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�
Abstract.
The non-negative matrix factorization (NMF) determines a lower rank approximation of a given matrix ������	��
�����

where
� � ���	���

,
� � ������


, ��� ����� �"!$#&% ' is given and non-negativity is imposed on
all components of the two factors

�
and

�
. The NMF has attracted much attention for over a decade and has

been successfully applied to numerous data analysis problems. In applications where the components of the data
are necessarily non-negative such as chemical concentrations in experimental results or pixels in digital images,
the NMF provides a more relevant interpretation of the results since it gives non-subtractive combinations of non-
negative basis vectors. In this paper, we introduce an algorithm for the NMF based on alternating non-negativity
constrained least squares (NMF/ANLS) and the active set based fast algorithm for non-negativity constrained least
squares with multiple right hand side vectors, and discuss its convergence properties and a rigorous convergence
criterion based on the Karush-Kuhn-Tucker (KKT) conditions. In addition, we also describe algorithms for sparse
NMFs and regularized NMF. We show how we impose a sparsity constraint on one of the factors by (*) -norm
minimization and discuss its convergence properties. Our algorithms are compared to other commonly used NMF
algorithms in the literature on several test data sets in terms of their convergence behavior.
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1. Introduction. Given a non-negative matrix +-,/.103254 and a desired rank 687 98:<;>=@?BADC>E ,
the non-negative matrix factorization (NMF) searches for non-negative factors F and G that give
a lower rank approximation of + as

+IH-F-G JLKNMOKPFQARGTSVUWA (1.1)

where FQARG SXU means that all elements of F and G are non-negative. The problem in Eqn.
(1.1) is commonly reformulated as the following optimization problem:

98:<;Y[Z \/] =^FQARG�E`_
a
b	c +edfF-G cOgh A�JiKjMOKPFQARGTSVUWA (1.2)

where F ,�. 0�2lk is a basis matrix and GT,B. k�254 is a coefficient matrix. In many data analysis
problems, typically each column of + corresponds to a data point in the ? -dimensional space.

The non-negative matrix factorization (NMF) may give a simple interpretation due to non-
subtractive combinations of non-negative basis vectors and has recently received much attention.
Applications of the NMF are numerous including image processing [20], text data mining [30],
subsystem identification [18], cancer class discovery [4, 8, 17], etc. It has been over a decade
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since the NMF was first proposed by Paatero and Tapper [26] (in fact, as positive matrix fac-
torization) in 1994. Numerous kinds of NMF techniques have been proposed in the literature
[5, 13, 24, 31, 33], which include the popular Lee and Seung’s iterative multiplicative update
algorithms [20, 21], gradient descent methods [23], and alternating least squares [1]. Paatero
and Tapper [26] originally proposed an algorithm for the NMF using a constrained alternating
least squares algorithm to solve Eqn. (1.2). Unfortunately, this approach has not obtained wide
attention especially after Lee-Seung’s multiplicative update algorithm was proposed [1, 23]. The
main difficulty was extremely slow speed caused by a vast amount of hidden redundant compu-
tation related to satisfying the non-negativity constraints exactly. One may try to deal with the
non-negativity constraints in an approximate sense for faster algorithm. However, we will show
that it is important to satisfy the constraints exactly for the overall convergence of the algorithm
and that this property provides very practical and faster algorithm as well. In addition, faster al-
gorithms that exactly satisfy the the non-negativity constraints in the least squares with multiple
right hand sides already exist [26, 35], which we will discuss and utilize in our proposed NMF
algorithms.

In this paper, we provide a framework of the two block coordinate descent method for the
NMF. This framework provides a convenient way to explain and compare most of the existing
commonly used NMF algorithms and to discuss their convergence properties. We then intro-
duce an NMF algorithm which is based on alternating non-negativity constrained least squares
(NMF/ANLS) and the active set method. Although many existing NMF algorithms produce the
factors which are often sparse, the formulation of the NMF shown in Eqn. (1.2) does not guar-
antee the sparsity in the factors. We introduce an NMF formulation and algorithm that imposes
sparsity constraint on one of the factors by ��� -norm minimization and discuss its convergence
properties. The ��� -norm minimization term is formulated in such a way that the proposed sparse
NMF algorithm also fits into the framework of the two block coordinate descent method and
accordingly its convergence properties become easy to understand.

