execute µ-engine merely performs simple operations such

as multiplication, addition, and multiply-add. The memory hierarchy is composed of an

off-chip memory and two separate on-chip global buffers, one for data and one for µops.

These global on-chip buffers are shared across all the PEs. Each PE operates on one row

of filter and one row of input and generates one row of partial sum values. The partial

sum values are further accumulated horizontally across the PEs to generate the final output

value.

Using a SIMD model for transposed convolution operations leads to resource under-

utilization. The PEs that perform the computation for convolution windows with fewer

number of operations remains idle, wasting computational resources. The simple solution

is to replace the SIMD model with a fully MIMD computing model and utilize the paral-

lelism between the convolution windows with different number of operations. However,

a MIMD execution model requires augmenting each processing engine with a dedicated

operation buffer. While this design resolves the underutilization of resources, it imposes

148

a large area overhead, more than 3.0× area overhead. Furthermore, fetching and decod-

ing instructions from each of these dedicated operation buffers significantly increases the

von Neumann overhead of instruction fetch and decode. To address these challenges, we

design the GANAX architecture upon this observation that PEs in the same row perform

same operations for a large period of time. As such, the proposed architecture leverages

this observation and develop a middle ground between a fully SIMD and a fully MIMD

execution model. The goal of designing the GANAX architecture is multi-faceted: (1)

improve the PE underutilization by combining MIMD/SIMD model of computation for

transposed convolution operations (2) without compromising the efficiency of SIMD model

for conventional convolution operations. Next, we explain the two novel microarchitectural

components that enable an efficient MIMD-SIMD accelerator design for GAN acceleration.

Hierarchical µop buffers. To enable a unified MIMD and SIMD model of execution, we

introduce a two-level µop buffer. Figure 6.6 illustrates the high-level structure of the two-

level µop buffer. The two-level µop buffer consists of a global and a local µop buffer. The

local and global µop buffers work cooperatively to perform the computations for GANs.

Each horizontal group of PEs, called processing vector (PV), shares a local µop buffer,

whereas, the global µop buffer that is shared across all the PVs. The GANAX accelerator

can operate in two distinct modes: SIMD mode and MIMD-SIMD mode. Since all the

convolution windows in the convolution operation have the same number of multiply-adds,

the SIMD execution model is a best fit. As such for this case, the global µop buffer bypasses

the local µops and broadcasts the fetched µop to all the PEs. On the other hand, since

the number of operations varies from one convolution window to another in transposed

convolution operation, the accelerator works in MIMD-SIMD mode. In this mode, the

global µop buffer sends distinct indices to each local µop buffer. Upon receiving the index,

each local µop buffer broadcasts a µop, at the location pointed by the received index, to

all the underlying PEs. Using MIMD-SIMD mode enables the GANAX accelerator to

not only utilize the parallelism between the convolution windows with the same number

149

of operations, but also utilize the parallelism across the windows with distinct number of

operations.

Global µop buffer. Before starting the computations of a layer, a sequence of high-level

instructions, which defines the structure of each GAN layer, are statically translated into

a series of µops. These µops are pre-loaded into the global µop buffer, and then the

execution starts. Each of the µops either performs an operation across all the PEs (SIMD)

or initiates an µop in each PV (MIMD-SIMD). The initiated operation in the MIMD-SIMD

mode may vary from one PV to another. The SIMD and MIMD µops can be stored in the

global µop buffer in any order. A 1-bit field in the global µop identifies the type of µop:

SIMD or MIMD-SIMD.

In the SIMD mode—all the PEs share the same µop globally but execute it on distinct

data—the global µop defines the intended operation to be performed by all the PEs. In

this mode, the local µop buffer is bypassed and the global µop are broadcasted to all the

PEs at the same time. Upon receiving the µop, all the PEs perform the same operation,

but on distinct data. In the MIMD-SIMD mode—all the PEs within the same PV share

the same µop but different PVs may execute different µops—the global µop is partitioned

into multiple fields (one filed per each PV), each of which defines an index for accessing

an entry in the local µop buffer. Upon receiving the index, each local µop buffer retrieves

the corresponding µop stored at the given index and broadcasts it to all the PEs which

it controls. The global µop buffer is double-buffered so that the next set of µops for

performing the computations of GAN layeri+1 can be loaded into the buffer while the µops

for GAN layeri are being executed.

Local µop buffer. In the GANAX architecture, each PV has a dedicated local µop buffer.

In the SIMD mode, the local µop buffers are completely bypassed and all the PEs perform

the same operation that are sent from global µop buffer. In the MIMD-SIMD mode, each

local µop buffer is accessed at the location specified by a dedicated field in the global

µop. This location may vary from one local µop buffer to another. Then, the fetched µop

150

is broadcasted to all the PEs within a PV to perform the same operation but on distinct

data. Each GAN layer may require a distinct sequence of µops both globally and locally.

Furthermore, each PE may need to access millions of operands at different locations to

perform the computations of a GAN layer. Therefore, we may need not to only add large

µop buffers to each PE, but also drain and refill the µop buffers multiple times. Adding

large buffers to the PEs adds a large area overhead, which could have been utilized to

improve the computing power of the accelerator. Also, the process of draining and refilling

the µop buffers imposes a significant overhead in terms of both performance and energy.

To mitigate these overheads, we introduce decoupled access-execute microarchitecture that

enables us to significantly reduce the size of µop buffers and eliminate the need to drain

and refill the local µop buffers for each GAN layer.

6.4.2 Decoupled Access-Execute µEngines

Though the data access patterns in transposed convolution operation are irregular they are

still structured. Furthermore, the data access patterns are repetitive across the convolution

windows. Building upon this observation, we devise a microarchitecture that decouples the

data accesses from from the data processing. Figure 6.7 illustrates the organization of the

proposed decoupled access-execute architecture. The GANAX decoupled access-execute

architecture consists of two major microarchitectural units, one for address generation

(access µ-engine) and one for performing the operations (execute µ-engine).

The access µ-engine generates the addresses for the input, weight, and output buffers.

The input, weight, and output buffers consume the generated addresses for each data read-

/write. The execute µ-engine, on the other hand, receives the data from the input and

weight buffers, performs an operation, and stores the result in the output buffer. The µops

of these two engines are entirely segregated. However, the access and execute µ-engines

work cooperatively to perform an operation. The µops for access µ-engine handle the

configuration of index generator units. The µops for execute µengine only specify the type

151

of operation to be performed on data. As such, the execute µops do not need to include

any fields for specifying the source/destination operands. Every cycle, the access µengine

sends out the addresses for source and destination operands based on its preconfigured

parameters. Then, the execute µengine performs an operation on the source operands. The

result of the operation is, then, stored in the location that is defined by the access µengine.

Having decoupled µ-engines for accessing the data and executing the operations has a

paramount benefit of reusing execute µops. Since there is no address field in the execute

µops, we can reuse the same execute µop on distinct data over and over again without the

need to change any fields in the µops. Reusing the same µop on distinct data helps to

significantly reduce the size of µop buffers.

Access µ-engine. Figure 6.7 illustrates the microarchitectural units of access µ-engine.

The main function of access µ-engine is to generate the addresses for source and destina-

tion operands based on a preloaded configuration. While designing a full-fledged access

µ-engine that is capable of generating various patterns of data addresses establishes flex-

ibility for the GANAX accelerator, but it is an overkill for our target application (i.e.,

GANs). As mentioned in the dataflow section (Section 6.3), the data access patterns for

transposed convolution operations are irregular, yet structured. Based on our analysis over

the evaluated GANs, we observe that the data accesses in the GANAX dataflow are either

strided or sequential. The stride value for a strided data access pattern depends on the

number of inserted zeros in the multidimensional input activation. Furthermore, these data

access patterns are repetitive across a large number of convolution windows and for large

number of cycles. We leverage these observations to simplify the design of the access µ-

engine. Figure 6.7(a) depicts the block diagram of the access µengine in GANAX. The

access engine mainly consists of one or more strided µindex generators. The µindex gen-

erator can generate one address every cycle, following a pattern governed by a preloaded

configuration. Since the data access patterns may vary from one layer to another, we design

a reconfigurable µindex generator.

152

Figure 6.7(b) depicts the block diagram of the proposed reconfigurable µindex gener-

ator. There are five configuration registers that govern the pattern for data address genera-

tion.

The Addr. configuration register specifies the initial address from which the data ad-

dress generation starts, while the Offset configuration register can be used to offset the

range of generated addresses as needed. The Step configuration register specifies the

step size between two consecutive addresses, while the End configuration register spec-

ifies the final value up to which the addresses should be generated. Finally, the Repeat

configuration register indicates the number of times that a configured data access pattern

should be replayed. The modulo adder, which consists of an adder and a subtractor, is

used to enable data address generation in a rotating manner. The modulo adder performs

a modulo addition on the values stored in the Addr. and Step registers. If the result of

this modulo addition is fewer than the value in End register, the calculated result is sent

to the output. This means that the next address to be generated is still within the range of

Addr. and End register values. Otherwise, the result of the modulo addition minus the

value of End register is sent to the output. That is, the next address to be generated is

beyond the End register value and the address generation process must start over from the

beginning. In this scenario, the Decrement signal is also asserted which cause the value

of the Repeat register to be decreased by one, indicated one round of address generation

is finished. Once the Repeat register reaches zero, the Stop signal is asserted and no more

addresses are generated. After configuring the parameters, the strided µindex generator can

yield one address per cycle without any further interventions from the controller. Using this

configurable µindex generator along the observation that the data address patterns in GANs

are structured, the GANAX architecture can bypass the inconsequential computations and

save both cycles and energy.

Execute µ-engine. Figure 6.7(b) depicts the microarchitectural units of execute µ-engine.

The execute µ-engine consists of an ALU, which can perform simple operations such

153

as addition, multiplication, comparison, and multiply-add. The main job of execute µ-

engine is just to perform an operation on the received data. At each cycle the execute

µ-engine consumes one µop from the µop FIFO and performs the operation on the source

operands and store the result back into the destination operand. If the µOp FIFO becomes

empty, the execute µop halts and no further operation is performed. In this case, all the

input/weight/output buffers are notified to stop their reads/writes. The decoupling between

access and execute µengines enables us to remove the address field from the execute µops.

Removing the address field from the execute µops allow us to reuse the same µops over

and over again on different data. Furthermore, we leverage this µop reuse and the fact that

the computation of the CNN requires a small set of µops (≈ 16) to simplify the design

of the µop buffers. Instead of draining and refilling the µop buffers, we preload all the

necessary µops for convolution and transposed convolution operations in the µop buffers.

For the local µop buffer, we load all the µops before starting the computation of a GAN.

Synchronization between µengines. In the GANAX architecture (Figure 6.7), there is

one address FIFO for each strided µindex generator. The address FIFOs perform the

synchronization between access µ-engine and execute µ-engine. Once an address is gener-

ated by a strided µindex generator, the generated address is pushed into the corresponding

address FIFO. The addresses in the address FIFOs are later consumed to read/write data

from/into the data buffers (i.e., input/weight/output buffers). If any of the address FIFOs

are full, the corresponding strided µindex generator stops generating new addresses. In

the case that any of the address FIFOs are empty, no data is read/written from/into its

corresponding address FIFO.

6.5 Instruction Set Architecture Design (µOps)

The GANAX ISA should provide a set of µops to efficiently map the proposed flow of

data for both generative and discriminative models onto the accelerator. Furthermore, these

µops should be sufficiently flexible to serve distinct patterns in the computation for both

154

convolution and transposed convolution operations. Finally, to keep the size of µop buffers

modest, the set of µops should be succinct. To achieve these multifaceted goals, we first

introduce a set of algorithmic observations that are associated with GAN models. Then,

we introduce the major µops that enable the execution of GAN models on GANAX.

6.5.1 Algorithmic Observations

The following elaborates a set of algorithmic observations that are the foundation of the

GANAX µops.

(1) MIMD/SIMD execution model. Due to the regular and structured patterns in the

computation across the convolution windows in conventional DNNs, they are best suited

for SIMD processing. However, the patterns in the computation of GANs are inherently

different between generative and discriminative models. Due to the inserted zeros in the

generative models, their patterns in the computation vary from one convolutional window

to another. We observe that exploiting a combination of SIMD and MIMD execution model

can be more efficient in accelerating GAN models than solely relying on SIMD. Therefore,

the focus of the GANAX µops is to include the operations that enable GANAX to fully

utilize the SIMD and MIMD execution models.

(2) Repetitive computation patterns. We observe that even though GANs require a large

number of computations, most of these computations are similar between generative and

discriminative models. In addition, these computations are repetitive over a long period

of time. Building upon this observation, we introduce a customized repeat µop that sig-

nificant reduces the µop footprints. In addition, the commonality between the operations

in generative and discriminative models allows us to design a succinct, yet representative,

set of µops. To further reduce the µop footprints, we introduce a dedicated set of execute

µops that only define the type of operations. These µops are reused for distinct data during

the execution of generative and discriminative models on the GANAX architecture.

(3) Structured and repetitive memory access patterns. We observe that despite the

155

irregularity of memory access patterns in generative models, they are still structured and

repetitive. Analyzing the data access patterns of various GANs reveals that their memory

access patterns are either sequential or strided. Building upon this observation and our

decoupled access-execute architecture, we introduce a set of access µops that are used

merely to configure the access µengines and initiate the address generation process. Once

initiated, the access µengines generate the configured access patterns over and over until

they are intervened.

6.5.2 Access µOps

GANAX access µops are used to configure the access µengine and initiate/stop the process

of address generation. These µops are executed across all the PEs within a PV whose index

is indicated by pv index field in the µops. Furthermore, in all of these µops, %addrgen idx

specifies the index of the targeted address generator in the access µengine. The supported

µops in the access µengines are as follows:

1. access.cfg %pv idx, %addrgen idx, %dst, imm: This µop loads a 16-bit imm value into

one of the five %dst configuration registers (i.e., as shown in Figure 6.7(b), these con-

figuration registers are Addr., Offset, Step, End, and Repeat) of one of the address

generators in the access µengine.

