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Pseudomonas aeruginosa is a highly versatile bacterial species which causes 

a wide range of diseases in plants, animals, and man. It is a pathogen of in-

creasing concern to man because it is resistant to a wide variety of antibiotics 

and frequently invades patients receiving antibiotic therapy. It is a major 

problem in cancer wards, burn wards, and newborn nurseries of hospitals where 

patients have low resistance to disease. 

While wound infections and carriers are often the sources of outbreaks, it 

has become clear that water supplies, vegetables, and flowers (which in turn may 

acquire the organisms from water and soil) entering hospitals are significant 

sources of the organisms. Thus, there is increasing concern among specialists 

in infectious diseases for the ecology of the species outside of the hospital 

environment. 

A problem in the clinical laboratory and the sanitary microbiology laboratory 

evaluating the quality of surface and swimming waters has been the identification 

of apyocyanogenic strains of P. aeruginosa (which fail to produce the typical 

blue pigment, pyocyanin). As Gilardi (1968) has pointed out, "the identification 

of pigmented strains of P. aeruginosa presents no problem; however, apyocyanogenic 

strains are not uncommon, which presents a problem in their differentiation from 

other pseudomonads." Often, identification of apyocyanogenic P. aeruginosa is 

based upon growth at 42C and fluorescence or upon odor; or bacterial strains which 

are Gram negative, oxidase positive, exhibit oxidative glucose metabolism, and 

grow at 42C are designated P. aeruginosa. However, other characteristics which 

give consistent reactions with pyocyanogenic P. aeruginosa become highly variable 

among apyocyanogenic strains. As a result, in recent years many authors have pro-

posed schemes for the identification of P. aeruginosa. Some have consisted of 

selected tests designed to distinguish the species economically in the clinical 

laboratory. 

1 



Gilardi in published reports (Gilardi 1968, 1971) and in periodic unpublished 

guides for the "Identification of Nonfermentative Gram Negative Bacteria" has 

provided tables listing the characteristics of strains and percentages of strains 

positive, and indicating tests of particular diagnostic value. Among tests which 

are more generally considered to be of diagnostic value and which are commonly 

employed to identify P. aeruginosa are denitrification, oxidation of gluconate 

to 2-ketogluconate, and liquefaction of gelatin. Among pyocyanogenic strains of 

P. aeruginosa each of these characteristics is typically positive. Furthermore, 

pyocyanogenic strains typically hemolyse blood and utilize mannitol. Indeed, 

P. aeruginosa appears to be a very tight species with respect to all of its 

properties. On the other hand, among 63 apyocyanogenic strains investigated by 

Gilardi ("Identification of Nonfermentative Gram Negative Bacteria," revised 

December, 1974), these characteristics were found to be variable: 

Characteristic 
Percent of 

Strains Positive 

Hemolysis of blood 44 
Gelatinase 59 
Nitrogen gas production 60 
Gluconate oxidation 64 
Acid from mannitol 67 

Thus, about 60% of apyocyanogenic strains exhibited the expected results, and 

apyocyanogenic strains of P. aeruginosa are generally considered to exhibit a 

high degree of variability. According to Hugh and Gilardi (1974), the following 

universal features of pyocyanogenic strains of P. aeruginosa are unreliable for 

the identification of apyocyanogenic strains: 

nitritase 
gelatinase 
caseinase 
lipase 
production of 2-ketogluconate 
triphenyltetrazolium chloride tolerance 
utilization of adipate 

suberate 
acetamide 
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Hugh and Gilardi suggested, however, that the comparison of cellular fatty acids 

and nucleic acid reactions of intact cells represent potentially useful tools 

for the identification of P. aeruginosa. 

Other workers have accepted more fully the significance of characteristics 

viewed by Gilardi as variable. Thus Haynes (1951) studied 57 bacterial strains 

which grew at 41C. Among these strains, 43 produced pyocyanin and 9 were identified 

as apyocyanogenic strains of P. aeruginosa based upon their growth at 41C, oxidation 

of gluconate, and slime production in gluconate broth. Five apyocyanogenic 

strains failing to oxidize gluconate and to produce slime in gluconate broth were 

considered not to meet criteria for inclusion in the species. More recently, 

Sutter (1968) suggested that 4 fluorescent Pseudomonas strains able to grow at 41C 

but failing to denitrify or to hydrolyze gelatin probably were not P. aeruginosa.  

Among 65 strains, including 14 apyocyanogenic strains, considered by Sutter to 

be P. aeruginosa, only single strains failed to denitrify, grow at 41C, and hydrolyze 

gelatin. Phillips (1969) recommended a key for the identification of P. aeruginosa, 

which, while it did not include the ability to denitrify, eliminated from the 

species strains failing to oxidize gluconate. 

Most recently, Hoadley and Ajello (1972) examined 29 strains of apyocyanogenic 

fluorescent pseudomonads capable of growth at 41C, but apparently differing in 

several respects from P. aeruginosa. Nearly all strains failed to denitrify and 

to utilize mannitol, and gluconate, and many failed to utilize acetamide. Some 

strains were identical to Pseudomonas mendocina in the stutzeri group, save that 

they were fluorescent. DNA from these strains also exhibited a high degree of 

homology with P. mendocina strains (Palleroni, personal communication). The 

predominant biotype frequently produced a brown pigment and exhibited moderate 

homology with P. aeruginosa. Such strains constituted over 90% of the populations 

of fluorescent pseudomonads able to grow at 41C which were demonstrated in 

surface waters by Hoadley and Ajello (1972). 
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It was the objective of the present study to obtain apyocyanogenic Pseudomonas  

strains capable of growth at 42C from clinical materials and from surface waters, 

and to characterize these strains by means of selected biochemical tests, serological 

typing, and antibiotic susceptibility testing. From the information obtained, it 

was anticipated that the similarity of strains to P. aeruginosa and the occurrence 

of strains differing from P. aeruginosa in clinical material could be determined. 