The rest of this paper is organized as follows. We present the framework of the two block
coordinate descent method and provide a brief overview of various existing NMF algorithms in
Section 2. In Section 3, we introduce our NMF algorithm based on alternating non-negativity
constrained least squares and fast active set method, called NMF/ANLS and discuss its conver-
gence properties. In Section 4, we describe some variations of the NMF/ANLS algorithm, which
include the method designed to impose sparsity on one of the factors through the addition of an
��� -norm minimization term in the problem formulation. Our algorithms are compared to other
commonly used NMF algorithms in the literature on several test data sets in Section 6. Finally,
summary and discussion are given in Section 7.

2. A Two Block Coordinate Descent Framework for NMF Algorithms and Convergence
Properties. In most of the currently existing algorithms for the NMF, the basic framework is to
reformulate the non-convex minimization problem shown in Eqn. (1.2) as a two-block coordinate
descent problem [2]. Given a non-negative matrix +�,/. 0 254 , one of the factors, say GT,/. k�254 ,
is initialized with non-negative values. Then, one may iterate the following alternating non-
negativity constrained least squares (ANLS) until a convergence criterion is satisfied:

9 : ;Y���� c G 	 F 	 d + 	 c gh A (2.1)

where G is fixed, and
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98:<;\ ��� c F�G d + c gh A (2.2)

where F is fixed. Alternatively, after initializing F , one may iterate Eqn. (2.2) and Eqn. (2.1)
until a convergence criterion is satisfied. Each subproblem shown in Eqns. (2.1)-(2.2) can be
solved by projected quasi-Newton optimization [36, 15], projected gradient descent optimization
[23], or non-negativity constrained least squares [26, 16, 27].

Note that the original NMF problem of Eqn. (1.2) is non-convex and most non-convex opti-
mization algorithms guarantee only the stationarity of limit points. Since the problem formulation
is symmetric with respect to initialization of the factors G or F , for simplicity of discussion, we
will assume that the iteration is performed with the initialization of the factor G .

Then the above iteration can be expressed as follows:� Initialize G with a non-negative matrix G � ���
; M�� U� Repeat until a stopping criterion is satisfied

– F ���
	 � �������� 98:<; Y ] =^FQADG ��� � E/JiKNMOK F S U
– G ���
	 � � ������ 9 : ; \ ] =^F ���
	 � � ARG�E JiKNMOKPG SVU
– M�� M�� a

Then according to the Karush-Kuhn-Tucker (KKT) optimality conditions, =&FQARGBE is a stationary
point of Eqn. (1.2) if and only if

F SVU A G SVUWA� Y ] =^FQARG�E � F-G�G 	 d + G 	 SVUWA � \ ] =^FQARG�E � F 	 F-G d F 	 +�SVUWA
FQK�� � Y ] =^FQARG�E � UWA G K�� � \ ] =^FQARG�E � UWA

(2.3)

where K�� denotes component-wise multiplication [11].
For Eqn. (1.2), when the block coordinate descent algorithm is applied, then no matter how

many sub-blocks into which the problem is partitioned, if the subproblems have unique solutions,
then the limit point of the sequence is a stationary point [2]. For two block problems, Grippo
and Siandrone [12] presented a stronger result. The result does not require uniqueness of the
solution in each subproblem, which is that any limit point of the sequence generated based on
the optimal solutions of each of the two sub-blocks is a stationary point. Since the subproblems
Eqns. (2.1) and (2.2) are convex but not strongly convex, they do not necessarily have unique
solutions. However, according to the two block result, it is still the case that any limit point will
be a stationary point. We emphasize that for convergence to a stationary point, it is important to
find an optimal solution for each subproblem.

