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SUMMARY

The emerging vehicular communications are expected tolersaklvhole new set of
services and hold significant potential in making our dadgexience on wheels safer and
more convenient. Judicious resource allocation desigenfral to mitigating interference,
optimizing resource utilization, and unleashing the fudtgntials of vehicular communi-
cations. This thesis aims to develop efficient and effeatag®urce allocation schemes to
meet the diverse quality-of-service requirements of u@aiccommunications while taking
into account the strong dynamics in vehicular environments

Specifically, we study the spectrum and power allocatiomlgr in device-to-device
(D2D)-enabled vehicular networks. We design low-compieaigorithms to maximize the
capacity of vehicle-to-infrastructure (V2l) links whilaigranteeing the reliability of each
vehicle-to-vehicle (V2V) link, evaluated in terms of ougggrobabilities, using only slowly
varying large-scale fading information or delayed rapitlyying small-scale fading infor-
mation from periodic feedback. To further improve spectmutitization, we investigate
the case where each V2I link shares spectrum with multipl& Wizks and exploit graph
theoretic tools to develop high performance approximadigorithms to support flexible
spectrum sharing in vehicular communications. For easeerhi)distributed resource
management, we exploit recent results in multi-agent oeggiment learning to develop a
learning-based resource allocation algorithm for velasicalgents. Resource sharing de-
cisions are made based on a mix of slowly-varying globaldasgale channel information
and fast-varying local observations. The four proposeémsas, including both centralized
and semi-distributed designs with varying complexityfpenance tradeoffs, constitute a

comprehensive study of the resource allocation problenelmoular communications.



CHAPTER 1
INTRODUCTION

Wireless networks that support high mobility broadbandeaschave received more and
more attention from both industry and academia in recentyda?2, 3, 4, 5, 6]. In particu-
lar, the concept of connected vehicles or vehicular compatinins, commonly abbreviated
as V2X, has gained substantial momentum to bring a new léwgrmectivity to vehicles
and, along with novel onboard computing and sensing tecgnes, serve as a key enabler
of intelligent transportation systems (ITS) and smaresifi7]. This new generation of net-
works will ultimately have a profound impact on the societaking everyday traveling
safer, greener, and more efficient and comfortable.

To coordinate efforts of different stakeholders in vehdcutommunications, several
sets of standards have been developed across the globéeyeast decade, e.g., dedicated
short-range communications (DSRC) standards in the US@) 8S-G5 standards devel-
oped by the European Telecommunications Standards les(ET SI) [9]. Both standards
are based on the IEEE 802.11p technology, establishingthmation for communications
in vehicular ad hoc networks. More recently, the 3rd Gemand®artnership Project (3GP-
P) has been looking to support V2X services in long-termwiah (LTE) [10] and future
5G cellular networks [11]. Cross-industry consortium,isas the 5G automotive associa-
tion (5GAA), has been founded by leaders from both telecomoation and automotive
industries to push development, testing, and deploymecetlaflar V2X technologies.

An illustrative structure of vehicular networks is depttie Fig. 1.1. Onboard infor-
mation and entertainment (infotainment) applicationstaaffic efficiency services gener-
ally require frequent access to the Internet or remote sefee media streaming, content
sharing, etc., involving considerable amount of data emgbha Hence, they are ideally

supported by the high-capacity vehicle-to-infrastruet(v2l) links. Meanwhile, safety-
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Figure 1.1: An illustrative structure of vehicular netwsrkdD: high-definition; AR: aug-
mented reality; VR: virtual reality; BSM: basic safety mags.

critical information, such as cooperative awareness ngess¢CAMs) and decentralized
environmental notification messages (DENM) [3], usualliaés spreading safety related
messages among neighboring vehicles either in a periodicant triggered way. As such,
it is naturally supported by the vehicle-to-vehicle (V2¥)Ks, which impose strict relia-
bility and timeliness requirements. For example, the Eeaopunion Mobile and Wireless
Communications Enablers for Twenty-twenty (2020) InfotimaSociety (METIS) project
requires less than 5 ms of end-to-end latency and transmissiiability of 99.999% for
message sizes of about 1600 bytes in such links [12].

Among an array of issues in designing and optimizing vehicaktworks, resource
allocation is particularly challenging due to strong utgilag dynamics and the strict and
diverse quality-of-service (QoS) requirements. Thisithasns at designing efficient re-
source allocation schemes that help bring the full benefit&bicular communication to
fruition while not causing significant network overheadeThsource allocation problem is

approached from different perspectives, with both ceiagdland semi-distributed design-



s and varying performance-complexity tradeoffs. The rewhai of this chapter provides

necessary background introduction and outlines the darttan of this thesis.

1.1 Literature Review and Motivation

In this section, we introduce the background informatiot meview the state-of-the-art re-
search on resource allocation for vehicular communicati@ve begin with a discussion of
pros and cons of the two major and most relevant technologgidates, i.e., cellular-based
V2X (C-V2X) and IEEE 802.11p based technologies, for velsicaommunications, and
then review some traditional resource allocation designslévice-to-device (D2D) com-
munications since this thesis mainly deals with D2D-basddoular communications. We
then review studies of resource allocation with speciattrent of unique characteristics
in vehicular communications. Afterwards, an overview oplggmg graph theoretic tool-
s in resource allocation for wireless networks is preseateduch tools are extensively

leveraged in the thesis. Finally, we discuss the major ratitim behind this thesis.

1.1.1 CellularandIEEE 802.11pBasedTechnologiegor V2X

The IEEE 802.11p is an amendment to the IEEE 802.11 standtapted for the ITS
applications and is commonly considered asdt@éactostandard for vehicular networking.
It includes sets of physical (PHY) and medium access co(MalC) layer specifications
and supports communications among high mobility vehicteslzetween vehicles and the
roadside infrastructure, in the ITS band of 5.9 GHz [13]. ldwer, recent studies [3, 5,
14] show that vehicular communications based on IEEE 8@Rfade several challenges,
such as short-lived V2I connections, potentially unbowhclgannel access delay, and lack
of QoS guarantee, due to its PHY and MAC layer designs indebfitom IEEE 802.11
standards that have been originally optimized for wirelesal area networks with low
mobility.

Recently, 3GPP has also started looking into supporting ¥@iXices in cellular net-



works [5, 6, 10]. Widely deployed cellular networks, assistvith direct D2D underlay
communications [3, 15], potentially provide a promisindusion to enable efficient and
reliable V2V and V2| communications, to meet demanding V2¥uirements and provide
immunity to high mobility due to several intrinsic advangag First, cellular networks ex-
ercise flexible centralized control over network resoursesh as fast link adaptation and
dynamic user scheduling, which guarantee optimal netwerfopmance [16]. Second, the
large capacity and proven maturity of cellular networks pesvide reliable support for a
wide variety of bandwidth-thirsty applications and alsee®2X implementation . Finally,
the side D2D links, complementing the centralized cellatahitecture, will provide direct
local message dissemination with substantially reduceshdy, thus suitable for delay-
sensitive V2V communications [3]. Meanwhile, existencetlod always-on base station
can be beneficial to communications among vehicles througliging side information to

the V2V links.

1.1.2 ResourceManagementor TraditionalD2D Communications

The D2D communications have been the subject of much reesetrch endeavor [15,
17]. Both spectral and energy efficiencies of the wirelesaokks can be substantially im-
proved in D2D-assisted cellular systems by properly haivgshe proximity gain, reuse
gain, and hop gain [15]. D2D users can work in two differentles1 the reuse mode and
the dedicated mode, where D2D users share the same resaarttes cellular users and
occupy dedicated resources, respectively. The dedicabtelé s easier to implement since
it causes no interference to the existing cellular userdenthie reuse mode can further
improve the spectral efficiency. Effective radio resour@agement strategies need to be
in place to properly coordinate mutual interference betwaslular and D2D users in the
reuse mode. In [18], the transmit power of D2D users has bestnigted such that inter-
ference inflicting cellular receivers is controlled whee 2D transmitter reuses cellular

resources. An interference limited area control schemébban proposed in [19] to pro-



tect D2D receivers from cellular interference, where D2[@rasare not allowed to share
spectrum with a cellular user located in the interferenoééid area where the interference-
to-noise ratio at the D2D receiver is above a predetermimesshold. In [20], interference
nulling has been introduced to control interference fromdéllular link to D2D commu-
nications when multiple antennas are installed at the bad®s. The sum rate of both
cellular and D2D users has been maximized with a minimumgaaéeantee for the cellular
user in [21] for a network comprising only a single D2D paidansingle cellular user. For
more practical scenarios with multiple cellular and D2Drasspectrum and power allo-
cation design has been considered in [22, 23]. In [22], thB Bansmit power has been
regulated by the base station such that the signal-tofémsrce-plus-noise ratio (SINR)
of D2D links is maximized while the interference experiethby the cellular link is kept
at an acceptable level. Moreover, a three-step approachdesproposed in [23] to de-
sign power control and spectrum allocation to maximizeeyshroughput with minimum

SINR guarantee for both cellular and D2D links.

1.1.3 Resourc&llocationfor D2D-BasedvehicularCommunications

Vehicular channels experience fast temporal variationtdwehicle mobility [24]. There-
fore, traditional resource allocation designs for D2D caminations dominated with full
channel state information (CSI) assumptions are no longaicable due to the formidable
signaling overhead to track channel variation on such atsime scale. Applying D2D
techniques to support vehicular communications thus ntesdarther study on radio re-
source management accounting for fast vehicular chanmiekizan.

A feasibility study of D2D for vehicular communications Hasen performed in [7] to
evaluate the applicability of D2D underlay in supportingjo/2V and V2| connections in
cellular networks. It has been shown in [7] that D2D-aidedielar communications can
outperform the traditional V2V-only mode, the V2I-only nedr the V2V overlay mode

in terms of achievable transmission rates. In [25], a h&ariscation dependent uplink



resource allocation scheme has been proposed for D2D taisrimvehicular networks,
which features spatial resource reuse with no explicit ireguent on full CSI and, as a
result, significantly reduces signaling overhead. A framéwcomprising vehicle group-
ing, reuse channel selection, and power control has beataed in [26] to maximize the
sum rate or minimally achievable rate of V2V links while rasing the aggregate inter-
ference to the uplink cellular transmission. A series ofg@ifitations have been applied
to the power control problem to reduce the requirement o3&l and the dependence on
centralized control as well as the computational compyekit[27], latency and reliability
requirements of V2V communications have been transformigcoiptimization constraints
computable using large-scale fading information only. Aistic algorithm has been de-
veloped to address the proposed radio resource manageptinization problem, which
adapts to the large-scale fading of vehicular channels, pathloss and shadowing that
vary on a slow time scale. Similar system setups have bedénefuconsidered in [28],
where multiple resource blocks are allowed to be shared nigt lmetween cellular and
D2D users but also among different D2D-capable vehicle§2%, power control based
on channel inversion using pathloss information and D2D erselection based on biased
channel quality have been proposed to enable vehicular @2Drwnications in cellular
networks. Two representative performance metrics, SINfRgriprobability and network

throughput, have been analyzed in the established thealr&timework.

1.1.4 Graph-BasedResourceéAllocation

As an effective tool to address problems of discrete nagregh theory has long been ex-
ploited for resource allocation design in wireless netwotkterference management using
graph coloring algorithms has been explored in [30] for meetl orthogonal frequency di-
vision multiplexing access (OFDMA) networks with dynamiadtional frequency reuse.
More sophisticated two-phase intercell interference rgameent has been further studied

in [31] through transforming the original problem into a MAKCUT problem in graph



theory. To optimize the sum or average utility [32, 23], thengarian algorithm can help
find a maximum matching for D2D and cognitive radio networkspectively. For fairness
consideration, the preference of diverse user groups cacdminted for according to the
concept of stable matching [33]. Efficient algorithms, sashihe Gale-Shapley (GS) algo-
rithm [34], have been used to find a stable channel accessosolith polynomial com-
plexity for cognitive radio systems [35]. Two truncateddéamatching algorithms have
been further proposed in [36] to improve resource allocatidustness to CSl variation. In
addition, the joint problem of path selection and powercatmn for decode-and-forward
relay systems has been studied in [37], where the minimunteeaelay-destination link
rate has been maximized.

A local search method for 3-dimensional matching has beepgsed in [38] to maxi-
mize the throughput of non-safety vehicle users while Baiig the QoS requirements of
cellular users and safety vehicle users. For hypergrapbmmat and weighted hypergraph
matching problems, it has been shown in [39] that the integigap of the standard linear
programming relaxation of the problems is exadtly- 1 + % for k-uniform hypergraphs,
and is exactlyt — 1 for k-partite hypergraphs. Moreover, for the weightedniform hy-
pergraphs matching problem and any fixed 0, a (¢ — 1 + €)-approximation algorithm
has been presented in [40](5’“%1) + €)-approximation algorithm has been proposed in
[41], and a(% + ¢)-approximation algorithm has been presented in [42]. Tlaggeox-
imation algorithms perform local search and obtain sohgio polynomial time. Local
search is a heuristic method for solving computationallydhaptimization problems that
always moves from one state to another by applying local @gésuantil convergence to a

local optimum or when a time bound is reached.

1.1.5 Motivation

Resource allocation is key to the success of vehicular n&syespecially in view of their

diverse QoS requirements and the strong underlying dyrsamicehicular environments.



Traditional contention-based spectrum access desigriskE 802.11p cannot be direct-
ly applied to cellular-based vehicular communication egst. While the D2D technolo-
gy promises to improve the suitability of cellular netwofks vehicular communications
through enabling direct data exchange between vehiclesda avray of issues still re-
main. In terms of resource allocation, the vast majority @DBbased communications has
been dominated with full CSI assumption, which is hard, ifingpossible, to meet in high
mobility vehicular environments. Moreover, cellular conmications with D2D underlay
normally treat the direct communications between devisesegondary whereas cellular
links are assigned highest priority. This causes problemelnicular networks as the V2V
links, deemed a good fit for D2D communications, are maingpoasible for disseminat-
ing safety-critical information. They typically requirégher reliability and are strictly less
delay tolerant. At the very least, V2V links should be trelateth equal (normally higher)
priority when performing system level resource allocation

In the very few exceptions that propose specialized treatrioe vehicular communi-
cations under the D2D-based architecture, inadequatehearbeen taken with respect to
the unique vehicular channel fading as well as the speci8l @quirements. For example,
in [25, 27, 28], the channel small-scale fading effects atally ignored in the capacity
evaluation and hence it will not reflect the real capacityiggenance of the networks. As
a result, the developed resource allocation schemes aegaligrsuboptimal. In response
to these issues, we are motivated to conduct a comprehersivgystematic investigation
into the resource allocation problem of vehicular commations that factor in the unique
characteristics of the system, reveal fundamental pedoom limits, and develop efficient

solutions with varying performance-complexity tradeoffs

1.2 Overview of Thesis

This thesis studies resource allocation for vehicular camoations and in particular,

we focus on the D2D-based network architecture, where VaI\&2\V transmissions are



supported by cellular and D2D links, respectively. Threetiadized resource allocation
schemes are developed in Chapters 2-4 and one semi-disttidesign is proposed in
Chapter 5 to meet the diverse QoS requirements of vehicalanwnications while con-
sidering the underlying vehicular dynamics.

In Chapter 2, we perform spectrum sharing and power allocdtased only on slowly
varying large-scale fading information of wireless chdanBursuant to differing require-
ments for different types of links, i.e., high capacity fo2Minks and ultra reliability for
V2V links, we maximize the ergodic capacity of V2I conneaBavhile ensuring reliabil-
ity guarantee for each V2V link. Sum ergodic capacity of alll\Vnks is first taken as
the optimization objective to maximize the overall V21 littktoughput. Minimum ergodic
capacity maximization is then considered to provide a marf®um capacity performance
across all V2I links. Novel algorithms that yield optimasoairce allocation and are robust
to channel variations are proposed.

In Chapter 3, we begin with the observation that CSI at the lséation is critical to
resource allocation design for wireless networks, butlitasd to obtain accurate CSl in a
high mobility vehicular environment. We study the spectiamd power allocation problem
in D2D-enabled vehicular networks, where CSI of vehicuiakd is reported to the BS
periodically with inevitable delay. We maximize the sunoinghput of all V2I links while
guaranteeing the reliability of each V2V link with the dedalyCSI feedback. We propose
a low-complexity algorithm to find the optimal spectrum shgrstrategy among V2l and
V2V links and properly adjust their transmit powers.

In Chapter 4, we consider the generic case when each V2| liakes spectrum with
multiple V2V links and the spectrum is not assumed to be gigasd to V2I links. Lever-
aging the slow fading statistical CSI of mobile links, we nmaize the sum V2| capacity
while guaranteeing the reliability of all V2V links. We useagh partitioning tools to di-
vide highly interfering V2V links into different clusterselore formulating the spectrum

sharing problem as a weighted 3-dimensional matching problWe propose a suite of



algorithms, including a baseline graph-based resouroeatibn algorithm, a greedy re-
source allocation algorithm, and a randomized resourceation algorithm, to address
the performance-complexity tradeoffs. We further invgestie resource allocation adaption
in response to slow fading CSI of all vehicular links and depea low-complexity ran-
domized algorithm.