2. access.start %pv idx, %addrgen idx: This µop initiates the address generation in one

of the address generators in the access µengine. The process of address generation

continues until an acceess.stop µop is executed or the iteration register reaches zero.

3. access.stop %pv idx, %addrgen idx: This µop intervenes the address generation of one of

the address generators in the access µengine. The address generation can be re-initiated

again by executing an access.start µop.

156

6.5.3 Execute µOps

Execute µops are categorized into two groups: (1) SIMD µops are fetched from each PE’s

local µop buffer and executed locally within each PE and (2) the MIMD µops are fetched

from the global µop buffer and executed across all PEs. The SIMD µops can be executed

in the MIMD manner as well. That is, the MIMD µops are a superset of the SIMD µops.

We first introduce the SIMD µops, then explain the extra µops that belong to the MIMD

group.

SIMD µops. SIMD group only comprises a succinct, yet representative set of µops for

performing convolution and transposed convolution operations. The combination of SIMD

µops and the decoupled access-execute architecture in GANAX helps to reduce the size of

local µop buffers. The SIMD µops do not have source or destination fields and only specify

the type of operation to be executed. Once executed, depending on the type of operation, a

given PE consumes the generated addresses by the µindex generators and delivers the data

to the execute µengine. Since these µops do not have any source or destination register,

they are pre-loaded into the local µop buffers before starting the execution. Then, they

are re-used over and over, on distinct data whose addresses are generated by the access

µengines. The SIMD µops are as follows:

1. add, mul, mac, pool, and act: Depending on the type, these µops consume one or more

addresses from the µindex generators for source and destination operands. For example,

add consumes two addresses for the source operands and one address for the destination

operand, but act uses one address for the source operand and one address for the desti-

nation operand.

2. repeat: This µop causes the next fetched µop to be repeated a specified number of

times. This number is specified in a microarchitectural register in each PE. This register

is pre-loaded with a MIMD µop before the execution starts.

MIMD µops. The MIMD µops are loaded into the global µop buffers and executed

157

Table 6.1: The evaluated GAN models, their released year, and the number of convolution (Conv) and transposed
convolution (TConv) layers per generative and discriminative models.

Name Year # Conv
3D-GAN
ArtGAN
DCGAN
DiscoGAN
GP-GAN

2016
2017
2015
2017
2017

-
-
-
5
-

MAGAN 2017 -

TConv
4
5
4
4
4
6

Conv # TConv
Generative Discriminative

5
6
5
5
5
6

-
-
-
-
-
6

Description
3D objects generation
Complex artworks generation
Unsupervised representation learning
Style transfer from one domain to another
High-resolution image generation
Stable training procedure for GANs

globally across all the PEs. In addition to all the SIMD µops, the following µops execute

in a MIMD manner:

1. mimd.ld %pv idx, %dst, imm: This µop loads the immediate value (imm) into one of the

microarchitectural registers (%dst) of all the PEs with a PV. The %pv idx, specifies the

index of the target PV. This µop is mainly used to load an immediate value into the

repeat register.

2. mimd.exe %µop index1,..., %µop indexi: Upon receiving this µop, the ith PV fetches

a µop located at location %µop indexi from its local µop buffer and executes it across

all the PEs horizontally. Since the value of the %µop index may vary from one PV to

another, this µop causes GANAX to operate in a MIMD manner.

6.6 Methodology

Workloads. We use several state-of-the-art GANs to evaluate the GANAX architecture.

Table 6.1, shows the evaluated GANs, a brief description of their applications, and the

number of convolution (Conv) and transposed convolution (TConv) layers per generative and

discriminative models.

Hardware design and synthesis. We implement the GANAX microarchitectural units

including the strided µindex generator, the arithmetic logic of the PEs, controllers, non-

linear function, and other logic hardware units in Verilog. We use TSMC 45nm standard-

cell library and Synopsys Design Compiler (L-2016.03-SP5) to synthesize these units and

obtain the area, delay, and energy numbers.

Energy measurements. Table 6.2 shows the energy numbers for major micro-architectural

158

Operation Energy (pJ/Bit) Relative Cost
Register File Access
16-bit Fixed Point CE
Inter-PE Communication
Global Buffer Access
DDR4 Memory Access

0.20
0.36
0.40
1.20
15.00

1.0
1.8
2.0
6.0
75.0

Table 6.2: Energy comparison between GANAX microarchitectural units and memory. PE energy includes the
energy consumption of an arithmetic operation and the strided µindex generators.
units, memory operations, and buffer accesses in TSMC 45nm technology. To measure the

area and read/write access energy of the register files, SRAMs, and local/global buffers,

we use CACTI-P [163]. To have a fair comparison, we use energy numbers reported in

TETRIS [110], which has a similar PE architecture as EYERISS. In Table 6.2, the energy

overhead of strided µindex generators is included in the normalized energy cost of PE. For

DRAM accesses, we use the Micron’s DDR4 system power calculator [161]. The same

frequency (500 MHz) is used for both EYERISS and GANAX in all the experiments.

Architecture configurations. In this thesis, we study a configuration of GANAX with

16 Processing Vectors (PVs) each with 16 Processing Engines (PEs). We use the default

EYERISS configurations for on-chip memories such as the size of input and partial sum

registers, weight SRAM, and global data buffer. The same on-chip memory sizes are used

for GANAX. Each local µop buffer has 16 entries. The number of entries is sufficient to

encompass all the execute µops. The global µop buffer has 32 entries each with 64 bits,

four bits per each PV. Each local µop uses these four bits to index its local µop buffer. An

extra one bit in the global µops determines the execution model of the accelerator for the

current operation (i.e., SIMD or MIMD-SIMD).

Area analysis. Table 6.3 shows the major architectural components for the baseline ar-

chitecture (EYERISS [184, 111]) and GANAX in 45nm technology node. For logic of the

microarchitectural units, we use the reported area from the synthesis. For the memory

elements, we use CACTI-P [163] and the reported numbers in EYERISS [184]. In order to be

consistent in the results, we scaled down the reported area numbers in EYERISS from 65nm

to 45nm. To have a fair comparison between EYERISS and GANAX, the same number of

PEs and on-chip memory are used for both accelerators. Under this setting, GANAX has

159

Table 6.3: Area measurement of the major hardware units with TSMC45nm.

G
AN

AX

GANAX Hardware Units
Area

um2 %
Input Register 766.9

Configuration
12 ✕ 16 Bits 2.6%

Partial Sum Register 1533.724 ✕ 16 Bits 5.2%
Weight SRAM 14378.7224 ✕ 16 Bits 48.8%
Multiply-and-Accumulate 2875.716-bit Fixed Point 9.8%
Non-Linear Function 95.9Lookup Table 0.3%
Strided μIndex Generator 479.33 1.6%
Local μOP Buffer 958.616 ✕ 16 Bits 3.3%
I/O FIFOs 5026.88 ✕ 32 Bits 17.1%
PE Controller 3356.0N/A 11.4%Pr

oc
es

si
ng

 E
ng

in
e

(P
E)

Total Area / PE 29471.6 100.0%
Total PE Array 16 ✕ 16 7544466.2 83.2%
Global μOP Buffer 32 ✕ 64 Bits 9585.8 0.1%
Global Data Buffer 108 KBytes 1102366.9 12.2%
Global Instruction Buffer 27 KBytes 275591.7 3.0%
Others (NoC, Config Buffers) N/A 115029.6 1.3%
Global Controller N/A 19171.6 0.2%

9066211.8 100.0%GANAX Total Area

an area overhead of ≈7.8 % compared to EYERISS.

Microarchitectural simulation. Table 6.3 shows the major microarchictural parameters

of GANAX. We implement a microarchitectural simulator on top of the EYERISS simula-

tor [110]. The extracted energy numbers from logic synthesis and CACTI-P are integrated

into the simulator to measure the energy consumption of the evaluated network models on

GANAX. To evaluate our proposed accelerator, we extend the EYERISS simulator with the

proposed ISA extensions and the GANAX flow of data. For all the baseline numbers, we

use the plain version of the simulator.

6.7 Evaluation

Overall performance and energy consumption comparison. Figure 6.8a depicts the

speedup of the generative models with GANAX over EYERISS [111]. On average,

GANAX yields 3.6× speedup improvement over EYERISS. The generative models with

a larger fraction of inserted zeros in the input data and larger number of inconsequen-

tial operations in transposed convolution layers enjoy a higher speedup with GANAX.

Across all the evaluated models, 3D-GAN achieves the highest speedup (6.1 ×). This

higher speedup is mainly attributed to its larger number of inserted zeros in its transposed

convolution layers. On average, the number of inserted zeros for 3D-GAN is around 80%

(See Figure 6.1). On the other extreme, MAGAN enjoys a speedup of merely 1.3×, which

160

3D-GAN
ArtG

AN
DCGAN

DiscoGAN

GP-GAN
MAGAN

Geomean
0.0×
1.0×
2.0×
3.0×
4.0×
5.0×
6.0×
7.0×

S
pe

ed
up

(a) Speedup

3D-GAN
ArtG

AN
DCGAN

DiscoGAN

GP-GAN
MAGAN

Geomean
0.0×
1.0×
2.0×
3.0×
4.0×
5.0×

E
ne

rg
y

R
ed

uc
tio

n

(b) Energy Reduction

Figure 6.8: Speedup and energy reduction of generative models compared to EYERISS [111].
is attributed to the lowest number of inserted zeros in its transposed convolution layers

compared to other GANs.

Figure 6.8b shows the energy reduction achieved by GANAX over EYERISS. On

average, GANAX effectively reduces the energy consumption by 3.1× over the EYERISS

accelerator. The GANs (3D-GAN, DCGAN, and GP-GAN) with the highest fraction of

zeros and inconsequential operations in the transposed convolution layers enjoy an energy

reduction of more than 4.0×. These results reveal that our proposed architecture is efficient

in addressing the main sources of inefficiencies in the generative models. Figure 6.10

shows the normalized runtime and energy breakdown between the discriminative and gen-

erative models. The first (second) bar shows the normalized runtime (energy) for EYERISS

(GANAX). As the results show, while GANAX significantly reduces both the runtime

and energy consumption of generative models, it delivers the same level of efficiency as

EYERISS for the discriminative models.

Energy breakdown of the microarchitectural units. Figure 6.9 illustrates the overall

normalized energy breakdown of the generative models between distinct microarchitectural

components of the GANAX architecture.

The first and second bars show the normalized energy consumed by EYERISS and

161

3D-GAN
ArtG

AN
DCGAN

DiscoGAN

GP-GAN
MAGAN

Average
0%

20%

40%

60%

80%

100%

N
or

m
al

iz
ed

E
ne

rg
y

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

PE RegF NoC GBuf DRAM

Figure 6.9: Breakdown of energy consumption of the generative models between different microarchitectural units.
The first bar shows the normalized energy breakdown for EYERISS. The second bar show the energy breakdown
for GANAX normalized to EYERISS.

3D-GAN
ArtG

AN
DCGAN

DiscoGAN

GP-GAN
MAGAN

Average
0%

20%

40%

60%

80%

100%

N
or

m
al

iz
ed

R
un

tim
e E

ye
ris

s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

Discriminative Generative

(a) Runtime

3D-GAN
ArtG

AN
DCGAN

DiscoGAN

GP-GAN
MAGAN

Average
0%

20%

40%

60%

80%

100%

N
or

m
al

iz
ed

E
ne

rg
y E

ye
ris

s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

Discriminative Generative

(b) Energy

Figure 6.10: Breakdown of (a) runtime and (b) energy consumption between discriminative and generative models
normalized to the runtime and energy consumption of EYERISS. For each network, the first (second) bar show the
normalized value when the application is executed on EYERISS (GANAX).
GANAX, respectively. As the results show, GANAX reduces the energy consumption of

all the microarchitectural units. This reduction is mainly attributed to the efficient flow of

data in GANAX and the decoupled access-execute architecture that cooperatively dimin-

ishes the sources of inefficiencies in the execution of transposed convolution operations.

Processing elements utilization. To show the effectiveness of GANAX dataflow in im-

proving the resource utilization, we measure what percentage of the total runtime, the PEs

are actively performing a consequential operation. Figure 6.11 depicts the utilization of

PEs for EYERISS and GANAX. GANAX exhibits a high percentage of PE utilization,

around 90% across all the evaluated GANs.

This high resource utilizations in GANAX is mainly attributed to the proposed dataflow

that can effectively force the computation of the rows with similar computation pattern

adjacent to each other. This adjacency eliminates the inconsequential operations, which

leads to a significant improvement in the utilization of the processing engines.

162

3D-GAN
ArtG

AN
DCGAN

DiscoGAN

GP-GAN
MAGAN

Average
0%

20%

40%

60%

80%

100%

P
E

U
til

iz
at

io
n

Eyeriss GANAX

Figure 6.11: Average PE utilization for the generative models in EYERISS and GANAX.

6.8 Conclusion

Generative adversarial networks harness both generative and discriminative deep models

in a game theoretical framework to generate close-to-real synthetic data. The generative

model uses a fundamentally different mathematical operator, called transposed convolu-

tion, as opposed to the conventional convolution operator. Transposed convolution ex-

trapolates information by first inserting zeros and then applying convolution that needs to

cope with irregular placement of none-zero data. To address the associated challenges for

executing generative models without sacrificing accelerator performance for conventional

DNNs, this work devised the GANAX accelerator. This accelerator introduced a unified

architecture that conjoins SIMD and MIMD execution models to maximize the efficiency

of the accelerator for both generative and discriminative models. On the one hand, to

conform to the irregularities in the generative models, which are formed due to the zero-

insertion step, GANAX supports selective execution of only the required computations by

switching to a MIMD-SIMD mode. To support this mixed execution mode, GANAX offers

a decoupled micro access-execute paradigm at the finest granularity of its processing en-

gines. On the other hand, for the conventional discriminator DNNs, it sets the architecture

in a purely SIMD mode. The evaluation results across a variety of generative adversarial

networks reveal that the GANAX accelerator delivers, on average, 3.6× speedup and 3.1×

energy reduction for the generative models. These significant benefits are attained without

sacrificing the execution efficiency of the conventional discriminator DNNs.