In one of the most commonly utilized NMF algorithms due to Lee and Seung [20, 21], the
NMF is computed using the following norm-based multiplicative update rules (NMF/NUR) of
F and G , which is a variation of the gradient descent method:

F�� �!� F�� � =@+PG 	 E��"�
=^F =&G�G 	 E E#� � A (2.4)

for
a%$'&($ ? and

a)$'*+$ 6 ,

G+�-,.� G+�-, =^F 	 + E/�-,
= =^F 	 F�E GBE/�-, A (2.5)

for
a0$1*�$ 6 and

a2$435$ C . Each iteration may in fact break down since the denominators
in both Eqns. (2.4) and (2.5) can be zeros. Accordingly, in practical algorithms, a small positive
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number is added to each denominator to prevent division by zero. There are several variations of
NMF/NUR [8, 29, 6].

Lee and Seung also designed an NMF algorithm using the divergence-based multiplicative
update rules (NMF/DUR) [21] to minimize the divergence:� = +����NF-GBE � 0�

��� � 4�
,�� �

�
+ � ,
	<; + � ,

=^F-GBE#� , d + � ,�� =^F-GBE#� ,�� A�JiKjMOKPFQARG SVUWK (2.6)

Strictly speaking, this formulation is not a bound constrained problem, which requires the ob-
jective function to be well-defined at any point of the bounded region, since the log function is
not well-defined if + � , � U or =&F�G�E�� , = 0 [23]. The divergence is also nonincreasing during
iterations. Gonzales and Zhang [11] claimed that these nonincreasing properties of multiplicative
update rules may not imply the convergence to a stationary point within a realistic amount of run
time for problems of meaningful sizes. Lin [23] devised an NMF algorithm based on projected
gradient methods. However, it is known that gradient descent methods may suffer from slow
convergence due to a possible zigzag phenomenon.

Berry et al. [1] proposed an NMF algorithm based on alternating least squares (NMF/ALS).
This algorithm computes the solutions to the subproblems Eqn. (2.1) and (2.2) as an uncon-
strained least squares problems with multiple right hand sides and sets negative values in the
solutions F and G to zeros during iterations to enforce non-negativity. Although this may give a
faster algorithm for approximating each subproblem, the convergence of the overall algorithm is
difficult to analyze since the subproblems are formulated as constrained least squares problems
but the solutions are not those of the constrained least squares.

Zdunek and Cichocki [36] developed a quasi-Newton optimization approach with projection.
In this algorithm, the negative values of F and G are replaced with a very small positive value.
Again, setting negative values to zeros or small positive values for imposing non-negativity makes
theoretical analysis of the convergence of the algorithm difficult [3]. The projection step can
increase the objective function value and may lead to non-monotonic changes in the objective
function value resulting in inaccurate approximations.

A more detailed review of NMF algorithms can be found in [1].

3. NMF based on Alternating Non-negativity constrained Least Squares (NMF/ANLS)
and the Active Set Method. In this section, we describe our NMF algorithm based on alter-
nating non-negativity constrained least squares (NMF/ANLS) that satisfies the non-negativity
constraints in each of the subproblems in Eqn. (2.1) and (2.2) exactly and therefore has the
convergence property that every limit point is a stationary point.

The structures of the two non-negativity constrained least squares (NLS) problems with mul-
tiple right hand sides shown in Eqns. (2.1) and (2.2) are essentially the same, therefore we will
concentrate on a general form of the NLS with multiple right hand sides

98:<; ��� c���� d�� c gh (3.1)

where � ,�.��l2 � and � , .��52�� are given, which can be decoupled into � independent NLS
problems each with single right hand side as

98:<; ��� c���� d�� c gh�� 98:<;� � ��� c���! � d#" � c gg A K K K AD98:<;�%$ ��� c���! � d&" � c gg A (3.2)
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where � ��� ! � A K K K A ! � � , . � 2�� and � ��� " � A K K K A " � � , .��l2�� . This objective function is not
strictly convex so that it does not ensure a unique solution unless � is full column rank. In
the context of the NMF computation, we implicitly assume that the fixed matrices G 	 and F
involved in Eqns. (2.1) and (2.2) are full column rank since they are interpreted as basis matrices
for + 	 and + , respectively. Each of the NLS problems with single right hand side vector

