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SUMMARY

The emerging vehicular communications are expected to enable a whole new set of

services and hold significant potential in making our daily experience on wheels safer and

more convenient. Judicious resource allocation design is central to mitigating interference,

optimizing resource utilization, and unleashing the full potentials of vehicular communi-

cations. This thesis aims to develop efficient and effectiveresource allocation schemes to

meet the diverse quality-of-service requirements of vehicular communications while taking

into account the strong dynamics in vehicular environments.

Specifically, we study the spectrum and power allocation problem in device-to-device

(D2D)-enabled vehicular networks. We design low-complexity algorithms to maximize the

capacity of vehicle-to-infrastructure (V2I) links while guaranteeing the reliability of each

vehicle-to-vehicle (V2V) link, evaluated in terms of outage probabilities, using only slowly

varying large-scale fading information or delayed rapidlyvarying small-scale fading infor-

mation from periodic feedback. To further improve spectrumutilization, we investigate

the case where each V2I link shares spectrum with multiple V2V links and exploit graph

theoretic tools to develop high performance approximationalgorithms to support flexible

spectrum sharing in vehicular communications. For ease of (semi-)distributed resource

management, we exploit recent results in multi-agent reinforcement learning to develop a

learning-based resource allocation algorithm for vehicular agents. Resource sharing de-

cisions are made based on a mix of slowly-varying global large-scale channel information

and fast-varying local observations. The four proposed schemes, including both centralized

and semi-distributed designs with varying complexity-performance tradeoffs, constitute a

comprehensive study of the resource allocation problem in vehicular communications.



CHAPTER 1

INTRODUCTION

Wireless networks that support high mobility broadband access have received more and

more attention from both industry and academia in recent years [1, 2, 3, 4, 5, 6]. In particu-

lar, the concept of connected vehicles or vehicular communications, commonly abbreviated

as V2X, has gained substantial momentum to bring a new level of connectivity to vehicles

and, along with novel onboard computing and sensing technologies, serve as a key enabler

of intelligent transportation systems (ITS) and smart cities [7]. This new generation of net-

works will ultimately have a profound impact on the society,making everyday traveling

safer, greener, and more efficient and comfortable.

To coordinate efforts of different stakeholders in vehicular communications, several

sets of standards have been developed across the globe over the past decade, e.g., dedicated

short-range communications (DSRC) standards in the US [8] and ITS-G5 standards devel-

oped by the European Telecommunications Standards Institute (ETSI) [9]. Both standards

are based on the IEEE 802.11p technology, establishing the foundation for communications

in vehicular ad hoc networks. More recently, the 3rd Generation Partnership Project (3GP-

P) has been looking to support V2X services in long-term evolution (LTE) [10] and future

5G cellular networks [11]. Cross-industry consortium, such as the 5G automotive associa-

tion (5GAA), has been founded by leaders from both telecommunication and automotive

industries to push development, testing, and deployment ofcellular V2X technologies.

An illustrative structure of vehicular networks is depicted in Fig. 1.1. Onboard infor-

mation and entertainment (infotainment) applications andtraffic efficiency services gener-

ally require frequent access to the Internet or remote servers for media streaming, content

sharing, etc., involving considerable amount of data exchange. Hence, they are ideally

supported by the high-capacity vehicle-to-infrastructure (V2I) links. Meanwhile, safety-
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Figure 1.1: An illustrative structure of vehicular networks. HD: high-definition; AR: aug-
mented reality; VR: virtual reality; BSM: basic safety message.

critical information, such as cooperative awareness messages (CAMs) and decentralized

environmental notification messages (DENM) [3], usually entails spreading safety related

messages among neighboring vehicles either in a periodic orevent triggered way. As such,

it is naturally supported by the vehicle-to-vehicle (V2V) links, which impose strict relia-

bility and timeliness requirements. For example, the European union Mobile and Wireless

Communications Enablers for Twenty-twenty (2020) Information Society (METIS) project

requires less than 5 ms of end-to-end latency and transmission reliability of 99.999% for

message sizes of about 1600 bytes in such links [12].

Among an array of issues in designing and optimizing vehicular networks, resource

allocation is particularly challenging due to strong underlying dynamics and the strict and

diverse quality-of-service (QoS) requirements. This thesis aims at designing efficient re-

source allocation schemes that help bring the full benefits of vehicular communication to

fruition while not causing significant network overhead. The resource allocation problem is

approached from different perspectives, with both centralized and semi-distributed design-
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s and varying performance-complexity tradeoffs. The remainder of this chapter provides

necessary background introduction and outlines the contribution of this thesis.

1.1 Literature Review and Motivation

In this section, we introduce the background information and review the state-of-the-art re-

search on resource allocation for vehicular communications. We begin with a discussion of

pros and cons of the two major and most relevant technology candidates, i.e., cellular-based

V2X (C-V2X) and IEEE 802.11p based technologies, for vehicular communications, and

then review some traditional resource allocation designs for device-to-device (D2D) com-

munications since this thesis mainly deals with D2D-based vehicular communications. We

then review studies of resource allocation with special treatment of unique characteristics

in vehicular communications. Afterwards, an overview of applying graph theoretic tool-

s in resource allocation for wireless networks is presentedas such tools are extensively

leveraged in the thesis. Finally, we discuss the major motivation behind this thesis.

1.1.1 CellularandIEEE802.11pBasedTechnologiesfor V2X

The IEEE 802.11p is an amendment to the IEEE 802.11 standard adapted for the ITS

applications and is commonly considered as thede factostandard for vehicular networking.

It includes sets of physical (PHY) and medium access control(MAC) layer specifications

and supports communications among high mobility vehicles and between vehicles and the

roadside infrastructure, in the ITS band of 5.9 GHz [13]. However, recent studies [3, 5,

14] show that vehicular communications based on IEEE 802.11p face several challenges,

such as short-lived V2I connections, potentially unbounded channel access delay, and lack

of QoS guarantee, due to its PHY and MAC layer designs inherited from IEEE 802.11

standards that have been originally optimized for wirelesslocal area networks with low

mobility.

Recently, 3GPP has also started looking into supporting V2Xservices in cellular net-

3



works [5, 6, 10]. Widely deployed cellular networks, assisted with direct D2D underlay

communications [3, 15], potentially provide a promising solution to enable efficient and

reliable V2V and V2I communications, to meet demanding V2X requirements and provide

immunity to high mobility due to several intrinsic advantages. First, cellular networks ex-

ercise flexible centralized control over network resources, such as fast link adaptation and

dynamic user scheduling, which guarantee optimal network performance [16]. Second, the

large capacity and proven maturity of cellular networks canprovide reliable support for a

wide variety of bandwidth-thirsty applications and also ease V2X implementation . Finally,

the side D2D links, complementing the centralized cellulararchitecture, will provide direct

local message dissemination with substantially reduced latency, thus suitable for delay-

sensitive V2V communications [3]. Meanwhile, existence ofthe always-on base station

can be beneficial to communications among vehicles through providing side information to

the V2V links.

1.1.2 ResourceManagementfor TraditionalD2D Communications

The D2D communications have been the subject of much recent research endeavor [15,

17]. Both spectral and energy efficiencies of the wireless networks can be substantially im-

proved in D2D-assisted cellular systems by properly harvesting the proximity gain, reuse

gain, and hop gain [15]. D2D users can work in two different modes: the reuse mode and

the dedicated mode, where D2D users share the same resourcesas the cellular users and

occupy dedicated resources, respectively. The dedicated mode is easier to implement since

it causes no interference to the existing cellular users while the reuse mode can further

improve the spectral efficiency. Effective radio resource management strategies need to be

in place to properly coordinate mutual interference between cellular and D2D users in the

reuse mode. In [18], the transmit power of D2D users has been restricted such that inter-

ference inflicting cellular receivers is controlled when the D2D transmitter reuses cellular

resources. An interference limited area control scheme hasbeen proposed in [19] to pro-
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tect D2D receivers from cellular interference, where D2D users are not allowed to share

spectrum with a cellular user located in the interference limited area where the interference-

to-noise ratio at the D2D receiver is above a predetermined threshold. In [20], interference

nulling has been introduced to control interference from the cellular link to D2D commu-

nications when multiple antennas are installed at the base station. The sum rate of both

cellular and D2D users has been maximized with a minimum rateguarantee for the cellular

user in [21] for a network comprising only a single D2D pair and a single cellular user. For

more practical scenarios with multiple cellular and D2D users, spectrum and power allo-

cation design has been considered in [22, 23]. In [22], the D2D transmit power has been

regulated by the base station such that the signal-to-interference-plus-noise ratio (SINR)

of D2D links is maximized while the interference experienced by the cellular link is kept

at an acceptable level. Moreover, a three-step approach hasbeen proposed in [23] to de-

sign power control and spectrum allocation to maximize system throughput with minimum

SINR guarantee for both cellular and D2D links.

1.1.3 ResourceAllocation for D2D-BasedVehicularCommunications

Vehicular channels experience fast temporal variation dueto vehicle mobility [24]. There-

fore, traditional resource allocation designs for D2D communications dominated with full

channel state information (CSI) assumptions are no longer applicable due to the formidable

signaling overhead to track channel variation on such a short time scale. Applying D2D

techniques to support vehicular communications thus mandates further study on radio re-

source management accounting for fast vehicular channel variation.

A feasibility study of D2D for vehicular communications hasbeen performed in [7] to

evaluate the applicability of D2D underlay in supporting joint V2V and V2I connections in

cellular networks. It has been shown in [7] that D2D-aided vehicular communications can

outperform the traditional V2V-only mode, the V2I-only mode, or the V2V overlay mode

in terms of achievable transmission rates. In [25], a heuristic location dependent uplink

5



resource allocation scheme has been proposed for D2D terminals in vehicular networks,

which features spatial resource reuse with no explicit requirement on full CSI and, as a

result, significantly reduces signaling overhead. A framework comprising vehicle group-

ing, reuse channel selection, and power control has been developed in [26] to maximize the

sum rate or minimally achievable rate of V2V links while restraining the aggregate inter-

ference to the uplink cellular transmission. A series of simplifications have been applied

to the power control problem to reduce the requirement of full CSI and the dependence on

centralized control as well as the computational complexity. In [27], latency and reliability

requirements of V2V communications have been transformed into optimization constraints

computable using large-scale fading information only. A heuristic algorithm has been de-

veloped to address the proposed radio resource management optimization problem, which

adapts to the large-scale fading of vehicular channels, i.e., pathloss and shadowing that

vary on a slow time scale. Similar system setups have been further considered in [28],

where multiple resource blocks are allowed to be shared not only between cellular and

D2D users but also among different D2D-capable vehicles. In[29], power control based

on channel inversion using pathloss information and D2D mode selection based on biased

channel quality have been proposed to enable vehicular D2D communications in cellular

networks. Two representative performance metrics, SINR outage probability and network

throughput, have been analyzed in the established theoretical framework.

1.1.4 Graph-BasedResourceAllocation

As an effective tool to address problems of discrete nature,graph theory has long been ex-

ploited for resource allocation design in wireless networks. Interference management using

graph coloring algorithms has been explored in [30] for multi-cell orthogonal frequency di-

vision multiplexing access (OFDMA) networks with dynamic fractional frequency reuse.

More sophisticated two-phase intercell interference management has been further studied

in [31] through transforming the original problem into a MAXk-CUT problem in graph

6



theory. To optimize the sum or average utility [32, 23], the Hungarian algorithm can help

find a maximum matching for D2D and cognitive radio networks,respectively. For fairness

consideration, the preference of diverse user groups can beaccounted for according to the

concept of stable matching [33]. Efficient algorithms, suchas the Gale-Shapley (GS) algo-

rithm [34], have been used to find a stable channel access solution with polynomial com-

plexity for cognitive radio systems [35]. Two truncated stable matching algorithms have

been further proposed in [36] to improve resource allocation robustness to CSI variation. In

addition, the joint problem of path selection and power allocation for decode-and-forward

relay systems has been studied in [37], where the minimum source-relay-destination link

rate has been maximized.

A local search method for 3-dimensional matching has been proposed in [38] to maxi-

mize the throughput of non-safety vehicle users while satisfying the QoS requirements of

cellular users and safety vehicle users. For hypergraph matching and weighted hypergraph

matching problems, it has been shown in [39] that the integrality gap of the standard linear

programming relaxation of the problems is exactlyk − 1 + 1
k

for k-uniform hypergraphs,

and is exactlyk − 1 for k-partite hypergraphs. Moreover, for the weightedk-uniform hy-

pergraphs matching problem and any fixedǫ > 0, a (k − 1 + ǫ)-approximation algorithm

has been presented in [40], a(2(k+1)
3

+ ǫ)-approximation algorithm has been proposed in

[41], and a(k+1
2

+ ǫ)-approximation algorithm has been presented in [42]. Theseapprox-

imation algorithms perform local search and obtain solutions in polynomial time. Local

search is a heuristic method for solving computationally hard optimization problems that

always moves from one state to another by applying local changes until convergence to a

local optimum or when a time bound is reached.

1.1.5 Motivation

Resource allocation is key to the success of vehicular networks, especially in view of their

diverse QoS requirements and the strong underlying dynamics in vehicular environments.
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Traditional contention-based spectrum access designs of IEEE 802.11p cannot be direct-

ly applied to cellular-based vehicular communication systems. While the D2D technolo-

gy promises to improve the suitability of cellular networksfor vehicular communications

through enabling direct data exchange between vehicles, a wide array of issues still re-

main. In terms of resource allocation, the vast majority of D2D-based communications has

been dominated with full CSI assumption, which is hard, if not impossible, to meet in high

mobility vehicular environments. Moreover, cellular communications with D2D underlay

normally treat the direct communications between devices as secondary whereas cellular

links are assigned highest priority. This causes problems in vehicular networks as the V2V

links, deemed a good fit for D2D communications, are mainly responsible for disseminat-

ing safety-critical information. They typically require higher reliability and are strictly less

delay tolerant. At the very least, V2V links should be treated with equal (normally higher)

priority when performing system level resource allocation.

In the very few exceptions that propose specialized treatment for vehicular communi-

cations under the D2D-based architecture, inadequate carehas been taken with respect to

the unique vehicular channel fading as well as the special QoS requirements. For example,

in [25, 27, 28], the channel small-scale fading effects are totally ignored in the capacity

evaluation and hence it will not reflect the real capacity performance of the networks. As

a result, the developed resource allocation schemes are generally suboptimal. In response

to these issues, we are motivated to conduct a comprehensiveand systematic investigation

into the resource allocation problem of vehicular communications that factor in the unique

characteristics of the system, reveal fundamental performance limits, and develop efficient

solutions with varying performance-complexity tradeoffs.

1.2 Overview of Thesis

This thesis studies resource allocation for vehicular communications and in particular,

we focus on the D2D-based network architecture, where V2I and V2V transmissions are
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supported by cellular and D2D links, respectively. Three centralized resource allocation

schemes are developed in Chapters 2-4 and one semi-distributed design is proposed in

Chapter 5 to meet the diverse QoS requirements of vehicular communications while con-

sidering the underlying vehicular dynamics.

In Chapter 2, we perform spectrum sharing and power allocation based only on slowly

varying large-scale fading information of wireless channels. Pursuant to differing require-

ments for different types of links, i.e., high capacity for V2I links and ultra reliability for

V2V links, we maximize the ergodic capacity of V2I connections while ensuring reliabil-

ity guarantee for each V2V link. Sum ergodic capacity of all V2I links is first taken as

the optimization objective to maximize the overall V2I linkthroughput. Minimum ergodic

capacity maximization is then considered to provide a more uniform capacity performance

across all V2I links. Novel algorithms that yield optimal resource allocation and are robust

to channel variations are proposed.

In Chapter 3, we begin with the observation that CSI at the base station is critical to

resource allocation design for wireless networks, but it ishard to obtain accurate CSI in a

high mobility vehicular environment. We study the spectrumand power allocation problem

in D2D-enabled vehicular networks, where CSI of vehicular links is reported to the BS

periodically with inevitable delay. We maximize the sum throughput of all V2I links while

guaranteeing the reliability of each V2V link with the delayed CSI feedback. We propose

a low-complexity algorithm to find the optimal spectrum sharing strategy among V2I and

V2V links and properly adjust their transmit powers.

In Chapter 4, we consider the generic case when each V2I link shares spectrum with

multiple V2V links and the spectrum is not assumed to be preassigned to V2I links. Lever-

aging the slow fading statistical CSI of mobile links, we maximize the sum V2I capacity

while guaranteeing the reliability of all V2V links. We use graph partitioning tools to di-

vide highly interfering V2V links into different clusters before formulating the spectrum

sharing problem as a weighted 3-dimensional matching problem. We propose a suite of
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algorithms, including a baseline graph-based resource allocation algorithm, a greedy re-

source allocation algorithm, and a randomized resource allocation algorithm, to address

the performance-complexity tradeoffs. We further investigate resource allocation adaption

in response to slow fading CSI of all vehicular links and develop a low-complexity ran-

domized algorithm.

Chapter 5 continues the study of spectrum sharing in vehicular networks, yet from a

semi-distributed perspective. We model the resource sharing design as a multi-agent re-

inforcement learning (RL) problem, which is then solved using a fingerprint-based deep

Q-network method. The V2V links, each acting as an agent, collectively interact with

the vehicular environment, receive distinctive observations yet a common reward, and then

improve policy design through updating their Q-networks with gained experiences. Prelim-

inary experiments demonstrate desirable performance of the proposed resource allocation

scheme based on multi-agent RL in terms of both V2I capacity and V2V payload transmis-

sion success probability.

Finally in Chapter 6, we summarize key points in the thesis and make concluding re-

marks.
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CHAPTER 2

RESOURCE ALLOCATION WITH LARGE-SCALE FADING CSI

In this chapter, we propose to support vehicular communications under the device-to-device

(D2D)-enabled cellular architecture where the vehicle-to-infrastructure (V2I) connectivity

is enabled by macro cellular link and the vehicle-to-vehicle (V2V) connectivity is support-

ed through localized D2D links. We base resource managementon slow fading parameters

and statistical information of the channel instead of instantaneous channel state informa-

tion (CSI) to address the challenges caused by the inabilityto track fast changing wireless

channels. Moreover, we identify and incorporate into problem formulation differentiated

quality-of-service (QoS) requirements for V2I and V2V links in correspondence with their

supported applications. That is, high link capacity is desired for V2I connections while

safety-critical information of V2V connections places greater emphasis on link reliability.

Sum and minimum ergodic capacities (long-term average overfast fading) of V2I links are

maximized with a minimum QoS guarantee for V2I and V2V links,where the V2V link

reliability is ensured by maintaining the outage probability of received SINR below a small

threshold.