163

CHAPTER 7

RELATED WORK

7.1 Limited Precision Neuro-General Computing

This research lies at the intersection of (a) general-purpose approximate computing, (b)

accelerators, (c) analog and digital neural hardware, (d) neural-based code acceleration, (e)

and limited-precision learning. This work combines techniques in all these areas to provide

a compilation workflow and the architecture/circuit design that enables code acceleration

with limited-precision mixed-signal neural hardware. In each area, we discuss the key

related work that inspired our work.

General-purpose approximate computing. Several studies have shown that diverse

classes of applications are tolerant to imprecise execution [208, 209, 210, 211, 26]. A

growing body of work has explored relaxing the abstraction of full accuracy at the circuit

and architecture level for gains in performance, energy, and resource utilization [9, 11,

10, 12, 13, 14, 19, 15, 16, 17, 18]. These circuit and architecture studies, although proven

successful, are limited to purely digital techniques. We explore how a mixed-signal, analog-

digital approach can go beyond what digital approximate techniques offer.

Accelerators. Research on accelerators seeks to synthesize efficient circuits or FPGA

configurations to accelerate general-purpose code [212, 213, 214, 215, 130]. Similarly,

static specialization has shown significant efficiency gains for irregular and legacy code [39,

216]. More recently, configurable accelerators have been proposed that allow the main CPU

to offload certain code to a small, efficient structure [217, 218]. This paper extends the prior

164

work on digital accelerators with a new class of mixed-signal, analog-digital accelerators.

Analog and digital neural hardware. There is an extensive body of work on hardware

implementations of neural networks both in digital [219, 220, 221] and analog [222, 223,

219, 224, 22]. Recent work has proposed higher-level abstractions for implementation

of neural networks [225]. Other work has examined fault-tolerant hardware neural net-

works [226, 227]. In particular, Temam [226] uses datasets from the UCI machine learning

repository [228] to explore fault tolerance of a hardware neural network design. In contrast,

our compilation, neural-network selection/training framework, and architecture design aim

at applying neural networks to general-purpose code written in familiar programming mod-

els and languages, not explicitly written to utilize neural networks directly.

Neural-based code acceleration. A recent study [229] shows that a number of applica-

tions can be manually reimplemented with explicit use of various kinds of neural networks.

That study did not prescribe a programming workflow, nor a preferred hardware archi-

tecture. More recent work exposes analog spiking neurons as primitive operators [199].

This work devises a new programming model that allows programmers to express digital

signal-processing applications as a graph of analog neurons and automatically maps the

expressed graph to a tiled analog, spiking-neural hardware. The work in [199] is restricted

to the domain of applications whose inputs are real-world signals that should be encoded

as pulses. Our approach addresses the long-standing challenges of using analog computa-

tion (programmability and generality) by not imposing domain-specific limitations, and by

providing analog circuitry that is integrated with a conventional digital processor in a way

that does not require a new programming paradigm.

Limited-precision learning. The work in [230] provides a complete survey of learning

algorithms that consider limited precision neural hardware implementation. We tried vari-

ous algorithms, but we found that CDLM [24] was the most effective. More sophisticated

165

limited-precision learning techniques can improve the reported quality results in this the-

sis and further confirm the feasibility and effectiveness of the mixed-signal, approach for

neural-based code acceleration.

7.2 Neuro-General Computing for GPU Throughput Processors

Recent work has explored a variety of approximation techniques that include: (a) approx-

imate storage designs [231, 14] that longer lifetime [231] and trades quality of data for

reduced energy [14]. (b) voltage over-scaling [13, 148, 16], (c) loop perforation [58, 37,

232], (d) loop early termination [36], (e) computation substitution [9, 233, 36, 234], (f)

memoization [17, 42, 43], (g) limited fault recovery [15, 235, 235, 211, 37, 208], (h)

precision scaling [26, 236], (i) approximate circuit synthesis [50, 237, 142, 238, 137, 239,

240], and (j) neural acceleration [12, 6, 48, 45, 46, 47].

This work falls in the last category; yet, we exclusively focus on the integration of

neural accelerators within GPU throughput processors. The prior work on neural acceler-

ation mostly focuses on single-threaded CPU code acceleration by either loosely coupled

neural accelerators [46, 47, 45, 199, 241] or tightly-coupled ones [12, 6]. Grigorian et

al. study the effects of eliminating control-flow divergence by converting SIMD code to

software neural networks with no hardware support [48]. However, prior work does not

explore tight integration of neural hardware in throughput processors; and does not study

the interplay of data parallel execution and hardware neural acceleration. Prior to this work,

the benefits, limits, and challenges of integrating hardware neural acceleration within GPUs

for many-thread data-parallel applications was unexplored.

There are several other approximation techniques in the literature that can or have

been applied to GPU architectures. Loop perforation [58] periodically skips loop iteration

for gains in performance and efficiency. Green [36] terminates loops early or substitute

compute intensive functions with simpler, lower quality versions that are provided by the

programmer. Relax [15] is compiler/architecture system for suppressing hardware fault

166

recovery in approximable regions of code, exposing these errors to the application. Fuzzy

memoization forgoes invoking a floating point unit if the inputs are in the neighborhood

of previously seen inputs. The results of the previous calculation is reused as an approx-

imate result. Arnau et al. use hardware memoization to reduce redundant computation

in GPUs [43]. Sartori et al. propose a technique that mitigates branch divergence by

forcing the divergent threads to execute the most popular path [233]. In case of memory

divergence, they force all the threads to access the most commonly demanded memory

block. SAGE [9] and Paraprox [42] perform compile-time static code transformations on

GPU kernels that include data compression, profile-directed memoization, thread fusion,

and atomic operation optimization. Our quality control mechanism takes inspiration from

the quality control in these two works.

In contrast, we describe a hardware approximation technique that integrates neural

accelerators within the pipeline of the GPU cores. In our design, we aim at minimizing

the pipeline modifications and utilizing existing hardware components. Distinctively, our

work explores the interplay between data parallelism and neural acceleration and studies

its limits, challenges, and benefits.

7.3 Acceleration-Approximation in Deep Neural Networks

SNAPEA is fundamentally different from the prior studies on designing accelerators for

CNNs in three major ways: (1) we exploit the inherent algorithmic structure of CNNs and

runtime information to judiciously perform early activation and save ineffectual compu-

tations , (2) we expose a knob that enables the user to gracefully navigate the trade-offs

between the classification accuracy, performance, and energy efficiency , and finally (3) we

study the rich and unexplored area of task skipping in the domain of deep convolutional

neural networks and conjoin these two disjoint lines of research in SNAPEA. Below, we

discuss the most related works.

CNN accelerators. Several accelerators for convolutional neural networks has been pro-

167

posed [110, 156, 111, 242, 243, 244, 188, 181, 157, 195, 245, 196, 158, 200]. In some

of the most recent works [111, 195, 200], 2D spatial architectures have been proposed

to match with the convolution dataflow and maximize the data reuse. TETRIS [110] and

Neurocube [242] have almost the same compute engines as the previous CNN accelerators.

However, these works studied the challenges and opportunities for designing efficient CNN

accelerators in a 3D-stacked memory setting. Neither of these accelerators evaluated the

benefits of performing early activation in the convolution operation.

Pruning techniques. A handful of research [246, 247, 248, 70, 164] proposed various

static pruning techniques to reduce the overhead of computation in deep convolutional

neural networks. These static pruning techniques are agnostic to the dynamically-generated

zeros whose locations in the activation layer vary from one image to another. As our

results show, SNAPEA is complementary to these techniques and further improve the

benefits over the static pruning techniques. Furthermore, several architectures also have

been proposed [156, 157, 244, 188, 181] for exploiting the sparsity in the input activations

and/or weights to improve the efficiency of the accelerator. In one of the most recent work,

SCNN [156] designs an accelerator that exploits the sparsity in both the activations and

weights. The proposed novel dataflow in SCNN maximizes the data reuse in the sparse

activations and weights. This work is orthogonal to the previous efforts that focused on

exploiting the sparsity in CNN accelerators. SNAPEA takes on a distinct approach than

prior designs by judiciously re-ordering the MAC operations in a sliding window and

performing the early activation in convolutional windows.

Task skipping. A handful of research efforts [249, 65, 250, 58, 37, 251, 252, 253] have

looked into task skipping in various domains. In one of the most recent efforts [58],

Sidiroglou et al. proposed loop perforation in which the accuracy is traded in return for

improvement in performance. In their proposal, they algorithmically transform the critical

loops in the program and only execute a subset of their iterations. The rate of loop perfora-

tion is determined statically before executing the program and is agnostic about the partial

168

values after each iteration. PredictiveNet [249] proposes a skipping mechanism for CNNs.

They first perform the computations on the most-significant bits and then speculatively de-

cide whether to perform the computation on the least-significant bits. However, SNAPEA

completely skips the computations of the significant fraction of the operations. As such,

SNAPEA not only reduces the computation cost, but also reduces the number of accesses

to the on-chip buffers. Whereas PredictiveNet only reduces the computation cost and does

not change the number of memory accesses, which significantly contribute to the overall

energy consumption [110, 111, 153, 183]. In contrast to PredictiveNet, which inherently

imposes inaccuracy in the final classification, SNAPEA’s basic approach (i.e. exact mode),

which only relies on a simple sign check, does not impose any classification inaccuracies.

Although SNAPEA takes inspiration from the prior proposals in task skipping, it uniquely

applies the task skipping mechanism in the domain of deep convolutional neural networks

in order to effectively eliminate the ineffectual data transfers and computations.

7.4 Unsupervised Learning Acceleration

GANAX has fundamentally a different accelerator architecture than the prior proposals for

deep network acceleration. In contrast to prior work that mostly focus on convolution op-

eration, GANAX accelerates transposed convolution operation, a fundamentally different

operation than conventional convolution. Below, we overview the most relevant work to

ours along two dimensions: neural network acceleration and MIMD-SIMD acceleration.

Neural network acceleration. Accelerator design for neural networks has become a major

line of computer architecture research in recent years. A handful of prior work explored

the design space of neural network acceleration, which can be categorized into ASICs [183,

110, 184, 156, 111, 181, 188, 157, 189, 195, 38, 197, 182, 199, 12], FPGA implementa-

tions [190, 153, 46, 196, 200], using unconventional devices for acceleration [194, 191, 6],

and dataflow optimizations [185, 187, 186, 193, 111, 192, 198]. Most of these studies have

focused on accelerator design and optimization of merely one specific type of convolutional

169

as the most compute-intensive operation in deep convolutional neural networks.

EYERISS [111] proposes a row stationary dataflow that yields high energy efficiency

for convolutional operation. EYERISS exploits data gating to skip zero inputs and fur-

ther improves the energy efficiency of the accelerator. However, EYERISS still wastes

cycles for detecting the zero-valued inputs. Cnvlutin [157] can save compute cycle and

energy for zero-values inputs but still wastes resources for zero-valued weights. In con-

trast, Cambricon-X [188] can skip zero-valued weights but still wastes compute cycles

and energy for zero-input values. SCNN [156] proposes an accelerator that can skip both

zero-valued inputs and weights and efficiently performs convolution on highly sparse data.

However, not only can SCNN handle dynamic zero-insertion in input feature maps, but also

is not efficient for non-sparse vector-vector multiplications, which are the dominant oper-

ation in discriminative models of GANs. None of these works can perform zero-insertion

into the input feature maps, which is fundamentally a requisite for transposed convolution

operation in the generative models. In contrast to these successful prior work in neural

network acceleration, GANAX proposes a unified architecture for efficient acceleration of

both conventional convolution and transposed convolution operations. As such, GANAX

encompasses the acceleration of a wider range of neural network models.

MIMD-SIMD accelerators. While the idea of access-execute is not brand-new, GANAX

extends the concept of access-execute architecture [201, 202, 203, 204] to the finest granu-

larity of computation for each individual operand for deep network acceleration. A wealth

of research has studied the benefits of MIMD-SIMD architecture in accelerating specific

applications [254, 255, 256, 257, 258, 259, 260, 261, 262]. Most of these works have

focuses on accelerating computer vision applications. For example, PRECISION [255]

proposes a reconfigurable hybrid MIMD-SIMD architecture for embedded computer vi-

sion. In the same line of research, a recent work [262] proposes a multicore architecture

for real-time processing of augmented reality applications. The proposed architecture

leverages SIMD and MIMD for data- and task-level parallelism, respectively. While these

170

works have studied the benefits of MIMD-SIMD acceleration mostly for computer vision

applications, they did not study the potential gains of using MIMD and SIMD accelerators

for modern machine learning applications. Prior to this work, the benefits, limits, and chal-

lenges of MIMD-SIMD architectures for modern deep model acceleration was unexplored.

Conclusively, the GANAX architecture is the first to explore this uncharted territory of

MIMD-SIMD acceleration for the next generation of deep networks.

7.5 In-DRAM Near-Data Neuro-General Computing

There have been several proposed architectures and accelerators for processing in memory.

However, AxRAM is fundamentally different from the prior studies on PIM in two major

ways: (1) instead of using 3D/2.5D-stacked technology, we build on conventional graphics

DRAM devices and (2) we study the unexplored area of tightly integrating approximate

accelerators in memory. AxRAM represents a convergence of two main bodies of research,

approximate computing and processing in memory. Below, we discuss the most related

work in these two domains.