98:<;��� ��� c���! ,1d&" , c g A (3.3)

for
a $ 32$ � , can be solved by using the active set method of Lawson and Hanson [19], which

is implemented in MATLAB [25] as function lsqnonneg. To enhance computing speed, we utilize
the fast algorithms for solving Eqn. (3.1) by Bro and de Jong [3] and Van Benthem and Keenan
[35]. Bro and de Jong [3] made a substantial speed improvement for solving Eqn. (3.1) which has
multiple right hand side vectors over a naive application of Lawson and Hanson’s NLS algorithm
which is for a single right hand side problem, by precomputing cross-product terms that appear
in the normal equations of the unconstrained least squares problems. Van Benthem and Keenan
[35] devised an algorithm that further improves the performance of NLS for multivariate data by
initializing the active set based on the result from the unconstrained least squares solution and
reorganizing the calculations to take advantage of the combinatorial nature of the active set based
solution methods for the NLS with multiple right hand sides.

To illustrate the situation in a simpler context, let us for now assume that there is no non-
negativity constraints in the least squares (LS) problems Eqn. (3.2) and (3.3). Then, since an
optimal solution ! �, for 98:<; ��� c���! ,	d " , c g is ��� " , for

3 � a A
	�	�	 A�� , the pseudo-inverse ��� of �
[9] needs to be computed only once (in fact, we do not recommend forming the pseudo-inverse
explicitly and it is used here only for explanation). Clearly, it would be extremely inefficient if
we treat each subproblem independently and process the matrix � each time. In the case of the
NLS with multiple right hand side vectors, the scenario is not this simple since the active set may
differ in each iteration and for each right hand side vector, and a solution is obtained based on a
subset of columns of the matrix � that corresponds to the passive set in each iteration. However,
much of the computation which is potentially redundant in each iteration can be identified and
precomputed only once. For example, if the matrix � has full column rank, then by precom-
puting � 	 � and � 	 � only once and extracting the necessary components from these for each
passive set, one can obtain the solution efficiently by extracting the normal equations for each
passive set avoiding redundant computations [3]. In addition, for the multiple right hand side
case, the computations can be rearranged to be column parallel, i.e., the passive set columns in
each step of the active set iteration for all right hand side vectors are identified collectively at
once. Thus, larger sets of common passive sets can be found and more redundant computations
can be avoided. More detailed explanations of this algorithm can be found in [35].

As we stated earlier, with the above mentioned solution method NMF/ANLS that satisfies the
non-negativity constraint exactly, any limit point will be a stationary point [2, 12]. Lin [23] also
discussed the convergence properties of alternating non-negativity constrained least squares and
showed that any limit point of the sequence ( F , G ) generated by alternating non-negativity con-
strained least squares is a stationary point of Eqn. (1.2) when the objective function is convex, and
not necessarily strictly convex. The NMF is clearly not unique since there exist nonsingular ma-
trices  ,/. k�2lk including scaling and permutation matrices satisfying F� SVU and �� � G SVU
and these factors give c + d/F�G c h � c + d/F�� � � G c h . To provide a fair comparison among
the computed factors based on various algorithms in the presence of this non-uniqueness, after
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convergence, the columns of the basis matrix F are often normalized to unit � g -norm and the
rows of G are adjusted so that the objective function value is not changed. However, we would
like to note that normalizing the computed factors after each iteration makes the convergence
results of the two block coordinate descent method not applicable since the normalization alters
the objective function of the subproblems Eqns. (2.1) and (2.2).

4. Algorithms for Sparse NMF based on Alternating Non-negativity constrained Least
Squares. One of the interesting properties of the NMF is that it often generates sparse factors
that allow us to discover parts-based basis vectors. Although the results presented in [20] show
that the computed NMF generated parts-based basis vectors, the generation of a parts-based basis
by the NMF depends on the data and the algorithm [14, 22]. Several approaches [7, 14, 28, 29]
have been proposed to explicitly control the degree of sparseness in the factors of the NMF. In
this section, we propose algorithms for the sparse NMF that follows the framework of the two
block coordinate descent methods and therefore guarantees that every limit point is a stationary
point. In particular, we propose an ��� -norm based constrained NMF formulation to control the
sparsity on one of the factors.