Furthermore, it was the objective to determine serotypes of P. aeruginosa  

strains to determine whether certain serotypes survived better in water and thus 

predominated in water. 
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MATERIALS AND METHODS 

Cultures examined. Approximately 413 cultures from surface waters, 

swimming pools, and clinical sources were screened to determine whether they 

were indeed fluorescent pseudomonads capable of growth at 41C. The cultures 

consisted of isolates from surface and swimming waters considered to differ 

from P. aeruginosa, and strains obtained from workers at other laboratories, 

most of which were received as apyocyanogenic P. aeruginosa. Screening con-

sisted of preliminary screening for production of fluorescent pigment and pyo-

cyanin, and growth at 41C. Strains producing pyocyanin were accepted as P. 

aeruginosa. Strains failing to produce pyocyanin, but producing fluorescent 

pigment and growing at 41C, were examined to confirm oxidase production and 

oxidative glucose metabolism. Many of the cultures obtained as apyocyanogenic 

P. aeruginosa or unidentified Pseudomonas strains able to grow at 41C (UFP strains) 

were examined also for their ability to hemolyze human blood, gelatin lique-

faction, casein hydrolysis, denitrification, gluconate oxidation, arginine 

dihydrolase production, and egg yolk reaction. All strains were typed employing 

antisera for P. aeruginosa. Some strains received from other laboratories as 

apyocyanogenic strains produced pyocyanin in our hands; many exhibited reactions 

characteristic of P. fluorescens or P. putida and were not investigated further. 

From the cultures received, 13 pyocyanogenic P. aeruginosa strains, 47 apyocyano-

genic P. aeruginosa strains, and 129 UFP strains were selected for study of sub-

strate utilization, antibiotic susceptibilities, and pyocine typing. Selected 

strains were analysed also for cellular fatty acid composition. 

In addition to the above strains, 12 pyocyanogenic and 13 apyocyanogenic 

strains of P. aeruginosa, and 14 UFP strains from swimming pools; and 7 pyocyano-

genic and 4 apyocyanogenic strains of P. aeruginosa, and 2 UFP strains from ears 
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Table 1. Sources of Strains Examined 

No. of 
Strains 

29 

42 

39 

Source 

D. E. Knight and A. W. Hoadley -
Georgia Institute of Technology, 
Atlanta, Georgia 

G. Ajello - Georgia Institute of 
Technology, Atlanta, Georgia 

A. W. Hoadley, G. Ajello, and N. 
Masterson, Georgia Institute of 
Technology, Atlanta, Georgia, 
and the University of Florida, 
Gainesville, Florida 

D. Mooney and A. W. Hoadley -
Georgia Institute of Technology, 
Atlanta, Georgia 

A. W. Hoadley, G. Ajello, N. Mas-
terson, Georgia Institute of 
Technology, Atlanta, Georgia, 
and the University of Florida, 
Gainesville, Florida 

Origin 

Isolated from surface waters 
in Georgia 

Isolated from surface waters 
in Brazil 

Isolated from swimming pool 
waters in Florida 

69 	Isolated from hospital wastes 
and receiving stream in Georgia 

Isolated from swimming pools 
in Canada 

Isolated from clinical materials 

Isolated from clinical materials 
and other sources 

Isolated from clinical materials 

Isolated from clinical materials 

Isolated from clinical materials 

Isolated from infected outer ears 

Dr. M. H. Brodsky, Ontario Ministry 	24 
of Health, Toronto, Ontario 

Dr. J. Shulman, Grady Memorial 	 46 
Hospital, Atlanta, Georgia 

Dr. Rudolph Hugh, George Washington 	7 
University Medical School 

Dr. R. Weaver, Center for Disease 	13 
Control, Atlanta, Georgia 

Dr. G. L. Gilardi, Hospital for 	 20 
Joint Diseases and Medical 
Center, New York, N. Y. 

Dr. E. Yourassowsky, Hospital 	 12 
Universitaire Brugmann, 
Brussels, Belgium 

A. W. Hoadley, Georgia Institute 
	97 

of Technology, Atlanta, Georgia 

14 	Isolated from infected and healthy 
outer ears and rectal swabs 

Dr. S. D. Kominos, Mercy Hospital, 	1 
	

Isolated from clinical materials 
Pittsburgh, Pennsylvania 
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and rectal swabs from swimmers and non-swimmers were examined. All strains were 

examined by immunotyping and pyocin typing. Apyocyanogenic P. aeruginosa and 

UFP strains were examined for gelatin liquefaction, denitrification, ability 

to utilize 7 substrates, and susceptibility to 7 antibiotics. 

Strains of known P. aeruginosa from surface waters and wastes were typed by 

immunotyping and were tested for their resistance to carbenicillin. Strains 

selected for immunotyping included 288 strains from non-polluted lake waters 

and 214 strains from a stream receiving domestic and hospital sewage. Strains 

examined for resistance to carbenicillin included 35 strains isolated from a stream 

above a hospital waste discharge, 109 strains isolated from the hospital wastes, 

and 186 strains isolated from the stream below the hospital waste discharge. 