Neural acceleration. Several architectures have been proposed for neural acceleration [38,

45, 46, 47, 197, 6, 241, 199, 48, 12]. For example, prior work tightly integrated such

neural accelerators with GPUs for significant improvement in performance and energy

efficiency [38], but the improvement quickly diminishes due to limited off-chip DRAM

bandwidth. In contrast, we leverage the simplicity of the neural accelerator architecture to

tightly integrate them with conventional DRAM devices. This makes in-DRAM acceler-

ation more practical and improves the gains from neural acceleration by overcoming the

off-chip memory bandwidth wall. Prior to this work, the benefits, limits, and challenges

of tight integration of neural accelerators in the conventional graphics DRAM devices was

unexplored.

Processing in memory. Traditional PIM systems [263, 264, 265, 266, 267, 268, 269]

integrate logic and memory onto a single die to enable lower data access latency and higher

171

memory bandwidth, but they suffer from high manufacturing cost and low yield. Recently,

a wealth of architectures for PIM have been proposed, ranging from fully programmable

to fixed-function, using 3D/2.5D stacking technologies [110, 270, 271, 75, 272, 242, 273,

72, 274, 275, 276, 277, 278, 279, 280] A handful of recent work [271, 281, 282] also

studied the effect of data organization/mapping to improve the performance of near-data

processing. For instance, TOP-PIM [277] uses GPGPU compute-units for scientific and

data analytics processing, Tesseract [274] uses in-order cores for graph processing, NDC

[278] uses in-order cores for map-reduce workloads, IBM’s Active Memory Cube [276]

uses vector units for scientific applications, and others [275, 279, 72] use fixed-function

or programmable accelerators for application acceleration. Ahn et al. [274] propose a

scalable PIM accelerator for large-scale graph processing using 3D integration technology.

To accelerate the processing of sparse matrix data, Zhu et al. [280] propose a 3D-stacked

logic-in-memory (LiM) system. In this work, the customized LiM layers are integrated

between DRAM dies to efficiently perform sparse matrix operations. Gao et al. [272]

propose a heterogenous reconfigurable logic for near-data processing. There have also

been proposals to enable near-memory processing for commodity 2D DRAM devices [72,

273]. Compared with the prior work, our work makes in-DRAM processing more practi-

cal and efficient in heavily-threaded GPU systems by exploiting approximate computing,

while reaping the full benefit of in-DRAM processing. By leveraging techniques from

approximate computing, we are able to integrate approximate accelerators in commodity

2D DRAM. This allows us to not only accelerate data processing but reduce the energy

cost and overhead of data transfer.

172

CHAPTER 8

FUTURE WORK

I conclude this dissertation with a discussion of future research avenue that I am interested

to pursue. For my future research, I am interested in exploring the interplay between

machine learning and architecture/system design.

Machine learning for architecture and system design. After devoting my graduate

studies to exploring architectural techniques to improve the efficiency of machine learning

applications, I have since become interested in the inverse relationship of these disciplines.

That is, I have gravitated towards exploring the rich and relatively less-studies area of

leveraging the recent advances in machine learning algorithms to mitigate the current chal-

lenges in computer architecture and design more efficient systems. As such, I have defined

two research problems that shape my research passion for upcoming years. First, I aim to

answer this research question for spatial accelerators: ”Under a fixed area budget, how can

the on-chip resources among memory and compute units be efficiently allocated in order

to maximize the joint performance and energy efficiency?”. The main challenge is that the

potential design space for this problem is prohibitively large for an exhaustive search. In

response, I propose to formulate on-chip resource allocation as an optimization problem.

I am interested to use machine learning techniques, particularly reinforcement learning,

to find an optimal policy for designing efficient spatial accelerators under a given area

constraint. Building upon this project, I aim to explore an optimal mapping and runtime

scheduling of a given computational graph across heterogeneous compute devices in a

distributed cloud-based system. The end goal is to strike a balance between the commu-

173

nication and computation loads across the heterogeneous compute devices and maximally

utilize the available resources. Similar to the first project, reinforcement learning is well

suited to solve such an optimization problem. However, in contrast to the previous research

challenge, in which the reinforcement learning finds a fixed optimal policy for the entire

duration of the application lifecycle, the main challenge here is that the reinforcement

learning must exploit the runtime feedbacks from the system and dynamically refine its

learned policy in order to balance the overall computation and communication load in the

system. I am very excited to embark on these projects and explore the mutually beneficial

interplay between machine learning and system/architecture design.

174

CHAPTER 9

OTHER WORK FROM THIS AUTHOR

Over the course of my PhD journey, I have conducted research projects outside the scope of

this thesis. Also, I had this unique opportunity to collaborate with leading scholars on many

exciting projects. Below, I summarize these projects which are categorized into three main

research topics: (1) approximate computing, (2) FPGA acceleration, and (3) heterogeneous

computing.

9.1 Approximate Computing

Online and operand-aware detection of failures utilizing false alarm vectors. Collab-

orating with David Palframan1, Azadeh Davoodi1, Nam Sung Kim11, and Mikko Lipasti1,

we present a framework [283] which detects online and at operand level of granularity

all the vectors which excite already-diagnosed failures in combinational modules. Our

framework is flexible with the ability to update vectors in the future. Moreover, the ability

to detect failures at operand level of granularity can be useful to improve yield, for example

by not discarding those chips containing failing and redundant computational units (e.g.,

two failing ALUs) as long as they are not failing at the same time. The main challenge

in realization of such a framework is the ability for on-chip storage of all the (test) cubes

which excite the set of diagnosed failures, e.g., all vectors that excite one or more slow

paths or defective gates. The number of such test cubes can be enormous after applying

various minimization techniques, thereby making it impossible for on-chip storage and

1University of Wisconsin-Madison

175

online detection. A major contribution of this work is to significantly minimize the number

of stored test cubes by inserting only a few but carefully-selected false alarm vectors. As a

result, a computational unit may be mis-diagnosed as failing for a given operand however

we show such cases are rare while the chip can safely be continued to be used, i.e., our

approach ensures that none of the true-positive failures are missed.

A compilation workflow for neural acceleration for general-purpose approximate

programs. In this work, we introduce the very first neural processing unit compilation

workflow, called NPiler [38, 6, 12]2, which automatically converts annotated regions of

imperative code to a neural network representation. First, the programmer annotates the

regions of imperative code which he/she wants to transform to a neural representation.

NPiler accepts inputs from the programmer to train the network. During this step, NPiler

automatically observes the input and output pairs to the annotated regions to collect train-

ing and testing data. Then, NPiler trains each possible NPU topology given constraints

provide by the programmer. The outcome of this exploration provides the best possible

NPU topology in terms of minimum root mean square error (RMSE) on test data. Finally,

our compiler replaces the annotated regions with the final neural network representation.

We use FANN library to execute the neural network representation. This work was done

with the collaboration of Hadi Esmaeilzadeh7, Adrian Sampson3, Luis Ceze3, and Doug

Burger4.

Rollback-Free Value Prediction. In this work [284, 65, 285], we tackle two fundamental

memory bottlenecks: limited off-chip bandwidth (bandwidth wall) and long access latency

(memory wall). To achieve this goal, our approach exploits the inherent error resilience of

a wide range of applications. We introduce an approximation technique, called Rollback-

Free Value Prediction (RFVP). When certain safe-to-approximate load operations miss in

the cache, RFVP predicts the requested values. However, RFVP does not check for or

2http://act-lab.org/artifacts/npiler/
3University of Washington
4Microsoft Research

176

http://act-lab.org/artifacts/npiler/

recover from load value mispredictions, hence, avoiding the high cost of pipeline flushes

and re-executions. RFVP mitigates the memory wall by enabling the execution to continue

without stalling for long-latency memory accesses. To mitigate the bandwidth wall, RFVP

drops some fraction of load requests which miss in the cache after predicting their values.

Dropping requests reduces memory bandwidth contention by removing them from the sys-

tem. The drop rate is a knob to control the tradeoff between performance/energy efficiency

and output quality. This work is done with the collaboration of Gennady Pekhimenko5,

Bradley Thwaites8, Hadi Esmaeilzadeh 7, Onur Multu6, and Todd C. Mowry6.

An Approximation Workflow for Exploiting Data-Level Parallelism in FPGA Ac-

celeration. In collaboration with Atieh Lotfi7, Abbas Rahimi7, Rajesh K. Gupta7, and

Hadi Esmaeilzadeh7, we devised GRATER [286], an automated design workflow for FPGA

accelerators, that leverages imprecise computation to improve data-level parallelism and

computational throughput. By selectively reducing the precision of the data and operation,

the required area to synthesize the kernels on the FPGA decreases allowing to integrate a

larger number of operations and parallel kernels in the fixed area of the FPGA. The larger

number of integrated kernels provides more hardware context to better exploit data- level

parallelism in the target applications.

Towards statistical guarantees in controlling quality tradeoffs for approximate ac-

celeration. Together with Divya Mahajan8, Jongse Park8, Bradley Thwaites8, and Hadi

Esmailezadeh7, we introduce MITHRA [131], a co-designed hardware-software solution,

that navigates these tradeoffs to deliver high performance and efficiency while lowering the

final quality loss. MITHRA seeks to identify whether each individual accelerator invocation

will lead to an undesirable quality loss and, if so, directs the processor to run the original

precise code.

A multi-platform benchmark suite for approximate computing. As approximate com-

5University of Toronto
6Carnegie Mellon University
7University of California, San Diego
8Georgia Institute of Technology

177

puting gains popularity as a viable alternative technique to prolong the traditional scaling of

performance and energy-efficiency improvements, it has become imperative to have a rep-

resentative set of benchmarks for a fair evaluation of different approximation techniques.

Collaborating with Divya Mahajan8, Pejman Lotfi-Kamran9, and Hadi Esmaeilzadeh7, we

introduce AXBENCH [126]10, a diverse and representative set of benchmarks for evaluat-

ing various approximation techniques in CPUs, GPUs, and hardware design. AXBENCH

covers diverse application domains such as machine learning, robotics, arithmetic compu-

tation, multimedia, and signal processing. Moreover, AXBENCH comes with approximable

region of benchmarks marked to facilitate evaluation of approximation techniques. Each

benchmark is accompanied with three different sized input data sets (e.g., small, medium,

and large) and an application-specific quality metric. AXBENCH enables researchers to

study, evaluate, and compare a wider range of approximation techniques on a diverse set of

benchmarks in a straightforward manner.

Hardware-software co-design for approximate code memoization. In collaboration

with Zhenhong Liu11, Dong Kai Wang11, Hadi Esmaeilzadeh7, and Nam Sung-Kim11,

we introduce AXMEMO an approximate memoization technique for general-purpose ap-

plications, exploiting the computational redundancy and fault tolerance of various general-

purpose applications. Instead of focusing on expensive special arithmetic operations such

as sin/cos and exp for traditional memoization, AXMEMO aims to replace long sequences

of instructions with few lookup-table accesses to potentially eliminate a large number of

dynamic instructions that would otherwise dominate execution time and energy consump-

tion. AXMEMO takes advantage of synergies between memoization and approximation

with simple hardware support.

9Institute for Research in Fundamental Sciences
10http://axbench.org
11University of Illinoise at Urbana-Champaign

178

http://axbench.org

9.2 FPGA Acceleration

A unified template-based framework for accelerating statistical machine learning.

Collaborating with Divya Mahajan8, Jongse Park8, Emmanuel Amaro8, Hardik Sharma8,

Joon Kim8, and Hadi Esmaeilzadeh7, we develop TABLA [190]12, a framework that gen-

erates accelerators for a class of machine learning algorithms. The key is to identify

the commonalities across a wide range of machine learning algorithms and utilize this

commonality to provide a high-level abstraction for programmers. TABLA leverages the

insight that many learning algorithms can be expressed as stochastic optimization prob-

lems. Therefore, a learning task becomes solving an optimization problem using stochastic

gradient descent that minimizes an objective function. The gradient solver is fixed while

the objective function changes for different learning algorithms.

An end-to-end solution for FPGA acceleration of generative adversarial networks.

Generative Adversarial Networks (GANs) are a frontier in deep learning. GANs consist of

two models: generative and discriminative. While the discriminative model uses the con-

ventional convolution, the generative model depends on a fundamentally different operator,

called transposed convolution. This operator initially inserts a large number of zeros in its

input and then slides a window over this expanded input. This zero-insertion step leads to

a large number of ineffectual operations and creates distinct patterns of computation across

the sliding windows. The ineffectual operations along with the variation in computation

patterns lead to significant resource underutilization when using conventional convolution

hardware. To alleviate these sources of inefficiency, we devise FlexiGAN [166], an end-

to-end solution, that generates an optimized synthesizable FPGA accelerator from a high-

level specification of generative adversarial networks. FlexiGAN is coupled with a novel

template architecture that aims to harness the benefits of both MIMD and SIMD execution

models to avoid ineffectual operations. This work was done with the collaboration of

12http://act-lab.org/artifacts/tabla

179

http://act-lab.org/artifacts/tabla

Michael Brzozowski8, Behnam Khaleghi7, Soroush Ghodrati7, Kambiz Samadi13, Nam

Sung Kim11, and Hadi Esmaeilzadeh7.