The rest of the chapter is organized as follows. The system model is introduced in Sec-

tion 2.1. Section 2.2 considers the sum V2I capacity maximization design with minimum

QoS guarantee for V2I and V2V connections, whereas Section 2.3 addresses the resource

allocation problem to maximize the minimum V2I capacity. Computer simulation results

are presented in Section 2.4 and concluding remarks are finally made in Section 2.5.

2.1 System Model

Consider a D2D-enabled vehicular communications network shown in Fig. 2.1, where there

existM vehicles requiring high-capacity V2I communications, denoted as CUEs (cellular

11



Figure 2.1: D2D-enabled vehicular communications for bothV2I and V2V links.

users), andK pairs of vehicles doing local V2V data exchange in the form ofD2D com-

munications, denoted as DUEs (D2D users). We note that all vehicles are capable of doing

both V2I and V2V connections simultaneously, implying thatCUEs and DUEs might re-

fer to the same vehicle equipped with multiple radios in thischapter. We assume that all

communicating parties in this chapter are equipped with a single antenna. Denote the CUE

set asM = {1, · · · ,M} and the DUE set asK = {1, · · · , K}. To improve spectrum uti-

lization efficiency, orthogonally allocated uplink spectrum of CUEs is reused by the DUEs

since uplink resources are less intensively used and interference at the BS is more manage-

able.

The channel power gain,hm,B, between CUEm and the BS is assumed to follow

hm,B = gm,Bβm,BAL
−γ
m,B

∆
= gm,Bαm,B, (2.1)

wheregm,B is the small-scale fast fading power component and assumed to be exponen-

tially distributed with unit mean,A is the pathloss constant,Lm,B is the distance between

themth CUE and the BS,γ is the decay exponent, andβm,B is a log-normal shadow fading
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random variable with a standard deviationξ. Channelhk between thekth D2D pair, in-

terfering channelhk,B from thekth DUE to the BS, and interfering channelhm,k from the

mth CUE to thekth DUE are similarly defined.

We assume that the large-scale fading components of the channel, i.e., the path loss and

shadowing of all links, are known at the BS since they are usually dependent on locations

of users and vary on a slow scale [27]. Such information can beestimated at the BS for

links between CUEs/DUEs and BS, i.e.,αm,B andαk,B, while for links between vehicles,

i.e.,αk andαm,k, the parameters will be measured at the DUE receiver and reported to the

BS periodically. Meanwhile, each realization of the fast fading is unavailable at the BS

since it varies rapidly in a vehicular environment with highmobility, whereas its statistical

characterization is assumed to be known.

To this point, the received signal-to-interference-plus-noise ratios (SINRs) at the BS for

themth CUE and at thekth DUE can be expressed as

γc
m =

P c
mhm,B

σ2 +
∑

k∈K

ρm,kP d
k hk,B

, (2.2)

and

γd
k =

P d
k hk

σ2 +
∑

m∈M

ρm,kP c
mhm,k

, (2.3)

respectively, whereP c
m andP d

k denote transmit powers of themth CUE and thekth DUE,

respectively,σ2 is the noise power, andρm,k is the spectrum allocation indicator with

ρm,k = 1 indicating thekth DUE reuses the spectrum of themth CUE andρm,k = 0

otherwise. The ergodic capacity of themth CUE with the assumption of Gaussian inputs

is then given by

Cm = E [log2 (1 + γc
m)] , (2.4)
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where the expectationE[·] is taken over the fast fading distribution.

2.2 Sum CUE Capacity Maximization Design

In this section, we develop a robust spectrum and power allocation scheme to improve the

vehicular communications performance while taking into account the unique characteristics

of D2D-enabled vehicular networks. The proposed scheme depends solely on the slowly

varying large-scale channel parameters and only needs to beupdated every few hundred

milliseconds, thus significantly reducing the signaling overheads than if directly applying

traditional resource allocation schemes in vehicular networks.

Recognizing QoS differentiation for different types of links, i.e., large capacity for V2I

connections and high reliability for V2V connections, we maximize the sum ergodic capac-

ity of M CUEs while guaranteeing the minimum reliability for each DUE. In addition, we

set a minimum capacity requirement for each CUE as well to provide a minimum guaran-

teed QoS for them. The reliability of DUEs is guaranteed through controlling the probabili-

ty of outage events, where its received SINRγd
k is below a predetermined thresholdγd

0 . The

ergodic capacity of CUEs is computed through the long-term average over the fast fading,

which implies the codeword length spans several coherence periods over the time scale of

slow fading [43]. It should be noted that how close the systemperformance can approach

the ergodic capacity ultimately depends on the temporal variation of the vehicular channels

as well as the tolerable delay. Faster variation induces more channel states within a giv-

en period, which makes the system performance approach the computed ergodic capacity

quicker as the codeword needs to traverse most, if not all, channel states to average out the

fading effects. To this end, the radio resource allocation problem in vehicular networks is

formulated as
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max
{ρm,k}

{P c
m},{P d

k
}

∑

m∈M

E [log2 (1 + γc
m)] (2.5)

s. t. E [log2(1 + γc
m)] ≥ rc0, ∀m ∈M (2.5a)

Pr{γd
k ≤ γd

0} ≤ p0, ∀k ∈ K (2.5b)

0 ≤ P c
m ≤ P c

max, ∀m ∈M (2.5c)

0 ≤ P d
k ≤ P d

max, ∀k ∈ K (2.5d)
∑

m∈M

ρm,k ≤ 1, ρm,k ∈ {0, 1}, ∀k ∈ K (2.5e)

∑

k∈K

ρm,k ≤ 1, ρm,k ∈ {0, 1}, ∀m ∈M, (2.5f)

whererc0 is the minimum capacity requirement of the data rate intensive CUEs andγd
0 is the

minimum SINR needed by the DUEs to establish a reliable link.Pr{·} evaluates the proba-

bility of the input andp0 is the tolerable outage probability at the physical layer ofthe V2V

links. P c
max andP d

max are the maximum transmit powers of the CUE and DUE, respectively.

Constraints (2.5a) and (2.5b) represent the minimum capacity and reliability requirements

for each CUE and DUE, respectively. (2.5c) and (2.5d) ensurethat the transmit powers of

CUEs and DUEs cannot go beyond their maximum limit. (2.5e) and (2.5f) mathematically

model our assumption that the spectrum of one CUE can only be shared with a single DUE

and one DUE is only allowed to access the spectrum of a single CUE. This assumption

reduces the complexity brought by the complicated interference scenarios in D2D-enabled

vehicular networks and serves as a good starting point to study the challenging resource

allocation problem in vehicular networks.

The proposed optimization problem represents a novel formulation that factors in the

unique features of time varying channels of vehicular communications as well as differ-

entiated QoS requirements for V2I and V2V links. However, this is a highly nonconvex
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optimization problem due to its combinatorial nature and the complicated objective func-

tion. We attempt to approach the optimization problem in (2.5) in two steps inspired by

[23]. First, we exploit the separability of power allocation and spectrum reuse pattern de-

sign by noting that interference exists only within each CUE-DUE reuse pair as dictated by

the constraints (2.5e) and (2.5f). Focusing on each pair of CUE-DUE, we study its optimal

power allocation to maximize the ergodic capacity of the CUEwith reliability guaranteed

for the DUE. Second, we check the feasibility of each CUE-DUEpair against the minimum

capacity requirement for the CUE, rule out infeasible pairs, and construct a bipartite graph

to find the optimal spectrum sharing pattern between the setsof CUEs and DUEs using the

Hungarian method [33]. We note that the proposed approach will lead to the globally opti-

mal solution to the resource allocation problem in (2.5) since it can jointly find the optimal

spectrum sharing pattern between CUEs and DUEs among all possible options and yield

the best power control strategy for each reuse pair in an efficient way.

2.2.1 PowerAllocation for SingleCUE-DUEPairs

In this part, we study the optimal power allocation for each possible DUE and CUE reuse

pair. Given an arbitrary spectrum reuse pattern, e.g., thekth DUE sharing the band of the

mth CUE, the power allocation problem for the single CUE-DUE pair is simplified into

max
P c
m,P d

k

E [log2 (1 + γc
m)] (2.6)

s. t. Pr{γd
k ≤ γd

0} ≤ p0 (2.6a)

0 ≤ P c
m ≤ P c

max (2.6b)

0 ≤ P d
k ≤ P d

max, (2.6c)

where the minimum capacity constraint for the CUE is temporarily left out and would be

accounted for in the next step.

We evaluate the reliability constraint for thekth DUE in the following lemma, and then
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visually depict the feasible regions of the simplified single pair power optimization problem

described above.

Lemma 1. The reliability constraint for thekth DUE, i.e. (2.6a) in the proposed single

pair power allocation problem in(2.6), can be expressed as

P c
m ≤

αkP
d
k

γd
0αm,k







e
−

γd0σ2

Pd
k
αk

1− p0
− 1







∆
= f

(

P d
k

)

. (2.7)

Proof. Given an arbitrary reuse pattern, e.g.,ρm,k = 1, and substituting the channel model

(2.1) in (2.6a), we derive the reliability constraint as

Pr{γd
k ≤ γd

0}

=Pr
{ P d

kαkgk
σ2 + P c

mαm,kgm,k

≤ γd
0

}

=

∫ ∞

0

dgm,k

∫

γd0 (σ2+Pc
mαm,kgm,k)

Pd
k
αk

0

e−(gk+gm,k)dgk

=1− P d
kαke

−
γd0σ2

Pd
k
αk

P d
kαk + γd

0P
c
mαm,k

≤ p0, (2.8)

where we have assumed thatgk andgm,k are independent and identically distributed (i.i.d.)

exponential random variables with unit mean. Rearranging the terms from the last inequal-

ity completes the proof.

ConsideringP c
m ≥ 0 and from (2.7), we obtain the zero-crossing point by setting

f
(

P d
k

)

= 0 as1

P d
k =

−γd
0σ

2

αk ln(1− p0)

∆
=P d

k,min. (2.9)

It can be observed from (2.7) thatf
(

P d
k

)

is monotonically increasing with respect to the

1The other zero-crossing pointP d
k = 0 is irrelevant here.
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(a) The feasible region, Case I.

(b) The feasible region, Case II.

Figure 2.2: Two cases of feasible regions for (2.6) depending on the magnitudes ofP c
max

andP d
max.

DUE power,P d
k , in the range of

(

P d
k,min,+∞

)

. This observation makes intuitive sense as

an increase of the DUE power would lead to a higher interference margin, implying the

DUE is more tolerable to interference from the CUE.

With the closed-form expression for reliability constraint (2.6a) given in Lemma 1, the
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feasible regions of (2.6) are plotted in Fig. 2.2, whereP c
d,max = f

(

P d
max

)

andP d
c,max =

f−1 (P c
max). Note thatP d

c,max can be obtained through bisection search over the function

f(·), which is a monotonically increasing function in the range of interest. As shown in

the figure, the feasible regions are classified into two casesdepending on the magnitudes

of P c
max andP d

max. We now derive the optimal solution to (2.6) in the followingtheorem.

Theorem 1. The optimal power allocation solution to optimization problem(2.6) is given

by

P c∗

m = min(P c
max, P

c
d,max),

and

P d∗

k = min(P d
max, P

d
c,max). (2.10)

Proof. Assuming thatgm,B andgk,B are i.i.d. exponential random variables with unit mean,

the ergodic capacity,Cm,k(P
c
m, P

d
k ), of themth CUE in (2.6) when sharing the spectrum

with thekth DUE can be written as

Cm,k(P
c
m, P

d
k ) =E [log2(1 + γc

m)]

=

∫ ∞

0

∫ ∞

0

log2

(

1 +
P c
mαm,Bgm,B

σ2 + P d
kαk,Bgk,B

)

× e−(gm,B+gk,B)dgm,Bdgk,B (2.11)

from which we can easily make the following observations

• With fixedP d
k , the ergodic capacityCm,k(P

c
m, P

d
k ) increases monotonically withP c

m;

• With fixedP c
m, the ergodic capacityCm,k(P

c
m, P

d
k ) decreases monotonically withP d

k .

These observations lead to the conclusion that the optimal solution of (2.6) can only reside

at the upper boundary line of the feasible region defined byP c
m = f

(

P d
k

)

from (P d
k,min, 0)
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up to the point(P d
max, P

c
d,max) for Case I or(P d

c,max, P
c
max) for Case II in Fig. 2.2, by acknowl-

edging the fact thatP c
m = f

(

P d
k

)

is a monotonically increasing function in the range of

(P d
k,min,+∞).

What remains is to study the ergodic capacityCm,k(P
c
m, P

d
k ) along the upper boundary

line which could be done by substitutingP c
m = f

(

P d
k

)

in (2.11). The SINR termγc
m is

then given by

P c
mαm,Bgm,B

σ2 + P d
kαk,Bgk,B

=
αkαm,Bgm,B

γd
0αm,k

(

σ2

P d
k

+ αk,Bgk,B

)







e
−

γd0σ2

Pd
k
αk

1− p0
− 1






, (2.12)

which can be shown to monotonically increase withP d
k in the range(P d

k,min,+∞). Hence,

the optimal power of the problem (2.6) is the intersection point (P d
max, P

c
d,max) for Case I or

(P d
c,max, P

c
max) for Case II, which can be written in a compact form as in (2.10).

Theorem 1 yields the optimal power allocation for a single CUE-DUE pair that maxi-

mizes ergodic capacity of the investigated CUE and ensures reliability for its reusing DUE.

As mentioned earlier, interference exists only within eachreuse pair and the original re-

source allocation problem in (2.5) to maximize the sum ergodic capacity of all CUEs has

been decoupled into two major parts. The first part deals withthe optimal power allocation

for each single pair, which has been given by Theorem 1. The rest is to perform opti-

mal spectrum reuse pair matching to maximize the sum ergodiccapacity of CUEs while

respecting all QoS constraints.

2.2.2 PairMatchingfor All Vehicles

To this end, we have obtained the optimal power allocation for each CUE-DUE pair. In

the next step, we need to eliminate those CUE-DUE combinations that do not satisfy
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the minimum QoS requirement for the CUE, i.e., (2.5a), even when the optimal allo-

cation scheme obtained from (2.10) is applied. The closed-form expression for the er-

godic capacity of themth CUE when sharing spectrum with thekth DUE, defined as

Cm,k

(

P c
m, P

d
k

) ∆
=E [log2(1 + γc

m)], is derived in the following lemma.

Lemma 2. The ergodic capacity,Cm,k

(

P c
m, P

d
k

)

, of themth CUE when sharing spectrum

with thekth DUE is given by

Cm,k

(

P c
m, P

d
k

)

=
a

(a− b) ln 2

[

e
1
aE1

(

1

a

)

− e
1
bE1

(

1

b

)]

, (2.13)

wherea =
P c
mαm,B

σ2 , b = P d
kαk,B

σ2 , andE1(x) =
∫∞

x
e−t

t
dt is the exponential integral function

of the first order [44].

Proof. The ergodic capacityCm,k(P
c
m, P

d
k ) can be written as

Cm,k(P
c
m, P

d
k ) =E

[

log2

(

1 +
P c
mαm,Bgm,B

σ2 + P d
kαk,Bgk,B

)]

∆
=E

[

log2

(

1 +
aX

1 + bY

)]

, (2.14)

where we denotegm,B andgk,B by X andY , respectively, and definea =
P c
mαm,B

σ2 and

b =
P d
kαk,B

σ2 . DefiningZ = aX
1+bY

and assuminggm,B andgk,B are i.i.d. exponential random

variables with unit mean, we have its CDF as

FZ(z) = Pr
{ aX

1 + bY
≤ z
}

=

∫ ∞

0

dy
∫

z(1+by)
a

0

e−(x+y)dx

= 1− e−
z
a

a

a + bz
. (2.15)
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Then, we obtain the ergodic capacity of themth CUE as

Cm,k(P
c
m, P

d
k )

=
1

ln 2

∫ ∞

0

ln(1 + z)fZ(z)dz

=
1

ln 2

∫ ∞

0

1− FZ(z)

1 + z
dz (2.16)

=
a

(a− b) ln 2

[∫ ∞

0

e−
z
a

z + 1
dz −

∫ ∞

0

e−
z
a

z + a
b

dz

]

=
a

(a− b) ln 2

[

e
1
aE1

(

1

a

)

− e
1
bE1

(

1

b

)]

, (2.17)

where we obtain (2.16) by using integration by parts and (2.17) follows from [44, E-

q. (3.352.4)].

Substituting the optimal power allocation (2.10) in (2.13)yields the maximum ergodic

capacity achieved when themth CUE shares its spectrum with thekth DUE, denoted as

C∗
m,k. If it is less thanrc0, then this combination cannot meet the minimum capacity require-

ment for the CUE. Therefore, such a CUE-DUE pair is not feasible and we setC∗
m,k = −∞,

i.e.,

C∗
m,k =















Cm,k

(

P c∗

m , P d∗

k

)

, if Cm,k

(

P c∗

m , P d∗

k

)

≥ rc0,

−∞, otherwise.

(2.18)

After evaluating all possible combinations of the CUE-DUE pairs, the resource alloca-
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tion problem (2.5) reduces to

max
{ρm,k}

∑

m∈M

∑

k∈K

ρm,kC
∗
m,k (2.19)

s. t.
∑

m∈M

ρm,k ≤ 1, ρm,k ∈ {0, 1}, ∀k ∈ K (2.19a)

∑

k∈K

ρm,k ≤ 1, ρm,k ∈ {0, 1}, ∀m ∈M, (2.19b)

which turns out to be a maximum weight bipartite matching problem and can be efficiently

solved by the Hungarian method in polynomial time [33].

From the above discussion, our algorithm to find the optimal solution to the resource

allocation problem in (2.5) for D2D-enabled vehicular communications can be summa-

rized in Table 2.12. Supposing an accuracy ofǫ is required, the bisection search for the

optimal power allocation of a single CUE-DUE pair as given in(2.10) requireslog(1/ǫ)

iterations. This leads to the total complexity ofO(KM log(1/ǫ)) to compute the optimal

power allocation for all CUE-DUE pairs. The Hungarian method will solve the pair match-

ing problem inO(M3) time assumingM ≥ K. Therefore, the total complexity of the

proposed algorithm isO(KM log(1/ǫ) +M3).