Chapter 5 continues the study of spectrum sharing in vedricowtworks, yet from a
semi-distributed perspective. We model the resource sfpaleésign as a multi-agent re-
inforcement learning (RL) problem, which is then solvedngsa fingerprint-based deep
Q-network method. The V2V links, each acting as an agentecilely interact with
the vehicular environment, receive distinctive obseoratiyet a common reward, and then
improve policy design through updating their Q-networkdwgained experiences. Prelim-
inary experiments demonstrate desirable performanceegbtbposed resource allocation
scheme based on multi-agent RL in terms of both V2| capaat\&V payload transmis-
sion success probability.

Finally in Chapter 6, we summarize key points in the thest make concluding re-

marks.
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CHAPTER 2
RESOURCE ALLOCATION WITH LARGE-SCALE FADING CSI

In this chapter, we propose to support vehicular commuioisatunder the device-to-device
(D2D)-enabled cellular architecture where the vehicknftoastructure (V2I) connectivity
is enabled by macro cellular link and the vehicle-to-veh{®2V) connectivity is support-
ed through localized D2D links. We base resource manageomesiow fading parameters
and statistical information of the channel instead of intaeous channel state informa-
tion (CSI) to address the challenges caused by the inatlitsack fast changing wireless
channels. Moreover, we identify and incorporate into peabformulation differentiated
quality-of-service (QoS) requirements for V21 and V2V Igik correspondence with their
supported applications. That is, high link capacity is desifor V21 connections while
safety-critical information of V2V connections placesaper emphasis on link reliability.
Sum and minimum ergodic capacities (long-term averagefagefading) of V2I links are
maximized with a minimum QoS guarantee for V21 and V2V linkdere the V2V link
reliability is ensured by maintaining the outage prob&piif received SINR below a small
threshold.

The rest of the chapter is organized as follows. The systegdemsintroduced in Sec-
tion 2.1. Section 2.2 considers the sum V2| capacity maxation design with minimum
QoS guarantee for V21 and V2V connections, whereas Sectibaddresses the resource
allocation problem to maximize the minimum V2| capacity. ngmuter simulation results

are presented in Section 2.4 and concluding remarks aré/fmalde in Section 2.5.

2.1 System Model

Consider a D2D-enabled vehicular communications netwooks in Fig. 2.1, where there

exist M vehicles requiring high-capacity V21 communications, akexdl as CUEs (cellular
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Figure 2.1: D2D-enabled vehicular communications for Béhand V2V links.

users), andy pairs of vehicles doing local V2V data exchange in the fornD@D com-
munications, denoted as DUEs (D2D users). We note that kiths are capable of doing
both V2I and V2V connections simultaneously, implying tRaEs and DUEs might re-
fer to the same vehicle equipped with multiple radios in tihiapter. We assume that all
communicating parties in this chapter are equipped witinglsiantenna. Denote the CUE
setasM = {1,---, M} and the DUE setak = {1,---, K'}. To improve spectrum uti-
lization efficiency, orthogonally allocated uplink spextr of CUEs is reused by the DUEs
since uplink resources are less intensively used and @nterte at the BS is more manage-
able.

The channel power gain,,, 5, between CUEn and the BS is assumed to follow

_ A
hm,B - gm7Bﬁm7BALm’:/B = 9m,BOm B, (21)

whereg,, s is the small-scale fast fading power component and assumked exponen-
tially distributed with unit mean4 is the pathloss constant,,, 5 is the distance between

themth CUE and the BSy is the decay exponent, ang, 5 is a log-normal shadow fading

12



random variable with a standard deviation Channelh, between théth D2D pair, in-
terfering channeh,, z from thekth DUE to the BS, and interfering chanreg), ,, from the
mth CUE to thekth DUE are similarly defined.

We assume that the large-scale fading components of the@ehae., the path loss and
shadowing of all links, are known at the BS since they are liisdapendent on locations
of users and vary on a slow scale [27]. Such information caadbtenated at the BS for
links between CUES/DUEs and BS, i.e,, s anda, 5, while for links between vehicles,
l.e.,a; anda,, i, the parameters will be measured at the DUE receiver andtegpto the
BS periodically. Meanwhile, each realization of the fagtifg is unavailable at the BS
since it varies rapidly in a vehicular environment with higbbility, whereas its statistical
characterization is assumed to be known.

To this point, the received signal-to-interference-phasse ratios (SINRSs) at the BS for

themth CUE and at théth DUE can be expressed as

c PrflhmvB

vE, = :
0%+ > pmpPlhes
ke

(2.2)

and

Pih,

"=
F 02 + Z pm,kpy%hrn,k7
meM

(2.3)

respectively, wheré>c and P¢ denote transmit powers of theth CUE and theith DUE,
respectively,s? is the noise power, angd,,, is the spectrum allocation indicator with
pms = 1 indicating thekth DUE reuses the spectrum of theth CUE andp,,, = 0
otherwise. The ergodic capacity of theh CUE with the assumption of Gaussian inputs

is then given by

Crn = Eflogy (1 +77,)] (2.4)
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where the expectatidh[-] is taken over the fast fading distribution.

2.2 Sum CUE Capacity Maximization Design

In this section, we develop a robust spectrum and poweradllmt scheme to improve the
vehicular communications performance while taking intooamt the unique characteristics
of D2D-enabled vehicular networks. The proposed schemerdigpsolely on the slowly
varying large-scale channel parameters and only needs tpdeted every few hundred
milliseconds, thus significantly reducing the signalingidweads than if directly applying
traditional resource allocation schemes in vehicular nets:

Recognizing QoS differentiation for different types ofdg i.e., large capacity for V2I
connections and high reliability for V2V connections, wexmaize the sum ergodic capac-
ity of M CUEs while guaranteeing the minimum reliability for each Un addition, we
set a minimum capacity requirement for each CUE as well tigeoa minimum guaran-
teed QoS for them. The reliability of DUES is guaranteedulgiocontrolling the probabili-
ty of outage events, where its received SINHs below a predetermined threshalfl The
ergodic capacity of CUEs is computed through the long-terenage over the fast fading,
which implies the codeword length spans several cohereageds over the time scale of
slow fading [43]. It should be noted that how close the syspenflormance can approach
the ergodic capacity ultimately depends on the temporé&tian of the vehicular channels
as well as the tolerable delay. Faster variation inducesrabannel states within a giv-
en period, which makes the system performance approaclothputed ergodic capacity
quicker as the codeword needs to traverse most, if not ahrmél states to average out the
fading effects. To this end, the radio resource allocati@blem in vehicular networks is

formulated as
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max Z E [log, (1 +75,)] (2.5)

{p'm,k}

(pe).{pyy MM

s.t.  E[logy(1+15,)] > 16, Vm e M (2.5a)
Pr{v{ <} <po.VE €K (2.5b)
0< P < PSo.Vme M (2.5c)
0<Pl< Pt Vkek (2.5d)
3" bk < L pms € (0,1}, ¥k € K (2.5e)
meM
> ik <1, pms € {0,1},¥m € M, (2.5f)
ke

wherer is the minimum capacity requirement of the data rate intenGUESs andy{ is the
minimum SINR needed by the DUEs to establish a reliable lirk:} evaluates the proba-
bility of the input andp, is the tolerable outage probability at the physical layehefV2V
links. P

< candPd_ are the maximum transmit powers of the CUE and DUE, respadgtiv

Constraints (2.5a) and (2.5b) represent the minimum cgpaod reliability requirements
for each CUE and DUE, respectively. (2.5¢) and (2.5d) enthatthe transmit powers of
CUEs and DUEs cannot go beyond their maximum limit. (2.5€)@bf) mathematically
model our assumption that the spectrum of one CUE can onlizdred with a single DUE
and one DUE is only allowed to access the spectrum of a single. 0 his assumption
reduces the complexity brought by the complicated interfee scenarios in D2D-enabled
vehicular networks and serves as a good starting point ttyshe challenging resource
allocation problem in vehicular networks.

The proposed optimization problem represents a novel flation that factors in the
unique features of time varying channels of vehicular comications as well as differ-

entiated QoS requirements for V21 and V2V links. Howeveirs ik a highly nonconvex
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optimization problem due to its combinatorial nature arel¢bmplicated objective func-
tion. We attempt to approach the optimization problem b)Y two steps inspired by
[23]. First, we exploit the separability of power allocatiand spectrum reuse pattern de-
sign by noting that interference exists only within each CDBE reuse pair as dictated by
the constraints (2.5e) and (2.5f). Focusing on each paitd#-OUE, we study its optimal
power allocation to maximize the ergodic capacity of the GAdth reliability guaranteed
for the DUE. Second, we check the feasibility of each CUE-DpaiE against the minimum
capacity requirement for the CUE, rule out infeasible par&l construct a bipartite graph
to find the optimal spectrum sharing pattern between theo$&@&/Es and DUES using the
Hungarian method [33]. We note that the proposed approatlead to the globally opti-
mal solution to the resource allocation problem in (2.5¢sii can jointly find the optimal
spectrum sharing pattern between CUEs and DUEs among alibp®eptions and yield

the best power control strategy for each reuse pair in anezftigvay.

2.2.1 PowerAllocationfor SingleCUE-DUE Pairs

In this part, we study the optimal power allocation for eaosgible DUE and CUE reuse
pair. Given an arbitrary spectrum reuse pattern, e.g.kthé®UE sharing the band of the

mth CUE, the power allocation problem for the single CUE-D Ui jis simplified into

Ig?ﬁg%E [logy (1 +73,)] (2.6)
s.t. Pr{yl <48} < po (2.6a)
0 < P < Poay (2.6b)
0< P < Pla (2.6¢)

where the minimum capacity constraint for the CUE is templyr&eft out and would be
accounted for in the next step.

We evaluate the reliability constraint for théh DUE in the following lemma, and then
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visually depict the feasible regions of the simplified senghir power optimization problem

described above.

Lemma 1. The reliability constraint for thekith DUE, i.e. (2.6a) in the proposed single

pair power allocation problem iif2.6), can be expressed as

—1| 275 (PY). (2.7)

Proof. Given an arbitrary reuse pattern, e,,, = 1, and substituting the channel model

(2.1) in (2.6a), we derive the reliability constraint as

Pr{~i <~}

:Pr{ Bflaggs, < 7d}
o? + Pﬁlam,kzgm,k =0

d, 2
6 (0% + P oty ki 9m k)

[e.9] da
— / dgm,k / Pk k 6_(gk+g7n,k)dgk
0 0

_ 7(3102
Plage ko
T pd d
Ploy + v§ PS aim ke

=1

S Do, (28)

where we have assumed thatandg,, , are independent and identically distributed (i.i.d.)
exponential random variables with unit mean. Rearrandieddrms from the last inequal-

ity completes the proof. O

ConsideringP:, > 0 and from (2.7), we obtain the zero-crossing point by setting

f(Pf)y=0as

d-2
—%0 A 4
pa pPe . 2.
FT g In(1 — po) e, min (2.9)

It can be observed from (2.7) thﬁt(P,gl) is monotonically increasing with respect to the

1The other zero-crossing poiff! = 0 is irrelevant here.
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Figure 2.2: Two cases of feasible regions for (2.6) dependmthe magnitudes afy,,
and P,

DUE power,P¢, in the range of P¢ ., +00). This observation makes intuitive sense as
an increase of the DUE power would lead to a higher interfgganargin, implying the
DUE is more tolerable to interference from the CUE.

With the closed-form expression for reliability constigip.6a) given in Lemma 1, the
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feasible regions of (2.6) are plotted in Fig. 2.2, whélg, ., = [ (Prax) and Pd ., =

f7' (Pray)- Note thatP?, ., can be obtained through bisection search over the function
f(+), which is a monotonically increasing function in the randgenterest. As shown in
the figure, the feasible regions are classified into two cdepending on the magnitudes

of P¢ ,andPe... We now derive the optimal solution to (2.6) in the followithggorem.

Theorem 1. The optimal power allocation solution to optimization plein (2.6) is given

by

PC* - mm(Pmaxv Pg,max)»

m

and

Pkczl* - min( max max) (2-10)

Proof. Assuming thay,, s andg; s are i.i.d. exponential random variables with unit mean,
the ergodic capacity;,, (P<, P2), of themth CUE in (2.6) when sharing the spectrum
with the kth DUE can be written as

Coni (P, Py) =E [log, (1 +77,)]

P? QOm.BYm,B )
10 1 _|_ m ) )
/ / 52 ( o2+ Play ks

X 6_(9m,B+9k,B)dgm7Bdgk7B (2.11)

from which we can easily make the following observations
e With fixed P, the ergodic capacitg,, »( P, P{) increases monotonically witR¢ ;
e With fixed P¢, the ergodic capacitg,,, ,(P<,, P¢) decreases monotonically wifPf.

These observations lead to the conclusion that the optiohatisn of (2.6) can only reside

at the upper boundary line of the feasible region define®y= f (P¢) from (P in, 0)
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up to the poin{ Py, P5 na for Case | o P, Priax) for Case Ilin Fig. 2.2, by acknowl-
edging the fact thaP’, = f (P,f) is a monotonically increasing function in the range of
(Pliminv +00).

What remains is to study the ergodic capacity .(P¢,, P{) along the upper boundary
line which could be done by substitutidef, = f (P¢) in (2.11). The SINR termy, is

then given by

Pﬁqam,Bgm,B
d
0% + Ploy g9k,

QpCm, BYm,B €

- : — -1, (2.12)
Y k (;—g + ak,BQk,B) — bo

which can be shown to monotonically increase within the rangg P ;,, +0). Hence,
the optimal power of the problem (2.6) is the intersectiompPy.,. Ps ..,) for Case | or
(Pmax Pray) for Case Il, which can be written in a compact form as in (2.10)

0

Theorem 1 yields the optimal power allocation for a singleEZDUE pair that maxi-
mizes ergodic capacity of the investigated CUE and ensefiebility for its reusing DUE.
As mentioned earlier, interference exists only within eeslise pair and the original re-
source allocation problem in (2.5) to maximize the sum eigodpacity of all CUEs has
been decoupled into two major parts. The first part deals thétoptimal power allocation
for each single pair, which has been given by Theorem 1. T&eiseto perform opti-
mal spectrum reuse pair matching to maximize the sum ergmgacity of CUEs while

respecting all QoS constraints.

2.2.2 PairMatchingfor All Vehicles

To this end, we have obtained the optimal power allocatioretech CUE-DUE pair. In

the next step, we need to eliminate those CUE-DUE combingttbat do not satisfy
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the minimum QoS requirement for the CUE, i.e., (2.5a), evéremwthe optimal allo-
cation scheme obtained from (2.10) is applied. The closeai-fexpression for the er-
godic capacity of thenth CUE when sharing spectrum with ti¢h DUE, defined as

Conye (PS, P 2 [log,(1 + 4%, is derived in the following lemma.

Lemma 2. The ergodic capacity,,, » (P, P{), of themth CUE when sharing spectrum
with thekth DUE is given by

a 1 1 1 1
:(a —b)In2 {WEl (a) —erh (Z)} ’ (249

c d — . . . .
wherea = 13;«72"5 b= % andEy (z) = [ eTtdt is the exponential integral function

T

of the first order [44].

Proof. The ergodic capacity,, »(PS,, P{) can be written as

PC A, BGdm, B ):|
Cn i (Pg, ) =E |log, | 1+ ===
k:( k) [ g2( 2 +P,§loék,ng,B

A aX
=E [log2 (1 + Ty bY)] , (2.14)
where we denote,, 5 and g, 5 by X andY’, respectively, and define = P’%Z‘;"vB and

Pla . . X . .. .
b= kU;“B. DefiningZ = Ery and assuming,, z andg; 5 are i.i.d. exponential random

variables with unit mean, we have its CDF as

CORC RS

z(14by)

:/ dy/ Tty
0 0

— ] — i (2.15)
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Then, we obtain the ergodic capacity of théh CUE as

Cme(PTfL? Plg)

1 o0
=15 i In(1+ 2)fz(2)dz

_L OOl—Fz(Z)
" In2 J, 1+2

a * ea * e7a
“(a—1b)In2 [/0 z+1d2_/0 z—l—%dz}

a 1 1 1 1
RCEDLY: [E (‘) Sk <E>}

dz

(2.16)

(2.17)

where we obtain (2.16) by using integration by parts and7(2ftllows from [44, E-

g. (3.352.4)].

0

Substituting the optimal power allocation (2.10) in (2.¥®)Ids the maximum ergodic

capacity achieved when theth CUE shares its spectrum with tthéh DUE, denoted as

Cr, i+ Ifitis less thanrg, then this combination cannot meet the minimum capacityireg

ment for the CUE. Therefore, such a CUE-DUE pair is not fdasihd we set’;, , = —oc,

i.e.,

*
m,k

—00, otherwise

Core (PSP, if Oy (P, PE) > ¢,

(2.18)

After evaluating all possible combinations of the CUE-DUdirp, the resource alloca-
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tion problem (2.5) reduces to

max Z mekC;’k (2.19)

lomi} oM ek

st Y pmik <1 pmi €{0,1},Vh €K (2.19a)
meM
me,k < 17pm,k: € {07 1}7vm € Ma (219b)
kel

which turns out to be a maximum weight bipartite matchindopem and can be efficiently
solved by the Hungarian method in polynomial time [33].