Characterization of isolates. Pigment production, while it was investigated 

employing a variety of media, was in all strains demonstrated on commercially 

available media. Fluorescent pigment was detected on King's B medium (Flo Agar, 

BBL) or Pseudomonas F Agar (Difco) slants incubated at 30C for 72 hr. Slants 

were observed for fluorescence daily under a Wood's lamp. Pyocyanin production 

was tested on slants of King's A medium (Tech Agar, BBL) or Pseudomonas P Agar 

(Difco) incubated at 30C for up to 7 days. Blue pigment was detected visually 

in slants, or if not readily detectable, was extracted with chloroform and then 

partitioned into several drops of 1 N HC1 where it exhibited a red color. 

Growth at 41C was tested on slants of Haynes medium (Haynes, 1951) warmed 

to 41C prior to inoculation, and inoculated slants were incubated in a water 

bath for 24 and 48 hr. Indophenol (cytochrome) oxidase was determined by the 

method of Gaby and Hadley (1957). Glucose metabolism was tested on the oxidative-

fermentative medium of Hugh and Leifson (1953). Incubation was overnight at 30C. 

Liquefaction of gelatin was determined on plates of nutrient agar containing 0.4% 

gelatin. Plates were incubated at 30C. After 48 hr incubation, plates were 
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flooded with acid mercuric chloride. Liquefaction was indicated by a zone of 

clearing surrounding streaks of cells. Casein hydrolysis was determined on the 

medium of Brown and Scott Foster (1970) incubated at 30C for 48 hr. Denitrifi-

cation was determined as described by Stanier et al. (1966), or by the fermen-

tation tube method (Manual of Clinical Microbiological Methods, 1974). Oxidation 

of gluconate to 2-ketogluconate was determined by the methods of Gaby and Free 

(1958) and Arai et al. (1970). The egg yolk reaction was determined as described 

in the Manual of Clinical Microbiological Methods (1974). 

Arginine dihydrolase activity was detected in oxidative-fermentative basal 

medium (lacking glucose) containing 1% arginine. Tubes of medium containing 

arginine and control tubes lacking arginine were covered with mineral oil to a 

depth of about 1 cm and incubated at 30C for 24 hr. A blue color in tubes 

containing arginine, but not in control tubes, indicated a positive test. 

Utilization of sebacate, saccharate, mannitol, glycollate, gluconate, 

geraniol, and acetamide were determined by the methods of Stanier et al. (1966). 

Flagella stains were prepared according to the method of Leifson (1960). 

Immunotyping was performed using either the F antisera of Parke-Davis 

& Co. or the 16 antisera of Difco. The F antisera of Parke-Davis & Co. were 

provided by Dr. H. B. Devlin and typing was done according to accompanying 

instructions. The 16 antisera of Difco were provided by Mr. Duke Bunner and 

typing was done according to accompanying instructions. 

Pyocine typing was performed employing the 18 indicator strains of Jones 

et al. (1974). 

Susceptibility to 11 antibiotics was determined by the method of Bauer 

et al. (1966). Antibiotics included tetracycline (30 pg), chloramphenicol 

(30 pg), streptomycin (10 jig), kanamycin (30 jig), neomycin (30 pg), carbeni-

cillin (100 jig), cephalothin (30 jig), ampicillin (10 jig), colistin (10 jig), 
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and polymyxin B (300 units). 

Cellular fatty acid compositions of selected strains were determined by 

Dr. C. W. Moss and Mrs. Sally Dees of the Center for Disease Control as des-

cribed by Moss et al. (1972). 
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RESULTS AND DISCUSSION 

Characteristics of strains. Of 123 apyocyanogenic fluorescent Pseudomonas  

strains contributed by workers at other institutions, most were readily identi-

fied as P. aeruginosa. Many produced the blue pigment pyocyanin which is charac-

teristic of the species, even though they were sent as strains incapable of 

producing the pigment. Most of the strains sent by one worker were readily iden-

tified as P. putida and failed to exhibit the characteristics attributed to them 

by the sender. Six truly apyocyanogenic strains from clinical material appeared 

to exhibit the characteristics being sought in this study, i.e. characteristics 

differing from those of P. aeruginosa in several respects described below. One 

clinical worker late in the study reported having seen many cultures which he 

identified as P. aeruginosa, but which exhibited exceptional antibiotic suscep- 

tibility patterns which resembled unidentified fluorescent Pseudomonas (UFP) strains. 

Cultures are now being sent as they are isolated. One hundred and twenty three 

UFP strains originating from surface waters and from hospital wastes were examined. 

A summary of characteristics of strains examined is presented in Table 2. 

Strains selected for study included 13 pyocyanogenic and 47 apyocyanogenic strains 

of P. aeruginosa from environmental and clinical sources as well as culture 

collections, as well as 129 UFP strains. On the basis of the tests employed, it 

was possible to divide the UFP strains into 8 groups. 

All strains examined were oxidase positive, exhibited oxidative glucose 

metabolism and produced fluorescent pigment and arginine dihydrolase. All strains 

examined thus far possess polar flagellation. All but 2 strains exhibited negative 

egg yolk reactions, i.e. were lecithinase negative. These characteristics are 

typical of the fluorescent group of pseudomonads, and, with the exception of the 

2 strains exhibiting positive egg yolk reactions, are consistent with P. aeruginosa. 
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Table 2. 	Characteristics of P. aeroeLnosa and UIT stu-ains examined 

P. aerIginosa OPP Strains 

iracteristic Pyocyanogen1c Apyocyanogenic 1 II 111 1[1a IIIb IV V Va 

lgella 1 1 1 1 ,1 >1 >1 >1 2 ? 