2.3 Minimum CUE Capacity Maximization Design

The sum capacity maximization design considered in Section2.2 can ensure a high overall

throughput from the network operator’s perspective. However, it tends to be unfair from

each CUE’s point of view, especially for those vehicles experiencing bad channel condi-

tions. In such a case, the CUEs with bad channel conditions will be sacrificed in exchange

for the overall performance improvement. In this section, we will address this issue by

maximizing the minimum capacity among all CUEs so as to provide a more uniform per-

2There exist possible scenarios rendering the considered optimization problems infeasible. In such cases,
the BS will report the infeasibility information and then initiate another round of user scheduling. The newly
admitted users will then be serviced under the proposed RRM scheme.
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Table 2.1: Optimal Resource Allocation Algorithm for (2.5)in D2D-Enabled Vehicular
Communications

Algorithm 1 Optimal Resource Allocation Algorithm for (2.5)
1: for m = 1 : M do
2: for k = 1 : K do
3: Obtain the optimal power allocation(P c∗

m , P d∗

k ) from (2.10) for the single CUE-
DUE pair.

4: Substitute(P c∗

m , P d∗

k ) into (2.13) to obtainC∗
m,k.

5: if C∗
m,k < rc0 then

6: C∗
m,k = −∞.

7: end if
8: end for
9: end for

10: Use the Hungarian method [33] to find the optimal reuse pattern {ρ∗m,k} based on
{C∗

m,k}.
11: Return the optimal spectrum reuse pattern{ρ∗m,k} and the corresponding power alloca-

tion {(P c∗

m , P d∗

k )}.

formance across all CUEs.

The proposed optimization problem is stated as

max
{ρm,k}

{P c
m},{P d

k }

min
m∈M

E [log2 (1 + γc
m)] (2.20)

s. t. (2.5a)− (2.5f).

From [45] and [46], this max-min optimization problem is guaranteed to reach the Pare-

to boundary where none of the CUEs’ ergodic capacity can be improved without degrading

other CUEs’ ergodic capacity. This is a key concept in multi-objective optimization (MOO)

and the max-min formulation in (2.20) is in fact a special case of the weighted Chebyshev

objective function with all weights set to one, which is the safest choice in converting MOO

to single objective optimization (SOO) while ensuring Pareto optimality [45]. As such, the

solution to the proposed problem can be guaranteed to be Pareto optimal.

24



2.3.1 ResourceAllocationDesign

To solve the proposed resource allocation problem in (2.20), we make use of the optimal

power control results given in (2.10) for each CUE-DUE pair and the closed-form ergodic

capacity for each CUE derived in (2.13), by acknowledging that interference only occurs

within each CUE-DUE pair. Then the original problem in (2.20) is simplified into the

following form

max
{ρm,k}

min
m∈M

∑

k∈K

ρm,kC
∗
m,k (2.21)

s. t.
∑

m∈M

ρm,k ≤ 1, ρm,k ∈ {0, 1}, ∀k ∈ K (2.21a)

∑

k∈K

ρm,k ≤ 1, ρm,k ∈ {0, 1}, ∀m ∈M. (2.21b)

We further attempt to develop a low-complexity algorithm tosolve the optimization

problem in (2.21) through exploiting the Hungarian method,which has polynomial time

computational complexity. The proposed optimal resource allocation algorithm is listed in

Table 2.2 and comprises two essential parts.

The first part checks in polynomial time whether an arbitrarily given numberτ is above

the desired optimal minimum ergodic capacity or not. It operates as follows.

• Initialize an all-zero matrixF of sizeM ×K.

• Scan each element of the capacity matrix,{C∗
m,k}, obtained from Algorithm 1 and if

it is less thanτ , set the corresponding entry ofF to 1 and leave it as0 otherwise, i.e.,

∀m, k,

Fm,k =















1, if C∗
m,k < τ,

0, otherwise.

(2.22)

• Apply the Hungarian method toF and return the lowest total cost, denoted asc,
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i.e., the sum of all the assigned elements. Ifc equals zero, all elements of such

an assignment are no smaller thanτ , or equivalently,τ is less than or equal to the

desired optimal minimum ergodic capacity. Correspondingly, if c is greater than0,

then there exists no assignment that guarantees that all theassigned elements are no

smaller thanτ , i.e.,τ is greater than the desired optimal minimum ergodic capacity.

The second part starts with ordering allKM elements of the original capacity matrix,

{C∗
m,k}, and then searches for the position of the optimal minimum ergodic capacity using

bisection search based on the checking method derived in thefirst part. Finally, the spec-

trum sharing assignment is what the Hungarian method yieldswhen the bisection search

ends.

The major computational burden of the proposed algorithm lies in the generation of the

capacity matrix,{C∗
m,k}, whose complexity isO (KM log(1/ǫ)), the ordering of all ele-

ments in{C∗
m,k} whose complexity isO (KM log(KM)), and the bisection search for the

optimal value based on the Hungarian method with complexityO (M3 logM) if M ≥ K.

Then the complexity of Algorithm 2 isO (KM log(1/ǫ) +KM log(KM) +M3 logM).

2.4 Simulation Results

In this section, simulation results are presented to validate the proposed spectrum and pow-

er allocation algorithms for D2D-enabled vehicular networks. We follow the simulation

setup for the freeway case detailed in 3GPP TR 36.885 [10] andmodel a multi-lane free-

way that passes through a single cell where the BS is located at its center as illustrated in

Fig. 2.1. The vehicles are dropped on the roads according to spatial Poisson process and

the vehicle density is determined by the vehicle speed. TheM CUEs andK DUEs are

randomly chosen among generated vehicles, where DUE pairs are always formed between

neighboring vehicles and the CUEs are assumed to have equal shares of the total bandwidth.

The major simulation parameters are listed in Table 2.3 and the channel models for V2I and

V2V links are described in Table 2.4. Note that all parameters are set to the values spec-
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Table 2.2: Optimal Resource Allocation Algorithm for (2.20) in D2D-Enabled Vehicular
Communications

Algorithm 2 Optimal Resource Allocation Algorithm for (2.20)

1: Initialize {C∗
m,k} and{

(

P c∗

m , P d∗

k

)

} from Algorithm 1.
2: Initialize i = 1 andj = KM .
3: Sort all elements of{C∗

m,k} in ascending order and store them in a vectorv.
4: while (j − i) > 1 do
5: l = (i+ j)/2;
6: F = 0M×K ;
7: for m = 1 : M do
8: for k = 1 : K do
9: if C∗

m,k < vl then
10: Fm,k = 1;
11: else
12: Fm,k = 0;
13: end if
14: end for
15: end for
16: Apply the Hungarian method [33] to find the assignment, denoted asA, and the

lowest total cost, denoted asc, based on the matrixF.
17: if c > 0 then
18: j = l;
19: else
20: i = l;
21: {ρ∗m,k} = A;
22: end if
23: end while
24: Return the optimal spectrum reuse pattern{ρ∗m,k} and the corresponding power alloca-

tion {(P c∗

m , P d∗

k )}.

ified in Tables 2.3 and 2.4 by default, whereas the settings ineach figure take precedence

wherever applicable. The results in each figure are obtainedfrom averaging a minimum of

10, 000 channel realizations and in particular, Fig. 2.4 is plottedwith 1, 000, 000 channel

realizations.

Fig. 2.3 demonstrates the sum and minimum ergodic capacities of CUEs achieved by

our proposed algorithms with respect to a genie-aided benchmark based on a modified
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Table 2.3: Simulation Parameters [10, 47]
Parameter Value
Carrier frequency 2 GHz
Bandwidth 10 MHz
Cell radius 500 m
BS antenna height 25 m
BS antenna gain 8 dBi
BS receiver noise figure 5 dB
Distance between BS and highway 35 m
Vehicle antenna height 1.5 m
Vehicle antenna gain 3 dBi
Vehicle receiver noise figure 9 dB
Absolute vehicle speedv 70 km/h
Vehicle drop model spatial Poisson process

Number of lanes
3 in each direction (6 in to-
tal)

Lane width 4 m

Vehicle density
Average inter-vehicle dis-
tance is 2.5 sec× absolute
vehicle speed.

Minimum capacity of DUErc0 0.5 bps/Hz
SINR threshold for DUEγd

0 5 dB
Reliability for DUEp0 0.001
Number of DUEsK 20
Number of CUEsM 20
Maximum CUE transmit powerP c

max 17, 23 dBm
Maximum DUE transmit powerP d

max 17, 23 dBm
Noise powerσ2 -114 dBm
Bisection search accuracyǫ 10−5

Table 2.4: Channel Models for V2I and V2V Links [10]
Parameter V2I Link V2V Link

Pathloss model
128.1 + 37.6log10 d, d in
km

LOS in WINNER +
B1 [48]

Shadowing distribution Log-normal Log-normal
Shadowing standard
deviationξ

8 dB 3 dB

Fast fading Rayleigh fading Rayleigh fading

traditional D2D resource allocation scheme developed in [23]3, where accurate knowledge

3The modification lies in replacing the original objective function to maximize the sum throughput of both
CUEs and DUEs with the one to maximize the sum throughput of CUEs only, and the capacity and reliability
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Figure 2.3: Capacity performance of CUEs with varying DUE outage probabilityp0, as-
sumingP d

max = P c
max = 23 dBm.

constraints are equivalently transformed into SINR requirements. The same three-step method is then applied
to solve the RRM problem.
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of instantaneous CSI for all links is assumed to be perfectlyknown at the BS. We note that

in high speed vehicular environments, such full CSI assumption is by no means realistic,

but it serves as an ideal reference to benchmark our proposedalgorithms. It is observed

that both sum and minimum ergodic capacities of CUEs achieved by both Algorithms 1

and 2 get larger if higher outage probability of DUEs is allowed. This is due to the fact

that higher acceptable outage of DUEs renders them more tolerable to interference from

CUEs, thus encouraging CUEs to increase their transmit powers. As a result, the CUE

capacity grows larger. From Fig. 2.3(a), the performance ofAlgorithm 1 is well close to

the ideal benchmark scheme in terms of sum capacity at fairlylow outage probability, e.g.,

p0 = 0.1. As for the minimum CUE capacity shown in Fig. 2.3(b), Algorithm 2 shows

superior performance even over the ideal benchmark when theacceptable outage is a bit

larger than0.001. These are encouraging findings as the proposed resource allocation

schemes make use of slowly varying large-scale fading parameters only and update every

few hundred milliseconds. Nonetheless, they can achieve performance measurably close to

the genie-aided benchmark scheme (or even surpass it if minimum capacity maximization

is pursued), which requires accurate real-time CSI of all links and is inapplicable in a

vehicular environment featuring high mobility.

To demonstrate the superiority of our proposed scheme when only large-scale fading

information is available at the BS, we compare in Fig. 2.4(a)the cumulative distribution

functions (CDF) of the instantaneous sum CUE capacity achieved by Algorithms 1 and 2

against the SOLEN scheme developed in [27]. To achieve fair comparison, we exploit the

method given in Lemma 1 of [27] to generate an equivalent SINRthreshold expressed in

terms of large-scale fading parameters only. In addition, the minimum capacity requirement

in the original problem formulation is not considered as there is no convenient way to

convert such a constraint into an equivalent form to be used for the SOLEN scheme. We

observe that the proposed Algorithm 1 achieves strictly better performance than the SOLEN

scheme of [27] while Algorithm 2 has the worst performance when the maximum sum CUE
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capacity is the system metric. This validates the superior performance of the proposed

Algorithm 1 in such cases. The reason for the performance gain of Algorithm 1 is twofold.

The first is that Algorithm 1 takes a rigorous treatment of thesmall-scale fading effect when

computing the capacity of V2I links, i.e., calculating the ergodic capacity in contrast to

using only large-scale fading parameters to approximate the capacity as in [27]. The second

reason is that the approach taken in [27] is not able to achieve exactly the targeted SINR

threshold of V2V links, as illustrated in Fig. 2.4(b), wherean arbitrarily chosen DUE’s

instantaneous SINR of SOLEN is found to slightly exceed5 dB (the desired threshold)

at the targeted outage probability of0.01. Meanwhile, our proposed Algorithms 1 and 2

achieve exactly5 dB at the outage probability of0.01. This translates to stricter reliability

requirements of V2V links in SOLEN, thus reducing the feasible region of power control

parameters and degrading the capacity of V2I links. These two aspects also form the major

differences between our proposed algorithms and the existing one in [27]. However, we

also notice that the performance gain of Algorithm 1 is minimal, which might be due to

the insensitivity of capacity to the small-scale fading effect and the fact that the SINR

overshooting of SOLEN is essentially small.

Fig. 2.5 shows the sum and minimum ergodic capacities of all CUEs with an increasing

vehicle speed on the road, respectively. From the figures, both sum and minimum CUE

capacities decrease as the vehicles move faster. This is because higher speed induces spars-

er traffic according to the simulation setup, which would on average increase inter-vehicle

distance and give rise to less reliable V2V links with lower received power. As such, less

interference from CUEs can be tolerated given the maximum transmit power constraints of

DUEs, which leads to less power being allocated to CUEs and decreases both their sum and

minimum ergodic capacities. It also reveals that Algorithm1 achieves higher sum ergodic

capacity than Algorithm 2 while the reverse is true when comparing the minimum ergodic

capacity. This makes sense since Algorithm 1 aims to maximize the sum ergodic capacity

while Algorithm 2 takes the minimum ergodic capacity as its design objective. It is also in-
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teresting to note in Fig. 2.5(a) that an increase of maximum transmit power has a relatively

constant impact on the sum CUE capacity performance of both Algorithms 1 and 2 with

respect to the vehicle speed increase. However, this does not hold when we investigate the

minimum CUE capacity as shown in Fig. 2.5(b). At a low vehiclespeed, a6 dBm increase

of the maximum transmit power brings significant gains for both Algorithms 1 and 2, e.g.,

some40% increase at60 km/h. In contrast, at a very high speed, e.g.,140 km/h, the pow-

er increase has limited impact, which is especially true when we focus on Algorithm 1 in

Fig. 2.5(b).

Fig. 2.6 demonstrates the sum and minimum ergodic capacities of CUEs with respect

to increasing SINR threshold for DUEs, respectively. We observe that in both cases, the

investigated ergodic capacity will decrease when the minimum QoS requirement for DUEs

grows large. Such performance degradation results from thereduced interference tolerabil-

ity of DUEs due to an increase in their required SINR threshold, which will impose stricter

constraints on the allowable transmit power of the pairing CUEs. Reduced transmit power

of CUEs directly translates into a decrease of the sum and minimum ergodic capacities

they are capable of achieving given all QoS constraints satisfied. It is also observed that a

6 dBm increase of maximum transmit power has roughly uniform impact on the sum CUE

capacity with respect to growingγd
0 while for the minimum CUE capacity, the impact gets

smaller with increasingγd
0 .

Fig. 2.7 shows the impact of the number of active V2V links on the quality of V2I

connections. From the figures, as there are more and more V2V links sharing V2I’s spec-

trum, both the sum and minimum CUE capacities decrease due tothe growing amount of

interference generated from V2V links. From Fig. 2.7(a), Algorithm 2 is more sensitive

to the change of V2V numbers in terms of sum CUE capacity as evidenced from the steep

slope of its sum capacity curve. As for the minimum CUE capacity in Fig. 2.7(b), Algo-

rithm 1 achieves dramatically degrading performance at first, e.g., around50% decrease

whenK/M is doubled from0.1 to 0.2. Then the performance gradually flattens. This
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is in contrast to Algorithm 2, where the minimum CUE capacityperformance degrades

gracefully with respect to growing interference generatedfrom increasing numbers of V2V

links. Again, it is worth pointing out that a6 dBm increase of maximum transmit power

uniformly increases the sum CUE capacity with respect to growingK/M while the impact

gets weaker for the minimum CUE capacity with increasing number of active V2V links.

2.5 Summary

In this chapter, we have investigated the spectrum sharing and power allocation design for

D2D-enabled vehicular networks. Due to fast channel variations arising from high vehi-

cle mobility, instantaneous CSI is hard to track in practice, rendering traditional resource

allocation schemes for D2D-based cellular networks requiring full CSI inapplicable. To

address this issue, we have taken into account the differentiated QoS requirements of ve-

hicular communications and formulated optimization problems aiming to design a resource

allocation scheme based on slowly varying large-scale fading information only. Robust al-

gorithms have been proposed to maximize the sum and minimum ergodic capacity of V2I

links, respectively while ensuring reliability for all V2Vlinks.
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CHAPTER 3

SPECTRUM AND POWER ALLOCATION WITH DELAYED CSI FEEDBACK

In this chapter, we continue the study of resource allocation for vehicular communica-

tions, yet from another perspective. That is, we explore thecommunication performance

when channel state information (CSI) of vehicular links is periodically reported to the base

station (BS). We take into account the inevitable CSI latency during feedback in high-

mobility vehicular environments. The proposed resource allocation problem incorporates

heterogeneous quality-of-service (QoS) requirements forvehicle-to-infrastructure (V2I)

and vehicle-to-vehicle (V2V) links corresponding to theirsupported services, i.e., large ca-

pacity for V2I links and high reliability for V2V links. Sum V2I throughput is maximized

with a minimum QoS guarantee for both V2I and V2V links, wherethe V2V reliability is

ensured by maintaining the outage probability of received signal-to-interference-plus-noise

ratio (SINR) below a small threshold.

The rest of the chapter is organized as follows. Section 3.1 introduces the system model.

Section 3.2 develops robust resource allocation schemes for vehicular communications with

delayed CSI feedback. Simulation results are presented in Section 3.3 and concluding

remarks are finally made in Section 3.4.

3.1 System Model

Consider a device-to-device (D2D)-enabled vehicular communication network as shown in

Fig. 3.1, whereM vehicles require high-capacity V2I communications, denoted as I-UEs,

andK pairs of vehicles perform local V2V data exchange in the formof D2D communi-

cations, denoted as V-UEs. Denote the I-UE set asM = {1, · · · ,M} and the V-UE set

asK = {1, · · · , K}. To improve spectrum utilization efficiency, orthogonallyallocated

uplink spectrum of I-UEs is reused by the V-UEs. The channel power gain,gm,B, between
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Figure 3.1: D2D-enabled vehicular communications.

themth I-UE and the BS follows

gm,B = |hm,B|2αm,B, (3.1)

wherehm,B is the small-scale fast fading component, assumed to be independent and iden-

tically distributed (i.i.d.) distributed asCN (0, 1), andαm,B captures all large-scale fading

effects including path loss and shadowing. The channel,gk, between thekth V2V pair,

the interfering channel,̃gk, from thekth V-UE to the BS, and the interfering channel,gm,k,

from themth I-UE to thekth V-UE are similarly defined.

We assume CSI of links connected to the BS, i.e.,gm,B and g̃k, is accurately known

since it can be estimated at the BS while CSI of vehicular links, i.e.,gk andgm,k, is reported

to the BS with a feedback periodT and therefore with latency. We use a first-order Gauss-

Markov process [49] to model the channel variation (fast fading) over the periodT

h = ǫĥ+ e, (3.2)
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where ĥ andh are the channels in the previous and current time, respectively, e is the

channel discrepancy term distributed according toCN (0, 1 − ǫ2) and independent of̂h,

and the coefficientǫ quantifies channel correlation between the two consecutivetime slots.