From the above discussion, our algorithm to find the optiroaltgn to the resource
allocation problem in (2.5) for D2D-enabled vehicular coomcations can be summa-
rized in Table 2.4 Supposing an accuracy efis required, the bisection search for the
optimal power allocation of a single CUE-DUE pair as giver(2nL0) requiredog(1/e)
iterations. This leads to the total complexity®@f K M log(1/¢)) to compute the optimal
power allocation for all CUE-DUE pairs. The Hungarian metiall solve the pair match-
ing problem inO(M?) time assuming/ > K. Therefore, the total complexity of the

proposed algorithm i€ (K M log(1/e) + M?).

2.3 Minimum CUE Capacity Maximization Design

The sum capacity maximization design considered in Se&idwan ensure a high overall
throughput from the network operator’s perspective. Havel tends to be unfair from
each CUE’s point of view, especially for those vehicles egreing bad channel condi-
tions. In such a case, the CUEs with bad channel conditiolh®&sacrificed in exchange
for the overall performance improvement. In this sectioe, will address this issue by

maximizing the minimum capacity among all CUEs so as to mtea more uniform per-

2There exist possible scenarios rendering the considetadiaption problems infeasible. In such cases,
the BS will report the infeasibility information and theritiate another round of user scheduling. The newly
admitted users will then be serviced under the proposed Rétidrse.
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Table 2.1: Optimal Resource Allocation Algorithm for (2i5) D2D-Enabled Vehicular
Communications

Algorithm 1 Optimal Resource Allocation Algorithm for (2.5)
1. form=1: M do
22 fork=1:Kdo
3: Obtain the optimal power allocatiai¢ , P¢") from (2.10) for the single CUE-

DUE pair.
4 Substitute P¢,, P¢") into (2.13) to obtairC?, .
5: if C, x <7 then
6: Cr = —00.
7 end if
8: end for
9: end for
10: Use the Hungarian method [33] to find the optimal reuse pat{gf, ,} based on
(o).

11: Return the optimal spectrum reuse pattgsf) , } and the corresponding power alloca-
tion {(P5, P")}.

formance across all CUEs.

The proposed optimization problem is stated as

in [ [log, (1 + 7 2.20
max - min E [log, (1+17,)] (2.20)

{Pey (P}

st (2.58) — (2.5).

From [45] and [46], this max-min optimization problem is garsteed to reach the Pare-
to boundary where none of the CUES’ ergodic capacity can lpedwed without degrading
other CUES’ ergodic capacity. This is a key concept in moitjective optimization (MOO)
and the max-min formulation in (2.20) is in fact a specialecakthe weighted Chebyshev
objective function with all weights set to one, which is tlaéest choice in converting MOO
to single objective optimization (SOO) while ensuring RPaugptimality [45]. As such, the

solution to the proposed problem can be guaranteed to beoRg&mal.
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2.3.1 Resourcéillocation Design

To solve the proposed resource allocation problem in (2\8)make use of the optimal
power control results given in (2.10) for each CUE-DUE paid éhe closed-form ergodic
capacity for each CUE derived in (2.13), by acknowledgirag thterference only occurs
within each CUE-DUE pair. Then the original problem in (2.28 simplified into the

following form

max min mkCo 2.21
{pm,k}meM;Cp e (21)
st D Pk < Lpmi €{0,1},Vk €K (2.212)
meM
> Pk < L p € {0,1},Ym € M. (2.21b)
kel

We further attempt to develop a low-complexity algorithmstave the optimization
problem in (2.21) through exploiting the Hungarian methetjch has polynomial time
computational complexity. The proposed optimal resouliceation algorithm is listed in
Table 2.2 and comprises two essential parts.

The first part checks in polynomial time whether an arbilyagiven numberr is above

the desired optimal minimum ergodic capacity or not. It @pes as follows.

e Initialize an all-zero matri¥ of sizeM x K.

e Scan each element of the capacity matfix;, , }, obtained from Algorithm 1 and if

itis less tharr, set the corresponding entry Bfto 1 and leave it a8 otherwise, i.e.,

Vm, k,

1, ifC; . <7,
F,o = ’ (2.22)

0, otherwise

e Apply the Hungarian method t&' and return the lowest total cost, denotedcas
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i.e., the sum of all the assigned elements.c Bquals zero, all elements of such
an assignment are no smaller thgnor equivalently,r is less than or equal to the
desired optimal minimum ergodic capacity. Correspondinifilc is greater thar,

then there exists no assignment that guarantees that atgigned elements are no

smaller tharr, i.e., 7 is greater than the desired optimal minimum ergodic capacit

The second part starts with ordering all\ elements of the original capacity matrix,
{C;, x}, and then searches for the position of the optimal minimuyoeic capacity using
bisection search based on the checking method derived ifirsh@art. Finally, the spec-
trum sharing assignment is what the Hungarian method yigld= the bisection search
ends.

The major computational burden of the proposed algoritlesiih the generation of the
capacity matrix{C},, , }, whose complexity i) (K M log(1/¢)), the ordering of all ele-
ments in{C, , } whose complexity i€) (K M log(K M)), and the bisection search for the
optimal value based on the Hungarian method with compleRity/3 log M) if M > K.
Then the complexity of Algorithm 2 i© (K M log(1/€) + K M log(K M) + M?log M).

2.4 Simulation Results

In this section, simulation results are presented to vedittee proposed spectrum and pow-
er allocation algorithms for D2D-enabled vehicular netvgor We follow the simulation
setup for the freeway case detailed in 3GPP TR 36.885 [10hawdkl a multi-lane free-
way that passes through a single cell where the BS is locatiési@nter as illustrated in
Fig. 2.1. The vehicles are dropped on the roads accordingatas Poisson process and
the vehicle density is determined by the vehicle speed. WMh€UEs andK DUEs are
randomly chosen among generated vehicles, where DUE paiedways formed between
neighboring vehicles and the CUEs are assumed to have dwuabf the total bandwidth.
The major simulation parameters are listed in Table 2.3 @dhannel models for V21 and

V2V links are described in Table 2.4. Note that all paransetee set to the values spec-
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Table 2.2: Optimal Resource Allocation Algorithm for (2)26 D2D-Enabled Vehicular
Communications

Algorithm 2 Optimal Resource Allocation Algorithm for (2.20)
1: Initialize {Cy, ,} and{(Pg , P{")} from Algorithm 1.
2: Initializei = 1 andj = K M.
3: Sort all elements of C;;, , } in ascending order and store them in a vestor
4: while (j —¢) > 1do

5 1=(i+))/2;

6: F =0nxx;

7. form=1:Mdo
8: fork=1:Kdo
9 if C, , < vithen
10: Fme =1;
11: else

12: Fm,k =0;
13: end if

14: end for

15:  end for

16:  Apply the Hungarian method [33] to find the assignment, dexh@tsA, and the
lowest total cost, denoted asbased on the matrik.
17:  if ¢ > 0then

18: 7 =1

19: else

20: =1

21: {Phnt = A
22:  endif

23: end while
24: Return the optimal spectrum reuse pattgsfy , } and the corresponding power alloca-
tion {(P, P}

ified in Tables 2.3 and 2.4 by default, whereas the settingsah figure take precedence
wherever applicable. The results in each figure are obtdmedaveraging a minimum of
10,000 channel realizations and in particular, Fig. 2.4 is plotteth 1,000,000 channel
realizations.

Fig. 2.3 demonstrates the sum and minimum ergodic capaafi€UEs achieved by

our proposed algorithms with respect to a genie-aided bwadh based on a modified
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Table 2.3: Simulation Parameters [10, 47]

Parameter Value
Carrier frequency 2 GHz
Bandwidth 10 MHz
Cell radius 500 m
BS antenna height 25m
BS antenna gain 8 dBi
BS receiver noise figure 5dB
Distance between BS and highway 35m
Vehicle antenna height 15m
Vehicle antenna gain 3 dBi
Vehicle receiver noise figure 9dB
Absolute vehicle speed 70 km/h

Vehicle drop model

spatial Poisson process

Number of lanes

3 in each direction (6 in tot

tal)

Lane width

4m

Vehicle density

Average inter-vehicle dis
tance is 2.5 sex absolute
vehicle speed.

Minimum capacity of DUE 0.5 bps/Hz
SINR threshold for DUE/ 5dB
Reliability for DUE p, 0.001
Number of DUESK 20

Number of CUESV/ 20
Maximum CUE transmit powePs 17,23 dBm
Maximum DUE transmit poweP2,, 17,23 dBm
Noise powelr? -114 dBm
Bisection search accuraey 107°

Table 2.4: Channel Models for V2l and V2V Links [10]

Parameter V2| Link V2V Link

128.1 + 37.6bg,,d, d in | LOS in WINNER +
Pathloss model Kkm B1 [48]
Shadowing distribution) Log-normal Log-normal
Shqdqwmg standaral8 dB 3dB
deviation¢
Fast fading Rayleigh fading Rayleigh fading

traditional D2D resource allocation scheme developed3i®[2vhere accurate knowledge

3The modification lies in replacing the original objectivaétion to maximize the sum throughput of both
CUEs and DUEs with the one to maximize the sum throughput dE€thly, and the capacity and reliability
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Figure 2.3: Capacity performance of CUEs with varying DUEagee probabilityp,, as-
sumingPl. = P, = 23 dBm.

constraints are equivalently transformed into SINR rezpaients. The same three-step method is then applied
to solve the RRM problem.
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of instantaneous CSI for all links is assumed to be perféetiywn at the BS. We note that
in high speed vehicular environments, such full CSI assionps by no means realistic,
but it serves as an ideal reference to benchmark our propmdgedthms. It is observed
that both sum and minimum ergodic capacities of CUEs acHidyeboth Algorithms 1
and 2 get larger if higher outage probability of DUESs is akolv This is due to the fact
that higher acceptable outage of DUEs renders them mornabdéeto interference from
CUEs, thus encouraging CUESs to increase their transmit powAs a result, the CUE
capacity grows larger. From Fig. 2.3(a), the performancalgbrithm 1 is well close to
the ideal benchmark scheme in terms of sum capacity at faihyoutage probability, e.qg.,
po = 0.1. As for the minimum CUE capacity shown in Fig. 2.3(b), Algbm 2 shows
superior performance even over the ideal benchmark wheadbeptable outage is a bit
larger than0.001. These are encouraging findings as the proposed resoucoatsih
schemes make use of slowly varying large-scale fading patensonly and update every
few hundred milliseconds. Nonetheless, they can achiederpgance measurably close to
the genie-aided benchmark scheme (or even surpass it ifrmamicapacity maximization
is pursued), which requires accurate real-time CSI of akdiand is inapplicable in a
vehicular environment featuring high mobility.

To demonstrate the superiority of our proposed scheme whbnlarge-scale fading
information is available at the BS, we compare in Fig. 2.4i@) cumulative distribution
functions (CDF) of the instantaneous sum CUE capacity aelidy Algorithms 1 and 2
against the SOLEN scheme developed in [27]. To achieve éanparison, we exploit the
method given in Lemma 1 of [27] to generate an equivalent SiiNBshold expressed in
terms of large-scale fading parameters only. In additio@ptinimum capacity requirement
in the original problem formulation is not considered asr¢his no convenient way to
convert such a constraint into an equivalent form to be usethe SOLEN scheme. We
observe that the proposed Algorithm 1 achieves strictligheerformance than the SOLEN

scheme of [27] while Algorithm 2 has the worst performancemwthe maximum sum CUE
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capacity is the system metric. This validates the supemofopmance of the proposed
Algorithm 1 in such cases. The reason for the performanaeajalgorithm 1 is twofold.
The firstis that Algorithm 1 takes a rigorous treatment ofdimall-scale fading effect when
computing the capacity of V2l links, i.e., calculating thgadic capacity in contrast to
using only large-scale fading parameters to approximatedpacity as in [27]. The second
reason is that the approach taken in [27] is not able to aeheaactly the targeted SINR
threshold of V2V links, as illustrated in Fig. 2.4(b), wheae arbitrarily chosen DUE’s
instantaneous SINR of SOLEN is found to slightly excéedB (the desired threshold)
at the targeted outage probability @)1. Meanwhile, our proposed Algorithms 1 and 2
achieve exactly dB at the outage probability @£01. This translates to stricter reliability
requirements of V2V links in SOLEN, thus reducing the febssilegion of power control
parameters and degrading the capacity of V2I links. Theseaspects also form the major
differences between our proposed algorithms and the egistne in [27]. However, we
also notice that the performance gain of Algorithm 1 is miainwhich might be due to
the insensitivity of capacity to the small-scale fadingeeffand the fact that the SINR
overshooting of SOLEN is essentially small.

Fig. 2.5 shows the sum and minimum ergodic capacities of@E€with an increasing
vehicle speed on the road, respectively. From the figure$, $iom and minimum CUE
capacities decrease as the vehicles move faster. Thisas®ebigher speed induces spars-
er traffic according to the simulation setup, which would warage increase inter-vehicle
distance and give rise to less reliable V2V links with loweceived power. As such, less
interference from CUESs can be tolerated given the maximanstnit power constraints of
DUESs, which leads to less power being allocated to CUEs aakdses both their sum and
minimum ergodic capacities. It also reveals that Algorithachieves higher sum ergodic
capacity than Algorithm 2 while the reverse is true when carimg the minimum ergodic
capacity. This makes sense since Algorithm 1 aims to maxiithie sum ergodic capacity

while Algorithm 2 takes the minimum ergodic capacity as &sign objective. Itis also in-
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teresting to note in Fig. 2.5(a) that an increase of maxinmamsimit power has a relatively
constant impact on the sum CUE capacity performance of bagbrshms 1 and 2 with
respect to the vehicle speed increase. However, this dadwltbwhen we investigate the
minimum CUE capacity as shown in Fig. 2.5(b). At a low vehgpeed, & dBm increase
of the maximum transmit power brings significant gains fathbdlgorithms 1 and 2, e.g.,
some40% increase a60 km/h. In contrast, at a very high speed, elg() km/h, the pow-
er increase has limited impact, which is especially truemive focus on Algorithm 1 in
Fig. 2.5(b).

Fig. 2.6 demonstrates the sum and minimum ergodic capaafi€UEs with respect
to increasing SINR threshold for DUES, respectively. Weenbs that in both cases, the
investigated ergodic capacity will decrease when the minin@oS requirement for DUES
grows large. Such performance degradation results frometiheced interference tolerabil-
ity of DUEs due to an increase in their required SINR threghwhich will impose stricter
constraints on the allowable transmit power of the pairitd=8S. Reduced transmit power
of CUEs directly translates into a decrease of the sum andhmam ergodic capacities
they are capable of achieving given all QoS constraintsfeadi. It is also observed that a
6 dBm increase of maximum transmit power has roughly unifarpact on the sum CUE
capacity with respect to growing' while for the minimum CUE capacity, the impact gets
smaller with increasingy.

Fig. 2.7 shows the impact of the number of active V2V links ba guality of V2I
connections. From the figures, as there are more and more MRY¥ dharing V2I's spec-
trum, both the sum and minimum CUE capacities decrease die tgrowing amount of
interference generated from V2V links. From Fig. 2.7(a)g@ithm 2 is more sensitive
to the change of V2V numbers in terms of sum CUE capacity ateeed from the steep
slope of its sum capacity curve. As for the minimum CUE capaai Fig. 2.7(b), Algo-
rithm 1 achieves dramatically degrading performance 4, fg., around0% decrease

when K /M is doubled from0.1 to 0.2. Then the performance gradually flattens. This
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Figure 2.6: Capacity performance of CUEs with varying DUEIBIthresholdyd, assum-
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is in contrast to Algorithm 2, where the minimum CUE capaggrformance degrades
gracefully with respect to growing interference generétech increasing numbers of V2V

links. Again, it is worth pointing out that & dBm increase of maximum transmit power
uniformly increases the sum CUE capacity with respect tavgrg /M while the impact

gets weaker for the minimum CUE capacity with increasing benof active V2V links.

2.5 Summary

In this chapter, we have investigated the spectrum shandgawer allocation design for
D2D-enabled vehicular networks. Due to fast channel vianatarising from high vehi-
cle mobility, instantaneous CSI is hard to track in pragtremdering traditional resource
allocation schemes for D2D-based cellular networks reamifull CSI inapplicable. To
address this issue, we have taken into account the diffatedtQoS requirements of ve-
hicular communications and formulated optimization peolé$ aiming to design a resource
allocation scheme based on slowly varying large-scalentatiformation only. Robust al-
gorithms have been proposed to maximize the sum and mininmgaoadie capacity of V2I

links, respectively while ensuring reliability for all V2khks.
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CHAPTER 3
SPECTRUM AND POWER ALLOCATION WITH DELAYED CSI FEEDBACK

In this chapter, we continue the study of resource allooattw vehicular communica-
tions, yet from another perspective. That is, we explorectramunication performance
when channel state information (CSI) of vehicular linksesipdically reported to the base
station (BS). We take into account the inevitable CSI layedaring feedback in high-
mobility vehicular environments. The proposed resourt@cation problem incorporates
heterogeneous quality-of-service (Qo0S) requirementsvédricle-to-infrastructure (V2I)
and vehicle-to-vehicle (V2V) links corresponding to th&ipported services, i.e., large ca-
pacity for V21 links and high reliability for V2V links. Sum ¥ throughput is maximized
with a minimum QoS guarantee for both V2I and V2V links, whire V2V reliability is
ensured by maintaining the outage probability of receivgdai-to-interference-plus-noise
ratio (SINR) below a small threshold.