gments 

Phenazine + 	1005+ - 	02+ - 	02+ - 	0`.+ - 	02-i- - 	01+ - 	02+ - 	02+ - 	02+ - 	01+ 
(13/13)* (0/47) (0/50) (0;3) (0/41) (0/2) (0/2) (0/12) (0/18) (0/1) 

Carotenoid + 	02+ - 	10.62+ V 	385+ - 	W:+ v 	17.12+ - 	02+ - 	02+ - 	02+ - 	02+ - 	02+ 
(0/13) (5/47) (19/50) (0/3) (7/41) (0/2) (0/2) (0/12) (0/18) (0/1) 

molysis + 	1005+ + 	1002+ V 	822+ - 	0!...-1- V 	782+ + 	1002+ V 	502+ V 16.72+ V 	77.82+ - 	02+ 
(13/13) (47/47) (41/50) (0/3) (32/41) (2/2) (1/2) (2/12) (14/18) (0/1) 

Latin liquefaction + 	1002+ + 	89.42+ + 	1002+ - 	,+ 0`;+ + 	1002+ + 	1002+ + 	1002+ - 	02+ + 	1002+ + 	1002+ 
(13/13) (42/47) (50/50) (0/3) (41/41) (2/2) (2/2) (0/12) (18/18) (1/1) 

isein hydrolysis + 	92.45+ + 	91.55+ + 	87.82+ - 	0;;+ + 	1002+ + 	1002+ - 	OX+ V 	252+ + 	892+ + 	1002+ 
(12/13) (43/47) (43/49) (0/3) (41/41) (2/2) (0/2) (3/12) (16/18) (1/1) 

:nitrification + 	1002+ + 	89.42+ - 	02+ - 	02+ - 	02+ - 	02+ V 	505+ V 	252+ - 	02+ - 	02+ 
(13/13) (42/47) (0/50) (0/3) (0/41) (0/2) (1/2) (3/12) (0/18) (0/1) 

luconate oxidation 
+ 	1002+ + 	95.92+ - 	02+ V 33.32+ - 	05+ + 	1002+ + 	1002+ V 	752+ - 	02+ - 	02+ 
(13/13) (45/47) (0/50) (1/3) (0/41) (2/2) (2/2) (9/12) (0/18) (0/1) 

rginine dihydrolase 
+ 	1002+ + 	1002+ + 	985+ + 	1002+ + 	1002+ + 	1002+ + 	1005+ + 	1002+ + 	1002+ + 	1002+ 
(13/13) (47/47) (49/50) (3/3) (41/41) (2/2) (2/2) (12/12) (18/18) (1/1) 

gg yolk reaction - 	02+ - 	05+ - 	OS+ - 	02+ - 	02+ - 	1002+ - 	02+ - 	02+ - 	02+ - 	02+ 
(0/13) (0/47) (0/50) (0/3) (0/41) (2/2) (0/2) (0/12) (0/18) (0/1) 

tilizatioo of: 

Sebacate 
+ + 	1002+ + 	1002+ v 	332+ + 	922+ + 	1002+ 

(3/3) (19/19) (1/3) (13/14) (1/1) 

Saccharate 
- 	02+ - 	02+ + 	1002+ - 	05+ + 	1002+ 
(0/3) (0/19) (3/3) (0/14) (1/l) 

Mannitol + + 	1002+ - 	. 	02+ V 	137+ - 	02+ + 	1004+ 
(3/3) (0)19) (1/3) (0/14) (1/1) 

Glycollate V 	66.72+ - 	02+ + 	1002+ - 	02+ + 	1005+ 
(2/3) (0/19) (3/3) (0/14) (1/1) 

Gluconate 
+ V 	66.75+ - 	5.32+ V 	672+ - 	7.12+ + 	1002+ 

(2/3) (1/19) (2/3) (1/14) (1/1) 

Geraniol + + 	1002+ + 94.72+ + 	1002+ + 	1005+ + 	1002+ 
(3/3) (18/19) (3/3) (14/14) (1/1) 

Acetamide 
+ + 	1002+ - 10.52+ V 	332+ + 	1002+ + 	1002+ 

(3/3) (2/19) (1/3) (14/14) (1/1) 
Resistance to: 

Gentamicin S 	02+ S 	02+ S 	02+ S 	02+ S 	02+ S 	02+ S 	02+ S 	02+ S 	02+ S 	02+ 
(0/13) (0/46) (0/50) (0/3) (0/40) (0/2) (0/2) (0/9) (0/18) (0/1) 

Carbenicillin V 	46.22+ V 	42.32+ 5 	89.42+ V 66.7%+ 592.52+ 5 	1002+ 5 	1002+ R 88.92+ 588.92+ 5 	1002+ 
(6/13) (19/45) (42/47) (2/3) (37/40) (2/2) (2/2) (8/9) (16/18) (1/1) 

Chloramphenicol R 	1002+ R 	95.6°4+ R 91.92+ II 	1005+ R 87.52+ R 	1002+ R 	1005+ R 	1005+ R 94.55+ R 	1005+ 
(13/13) (43/45) (45/49) (3/3) (35/40) (2/2) (2/2) (9/9) (17/18) (1/1) 

Streptomycin V 	772+ V 	76.12+ S 	25+ V 33.32+ S 	2.52+ V 	505+ S 	02+ V 55.62+ S 	02+ S 	02+ 
(10/13) (35/46) (1/50) (1/3)_ (1/40) (1/2) (0/2) (5/9) (0/18) (0/1) 

Tetracycline R 	92.4%+ R 	1002+ V 	662+ S 	02+ R 	852+ S 	02+ V 	502+ V 66.72+ R 	1002+ 5 	1002+ 
(12/13) (45/45) (33/50) (0/3) (34/40) (0/2) (1/2) (6/9) (18/18) (1/1) 