9.3 Heterogeneous Computing

A heterogeneous split architecture for in-memory acceleration of learning. In collab-

oration with Hajar Falahati9, Pejman Lotfi-Kamran9, Michael Brzozowski8, Fatemehsadat

Mireshghallah7, Hardik Sharma8, and Hadi Esmaeilzadeh7, we introduce ORIGAMI, a het-

erogeneous design for in-memory acceleration of the learning across a range of machine

learning algorithms. ORIGAMI provides a unique opportunity to utilize off-the-shelf FPGA

accelerators in coalescence with the in-memory acceleration. To deliver such capabilities,

we devise a pattern matching technique to identify the similar patterns of computation

across a set of machine learning algorithms. Given these patterns, ORIGAMI extracts

heterogenous compute engines that offer a high-level of fine-grained parallelism for each

of the patterns. These heterogenous compute engines constitute the accelerators that are

integrated as in-memory units on the logic die of the 3D stacked memory. To utilize these

accelerators along with the FPGA, ORIGAMI comes with a computation splitting compiler

that divides the learning across the in-memory and out of memory FPGA. The combination

of pattern matching and split execution offers a new design point for the acceleration of

learning.

13Qualcomm Technologies, Inc.

180

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark
Silicon and the End of Multicore Scaling,” in ISCA, 2011.

[2] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, “Power
Challenges May End the Multicore Era,” Commun. ACM, vol. 56, no. 2, pp. 93–102,
2013.

[3] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark
Silicon and the End of Multicore Scaling,” IEEE Micro, vol. 32, no. 3, pp. 122–134,
May 2012.

[4] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward Dark Silicon in
Servers,” IEEE Micro, vol. 31, no. 4, pp. 6–15, 2011.

[5] S. Y. Borkar and A. A. Chien, “The future of microprocessors,” CACM, vol. 54, 5
May 2011.

[6] R. S. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh, A. Has-
sibi, L. Ceze, and D. Burger, “General-Purpose Code Acceleration with Limited-
Precision Analog Computation,” in ISCA, 2014.

[7] ——, “General-Purpose Code Acceleration with Limited-Precision Analog Com-
putation,” 2015.

[8] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward dark silicon in
servers,” IEEE Micro, vol. 31, no. 4, pp. 6–15, 2011.

[9] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “SAGE: Self-tuning
Approximation for Graphics Engines,” in MICRO, 2013.

[10] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate Storage in Solid-
State Memories,” in MICRO, 2013.

[11] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Quality-Programmable Vector Processors for Approximate Computing,” in MI-
CRO, 2013.

181

[12] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural Acceleration for
General-Purpose Approximate Programs,” in MICRO, 2012.

[13] ——, “Architecture Support for Disciplined Approximate Programming,” in ASP-
LOS, 2012.

[14] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving DRAM
Refresh-Power through Critical Data Partitioning,” in ASPLOS, 2011.

[15] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An Architectural Frame-
work for Software Recovery of Hardware Faults,” in ISCA, 2010.

[16] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz, K. V. Palem, and
B. Seshasayee, “Ultra-efficient (Embedded) SOC Architectures Based on Proba-
bilistic CMOS (PCMOS) Technology,” in DATE, 2006.

[17] C. Alvarez, J. Corbal, and M. Valero, Fuzzy Memoization for Floating-Point Mul-
timedia Applications, 2005.

[18] R. Hegde and N. R. Shanbhag, “Energy-efficient Signal Processing via Algorithmic
Noise-tolerance,” in ISLPED, 1999.

[19] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones, “Scalable Stochastic Proces-
sors,” in DATE, 2010.

[20] B. E. Boser, E. Säckinger, J. Bromley, Y. L. Cun, L. D. Jackel, and S. Member, “An
Analog Neural Network Processor with Programmable Topology,” JSSC, 1991.

[21] J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale Integration of Analog Neural
Networks,” in IJCNN, 2008.

[22] S. M. Tam, B. Gupta, H. A. Castro, and M. Holler, “Learning on an Analog VLSI
Neural Network Chip,” in SMC, 1990.

[23] A. Joubert, B. Belhadj, O. Temam, and R. Héliot, “Hardware Spiking Neurons
Design: Analog or Digital?” In IJCNN, 2012.

[24] F. Choudry, E. Fiesler, A. Choudry, and H. J. Caulfield, “A Weight Discretization
Paradigm for Optical Neural Networks,” in ICOE, 1990.

[25] C. Igel and M. Hüsken, “Improving the RPROP Learning Algorithm,” in NC, 2000.

[26] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman,
“EnerJ: Approximate Data Types for Safe and General Low-Power Computation,”
in PLDI, 2011.

182

[27] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying Quantitative Reliability for
Programs that Execute on Unreliable Hardware,” in OOPSLA, 2013.

[28] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. Oxford University
Press, 2002.

[29] D. A. Johns and K. Martin, Analog Integrated Circuit Design. John Wiley and Sons,
Inc., 1997.

[30] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal Representa-
tions by Error Propagation,” in PDP, 1986.

[31] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSSx86: A full system simulator
for x86 CPUs,” in DAC, 2011.

[32] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,
“McPAT: An integrated power, area, and timing modeling framework for multicore
and manycore architectures,” in MICRO, 2009.

[33] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing NUCA or-
ganizations and wiring alternatives for large caches with CACTI 6.0,” in MICRO,
2007.

[34] S Galal and M Horowitz, “Energy-efficient floating-point unit design,” IEEE Trans.
Comput., vol. 60, no. 7, pp. 913–922, 2011.

[35] Y. Cao, Predictive technology models, 2013.

[36] W. Baek and T. M. Chilimbi, “Green: A Framework for Supporting Energy-
Conscious Programming using Controlled Approximation,” in PLDI, 2010.

[37] S. Misailovic, S. Sidiroglou, H. Hoffman, and M. Rinard, “Quality of Service Pro-
filing,” in ICSE, 2010.

[38] A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, and H. Esmaeilzadeh,
“Neural Acceleration for GPU Throughput Processors,” in MICRO, 2015.

[39] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez,
S. Swanson, and M. B. Taylor, “Conservation cores: Reducing the energy of mature
computations,” in ASPLOS, 2010.

[40] J. Gantz and D. Reinsel, Extracting value from chaos.

[41] GeForce 400 series, http://en.wikipedia.org/wiki/GeForce_400_
series, 2015.

183

http://en.wikipedia.org/wiki/GeForce_400_series
http://en.wikipedia.org/wiki/GeForce_400_series

[42] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke, “Paraprox: Pattern-based Ap-
proximation for Data Parallel Applications,” in ASPLOS, 2014.

[43] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “Eliminating redundant fragment
shader executions on a mobile gpu via hardware memoization,” in ISCA, 2014.

[44] J. Sartori and R. Kumar, “Branch and Data Herding: Reducing Control and Memory
Divergence for Error-Tolerant GPU Applications,” Multimedia, IEEE Transactions
on, vol. 15, no. 2, 2013.

[45] B. Grigorian, N. Farahpour, and G. Reinman, “BRAINIAC: Bringing Reliable Ac-
curacy Into Neurally-Implemented Approximate Computing,” in HPCA, 2015.

[46] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze, and M.
Oskin, “SNNAP: Approximate Computing on Programmable SoCs via Neural Ac-
celeration,” in HPCA, 2015.

[47] L. McAfee and K. Olukotun, “EMEURO: A Framework for Generating Multi-
Purpose Accelerators via Deep Learning,” in CGO, 2015.

[48] B. Grigorian and G. Reinman, “Accelerating Divergent Applications on SIMD Ar-
chitectures using Neural Networks,” in ICCD, 2014.

[49] J. Park, H. Esmaeilzadeh, X. Zhang, M. Naik, and W. Harris, “FlexJava: Language
Support for Safe and Modular Approximate Programming,” in FSE, 2015.

[50] A. Yazdanbakhsh, D. Mahajan, B. Thwaites, J. Park, A. Nagendrakumar, S. Sethu-
raman, K. Ramkrishnan, N. Ravindran, R. Jariwala, A. Rahimi, H. Esmaeilzadeh,
and K. Bazargan, “Axilog: Language Support for Approximate Hardware Design,”
in DATE, 2015.

[51] J. P. Banning, “An efficient way to find the side effects of procedure calls and the
aliases of variables,” in Proceedings of the 6th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, ACM, 1979, pp. 29–41.

[52] (). Whitepaper: NVIDIA Fermi.

[53] (). NVIDIA corporation. NVIDIA CUDA SDK code samples.

[54] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,
“Rodinia: A benchmark suite for heterogeneous computing,” in Workload Charac-
terization, 2009. IISWC 2009. IEEE International Symposium on, IEEE, 2009.

[55] jMonkeyEngine, 2015.

184

[56] O. A. Aguilar and J. C. Huegel, “Inverse kinematics solution for robotic manipu-
lators using a cuda-based parallel genetic algorithm,” Advances in Artificial Intelli-
gence, 2011.

[57] M. Creel and M. Zubair, “A high performance implementation of likelihood esti-
mators on gpus,” in CES, 2013.

[58] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard, “Managing
Performance vs. Accuracy Trade-offs with Loop Perforation,” in FSE, 2011.

[59] A Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing CUDA Work-
loads using a Detailed GPU Simulator,” in ISPASS, 2009.

[60] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and
V. J. Reddi, “GPUWattch: Enabling Energy Optimizations in GPGPUs,” in ISCA,
2013.

[61] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-Conscious Wavefront
Scheduling,” in MICRO, 2012.

[62] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick, R. Ausavarungnirun, O.
Mutlu, C. Das, M. Kandemir, and T. C. Mowry, “A Case for Core-Assisted Bottle-
neck Acceleration in GPUs: Enabling Efficient Data Compression,” in ISCA, 2015.

[63] A. Yazdanbakhsh, J. Sacks, S. Choungki, P. Lotfi-Kamran, H. Esmaeilzadeh, and
N. Sung-Kim, “Nax: Near-data approximate computing,” 2016.

[64] A. Yazdanbakhsh, J. Sacks, C. Song, P. Lotfi-Kamran, N. S. Kim, and H. Es-
maeilzadeh, “In-dram near-data approximate acceleration for gpus,” in PACT,
2018.

[65] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh, O. Mutlu, and
T. C. Mowry, “RFVP: Rollback-Free Value Prediction with Safe to Approximate
Loads,” in TACO, 2015.

[66] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick, R. Ausavarungnirun, O.
Mutlu, C. Das, M. Kandemir, and T. C. Mowry, “A Case for Core-Assisted Bottle-
neck Acceleration in GPUs: Enabling Efficient Data Compression,” in ISCA, 2015.

[67] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin, “Scaling the
Bandwidth Wall: Challenges in and Avenues for CMP Scaling,” in ISCA, 2009.

[68] B. Casper, “Energy Efficient Multi-Gb/s I/O: Circuit and System Design Tech-
niques,” in IEEE Workshop on Microelectronics and Electron Devices, 2011.

185

[69] M. Horowitz, Energy Table for 45nm Process.

[70] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization, and Huffman Coding,” in ICLR,
2016.

[71] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both Weights and Connections for
Efficient Neural Network,” in NIPS, 2015.

[72] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “NDA: Near-DRAM
Acceleration Architecture Leveraging Commodity DRAM Devices and Standard
Memory Modules,” in HPCA, 2015.

[73] R. Sampson, M. Yang, S. Wei, C. Chakrabarti, and T. F. Wenisch, “Sonic Mil-
lip3De: A Massively Parallel 3D-stacked Accelerator for 3D Ultrasound,” in
HPCA, 2013.

[74] R. Hou, L. Zhang, M. C. Huang, K. Wang, H. Franke, Y. Ge, and X. Chang, “Ef-
ficient Data Streaming with On-chip Accelerators: Opportunities and Challenges,”
in HPCA, 2011.

[75] H. Asghari-Moghaddam, Y. Hoon Son, J. Ho Ahn, and N. Sung Kim, “Chameleon:
Versatile and Practical Near-DRAM Acceleration Architecture for Large Memory
Systems,” in MICRO, 2016.

[76] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park, J. H. Kim,
D. S. Kim, H. B. Park, J. W. Shin, J. H. Cho, K. H. Kwon, M. J. Kim, J. Lee,
K. W. Park, B. Chung, and S. Hong, “25.2 A 1.2V 8Gb 8-Channel 128GB/s High-
Bandwidth Memory (HBM) Stacked DRAM with Effective Microbump I/O Test
Methods using 29nm Process and TSV,” in ISSCC, 2014.

[77] (). Whitepaper: NVIDIA Maxwell.

[78] Samsung HBM2 Memory, https : / / news . samsung . com / global /
samsung - begins - mass - producing - worlds - fastest - dram -
based-on-newest-high-bandwidth-memory-hbm-interface.

[79] S. Liu, B. Leung, A. Neckar, S. O. Memik, G. Memik, and N. Hardavellas, “Hard-
ware/Software Techniques for DRAM Thermal Management,” in HPCA, 2011.

[80] K Man, “Bensley FB-DIMM Performance/Thermal Management,” in Intel Devel-
oper Forum.

[81] J. Lin, H. Zheng, Z. Zhu, H. David, and Z. Zhang, “Thermal Modeling and Man-
agement of DRAM Memory Systems,” in ISCA, 2007.

186

https://news.samsung.com/global/samsung-begins-mass-producing-worlds-fastest-dram-based-on-newest-high-bandwidth-memory-hbm-interface
https://news.samsung.com/global/samsung-begins-mass-producing-worlds-fastest-dram-based-on-newest-high-bandwidth-memory-hbm-interface
https://news.samsung.com/global/samsung-begins-mass-producing-worlds-fastest-dram-based-on-newest-high-bandwidth-memory-hbm-interface

[82] J. Iyer, C. L. Hall, J. Shi, and Y. Huang, “System Memory Power and Thermal Man-
agement in Platforms Build on Intel Centrino Duo Technology,” Intel Technology
Journal, vol. 10, no. 2, 2006.

[83] J. Lin, H. Zheng, Z. Zhu, E. Gorbatov, H. David, and Z. Zhang, “Software Thermal
Management of DRAM Memory for Multicore Systems,” SIGMETRICS, vol. 36,
no. 1, pp. 337–348, 2008.