4.1. Constrained NMF based on Alternating Non-negativity constrained Least Squares
(CNMF/ANLS). Pauca et al. [29] proposed the following constrained NMF (CNMF) formula-
tion for the purpose of obtaining a sparse NMF,

9 : ;Y[Z \
a
b�� c +ed F-G c gh ��� c F c gh ��� c G c gh�� A�JiKNMOK FQADGTSVU A (4.1)

where � S U and � S U are the parameters to be chosen and are supposed to control the sparsity
of F and G , respectively. An algorithm was developed based on multiplicative update rules for
the CNMF formulation.

We now show how the formulation in Eqn. (4.1) can be recast into the ANLS framework and
developed into an algorithm CNMF/ANLS for which every limit point is a stationary point. The
algorithm CNMF/ANLS begins with the initialization of G with non-negative values. Then, the
following ANLS can be iterated:

98:<;Y����
����
� G 	� ��	 k � F 	 d

� + 	
U k�250 � ���� gh A (4.2)

where 	 k is a 6�
B6 identity matrix and U k�250 is a zero matrix of size 6�
/? , and

9 : ;\ ���
����
� F� ��	 k � G d

� +
U k�254 � ���� gh A (4.3)

where U k�254 is a zero matrix of size 6
 C . Similarly, one may initialize F ,/.1032lk and alternate
the above in the order of solving Eqn. (4.3) and Eqn. (4.2). Eqn. (4.1) is differentiable in the
feasible region and Eqns. (4.2)-(4.3) are strictly convex. Then again according to convergence
analysis for block coordinate descent methods [2], any limit point of our CNMF/ANLS algorithm
will be a stationary point.
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4.2. Sparse NMF with ��� -norm Constraint. The idea of imposing � � -norm based con-
straints for the purpose of achieving sparsity in the solution has been successfully utilized in a
variety of problems [34]. For the NMF, we propose the following formulation of the NMF that
imposes sparsity on the right side factor (SNMF/R) [16, 17].

98:<;Y[Z \
a
b�� c +ed F-G c gh ��� c F c gh ��� 4�

,�� � c�� , c g � � ABJiKNMOK FQADGTSVU A (4.4)

where � , is the
3
-th column vector of G , the parameter � S U suppress the growth of F , and

the parameter �IS U balances the trade-off between the accuracy of the approximation and the
sparseness of G . Note that due to the non-negativity constraint on G , the last term in Eqn. (4.4)
becomes equivalent to ��� 4,�� � =�� k� � ��� � ,�E g and accordingly Eqn. (4.4) is differentiable in the
feasible domain. The SNMF/R algorithm begins with the initialization of F with non-negative
values. Then, it iterates the following ANLS until a convergence criterion is satisfied:

98:<;\ ���
����
� F� �
	 � 2lk � G d

� +� � 254 � ���� gh A (4.5)

where 	 � 2lk ,B. � 2lk is a row vector with all components equal to one and
� � 254 ,�. � 254 is a zero

vector, and

98:<;Y����
����
� G 	� � 	 k � F 	 d

� + 	
U k�250 � ���� gh A (4.6)

where U k�250 is a zero matrix of size 6 
 ? . Eqn. (4.5) minimizes the ��� -norm of each column of
G ,/. k�254 .

Similarly, sparsity in the NMF can be imposed on the left side factor (SNMF/L) through the
following formulation:

9 : ;Y[Z \
a
b � c +edfF-G c gh ��� c G c gh � � 0�

��� � c� � c g � � A�JiKjMOKPFQARG SVUWA (4.7)

where  	� is the
&
-th row vector of F , � S U is a parameter to suppress c G c gh , and � S U is

a parameter to balance the trade-off between accuracy of approximation and sparseness of F .
The corresponding algorithm SNMF/L begins with an initialization of the non-negative matrix
G . Then, it iterates the following ANLS until a convergence criterion is satisfied:

98:<;Y
����
� G 	� ��	 � 2lk

� F 	 d
� + 	� � 250 � ���� gh A�JiKjMOKPF S UWA (4.8)

where 	 � 2lk ,/. � 2lk is a row vector whose elements are all one and
� � 250 ,/. � 250 is a zero vector,

and

9 : ;\
����
� F� � 	 k � G d

� +
U k�254 � ���� gh ABJiKjMOK GTSVUWA (4.9)
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where 	 k is a 6�
�6 identity matrix and U k�254 is a zero matrix of size 6�
BC . Note that Eqn. (4.8)
can be rewritten as