Neomycin S 	7.72+ V 	47.92+ V 	705+ 5 	05+ V 	77.52+ S 	02+ S 	05+ S 	05+ V 27.82+ R 	1002+ 
(1/13) (22/46) (35/50) (0/3) (31/40) (0/2) (0/2) (0/9) (5/18) (1/1) 

Kanamycin 13. 	92.42+ R 	88.92+ S 	27+ S 	02+ 5 	05+ S 	0Z+ V 	502+ S 	02+ S 	02+ S 	05+ 
(12/13) (40/45) (1/50) (0/3) (0/40) (0/2) (1/2) (0/9) (0/16) (0/1) 

Cephalothin 11 	1002+ 11 	1002+ R 	1002+ 5 	1007+ It 	1002+ R 	1002+ R 	1002+ R 	1002+ 
(12/12) (38/38) (21/21) (3/"..) (5/5) (2/2) (1/1) (9/9) 

Ampicillin R 	1002+ R 	97.42+ 5 	1005+ 5 	1')07+ A 	1002+ R 	1007+ R 	1005+ R 	1005+ 
(12/12) (36/37) (21/21) (3/3) (5/5) (2/2) (1/1) (9/9) 

Colistin 
S 	7.72+ S 	02+ S 	02+ 05+ S 	02+ S 	02+ 5 	05+ S 	02+ 
(1/12) (0/37) (0/21) (0/1) (0/5) (0/2) (0/1) (0/9) 

Polymyxin B 8 	7.75+ S 	02+ S 	02+ S 	02+ S 	05+ S 	02+ S 	02+ S 	02+ 
(1/12) (0/37) (0/21) (0/1) (0/5) (0/2) (0/1) (0/9) 

Typable by: 

Pyocine typing + (1/1) + 	(3/3) - 	(0/14) 

Sorologiral 	typing + 	(11/13) + 	(39/47) - 	(0/50) - 	(0/1) - 	(0/41) - 	(0/2) - 	(0/2) - 	(0/12) - 	(0/18) - 	(0/1) 

+ positive (more :11,,n WIX 
- 	net. , at IVO (I ,- t:' ,  than 157 T.S1 	VI') 
V vovi,b1c 	 ivy) 
* numbers In porenilw•es Indicate number of positive or resistant fitn , f0, 	ictol 



Furthermore, all strains grew at 41C, in this respect resembling P. aeruginosa. 

Patterns of flagellation varied among strains (Table 3). Among strains of 

P. aeruginosa, single polar flagella were observed most commonly, as expected. 

According to Lautrop and Jessen (1964) and Jessen (1965), if less than 10% of 

cells are multitrichous, a Pseudomonas strain may be considered to possess single 

polar flagella. 	If more than 25% of cells are multitrichous, the strain should 

be considered to possess polar multitrichous flagellation. However, if between 

10 and 25% of cells possess polar flagellar tufts, the flagellar pattern is inter-

mediate, and the strain cannot be assigned to either well defined group. For 

convenience in Table 2, all strains exhibiting flagellar indices (percent multi-

trichous) in excess of 10 were considered to possess more than 1 polar flagellum. 

One of the 13 pyocyanogenic strains of P. aeruginosa was of an intermediate type 

(12% multitrichous) and 9 of 47 apyocyanogenic strains were of an intermediate type 

or were lophotrichous (12, 12, 14, 14, 16, 24, 28, 28, and 36%, respectively). 

While the pyocyanogenic strain and several of the apyocyanogenic strains differed 

little from the ideal monotrichous flagellar indices, the number of apyocyanogenic 

strains exhibiting multitrichous polar flagellation was higher than normally would 

be anticipated. 

Among the 129 UFP strains, intermediate and multitrichous strains were more 

common (Table 3). It should be pointed out that among the 2 major groups of UFP 

strains (Groups I and III) based upon data obtained thus far, the only difference 

is to be found in the patterns of flagellation. Lateral flagella of the type 

described by Palleroni et al. (1970) in the stutzeri group were not observed. 

Polar tufts found among Group III strains frequently included a single flagellum 

of normal appearance and straight flagella having an irregular and abnormal appear-

ance. The latter structures did not resemble the lateral flagella of Beneckea  

strains described by Bauman, Bauman and Mandel (1971). It may be of significance 
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Table 
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3. 	Identity and flagellar indices of UFP Strains 
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I 201 3 I DM2 0 III 
202 2 cont'd DM49 8.5 cont'd DM48 32 
203 6 DM52 9 DM50 50 
204 4 DM53 1 DM51 23 
205 2 DM55 0 DM54 10 
207 2 II 217 0 IIIa 247 10 
209 8 219 0 414 58 
211 0 231 0 IIIb 208 13 
212 0 III DM1 40 415 66 
213 0 DM9 42 IV 230 76 
214 0 DM11 53 233 26 
215 0 DM12 30 234 46 
216 0 DM13 50 235 70 
218 0 DM15 70 236 58 
220 0 DM17 15 237 36 
221 6 DM18 64 244 42 
222 0 DM19 17 245 64 
223 0 DM20 60 246 88 
224 0 DM21 15 410 74 
225 0 DM22 19 416 76 
226 0 DM23 13 417 50 
227 0 DM24 28 V 206 /5' 
228 0 DM25 68 305 6  

229 0 DM26 29 306 .3- 

239 0 DM27 29 319 /0 

301 4 DM28 52 323 if 
302 8 DM29 46 324 
303 1 DM30 40 325 
304 0 DM31 21 327 
307 0 DM32 28 328 26 
308 3 DM33 14 329 
309 0 DM34 58 330 4 
310 1 DM35 40 331 
311 0 DM36 40 332 
312 4 DM37 40 333 
313 1 DM38 17 334 
314 1 DM39 59 335 
315 1 DM40 40 336 
316 6 DM41 56 337 
317 4 DM42 68 Va 326 
318 2 DM43 42 
320 0 DM44 62 
321 0 DM45 50 
322 Rf g' DM46 35 
423 0 DM47 56 
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that all Group III strains were isolated from hospital sewage and thus pre-

sumably originated from the hospital environment. 