[84] J. Lin, H. Zheng, Z. Zhu, and Z. Zhang, “Thermal Modeling and Management of
DRAM Systems,” IEEE Transactions on Computers, vol. 62, no. 10, pp. 2069–
2082, 2013.

[85] K. Koo, S. Ok, Y. Kang, S. Kim, C. Song, H. Lee, H. Kim, Y. Kim, J. Lee, S. Oak,
Y. Lee, J. Lee, J. Lee, H. Lee, J. Jang, J. Jung, B. Choi, Y. Kim, Y. Hur, Y. Kim,
B. Chung, and Y. Kim, “A 1.2V 38nm 2.4Gb/s/pin 2Gb DDR4 SDRAM with Bank
Group and x4 Half-Page Architecture,” in ISSCC, 2012, pp. 40–41.

[86] T. Y. Oh, Y. S. Sohn, S. J. Bae, M. S. Park, J. H. Lim, Y. K. Cho, D. H. Kim, D. M.
Kim, H. R. Kim, H. J. Kim, J. H. Kim, J. K. Kim, Y. S. Kim, B. C. Kim, S. H.
Kwak, J. H. Lee, J. Y. Lee, C. H. Shin, Y. Yang, B. S. Cho, S. Y. Bang, H. J. Yang,
Y. R. Choi, G. S. Moon, C. G. Park, S. W. Hwang, J. D. Lim, K. I. Park, J. S. Choi,
and Y. H. Jun, “A 7 Gb/s/pin 1 Gbit GDDR5 SDRAM With 2.5 ns Bank to Bank
Active Time and No Bank Group Restriction,” JSSC, vol. 46, no. 1, pp. 107–118,
2011.

[87] T. Y. Oh, Y. S. Sohn, S. J. Bae, M. S. Park, J. H. Lim, Y. K. Cho, D. H. Kim, D. M.
Kim, H. R. Kim, H. J. Kim, J. H. Kim, J. K. Kim, Y. S. Kim, B. C. Kim, S. H.
Kwak, J. H. Lee, J. Y. Lee, C. H. Shin, Y. S. Yang, B. S. Cho, S. Y. Bang, H. J.
Yang, Y. R. Choi, G. S. Moon, C. G. Park, S. W. Hwang, J. D. Lim, K. I. Park,
J. S. Choi, and Y. H. Jun, “A 7Gb/s/pin GDDR5 SDRAM with 2.5ns Bank-to-Bank
Active Time and no Bank-group Restriction,” in ISSCC, 2010.

[88] Y. Tian, S. Puthoor, J. L. Greathouse, B. M. Beckmann, and D. A. Jiménez, “Adap-
tive GPU Cache Bypassing,” in Proceedings of the 8th Workshop on General Pur-
pose Processing using GPUs, 2015.

[89] X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W.-M. Hwu, “Adaptive
Cache Management for Energy-Efficient GPU Computing,” in MICRO, 2014.

[90] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural Support for Address Trans-
lation on GPUs: Designing Memory Management Units for CPU/GPUs with Uni-
fied Address Spaces,” in ACM SIGARCH Computer Architecture News, vol. 42,
2014, pp. 743–758.

187

[91] H. Jooybar, W. W. Fung, M. O’Connor, J. Devietti, and T. M. Aamodt, “GPUDet:
A Deterministic GPU Architecture,” in ASPLOS, 2013.

[92] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-Conscious Wavefront
Scheduling,” in MICRO, 2012.

[93] A Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing CUDA Work-
loads Using a Detailed GPU Simulator,” in ISPASS, 2009.

[94] I. Singh, A. Shriraman, W. W. Fung, M. O’Connor, and T. M. Aamodt, “Cache
Coherence for GPU Architectures,” in HPCA, 2013.

[95] Hynix. Hynix GDDR5 SGRAM Part H5GQ1H24AFR Revision 1.0., 2015.

[96] NVIDIA Corporation. CUDA Programming Guide, http://docs.nvidia.
com/cuda/cuda-c-programming-guide, 2015.

[97] K. Kim, Apparatus for Pipe Latch Control Circuit in Synchronous Memory Device,
US6724684 B2, 2004.

[98] J. Macri, “AMD’s Next Generation GPU and High Bandwidth Memory Architec-
ture: FURY,” in HCS, 2015.

[99] (). AMD Radeon Rx 300 Series.

[100] JEDEC, High Bandwidth Memory DRAM, http : / / www . jedec . org /
standards-documents/docs/jesd235, October 2013.

[101] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs and
the Future of Parallel Computing,” IEEE Micro, vol. 31, no. 5, pp. 7–17, 2011.

[102] Hynix. Hynix GDDR5 SGRAM Part H5GQ1H24AFR Revision 1.0., 2015.

[103] T. Y. Oh, Y. S. Sohn, S. J. Bae, M. S. Park, J. H. Lim, Y. K. Cho, D. H. Kim, D. M.
Kim, H. R. Kim, H. J. Kim, J. H. Kim, J. K. Kim, Y. S. Kim, B. C. Kim, S. H.
Kwak, J. H. Lee, J. Y. Lee, C. H. Shin, Y. S. Yang, B. S. Cho, S. Y. Bang, H. J.
Yang, Y. R. Choi, G. S. Moon, C. G. Park, S. W. Hwang, J. D. Lim, K. I. Park,
J. S. Choi, and Y. H. Jun, “A 7Gb/s/pin GDDR5 SDRAM with 2.5ns Bank-to-Bank
Active Time and no Bank-group Restriction,” in ISSCC’10.

[104] K. Iniewski, CMOS Processors and Memories. Springer Science & Business Me-
dia, 2010.

188

http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://www.jedec.org/standards-documents/docs/jesd235
http://www.jedec.org/standards-documents/docs/jesd235

[105] J. Mukundan, H. Hunter, K.-h. Kim, J. Stuecheli, and J. F. Martı́nez, “Understand-
ing and Mitigating Refresh Overheads in High-density DDR4 DRAM Systems,” in
ISCA, 2013.

[106] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman, “AC-DIMM: Associative
Computing with STT-MRAM,” in ISCA, 2013.

[107] S. M. Hassan, S. Yalamanchili, and S. Mukhopadhyay, “Near Data Processing:
Impact and Optimization of 3D Memory System Architecture on the Uncore,” in
MEMSYS, 2015.

[108] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O‘Connor, N. Vijaykumar, O.
Mutlu, and S. W. Keckler, “Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU Systems,” in ISCA, 2016.

[109] B. Akin, F. Franchetti, and J. C. Hoe, “Data Reorganization in Memory using 3D-
stacked DRAM,” in ISCA, 2015.

[110] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS: Scalable and
Efficient Neural Network Acceleration with 3D Memory,” in ASPLOS, 2017.

[111] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for Energy-
Efficient Dataflow for Convolutional Neural Networks,” in ISCA, 2016.

[112] N. Chatterjee, M. O‘Connor, G. H. Loh, N. Jayasena, and R. Balasubramonian,
“Managing DRAM Latency Divergence in Irregular GPGPU Applications,” in SC,
2014.

[113] P. Boudier and G. Sellers, “Memory System on Fusion APUs,” AMD Fusion devel-
oper summit, 2011.

[114] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev: First-Class GPU Re-
source Management in the Operating System,” in USENIX, 2012.

[115] Y. Fujii, T. Azumi, N. Nishio, S. Kato, and M. Edahiro, “Data Transfer Matters for
GPU Computing,” in ICPADS, 2013.

[116] J. Power, M. D. Hill, and D. A. Wood, “Supporting x86-64 Address Translation for
100s of GPU Lanes,” in HPCA, 2014.

[117] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos, “Demys-
tifying GPU Microarchitecture through Microbenchmarking,” in ISPASS, 2010.

[118] R. Danilak, “System and Method for Hardware-based GPU Paging to System
Memory,” US7623134 B1, 2009.

189

[119] P. C. Tong, S. S. Yeoh, K. J. Kranzusch, G. D. Lorensen, K. L. Woo, A. K. Kaul,
C. S. Case, S. A. Gottschalk, and D. K. Ma, “Dedicated Mechanism for Page Map-
ping in a GPU,” US20080028181 A1, 2008.

[120] X. Mei and X. Chu, “Dissecting GPU Memory Hierarchy through Microbench-
marking,” IEEE Transactions on Parallel and Distributed Systems, no. 99, 2016.

[121] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural Support for Address Trans-
lation on GPUs: Designing Memory Management Units for CPU/GPUs with Uni-
fied Address Spaces,” in ASPLOS, 2014.

[122] N. Wilt, The CUDA Handbook: A Comprehensive Guide to GPU Programming.
Pearson Education, 2013.

[123] T. Beri, S. Bansal, and S. Kumar, “A Scheduling and Runtime Framework for a
Cluster of Heterogeneous Machines with Multiple Accelerators,” in IPDPS, 2015.

[124] M. Harris, Inside Pascal: Nvidia’s Newest Computing Platform, https : / /
devblogs.nvidia.com/parallelforall/inside-pascal/, 2016.

[125] I. Singh, A. Shriraman, W. W. Fung, M. O’Connor, and T. M. Aamodt, “Cache
Coherence for GPU Architectures,” in HPCA, 2013.

[126] A. Yazdanbakhsh, D. Mahajan, P. Lotfi-Kamran, and H. Esmaeilzadeh, “AxBench:
A Multi-Platform Benchmark Suite for Approximate Computing: Acceleration for
GPU Throughput Processors,” IEEE Design and Test, 2016.

[127] NanGate FreePDK45 Open Cell Library, http://www.nangate.com, 2015.

[128] Y. H. Son, O. Seongil, Y. Ro, J. W. Lee, and J. H. Ahn, “Reducing Memory Access
Latency with Asymmetric DRAM Bank Organizations,” in ISCA, 2013.

[129] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, “Low-
Cost Inter-Linked Subarrays (LISA): Enabling fast inter-subarray data movement
in DRAM,” in HPCA, 2016.

[130] V. Govindaraju, C. H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankaralingam,
and C. Kim, “DySER: Unifying Functionality and Parallelism Specialization for
Energy-Efficient Computing,” IEEE Micro, vol. 32, no. 5, pp. 38–51, 2012.

[131] D. Mahajan, A. Yazdanbakhsh, J. Park, B. Thwaites, and H. Esmaeilzadeh, “To-
wards Statistical Guarantees in Controlling Quality Tradeoffs for Approximate
Acceleration,” in ISCA, 2016.

190

https://devblogs.nvidia.com/parallelforall/inside-pascal/
https://devblogs.nvidia.com/parallelforall/inside-pascal/
http://www.nangate.com

[132] J. San Miguel, J. Albericio, N. Enright Jerger, and A. Jaleel, “The Bunker Cache
for Spatio-Value Approximation,” in MICRO, 2016.

[133] J. S. Miguel, M. Badr, and N. E. Jerger, “Load Value Approximation,” in MICRO,
2014.

[134] J. Park, E. Amaro, D. Mahajan, B. Thwaites, and H. Esmaeilzadeh, “AxGames: To-
wards Crowdsourcing Quality Target Determination in Approximate Computing,”
in ASPLOS, 2016.

[135] D. Mahajan, K. Ramkrishnan, R. Jariwala, A. Yazdanbakhsh, J. Park, B. Thwaites,
A. Nagendrakumar, A. Rahimi, H. Esmaeilzadeh, and K. Bazargan, “Axilog: Ab-
stractions for approximate hardware design and reuse,” IEEE MICRO Special issue
on Alternative Computing Designs and Technologies, 2015.

[136] M. Kamal, A. Ghasemazar, A. Afzali-Kusha, and M. Pedram, “Improving ef-
ficiency of extensible processors by using approximate custom instructions,” in
DATE, Dresden, Germany, 2014, ISBN: 978-3-9815370-2-4.

[137] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “ABACUS: A Technique for Automated
Behavioral Synthesis of Approximate Computing Circuits,” in DATE, 2014.

[138] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration-oriented ap-
proximate adder design and its application,” in ICCAD, 2013.

[139] S. Ramasubramanian, S. Venkataramani, A. Parandhaman, and A. Raghunathan,
“Relax-and-retime: A methodology for energy-efficient recovery based design,” in
Design Automation Conference (DAC), 2013 50th ACM/EDAC/IEEE, 2013, pp. 1–
6.

[140] J. Miao, A. Gerstlauer, and M. Orshansky, “Approximate logic synthesis under
general error magnitude and frequency constraints,” in ICCAD, 2013.

[141] Y. Liu, R. Ye, F. Yuan, R. Kumar, and Q. Xu, “On logic synthesis for timing spec-
ulation,” in ICCAD, 2012, pp. 591–596.

[142] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan,
“SALSA: Systematic Logic Synthesis of Approximate Circuits,” in DAC, 2012.

[143] A. Kahng and S. Kang, “Accuracy-configurable adder for approximate arithmetic
designs,” in DAC, 2012.

[144] A. Lingamneni, K. K. Muntimadugu, C. Enz, R. M. Karp, K. V. Palem, and C.
Piguet, “Algorithmic methodologies for ultra-efficient inexact architectures for sus-

191

taining technology scaling,” in Proceedings of the 9th Conference on Computing
Frontiers, 2012.

[145] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power with an
underdesigned multiplier architecture,” in VLSI, 2011.

[146] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design of voltage-
scalable meta-functions for approximate computing,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2011, IEEE, 2011, pp. 1–6.

[147] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy, “Impact: Im-
precise adders for low-power approximate computing,” in Proceedings of the 17th
IEEE/ACM International Symposium on Low-power Electronics and Design, IEEE
Press, 2011, pp. 409–414.

[148] L. Leem, H. Cho, J. Bau, Q. Jacobson, and S. Mitra, “ERSA: Error Resilient System
Architecture for Probabilistic Applications,” in DATE, 2010.