The rest of the chapter is organized as follows. Sectiom@c@duces the system model.
Section 3.2 develops robust resource allocation schemestiacular communications with
delayed CSI feedback. Simulation results are presenteckatidd 3.3 and concluding

remarks are finally made in Section 3.4.

3.1 System Model

Consider a device-to-device (D2D)-enabled vehicular comgation network as shown in
Fig. 3.1, wherel/ vehicles require high-capacity V21 communications, deddas I-UES,
and K pairs of vehicles perform local V2V data exchange in the foff®2D communi-
cations, denoted as V-UEs. Denote the |-UE setés= {1,---, M} and the V-UE set
ask = {1,---,K}. To improve spectrum utilization efficiency, orthogonadijocated

uplink spectrum of I-UEs is reused by the V-UEs. The chanoelgy gain,g,, 5, between
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Figure 3.1: D2D-enabled vehicular communications.

themth I-UE and the BS follows

9m,B = |hm7B|2am,B> (31)

whereh,, g is the small-scale fast fading component, assumed to beémdient and iden-
tically distributed (i.i.d.) distributed a8\ (0, 1), anda,,, 5 captures all large-scale fading
effects including path loss and shadowing. The chanpelbetween theé:ith V2V pair,
the interfering channely,, from thekth V-UE to the BS, and the interfering channgl, ..,
from themth I-UE to thekth V-UE are similarly defined.

We assume CSI of links connected to the BS, g,z and gy, is accurately known
since it can be estimated at the BS while CSI of vehiculaslink.,g, andg,, x, is reported
to the BS with a feedback periddand therefore with latency. We use a first-order Gauss-

Markov process [49] to model the channel variation (fasirfgpover the period”

h=eh+e, (3.2)
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where’, and & are the channels in the previous and current time, respdgtiv is the
channel discrepancy term distributed accordingA6(0,1 — ¢2) and independent of,
and the coefficient quantifies channel correlation between the two consectithesl|ots.
For the Jakes’ model [49} is given bye = Jy (27 f4T') , where Jy(+) is the zero-order
Bessel function of the first kind anf}, = v f./c is the maximum Doppler frequency with
c = 3 x 10® m/s,v being the vehicle speed, arfdbeing the carrier frequency.

The SINRs of thenth I-UE andkth V-UE are given by

C

o Pribam,B|hm,B|2
f}/m -

(3.3)

K R
02+ 3" prmpPlag|hgl?
=1

and

) Pla, (1l + lexl?)
Yy = 7 - , (3.4)
o2+ E pmka;;%am,k <e%b,k|hm7k|2 + |em7k|2>
m=1

respectively, where?¢ and P denote transmit powers of theth I-UE and thekth V-
UE, respectivelyg? is the noise power, ang,, . = 1 indicates thekth V-UE reuses the
spectrum of thenth I-UE andp,, , = 0 otherwise.

To meet diverse requirements for different vehicular links., large capacity for V2I
connections and high reliability for V2V connections, weximaize the sum capacity of
M 1-UEs while guaranteeing the minimum reliability for eacHME. In addition, we set

a minimum capacity requirement for each I-UE as well to pdleva minimum guaranteed
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QoS for them. The optimization problem is formulated as

max > log, (1+75) (3.5)
[Py ps) mEM

s.t. logy(1+75) > i, Ym e M (3.5a)
PH{~j <26} < po,Vk € K (3.5b)
0< P < PS..VmeM (3.5¢)
0<PI< P VEEK (3.5d)
> ik <1 pms €{0,1},VE €K (3.5€)
meM
me,k S 17pm,k: € {07 1}7vm € Ma (35f)
ke

wherer¢ is the minimum capacity requirement of I-UEs afflis the minimum SINR
needed by the V-UEs to establish a reliable link{-Pevaluates the probability of the input
andpy is the tolerable outage probability¢,, and P4, are the maximum transmit powers
of the I-UE and V-UE, respectively. (3.5a) and (3.5b) repréghe minimum capacity
and reliability requirements for each I-UE and V-UE, respety, where the probability is
evaluated in terms of the discrepancy terrraused by the delay in CSI feedback. (3.5¢)
and (3.5d) ensure that the transmit powers of I-UEs and V4aiBgot exceed the maximum
limit. (3.5e) and (3.5f) mathematically model our assumpthat one I-UE’s spectrum can
only be shared with a single V-UE and one V-UE is only allonedd¢cess a single I-UE’s
spectrum. This assumption reduces the complexity brougthtdocomplicated interference
scenarios in D2D-enabled vehicular networks and servegjaséstarting point to study

the resource allocation problem in vehicular networks.
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3.2 Robust Resource Allocation Design

3.2.1 PowerAllocationfor Singlel-UE andV-UE Pairs

Decoupling the problem and focusing on each I-UE and V-UE, p& aim to maximize

the I-UE’s capacity

P (07°%) B‘hm B‘Z
Cox =lo 1+ —/— - 3.6
K 2 ( 2 +P,fdk|hk|2 (3.6)
while satisfying all constraints, formulated as
max Cp, (3.7)
PPy,
s.t. (3.5b), (3.5¢), (3.5d)
Lemma. The feasible region of3.7)is derived as
Cd D exp (é)
d pey . ~o ) < B
{(Pk7pm) eXp( B ) <1+ BVO) — 1_p0 9
ol 2 A,0 £ Pl < P 0 < P < Pl (3.8)
or
B A— O~ 1
Pl PC :(1 + —) exp <70) > —,
LR ) D 7D Po
Ol < A0 < Pl < Pigg 0 < P < P}, (3.9)

where A = Plogé|h,?, B = Play(l — €2),C = o2 + Pﬁlam,kefn’kmmﬂz, andD =

P¢ v (1 — efnk)

Proof. The received SINR at thith V-UE, ~{, from (3.4) can be written ag! = 472

where X andY are two independent exponential random variables withme#@n. Two
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cases are identified to evaluate V2V reliability{ Pt < 7d}:

e Case I: WherCvd > A,

(C+Dy)vd -4

oo - B
Pr{yi <~} =/ eXp(—y)dy/ exp(—x)dz
0 0
exp (——CW%_A)
e (3.10)
BVO

e Case Il: WherC+¢ < A,

Privf <o) = | expl-alde [, (-0
0 ~ p~d

D'\/O

C
_ (5) < po. (3.11)

B A

Rearranging terms of (3.10) and (3.11) completes the proof. O

Based on theeemma we derive the optimal power allocation solution to (3.7}he

following Theorem

Theorem. The optimal power allocation solution {8.7)is

’
: d d i d d
mln{Pma)o Pcl,max}v If Pmax S PO )

Py = min{Pd,, PL et if Pdy > Pand Py > P,
P ax otherwise

\

and

p

max —

min{ Pfae Pf maxts 1 Prax < P

P = min{ Pl PS oy if Ploy> P and Py, > B,

PC

a0 otherwise,

\
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where

2

o
(S
Fo= - (1 207 |2 2 15 g2
e (;,_0 - 1) U k€p | | — am7k€m,k|hm,k|
and
pt_ Pami(1 = ) (1 = po)
O — .
k(1 — €)po
P! axand Py . are derived from the implicit functions

Fl(Pd Pra) =0 and Fl(Pncgax»Pdchmax) =0,

c1,max
P! naxand Py, . are derived from the implicit functions
F2(ng7maxv Pr%ax) =0 and F2(Pncfl1axv ch;max) =0,

through bisection search by noting the monotonic relatieteen”:, and P2 in the im-

plicit functions

Cvg D exp (4
Fi(P¢, P¢) = exp (%) <l—|— Efyg) - _(;O) —0

whenP¢? € (0, P¢) and

B A—CH 1
Fy(P, P) = <1+7d—D)eXP (TD%) -—=0,
0 0

whenP{ € (Pg, +00).

Proof. We provide a brief sketch for the proof. From themma the feasible region of
(3.7) is divided into two parts, depending orCify! > A or not, with an example given in

Fig. 3.2. Further analysis shows that the two regions’s uppendaries (as determined
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Figure 3.2: A sample feasible region depiction.

by implicit functions Fy (P¢, P¢) = 0 and Fy(P¢, PS) = 0, respectively) intersect at
(Pg, P¢), which lies on the separating linéy¢ = A. In addition, F; (P¢, P¢) = 0 and

Fy (P, P¢) = 0 maintains a monotonically increasing relation betwégnand P¢ in the
range(0, P¢) and(P¢, +o0), respectively. We note that the I-UE’s capacity, or equnély
¢, increases with?¢, and decreases with¢. Hence, the optimal solution must reside at
the upper boundary of the feasible region, which is a coptisuine jointly determined
by Fi(P¢, P¢) = 0 and Fy(P¢, PS) = 0. Further analysis reveals thaf, increases with
growing P¢ along the boundary line. As a result, the optimal power allion solution is
determined by the relative magnitudesrf,, and P<,, as well as their intersections with

the boundary line, which is as summarized in the theorem. O

3.2.2 PairMatchingfor All Vehicles

Substituting the optimal power allocation from thieeoremin (3.6) yields the maximum

capacity of thenth I-UE when it shares its spectrum with thih V-UE, denoted a§’’, ... If

*
m?

45



Table 3.1: Optimal Resource Allocation Algorithm for (3i5) D2D-Enabled Vehicular
Communications

Algorithm 3 Optimal Resource Allocation Algorithm for (3.5)
1. form=1:Mdo
22 fork=1:Kdo
3: Obtain the optimal power allocatiai??", P¢ ') from the Theorentor the single
I-UE and V-UE pair.

4 Substitute P{", P, ) into (3.6) to obtairC:, ,.

5: if C, x <7 then

6: Cop = —00.

7 end if

8: end for

9: end for

10: Use the Hungarian method [33] to find the optimal reuse pat{gf, ,} based on
(o).

11: Return the optimal spectrum reuse pattgsf) , } and the corresponding power alloca-
tion {(PZ", P<)}.

m

itis less thamg, then this combination is unable to meet the minimum capaeduirement
for the I-UE. Therefore, such a I-UE and V-UE pair is not fessiand we set;, , =
—oo. After evaluating all possible combinations of the reusiesp#he resource allocation

problem in (3.5) reduces to

max Z mekC;’k (3.12)

D ey Plrwre

s.t. (3.5€), (3.5f) (3.13)

which turns out to be a maximum weight bipartite matchindopem and can be efficiently
solved by the Hungarian method in polynomial time [33].

From the above discussion, we propose Algorithm 1 to soleeptioblem in (3.5) as
listed in Table 3.1. Algorithm 1 yields the globally optimsslution to (3.5) because it
jointly finds the optimal power control for each I-UE and V-U&use pair and the best

spectrum sharing among all possible reuse pairs.
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Table 3.2: Simulation Parameters [10, 47]

Parameter Value Parameter Value

Carrier frequency 2 GHz BS receiver noise figure 5dB

Bandwidth 10 MHz | Distance between BS ard,;

highway

Cell radius 500 m Vehicle receiver noise figure 9 dB

BS antenna height 25m Absolute vehicle speed 100 km/h

BS antenna gain 8 dBi Mlnlmum capacity of |-UE 0.5 bps/Hz

0

Vehicle antenna height| 1.5 m SINR threshold of V-UE/¢ | 5dB

Vehicle antenna gain | 3 dBi Reliability for V-UE p, 1073

M_aX|mum \Z-UE trans- 23 dBm Maxmuzn [-UE transmit 23 dBm

mit power Py .. power Py ..

Number of lanes 3x2 Number of V-UESK 20

Lane width 4 m Number of I-UEsM 20

Noise poweir? -rr%14 dB- Bisection search accuraey | 107°
Vehicle drop model spatial Poisson process

Vehicle density ;Ar\]vrenrgge inter-vehicle distance 250, v

Table 3.3: Channel Models for V2I and V2V Links [10]

Parameter V2I Link V2V Link

Pathloss model 128.1 + 37.€bg,,d, d in | LOS in WINNER +
km Bl

Shadowing distributiony Log-normal Log-normal

Sha_do_wmg standaral8 dB 3dB

deviation¢

Fast fading Rayleigh fading Rayleigh fading

3.3 Simulation Results

In this section, we present simulation results to validasegroposed algorithm. We follow
the simulation setup for the freeway case in 3GPP TR 36.88pdid model a multi-lane
freeway that passes through a single cell as shown in Fig.Th#& vehicles are dropped
according to spatial Poisson process, whose density isndieted by the vehicle speed.
The M 1-UEs andK V-UEs are randomly chosen among generated vehicles, where V

UE pairs are formed between adjacent vehicles and the I-@is équal shares of the total
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Figure 3.3: Sum capacity of I-UEs with varying feedback pefi'.

bandwidth. The major simulation parameters are listed bi€ld.2 and the channel models
are described in Table 3.3. Note that all parameters arecsetding to Tables 3.2 and 3.3
by default, whereas the settings in each figure take preceden

Fig. 3.3 demonstrates the sum V2| throughput of our propedgarithm with an in-
creasing CSI feedback period that indicates the chanrexidst From the figure, the sum
capacity of I-UEs decreases as the reporting pefiagrows. This is due to growin@’
increases uncertainty of V2V channels at the BS, motivatiegBS to act conservatively
when controlling I-UES’ transmit powers to meet the religypiconstraint of V2V links,
which suffer from interference generated by I-UEs. As theisle speed increases from
50 to 150 km/h, the sum capacity drops since higher speed induceger IBoppler shift,
which also increases channel uncertainty at the BS. Ano#iasion for such degradation is
due to sparser traffic according to the simulation setupclwbin average increases inter-
vehicle distance and gives rise to less reliable V2V linkwower received power. As

such, less interference from I-UEs can be tolerated givemiaximum transmit power
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Figure 3.4: CDF of an arbitrary V-UE’s SINR under Rayleigldifeg with 7" = 1 ms and
different targeted outage probabilitigs
constraints of V-UESs, leading to less power being allocatedUEs and decreasing their
sum capacity. It is also interesting to note from Fig. 3.3IthiE’s sum capacity is more
sensitive to feedback frequency with a larger vehicle speed

Fig. 3.4 evaluates the cumulative distribution functiodf} of an arbitrary V-UE’s
received SINR under Rayleigh fading with different targetaitage probabilities. The
desired SINR threshold for each V-UESsIB. From the figure, the reliability constraint in
terms of the outage probability of V-UE’s SINR is accurate#fisfied, which confirms the

effectiveness of our proposed algorithm.

3.4 Summary

In this chapter, we have investigated the spectrum sharidgpawer allocation design for
D2D-enabled vehicular networks. Channel uncertainty edlny CSI feedback delay in a

high mobility vehicular environment has been considerdte dptimal resource allocation
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strategy has been developed to maximize the sum capacityl-@&s while the reliability

of all V2V links is strictly satisfied.
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CHAPTER 4
GRAPH-BASED RESOURCE ALLOCATION WITH MULTIPLE V2V SHARING

In this chapter, we further our study of the resource aliocgiroblem for device-to-device
(D2D)-based vehicular networks. We generalize the problenprevious chapters to a
more generic setting, where each vehicle-to-infrastmecfu2l) link shares spectrum with
multiple vehicle-to-vehicle (V2V) links and the frequensgectrum is not assumed to be
preassigned to V2I links. To support service heterogeméitaehicular networks, we max-
imize the V2l link capacity for high bandwidth applicatigrssich as video streaming over
the Internet, and introduce the reliability constraint ¥V links (evaluated in terms of
outage probabilities depending on large-scale CSI andisitietdition of small-scale CSI),
which is critical for safety message dissemination. We tadteantage of both optimiza-
tion and graph theoretic tools to develop a suite of algorghhat solve the problem with
different performance guarantee and computational cotiipligadeoffs. In the proposed
baseline algorithm, we divide the V2V links into disjointegprum-sharing clusters using
graph partitioning algorithms to mitigate their mutualerference. We then model and
solve the spectrum allocation problem as a weighted 3-dsimeal matching problem in
graph theory, where weights of edges in the graph are olatdipeptimizing powers of
both V2I and V2V transmitters for each feasible spectrunrisacandidate. Based on
the baseline algorithm, we further develop greedy and nanizkd graph-based resource
allocation algorithms, leading to a substantial perforogagain.

In terms of the chapter organization, Section 4.1 introdile system model. Section-
s 4.2 and 4.3 investigate the resource allocation probleitsdifferent CSI resolutions.
Section 4.4 delivers computer simulation results befoegpitesentation of concluding re-

marks in Section 4.5.
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Figure 4.1: D2D-based vehicular communications.

4.1 System Model

Consider a D2D-based vehicular communications networkews in Fig. 4.1. There are
M V21 and K V2V communication links. Thél/ V2I links are initiated byM single-
antenna vehicles, demanding large-capacity uplink cdiorewith the base station (BS)
to support bandwidth intensive applications, such as ckuagss, media streaming, and
social networking. The{ V2V links are formed among the vehicles, designed with high
reliability such that safety-critical information, such the basic safety messages (BSM)
defined in [10], can be shared among neighboring vehiclesgotg| in the form of localized
D2D communications.

It is noted that the\/ V2I links and K V2V links are illustrated separately in Fig. 4.1
for better presentation. Denote the set of V2I links\ds= {1, - - - , M} and the set of V2V
links askC = {1,---, K'}. The total available bandwidth is divided intoresource blocks
(RBs), denoted by = {1,---, F'}. Without loss of generality, we assumé = F'in

this chapter and each of tlié¢ V2I links uses a single RB, i.e., no spectrum sharing among
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V2l links. To improve spectrum utilization, orthogonalljazated uplink spectrum of V2I
links is reused by V2V links since uplink resource usagess latensive and interference
at the BS is more manageable. We note that in practice the ewofity2V links tends to
be larger than that of V2I links, i.ef’ > M, making spectrum reuse among V2V links
necessary.