UFP strains could be recognized by their lack of hemolytic activity, 

ability to hydrolyze gelatin and casein, or their lack of ability to denitrify 

or oxidize gluconate. Whereas some pyocyanogenic and apyocyanogenic P. aeruginosa  

strains differed from the ideal biotype with respect to a single characteristic, 

all UFP strains differed with respect to at least 2 characters. Most commonly, 

UFP strains failed to denitrify, to oxidize gluconate, or both. Many strains 

differed with respect to other characteristics as well. In addition, whereas 

both pyocyanogenic and apyocyanogenic P. aeruginosa strains exhibited strong 

hemolytic activity, the activity of most UFP strains was very weak, often detect-

able only after scraping cells from the surface of blood agar plates. Based 

primarily upon these characteristics and flagellar patterns, UFP strains were 

assigned to 8 groups. 

The 2 predominant UFP groups, Groups I and III, apparently differing from 

each other only with respect to their flagellation, differed from P. aeruginosa in  

the above characteristics only with respect to their generally low hemolytic activity 

and their failure both to denitrify and to oxidize gluconate. It is of interest 

that many Group I and III UFP strains (38 and 17%, respectively) produced brown 

carotenoid pigments, a property exhibited among the aerobic pseudomonads only 

by P. mendocina in the stutzeri group. It must be pointed out that GC contents 

of 3 Group I UFP strains determined by Dr. Manley Mandel at the M.D. Anderson 

Hospital and Tumor Institute indicated a similarity to P. aeruginosa rather than 

to P. mendocina. DNA hybridizations conducted by Dr. N. J. Palleroni of the 

University of California in Berkeley indicated a low homology between 2 UFP Group I 

strains and P. mendocina. 

Tests for the utilization of 7 substrates were limited. None of the 13 
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pyocyanogenic strains of P. aeruginosa included in this study were tested. 

Expected reactions are included in Table 2, however, and are based upon results 

obtained in our laboratory on other strains and results reported by Stanier 

et al. (1966). Among the 3 apyocyanogenic strains examined, there was exhibited 

considerable variability. This probably is of little significance in view of 

the small number of strains examined. Only the ability of 2 apyocyanogenic 

P. aeruginosa strains to utilize glycollate was unusual. 

On the other hand, significant differences existed between UFP strains and 

P. aeruginosa. Among the 19 Group I UFP strains, none utilized mannitol and only 

1 and 2 strains utilized gluconate and acetamide, respectively. While the lack 

of ability to utilize gluconate might be anticipated in view of the failure of 

these strains to oxidize gluconate, these differences, and particularly the failure 

to utilize acetamide, suggest real differences between UFP strains and P. aeruginosa. 

The ability to utilize geraniol, however, is limited to P. aeruginosa and P. men- 

docina. 

Among the 3 Group II UFP strains, utilization of the 7 substrates was variable, 

and, like the reactions of the 3 apyocyanogenic P. aeruginosa strains, these 

results probably are of limited taxonomic value. However, the patterns of reactions 

do, in some ways, resemble those of P. mendocina, a non-fluorescent pseudomonad 

in the stutzeri group. In particular, only single strains utilized sebacate, 

mannitol, and acetamide, none of which are utilized by P. mendocina. Furthermore, 

all strains utilized saccharate, glycollate, and geraniol, and 2 of the 3 strains 

utilized gluconate, all of which are utilized typically by P. mendocina. It 

should be pointed out that a fourth strain isolated from clinical material has been 

received from Dr. Spyros Kominos at Mercy Hospital in Pittsburgh. This strain 

was fluorescent, oxidase positive, exhibited oxidative glucose metabolism, and 

grew at 42C, but resembled Group II strains in failing to hemolyze blood, liquefy 
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gelatin, hydrolyze casein, denitrify, oxidize gluconate, or exhibit lecithinase 

activity on egg yolk agar, while exhibiting arginine dihydrolase activity. 

Ordinarily, this strain would be identified as P. aeruginosa on the basis of 

fluorescence, oxidase reaction, oxidative glucose metabolism, and growth at 42C. 

However, this strain was susceptible to kanamycin and resistant to carbenicillin, 

which differs from the normal pattern of susceptibilities exhibited by P. aeruginosa  

(see discussion below). 

It is significant that strain 217 in UFP Group 2 isolated by us from surface 

waters had been studied by Dr. N. J. Palleroni, who, applying the battery of tests 

employed by Stanier et al. (1966), had found the strain to be identical to P. men-

docina save that it was fluorescent and that it failed to produce carotenoid pig-

ments. GC determinations performed by Dr. Manley Mandel confirmed the similarity 

of strain 217 to P. mendocina. DNA hybridizations conducted by Dr. Palleroni 

demonstrated 65% competition at both 70 and 80C between strain 217 and P. mendocina, 

indicating a considerable homology between the UFP strain and that species. 