[149] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant applica-
tions,” in DATE, 2010.

[150] S.-L. Lu, “Speeding up processing with approximation circuits,” Computer, 2004.

[151] V. Aklaghi, A. Yazdanbakhsh, K. Samadi, H. Esmaeilzadeh, and R. K. Gupte, “Sna-
pea: Predictive early activation for reducing computation in deep convolutional
neural networks,” in ISCA, 2018.

[152] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large
Scale Visual Recognition Challenge,” IJCV, 2015.

[153] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and
H. Esmaeilzadeh, “From High-Level Deep Neural Models to FPGAs,” in MICRO,
2016.

[154] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going Deeper with Convolutions,” in CVPR, 2015.

[155] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“SqueezeNet: AlexNet-level Accuracy with 50x Fewer Parameters and¡0.5 MB
Model Size,” arXiv preprint arXiv:1602.07360, 2016.

[156] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J.
Emer, S. W. Keckler, and W. J. Dally, “SCNN: An Accelerator for Compressed-
sparse Convolutional Neural Networks,” in ISCA, 2017.

192

[157] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A. Moshovos,
“Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing,” in ISCA,
2016.

[158] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “DianNao: A
Small-footprint High-throughput Accelerator for Ubiquitous Machine-learning,” in
ASPLOS, 2014.

[159] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large
Scale Visual Recognition Challenge,” IJCV, 2015.

[160] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional Architecture for Fast Feature Embedding,”
arXiv preprint arXiv:1408.5093, 2014.

[161] DDR4 Spec - Micron Technology, Inc, https://goo.gl/9Xo51F.

[162] S. Galal, “Energy efficient floating-point unit design,” PhD thesis, The Department
of Electrical Engineering of Stanford University, 2012.

[163] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “CACTI-P:
Architecture-level Modeling for SRAM-based Structures with Advanced Leakage
Reduction Techniques,” in ICCAD, 2011.

[164] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“SqueezeNet: AlexNet-level Accuracy with 50x Fewer Parameters and¡0.5 MB
Model Size,” arXiv preprint arXiv:1602.07360, 2016.

[165] A. Yazdanbakhsh, K. Samadi, H. Esmaeilzadeh, and N. S. Kim, “Ganax: A unified
simd-mimd acceleration for generative adversarial network,” in ISCA, 2018.

[166] A. Yazdanbakhsh, M. Brzozowski, B. Khaleghi, S. Ghodrati, K. Samadi, H. Es-
maeilzadeh, and N. S. Kim, “FlexiGAN: An End-to-End Solution for FPGA Ac-
celeration of Generative Adversarial Networks,” in FCCM, 2018.

[167] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, “Generative Adversarial Nets,” in NIPS, 2014.

[168] D. Nie, R. Trullo, J. Lian, C. Petitjean, S. Ruan, Q. Wang, and D. Shen, “Medical
Image Synthesis with Context-aware Generative Adversarial Networks,” in MIC-
CAI, 2017.

[169] P. Costa, A. Galdran, M. I. Meyer, M. Niemeijer, M. Abràmoff, A. M. Mendonça,
and A. Campilho, “End-to-end Adversarial Retinal Image Synthesis,” T-MI, 2017.

193

[170] J. Ho and S. Ermon, “Generative Adversarial Imitation Learning,” in NIPS, 2016.

[171] A. Ghosh, B. Bhattacharya, and S. B. R. Chowdhury, “SAD-GAN: Synthetic Au-
tonomous Driving using Generative Adversarial Networks,” arXiv, 2016.

[172] W. R. Tan, C. S. Chan, H. Aguirre, and K. Tanaka, “ArtGAN: Artwork Synthesis
with Conditional Categorial GANs,” arXiv, 2017.

[173] H. Wu, S. Zheng, J. Zhang, and K. Huang, “GP-GAN: Towards Realistic High-
Resolution Image Blending,” arXiv, 2017.

[174] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to Discover Cross-
Domain Relations with Generative Adversarial Networks,” ArXiv, 2017.

[175] L.-C.Y.Y.-H. Y. Hao-Wen Dong Wen-Yi Hsiao, “MuseGAN: Symbolic-domain
Music Generation and Accompaniment with Multi-track Sequential Generative
Adversarial Networks,” arXiv, 2017.

[176] L.-C. Yang, S.-Y. Chou, and Y.-H. Yang, “MidiNet: A Convolutional Generative
Adversarial Network for Symbolic-domain Music Generation using 1D and 2D
Conditions,” arXiv, 2017.

[177] J. Wu, C. Zhang, T. Xue, W. T. Freeman, and J. B. Tenenbaum, “Learning a Prob-
abilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling,”
in NIPS, 2016.

[178] A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks,” arXiv, 2015.

[179] Microsoft, Microsoft unveils Project Brainwave for real-time AI, https://www.
microsoft.com/en-us/research/blog/microsoft-unveils-
project-brainwave/, 2017.

[180] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S.
Bhatia, N. Boden, A. Borchers, et al., “In-datacenter Performance Analysis of a
Tensor Processing Unit,” in ISCA, 2017.

[181] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “EIE:
Efficient Inference Engine on Compressed Deep Neural Network,” in ISCA, 2016.

[182] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “DianNao: A
Small-footprint High-throughput Accelerator for Ubiquitous Machine-learning,” in
ASPLOS, 2014.

194

https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/

[183] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, J. K. Kim, V. Chandra, and H.
Esmaeilzadeh, “Bit Fusion: Bit-Level Dynamically Composable Architecture for
Accelerating Deep Neural Networks,” in ISCA, 2018.

[184] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-efficient Re-
configurable Accelerator for Deep Convolutional Neural Networks,” JSSC, 2017.

[185] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing Loop Operation and
Dataflow in FPGA Acceleration of Deep Convolutional Neural Networks,” in
FPGA, 2017.

[186] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “FlexFlow: A Flexible Dataflow
Accelerator Architecture for Convolutional Neural Networks,” in HPCA, 2017.

[187] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A Pipelined ReRAM-based
Accelerator for Deep Learning,” in HPCA, 2017.

[188] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen,
“Cambricon-X: An Accelerator for Sparse Neural Networks,” in MICRO, 2016.

[189] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A. An-
dreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch, C. di Nolfo,
P. Datta, A. Amir, B. Taba, M. D. Flickner, and D. S. Modha, “Convolutional
Networks for Fast, Energy-Efficient Neuromorphic Computing,” ArXiv, 2016.

[190] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K. Kim, and
H. Esmaeilzadeh, “Tabla: A Unified Template-based Framework for Accelerating
Statistical Machine Learning,” in HPCA, 2016.

[191] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “Prime:
A Novel Processing-in-memory Architecture for Neural Network Computation in
ReRAM-based Main Memory,” in ISCA, 2016.

[192] X. Yang, J. Pu, B. B. Rister, N. Bhagdikar, S. Richardson, S. Kvatinsky, J. Ragan-
Kelley, A. Pedram, and M. Horowitz, “A Systematic Approach to Blocking Con-
volutional Neural Networks,” ArXiv, 2016.

[193] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization, and Huffman Coding,” in ICLR,
2016.

[194] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M.
Hu, R. S. Williams, and V. Srikumar, “ISAAC: A Convolutional Neural Network
Accelerator with In-situ Analog Arithmetic in Crossbars,” in ISCA, 2016.

195

[195] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O.
Temam, “ShiDianNao: Shifting Vision Processing Closer to the Sensor,” in ISCA,
2015.

[196] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing FPGA-based
Accelerator Design for Deep Convolutional Neural Networks,” in FPGA, 2015.

[197] S. Eldridge, A. Waterland, M. Seltzer, J. Appavoo, and A. Joshi, “Towards General-
Purpose Neural Network Computing,” in PACT, 2015.

[198] B. Grigorian and G. Reinman, “Accelerating Divergent Applications on SIMD Ar-
chitectures Using Neural Networks,” TACO, 2015.

[199] B. Belhadj, A. Joubert, Z. Li, R. Héliot, and O. Temam, “Continuous Real-World
Inputs Can Open Up Alternative Accelerator Designs,” in ISCA, 2013.

[200] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun, “Neu-
Flow: A Runtime Reconfigurable Dataflow Processor for Vision,” in CVPR Work-
shops, 2011.

[201] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam, “Stream-Dataflow
Acceleration,” in ISCA, 2017.

[202] K. Wang and C. Lin, “Decoupled Affine Computation for SIMT GPUs,” in ISCA,
2017.

[203] T. Chen and G. E. Suh, “Efficient Data Supply for Hardware Accelerators with
Prefetching and Access/Execute Decoupling,” in MICRO, 2016.

[204] J. E. Smith, “Decoupled Access/Execute Computer Architectures,” in ACM
SIGARCH Computer Architecture News, 1982.

[205] M. Benhenda, “ChemGAN challenge for drug discovery: can AI reproduce natural
chemical diversity?” arXiv, 2017.

[206] Y. Li, J. Song, and S. Ermon, “Inferring The Latent Structure of Human Decision-
Making from Raw Visual Inputs,” ArXiv, 2017.

[207] H. Che, B. Hu, B. Ding, and H. Wang, “Enabling Imagination: Generative Adver-
sarial Network-Based Object Finding in Robotic Tasks,” in NIPS, 2017.

[208] Y. Fang, H. Li, and X. Li, “A fault criticality evaluation framework of digital sys-
tems for error tolerant video applications,” in ATS, 2011.

196

[209] V. Wong and M. Horowitz, “Soft error resilience of probabilistic inference applica-
tions,” in SELSE, 2006.

[210] X. Li and D. Yeung, “Exploiting soft computing for increased fault tolerance,” in
ASGI, 2006.

[211] M. de Kruijf and K. Sankaralingam, “Exploring the synergy of emerging workloads
and silicon reliability trends,” in SELSE, 2009.

[212] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke, “Bridging the computation gap
between programmable processors and hardwired accelerators,” in HPCA, 2009.

[213] A. R. Putnam, D. Bennett, E. Dellinger, J. Mason, and P. Sundararajan, “CHiMPS:
A high-level compilation flow for hybrid CPU-FPGA architectures,” in FPGA,
2008.

[214] R. Razdan and M. D. Smith, “A high-performance microarchitecture with
hardware-programmable functional units,” in MICRO, 1994.

[215] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, “Application-specific
processing on a general-purpose core via transparent instruction set customization,”
in MICRO, 2004.

[216] G. Venkatesh, J. Sampson, N. Goulding, S. K. Venkata, S. Swanson, and M. Taylor,
“QsCores: Trading dark silicon for scalable energy efficiency with quasi-specific
cores,” in MICRO, 2011.

[217] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically Specialized Data-
paths for Energy Efficient Computing,” in HPCA, 2011.

[218] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled execution of
recurring traces for energy-efficient general purpose processing,” in MICRO, 2011.

[219] H. Esmaeilzadeh, P. Saeedi, B. Araabi, C. Lucas, and S. Fakhraie, “Neural network
stream processing core (NnSP) for embedded systems,” in ISCAS, 2006.

[220] J. Zhu and P. Sutton, “FPGA implementations of neural networks: A survey of a
decade of progress,” in FPL, 2003.

[221] K. Przytula and V. P. Kumar, Eds., Parallel Digital Implementations of Neural
Networks. Prentice Hall, 1993.

[222] A. Joubert, B. Belhadj, O. Temam, and R. Heliot, “Hardware spiking neurons de-
sign: Analog or digital?” In IJCNN, 2012.

197

[223] J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of analog neural
networks,” in IJCNN, 2008.

[224] B. E. Boser, E. Säckinger, J. Bromley, Y. Lecun, L. D. Jackel, and S. Member,
“An analog neural network processor with programmable topology,” J. Solid-State
Circuits, vol. 26, pp. 2017–2025, 1991.

[225] A. Hashmi, A. Nere, J. J. Thomas, and M. Lipasti, “A case for neuromorphic ISAs,”
in ASPLOS, 2011.

[226] O. Temam, “A defect-tolerant accelerator for emerging high-performance applica-
tions,” in ISCA, 2012.

[227] A. Hashmi, H. Berry, O. Temam, and M. H. Lipasti, “Automatic abstraction and
fault tolerance in cortical microarchitectures,” in ISCA, 2011.

[228] A. Frank and A. Asuncion, UCI machine learning repository, 2010.

[229] T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Lipasti, A. Nere, S. Qiu,
M. Sebag, and O. Temam, “Benchnn: On the broad potential application scope of
hardware neural network accelerators?” In IISWC, 2012.

[230] S. Draghici, “On the capabilities of neural networks using limited precision
weights,” Elsevier NN, 2002.

[231] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage in solid-
state memories,” in MICRO, 2013.

[232] M. Rinard, H. Hoffmann, S. Misailovic, and S. Sidiroglou, “Patterns and Statistical
Analysis for Understanding Reduced Resource Computing,” in Onward!, 2010.

[233] J. Sartori and R. Kumar, “Branch and Data Herding: Reducing Control and Memory
Divergence for Error-Tolerant GPU Applications,” Multimedia, IEEE Transactions
on, 2013.

[234] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Ama-
rasinghe, “Petabricks: A language and compiler for algorithmic choice,” in PLDI,
2009, ISBN: 978-1-60558-392-1.

[235] X. Li and D. Yeung, “Exploiting application-level correctness for low-cost fault
tolerance,” J. Instruction-Level Parallelism, 2008.

[236] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Quality programmable vector processors for approximate computing,” in MICRO,
2013.

198

[237] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan, “ASLAN:
Synthesis of Approximate Sequential Circuits,” in DATE, 2014.

[238] J. Miao, A. Gerstlauer, and M. Orshansky, “Approximate logic synthesis under
general error magnitude and frequency constraints,” in ICCAD, 2013.