For the Jakes’ model [49],ǫ is given byǫ = J0 (2πfdT ) , whereJ0(·) is the zero-order

Bessel function of the first kind andfd = vfc/c is the maximum Doppler frequency with

c = 3× 108 m/s,v being the vehicle speed, andfc being the carrier frequency.

The SINRs of themth I-UE andkth V-UE are given by

γc
m =

P c
mαm,B|hm,B|2

σ2 +
K
∑

k=1

ρm,kP d
k α̃k|h̃k|2

(3.3)

and

γd
k =

P d
kαk

(

ǫ2k|ĥk|2 + |ek|2
)

σ2 +
M
∑

m=1

ρm,kP c
mαm,k

(

ǫ2m,k|ĥm,k|2 + |em,k|2
)

, (3.4)

respectively, whereP c
m andP d

k denote transmit powers of themth I-UE and thekth V-

UE, respectively,σ2 is the noise power, andρm,k = 1 indicates thekth V-UE reuses the

spectrum of themth I-UE andρm,k = 0 otherwise.

To meet diverse requirements for different vehicular links, i.e., large capacity for V2I

connections and high reliability for V2V connections, we maximize the sum capacity of

M I-UEs while guaranteeing the minimum reliability for each V-UE. In addition, we set

a minimum capacity requirement for each I-UE as well to provide a minimum guaranteed
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QoS for them. The optimization problem is formulated as

max
{ρm,k}

{P d
k
},{P c

m}

∑

m∈M

log2 (1 + γc
m) (3.5)

s. t. log2(1 + γc
m) ≥ rc0, ∀m ∈M (3.5a)

Pr{γd
k ≤ γd

0} ≤ p0, ∀k ∈ K (3.5b)

0 ≤ P c
m ≤ P c

max, ∀m ∈M (3.5c)

0 ≤ P d
k ≤ P d

max, ∀k ∈ K (3.5d)
∑

m∈M

ρm,k ≤ 1, ρm,k ∈ {0, 1}, ∀k ∈ K (3.5e)

∑

k∈K

ρm,k ≤ 1, ρm,k ∈ {0, 1}, ∀m ∈M, (3.5f)

whererc0 is the minimum capacity requirement of I-UEs andγd
0 is the minimum SINR

needed by the V-UEs to establish a reliable link. Pr{·} evaluates the probability of the input

andp0 is the tolerable outage probability.P c
max andP d

max are the maximum transmit powers

of the I-UE and V-UE, respectively. (3.5a) and (3.5b) represent the minimum capacity

and reliability requirements for each I-UE and V-UE, respectively, where the probability is

evaluated in terms of the discrepancy terme caused by the delay in CSI feedback. (3.5c)

and (3.5d) ensure that the transmit powers of I-UEs and V-UEscannot exceed the maximum

limit. (3.5e) and (3.5f) mathematically model our assumption that one I-UE’s spectrum can

only be shared with a single V-UE and one V-UE is only allowed to access a single I-UE’s

spectrum. This assumption reduces the complexity brought by the complicated interference

scenarios in D2D-enabled vehicular networks and serves as agood starting point to study

the resource allocation problem in vehicular networks.
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3.2 Robust Resource Allocation Design

3.2.1 PowerAllocation for SingleI-UE andV-UE Pairs

Decoupling the problem and focusing on each I-UE and V-UE pair, we aim to maximize

the I-UE’s capacity

Cm,k = log2

(

1 +
P c
mαm,B|hm,B|2

σ2 + P d
k α̃k|h̃k|2

)

(3.6)

while satisfying all constraints, formulated as

max
P d
k ,P

c
m

Cm,k (3.7)

s. t. (3.5b), (3.5c), (3.5d)

Lemma. The feasible region of(3.7) is derived as

{

(P d
k , P

c
m) : exp

(

Cγd
0

B

)(

1 +
D

B
γd
0

)

≤ exp
(

A
B

)

1− p0
,

Cγd
0 ≥ A, 0 ≤ P c

m ≤ P c
max, 0 ≤ P d

k ≤ P d
max

}

, (3.8)

or

{

(P d
k , P

c
m) :

(

1 +
B

γd
0D

)

exp

(

A− Cγd
0

γd
0D

)

≥ 1

p0
,

Cγd
0 < A, 0 ≤ P c

m ≤ P c
max, 0 ≤ P d

k ≤ P d
max

}

, (3.9)

whereA = P d
kαkǫ

2
k|ĥk|2, B = P d

kαk(1 − ǫ2k), C = σ2 + P c
mαm,kǫ

2
m,k|ĥm,k|2, andD =

P c
mαm,k(1− ǫ2m,k).

Proof. The received SINR at thekth V-UE, γd
k, from (3.4) can be written asγd

k = A+BX
C+DY

,

whereX andY are two independent exponential random variables with unitmean. Two
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cases are identified to evaluate V2V reliability Pr{γd
k ≤ γd

0}:

• Case I: WhenCγd
0 ≥ A,

Pr{γd
k ≤ γd

0} =
∫ ∞

0

exp(−y)dy
∫

(C+Dy)γd0−A

B

0

exp(−x)dx

=1−
exp

(

−Cγd
0−A

B

)

1 + D
B
γd
0

≤ p0. (3.10)

• Case II: WhenCγd
0 < A,

Pr{γd
k ≤ γd

0} =
∫ ∞

0

exp(−x)dx
∫ ∞

A+Bx−Cγd0
Dγd

0

exp(−y)dy

=
exp(C

D
)

(

1 + B

γd
0D

)

exp( A

γd
0D

)
≤ p0. (3.11)

Rearranging terms of (3.10) and (3.11) completes the proof.

Based on theLemma, we derive the optimal power allocation solution to (3.7) inthe

following Theorem.

Theorem. The optimal power allocation solution to(3.7) is

P d∗

k =































min{P d
max, P

d
c1,max}, if P d

max≤ P d
0 ,

min{P d
max, P

d
c2,max}, if P d

max> P d
0 andP c

max> P c
0 ,

P d
c1,max, otherwise

and

P c∗

m =































min{P c
max, P

c
d1,max}, if P d

max≤ P d
0 ,

min{P c
max, P

c
d2,max}, if P d

max> P d
0 andP c

max> P c
0 ,

P c
max, otherwise,
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where

P c
0 =

σ2

1−ǫ2m,k

1−ǫ2
k

(

1
p0
− 1
)

αm,kǫ2k|ĥk|2 − αm,kǫ2m,k|ĥm,k|2
,

and

P d
0 =

P c
0γ

d
0αm,k(1− ǫ2m,k)(1− p0)

αk(1− ǫ2k)p0
.

P d
c1,max andP c

d1,max are derived from the implicit functions

F1(P
d
c1,max, P

c
max) = 0 and F1(P

d
max, P

c
d1,max) = 0,

P d
c2,max andP c

d2,max are derived from the implicit functions

F2(P
d
c2,max, P

c
max) = 0 and F2(P

d
max, P

c
d2,max) = 0,

through bisection search by noting the monotonic relation betweenP c
m andP d

k in the im-

plicit functions

F1(P
d
k , P

c
m) = exp

(

Cγd
0

B

)(

1 +
D

B
γd
0

)

− exp
(

A
B

)

1− p0
= 0

whenP d
k ∈ (0, P d

0 ) and

F2(P
d
k , P

c
m) =

(

1 +
B

γd
0D

)

exp

(

A− Cγd
0

γd
0D

)

− 1

p0
= 0,

whenP d
k ∈ (P d

0 ,+∞).

Proof. We provide a brief sketch for the proof. From theLemma, the feasible region of

(3.7) is divided into two parts, depending on ifCγd
0 ≥ A or not, with an example given in

Fig. 3.2. Further analysis shows that the two regions’s upper boundaries (as determined
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Figure 3.2: A sample feasible region depiction.

by implicit functionsF1(P
d
k , P

c
m) = 0 andF2(P

d
k , P

c
m) = 0, respectively) intersect at

(P d
0 , P

c
0 ), which lies on the separating lineCγd

0 = A. In addition,F1(P
d
k , P

c
m) = 0 and

F2(P
d
k , P

c
m) = 0 maintains a monotonically increasing relation betweenP c

m andP d
k in the

range(0, P d
0 ) and(P d

0 ,+∞), respectively. We note that the I-UE’s capacity, or equivalently

γc
m, increases withP c

m and decreases withP d
k . Hence, the optimal solution must reside at

the upper boundary of the feasible region, which is a continuous line jointly determined

by F1(P
d
k , P

c
m) = 0 andF2(P

d
k , P

c
m) = 0. Further analysis reveals thatγc

m increases with

growingP d
k along the boundary line. As a result, the optimal power allocation solution is

determined by the relative magnitudes ofP c
max andP d

max as well as their intersections with

the boundary line, which is as summarized in the theorem.

3.2.2 PairMatchingfor All Vehicles

Substituting the optimal power allocation from theTheoremin (3.6) yields the maximum

capacity of themth I-UE when it shares its spectrum with thekth V-UE, denoted asC∗
m,k. If
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Table 3.1: Optimal Resource Allocation Algorithm for (3.5)in D2D-Enabled Vehicular
Communications

Algorithm 3 Optimal Resource Allocation Algorithm for (3.5)
1: for m = 1 : M do
2: for k = 1 : K do
3: Obtain the optimal power allocation(P d∗

k , P c∗

m ) from theTheoremfor the single
I-UE and V-UE pair.

4: Substitute(P d∗

k , P c∗

m ) into (3.6) to obtainC∗
m,k.

5: if C∗
m,k < rc0 then

6: C∗
m,k = −∞.

7: end if
8: end for
9: end for

10: Use the Hungarian method [33] to find the optimal reuse pattern {ρ∗m,k} based on
{C∗

m,k}.
11: Return the optimal spectrum reuse pattern{ρ∗m,k} and the corresponding power alloca-

tion {(P d∗

k , P c∗

m )}.

it is less thanrc0, then this combination is unable to meet the minimum capacity requirement

for the I-UE. Therefore, such a I-UE and V-UE pair is not feasible and we setC∗
m,k =

−∞. After evaluating all possible combinations of the reuse pairs, the resource allocation

problem in (3.5) reduces to

max
{ρm,k}

∑

m∈M

∑

k∈K

ρm,kC
∗
m,k (3.12)

s. t. (3.5e), (3.5f) (3.13)

which turns out to be a maximum weight bipartite matching problem and can be efficiently

solved by the Hungarian method in polynomial time [33].

From the above discussion, we propose Algorithm 1 to solve the problem in (3.5) as

listed in Table 3.1. Algorithm 1 yields the globally optimalsolution to (3.5) because it

jointly finds the optimal power control for each I-UE and V-UEreuse pair and the best

spectrum sharing among all possible reuse pairs.

46



Table 3.2: Simulation Parameters [10, 47]
Parameter Value Parameter Value
Carrier frequency 2 GHz BS receiver noise figure 5 dB

Bandwidth 10 MHz
Distance between BS and
highway

35 m

Cell radius 500 m Vehicle receiver noise figure 9 dB
BS antenna height 25 m Absolute vehicle speedv 100 km/h

BS antenna gain 8 dBi
Minimum capacity of I-UE
rc0

0.5 bps/Hz

Vehicle antenna height 1.5 m SINR threshold of V-UEγd
0 5 dB

Vehicle antenna gain 3 dBi Reliability for V-UE p0 10−3

Maximum V-UE trans-
mit powerP d

max
23 dBm

Maximum I-UE transmit
powerP c

max
23 dBm

Number of lanes 3x2 Number of V-UEsK 20
Lane width 4 m Number of I-UEsM 20

Noise powerσ2 -114 dB-
m

Bisection search accuracyǫ 10−6

Vehicle drop model spatial Poisson process

Vehicle density
Average inter-vehicle distance is2.5v, v
in m/s

Table 3.3: Channel Models for V2I and V2V Links [10]
Parameter V2I Link V2V Link

Pathloss model
128.1 + 37.6log10 d, d in
km

LOS in WINNER +
B1

Shadowing distribution Log-normal Log-normal
Shadowing standard
deviationξ

8 dB 3 dB

Fast fading Rayleigh fading Rayleigh fading

3.3 Simulation Results

In this section, we present simulation results to validate the proposed algorithm. We follow

the simulation setup for the freeway case in 3GPP TR 36.885 [10] and model a multi-lane

freeway that passes through a single cell as shown in Fig. 3.1. The vehicles are dropped

according to spatial Poisson process, whose density is determined by the vehicle speed.

TheM I-UEs andK V-UEs are randomly chosen among generated vehicles, where V-

UE pairs are formed between adjacent vehicles and the I-UEs have equal shares of the total
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Figure 3.3: Sum capacity of I-UEs with varying feedback periodT .

bandwidth. The major simulation parameters are listed in Table 3.2 and the channel models

are described in Table 3.3. Note that all parameters are set according to Tables 3.2 and 3.3

by default, whereas the settings in each figure take precedence.

Fig. 3.3 demonstrates the sum V2I throughput of our proposedalgorithm with an in-

creasing CSI feedback period that indicates the channel latency. From the figure, the sum

capacity of I-UEs decreases as the reporting periodT grows. This is due to growingT

increases uncertainty of V2V channels at the BS, motivatingthe BS to act conservatively

when controlling I-UEs’ transmit powers to meet the reliability constraint of V2V links,

which suffer from interference generated by I-UEs. As the vehicle speed increases from

50 to 150 km/h, the sum capacity drops since higher speed induces a larger Doppler shift,

which also increases channel uncertainty at the BS. Anotherreason for such degradation is

due to sparser traffic according to the simulation setup, which on average increases inter-

vehicle distance and gives rise to less reliable V2V links with lower received power. As

such, less interference from I-UEs can be tolerated given the maximum transmit power
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Figure 3.4: CDF of an arbitrary V-UE’s SINR under Rayleigh fading withT = 1 ms and
different targeted outage probabilitiesp0.

constraints of V-UEs, leading to less power being allocatedto I-UEs and decreasing their

sum capacity. It is also interesting to note from Fig. 3.3 theI-UE’s sum capacity is more

sensitive to feedback frequency with a larger vehicle speed.

Fig. 3.4 evaluates the cumulative distribution function (CDF) of an arbitrary V-UE’s

received SINR under Rayleigh fading with different targeted outage probabilities. The

desired SINR threshold for each V-UE is5 dB. From the figure, the reliability constraint in

terms of the outage probability of V-UE’s SINR is accuratelysatisfied, which confirms the

effectiveness of our proposed algorithm.

3.4 Summary

In this chapter, we have investigated the spectrum sharing and power allocation design for

D2D-enabled vehicular networks. Channel uncertainty caused by CSI feedback delay in a

high mobility vehicular environment has been considered. The optimal resource allocation
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strategy has been developed to maximize the sum capacity of all I-UEs while the reliability

of all V2V links is strictly satisfied.
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CHAPTER 4

GRAPH-BASED RESOURCE ALLOCATION WITH MULTIPLE V2V SHARING

In this chapter, we further our study of the resource allocation problem for device-to-device

(D2D)-based vehicular networks. We generalize the problems in previous chapters to a

more generic setting, where each vehicle-to-infrastructure (V2I) link shares spectrum with

multiple vehicle-to-vehicle (V2V) links and the frequencyspectrum is not assumed to be

preassigned to V2I links. To support service heterogeneityof vehicular networks, we max-

imize the V2I link capacity for high bandwidth applications, such as video streaming over

the Internet, and introduce the reliability constraint forV2V links (evaluated in terms of

outage probabilities depending on large-scale CSI and the distribution of small-scale CSI),

which is critical for safety message dissemination. We takeadvantage of both optimiza-

tion and graph theoretic tools to develop a suite of algorithms that solve the problem with

different performance guarantee and computational complexity tradeoffs. In the proposed

baseline algorithm, we divide the V2V links into disjoint spectrum-sharing clusters using

graph partitioning algorithms to mitigate their mutual interference. We then model and

solve the spectrum allocation problem as a weighted 3-dimensional matching problem in

graph theory, where weights of edges in the graph are obtained by optimizing powers of

both V2I and V2V transmitters for each feasible spectrum sharing candidate. Based on

the baseline algorithm, we further develop greedy and randomized graph-based resource

allocation algorithms, leading to a substantial performance gain.

In terms of the chapter organization, Section 4.1 introduces the system model. Section-

s 4.2 and 4.3 investigate the resource allocation problems with different CSI resolutions.

Section 4.4 delivers computer simulation results before the presentation of concluding re-

marks in Section 4.5.
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Figure 4.1: D2D-based vehicular communications.

4.1 System Model

Consider a D2D-based vehicular communications network as shown in Fig. 4.1. There are

M V2I andK V2V communication links. TheM V2I links are initiated byM single-

antenna vehicles, demanding large-capacity uplink connection with the base station (BS)

to support bandwidth intensive applications, such as cloudaccess, media streaming, and

social networking. TheK V2V links are formed among the vehicles, designed with high

reliability such that safety-critical information, such as the basic safety messages (BSM)

defined in [10], can be shared among neighboring vehicles reliably, in the form of localized

D2D communications.

It is noted that theM V2I links andK V2V links are illustrated separately in Fig. 4.1

for better presentation. Denote the set of V2I links asM = {1, · · · ,M} and the set of V2V

links asK = {1, · · · , K}. The total available bandwidth is divided intoF resource blocks

(RBs), denoted byF = {1, · · · , F}. Without loss of generality, we assumeM = F in

this chapter and each of theM V2I links uses a single RB, i.e., no spectrum sharing among
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V2I links. To improve spectrum utilization, orthogonally allocated uplink spectrum of V2I

links is reused by V2V links since uplink resource usage is less intensive and interference

at the BS is more manageable. We note that in practice the number of V2V links tends to

be larger than that of V2I links, i.e.,K ≫ M , making spectrum reuse among V2V links

necessary.

As in Fig. 4.1, the channel power gain,gm,B[f ], from the transmitter of themth V2I

link to the BS over thef th RB is

gm,B[f ] = αm,B|hm,B[f ]|2, (4.1)

wherehm,B[f ] is the small-scale fading component, assumed to be distributed according

to CN (0, 1) and independent across different RBs and links, andαm,B captures large-scale

fading effects, i.e., including path loss and shadowing, assumed to be independent of the

RB indexf . Similarly, we can define thekth V2V channel over thef th RB, gk[f ], the

interfering channel from thek′th V2V transmitter to thekth V2V receiver over thef th RB,

gk′,k[f ], the interfering channel from themth V2I transmitter to thekth V2V receiver over

the f th RB, gm,k[f ], and the interfering channel from thekth V2V transmitter to the BS

over thef th RB,gk,B[f ]. See Table 4.1 for a summary.