Among other UFP groups, only 15 strains of Groups V and Va were examined for 

utilization of the 7 substrates. With the exception of 1 of these strains, none 

has been examined for flagellation. Among strains of Group V, none utilized man-

nitol or gluconate, and, with the exception of the utilization of acetamide, these 

strains resembled Group I strains. The single strain of Group Va was unusual in 

its ability to utilize each of the 7 substrates, thus differing from P. aeruginosa  

in its ability to utilize saccharate and glycollate. 

With only rare exceptions, strains of P. aeruginosa and UFP strains were sus-

ceptible to gentamicin, colistin, and polymyxin B and were resistant to cephalothin 

and ampicillin. Most strains examined were resistant to chloramphenicol, although 

among both Group I and III UFP strains susceptibility was not rare, and susceptible 

strains occurred among apyocyanogenic P. aeruginosa and Group V UFP strains. 
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Neomycin susceptibility was highly variable. While resistance was demonstrated 

in only 1 of 13 pyocyanogenic P. aeruginosa strains, it occurred in approximately 

48% of apyocyanogenic P. aeruginosa strains and between 70 and 80% of Group I 

and III UFP strains. Thus, susceptibility to neomycin, while it is characteristic 

of pyocyanogenic strains, is of little value in distinguishing apyocyanogenic 

P. aeruginosa from UFP strains. Furthermore, it might be anticipated that neomy-

cin would be of doubtful value in the treatment of infections caused by apyocyano-

genic fluorescent pseudomonads. 

In contrast to the failure of susceptibility to the above antibiotics to 

provide useful diagnostic information, susceptibility to carbenicillin, strepto-

mycin, and kanamycin do appear to provide a basis for distinguishing UFP strains 

from pyocyanogenic and apyocyanogenic P. aeruginosa. The clearest distinction 

is between resistance of P. aeruginosa strains and susceptibility of UFP strains 

to kanamycin. Approximately 90% of both pyocyanogenic and apyocyanogeni gp 

strains were resistant to kanamycin, whereas only 2 of 123 UFP strains examined 

were resistant to this drug. This observation is similar to that of Blazevic 

et al. (1973) who recommended susceptibility to kanamycin to distinguish between 

P. aeruginosa on the one hand and P. fluorescens and P. putida on the other. 

Susceptibility to carbenicillin also may serve well to distinguish P. aerugi-

nosa from other fluorescent pseudomonads, as suggested by Blazevic et al. (1973). 

While less than half of the P. aeruginosa strains examined were resistant to 

carbenicillin, UFP strains characteristically exhibited resistance to this drug. 

This is particularly the case when it is recognized that all resistant P. aeruginosa  

strains were of clinical origin. No environmental P. aeruginosa strains included 

in this study were resistant to carbenicillin. This does not mean that carbeni-

cillin resistant strains may not be isolated from the environment. Green et al. 

(1974) reported isolation of a carbenicillin resistant strain from soil in a culti- 
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vated field in California. In addition, hospital sewage may serve as a reservoir 

of carbenicillin resistant strains reaching surface waters (see discussion below). 

Thus, as suggested by Blazevic et al. (1973), resistance to carbenicillin, together 

with susceptibility to kanamycin, provides good evidence that a strain differs 

significantly from P. aeruginosa. 

Of less certainty is susceptibility to streptomycin. Between 76 and 77% of 

P. aeruginosa strains examined were resistant to streptomycin. On the other hand, 

resistant UFP strains, except in Groups IIIa and IV (11 of 125 strains), were 

rare. Thus, resistance to carbenicillin, together with susceptibility to strepo-

mycin and/or kanamycin should provide strong evidence of a UFP strain differing 

in many other respects from P. aeruginosa. 

Only very limited studies of pyocin production were undertaken employing 

strains reported in Table 2. Of a total of 4 P. aeruginosa strains examined, all 

were typable employing the 18 P. aeruginosa indicator strains of Jones et al. 

(1974b). In studies of 35 strains of P. aeruginosa examined by us but not reported 

in Table 2, 32 were typable employing the above indicator strains, and Jones et al. 

(1974) were able to type all of 100 strains which they examined. Of 14 UFP strains 

reported in Table 2, none could be shown to produce pyocins. In previous studies, 

it was demonstrated that none of 9 UFP Group I strains produced pyocins active 

against the 8 indicator strains of Gillies and Govan (1966). These results suggest 

a divergence from P. aeruginosa, but more extensive studies of both production of 

and sensitivity to pyocins will be undertaken to clarify this point. 

Results of serological typing of strains employing the 16 antisera of Difco 

similarly suggested a divergence of UFP strains from P. aeruginosa. Whereas 

over 80% of both pyocyanogenic and apyocyanogenic strains of P. aeruginosa were 

typable, none of the 129 UFP strains were typable. 

Further evidence suggesting that UFP strains may differ significantly from 
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P. aeruginosa was obtained from the cellular fatty acid compositions of selected 

P. aeruginosa and UFP strains. Cellular fatty acid compositions of 7 apyocyano-

genic P. aeruginosa strains (including 4 strains included in Table 2) and 23 UFP 

strains were determined by Dr. C. W. Moss and Mrs. Sally Dees of the Center for 

Disease Control by gas-liquid chromatography (as decribed by Moss et al. [1972]). 

The cellular fatty acid compositions of all 7 apyocyanogenic P. aeruginosa strains 

resembled those of the fluorescent group. Only 2 UFP strains (in Group IV) resem-

bled the fluorescent group. The remaining 21 UFP strains, while exhibiting some 

variability in their cellular fatty acid compositions, resembled the alcaligenes 

and stutzeri groups. 