As in Fig. 4.1, the channel power gaig,, z[f], from the transmitter of the:th V2I
link to the BS over the'th RB is

gm,B[f] = am,B|hm,B[f] |27 (41)

whereh,, 5[ f] is the small-scale fading component, assumed to be diggdbaccording
toCN(0,1) and independent across different RBs and links,@p@ captures large-scale
fading effects, i.e., including path loss and shadowinguased to be independent of the
RB index f. Similarly, we can define théth V2V channel over thg'th RB, g;[f], the
interfering channel from th&'th V2V transmitter to thé:th V2V receiver over thg¢'th RB,

gr k| f], the interfering channel from theth V21 transmitter to theth V2V receiver over
the fth RB, ¢, [ f], and the interfering channel from tt¢h V2V transmitter to the BS
over thefth RB, g, 5[ f]. See Table 4.1 for a summary.

The full CSI of links engaging the BS, including the V2I chais) g,, 5[f], and the
interfering channels from the V2V transmitteys,s| f|, can be estimated at the BS, and is
thus assumed known at the central controller. However, Bleo€mobile links, including
the V2V channelsg;|f], the peer V2V interfering channelg, .[f], and the interfering
channels from the V2I transmitters,, ;[ f], has to be estimated at the mobile receiver
and then reported to the BS periodically. Frequent feedbéttke fast fading information
of rapidly varying mobile channels incurs substantial algrg overhead and thus makes
tracking instantaneous CSI of mobile channels infeasiblpractice. Therefore in this

chapter, we assume that the BS only has access to the laigefading information of
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Table 4.1: A Summary of Channel Symbol Notation
Symbol | Definition

m.B the channel from the:th V2I transmitter to the BS
Ik the channel of théth V2V link

the interfering channel from theth V2V transmitter
9k.B to the BS

the channel from thenth V2I transmitter to the:th
Grm V2V receiver

the interfering channel from thi€th V2V transmitter
Gk' K to thekth V2V receiver

such channels, which varies on a slow scale. In the mean@aoh realization of the fast

fading is unavailable at the BS while its statistical chtgdzation is assumed to be known.
To this end, the received signal-to-interference-plusaoatios (SINRs) of thenth

V2l link at the BS and theé:ith V2V link at the V2V receiver over thgth RB can be

expressed as

’Yc . Py(;q,fgm,B[f]
™o 13 o P pornlf]
k

(4.2)

and

Pd
’ygf ) c c k7fgk[f] 4 pd ) (4.3)
7 o2+ /)m,fpmfgm,k[f] + k%;k Pkgfpk;/,fgk’,k[f]

respectively, where’; . and P,g{ s denote transmit powers of theth V2| transmitter and
the kth V2V transmitter over thefth RB, respectivelyy? is the noise power, angh, ; €
{0, 1} is the spectrum allocation indicator witlj, , = 1 implying themth V2l links is
transmitting over thefth RB andp;, , = 0 otherwise. The spectrum allocation indicator
for the kth V2V link, pf ,, is similarly defined.

To meet the diverse quality-of-service (QoS) requireméantdifferent vehicular links,
i.e., large capacity for V2I connections and high relidpifor V2V connections, we max-

imize the sum capacity of th&/ V21 links while guaranteeing the minimum reliability for
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each V2V link. The spectrum and power allocation problenfsnsiulated as:

max Z Z P%L,f log, (1 + %cn,f)

{pfn_’f,pz&f} mf
(P, 1P}

st pf Pr{vi, <8} < po.Vk, f

prn,f = 17vf

Zpiuf =1,Vm
/

Zpg,f =1,Vk
f

prn,fpﬁm,f S Pr%awvm
f
d pd d
Zpk,fpk,f < Prax Vk
f

P >0,Pl >0,Ym k, f

pin,fupz,f € {07 1}7vm7 k? f7

4.4)

(4.4a)

(4.4b)

(4.4c)

(4.4d)

(4.4e)

(4.41)

(4.49)

(4.4h)

wherevd in (4.4a) is the minimum SINR needed to establish a reliald¥ \ink andp, in

(4.4a) is the tolerable outage probabilifyt,,, in (4.4e) andP? .. in (4.4f) are the maximum

transmit powers of the V21 and V2V transmitters, respetyiv€onstraint (4.4a) represents

the minimum reliability requirement fak” V2V links, where the probability is evaluated in

terms of the random fast fading of mobile channels. Condtfdi4b) restricts orthogonal

spectrum to be allocated amonig V2l links. Constraints (4.4c) and (4.4d) model our

assumption that each of the V2l and V2V links accesses asRigl Constraints (4.4e) and

(4.4f) ensure the transmit powers of V2I and V2V links cangobeyond their maximum

limits.

Extension to multi-RB access for both V2I and V2V links is gib¢e through creating
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multiple virtual V2I and V2V links and then properly definiriigeir channel strengths as
described in [50, 28]. Specifically, if one V2I link requesfg RBs, we createVy virtual
V2l links at the beginning of the resource management andehaally split the maximum
transmit power among the9€é; V2I links. If one V2V link requests multiple RBs, we can
similarly create the same number of virtual V2V links andrttset the strengths of the
channels among them to be extremely high such that they tahace the same RB in the
following resource allocation stage. Likely, we split theiaximum power limit among the
virtual V2V links. Finally the RBs allocated to all virtuahks originating from the same

V2| or V2V link will be combined to allow multi-RB access.

4.2 Spectrum Allocation and Power Control

The optimization problem in (4.4) is combinatorial in n&wand is further complicated
by the nonlinear constraints and objective function. Torassl the problem, we propose
in this section solution algorithms originating from a candiion of graph theoretic and
optimization tools. We first introduce a baseline low-coexitly resource allocation al-
gorithm, based on which some refined algorithms will then fmppsed with significant
performance improvemenklease note that the proposed algorithms are implemented in
centralized manner, where the central controller collgasCSI of all links with different
levels of resolution from feedback or direct channel estiomaas described in Section 4.1,

and then executes the algorithms step by step according &lglrithm description.

4.2.1 BaselineGraph-BasedResourcéillocation

For the baseline resource allocation scheme, we first ebgriaph partitioning algorithms
to divide the V2V links into different clusters based on thaiutual interference. This
identifies proper V2V sets for spectrum sharing with minimuaterference. Next, all V2V
links in each cluster are allowed to share the same spectitimowe of the)M V21 links

while V2V links in different clusters cannot share spectruvile then optimize V2I and
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Figure 4.2: Graph representation for interfering links.

V2V transmit powers for all possible sharing patterns. Bnave construct a 3-partite
graph, with theM V2I links, F RBs, andN V2V clusters as its vertices and with edge
weights equal to the V2I capacity from applying optimized ¥8d V2V transmit powers.
The resource allocation problem in (4.4) can then be redtecadveighted 3-dimensional

matching problem.

V2V Partitioning

The interference management for V2V links can be capturéwyus graph in Fig. 4.2,
where each V2V linkL, is modeled as a vertex and two vertices are joined by an edge
when they are mutually interfering. The edge weight is seafture the interference level
with wy , = aur 1, Whereay, i, is the large-scale fading CSI of the interference chanoehfr

the £'th V2V transmitter to théth V2V receiver. The goal is to partition thE€ vertices
into N sets,Cy, - - -, Cy, WhereN < K, minimizing the intra-cluster interference across
all clusters, i.e.) | > wpy |. Intuitively, this implies that we attempt to partition
strongly interferi;g szf/el(iqus into different sets so thatks within the same set can share
the same RB without incurring too much mutual interference.

The above partitioning problem is equivalent to the MAXCUT problem in graph

theory [31, 51] and a brief explanation is given here. Gebe a graph with vertex set
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Table 4.2: Heuristic Algorithm for MAXV-CUT [31, 51]

Algorithm 4 Heuristic Algorithm for V2V Patrtitioning
1: Arbitrarily assign one V2V link to each of th& clusters.
2: for k € K and not already in any clusteto
3: forn=1:Ndo
4 Compute the increased intra-cluster interference uspng (wy, i + W/ i,)-

k'€Ch

5. end for

6:  Assign thekth V2V link to then*th cluster withn* = argmin > (wgx + wir k).
k'€Cr,

7. end for

8: Return the V2V clustering result.

V(G) and edge seb(G). Letw : E(G) — R. The MAX N-CUT problem for a weighted
graph is to find a partition of the graghinto NV disjoint clusters”,,,n = 1,--- , N, such

thatC; U ---UCy = V(G) and > w,,p IS Maximized, wherey, ,, is the weight
a€C; bEC i<]

of the edg€a, b). Since) < > wk,,k> + > Wep = », w(e), maximizing

n  \ k'keCp acC;,beCy i<y e€E(G)
> w,p 1S thus equivalent to minimiziny Yo wpk |-
acCy,beCj,i<j n k' keC,
A simple heuristic algorithm has been proposed in [51] anaabed for interference
management in [31] for multicell OFDMA systems, achievimgabsolute ratio of1 —
1/N) for a generalV-CUT problem. This algorithm is listed in Table 4.2 and wil bsed

in this chapter.

Power Allocation Design

As mentioned before, V2V links in one cluster can share tleetspm with one V2I link
while those in different clusters are not allowed to shawe.dn arbitrary spectrum sharing
pattern, e.g., when theith V2I link is transmitting over thefth RB, which is shared by
all V2V links in thenth cluster,C,,, we attempt to find its optimal power control for both
V2l and V2V links. That is, we maximize the V2| capacity, defihasR,, ,[f], with the

reliability of all V2V links in thenth cluster guaranteed when they share ftileRB. The
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power optimization problem is formulated as

PT?L 9m B[f] A
max IOg 1+ 7 = Rm,n f (45)
Pe AP} ? < o? + k% P;ff,fgk,B[f] ]
€Cn
Pd
st. Pr SELH < ~d

0%+ Pg cgmrlf] + k§k P 9w k[ f]

< po,Vk € C, (4.5a)
0< P s < Prax (4.5b)
0 < Py < P Vk € Ch. (4.5¢)

To evaluate the outage constraint of (4.5a), we will turp &m analytical form by using

the following result from [52].

Lemma 3. Suppose;, - - - , z,, are independent exponentially distributed random vaeabl

with meandi|[z;] = 1/);. Then we have [52]

n n 1
Pr {Zl S ZZZ' + C} = 1 - 6_)\16 1 A1’ (4'6)

wherec is a positive constant.

In light of Lemma 3, we replace the outage constraint for a2 links in (4.5a) with

ydo2
exp | —5a—
P/c FO% 1
1— — - - < po,Vk € C,. 4.7)
1 + Pm,fam,kpyo , 1 Pk/,fak’,kﬁfo
I S v

Pkyfak

This is still a fairly complex constraint and is hard to dedthw To avoid the difficulty of

manipulating such complicated inequalities, we further tne following result in [53] to

59



bound the derived outage constraints

d 2
L <_ %’;J 1
o P¢ .« d Pe o d
m, fOmkTo < &, f Ok k70
1+ v Kk 1+ e
V(C)l <02 + P;ibvfozm,k + > Pd,’fozk/,k>
k'#k
<l—exp| — v
thak

where tightness of the upper bound on outage probabilitypppas demonstrated in [53].
To this end, the power control problem in (4.5) for all V2VKsiin thenth cluster,C,,,

and the associatedth V2I link over the fth RB can be cast as

P?f?, 9m B[f]
max log, [ 1+ ST (4.9)
T ( o>+ . P ogislf]
keCh
st. WA S %
02 + Pﬁb,fam,k + Z Pd,7fak/7k - hl l—lpo ’
k' £k
vk € C, (4.93)
0< PLy < P (4.9b)
0< Py < P Vk € Ch. (4.9¢)

Remark 1. For generalized fast fading distributions with unit meanves i.e. [E[|4|?] = 1,
we exploit the results from [54] to find an upper bound of théage probability of V2V
links, i.e., the left hand side of (4.5a), by

0% + P sy + > P o
k' 2k

Ok < Finp2 | 6
[l P]ifak’

, (4.10)
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Vk € C,, whereFj,, 2(-) is the fading cumulative distribution function (CDF) of thth
V2V link, which is assumed to be concavelon The outage constraint in (4.5a) can be

further derived as

P]?fak f}/g
: > Vk e C,, (4.11)
02 + PS 0tms + k§k Py jawg — Fjpls (po)

whereF|;k1|2(-) denotes the inverse of the CDF. For the popular double-Rglylading to
model non line-of-sight (NLoS) V2V channels, the CDF isrghse[55]

Fpe (@) = 1 = VoK (Vz), (4.12)

whereK (+) is the first order modified Bessel function of the second kind.

We note that the optimality of (4.9) will be achieved when théage constraints in
(4.9a) are satisfied with equality. This can be proved byreaidtion. Suppose the optimal

solution to (4.9) contains at least one V2V linke C,,, with

B seu i (4.13)
o2 + P,‘j%famk + k§k Pd,7fak/7k In 1—1p0

Due to the fact that the left hand side of (4.9a) is monotdlyicacreasing inP,jf and
decreasing irP,g{ 5 k' # k, we can always lower thith V2V's transmit powerP,j > such
that constraints for all V2V links are still satisfied. Alsotite that the objective function
in (4.9) is monotonically increasing with decreasing V2&smit powers. As such, it can
be improved with Iowering3,§f, thus contradicting the optimality assumption.

Letting N., denote the number of V2V links in the clusty,, we further notice that
the relations in (4.9a) are linear iN., + 1 related transmit powers: one V2| transmit
power, Py, ;; and N,,, V2V transmit powers{P,g{f}. In addition, the number of equality

constraints in (4.9a) at the optimal solutions,. Therefore, we can easily derive the
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V2V transmit powers in theth cluster, i.e.,{P,jf},Vk € C,, in terms of the V2I transmit

power,Pf, , as

Pl =& '3 (Ps, o, +07) (4.14)
whereP? . € RV»*! storesN,, V2V transmit powers in theth cluster,j, = ﬁg_po)
A = (W1, s, )T € CNenXt and® € CNen*Nen s given by

(07N |f 7 = j,

—Yoo;;, Otherwise

Here, in the above we have relabeled e V2V links in thenth clusteraq1,2,--- , N, }
and slightly changed the notation by using place of the original V2V index.

Similar to the argument in [28], we can then substitute (Jid4he objective function
of (4.9), which can be shown to monotonically increase \#th,. Hence, after considering

the maximum power constraints, the optimal solution to ttobdjem in (4.9) is given by

. Piiax— J00 ¢ 1 }N
o = N P, 9 — : : (4.16)
f { max { Vo¢f{am -
and
ngf =® 15 (P, jam +07) (4.17)

wherel is an all-one vector ang” is theith row of 1.

1Should either the optimal V2! transmit power, i.@;;f, or any of the optimal V2V transmit powers

in the nth cluster, i.e.,P,j}, k € C,, be negative, we declare the problem in (4.9) to be infeasibd set
Rynlf] = —o0.
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Figure 4.3: Graph representation for spectrum sharing griv@hand V2V links.

Resource Matching

To this end, essential elements of the resource allocatimoigm in (4.4) can be modeled
as a 3-partite graph in Fig. 4.3. For each of the possibleR21V2V resource sharing
patterns {/ F'N in total), we formulate the optimization problem as in (4asy then find
the resulting V2I capacity,,, [ f], Vm, n, f. The weight for the edge linking from theth
V2l vertex in the upper layer, through tliégh RB vertex in the middle layer, and to théh
cluster vertex in the lower layer, is set to Bg, ,,[ f]. Then the spectrum allocation problem

reduces to

max > > % i Rl f] (4.18)
f n

C cl
ST .

St Y py=1> p;=1Yf (4.18a)
S by =19m > pl =1.vn (4.18b)

7 7
P gs iy € £0,13,Ym,n, f (4.18¢)

This problem can be transformed into a weighted 3-dimersdimatching problem with
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weights ofw(m, f,n) = R, ,[f],forl <m < M,1 < f < F,andl <n < N, to which
we now turn our attention.

Formally, a hypergrapli/ = (V, E) consists of a sét’ of vertices and a st of edges
where each edge is a nonempty subsét oA matching inH is a subsei/, C F of edges
such that for any distinct edges, e; € M, e; Ney = (. A k-uniform hypergraph is a
hypergraph in which all edges have sizeFurther, ak-uniform hypergraph is said to be
k-partite if the set of vertices can be partitioned iktdisjoint sets such that every edge
contains one vertex from each set.kAdimensional matching is a matching irkgpartite
hypergraph. The-dimensional matching problem is to find a matching ik-partite
hypergraph with the maximum number of edges. The weightdimensional matching
problem is that given &-partite hypergrapli/ = (V, £') and a functionv : £ — R, find a
matchingM, in H such thato(My) = > w(e) is maximized.