The full CSI of links engaging the BS, including the V2I channels, gm,B[f ], and the

interfering channels from the V2V transmitters,gk,B[f ], can be estimated at the BS, and is

thus assumed known at the central controller. However, the CSI of mobile links, including

the V2V channels,gk[f ], the peer V2V interfering channels,gk′,k[f ], and the interfering

channels from the V2I transmitters,gm,k[f ], has to be estimated at the mobile receiver

and then reported to the BS periodically. Frequent feedbackof the fast fading information

of rapidly varying mobile channels incurs substantial signaling overhead and thus makes

tracking instantaneous CSI of mobile channels infeasible in practice. Therefore in this

chapter, we assume that the BS only has access to the large-scale fading information of
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Table 4.1: A Summary of Channel Symbol Notation
Symbol Definition
gm,B the channel from themth V2I transmitter to the BS
gk the channel of thekth V2V link

gk,B
the interfering channel from thekth V2V transmitter
to the BS

gm,k
the channel from themth V2I transmitter to thekth
V2V receiver

gk′,k
the interfering channel from thek′th V2V transmitter
to thekth V2V receiver

such channels, which varies on a slow scale. In the meantime,each realization of the fast

fading is unavailable at the BS while its statistical characterization is assumed to be known.

To this end, the received signal-to-interference-plus-noise ratios (SINRs) of themth

V2I link at the BS and thekth V2V link at the V2V receiver over thef th RB can be

expressed as

γc
m,f =

P c
m,fgm,B[f ]

σ2 +
∑

k

ρdk,fP
d
k,fgk,B[f ]

(4.2)

and

γd
k,f =

P d
k,fgk[f ]

σ2 +
∑

m

ρcm,fP
c
m,fgm,k[f ] +

∑

k′ 6=k

ρdk′,fP
d
k′,fgk′,k[f ]

, (4.3)

respectively, whereP c
m,f andP d

k,f denote transmit powers of themth V2I transmitter and

thekth V2V transmitter over thef th RB, respectively,σ2 is the noise power, andρcm,f ∈

{0, 1} is the spectrum allocation indicator withρcm,f = 1 implying themth V2I links is

transmitting over thef th RB andρcm,f = 0 otherwise. The spectrum allocation indicator

for thekth V2V link, ρdk,f , is similarly defined.

To meet the diverse quality-of-service (QoS) requirementsfor different vehicular links,

i.e., large capacity for V2I connections and high reliability for V2V connections, we max-

imize the sum capacity of theM V2I links while guaranteeing the minimum reliability for
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each V2V link. The spectrum and power allocation problems isformulated as:

max
{ρc

m,f
,ρd

k,f
}

{P c
m,f

,P d
k,f

}

∑

m

∑

f

ρcm,f log2(1 + γc
m,f) (4.4)

s.t. ρdk,fPr
{

γd
k,f ≤ γd

0

}

≤ p0, ∀k, f (4.4a)
∑

m

ρcm,f = 1, ∀f (4.4b)

∑

f

ρcm,f = 1, ∀m (4.4c)

∑

f

ρdk,f = 1, ∀k (4.4d)

∑

f

ρcm,fP
c
m,f ≤ P c

max, ∀m (4.4e)

∑

f

ρdk,fP
d
k,f ≤ P d

max, ∀k (4.4f)

P c
m,f ≥ 0, P d

k,f ≥ 0, ∀m, k, f (4.4g)

ρcm,f , ρ
d
k,f ∈ {0, 1}, ∀m, k, f, (4.4h)

whereγd
0 in (4.4a) is the minimum SINR needed to establish a reliable V2V link andp0 in

(4.4a) is the tolerable outage probability.P c
max in (4.4e) andP d

max in (4.4f) are the maximum

transmit powers of the V2I and V2V transmitters, respectively. Constraint (4.4a) represents

the minimum reliability requirement forK V2V links, where the probability is evaluated in

terms of the random fast fading of mobile channels. Constraint (4.4b) restricts orthogonal

spectrum to be allocated amongM V2I links. Constraints (4.4c) and (4.4d) model our

assumption that each of the V2I and V2V links accesses a single RB. Constraints (4.4e) and

(4.4f) ensure the transmit powers of V2I and V2V links cannotgo beyond their maximum

limits.

Extension to multi-RB access for both V2I and V2V links is possible through creating
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multiple virtual V2I and V2V links and then properly definingtheir channel strengths as

described in [50, 28]. Specifically, if one V2I link requestsNR RBs, we createNR virtual

V2I links at the beginning of the resource management and then equally split the maximum

transmit power among theseNR V2I links. If one V2V link requests multiple RBs, we can

similarly create the same number of virtual V2V links and then set the strengths of the

channels among them to be extremely high such that they cannot share the same RB in the

following resource allocation stage. Likely, we split their maximum power limit among the

virtual V2V links. Finally the RBs allocated to all virtual links originating from the same

V2I or V2V link will be combined to allow multi-RB access.

4.2 Spectrum Allocation and Power Control

The optimization problem in (4.4) is combinatorial in nature and is further complicated

by the nonlinear constraints and objective function. To address the problem, we propose

in this section solution algorithms originating from a combination of graph theoretic and

optimization tools. We first introduce a baseline low-complexity resource allocation al-

gorithm, based on which some refined algorithms will then be proposed with significant

performance improvement.Please note that the proposed algorithms are implemented ina

centralized manner, where the central controller collectsthe CSI of all links with different

levels of resolution from feedback or direct channel estimation, as described in Section 4.1,

and then executes the algorithms step by step according to the algorithm description.

4.2.1 BaselineGraph-BasedResourceAllocation

For the baseline resource allocation scheme, we first exploit graph partitioning algorithms

to divide the V2V links into different clusters based on their mutual interference. This

identifies proper V2V sets for spectrum sharing with minimuminterference. Next, all V2V

links in each cluster are allowed to share the same spectrum with one of theM V2I links

while V2V links in different clusters cannot share spectrum. We then optimize V2I and
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Figure 4.2: Graph representation for interfering links.

V2V transmit powers for all possible sharing patterns. Finally, we construct a 3-partite

graph, with theM V2I links, F RBs, andN V2V clusters as its vertices and with edge

weights equal to the V2I capacity from applying optimized V2I and V2V transmit powers.

The resource allocation problem in (4.4) can then be reducedto a weighted 3-dimensional

matching problem.

V2V Partitioning

The interference management for V2V links can be captured using a graph in Fig. 4.2,

where each V2V linkLk is modeled as a vertex and two vertices are joined by an edge

when they are mutually interfering. The edge weight is set tocapture the interference level

withwk′,k = αk′,k, whereαk′,k is the large-scale fading CSI of the interference channel from

thek′th V2V transmitter to thekth V2V receiver. The goal is to partition theK vertices

into N sets,C1, · · · , CN , whereN ≪ K, minimizing the intra-cluster interference across

all clusters, i.e.,
∑

n

(

∑

k′,k∈Cn

wk′,k

)

. Intuitively, this implies that we attempt to partition

strongly interfering V2V links into different sets so that links within the same set can share

the same RB without incurring too much mutual interference.

The above partitioning problem is equivalent to the MAXN-CUT problem in graph

theory [31, 51] and a brief explanation is given here. LetG be a graph with vertex set
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Table 4.2: Heuristic Algorithm for MAXN-CUT [31, 51]

Algorithm 4 Heuristic Algorithm for V2V Partitioning
1: Arbitrarily assign one V2V link to each of theN clusters.
2: for k ∈ K and not already in any clusterdo
3: for n = 1 : N do
4: Compute the increased intra-cluster interference using

∑

k′∈Cn

(wk,k′ + wk′,k).

5: end for
6: Assign thekth V2V link to then∗th cluster withn∗ = argmin

∑

k′∈Cn

(wk,k′ + wk′,k).

7: end for
8: Return the V2V clustering result.

V (G) and edge setE(G). Letw : E(G)→ R. The MAX N-CUT problem for a weighted

graph is to find a partition of the graphG into N disjoint clustersCn, n = 1, · · · , N , such

thatC1 ∪ · · · ∪ CN = V (G) and
∑

a∈Ci,b∈Cj ,i<j

wa,b is maximized, wherewa,b is the weight

of the edge(a, b). Since
∑

n

(

∑

k′,k∈Cn

wk′,k

)

+
∑

a∈Ci,b∈Cj ,i<j

wa,b =
∑

e∈E(G)

w(e), maximizing

∑

a∈Ci,b∈Cj ,i<j

wa,b is thus equivalent to minimizing
∑

n

(

∑

k′,k∈Cn

wk′,k

)

.

A simple heuristic algorithm has been proposed in [51] and exploited for interference

management in [31] for multicell OFDMA systems, achieving an absolute ratio of(1 −

1/N) for a generalN-CUT problem. This algorithm is listed in Table 4.2 and will be used

in this chapter.

Power Allocation Design

As mentioned before, V2V links in one cluster can share the spectrum with one V2I link

while those in different clusters are not allowed to share. For an arbitrary spectrum sharing

pattern, e.g., when themth V2I link is transmitting over thef th RB, which is shared by

all V2V links in thenth cluster,Cn, we attempt to find its optimal power control for both

V2I and V2V links. That is, we maximize the V2I capacity, defined asRm,n[f ], with the

reliability of all V2V links in thenth cluster guaranteed when they share thef th RB. The
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power optimization problem is formulated as

max
P c
m,f ,{P

d
k,f}

log2

(

1 +
P c
m,fgm,B[f ]

σ2 +
∑

k∈Cn

P d
k,fgk,B[f ]

)

, Rm,n[f ] (4.5)

s.t. Pr











P d
k,fgk[f ]

σ2 + P c
m,fgm,k[f ] +

∑

k′ 6=k

P d
k′,fgk′,k[f ]

≤ γd
0











≤ p0, ∀k ∈ Cn (4.5a)

0 ≤ P c
m,f ≤ P c

max (4.5b)

0 ≤ P d
k,f ≤ P d

max, ∀k ∈ Cn. (4.5c)

To evaluate the outage constraint of (4.5a), we will turn it to an analytical form by using

the following result from [52].

Lemma 3. Supposez1, · · · , zn are independent exponentially distributed random variables

with meansE[zi] = 1/λi. Then we have [52]

Pr

{

z1 ≤
n
∑

i=2

zi + c

}

= 1− e−λ1c

n
∏

i=2

1

1 + λ1

λi

, (4.6)

wherec is a positive constant.

In light of Lemma 3, we replace the outage constraint for eachV2V links in (4.5a) with

1−
exp

(

− γd
0σ

2

P d
k,f

αk

)

1 +
P c
m,f

αm,kγ
d
0

P d
k,fαk

∏

k′ 6=k

1

1 +
P d
k′,f

αk′,kγ
d
0

P d
k,f

αk

≤ p0, ∀k ∈ Cn. (4.7)

This is still a fairly complex constraint and is hard to deal with. To avoid the difficulty of

manipulating such complicated inequalities, we further use the following result in [53] to
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bound the derived outage constraints

1−
exp

(

− γd
0σ

2

P d
k,f

αk

)

1 +
P c
m,f

αm,kγ
d
0

P d
k,f

αk

∏

k′ 6=k

1

1 +
P d
k′,f

αk′,kγ
d
0

P d
k,f

αk

≤ 1− exp













−
γd
0

(

σ2 + P c
m,fαm,k +

∑

k′ 6=k

P d
k′,fαk′,k

)

P d
k,fαk













≤ p0, ∀k ∈ Cn, (4.8)

where tightness of the upper bound on outage probability hasbeen demonstrated in [53].

To this end, the power control problem in (4.5) for all V2V links in thenth cluster,Cn,

and the associatedmth V2I link over thef th RB can be cast as

max
P c
m,f

,{P d
k,f

}
log2

(

1 +
P c
m,fgm,B[f ]

σ2 +
∑

k∈Cn

P d
k,fgk,B[f ]

)

(4.9)

s.t.
P d
k,fαk

σ2 + P c
m,fαm,k +

∑

k′ 6=k

P d
k′,fαk′,k

≥ γd
0

ln 1
1−p0

,

∀k ∈ Cn (4.9a)

0 ≤ P c
m,f ≤ P c

max (4.9b)

0 ≤ P d
k,f ≤ P d

max, ∀k ∈ Cn. (4.9c)

Remark 1. For generalized fast fading distributions with unit mean power, i.e.,E[|h|2] = 1,

we exploit the results from [54] to find an upper bound of the outage probability of V2V

links, i.e., the left hand side of (4.5a), by

Ok ≤ F|hk|2






γd
0

σ2 + P c
m,fαm,k +

∑

k′ 6=k

P d
k′,fαk′,k

P d
k,fαk






, (4.10)
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∀k ∈ Cn, whereF|hk|2(·) is the fading cumulative distribution function (CDF) of thekth

V2V link, which is assumed to be concave onR+. The outage constraint in (4.5a) can be

further derived as

P d
k,fαk

σ2 + P c
m,fαm,k +

∑

k′ 6=k

P d
k′,fαk′,k

≥ γd
0

F−1
|hk|2

(p0)
, ∀k ∈ Cn, (4.11)

whereF−1
|hk|2

(·) denotes the inverse of the CDF. For the popular double-Rayleigh fading to

model non line-of-sight (NLoS) V2V channels, the CDF is given by [55]

F|hk|2(x) = 1−√xK1(
√
x), (4.12)

whereK1(·) is the first order modified Bessel function of the second kind.

We note that the optimality of (4.9) will be achieved when theoutage constraints in

(4.9a) are satisfied with equality. This can be proved by contradiction. Suppose the optimal

solution to (4.9) contains at least one V2V link,k ∈ Cn, with

P d
k,fαk

σ2 + P c
m,fαm,k +

∑

k′ 6=k

P d
k′,fαk′,k

>
γd
0

ln 1
1−p0

. (4.13)

Due to the fact that the left hand side of (4.9a) is monotonically increasing inP d
k,f and

decreasing inP d
k′,f , k′ 6= k, we can always lower thekth V2V’s transmit power,P d

k,f , such

that constraints for all V2V links are still satisfied. Also notice that the objective function

in (4.9) is monotonically increasing with decreasing V2V transmit powers. As such, it can

be improved with loweringP d
k,f , thus contradicting the optimality assumption.

LettingNcn denote the number of V2V links in the clusterCn, we further notice that

the relations in (4.9a) are linear inNcn + 1 related transmit powers: one V2I transmit

power,P c
m,f ; andNcn V2V transmit powers,{P d

k,f}. In addition, the number of equality

constraints in (4.9a) at the optimal solution isNcn. Therefore, we can easily derive the
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V2V transmit powers in thenth cluster, i.e.,{P d
k,f}, ∀k ∈ Cn, in terms of the V2I transmit

power,P c
m,f , as

P
d
n,f = Φ

−1γ̄0
(

P c
m,fαααm + σ2

)

, (4.14)

wherePd
n,f ∈ RNcn×1 storesNcn V2V transmit powers in thenth cluster,γ̄0 =

γd
0

− ln(1−p0)
,

αααm = (αm,1, · · · , αm,Ncn
)T ∈ CNcn×1, andΦ ∈ CNcn×Ncn is given by

Φi,j =















αi, if i = j,

−γ̄0αj,i, otherwise.

(4.15)

Here, in the above we have relabeled theNcn V2V links in thenth cluster as{1, 2, · · · , Ncn}

and slightly changed the notation by usingi in place of the original V2V indexk.

Similar to the argument in [28], we can then substitute (4.14) in the objective function

of (4.9), which can be shown to monotonically increase withP c
m,f . Hence, after considering

the maximum power constraints, the optimal solution to the problem in (4.9) is given by1

P c∗

m,f = min

{

P c
max,

{

P d
max− γ̄0σ

2φφφH
i 1

γ̄0φφφH
i αααm

}Ncn

i=1

}

, (4.16)

and

P
d∗

n,f = Φ
−1γ̄0

(

P c∗

m,fαααm + σ2
)

, (4.17)

where1 is an all-one vector andφφφH
i is theith row ofΦΦΦ−1.

1Should either the optimal V2I transmit power, i.e.,P c∗

m,f , or any of the optimal V2V transmit powers

in thenth cluster, i.e.,P d∗

k,f , k ∈ Cn, be negative, we declare the problem in (4.9) to be infeasible and set
Rm,n[f ] = −∞.
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Figure 4.3: Graph representation for spectrum sharing among V2I and V2V links.

Resource Matching

To this end, essential elements of the resource allocation problem in (4.4) can be modeled

as a 3-partite graph in Fig. 4.3. For each of the possible V2I-RB-V2V resource sharing

patterns (MFN in total), we formulate the optimization problem as in (4.5)and then find

the resulting V2I capacityRm,n[f ], ∀m,n, f . The weight for the edge linking from themth

V2I vertex in the upper layer, through thef th RB vertex in the middle layer, and to thenth

cluster vertex in the lower layer, is set to beRm,n[f ]. Then the spectrum allocation problem

reduces to

max
{ρc

m,f
,ρcl

n,f
}

∑

m

∑

f

∑

n

ρcm,fρ
cl
n,fRm,n[f ] (4.18)

s.t.
∑

m

ρcm,f = 1,
∑

n

ρcln,f = 1, ∀f (4.18a)

∑

f

ρcm,f = 1, ∀m,
∑

f

ρcln,f = 1, ∀n (4.18b)

ρcm,f , ρ
cl
n,f ∈ {0, 1}, ∀m,n, f (4.18c)

This problem can be transformed into a weighted 3-dimensional matching problem with
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weights ofw(m, f, n) = Rm,n[f ], for 1 ≤ m ≤ M, 1 ≤ f ≤ F, and1 ≤ n ≤ N , to which

we now turn our attention.

Formally, a hypergraphH = (V,E) consists of a setV of vertices and a setE of edges

where each edge is a nonempty subset ofV . A matching inH is a subsetM0 ⊆ E of edges

such that for any distinct edgese1, e2 ∈ M0, e1 ∩ e2 = ∅. A k-uniform hypergraph is a

hypergraph in which all edges have sizek. Further, ak-uniform hypergraph is said to be

k-partite if the set of vertices can be partitioned intok disjoint sets such that every edge

contains one vertex from each set. Ak-dimensional matching is a matching in ak-partite

hypergraph. Thek-dimensional matching problem is to find a matching in ak-partite

hypergraph with the maximum number of edges. The weightedk-dimensional matching

problem is that given ak-partite hypergraphH = (V,E) and a functionw : E → R, find a

matchingM0 in H such thatw(M0) =
∑

e∈M0

w(e) is maximized.