9 : ;Y c G 	 F 	 d + 	 c gg � �
0�
��� �

� k�
� � � F 	 = * A & E�� g JiKNMOK F SVUWA (4.10)

and since all elements in F are non-negative, Eqn. (4.10) in turn becomes the following by the
definition of the ��� -norm of a vector:

9 : ;Y���� c G 	 F 	 d + 	 c gg ���
0�

��� � c� � c g A (4.11)

which involves the ��� -norm minimization of each row of F .
An advantage of the above formulation and algorithms is that they follow the framework of

the two block coordinate descent method and therefore guarantee convergence of limit points to a
stationary point. Imposing additional sparsity constraints on F or G may provide sparser factors
and a simpler interpretation. However, imposing sparsity in the factors does not necessarily
improve the solution or interpretation. Indeed, as the sparse constraints become stronger, the
magnitude of perturbations to the basic NMF solution may become larger and the degree of
simplification becomes higher.

5. Regularized NMF based on Alternating Non-negativity constrained Least Squares
(RNMF/ANLS). As shown in Section 2, in the algorithm NMF/ANLS, one of the factors F and
G is initialized and the iterations are repeated fixing one of the factors. Let us assume that G is
initialized. In the NMF, the columns of the computed factor F are interpreted as basis vectors,
therefore, implicitly assumed to be of full rank and, in fact, many of the NMF algorithms are
designed assuming that the fixed matrices G 	 and F involved in the subproblems are full rank.
We propose the following regularized version of the NMF/ANLS, which we call RNMF/ANLS,
where the terms

� ��	 and
� � 	 with very small parameters ��� U and ��� U are attached to the

fixed matrices for the purpose of numerical stability. In RNMF/ANLS, the iterations become:
solve

98:<;Y����
����
� G 	� ��	 k

� F 	 d
� + 	
U k�250 � ���� gh A (5.1)

where 	 k is a 6�
B6 identity matrix and U k�250 is a zero matrix of size 6�
/? , and solve

9 : ;\ ���
����
� F� ��	 k � G d

� +
U k�254 � ���� gh A (5.2)

where U k�254 is a zero matrix of size 6
 C . Similarly, one may initialize F ,/.1032lk and alternate
the above in the order of solving Eqn. (5.2) and Eqn. (5.1).

The above RNMF/ANLS is one way to formulate a two block coordinate descent method for
the objective function

9 : ;Y[Z \
a
b � c +ed F-G c gh ��� c F c gh ��� c G c gh � A�JiKNMOK FQADGTSVU A (5.3)
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where ��S and � S are very small regularization parameters. Note that the objective function
Eqn. (5.3) and ANLS iterations Eqns. (5.1) and (5.2) are identical to the CNMF formulation
and our proposed CNMF/ANLS algorithm presented in Section 4.1. However, the purpose of the
CNMF [29] was to obtain a sparser NMF and the role of the parameters � and � was supposed
to control the sparsity of F and G . On the other hand, the purpose of the RNMF/ANLS is
to impose strong convexity on the subproblems of NMF/ANLS. The role of the parameters �
and � with very small values is to impose full rank on the matrices on the left hand of solution
matrices in the NLS subproblems. Consequently, we can guarantee that the symmetric square
matrix appearing in the normal equations for solving least squares subproblems in the fast NLS
algorithm [35] is symmetric positive definite with any passive set of columns, so that the solution
can be computed via the Cholesky factorization.

6. Numerical Experiments and Discussion. In this section, we present several numerical
experimental results to illustrate the behavior of our proposed algorithms and compare them
to two of the most commonly used algorithms, NMF/NUR [20, 21] and NMF/ALS [1] in the
literature. We implemented all algorithms in MATLAB 6.5 [25] on a P3 600MHz machine with
512MB memory.