In our case, the V2I-RB-V2V regeojﬁorce allocation problem4nlg) is equivalent to
the weighted3-dimensional matching problem, which can be seen as follows first
construct a3-partite hypergraptt/ = (V, E), by lettingV = {[m,0,0] : 1 < m <
MYyuU{[0,£,0] : 1 < f < F}U{[0,0,n] : 1 <n <N} andE = {(m, f,n) : 1<
m < M1 < f<F1<n< N}, where(m, f,n) = {[m,0,0],[0, f,0],[0,0,n]}.
We define the weight functiom : £ — R by letting w(m, f,n) = R,,.[f], for all
1<m< M1< f<F1<n< N.Now, we can see that solving our V2I-RB-V2V
resource allocation problem is equivalent to solving thegived3-dimensional matching
problem onH = (V, E') with weight functionw.

Note that fork > 3, the k-dimensional matching problem is NP-hard. In fact, the 3-
dimensional matching problem is one of Karp’s famous 21 Wyglete problems. Thus,
we are not expecting a polynomial time algorithm to solve pnablem. Instead, we will
use efficient algorithms to approximately solve thdimensional matching problem, and
provide guarantees that our approximate solutions willlbsecto the optimum.

We adopt and modify the polynomial time algorithm propose¢b6], which gives a
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solution to the weighted 3-dimensional matching probletmapproximation facto2 (but
without the additive constantas in [42]). The algorithm in [56] combines the use of the
iterative rounding method and the fractional local ratidmoel, by using the basic solution-
s of the standard linear programming relaxation of the wteig)t3-dimensional matching
problems. lIterative rounding [57] is a way for designing rpgmation algorithms to ob-
tain solutions to integer programs. It begins with obtagnénbasic solution by solving a
linear programming relaxation. Then it tries to obtain aegnal solution by rounding up
variables of large values and iteratively solving the realgproblems.

Let H = (V, E) be a 3-partite hypergraph, and tet: £ — R. Forv € V, letd(v)
be the set of edges containing The weighted 3-dimensional matching problem can be

formulated as the following integer program:

z(e) € {0,1},Ve € E.

The linear programming relaxation of this integer progrargiven by

max Zw(e)x(e) (4.19)

z(e) > 0,Ve € E.

Algorithm 2 in Table 4.3 is obtained from the weighted 3-ditei@nal matching algo-
rithm from [56] by adding Step 10. For any€ E, let Ne] be the set of edges df
having nonempty intersection with Note thate € N{e|. In Algorithm 5, the solution: of

linear program (4.19) must be basic; or else in Step 4, oneatajuarantee the existence
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Table 4.3: Weighted 3-Dimensional Matching Algorithm [56]

Algorithm 5 Weighted 3-Dimensional Matching Algorithm

=

10:

Input: H = (V, E),w : E — R andx, wherex is a basic solution of linear program
(4.19) obtained by some linear programming algorithm.
Let /' C E with initialization ' = ().
repeat
Search for an edgec E — F such thate(N[e] N (E — F)) < 2.
Let ' = F U {e}.
Leti = |F| + 1, and let; be the index ot.
until £ — F =)
Implement Local-Ratio algorithm in Table 4.4 with inpatandw, wherew is the
weight function on the edges &f.
Let M, be the output of Local-Ratio algorithm.
Use the greedy algorithm to find a maximal $&tof edges, such that/, U E' is a
matching, andv(e) > 0 for all e € E’. Then letM, < M, U E’, and outputl/;.

Table 4.4: Local Ratio Algorithm [56]

Algorithm 6 Local Ratio Algorithm [56]

1:

o

10:
11:
12:

o akrwN

Input: Hypergraph = (V, E), FF C F,w : E — R, and an ordering of the edges in
E.
Let /' = {e € ' : w(e) > 0}.
if F’ ={ then
Return(.
end if
Let ¢/ be the smallest edge iR’ based on the ordering df. Decompose the weight
functionw = w, + wq, Where

[ w(e), if e e N[e].
wi(e) = { 0, otherwise.

M’ +Local-Ratio”, w-). (Note: this is a recursion.)
if M’"U {e'} is a matching ind then
Return)M’ U {¢'}.
else
Return)/’.
end if

of an edger € F — I such thatz(Ne] N (E — F')) < 2. To obtain a basic solution of

the linear program (4.19), we could use some existing lipeagramming algorithm, such
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as the simplex algorithm or the dual-simplex algorithm.ded, any linear programming
algorithm, which produces a basic solution, can be used Mgeemodified the algorithm
in [56] by adding Step 10, because the original algorithmsdoa necessarily produce a
maximal matching infZ, since it only guarantees a matching with weights at leasthaff
of the optimum. So, here, we use greedy algorithm to testhenetr not)/, is a maximal
matching. If not, then we will find&’, with w(e) > 0 Ve € E’, such that\, U E’ is a
matching. In some cases, this added step could greatly iraghe performance of the
whole algorithm.

Now, we analyze the time complexity of the above weightedm3ethisional match-
ing algorithm. A basic solution of the linear programmingasation of the weighted 3-
dimensional matching problem can be found in polynomiaktinhet H = (V, E) be a
3-partite hypergraph with’| = n and|E| = m, letw : E — R, and letz be a basic so-
lution of the linear programming relaxation of the corresping weighted 3-dimensional
matching problem. We show that Algorithm 2, producing a rnisiig whose weights is at
least one half of the optimum, has time complexitymn? log, n).

First, we see that Steps 3 to 7 of Algorithm 2 constitute a ledgch is executed until
we havel’ = E. This loop gives an ordering of edges ihto be used in implementing
Algorithm 3 (Local Ratio Algorithm). The total number of rsions of this loop isn. For
each iteration, we need to searchfin- F for an edge: with z(N[e] N (E — F)) < 2. For
efficiency, we construct a binary tree data structure teedtoe data:(Ne] N (E — F)) for
alle € E—F such that the value of any vertex in the tree is always no nhane the value of
its “children”. By updating this tree in each iteration, wandind mifz(N[e]N(E - F)) :

e € E— F}in O(1) time, which is guaranteed to be no more titanHowever, once
we adde into F, we need to delete this data in our binary tree and modify tiees of
z(N[e'|N(E—F)) forthose edges € (E—F)NN[e]. The total number of modifications is
O(n?), and each modification can be implemente®itog, n) time. Hence, each iteration

of the loop will takeO(n? log, n) Since we haven iterations, the total time of Steps 3to 7
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is O(mn?logy n).

Step 8 can be implemented@(mn?). This is because in Step 8, we call Algorithm 3
(Local Ratio Algorithm) at most» times. In each call of Local Ratio Algorithm, we need
to constructy; andws,, which need€)(n?) time. Therefore, Step 8 can be implemented in
O(mn?) time.

In Step 10, we use the greedy algorithm to find afsedf edges inE — M,, such that
M, U E' is a matching withw(e) > 0,Ve € E’. So, we need to check all the edges in
E — M,, and see whether or not we can add more edgeghihtdhe total number of such
checking isO(m), and for each checking, we can complete itifl) time. So, Step 10
can be implemented i®(m) time.

Thus, givenH = (V,E), w : E — R, and the basic solutiom, the weighted 3-
dimensional matching algorithm has approximation factan@time complexity) (mn? log, n).
The proposed baseline algorithm to solve the problem in) (@.4ummarized in Ta-
ble 4.5. With N = M = F, The V2V clustering has a complexity @?(K M), the
complexity to construct the weighted 3-partite grap®is\/?), and finally, the complexity
of the weighted 3-dimensional matching Algorithm®§ M5 log M ). Therefore, the total

complexity of Algorithm 7 isO(K M + M3 + M5 log M).

4.2.2 GreedyResourceéillocation

Built on the baseline resource allocation in Algorithm 7,fuether propose a greedy al-
gorithm, which substantially improves the system perfaroga Before delving into detalils,
we briefly introduce the main problem setup and the motivefoo such a greedy approach.
We claim that with the power optimization control and 3-dime®nal resource matching
introduced in Sections 4.2.1 and 4.2.1, respectively, tigeir@al problem in (4.4) can be
described as follows: Given a real value functign) defined onX = {(zy,z9, - ,2x) :
xpe{l,--- N} ke{l,---,K}}, findz € X such thay(x) is maximized.

As introduced earlier, we hav& V2V links and N clusters. Let the vectar =
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Table 4.5: Baseline Graph-based Resource Allocation

Algorithm 7 Baseline Graph-based Resource Allocation
1: Use Algorithm 4 to divide/{ V2V links into N clusters, denoted by, - - - , Cy.

2: for m=1:Mdo

33 forn=1:Ndo

4: for f=1:Fdo

5 Use (4.16) and (4.17) to find the optimal V21 and V2V transroivers, respec-
tively.

6: Compute the V2I capacity?,, | f], with the optimized power control parame-
ters.

7: end for

8: end for

9: end for

10: Construct a 3-partite graph, where theV2I links, /' RBs, andV V2V clusters form
the vertices in three layers and the weight for each V2I-RBAédge is set t@,, [ f].

11: Use Algorithm 5 to find a matching solutiov,.
12: Return the 3-dimensional matching (spectrum sharing)trédgg and the correspond-
ing power allocatior{ (P, , P{;)}.

(x1,--- ,zx) denote the situation that thigh V2V link is put into thex,th cluster, for

k e {1,2,---,K}. Letg(xz) denote the objective function value of (4.4), after execut-
ing Algorithm 7, corresponding to the allocation of V2V Imknto N clusters based on
x. More preciselyg(z) = > 7, With 7, = > pf, +logy(1 + 5, ;). Up to this end, it

is easy to see that our proglem in (4.4) is trafnsformed torfimdi € X such thaty(x) is
maximized. Obviously, finding € X to maximizeg(z) cannot be solved in polynomial
time with respect td< and N, as a general integer program problem is NP-hard.

The essential idea behind our greedy approach is to first igg&ithm 4 as an initial-
ization, and then for each of thig V2V links, sequentially decide the best cluster to join,
where the sum V2| capacity is determined by executing Atbari7. This whole process
is repeated for several times until convergence or untigtomund is reached. Formally, the
algorithm is listed in Table 4.6The complexity isO(C(K2M? + KM* + K M°®log M)),

whereC' is the number of iterations for the greedy algorithm to cogee
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Table 4.6: Greedy Resource Allocation

Algorithm 8 Greedy Resource Allocation

1: Initialize z = (x1, xo, - - - , xx ) USing Algorithm 4.

2: repeat

33 fork=1:Kdo

4 Initialize an all-zero vectow = (wy, wy, - -+ ,wy) of length V.

5 forn=1:Ndo

6: if kth V2V is not the only link in its current clustéhen

7 Setz, = n.

8 Execute Steps 2-12 of Algorithm 7 to obtain the matchingtsatul/, based
onz and the corresponding power allocatifi®y, ,, P;)}.

9: Compute the sum V2| capacigfz) = > r}, using the matching (spectrum
sharing) solution\/; and the optimized power§ P, ;, Py)}.

10: Setw,, = g(z).

11 end if

12: end for

13: Setx, = n* with n* = argmax w,,.

14:  end for !

15: until Convergence
16: Return the 3-dimensional matching (spectrum sharing)ltrégyland the correspond-
ing power allocatior{ (P, ;, P{()}.

4.2.3 RandomizedResourc&llocation

We observe that with the power optimization control and Bahsional resource match-
ing introduced in Sections 4.2.1 and 4.2.1, respectively,driginal problem in (4.4) is
essentially a combinatorial problem as described in Secti@.2. The greedy algorithm
proposed in Table 4.6 tends to get trapped at a local optimhich might be far away
from the global optimum due to the combinatorial nature efpinoblem. To address this
issue, we propose a randomized procedure in this subseatiene a V2V link is allowed
to join a suboptimal cluster with an appropriate probapifissociated with its achieved
sum capacity. The proposed randomized algorithm is list&@ble 4.7, where we use the
generic symbols defined in Section 4.2.2 for notational cachpess.

For this randomized algorithm, let™) = (21,29, -, 24 1,0, Tpy1, -+, 2x) and
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Table 4.7: Randomized Resource Allocation

Algorithm 9 Randomized Resource Allocation
1: Initialize x = (z1, 29, - -+ , xx), amplification coefficientt > 1, the number of itera-
tions I, temperaturd’, and maximum temperatuie,, .
2. fori=1:1do

3 ifa-T < T, then

4 T<+a-T.

5 endif

6: fork=1:Kdo

7 Let2™ = (z1, 29, -+, Tp_1, 7, Tpy1, - ,Tx),n =1,2,--- N,
8 Letw = (wy, wy, - -, wy) With w,, = g(2™),n =1,2,--- | N.
9 Letw = exp(T - w).
10: Letw = w/(30_, w,).
11: Generate a random numbgre (0, 1) according to standard uniform distribution,

and letr be the minimum number such that _, w, > R.

12: Letx, = r.
13:  end for
14: end for

15: Return the 3-dimensional matching (spectrum sharing)trégy and the correspond-
ing power allocatior{ (P, ;, P{()}.

w, = g(™), forn = 1,2,---,N. We calculatew = (wy,ws,---,wy). Instead of
choosingr,, such thaty(-) is maximized as in the greedy approach listed in Algorithm 8,
we will probabilistically update:;, to an appropriate cluster using the procedure described
below. We amplify each entry ab by some factofl’, termed asemperatureand then let

w = exp(T - w). Our goal here is to make large entries larger, such that when trans-
formed into a probability distribution, those large ergridw will have corresponding large
probabilities. Next, we normalize to get a probability distributiom with év: w, = 1.
Based on this distribution, we will determine the valuergf Obviously, t?lzolse choices
of z;, with larger corresponding objective function valge) will be more likely chosen.
However, we also allow;, to take a value with smaller corresponding objective florcti
since it may induce larger objective function value in fetiterations. After each sweep

of all V2V links, we will change our temperature parameterseyting? = a - 7' such

that in the next iteration, it is more likely for us to pick thamber with the largest objec-
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tive function value forr,. Such a procedure makes the iteration process more statble an
could potentially avoid being trapped at a local optimumteéNibat we also set a parameter
Traz- Whena - T > T,,.., we will not updatel’. This is because " is too large, then

in practice, we may getoco in calculation. Hereqg and7,,,, are empirical parameters,
which will be determined in the simulation experimen®ease note that the complexity
of the proposed randomized algorithm is essentially closkd greedy resource allocation

in Algorithm 8, which isO(C(K2M?* + KM* + K M°®log M)) with C' depending on the
number of iterations for the algorithm to converge.

The intuition of this randomized algorithm is obtained fregimulated annealing [58],
which is a probabilistic technique for approximating thelgdl optimum of a given func-
tion. When the search space is discrete and large, simuateelaling is useful for ap-
proximating global optimization. The temperature paranptays an important role in the
simulated annealing algorithm. When the temperature petemis large, the algorithm
will more likely accept a bad move. Normally, the distrilmutiused to determine whether
or not we accept a bad move is known as Boltzmann distribufiothe beginning of sim-
ulated annealing, the temperature will be set to a very rhaghkllto ensure that the space
in which we search for a solution is large. Moreover, the terafure will decrease as the
search proceeds. When the temperature reaches a very lelthealgorithm becomes a
greedy hill-climbing algorithm and the approximate sadas will converge to an optimal
solution. If we decrease the temperature more slowly, theratgorithm can approximate
a global optimum with higher probability.

Instead of using Boltzmann distribution to calculate thebability of accepting a state
when applying simulated annealing, we use the temperatnaneter and amplification
coefficient in our randomized algorithm. tlie temperature is highhen our algorithm is
less likely to accept a bad move, which is opposite to the kited annealing algorithm.
The amplification coefficient controls the increasing spekthe temperature parameter.

If the amplification coefficient is extremely close tpthen the algorithm will eventually
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Table 4.8: Resource Allocation with Slow Fading CSI

Algorithm 10 Resource Allocation with Slow Fading CSI

1: Use Algorithm 4 to divide/{ V2V links into N clusters(, - - -, Cy.

2: Use Algorithm 9 to update the clustering result, where thtnaogd power control pa-
rameter is obtained from solving (4.20) and Hungarian atigorin [33] is used to find
the matching between the V2I links and NV V2V clusters.

3: Return the matching (spectrum sharing) result and the sporeding power allocation

{(P5, P}

converge to a global optimum like simulated annealing, bthe&expense of dramatically
increased implementation time. Therefore, in practiceywileset the amplification coef-
ficient large to make the approximate solution convergeldyicAlthough in theory, the
algorithm may lead to a local optimum, it works well in praeti as demonstrated by our

simulation results.

4.3 Resource Allocation with Slow Fading CSI

In this section, we consider the resource allocation prabihen the vehicular net-
works further reduce signaling overhead by adapting spectllocation and power con-
trol to slow fading CSI. In this case, in spite of the availipiof fast fading CSI for links
connecting the BS, such information is not used in the resoallocation process.

In the first step, Algorithm 4 will be used to find appropriat@\W clustering result,
which will be used in later stages.

As the slow fading components are assumed to be frequengy.dlatindependent of
the RB indexf, the original problem in (4.4) will be transformed to a preil for finding
a matching between th&/ V2I links and theN V2V clusters, which is then a maximum
matching problem for weighted bipartite graphs and can hedefficiently in polynomial

time by the Hungarian algorithm [33]. More precisely, thedle combination will only be
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indexed by(m, n) instead of(m, f, n) and the associated power control problem becomes

Py m, B A
max lo 1+ LA = Ron 4.20
Prcn’{PIé,(m 52 ( 02 + Z Pkc,’l,mahB) 7 ( )
keCy,
s.t Plg,mgk[f] < ’Yd
B 0%+ Pegmilfl + >0 P g ilf] ~ ’
ja
S Do, Vk € Cn
0 < P, < Prax

0< P, < PasVk € C,

The same procedure in 4.2.1 can be executed to find a solatitretabove formulated
power control problem. Finally, we will exploit the randarad procedure in Algorithm 9
to optimize the clustering process and improve the systafonpeance. The algorithm for
resource allocation with slow fading CSl is listed in Tabl8,4vhose essential complexity
is O(C(K?M? + KM? + KM*)) with C depending on the number of iterations for the

algorithm to converge.