In our case, the V2I-RB-V2V resource allocation problem in (4.18) is equivalent to

the weighted3-dimensional matching problem, which can be seen as follows. We first

construct a3-partite hypergraphH = (V,E), by letting V = {[m, 0, 0] : 1 ≤ m ≤

M} ∪ {[0, f, 0] : 1 ≤ f ≤ F} ∪ {[0, 0, n] : 1 ≤ n ≤ N}, andE = {(m, f, n) : 1 ≤

m ≤ M, 1 ≤ f ≤ F, 1 ≤ n ≤ N}, where(m, f, n) = {[m, 0, 0], [0, f, 0], [0, 0, n]}.

We define the weight functionw : E → R by letting w(m, f, n) = Rm,n[f ], for all

1 ≤ m ≤ M, 1 ≤ f ≤ F, 1 ≤ n ≤ N. Now, we can see that solving our V2I-RB-V2V

resource allocation problem is equivalent to solving the weighted3-dimensional matching

problem onH = (V,E) with weight functionw.

Note that fork ≥ 3, thek-dimensional matching problem is NP-hard. In fact, the 3-

dimensional matching problem is one of Karp’s famous 21 NP-complete problems. Thus,

we are not expecting a polynomial time algorithm to solve ourproblem. Instead, we will

use efficient algorithms to approximately solve the3-dimensional matching problem, and

provide guarantees that our approximate solutions will be close to the optimum.

We adopt and modify the polynomial time algorithm proposed in [56], which gives a
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solution to the weighted 3-dimensional matching problem with approximation factor2 (but

without the additive constantǫ as in [42]). The algorithm in [56] combines the use of the

iterative rounding method and the fractional local ratio method, by using the basic solution-

s of the standard linear programming relaxation of the weighted 3-dimensional matching

problems. Iterative rounding [57] is a way for designing approximation algorithms to ob-

tain solutions to integer programs. It begins with obtaining a basic solution by solving a

linear programming relaxation. Then it tries to obtain an integral solution by rounding up

variables of large values and iteratively solving the residual problems.

Let H = (V,E) be a 3-partite hypergraph, and letw : E → R. For v ∈ V , let δ(v)

be the set of edges containingv. The weighted 3-dimensional matching problem can be

formulated as the following integer program:

max
∑

e∈E

w(e)x(e)

s.t.
∑

e∈δ(v)

x(e) ≤ 1, ∀v ∈ V

x(e) ∈ {0, 1}, ∀e ∈ E.

The linear programming relaxation of this integer program is given by

max
∑

e∈E

w(e)x(e) (4.19)

s.t.
∑

e∈δ(v)

x(e) ≤ 1, ∀v ∈ V

x(e) ≥ 0, ∀e ∈ E.

Algorithm 2 in Table 4.3 is obtained from the weighted 3-dimensional matching algo-

rithm from [56] by adding Step 10. For anye ∈ E, let N [e] be the set of edges ofH

having nonempty intersection withe. Note thate ∈ N [e]. In Algorithm 5, the solutionx of

linear program (4.19) must be basic; or else in Step 4, one cannot guarantee the existence

65



Table 4.3: Weighted 3-Dimensional Matching Algorithm [56]

Algorithm 5 Weighted 3-Dimensional Matching Algorithm
1: Input: H = (V,E), w : E → R andx, wherex is a basic solution of linear program

(4.19) obtained by some linear programming algorithm.
2: Let F ⊆ E with initializationF = ∅.
3: repeat
4: Search for an edgee ∈ E − F such thatx(N [e] ∩ (E − F )) ≤ 2.
5: Let F = F ∪ {e}.
6: Let i = |F |+ 1, and leti be the index ofe.
7: until E − F = ∅
8: Implement Local-Ratio algorithm in Table 4.4 with inputF andw, wherew is the

weight function on the edges ofH.
9: Let M0 be the output of Local-Ratio algorithm.

10: Use the greedy algorithm to find a maximal setE ′ of edges, such thatM0 ∪ E ′ is a
matching, andw(e) ≥ 0 for all e ∈ E ′. Then letM0 ← M0 ∪ E ′, and outputM0.

Table 4.4: Local Ratio Algorithm [56]

Algorithm 6 Local Ratio Algorithm [56]
1: Input: HypergraphH = (V,E), F ⊆ E, w : E → R, and an ordering of the edges in

E.
2: Let F ′ = {e ∈ F : w(e) > 0}.
3: if F ′ = ∅ then
4: Return∅.
5: end if
6: Let e′ be the smallest edge inF ′ based on the ordering ofE. Decompose the weight

functionw = w1 + w2, where

w1(e) =

{

w(e′), if e ∈ N [e′].
0, otherwise.

7: M ′ ←Local-Ratio(F ′, w2). (Note: this is a recursion.)
8: if M ′ ∪ {e′} is a matching inH then
9: ReturnM ′ ∪ {e′}.

10: else
11: ReturnM ′.
12: end if

of an edgee ∈ E − F such thatx(N [e] ∩ (E − F )) ≤ 2. To obtain a basic solution of

the linear program (4.19), we could use some existing linearprogramming algorithm, such
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as the simplex algorithm or the dual-simplex algorithm. Indeed, any linear programming

algorithm, which produces a basic solution, can be used here. We modified the algorithm

in [56] by adding Step 10, because the original algorithm does not necessarily produce a

maximal matching inH, since it only guarantees a matching with weights at least one half

of the optimum. So, here, we use greedy algorithm to test whether or notM0 is a maximal

matching. If not, then we will findE ′, with w(e) ≥ 0 ∀e ∈ E ′, such thatM0 ∪ E ′ is a

matching. In some cases, this added step could greatly improve the performance of the

whole algorithm.

Now, we analyze the time complexity of the above weighted 3-dimensional match-

ing algorithm. A basic solution of the linear programming relaxation of the weighted 3-

dimensional matching problem can be found in polynomial time. LetH = (V,E) be a

3-partite hypergraph with|V | = n and|E| = m, let w : E → R, and letx be a basic so-

lution of the linear programming relaxation of the corresponding weighted 3-dimensional

matching problem. We show that Algorithm 2, producing a matching whose weights is at

least one half of the optimum, has time complexityO(mn2 log2 n).

First, we see that Steps 3 to 7 of Algorithm 2 constitute a loop, which is executed until

we haveF = E. This loop gives an ordering of edges inE to be used in implementing

Algorithm 3 (Local Ratio Algorithm). The total number of iterations of this loop ism. For

each iteration, we need to search inE −F for an edgee with x(N [e] ∩ (E −F )) ≤ 2. For

efficiency, we construct a binary tree data structure to store the datax(N [e]∩ (E−F )) for

all e ∈ E−F such that the value of any vertex in the tree is always no more than the value of

its “children”. By updating this tree in each iteration, we can find min{x(N [e]∩ (E−F )) :

e ∈ E − F} in O(1) time, which is guaranteed to be no more than2. However, once

we adde into F , we need to delete this data in our binary tree and modify the values of

x(N [e′]∩(E−F )) for those edgese′ ∈ (E−F )∩N [e]. The total number of modifications is

O(n2), and each modification can be implemented inO(log2 n) time. Hence, each iteration

of the loop will takeO(n2 log2 n) Since we havem iterations, the total time of Steps 3 to 7
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isO(mn2 log2 n).

Step 8 can be implemented inO(mn2). This is because in Step 8, we call Algorithm 3

(Local Ratio Algorithm) at mostm times. In each call of Local Ratio Algorithm, we need

to constructw1 andw2, which needsO(n2) time. Therefore, Step 8 can be implemented in

O(mn2) time.

In Step 10, we use the greedy algorithm to find a setE ′ of edges inE −M0, such that

M0 ∪ E ′ is a matching withw(e) > 0, ∀e ∈ E ′. So, we need to check all the edges in

E −M0, and see whether or not we can add more edges intoE ′. The total number of such

checking isO(m), and for each checking, we can complete it inO(1) time. So, Step 10

can be implemented inO(m) time.

Thus, givenH = (V,E), w : E → R, and the basic solutionx, the weighted 3-

dimensional matching algorithm has approximation factor 2and time complexityO(mn2 log2 n).

The proposed baseline algorithm to solve the problem in (4.4) is summarized in Ta-

ble 4.5. With N = M = F , The V2V clustering has a complexity ofO(KM), the

complexity to construct the weighted 3-partite graph isO(M3), and finally, the complexity

of the weighted 3-dimensional matching Algorithm isO(M5 logM). Therefore, the total

complexity of Algorithm 7 isO(KM +M3 +M5 logM).

4.2.2 GreedyResourceAllocation

Built on the baseline resource allocation in Algorithm 7, wefurther propose a greedy al-

gorithm, which substantially improves the system performance. Before delving into details,

we briefly introduce the main problem setup and the motivation for such a greedy approach.

We claim that with the power optimization control and 3-dimensional resource matching

introduced in Sections 4.2.1 and 4.2.1, respectively, the original problem in (4.4) can be

described as follows: Given a real value functiong(·) defined onX = {(x1, x2, · · · , xK) :

xk ∈ {1, · · · , N}, k ∈ {1, · · · , K}}, find x ∈ X such thatg(x) is maximized.

As introduced earlier, we haveK V2V links andN clusters. Let the vectorx =
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Table 4.5: Baseline Graph-based Resource Allocation

Algorithm 7 Baseline Graph-based Resource Allocation
1: Use Algorithm 4 to divideK V2V links intoN clusters, denoted byC1, · · · , CN .
2: for m = 1 : M do
3: for n = 1 : N do
4: for f = 1 : F do
5: Use (4.16) and (4.17) to find the optimal V2I and V2V transmit powers, respec-

tively.
6: Compute the V2I capacity,Rm,n[f ], with the optimized power control parame-

ters.
7: end for
8: end for
9: end for

10: Construct a 3-partite graph, where theM V2I links, F RBs, andN V2V clusters form
the vertices in three layers and the weight for each V2I-RB-V2V edge is set toRm,n[f ].

11: Use Algorithm 5 to find a matching solutionM0.
12: Return the 3-dimensional matching (spectrum sharing) result M0 and the correspond-

ing power allocation{(P c∗

m,f , P
d∗

k,f)}.

(x1, · · · , xK) denote the situation that thekth V2V link is put into thexkth cluster, for

k ∈ {1, 2, · · · , K}. Let g(x) denote the objective function value of (4.4), after execut-

ing Algorithm 7, corresponding to the allocation of V2V links intoN clusters based on

x. More precisely,g(x) =
∑

m

rm, with rm =
∑

f

ρcm,f log2(1 + γc
m,f). Up to this end, it

is easy to see that our problem in (4.4) is transformed to finding x ∈ X such thatg(x) is

maximized. Obviously, findingx ∈ X to maximizeg(x) cannot be solved in polynomial

time with respect toK andN , as a general integer program problem is NP-hard.

The essential idea behind our greedy approach is to first use Algorithm 4 as an initial-

ization, and then for each of theK V2V links, sequentially decide the best cluster to join,

where the sum V2I capacity is determined by executing Algorithm 7. This whole process

is repeated for several times until convergence or until time bound is reached. Formally, the

algorithm is listed in Table 4.6.The complexity isO(C(K2M2 +KM4 +KM6 logM)),

whereC is the number of iterations for the greedy algorithm to converge.
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Table 4.6: Greedy Resource Allocation

Algorithm 8 Greedy Resource Allocation
1: Initialize x = (x1, x2, · · · , xK) using Algorithm 4.
2: repeat
3: for k = 1 : K do
4: Initialize an all-zero vectorw = (w1, w2, · · · , wN) of lengthN .
5: for n = 1 : N do
6: if kth V2V is not the only link in its current clusterthen
7: Setxk = n.
8: Execute Steps 2-12 of Algorithm 7 to obtain the matching solutionM0 based

onx and the corresponding power allocation{(P c∗

m,f , P
d∗

k,f)}.
9: Compute the sum V2I capacityg(x) =

∑

m

r∗m using the matching (spectrum

sharing) solutionM0 and the optimized powers{(P c∗

m,f , P
d∗

k,f)}.
10: Setwn = g(x).
11: end if
12: end for
13: Setxk = n∗ with n∗ = argmax

n
wn.

14: end for
15: until Convergence
16: Return the 3-dimensional matching (spectrum sharing) result M0 and the correspond-

ing power allocation{(P c∗

m,f , P
d∗

k,f)}.

4.2.3 RandomizedResourceAllocation

We observe that with the power optimization control and 3-dimensional resource match-

ing introduced in Sections 4.2.1 and 4.2.1, respectively, the original problem in (4.4) is

essentially a combinatorial problem as described in Section 4.2.2. The greedy algorithm

proposed in Table 4.6 tends to get trapped at a local optimum,which might be far away

from the global optimum due to the combinatorial nature of the problem. To address this

issue, we propose a randomized procedure in this subsection, where a V2V link is allowed

to join a suboptimal cluster with an appropriate probability associated with its achieved

sum capacity. The proposed randomized algorithm is listed in Table 4.7, where we use the

generic symbols defined in Section 4.2.2 for notational compactness.

For this randomized algorithm, letx(n) = (x1, x2, · · · , xk−1, n, xk+1, · · · , xK) and
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Table 4.7: Randomized Resource Allocation

Algorithm 9 Randomized Resource Allocation
1: Initialize x = (x1, x2, · · · , xK), amplification coefficienta ≥ 1, the number of itera-

tionsI, temperatureT , and maximum temperatureTmax.
2: for i = 1 : I do
3: if a · T ≤ Tmax then
4: T ← a · T .
5: end if
6: for k = 1 : K do
7: Let x(n) = (x1, x2, · · · , xk−1, n, xk+1, · · · , xK), n = 1, 2, · · · , N .
8: Let w = (w1, w2, · · · , wN) with wn = g(x(n)), n = 1, 2, · · · , N .
9: Let w = exp(T · w).

10: Let w = w/(
∑N

n=1wn).
11: Generate a random numberR ∈ (0, 1) according to standard uniform distribution,

and letr be the minimum number such that
∑r

n=1wn > R.
12: Let xk = r.
13: end for
14: end for
15: Return the 3-dimensional matching (spectrum sharing) result M0 and the correspond-

ing power allocation{(P c∗

m,f , P
d∗

k,f)}.

wn = g(x(n)), for n = 1, 2, · · · , N . We calculatew = (w1, w2, · · · , wN). Instead of

choosingxk such thatg(·) is maximized as in the greedy approach listed in Algorithm 8,

we will probabilistically updatexk to an appropriate cluster using the procedure described

below. We amplify each entry ofw by some factorT , termed astemperature, and then let

w = exp(T · w). Our goal here is to make large entrieswn larger, such that when trans-

formed into a probability distribution, those large entries ofw will have corresponding large

probabilities. Next, we normalizew to get a probability distributionw with
N
∑

n=1

wn = 1.

Based on this distribution, we will determine the value ofxk. Obviously, those choices

of xk with larger corresponding objective function valueg(·) will be more likely chosen.

However, we also allowxk to take a value with smaller corresponding objective function

since it may induce larger objective function value in future iterations. After each sweep

of all V2V links, we will change our temperature parameter bysettingT = a · T such

that in the next iteration, it is more likely for us to pick thenumber with the largest objec-
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tive function value forxk. Such a procedure makes the iteration process more stable and

could potentially avoid being trapped at a local optimum. Note that we also set a parameter

Tmax. Whena · T > Tmax, we will not updateT . This is because ifT is too large, then

in practice, we may get+∞ in calculation. Here,a andTmax are empirical parameters,

which will be determined in the simulation experiments.Please note that the complexity

of the proposed randomized algorithm is essentially close to the greedy resource allocation

in Algorithm 8, which isO(C(K2M2 +KM4 +KM6 logM)) with C depending on the

number of iterations for the algorithm to converge.

The intuition of this randomized algorithm is obtained fromsimulated annealing [58],

which is a probabilistic technique for approximating the global optimum of a given func-

tion. When the search space is discrete and large, simulatedannealing is useful for ap-

proximating global optimization. The temperature parameter plays an important role in the

simulated annealing algorithm. When the temperature parameter is large, the algorithm

will more likely accept a bad move. Normally, the distribution used to determine whether

or not we accept a bad move is known as Boltzmann distribution. At the beginning of sim-

ulated annealing, the temperature will be set to a very high level to ensure that the space

in which we search for a solution is large. Moreover, the temperature will decrease as the

search proceeds. When the temperature reaches a very low level, the algorithm becomes a

greedy hill-climbing algorithm and the approximate solutions will converge to an optimal

solution. If we decrease the temperature more slowly, then the algorithm can approximate

a global optimum with higher probability.

Instead of using Boltzmann distribution to calculate the probability of accepting a state

when applying simulated annealing, we use the temperature parameter and amplification

coefficient in our randomized algorithm. Ifthe temperature is high, then our algorithm is

less likely to accept a bad move, which is opposite to the simulated annealing algorithm.

The amplification coefficient controls the increasing speedof the temperature parameter.

If the amplification coefficient is extremely close to1, then the algorithm will eventually
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Table 4.8: Resource Allocation with Slow Fading CSI

Algorithm 10 Resource Allocation with Slow Fading CSI
1: Use Algorithm 4 to divideK V2V links intoN clusters,C1, · · · , CN .
2: Use Algorithm 9 to update the clustering result, where the optimal power control pa-

rameter is obtained from solving (4.20) and Hungarian algorithm in [33] is used to find
the matching between theM V2I links andN V2V clusters.

3: Return the matching (spectrum sharing) result and the corresponding power allocation
{(P c∗

m , P d∗

k,m)}.

converge to a global optimum like simulated annealing, but at the expense of dramatically

increased implementation time. Therefore, in practice, wewill set the amplification coef-

ficient large to make the approximate solution converge quickly. Although in theory, the

algorithm may lead to a local optimum, it works well in practice, as demonstrated by our

simulation results.

4.3 Resource Allocation with Slow Fading CSI

In this section, we consider the resource allocation problem when the vehicular net-

works further reduce signaling overhead by adapting spectrum allocation and power con-

trol to slow fading CSI. In this case, in spite of the availability of fast fading CSI for links

connecting the BS, such information is not used in the resource allocation process.

In the first step, Algorithm 4 will be used to find appropriate V2V clustering result,

which will be used in later stages.