[239] A. Lingamneni, C. Enz, K. Palem, and C. Piguet, “Synthesizing Parsimonious
Inexact Circuits Through Probabilistic Design Techniques,” ACM Trans. Embed.
Comput. Syst., vol. 12, no. 2s, 2013.

[240] A. Lingamneni, K. K. Muntimadugu, C. Enz, R. M. Karp, K. V. Palem, and C.
Piguet, “Algorithmic Methodologies for Ultra-efficient Inexact Architectures for
Sustaining Technology Scaling,” in CF, 2012.

[241] Z. Du, A. Lingamneni, Y. Chen, K. Palem, O. Temam, and C. Wu, “Leveraging the
Error Resilience of Machine-Learning Applications for Designing Highly Energy
Efficient Accelerators,” in ASP-DAC, 2014.

[242] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay, “NeuroCube:
A Programmable Digital Neuromorphic Architecture with High-Density 3D Mem-
ory,” in ISCA, 2016.

[243] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos, “Stripes:
Bit-serial Deep Neural Network Computing,” in MICRO, 2016.

[244] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernndez-
Lobato, G. Y. Wei, and D. Brooks, “Minerva: Enabling Low-Power, Highly-
Accurate Deep Neural Network Accelerators,” in ISCA, 2016.

[245] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou, and Y. Chen,
“PuDianNao: A Polyvalent Machine Learning Accelerator,” in ASPLOS, 2015.

[246] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J. Dally, “Exploring the
Regularity of Sparse Structure in Convolutional Neural Networks,” arXiv, 2017.

[247] H. Alemdar, V. Leroy, A. Prost-Boucle, and F. Pétrot, “Ternary Neural Networks
for Resource-efficient AI Applications,” in IJCNN, 2017.

[248] Y. He, X. Zhang, and J. Sun, “Channel Pruning for Accelerating Very Deep Neural
Networks,” arXiv preprint arXiv:1707.06168, 2017.

[249] Y. Lin, C. Sakr, Y. Kim, and N. Shanbhag, “PredictiveNet: An Energy-efficient
Convolutional Neural Network via Zero Prediction,” in ISCAS, 2017.

199

[250] S. Misailovic, D. M. Roy, and M. C. Rinard, “Probabilistically Accurate Program
Transformations,” in SAS, 2011.

[251] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Rinard, “Using
Code Perforation to Improve Performance, Reduce Energy Consumption, and Re-
spond to Failures,” MIT, Tech. Rep. MIT-CSAIL-TR-2009-042, 2009.

[252] M. Rinard, “Probabilistic Accuracy Bounds for Fault-tolerant Computations that
Discard Tasks,” in ICS, 2006.

[253] M. C. Rinard, “Using Early Phase Termination to Eliminate Load Imbalances at
Barrier Synchronization Points,” in OOPSLA, 2007.

[254] H. J. Siegel, L. J. Siegel, F. C. Kemmerer, M. PT Jr, S. HE Jr, and S. D. Smith,
“PASM: A Partitionable SIMD/MIMD System for Image Processing and Pattern
Recognition,” IEEE TC, 1981.

[255] A. Nieto, D. L. Vilarino, and V. M. Brea, “PRECISION: A reconfigurable
SIMD/MIMD coprocessor for Computer Vision Systems-on-Chip,” IEEE TC,
2016.

[256] A. N. Choudhary, J. H. Patel, and N. Ahuja, “NETRA: A Hierarchical and Parti-
tionable Architecture for Computer Vision Systems,” IEEE TPDS, 1993.

[257] H. P. Zima, H.-J. Bast, and M. Gerndt, “SUPERB: A Tool for Semi-Automatic
MIMD/SIMD Parallelization,” Parallel Computing, 1988.

[258] P. P. Jonker, “An SIMD-MIMD architecture for Image Processing and Pattern
Recognition,” in Computer Architectures for Machine Perception, 1993.

[259] A. Nieto, D. L. Vilariño, and V. M. Brea, “SIMD/MIMD Dynamically-reconfigurable
Architecture for High-performance Embedded Vision Systems,” in ASAP, 2012.

[260] H. M. Waidyasooriya, Y. Takei, M. Hariyama, and M. Kameyama, “FPGA Im-
plementation of Heterogeneous Multicore Platform with SIMD/MIMD Custom
Accelerators,” in ISCAS, 2012.

[261] X. Wang and S. G. Ziavras, “Performance-energy Tradeoffs for Matrix Multiplica-
tion on FPGA-based Mixed-mode Chip Multiprocessors,” in ISQED, 2007.

[262] G. Kim, K. Lee, Y. Kim, S. Park, I. Hong, K. Bong, and H.-J. Yoo, “A 1.22 TOPS
and 1.52 mW/MHz Augmented Reality Multicore Processor with Neural Network
NoC for HMD Applications,” JSSC, vol. 50, no. 1, 2015.

200

[263] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and J. Tor-
rellas, “FlexRAM: Toward an Advanced Intelligent Memory System,” in ICCD,
2012.

[264] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki, J. Shin,
C. Chen, C. W. Kang, et al., “The Architecture of the DIVA Processing-in-Memory
Chip,” in Supercomputing, 2002.

[265] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz, “Smart
Memories: A Modular Reconfigurable Architecture,” in ISCA, 2000.

[266] M. Oskin, F. Chong, and T. Sherwood, “Active Pages: a Computation Model for
Intelligent Memory,” in ISCA, 1998.

[267] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R.
Thomas, and K. Yelick, “A Case for Intelligent RAM,” Micro, IEEE, vol. 17, no. 2,
1997.

[268] M. F. Deering, S. A. Schlapp, and M. G. Lavelle, “FBRAM: A New Form of
Memory Optimized for 3D Graphics,” in SIGGRAPH, 1994.

[269] D. G. Elliott, W. M. Snelgrove, and M. Stumm, “Computational RAM: A Memory-
SIMD Hybrid and its Application to DSP,” in Custom Integrated Circuits Confer-
ence, vol. 30, 1992.

[270] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “GraphPIM: Enabling
Instruction-Level PIM Offloading in Graph Computing Frameworks,” in HPCA,
2017.

[271] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O‘Connor, N. Vijaykumar, O.
Mutlu, and S. W. Keckler, “Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU Systems,” in ISCA, 2016.

[272] M. Gao and C. Kozyrakis, “HRL: Efficient and Flexible Reconfigurable Logic for
Near-Data Processing,” in HPCA, 2016.

[273] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “DRAMA: An
Architecture for Accelerated Processing Near Memory,” CAL, vol. 14, no. 1, 2015.

[274] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-in-
Memory Accelerator for Parallel Graph Processing,” in ISCA, 2015.

[275] C. Shelor, K. Kavi, and A. S., “Dataflow based Near Data Processing using Coarse
Grain Reconfigurable Logic,” in WoNDP, 2015.

201

[276] R. Nair, S. Antao, C. Bertolli, P. Bose, J. Brunheroto, T. Chen, C. Cher, C. Costa,
J. Doi, C. Evangelinos, B. Fleischer, T. Fox, D. Gallo, L. Grinberg, J. Gunnels,
A. Jacob, P. Jacob, H. Jacobson, T. Karkhanis, C. Kim, J. Moreno, J. O’Brien, M.
Ohmacht, Y. Park, D. Prener, B. Rosenburg, K. Ryu, O. Sallenave, M. Serrano,
P. Siegl, K. Sugavanam, and Z. Sura, “Active Memory Cube: A Processing-in-
Memory Architecture for Exascale Systems,” IBM Journal of Research and De-
velopment, vol. 59, no. 2/3, 2015.

[277] D. Zhang, N. Jayasena, A. Lyashevsky, J. Greathouse, L. Xu, and M. Igna-
towski, “TOP-PIM: Throughput-Oriented Programmable Processing in Memory,”
in HPDC, 2014.

[278] S. Pugsley, J. Jestes, R. Balasubramonian, V. Srinivasan, A. Buyuktosunoglu, A.
Davis, and F. Li, “Comparing Implementations of Near-Data Computing with In-
Memory MapReduce Workloads,” Micro, IEEE, vol. 34, no. 4, 2014.

[279] Q. Guo, N. Alachiotis, B. Akin, F. Sadi, G. Xu, T.-M. Low, L. Pileggi, J. Hoe, and
F. Franchetti, “3D-Stacked Memory-Side Acceleration: Accelerator and System
Design,” in WoNDP, 2014.

[280] Q. Zhu, T. Graf, H. Sumbul, L. Pileggi, and F. Franchetti, “Accelerating Sparse
Matrix-Matrix Multiplication with 3D-Stacked Logic-in-Memory Hardware,” in
HPEC, 2013.

[281] S. M. Hassan, S. Yalamanchili, and S. Mukhopadhyay, “Near Data Processing:
Impact and Optimization of 3D Memory System Architecture on the Uncore,” in
MEMSYS, 2015.

[282] B. Akin, F. Franchetti, and J. C. Hoe, “Data Reorganization in Memory using 3D-
stacked DRAM,” in ISCA, 2015.

[283] A. Yazdanbakhsh, D. Palframan, A. Davoodi, N. S. Kim, and M. Lipasti, “On-
line and Operand-Aware Detection of Failures Utilizing False Alarm Vectors,” in
GLSVLSI, 2015.

[284] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh, O. Mutlu, and
T. C. Mowry, “Rfvp: Rollback-free value prediction with safe to approximate
loads,” in High Performance Embedded Architectures and Compilers (HiPEAC),
ACM, 2016.

[285] B. Thwaites, G. Pekhimenko, H. Esmaeilzadeh, A. Yazdanbakhsh, O. Mutlu, J.
Park, G. Mururu, and T. Mowry, “Rollback-free Value Prediction with Approxi-
mate Loads,” in TACO, ACM, 2014, pp. 493–494.

202

[286] A. Lotfi, A. Rahimi, A. Yazdanbakhsh, H. Esmaeilzadeh, and R. K. Gupta,
“GRATER: An Approximation Workflow for Exploiting Data-Level Parallelism in
FPGA Acceleration,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2016, pp. 1279–1284.

203

VITA

Amir Yazdanbakhsh was born in Shiraz and raised in Bandar Abbas, Iran. He has re-

ceived his Ph.D. from the School of Computer Science at Georgia Institute of Technology.

Amir has a master’s degree in Electrical and Computer Engineering from University of

Wisconsin-Madison and a master’s degree in Electrical and Computer Engineering from

University of Tehran. Amir is interested in designing efficient specialized hardware for

machine learning applications. He is also interested in exploring the interplay between

machine learning techniques and efficient computing system design. He has published his

work in multiple well-recognized pee-reviewed conferences and journals. His research

has been recognized by multiple prestigious fellowships and awards including honorable

mention in IEEE Micro Top Picks, Qualcomm Innovation Fellowship, and Microsoft Grad-

uate Research Fellowship. Amir is also a gold medal winner of ACM Student Research

Competition. Currently, Amir is an AI resident at Google.

204

	Title Page
	Acknowledgments
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Proposal Summary
	Limited Precision Neuro-General Computing
	Summary
	Introduction
	Overview and Background
	Analog Circuits for Neural Computation
	Mixed-Signal Neural Accelerator (A-NPU)
	ANU Circuit Design
	Reconfigurable Mixed-Signal A-NPU
	Architectural interface for A-NPU

	Compilation for Analog Acceleration
	Evaluations
	Limitations and Considerations
	Conclusions

	Neuro-General Computing for GPU Throughput Processors
	Summary
	Introduction
	Neural Transformation for GPUs
	Safe Programming Interface
	Compilation Workflow

	Instruction Set Architecture Design
	Accelerator Design and Integration
	Integrating the Neural Accelerator
	Executing Neurally Transformed Threads
	Orchestrating Neurally Enhanced Lanes

	Controlling Quality Tradeoffs
	Evaluation
	Applications and Neural Transformation
	Experimental Setup
	Experimental Results

	Conclusion

	In-DRAM Near-Data Neuro-General Computing
	Summary
	Introduction
	Overview
	Challenges and Opportunities
	Approximation for Near-Data Processing

	AxRAM Execution Flow and ISA
	Neural Acceleration of GPU Warps
	Execution Flow with AxRAM
	ISA Extensions for AxRAM

	AxRAM Microarchitecture
	Background: GDDR5 Architecture
	In-DRAM Accelerator Integration
	Interfacing the GPU with AxRAM

	Data Organization for AxRam
	Arithmetic Units Simplification
	Memory Model
	Evaluation and Methodology
	Methodology
	Experimental Results

	Conclusion

	Language Support for Acceleration-Appriximation Hardware Design
	Summary
	Introduction
	Approximate Hardware Design with Axilog
	Design Annotations
	Reuse Annotations

	Relaxability Inference Analysis
	Approximate Synthesis
	Evaluation
	Conclusion

	Acceleration-Approximation in Deep Neural Networks
	Summary
	Introduction
	SnaPEA Hardware-Software Solution
	SnaPEA Software Workflow

	Computation Reduction in SnaPEA
	Problem Formulation
	Finding the Speculation Parameters

	Architecture Design for SnaPEA
	Evaluation
	Methodology
	Experimental Results

	Conclusion

	Unsupervised Learning Acceleration
	Summary
	Introduction
	Flow of Data in Generative Models
	Architecture Design for GANAX
	Unified MIMD-SIMD Architecture
	Decoupled Access-Execute Engines

	Instruction Set Architecture Design (Ops)
	Algorithmic Observations
	Access Ops
	Execute Ops

	Methodology
	Evaluation
	Conclusion

	Related Work
	Limited Precision Neuro-General Computing
	Neuro-General Computing for GPU Throughput Processors
	Acceleration-Approximation in Deep Neural Networks
	Unsupervised Learning Acceleration
	In-DRAM Near-Data Neuro-General Computing

	Future Work
	Other Work From This Author
	Approximate Computing
	FPGA Acceleration
	Heterogeneous Computing

	References
	Vita