4.4 Simulation Results

In this section, simulation results are presented to viditlee proposed spectrum and pow-
er allocation algorithms for D2D-based vehicular netwokke follow the simulation setup
for the freeway case detailed in 3GPP TR 36.885 [10] and medallti-lane freeway that
passes through a single cell where the BS is located at itercas illustrated in Fig. 4.1.
The vehicles are dropped on the roads according to spaissddtoprocess and the vehicle
density is determined by the vehicle speed. Thé/2I links are randomly chosen among
generated vehicles and tié V2V links are formed between each of the V2I transmitter
with its closest surrounding neighbors. The major simataparameters are listed in Ta-

ble 4.9 and the channel models for V2| and V2V links are descrin Table 4.10. Note
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Table 4.9: Simulation Parameters [10, 47]

Parameter Value
Carrier frequency 2 GHz
Bandwidth 10 MHz
Cell radius 500 m
BS antenna height 25m
BS antenna gain 8 dBi
BS receiver noise figure 5dB
Distance from BS to highway 35m
Vehicle antenna height 15m
Vehicle antenna gain 3 dBi
Vehicle receiver noise figure 9dB
Absolute vehicle speed 70 km/h

Vehicle drop model

spatial Poisson process

Number of lanes

3 in each direction (6 in tot

tal)
Lane width 4m
Average inter-vehicle distance 2.5v, vinm/s.
SINR threshold for V2\&¢ 5dB
Reliability for V2V p, 0.01
Number of V2I linksM 10
Number of V2V links K 30
Maximum V2| transmit poweiPy,, 17,23 dBm
Maximum V2V transmit power<,, 17,23 dBm
Noise powelr? -114 dBm

Table 4.10: Channel Models for V2I and V2V Links [10]

Parameter V2I Link V2V Link

128.1 + 37.€bg,yd, d in | LOS in WINNER +
Pathloss model Kkm B1 [48]
Shadowing distributiony Log-normal Log-normal
Sha_dqwmg standard8 dB 3dB
deviation¢
Fast fading Rayleigh fading Rayleigh fading

that all parameters are set to the values specified in Tat8emdl 4.10 by default, where-

as the settings in each figure take precedence wherevecalplgli In the simulation, the

number of V2V clusters)V, is set to be equal to the number of V2I linkd,.

Fig. 4.4 compares the CDF of the instantaneous sum V2| dgpachieved by the
proposed algorithms against the benchmark CROWN schensdoged in [28] and its ex-
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tended version, termed CROWN-F, where we have exploiteché#tbod in [28, Lemma 1]
to generate an equivalent SINR threshold in terms of the &admng CSI. In the CROWN-
F scheme, we randomly allocate orthogonal RBs to V2I linkd #ren make use of the
available fast-fading CSI of links terminating at the BSluding ¢,,, 5 and gy, 5, to per-
form spectrum and power allocationVe observe that all of the proposed algorithms, i.e.,
Algorithms 4, 5, 6, and 7 outperform the benchmark CROWN aR®OW®N-F schemes.
In particular, the proposed greedy approach (Algorithmrie) emndomized resource allo-
cation (Algorithm 6) achieve substantially improved penfiance compared with the base-
line scheme (Algorithm 4) at the cost of increased compyexifurther adjusting the V2V
clustering. It is noted that the CROWN-F scheme and Algorght, 5, and 6 use the slow
fading CSI of mobile links, i.e., links among vehicles whalgapting to the fast fading CSI
of links involving the BS. In contrast, Algorithm 7 and thenebmark CROWN scheme
only adapt to the slow fading CSI of all links in the systempitesthe availability of fast
fading CSI of BS-involved links, thus incurring reducedwetk signaling overhead. For
the same level of signaling overhead, Algorithm 7 signifibanutperforms the benchmark
CROWN scheme due to its fine tuning of V2V clustering throughproposed randomized
procedure. Surprisingly, Algorithm 7 can even approachpirdormance of the baseline
Algorithm 4, which adapts to fast fading CSI but has not erpgtbthe proposed greedy or
randomized procedures to further adjust V2V clustering.

The reliability of V2V links is demonstrated in Fig. 4.5, wikehe CDF of the instan-
taneous SINR of an arbitrary V2V link has been plotted. From figure, all proposed
algorithms and the benchmark CROWN and CROWN-F schemes\aztiie SINR thresh-
old, ¢ = 5 dB, at the targeted outage probabilityygf= 0.01, justifying the effectiveness
of the reliability guarantee of the proposed resource atioo schemes. In addition, the
observation that the SINR threshold is achieved fairly eatgly verifies the tightness of
the outage upper bound in (4.8), used to facilitate the daom of power control designs.

Fig. 4.6 shows the performance of the proposed greedy artbmaimed algorithms
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Figure 4.6: Sum V2| capacity with increasing iterationsaridomized clustering, assum-
ing P, = PSay = 23 dBm.
with an increasing number of iterations to update V2V cliste From the figure, the
greedy approach (Algorithm 5) quickly converges to a logdiroum and will not improve
as the iteration number increases while the randomizedrigo 6 keeps increasing and
finally converges to a better solution. The advantage ofahdamized procedure is better
exemplified by Algorithm 7, where the performance can sligiecrease at the first few
iterations and finally converge to a good solution. This desti@ates the effectiveness of the
probabilistic approach of approximating the global optmaf a combinatorial problem.
Please note that in the simulation, we have deliberateltheeamplification coefficient in
the randomized procedure to be large for quick convergemoese performance turns out
to be desirable. In practice, trial and error need to be padd to fine tune the parameters.
Fig. 4.7 shows the sum V2| capacity of the two proposed ranzesralgorithms with
an increasing vehicle speed. We observe that the sum V2titgud both Algorithms 6
and 7 decreases as the vehicle speed increases. This istdattte growing vehicle speed

induces sparser traffic on the highway according to our stiant model as described in
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[10]. Here, in order to guarantee the reliability of V2V Igkncreased V2V transmit power
is needed to compensate for higher path loss of the V2V sigrainels and, meanwhile,
less interference from V2I transmitters can be tolerateti@i/2V receivers. As a result,
the maximum allowed transmit power of V21 links will be rasted and more interference
from V2V links is generated towards the V2| links, whose aatyawill thus decrease.
From Fig. 4.7, itis interesting to note that the sum V2I cétyatecrease of both Algorithms
6 and 7 is approximately linear in growing vehicle speed, ke vehicle speed roughly has
a uniform impact on the sum V2I capacity. In addition, an @ase of maximum transmit
power of vehicular links, from7 to 23 dBm, improves the sum V2| capacity and such
capacity improvement is also roughly uniform with respedhie vehicle speed.

Fig. 4.8 demonstrates the impact of the number of active M@kslon the quality of
V21 connections. We observe from the figure that the sum V@acday of both Algorithms
6 and 7 decreases as the number of V2V links grows larger. dsons for such capacity

decrease are two fold. On the one hand, with more active VidZkéJieach V21 link needs
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Figure 4.8: Sum V2| capacity with varying number of V2V linkssumingPl,, = P¢.,
andM = 10.

to share the spectrum with more V2V links simultaneouslygiiarantee the reliability of
all of these V2V links, the interference from V2I transmitéieeds to be controlled and
thus the allowed transmit power of V2I links will be restadt leading to decreased V2I
signal power. On the other hand, more interference fromrnbeeased number of sharing
V2V links will be generated towards the V2l links, which foer reduces the received
SINR of V2I links. We also note that the system performancélgbrithms 6 and 7 is
very sensitive to the V2V link increase when only a few V2\kkrexist to share spectrum
with V21 links, as evidenced from the steep slope of the ciypaarve. Such performance
degradation becomes less significant when the number of WiR¥ grows beyond 5 times
that of V2I links, which can be attributed to the fact that WV interference towards V2I
link is very severe in these cases and the sum V2I capaciigrsignificantly, leaving very
little room for further performance degradation. Besidles,sum V2| capacity increases as
the transmit power budget grows fraimto 23 dBm. However, such capacity gain becomes

marginal when the number of active V2V links grows large.
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4.5 Summary

In this chapter, we studied the resource allocation probtem2D-based vehicular net-
works, in which each V2l link shares spectrum with multipl2Wlinks and the BS only
has access to the slow fading CSI of all vehicular links ektepse terminating at the
BS. We exploited graph partitioning algorithms to divideWlhks into disjoint spectrum-
sharing clusters to minimize mutual interference beformidating the spectrum allocation
problem as a weighted 3-dimensional matching problem/eddkrough adapting a high
performance approximation algorithm. We also proposeddy@nd randomized resource
allocation schemes based on our baseline algorithm, lgadisubstantially improved per-
formance. To further reduce network signaling overheaddeweloped a low-complexity

randomized algorithm, which adapts to the slow fading C&llofehicular links.
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CHAPTER 5
RESOURCE ALLOCATION WITH MULTI-AGENT REINFORCEMENT
LEARNING

The majority of existing resource allocation methods fohnigalar communications rely
on some level of channel information, large- or small-scal@ discrete and independent
manner. That is, they ignore the dynamics underlying chiaewaution and thus find dif-
ficulties in providing direct answers to problems of seqiamature, such as the require-
ment of “successfully transmittingg bytes within time7™”, commonly seen in vehicular
networks.

Reinforcement learning (RL) has been shown effective iresking a wide variety
of sequential decision making problems [59]. In particutacent success of deep RL in
human-level video game play [60] and Alpha Go [61] has sghekBurry of interest in the
topic and remarkable progress has been made ever sinceiadlyga the domain of multi-
agent RL. For example, a deep RL based approach has beeppukyéh [62] to address
job scheduling in computing clusters such that the averatgslpwdown is minimized. We
believe RL is also well-suited to resource allocation peaots in vehicular networks in that
it can train for objectives that are hard to model or optimiza principled manner, such
as the “transmitting3 bytes within7” example. Another potential advantage of using RL
for resource allocation is that distributed algorithms bamade possible, as demonstrated
in [63], which treats each vehicle-to-vehicle (V2V) link as agent that learns to refine
its resource sharing strategy through interacting withulenown vehicular environment.
Detailed discussions of the challenges and opportunifiapaying RL, or more generally
machine learning, in vehicular networks have been predent®4] and interested readers
are referred there for an overview.

In this chapter, we consider the spectrum sharing problelmgh mobility vehicular
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Figure 5.1: An illustrative structure of vehicular netwsrk

networks, where multiple V2V links attempt to share the frexacy spectrum preoccupied
by vehicle-to-infrastructure (V2I) links. Different fropure graph-enabled centralized [65]
or RL-based decentralized [63] resource allocation methed develop a semi-distributed
spectrum sharing scheme such that decision-making is loesadnix of fast-varying local
observations and slowly-changing global large-scalenfgdiformation, seeking to harness
the benefits of both. In addition, the spectrum access ofiphell/2V links is naturally
modeled as a multi-agent problem and we ask if recent pre@fasulti-agent RL [66, 67]
can be exploited to enable each V2V link to learn from its owpegiences while working
cooperatively to optimize system-level performance.

The rest of the chapter is organized as follows. The systemeinis presented in
Section 5.1. We introduce the basics of RL and the multi-aBérbased resource sharing
design in Section 5.2. Section 5.3 provides our experinesults and concluding remarks

are finally made in Section 5.4.
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5.1 System Model

Consider a vehicular communications network withVV2l and K V2V links, shown in
Fig. 5.1. The V2I links connect/ vehicles to the base station (BS) to support bandwidth
intensive applications, such as social networking and ensleaming. Thé( V2V links
are formed among vehicles, designed with high reliabilitghsthat safety critical infor-
mation can be shared among neighboring vehicles reliablhe form of localized D2D
communications. We assume all transceivers use a singdarat The set of V2I links and
V2V links are denoted byM = {1,--- | M} andKC = {1,---, K}, respectively.

In this chapter, we assume that the V2l links (uplink considered) have been preas-
signedM orthogonal spectrum bands, one for each. To improve spettigency, these
bands are reused by thi€é V2V links. In practice, the number of V2V links tends to be
much larger than that of V2I links, i.ef > M, making spectrum reuse among V2V
links necessary. As a result, the major challenge is to demigefficient spectrum sharing
scheme for these V2V links such that both types of vehicind&slachieve their respective
goals with minimal signaling overhead.

The channel power gaimy[m], of the kth V2V link over themth band (occupied by

themth V2I link) follows

gklm] = aghi[m], (5.1)

wherehy[m] is the frequency dependent fast (small-scale) fading p@eerponent and

assumed to be exponentially distributed with unit mean, @ndaptures the large-scale
fading effect, including path loss and shadowing, assuradektfrequency independent.
The interfering channel from the'th V2V transmitter to thekth V2V receiver over the

mth band,g. ,[m], the interfering channel from theth V2V transmitter to the BS over
the mth band, g, z[m|, the channel from thenth V2I transmitter to the BSg,, 5, and

the interfering channel from thexith V2I transmitter to theith V2V receiver,g,, ;, are
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similarly defined.
The received signal-to-interference-plus-noise rat®idlRs) of themth V2I link and

the kth V2V link (over themth band) are expressed as

PﬁzgmB

" Sl Pl lge sl 5.2)
and
Yilm] = %, (5.3)

respectively, wheré and P¢[m| denote transmit powers of theth V2| transmitter and

the kth V2V transmitter over the:th band, respectively;? is the noise power, and

Ii[m] = Pgms + Y p[m] P m]gw xlml, (5.4)
k'#k

denotes the interference powepy[m] is the binary spectrum allocation indicator with
prlm] = 1 implying the kth V2V link uses thenth band andy[m] = 0 otherwise. We
assume each V2V link only accesses one band M.y [m| < 1.

Capacities of the V2l and V2V links are obtained as
Ce = Wlog(l+~5), (5.5)
and
Ciilm] = Wlog(1 + y¢[m]), (5.6)

wherelV is the bandwidth of each spectrum band.

Per requirements of different vehicular links, the objeetis to design power con-
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trol and spectrum allocation schemes that simultaneouakimize the sum V2| capacity,

> C< , and the V2V payload transmission probability,

T M
Pr{ZZpk [Cim, 1] >B/AT},keIC, (5.7)
1 m=1

t=

where B is the payload size)r is channel coherence tim&, is the payload generation

period, and the indekis added inC¢[m, ¢] to indicate V2V capacity at different time slots.

5.2 Multi-Agent RL Based Resource Allocation

After briefly introducing the basics of RL as well as its nuatent variant, we formu-
late the spectrum sharing design in vehicular networks asla-agent RL problem. For

detailed treatment of RL, we refer interested readers tp [59

5.2.1 Reinforcementearning

RL addresses the problem of sequential decision makingrendse agent learns to map
situations to actions so as to maximize certain numerioghregs through interacting with
the environment. Mathematically, the RL problem can be rremtlas a Markov decision
process (MDP). As shown in Fig. 5.2, at each discrete timp stéhe agent observes
some representation of the environment statérom the state spac§, and then selects
an actionA, from the action sefd. Following the action, the agent receives a numerical
rewardR,,; and the environment transitions to a new sftatg, with transition probability
p(s',rls,a) 2 Pr{S,1 = s, Ry = r|Sy = 5, A, = a}.

In RL, decision making manifests itself in a polieya|s), which is a mapping from
states inS to probabilities of selecting each action . The goal of learning is to
find an optimal policyr, that maximizes the expected retugh from any initial state
s, where@, is defined as the cumulative discounted rewards with a digo@te~, i.e.,

= Z ’}/kRH_k_H with 0 <~ < 1.
k=0
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Figure 5.2: The agent-environment interaction in a reicgéarent learning problem.

Q-Learning

Q-Learning [68] is a popular model-free method (meaninglieixgknowledge of MDP
dynamicsp(s’, r|s, a) is not required) to solve RL problems. It is based on the cpince
of action-value functiong,(s,a) for policy =, which is defined as the expected return
starting from the state, taking the actiom, and thereafter following the policy, formally

expressed as
qr(s,a) =E; [G¢|S; = s, A = d] . (5.8)

The action-value function of the optimal poliay,(s, a), satisfies recursive relationships,

known as the Bellman optimality equation:

0.(5,0) = Y (s rls,0) [+ ymaxan(s, )| (5.9)

s'r

for any states, actiona, successor stat€ and action:’. In principle, one can solve the

systems of nonlinear equations f01(s, a) if the dynamicsp(s’, /|s, a) are known. Once
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g 1S obtained, it is easy to determine the optimal policy:

1, if a = argmaxgq.(s,a),
T (als) = acA (5.10)

0, otherwise

Q-learning avoids the difficulties of acquiring exact dynesrp(s’, a’|s,a) and directly
solving the nonlinear optimality equations in (5.9) andrésto an iterative update method,

given by
Q(St, Ap) < Q(Si, Ar) + [Rt+1 + 7y max Q(Si41,a) — Q(St, At)] ) (5.11)

wherea is the step-size parameter and the choicd oih statesS; follows some soft poli-
cies, e.g., the-greedy policy, meaning that the action with maximal estedavalue is
chosen with probability — e while a random action is instead selected with probability
It has been shown in [59] that with a variant of the stochagtigroximation conditions on
« and the assumption that all state-action pairs continue togolated() converges with

probability 1 to the optimal action-value functiap.