As the slow fading components are assumed to be frequency flat, i.e., independent of

the RB indexf , the original problem in (4.4) will be transformed to a problem for finding

a matching between theM V2I links and theN V2V clusters, which is then a maximum

matching problem for weighted bipartite graphs and can be solved efficiently in polynomial

time by the Hungarian algorithm [33]. More precisely, the feasible combination will only be
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indexed by(m,n) instead of(m, f, n) and the associated power control problem becomes

max
P c
m,{P d

k,m
}
log2

(

1 +
P c
mαm,B

σ2 +
∑

k∈Cn

P d
k,mαk,B

)

, Rm,n (4.20)

s.t. Pr











P d
k,mgk[f ]

σ2 + P c
mgm,k[f ] +

∑

k′ 6=k

P d
k′,mgk′,k[f ]

≤ γd
0











≤ p0, ∀k ∈ Cn

0 ≤ P c
m ≤ P c

max

0 ≤ P d
k,m ≤ P d

max, ∀k ∈ Cn

The same procedure in 4.2.1 can be executed to find a solution to the above formulated

power control problem. Finally, we will exploit the randomized procedure in Algorithm 9

to optimize the clustering process and improve the system performance. The algorithm for

resource allocation with slow fading CSI is listed in Table 4.8,whose essential complexity

is O(C(K2M2 + KM3 + KM4)) with C depending on the number of iterations for the

algorithm to converge.

4.4 Simulation Results

In this section, simulation results are presented to validate the proposed spectrum and pow-

er allocation algorithms for D2D-based vehicular networks. We follow the simulation setup

for the freeway case detailed in 3GPP TR 36.885 [10] and modela multi-lane freeway that

passes through a single cell where the BS is located at its center as illustrated in Fig. 4.1.

The vehicles are dropped on the roads according to spatial Poisson process and the vehicle

density is determined by the vehicle speed. TheM V2I links are randomly chosen among

generated vehicles and theK V2V links are formed between each of the V2I transmitter

with its closest surrounding neighbors. The major simulation parameters are listed in Ta-

ble 4.9 and the channel models for V2I and V2V links are described in Table 4.10. Note
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Table 4.9: Simulation Parameters [10, 47]
Parameter Value
Carrier frequency 2 GHz
Bandwidth 10 MHz
Cell radius 500 m
BS antenna height 25 m
BS antenna gain 8 dBi
BS receiver noise figure 5 dB
Distance from BS to highway 35 m
Vehicle antenna height 1.5 m
Vehicle antenna gain 3 dBi
Vehicle receiver noise figure 9 dB
Absolute vehicle speedv 70 km/h
Vehicle drop model spatial Poisson process

Number of lanes
3 in each direction (6 in to-
tal)

Lane width 4 m
Average inter-vehicle distance 2.5v, v in m/s.
SINR threshold for V2Vγd

0 5 dB
Reliability for V2V p0 0.01
Number of V2I linksM 10
Number of V2V linksK 30
Maximum V2I transmit powerP c

max 17, 23 dBm
Maximum V2V transmit powerP d

max 17, 23 dBm
Noise powerσ2 -114 dBm

Table 4.10: Channel Models for V2I and V2V Links [10]
Parameter V2I Link V2V Link

Pathloss model
128.1 + 37.6log10 d, d in
km

LOS in WINNER +
B1 [48]

Shadowing distribution Log-normal Log-normal
Shadowing standard
deviationξ

8 dB 3 dB

Fast fading Rayleigh fading Rayleigh fading

that all parameters are set to the values specified in Tables 4.9 and 4.10 by default, where-

as the settings in each figure take precedence wherever applicable. In the simulation, the

number of V2V clusters,N , is set to be equal to the number of V2I links,M .

Fig. 4.4 compares the CDF of the instantaneous sum V2I capacity achieved by the

proposed algorithms against the benchmark CROWN scheme developed in [28] and its ex-
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tended version, termed CROWN-F, where we have exploited themethod in [28, Lemma 1]

to generate an equivalent SINR threshold in terms of the slowfading CSI. In the CROWN-

F scheme, we randomly allocate orthogonal RBs to V2I links and then make use of the

available fast-fading CSI of links terminating at the BS, includinggm,B andgk,B, to per-

form spectrum and power allocation.We observe that all of the proposed algorithms, i.e.,

Algorithms 4, 5, 6, and 7 outperform the benchmark CROWN and CROWN-F schemes.

In particular, the proposed greedy approach (Algorithm 5) and randomized resource allo-

cation (Algorithm 6) achieve substantially improved performance compared with the base-

line scheme (Algorithm 4) at the cost of increased complexity of further adjusting the V2V

clustering. It is noted that the CROWN-F scheme and Algorithms 4, 5, and 6 use the slow

fading CSI of mobile links, i.e., links among vehicles whileadapting to the fast fading CSI

of links involving the BS. In contrast, Algorithm 7 and the benchmark CROWN scheme

only adapt to the slow fading CSI of all links in the system despite the availability of fast

fading CSI of BS-involved links, thus incurring reduced network signaling overhead. For

the same level of signaling overhead, Algorithm 7 significantly outperforms the benchmark

CROWN scheme due to its fine tuning of V2V clustering through the proposed randomized

procedure. Surprisingly, Algorithm 7 can even approach theperformance of the baseline

Algorithm 4, which adapts to fast fading CSI but has not employed the proposed greedy or

randomized procedures to further adjust V2V clustering.

The reliability of V2V links is demonstrated in Fig. 4.5, where the CDF of the instan-

taneous SINR of an arbitrary V2V link has been plotted. From the figure, all proposed

algorithms and the benchmark CROWN and CROWN-F schemes achieve the SINR thresh-

old, γd
0 = 5 dB, at the targeted outage probability ofp0 = 0.01, justifying the effectiveness

of the reliability guarantee of the proposed resource allocation schemes. In addition, the

observation that the SINR threshold is achieved fairly accurately verifies the tightness of

the outage upper bound in (4.8), used to facilitate the derivation of power control designs.

Fig. 4.6 shows the performance of the proposed greedy and randomized algorithms

76



70 80 90 100 110 120 130 140∑

m
rm (bps/Hz)

10-2

10-1

100

C
D

F

Algorithm 4
Algorithm 5
Algorithm 6
Algorithm 7
CROWN
CROWN-F

Figure 4.4: CDF of instantaneous sum V2I capacity with Rayleigh fading andP d
max =

P c
max = 23 dBm.

-10 0 10 20 30 40 50

SINR (dB)

10-3

10-2

10-1

100

C
D

F

Algorithm 4
Algorithm 5
Algorithm 6
Algorithm 7
CROWN
CROWN-F

4.5 5 5.5 6
0.008

0.009

0.01

0.011

0.012

Figure 4.5: CDF of instantaneous SINR of V2V links with Rayleigh fading,P d
max = P c

max =
23 dBm, SINR thresholdγd

0 = 5 dB, and targeted outage probabilityp0 = 0.01.

77



1 2 3 4 5 6 7 8 9 10

Iteration

100

105

110

115

120

125

S
u
m

V
2I

ca
p
ac
it
y,

∑ m
r m

(b
p
s/
H
z)

Algorithm 5
Algorithm 6
Algorithm 7

Figure 4.6: Sum V2I capacity with increasing iterations of randomized clustering, assum-
ingP d

max = P c
max = 23 dBm.

with an increasing number of iterations to update V2V clustering. From the figure, the

greedy approach (Algorithm 5) quickly converges to a local optimum and will not improve

as the iteration number increases while the randomized Algorithm 6 keeps increasing and

finally converges to a better solution. The advantage of the randomized procedure is better

exemplified by Algorithm 7, where the performance can slightly decrease at the first few

iterations and finally converge to a good solution. This demonstrates the effectiveness of the

probabilistic approach of approximating the global optimum of a combinatorial problem.

Please note that in the simulation, we have deliberately setthe amplification coefficient in

the randomized procedure to be large for quick convergence,whose performance turns out

to be desirable. In practice, trial and error need to be performed to fine tune the parameters.

Fig. 4.7 shows the sum V2I capacity of the two proposed randomized algorithms with

an increasing vehicle speed. We observe that the sum V2I capacity of both Algorithms 6

and 7 decreases as the vehicle speed increases. This is due tothat the growing vehicle speed

induces sparser traffic on the highway according to our simulation model as described in

78



20 40 60 80 100 120 140 160
Speed, v (km/h)

50

60

70

80

90

100

110

120

S
u
m

V
2I

ca
p
ac
it
y,

∑ m
r m

(b
p
s/
H
z)

P
max
c  = 23 dBm, Algorithm 6

P
max
c  = 23 dBm, Algorithm 7

P
max
c  = 17 dBm, Algorithm 6

P
max
c  = 17 dBm, Algorithm 7

Figure 4.7: Sum V2I capacity with varying vehicle speedv, assumingP d
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max.

[10]. Here, in order to guarantee the reliability of V2V links, increased V2V transmit power

is needed to compensate for higher path loss of the V2V signalchannels and, meanwhile,

less interference from V2I transmitters can be tolerated atthe V2V receivers. As a result,

the maximum allowed transmit power of V2I links will be restricted and more interference

from V2V links is generated towards the V2I links, whose capacity will thus decrease.

From Fig. 4.7, it is interesting to note that the sum V2I capacity decrease of both Algorithms

6 and 7 is approximately linear in growing vehicle speed, i.e., the vehicle speed roughly has

a uniform impact on the sum V2I capacity. In addition, an increase of maximum transmit

power of vehicular links, from17 to 23 dBm, improves the sum V2I capacity and such

capacity improvement is also roughly uniform with respect to the vehicle speed.

Fig. 4.8 demonstrates the impact of the number of active V2V links on the quality of

V2I connections. We observe from the figure that the sum V2I capacity of both Algorithms

6 and 7 decreases as the number of V2V links grows larger. The reasons for such capacity

decrease are two fold. On the one hand, with more active V2V links, each V2I link needs
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to share the spectrum with more V2V links simultaneously. Toguarantee the reliability of

all of these V2V links, the interference from V2I transmitters needs to be controlled and

thus the allowed transmit power of V2I links will be restricted, leading to decreased V2I

signal power. On the other hand, more interference from the increased number of sharing

V2V links will be generated towards the V2I links, which further reduces the received

SINR of V2I links. We also note that the system performance ofAlgorithms 6 and 7 is

very sensitive to the V2V link increase when only a few V2V links exist to share spectrum

with V2I links, as evidenced from the steep slope of the capacity curve. Such performance

degradation becomes less significant when the number of V2V links grows beyond 5 times

that of V2I links, which can be attributed to the fact that theV2V interference towards V2I

link is very severe in these cases and the sum V2I capacity suffers significantly, leaving very

little room for further performance degradation. Besides,the sum V2I capacity increases as

the transmit power budget grows from17 to23 dBm. However, such capacity gain becomes

marginal when the number of active V2V links grows large.
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4.5 Summary

In this chapter, we studied the resource allocation problemin D2D-based vehicular net-

works, in which each V2I link shares spectrum with multiple V2V links and the BS only

has access to the slow fading CSI of all vehicular links except those terminating at the

BS. We exploited graph partitioning algorithms to divide V2V links into disjoint spectrum-

sharing clusters to minimize mutual interference before formulating the spectrum allocation

problem as a weighted 3-dimensional matching problem, tackled through adapting a high

performance approximation algorithm. We also proposed greedy and randomized resource

allocation schemes based on our baseline algorithm, leading to substantially improved per-

formance. To further reduce network signaling overhead, wedeveloped a low-complexity

randomized algorithm, which adapts to the slow fading CSI ofall vehicular links.
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CHAPTER 5

RESOURCE ALLOCATION WITH MULTI-AGENT REINFORCEMENT

LEARNING

The majority of existing resource allocation methods for vehicular communications rely

on some level of channel information, large- or small-scale, in a discrete and independent

manner. That is, they ignore the dynamics underlying channel evolution and thus find dif-

ficulties in providing direct answers to problems of sequential nature, such as the require-

ment of “successfully transmittingB bytes within timeT ”, commonly seen in vehicular

networks.

Reinforcement learning (RL) has been shown effective in addressing a wide variety

of sequential decision making problems [59]. In particular, recent success of deep RL in

human-level video game play [60] and Alpha Go [61] has sparked a flurry of interest in the

topic and remarkable progress has been made ever since, especially in the domain of multi-

agent RL. For example, a deep RL based approach has been developed in [62] to address

job scheduling in computing clusters such that the average job slowdown is minimized. We

believe RL is also well-suited to resource allocation problems in vehicular networks in that

it can train for objectives that are hard to model or optimizein a principled manner, such

as the “transmittingB bytes withinT ” example. Another potential advantage of using RL

for resource allocation is that distributed algorithms canbe made possible, as demonstrated

in [63], which treats each vehicle-to-vehicle (V2V) link asan agent that learns to refine

its resource sharing strategy through interacting with theunknown vehicular environment.

Detailed discussions of the challenges and opportunities of applying RL, or more generally

machine learning, in vehicular networks have been presented in [64] and interested readers

are referred there for an overview.

In this chapter, we consider the spectrum sharing problem inhigh mobility vehicular
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Figure 5.1: An illustrative structure of vehicular networks.

networks, where multiple V2V links attempt to share the frequency spectrum preoccupied

by vehicle-to-infrastructure (V2I) links. Different frompure graph-enabled centralized [65]

or RL-based decentralized [63] resource allocation methods, we develop a semi-distributed

spectrum sharing scheme such that decision-making is basedon a mix of fast-varying local

observations and slowly-changing global large-scale fading information, seeking to harness

the benefits of both. In addition, the spectrum access of multiple V2V links is naturally

modeled as a multi-agent problem and we ask if recent progress of multi-agent RL [66, 67]

can be exploited to enable each V2V link to learn from its own experiences while working

cooperatively to optimize system-level performance.

The rest of the chapter is organized as follows. The system model is presented in

Section 5.1. We introduce the basics of RL and the multi-agent RL based resource sharing

design in Section 5.2. Section 5.3 provides our experiment results and concluding remarks

are finally made in Section 5.4.
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5.1 System Model

Consider a vehicular communications network withM V2I andK V2V links, shown in

Fig. 5.1. The V2I links connectM vehicles to the base station (BS) to support bandwidth

intensive applications, such as social networking and media streaming. TheK V2V links

are formed among vehicles, designed with high reliability such that safety critical infor-

mation can be shared among neighboring vehicles reliably, in the form of localized D2D

communications. We assume all transceivers use a single antenna. The set of V2I links and

V2V links are denoted byM = {1, · · · ,M} andK = {1, · · · , K}, respectively.

In this chapter, we assume that theM V2I links (uplink considered) have been preas-

signedM orthogonal spectrum bands, one for each. To improve spectral efficiency, these

bands are reused by theK V2V links. In practice, the number of V2V links tends to be

much larger than that of V2I links, i.e.,K ≫ M , making spectrum reuse among V2V

links necessary. As a result, the major challenge is to design an efficient spectrum sharing

scheme for these V2V links such that both types of vehicular links achieve their respective

goals with minimal signaling overhead.

The channel power gain,gk[m], of thekth V2V link over themth band (occupied by

themth V2I link) follows

gk[m] = αkhk[m], (5.1)

wherehk[m] is the frequency dependent fast (small-scale) fading powercomponent and

assumed to be exponentially distributed with unit mean, andαk captures the large-scale

fading effect, including path loss and shadowing, assumed to be frequency independent.

The interfering channel from thek′th V2V transmitter to thekth V2V receiver over the

mth band,gk′,k[m], the interfering channel from thekth V2V transmitter to the BS over

the mth band,gk,B[m], the channel from themth V2I transmitter to the BS,̂gm,B, and

the interfering channel from themth V2I transmitter to thekth V2V receiver,ĝm,k, are
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similarly defined.

The received signal-to-interference-plus-noise ratios (SINRs) of themth V2I link and

thekth V2V link (over themth band) are expressed as

γc
m =

P c
mĝm,B

σ2 +
∑

k

ρk[m]P d
k [m]gk,B[m]

, (5.2)

and

γd
k [m] =

P d
k [m]gk[m]

σ2 + Ik[m]
, (5.3)

respectively, whereP c
m andP d

k [m] denote transmit powers of themth V2I transmitter and

thekth V2V transmitter over themth band, respectively,σ2 is the noise power, and

Ik[m] = P c
mĝm,k +

∑

k′ 6=k

ρk′[m]P d
k′ [m]gk′,k[m], (5.4)

denotes the interference power.ρk[m] is the binary spectrum allocation indicator with

ρk[m] = 1 implying thekth V2V link uses themth band andρk[m] = 0 otherwise. We

assume each V2V link only accesses one band, i.e.,
∑

m

ρk[m] ≤ 1.

Capacities of the V2I and V2V links are obtained as

Cc
m = W log(1 + γc

m), (5.5)

and

Cd
k [m] = W log(1 + γd

k [m]), (5.6)

whereW is the bandwidth of each spectrum band.

Per requirements of different vehicular links, the objective is to design power con-
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trol and spectrum allocation schemes that simultaneously maximize the sum V2I capacity,
∑

m

Cc
m, and the V2V payload transmission probability,

Pr

{

T
∑

t=1

M
∑

m=1

ρk[m]Cd
k [m, t] ≥ B/∆T

}

, k ∈ K, (5.7)

whereB is the payload size,∆T is channel coherence time,T is the payload generation

period, and the indext is added inCd
k [m, t] to indicate V2V capacity at different time slots.

5.2 Multi-Agent RL Based Resource Allocation

After briefly introducing the basics of RL as well as its multi-agent variant, we formu-

late the spectrum sharing design in vehicular networks as a multi-agent RL problem. For

detailed treatment of RL, we refer interested readers to [59].

5.2.1 ReinforcementLearning

RL addresses the problem of sequential decision making, where an agent learns to map

situations to actions so as to maximize certain numerical rewards through interacting with

the environment. Mathematically, the RL problem can be modeled as a Markov decision

process (MDP). As shown in Fig. 5.2, at each discrete time step t, the agent observes

some representation of the environment stateSt from the state spaceS, and then selects

an actionAt from the action setA. Following the action, the agent receives a numerical

rewardRt+1 and the environment transitions to a new stateSt+1, with transition probability

p(s′, r|s, a) , Pr{St+1 = s′, Rt+1 = r|St = s, At = a}.

In RL, decision making manifests itself in a policyπ(a|s), which is a mapping from

states inS to probabilities of selecting each action inA. The goal of learning is to

find an optimal policyπ∗ that maximizes the expected returnGt from any initial state

s, whereGt is defined as the cumulative discounted rewards with a discount rateγ, i.e.,

Gt =
∞
∑

k=0

γkRt+k+1 with 0 ≤ γ ≤ 1.
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Figure 5.2: The agent-environment interaction in a reinforcement learning problem.