Substantial evidence has been cited suggesting the existence of fluorescent 

Pseudomonas strains which, while they resemble P. aeruginosa in certain important 

respects, including ability to grow at 42C, possession of single polar flagella 

and utilization of geraniol, they differ in many respects including ability to 

denitrify, ability to oxidize gluconate, failure to utilize acetamide, resistance 

to carbenicillin, susceptibility to streptomycin and kanamycin, and failure to 

agglutinate in the presence of P. aeruginosa antisera. In surface and swimming 

pool waters UFP strains are of interest because they can cause false positive 

reactions in most probable number tests for P. aeruginosa. The clinical signifi-

cance of UFP strains cannot be judged from the present study. However, 8 UFP 

strains from clinical sources were included in the study, 4 of unknown origin, 

3 from infected outer ears, and 1 from a healthy outer ear. One additional 

culture isolated from clinical material and resembling UFP Group II strains was 

received too late for inclusion in the study. Identical UFP strains(included in 

the present study)were isolated by Hoadley et al. (1975) from swimming pool waters 

and from the healthy auditory canal of 1 swimmer and the infected outer ear of 

a second. 
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Frequencies of P. aeruginosa immunotypes in polluted and non-polluted  

surface waters. The frequencies of immunotypes among P. aeruginosa strains 

isolated from surface waters resembled in some respects frequencies reported 

from hospitalized patients. Frequencies among strains from unpolluted or 

remotely polluted surface waters and from stream waters receiving hospital 

wastes are presented in Table 4. The incidences of type 1 strains in both pol-

luted and unpolluted waters were similar to those reported among 742 strains 

from hospitalized patients by Moody et al. (1972). On the other hand, while 

less than 1% of strains examined by Moody were untypable, approximately 20% of 

all strains from surface waters were untypable by the 7 antisera of Parke-Davis 

and Co. Also, types 3, 5, and 6 were encountered less frequently among isolates 

from surface waters than among isolates (10.5%, 6.6%, and 19.9%, respectively). 

Type 4 was encountered more frequently, approximately 9% of isolates from surface 

waters as compared to 4.6% of isolates from clinical sources being of that type. 

Lanyi et al. (1966) and Nemedi and Lanyi (1971) recognized a similar striking 

similarity of P. aeruginosa serotypes in water samples from numerous sources, 

sewage, and human feces employing 13 antisera of Lanyi (1966). 

Carbenicillin resistance of P. aeruginosa strains from waters and wastes. 

Pseudomonas aeruginosa in hospital wastes discharged to streams may be of special 

interest because they can bear resistance to certain antibiotics. In recent years, 

P. aeruginosa strains resistant to carbenicillin and to gentamicin have appeared 

in hospitals. While strains isolated from hospital wastes appears not to be 

resistant to gentamicin, carbenicillin resistant strains were demonstrated in 

both hospital wastes and their receiving stream below the waste outfall (Table 5). 

Strains from the stream above the outfall were susceptible to carbenicillin. 
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Table 4. Frequencies of P. aeruginosa  immunotypes among 

isolates from surface waters 

(Data of Ajello, Mooney, and Hoadley, unpublished)  

Parke-Davis 
immunotype 

Lake waters 
(288 strains) 

Polluted stream 
(214 strains) 

1 37.5
*  

28.1 

2 5.9 13.1 

3 2.8 4.2 

4 8.7 9.3 

5 1.7 0.7 

6 2.1 1.4 

7 6.2 10.3 

3,7 5.6 10.3 

Other strong 
cross reactions 4.9 1.4 

Rough 1.4 3.7 

Untypable 23.2 17.3 

Percent of strains 
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* 
Table 5. Occurrence of P. aeruginosa isolates resistant to carbenicillin in 

hospital wastes and a receiving 

(Data of Hoadley and Ajello, 

No. 

stream 

unpublished) 

No.  
Source of isolates tested resistant resistant 

Steam above outfall 35 0 0 

Hospital Wastes 109 20 12.0 

Stream below outfall 186 24 18.4 

Resistance determined by the method of Bauer et al. (2) with 100 pg discs 



PUBLICATIONS 

Two published papers were supported in part by this grant, and it is anti-

cipated that a third publication and a presented paper will be possible in the fall 

of 1975. The following papers were supported in part by this grant: 

Hoadley, A. W., G. Ajello, and N. Masterson. 1975. Preliminary studies 

of fluorescent pseudomonads capable of growth at 41C in swimming pool 

waters. Appl. Microbiol. 29:529-531. Characterization of cultures, including 

minimal physiological and biochemical tests, testing of resistance to 7 

antibiotics, pyocin typing, and immunotyping of P. aeruginosa and UFP strains 

from swimming pools and swimmers. 

Hoadley, A. W. 1975. Pseudomonas aeruginosa in surface waters. In V. M. 

Young (ed.) The ecology of Pseudomonas aeruginosa and its role in the coloni-

zation of hospitalized patients. C. H. Thomas, Springfield (In press). 

Serotyping of P. aeruginosa strains from polluted and non-polluted surface 

waters. Carbenicillin resistance of P. aeruginosa strains in hospital wastes 

and receiving waters. 

After testing of strains has been completed, a presentation and a paper will 

be prepared to present the findings of this study relating to the characteristics 

and possible significance of UFP strains: 

Proposed presentation: Annual Meeting of Southeast Branch, American 

Society for Microbiology. 

Proposed publication: Journal of Clinical Microbiology. 
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This contributed to the support one half-time associate for a period 

of 10 months: 

Gloria W. Ajello, M.S. 
Research Associate 
School of Civil Engineering 
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