Deep Q-Network with Experience Replay

In many problems of practical interest, the state and ad@te can be too large to store
all action-value functions in a tabular form. As a resultisitcommon to use function
approximation to estimate these value functions. Anotlosaatage of doing so is the
generalization ability from limited seen state-actionrpdo produce approximation in a
much larger space. In deep Q-learning [60], a deep neuralonketparameterized by,
called deep Q-network (DQN), is used to represent the actadure function. The state-
action space is explored with some soft policies, e-gteedy, and the transition tuple
(Sy, Ay, Ritq, Siv1) is stored in a replay memory at each time step. The replay memo

accumulates experiences over many episodes of the MDP.cht stap, a mini-batch of
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Figure 5.3: The agent-environment interaction in a mujesat reinforcement learning
problem.

experienced are uniformly sampled from the memory for updatiégvith variants of
stochastic gradient-descent methods, hence the nameengeereplay, to minimize the

sum-squared error.:

S [Recr + 7 max @S, ':07) — Q(S:. A 0)] (5.12)

D

whered~ are the parameters of a target Q-network, which are duplidabm the training
Q-network parameters periodically and fixed for a couple of updates. Experiengdane
improves sample efficiency through repeatedly samplingedt@xperiences and breaks

correlation in successive updates, thus also stabiliaaging.

5.2.2 Multi-Agent Reinforcement.earning

Different from single-agent RL, the multi-agent RL problesatup consists of multiple
agents, denoted bye 7 = {1,--- | I'}, concurrently exploring the unknown environment
[66, 67]. The underlying MDP is described in the followings shown in Fig. 5.3, at each
time stept, given the current environment statg each agent receives an observation

7 of the environment, determined by the observation funaficas Z\” = O(S,, i), and
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then takes an actioﬂf), forming a joint actionA;. Thereafter, the agent receives a reward
R, and the environment evolves to the next statg with probabilityp(s’, r|s,a). Please
note that all agents share the same reward in this article that cooperative behavior is
encouraged among them.

Independent Q-learning [69] is among the most popular nistho solve multi-agent
RL problems, where each agent learns a decentralized gmdi®gd on its own action and
observation, treating other agents as part of the envirahnowever, naively combining
DQN with independent Q-learning is problematic since eaggnawould face a nonsta-
tionary environment while other agents are also learningdjoist their behaviors. The
issue grows even more severe with experience replay, whittei key to the success of
DQN, in that sampled experiences no longer reflect currenahycs and thus destabilize

learning.

5.2.3 Resourcesharingwith Multi-Agent RL

In the investigated resource sharing scenario illustratédg. 5.1, multiple V2V links at-
tempt to access limited spectrum occupied by V2I links, Wwihwould naturally be modeled
as a multi-agent RL problem. Each V2V link acts as an agentirtedacts with the un-
known communication environment to gain experiences, whre then used to direct its
own policy design. Multiple V2V agents collectively expdothe environment and refine
spectrum allocation and power control strategies basedh@n ¢wn observations of the
environment state. While the resource sharing problem maga a competitive game,
we turn it into a fully cooperative one through using the saaveard for all agents, in the
interest of global network performance.

The proposed multi-agent RL formulation bases resourcerghdesign on a mix of
fast-varying local observations of each individual V2\Kiand the slowly-changing global
large-scale fading information. The global informationclected at the BS and then

broadcasted to all vehicles in its coverage [70], as evieemat the following observation

90



space design. It is noted that we focus on settings with akréd learning and semi-
distributed execution. This means in the learning phasegtbbal performance-oriented
reward (to be defined in the following) is readily accesstbleach individual V2V agent,
which then adjusts its actions towards an optimal policysT$a feasible practice since our
group of V2V agents are trained on an environment simul&tidhe execution phase, each
V2V agent receives a mix of local fast-varying observatiohshe environment and the
periodically broadcasted global channel information, treth selects an action according
to its trained DQN on a time scale on par with the local obg@a. Key elements of the

multi-agent RL based resource sharing design are desdridded in detalil.

State and Observation Space

In the multi-agent RL formulation of the resource sharingigdem, each V2V link acts as
an agent while everything beyond itself is treated as pati@énvironment. The true envi-
ronment state$;, which could include global channel conditions and all agdmehaviors,

is unknown to each individual V2V agent. Each agent can oofjuae knowledge of the
underlying environment through the lens of an observatimetion. In part, the observa-
tion space includes the global large-scale fading infoionat.e.,ac = {ov,, i, B, O B, Cin i
for all k € K andm € M, which varies slowly and can be periodically collected & th
BS and broadcast to all vehicles. Additionally, the obsgovespace of an individual V2V
agentk contains fast-changing local information, including igosmall-scale channel fad-
ing, hx[m], for all m € M, interference channels from other V2V transmittérs,. [m],

for all ¥’ # k andm € M, the interference channel from its own transmitter to the BS
hi.5[m], for all m € M, and the interference channel from V2| transmittéj;gk, for all

m € M. The relationship between overall channel gairgand small-scale channel fading,
h, is given in (5.2). The received interference power ovebatids,/;[m], for all m € M,
expressed in (5.4), can be measured and introduced in talkoloservation. In addition, the

local observation space also includes the remaining V2\lgaaly B;., and the remaining
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time budget/}. Hence, the observation function for an age

O(Stvk) = {aka’kav{Hk[m]}meM}a (513)

~

with Hy[m] = {hi[m], hi 1[m], b g[m], P e, Ie[m] }

To address the issue of combining independent Q-learnitiy RQN as discussed in
Section 5.2.2, we adopt the fingerprint-based method degdlin [67]. The idea is that
while the action-value function of an agent is nonstatignaith other agents changing
their behaviors over time, it can be made stationary comkiil on other agents’ policies.
This means we can augment each agent’'s observation spdtaméstimate of other a-
gents’ policies to avoid nonstationarity, which is the essé idea of hyper Q-learning
[71]. However, it is undesirable for the action-value fuastto include as input all param-
eters of other agents’ neural networls,;, since the policy of each agent consists of a
high dimensional DQN. Instead, it is proposed in [67] to dynpclude a low-dimensional
fingerprint that tracks the trajectory of the policy chanfether agents. This method po-
tentially works since nonstationarity of the action-vafuaction results from changes of
other agents’ policies over time, as opposed to the politiesiselves. Further analysis
reveals that each agent’s policy change is highly corrélaféh the training iteration num-
bere as well as its rate of exploration, e.g., the probabilityasfdom action selectiom, in
thee-greedy policy widely used in Q-learning. As a result, wdude both of them in the

observation for an agent,, expressed as
ZF) = {O(S,, ko), e, €} . (5.14)

Action Space

The resource sharing design of vehicular links comes dowviimetgpectrum band selection

and transmission power control. While the spectrum ndiubagaks inta)/ disjoint bands,
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each preoccupied by one V2I link, the V2V transmission pawically takes continuous
value in most power control literature. In this chapter, boar, we limit the power control
options to four levels, i.e.[23,10,5,0] dBm, for the sake of both ease of learning and
practical circuit restrictions. As a result, the dimensidthe action space i$ x M, with

each action corresponding to one particular combinatidsaafl and power selection.

Reward Design

What makes RL patrticularly appealing for solving problemthward-to-optimize objec-
tives using precise mathematical methods is the flexibitityts reward design. In the
studied V2X spectrum sharing problem, our objectives addld: maximizing the sum
V2l capacity while increasing V2V payload transmissioncass probability.

In response to the first goal, we simply include the instagwas sum V2| capacity,
> C¢(t), in the reward at each step. To achieve the second goal, weagieward of
Tet/c\)/leach V2V agent if the payload transmission is finishedhatcurrent step, and O for
all other cases. We observe that if setting the discountyatel, the designed reward
encourages each agent to finish payload transmission tev&chigher reward values but
will not distinguish if the finishing moment comes early otelaA salient feature of this
design is that the system can now learn to balance the progfése two spectrum sharing
objectives. For example, the V2V agent may choose to logguatver for the benefit of
V2| capacity improvement if it is optimistic about its owntfuwe transmission instead of

always selfishly increasing power to finish early.

Specifically, we set the reward at each time stap

Ri=XY Co(t)+ XAy Li(t), (5.15)
m k

where L, (t) is the V2V reward component designed as described abdvend \; are

positive weights to balance V2I and V2V objectives.
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Algorithm 11 Resource Sharing with Multi-Agent RL
1: Start environment simulator, generating vehicles andslink
2: Initialize Q-networks for all agents randomly
3: for each episoddo

4:  Update vehicle locations and large-scale fading
5 ResetB, = BandT, =T, forallk € K
6: for each step do
7 for each V2V agent do
8 ObserveZt('“)
9: Choose actior}lgk) from Zt(k) according toe-greedy policy
10: end for
11: Update channel small-scale fading
12: All agents take actions and receive rewaid ,
13: for each V2V agent do
14: Observ&t(_'ﬁ)1
15: Store(Zt(k), Agk), Ry, Zt(ﬂ) in replay memoryD;,
16: end for
17:  end for
18: for each V2V agenk do
19: Uniformly sample mini-batches fror®,,
20: Optimize error between Q-network and learning targets2)5usking variant of
stochastic gradient descent
21:  end for
22: end for

Training Algorithm

We focus on an episodic setting with each episode spannagdfety message gen-
eration periodl’. Each episode starts with a randomly initialized environtretate (de-
termined by the initial transmission powers of all vehicuiaks, channel states, etc.) and
a full V2V load of sizeB for transmission, and lasts until the end’of The change of
channel small-scale fading triggers a transition of tharenwment state and causes each
individual V2V agent to adjust its actions.

Each V2V agent has a Q-network that takes as input the current obseerIfi'iirand
outputs the value functions corresponding to all actione.téin the Q-networks through

running multiple episodes and, at each training step, aV @8ents select their actions
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Table 5.1: Simulation Parameters [10, 47]

Parameter Value

Number of V2I linksM 4

Number of V2V links K 4

Carrier frequency 2 GHz

Bandwidth 4 MHz

BS antenna height 25m

BS antenna gain 8 dBi

BS receiver noise figure 5dB

Vehicle antenna height 15m

Vehicle antenna gain 3 dBi

Vehicle receiver noise figure 9dB

Absolute vehicle speed 36 km/h

Vehicle drop and mobility model Urban case of A.1.2 in [10]
V2l transmit powerP* 23 dBm

V2V transmit powerP? [23,10,5,0] dBm
Noise powelr? -114 dBm

V2V payload generation period 100 ms

V2V payload size [1,2,---]x 1060 bytes

" We shrink the height and width of the simulation area by adfaof 2.

based on the observations and their current Q-networks khasvihe exploration rate.
Following the environment transition due to actions takgralh V2V agents, each agent
k: collects and stores the transition tup(@t(’“), AP R, Zﬁﬂ), in a replay memory. At
each episode, we uniformly sample batches of stored transi® from the replay memory
and update the Q-network of each V2V agent through minirgitie sum-squared error

in (5.12). The training procedure is summarized in Algorthl.

5.3 Simulation Results

In this section, simulation results are presented to vididae proposed multi-agent RL
based resource sharing scheme. We follow the simulatiop $et the urban case in 3GPP
TR 36.885 [10] detailing models used for vehicle drop and ifitgbvehicular channels,
and V2V data traffic. The V2I links are started By generated vehicles and tiié V2V

links are formed between each vehicle with its closest sundong neighbor. Major simu-
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Table 5.2: Channel Models for V2I and V2V Links [10]

Parameter V2I Link V2V Link

128.1 + 37.€bg,yd, d in | LOS in WINNER +
Path loss model km B1 Manhattan [48]
Shadowing distribution Log-normal Log-normal
S_hadowmg standard dewa—8 dB 3dB
tion ¢
Decorrelation distance 50m 10m
Path loss and shadowirngA.1.4 in [10] every 100 A.1.4 in [10] every
update ms 100 ms
Fast fading Rayleigh fading Rayleigh fading
Fast fading update Every 1 ms Every 1 ms

lation parameters are listed in Table 5.1 and the channektadar V21 and V2V links are
described in Table 5.2.

The DQN for each V2V agent consists dffully connected hidden layers, whose
numbers are00, 250, and 120, respectively. The rectified linear unit (ReLUj(z) =
max (0, x), is used as the activation function and RMSProp optimiz2}igused to update
network parameters with a learning rate0ad01. We train each agent’s Q-network for a
total of4000 episodes and the exploration ratis linearly annealed fronh to 0.02 over the
beginning3000 episodes and remains constant afterwards.

We compare Algorithm 11, termed MARL, with the single-agehtbased algorithm in
[63], termed SARL, and a random baseline method in terms &f p&yload transmission
success probability and sum V2I capacity, respectivelye l@mdom baseline chooses the
spectrum band and transmission power level in a randomdasdtieach time step. It is
noted that in our currently presented simulation resulesfiwthe large-scale fading of the
channels and only alter small-scale fading at each time tst@tain some preliminary
evaluation results. In the training stage, we fix the paykia€ to be o x 1060 bytes, but
vary the sizes in the testing stage to verify method robgstne

Fig. 5.4 shows the V2I performance with respect to increp$iBV payload sizes for
different resource sharing designs. From the figure, thimpeance drops for all schemes

with growing V2V payload sizes and the proposed Algorithmathieves better perfor-
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Figure 5.4: Sum capacity performance of V2I links with vagyN2V payload sizes.

mance than the other two benchmarks with low V2V payloadsrelzsed V2V payload
leads to longer V2V transmission duration and possibly &igl2V transmit power in or-

der to improve V2V payload transmission success probgbilihis will inevitably cause

stronger interference to V2I links for a longer period andstheopardize their capacity
performance.

Fig. 5.5 demonstrates the performance of the V2V payloagstngssion success prob-
ability against growing payload sizes using different $peu sharing schemes. From the
figure, as the V2V payload size grows larger, the transnmssitcess probabilities of all
schemes drop as expected. However, the proposed multi-Bgdmased method achieves
significantly better performance than benchmarks due tr&fe reward designs, which
maximize the V2V payload transmission success probabiRemarkably, forB = 1060
andB = 2 x 1060 bytes, the proposed method attaifi®% V2V transmission probabil-
ity and meanwhile improves V2I capacity, as shown in Fig. 5déwever, it is also more
sensitive (less robust) to V2V payload increase compar#d S3ARL and the degradation

becomes more pronounced when payload grows beyond060 bytes.
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Figure 5.5: V2V payload transmission success probabilitii warying payload sizes.

5.4 Summary

We have presented a semi-distributed resource sharingngechsing multi-agent RL for
vehicular networks, which adapts spectrum allocation awdegp control to a mix of fast-
varying local observations and slowly-changing globalste information. A fingerprint-
based method has been exploited to address nonstatiosaegisf independent Q-learning
for multi-agent RL problems when combined with DQN with espace replay. Initial
simulation results demonstrate improved performance efpitoposed resource sharing
scheme in terms of both V2I capacity and V2V payload transimisprobability compared

with a random baseline method.
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CHAPTER 6
CONCLUSION

This thesis has focused on resource allocation for vehia@danmunications under the
D2D-based network architecture. We have presented fotindis’e yet coherent design
schemes that maximize capacity of vehicle-to-infrastrect{V2l) links and guarantee the
reliability of vehicle-to-vehicle (V2V) links based on &dul treatment of unique charac-
teristics of vehicular environments. First, we proposenpky the slowly-varying large-
scale fading information of all channels to perform speatand power allocation for ve-
hicular communications when the underlying channels egpee Rayleigh fading. This
relieves the harsh requirement to accurately track vefui@iannels that undergo fast tem-
poral variations. Novel algorithms that yield optimal resze allocation performance have
been developed to maximize the sum and minimum capacity ¥2alinks, respectively.
Then, we revisit the channel state information (CSI) regmient of vehicular communi-
cations by reporting such CSI periodically to the base @tatiWe take into account the
inevitable delay in CSI feedback and propose optimal spetand power allocation de-
sign to maximize V2I capacity while guaranteeing V2V reliigjp Afterwards, we further
generalize the resource allocation problems to a gendtingewhere multiple V2V links
share the spectrum with one or more V2I links and the frequepectrum is not assumed
to be assigned to V2I links beforehand. Graph theoreticstbal/e been exploited to solve
the formulated resource allocation problem and a suite gdrighms, including a base-
line graph-based algorithm, a greedy scheme, and a nolthlg involving randomized
procedures, have been developed to address the perforroamgeexity tradeoffs. Final-
ly, we approach the resource allocation problem from a lagrperspective and model
resource sharing as a multi-agent reinforcement learriRhg problem. The V2V links,

each acting as an agent, collectively explore the unknowmaonication environment and
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gain experiences to guide their sharing strategy design. pAofmfast-varying local ob-
servations and slowly-changing global large-scale fadhihgrmation is used for resource
sharing related decision making, which causes resourcageament to change on a time
scale comparable to small-scale fading of vehicular chianfiée four proposed schemes,
which include both centralized and semi-distributed desigith varying performance-
complexity tradeoffs, constitute a comprehensive studgsdurce allocation for vehicular

communications.
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