Q-Learning

Q-Learning [68] is a popular model-free method (meaning explicit knowledge of MDP

dynamicsp(s′, r|s, a) is not required) to solve RL problems. It is based on the concept

of action-value function,qπ(s, a) for policy π, which is defined as the expected return

starting from the states, taking the actiona, and thereafter following the policyπ, formally

expressed as

qπ(s, a) = Eπ [Gt|St = s, At = a] . (5.8)

The action-value function of the optimal policy,q∗(s, a), satisfies recursive relationships,

known as the Bellman optimality equation:

q∗(s, a) =
∑

s′,r

p(s′, r|s, a)
[

r + γmax
a′

q∗(s
′, a′)

]

, (5.9)

for any states, actiona, successor states′ and actiona′. In principle, one can solve the

systems of nonlinear equations forq∗(s, a) if the dynamicsp(s′, a′|s, a) are known. Once
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q∗ is obtained, it is easy to determine the optimal policy:

π∗(a|s) =















1, if a = argmax
a∈A

q∗(s, a),

0, otherwise.

(5.10)

Q-learning avoids the difficulties of acquiring exact dynamics p(s′, a′|s, a) and directly

solving the nonlinear optimality equations in (5.9) and resorts to an iterative update method,

given by

Q(St, At)← Q(St, At) + α
[

Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)
]

, (5.11)

whereα is the step-size parameter and the choice ofAt in stateSt follows some soft poli-

cies, e.g., theǫ-greedy policy, meaning that the action with maximal estimated value is

chosen with probability1− ǫ while a random action is instead selected with probabilityǫ.

It has been shown in [59] that with a variant of the stochasticapproximation conditions on

α and the assumption that all state-action pairs continue to be updated,Q converges with

probability1 to the optimal action-value functionq∗.

Deep Q-Network with Experience Replay

In many problems of practical interest, the state and actionspace can be too large to store

all action-value functions in a tabular form. As a result, itis common to use function

approximation to estimate these value functions. Another advantage of doing so is the

generalization ability from limited seen state-action pairs to produce approximation in a

much larger space. In deep Q-learning [60], a deep neural network parameterized byθ,

called deep Q-network (DQN), is used to represent the action-value function. The state-

action space is explored with some soft policies, e.g.,ǫ-greedy, and the transition tuple

(St, At, Rt+1, St+1) is stored in a replay memory at each time step. The replay memory

accumulates experiences over many episodes of the MDP. At each step, a mini-batch of
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Figure 5.3: The agent-environment interaction in a multi-agent reinforcement learning
problem.

experiencesD are uniformly sampled from the memory for updatingθ with variants of

stochastic gradient-descent methods, hence the name experience replay, to minimize the

sum-squared error:

∑

D

[

Rt+1 + γmax
a′

Q(St, a
′; θ−)−Q(St, At; θ)

]2

, (5.12)

whereθ− are the parameters of a target Q-network, which are duplicated from the training

Q-network parametersθ periodically and fixed for a couple of updates. Experience replay

improves sample efficiency through repeatedly sampling stored experiences and breaks

correlation in successive updates, thus also stabilizing learning.

5.2.2 Multi-Agent ReinforcementLearning

Different from single-agent RL, the multi-agent RL problemsetup consists of multiple

agents, denoted byi ∈ I = {1, · · · , I}, concurrently exploring the unknown environment

[66, 67]. The underlying MDP is described in the following. As shown in Fig. 5.3, at each

time stept, given the current environment stateSt, each agenti receives an observation

Z
(i)
t of the environment, determined by the observation functionO asZ(i)

t = O(St, i), and
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then takes an actionA(i)
t , forming a joint actionAt. Thereafter, the agent receives a reward

Rt and the environment evolves to the next stateSt+1 with probabilityp(s′, r|s, a). Please

note that all agents share the same reward in this article such that cooperative behavior is

encouraged among them.

Independent Q-learning [69] is among the most popular methods to solve multi-agent

RL problems, where each agent learns a decentralized policybased on its own action and

observation, treating other agents as part of the environment. However, naively combining

DQN with independent Q-learning is problematic since each agent would face a nonsta-

tionary environment while other agents are also learning toadjust their behaviors. The

issue grows even more severe with experience replay, which is the key to the success of

DQN, in that sampled experiences no longer reflect current dynamics and thus destabilize

learning.

5.2.3 ResourceSharingwith Multi-Agent RL

In the investigated resource sharing scenario illustratedin Fig. 5.1, multiple V2V links at-

tempt to access limited spectrum occupied by V2I links, which would naturally be modeled

as a multi-agent RL problem. Each V2V link acts as an agent andinteracts with the un-

known communication environment to gain experiences, which are then used to direct its

own policy design. Multiple V2V agents collectively explore the environment and refine

spectrum allocation and power control strategies based on their own observations of the

environment state. While the resource sharing problem may appear a competitive game,

we turn it into a fully cooperative one through using the samereward for all agents, in the

interest of global network performance.

The proposed multi-agent RL formulation bases resource sharing design on a mix of

fast-varying local observations of each individual V2V link and the slowly-changing global

large-scale fading information. The global information iscollected at the BS and then

broadcasted to all vehicles in its coverage [70], as evidenced in the following observation
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space design. It is noted that we focus on settings with centralized learning and semi-

distributed execution. This means in the learning phase, the global performance-oriented

reward (to be defined in the following) is readily accessibleto each individual V2V agent,

which then adjusts its actions towards an optimal policy. This is a feasible practice since our

group of V2V agents are trained on an environment simulator.In the execution phase, each

V2V agent receives a mix of local fast-varying observationsof the environment and the

periodically broadcasted global channel information, andthen selects an action according

to its trained DQN on a time scale on par with the local observations. Key elements of the

multi-agent RL based resource sharing design are describedbelow in detail.

State and Observation Space

In the multi-agent RL formulation of the resource sharing problem, each V2V link acts as

an agent while everything beyond itself is treated as part ofthe environment. The true envi-

ronment state,St, which could include global channel conditions and all agents’ behaviors,

is unknown to each individual V2V agent. Each agent can only acquire knowledge of the

underlying environment through the lens of an observation function. In part, the observa-

tion space includes the global large-scale fading information, i.e.,α = {αk, αk′,k, αk,B, α̂m,B, α̂m,k},

for all k ∈ K andm ∈ M, which varies slowly and can be periodically collected at the

BS and broadcast to all vehicles. Additionally, the observation space of an individual V2V

agentk contains fast-changing local information, including its own small-scale channel fad-

ing, hk[m], for all m ∈ M, interference channels from other V2V transmitters,hk′,k[m],

for all k′ 6= k andm ∈ M, the interference channel from its own transmitter to the BS,

hk,B[m], for all m ∈ M, and the interference channel from V2I transmitters,ĥm,k, for all

m ∈M. The relationship between overall channel gain,g, and small-scale channel fading,

h, is given in (5.2). The received interference power over allbands,Ik[m], for all m ∈M,

expressed in (5.4), can be measured and introduced in the local observation. In addition, the

local observation space also includes the remaining V2V payload,Bk, and the remaining
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time budget,Tk. Hence, the observation function for an agentk is

O(St, k) = {α, Bk, Tk, {Hk[m]}m∈M} , (5.13)

with Hk[m] = {hk[m], hk′,k[m], hk,B[m], ĥm,k, Ik[m]}.

To address the issue of combining independent Q-learning with DQN as discussed in

Section 5.2.2, we adopt the fingerprint-based method developed in [67]. The idea is that

while the action-value function of an agent is nonstationary with other agents changing

their behaviors over time, it can be made stationary conditioned on other agents’ policies.

This means we can augment each agent’s observation space with an estimate of other a-

gents’ policies to avoid nonstationarity, which is the essential idea of hyper Q-learning

[71]. However, it is undesirable for the action-value function to include as input all param-

eters of other agents’ neural networks,θ−i, since the policy of each agent consists of a

high dimensional DQN. Instead, it is proposed in [67] to simply include a low-dimensional

fingerprint that tracks the trajectory of the policy change of other agents. This method po-

tentially works since nonstationarity of the action-valuefunction results from changes of

other agents’ policies over time, as opposed to the policiesthemselves. Further analysis

reveals that each agent’s policy change is highly correlated with the training iteration num-

bere as well as its rate of exploration, e.g., the probability of random action selection,ǫ, in

theǫ-greedy policy widely used in Q-learning. As a result, we include both of them in the

observation for an agentk0, expressed as

Z
(k0)
t = {O(St, k0), e, ǫ} . (5.14)

Action Space

The resource sharing design of vehicular links comes down tothe spectrum band selection

and transmission power control. While the spectrum naturally breaks intoM disjoint bands,
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each preoccupied by one V2I link, the V2V transmission powertypically takes continuous

value in most power control literature. In this chapter, however, we limit the power control

options to four levels, i.e.,[23, 10, 5, 0] dBm, for the sake of both ease of learning and

practical circuit restrictions. As a result, the dimensionof the action space is4 ×M , with

each action corresponding to one particular combination ofband and power selection.

Reward Design

What makes RL particularly appealing for solving problems with hard-to-optimize objec-

tives using precise mathematical methods is the flexibilityin its reward design. In the

studied V2X spectrum sharing problem, our objectives are twofold: maximizing the sum

V2I capacity while increasing V2V payload transmission success probability.

In response to the first goal, we simply include the instantaneous sum V2I capacity,
∑

m∈M

Cc
m(t), in the reward at each step. To achieve the second goal, we give a reward of

1 to each V2V agent if the payload transmission is finished at the current step, and 0 for

all other cases. We observe that if setting the discount rateγ to 1, the designed reward

encourages each agent to finish payload transmission to achieve higher reward values but

will not distinguish if the finishing moment comes early or late. A salient feature of this

design is that the system can now learn to balance the progress of the two spectrum sharing

objectives. For example, the V2V agent may choose to lower its power for the benefit of

V2I capacity improvement if it is optimistic about its own future transmission instead of

always selfishly increasing power to finish early.

Specifically, we set the reward at each time stept as

Rt = λc

∑

m

Cc
m(t) + λd

∑

k

Lk(t), (5.15)

whereLk(t) is the V2V reward component designed as described above.λc andλd are

positive weights to balance V2I and V2V objectives.
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Algorithm 11 Resource Sharing with Multi-Agent RL
1: Start environment simulator, generating vehicles and links
2: Initialize Q-networks for all agents randomly
3: for each episodedo
4: Update vehicle locations and large-scale fadingα

5: ResetBk = B andTk = T , for all k ∈ K
6: for each stept do
7: for each V2V agentk do
8: ObserveZ(k)

t

9: Choose actionA(k)
t fromZ

(k)
t according toǫ-greedy policy

10: end for
11: Update channel small-scale fading
12: All agents take actions and receive rewardRt+1

13: for each V2V agentk do
14: ObserveZ(k)

t+1

15: Store
(

Z
(k)
t , A

(k)
t , Rt+1, Z

(k)
t+1

)

in replay memoryDk

16: end for
17: end for
18: for each V2V agentk do
19: Uniformly sample mini-batches fromDk

20: Optimize error between Q-network and learning targets (5.12) using variant of
stochastic gradient descent

21: end for
22: end for

Training Algorithm

We focus on an episodic setting with each episode spanning the safety message gen-

eration periodT . Each episode starts with a randomly initialized environment state (de-

termined by the initial transmission powers of all vehicular links, channel states, etc.) and

a full V2V load of sizeB for transmission, and lasts until the end ofT . The change of

channel small-scale fading triggers a transition of the environment state and causes each

individual V2V agent to adjust its actions.

Each V2V agentk has a Q-network that takes as input the current observationZ
(k)
t and

outputs the value functions corresponding to all actions. We train the Q-networks through

running multiple episodes and, at each training step, all V2V agents select their actions
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Table 5.1: Simulation Parameters [10, 47]
Parameter Value
Number of V2I linksM 4
Number of V2V linksK 4
Carrier frequency 2 GHz
Bandwidth 4 MHz
BS antenna height 25 m
BS antenna gain 8 dBi
BS receiver noise figure 5 dB
Vehicle antenna height 1.5 m
Vehicle antenna gain 3 dBi
Vehicle receiver noise figure 9 dB
Absolute vehicle speedv 36 km/h
Vehicle drop and mobility model Urban case of A.1.2 in [10]*

V2I transmit powerP c 23 dBm
V2V transmit powerP d [23,10,5,0] dBm
Noise powerσ2 -114 dBm
V2V payload generation period 100 ms
V2V payload size [1, 2, · · · ]× 1060 bytes

* We shrink the height and width of the simulation area by a factor of 2.

based on the observations and their current Q-networks as well as the exploration rateǫ.

Following the environment transition due to actions taken by all V2V agents, each agent

k collects and stores the transition tuple,
(

Z
(k)
t , A

(k)
t , Rt+1, Z

(k)
t+1

)

, in a replay memory. At

each episode, we uniformly sample batches of stored transitionsD from the replay memory

and update the Q-network of each V2V agent through minimizing the sum-squared error

in (5.12). The training procedure is summarized in Algorithm 11.

5.3 Simulation Results

In this section, simulation results are presented to validate the proposed multi-agent RL

based resource sharing scheme. We follow the simulation setup for the urban case in 3GPP

TR 36.885 [10] detailing models used for vehicle drop and mobility, vehicular channels,

and V2V data traffic. The V2I links are started byM generated vehicles and theK V2V

links are formed between each vehicle with its closest surrounding neighbor. Major simu-
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Table 5.2: Channel Models for V2I and V2V Links [10]
Parameter V2I Link V2V Link

Path loss model
128.1 + 37.6log10 d, d in
km

LOS in WINNER +
B1 Manhattan [48]

Shadowing distribution Log-normal Log-normal
Shadowing standard devia-
tion ξ

8 dB 3 dB

Decorrelation distance 50 m 10 m
Path loss and shadowing
update

A.1.4 in [10] every 100
ms

A.1.4 in [10] every
100 ms

Fast fading Rayleigh fading Rayleigh fading
Fast fading update Every 1 ms Every 1 ms

lation parameters are listed in Table 5.1 and the channel models for V2I and V2V links are

described in Table 5.2.

The DQN for each V2V agent consists of3 fully connected hidden layers, whose

numbers are500, 250, and120, respectively. The rectified linear unit (ReLU),f(x) =

max(0, x), is used as the activation function and RMSProp optimizer [72] is used to update

network parameters with a learning rate of0.001. We train each agent’s Q-network for a

total of4000 episodes and the exploration rateǫ is linearly annealed from1 to 0.02 over the

beginning3000 episodes and remains constant afterwards.

We compare Algorithm 11, termed MARL, with the single-agentRL based algorithm in

[63], termed SARL, and a random baseline method in terms of V2V payload transmission

success probability and sum V2I capacity, respectively. The random baseline chooses the

spectrum band and transmission power level in a random fashion at each time step. It is

noted that in our currently presented simulation results, we fix the large-scale fading of the

channels and only alter small-scale fading at each time stepto obtain some preliminary

evaluation results. In the training stage, we fix the payloadsize to be of2× 1060 bytes, but

vary the sizes in the testing stage to verify method robustness.

Fig. 5.4 shows the V2I performance with respect to increasing V2V payload sizes for

different resource sharing designs. From the figure, the performance drops for all schemes

with growing V2V payload sizes and the proposed Algorithm 11achieves better perfor-
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Figure 5.4: Sum capacity performance of V2I links with varying V2V payload sizes.

mance than the other two benchmarks with low V2V payloads. Increased V2V payload

leads to longer V2V transmission duration and possibly higher V2V transmit power in or-

der to improve V2V payload transmission success probability. This will inevitably cause

stronger interference to V2I links for a longer period and thus jeopardize their capacity

performance.

Fig. 5.5 demonstrates the performance of the V2V payload transmission success prob-

ability against growing payload sizes using different spectrum sharing schemes. From the

figure, as the V2V payload size grows larger, the transmission success probabilities of all

schemes drop as expected. However, the proposed multi-agent RL based method achieves

significantly better performance than benchmarks due to effective reward designs, which

maximize the V2V payload transmission success probability. Remarkably, forB = 1060

andB = 2 × 1060 bytes, the proposed method attains100% V2V transmission probabil-

ity and meanwhile improves V2I capacity, as shown in Fig. 5.4. However, it is also more

sensitive (less robust) to V2V payload increase compared with SARL and the degradation

becomes more pronounced when payload grows beyond4× 1060 bytes.
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Figure 5.5: V2V payload transmission success probability with varying payload sizes.

5.4 Summary

We have presented a semi-distributed resource sharing scheme using multi-agent RL for

vehicular networks, which adapts spectrum allocation and power control to a mix of fast-

varying local observations and slowly-changing global channel information. A fingerprint-

based method has been exploited to address nonstationary issues of independent Q-learning

for multi-agent RL problems when combined with DQN with experience replay. Initial

simulation results demonstrate improved performance of the proposed resource sharing

scheme in terms of both V2I capacity and V2V payload transmission probability compared

with a random baseline method.
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CHAPTER 6

CONCLUSION

This thesis has focused on resource allocation for vehicular communications under the

D2D-based network architecture. We have presented four distinctive yet coherent design

schemes that maximize capacity of vehicle-to-infrastructure (V2I) links and guarantee the

reliability of vehicle-to-vehicle (V2V) links based on careful treatment of unique charac-

teristics of vehicular environments. First, we propose to employ the slowly-varying large-

scale fading information of all channels to perform spectrum and power allocation for ve-

hicular communications when the underlying channels experience Rayleigh fading. This

relieves the harsh requirement to accurately track vehicular channels that undergo fast tem-

poral variations. Novel algorithms that yield optimal resource allocation performance have

been developed to maximize the sum and minimum capacity of all V2I links, respectively.

Then, we revisit the channel state information (CSI) requirement of vehicular communi-

cations by reporting such CSI periodically to the base station. We take into account the

inevitable delay in CSI feedback and propose optimal spectrum and power allocation de-

sign to maximize V2I capacity while guaranteeing V2V reliability. Afterwards, we further

generalize the resource allocation problems to a generic setting, where multiple V2V links

share the spectrum with one or more V2I links and the frequency spectrum is not assumed

to be assigned to V2I links beforehand. Graph theoretic tools have been exploited to solve

the formulated resource allocation problem and a suite of algorithms, including a base-

line graph-based algorithm, a greedy scheme, and a novel algorithm involving randomized

procedures, have been developed to address the performance-complexity tradeoffs. Final-

ly, we approach the resource allocation problem from a learning perspective and model

resource sharing as a multi-agent reinforcement learning (RL) problem. The V2V links,

each acting as an agent, collectively explore the unknown communication environment and
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gain experiences to guide their sharing strategy design. A mix of fast-varying local ob-

servations and slowly-changing global large-scale fadinginformation is used for resource

sharing related decision making, which causes resource management to change on a time

scale comparable to small-scale fading of vehicular channels. The four proposed schemes,

which include both centralized and semi-distributed designs with varying performance-

complexity tradeoffs, constitute a comprehensive study ofresource allocation for vehicular

communications.
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