6.1. Data Sets in Experiments. We have used four data sets for our empirical tests, of
which two are from microarray analysis and are presented in [8, 16, 17] and the others are artifi-
cially generated. All data sets contain only non-negative entries.
I. Data Set ALLAML: The leukemia gene expression data set ALLAML [10] contains acute
lymphoblastic leukemia (ALL) that has B and T cell subtypes, and acute myelogenous leukemia
(AML) that occurs more commonly in adults than in children. This gene expression data set
consists of 38 bone marrow samples (19 ALL-B, 8 ALL-T, and 11 AML) with 5,000 genes
forming a data matrix +�,/.�� Z � � � 2 ��� . The gene expression values were in a range of

� b UWA �Wa A blb�� � ,
where a lower cutoff threshold value of 20 was used to eliminate noisy fluctuations.
II. Data Set CNS: The central nervous system tumors data set CNS [32], is composed of four
categories of CNS tumors with 5,597 genes. It consists of 34 samples representing four distinct
morphologies: 10 classic medulloblastomas, 10 malignant gliomas, 10 rhabdoids, and 4 normals,
forming a data matrix +�,/. � Z �	��
 2 ��� . In addition to a lower cutoff threshold value of 20, an upper
cutoff threshold value of 16,000 was used to eliminate expression values that are too high and
may undesirably dominate the objective function value in Eqn. (1.2).
III. Artificial Data Sets with Zero Residual: We generated the first artificial data matrix +�
of size

b UiU�
 � U by +� � F��G� , where F� , . g � � 2�� and G�/,V.�� 2�� � are artificial positive
matrices. The rank of +� is 6 and a zero residual solution for the NMF with 6 � �

exists.
Accordingly, the NMF algorithms are expected to produce the solutions F and G , which give
very small relative residual c +� dVF-G c h�� c +� c h with 6 � �

. We generated another artificial
data matrix +�� of size

b A � UiU 
 b��
by +�� � F�� G�� , where F�� , . g Z � � � 2 � and G��$, . � 2 g � are

artificial non-negative matrices. The basis matrix F�� has columns of unit � g -norm. The maximal
value in G�� is

a U � . The rank of +�� is 3 and a zero residual solution for the NMF with 6 ���
exists.

6.2. Convergence Criteria. Reaching a smaller approximation error c +Qd F � G � c h , where
F � and G � are the solution matrices obtained from an algorithm for the NMF formulation in
Eqn. (1.2), indicates the superiority of an algorithm in terms of accuracy. Accordingly, the
convergence of the proposed algorithms may be tested by checking the decrease in the residual
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TABLE 6.1
Performance comparison among NMF/NUR [21], NMF/ALS [1], and NMF/ANLS on the leukemia ALLAML

data set with ��� �
. We present the percentages of zero elements in

�
and

�
, relative approximation error, the

number of iterations, and computing time.
m
For NMF/NUR, the computed

�
and

�
factors were not sparse, so the

percentages of the number of the non-negative elements that are smaller than ������� in
�

and
�

are shown instead.

Algorithms NMF/NUR NMF/ALS NMF/ANLS

#( F � U ) (%) 2.71%
�

2.83% 2.71%

#( G � U ) (%) 18.42%
�

16.67% 18.42%

c +edfF-G c h�� c + c h 0.5027 0.5032 0.5027

# of iterations 5385 3670 90

Computing time 284.0 sec. 192.8 sec. 8.3 sec.

of the objective function ] =&FQARGBE . We may also test the convergence to a stationary point by
checking the Karush-Kuhn-Tucker (KKT) optimality conditions. The KKT conditions shown in
Eqn. (2.3) can be rewritten as

98:<;>=^FQA
	 ] =^FQARG�E � 	 F�E � UWA
98:<;>=&G A�	 ] =^FQADGBE � 	 GBE � UWA (6.1)

where the minimum is taken component wise [11]. The normalized KKT residual � is then
defined as � � ����� 	 ��� which reflects the average of convergence errors for elements in F and
G that did not converge, where

��� � � 0��� � � k� � � � 98:<; =^F�� � A�=�	 ] =^FQADGBE � 	 F�E��"�RE � �
� k� � � � 4, � � � 98:<; =&G+�-,�A�=�	 ] =^FQADGBE � 	 GBE��-,�E � A (6.2)

� Y =#( 9 : ; ( F , 	 ] =&FQARGBE / 	 F ) �� 0), and
� \ =#( 98:<; ( G , 	 ] =^FQARG�E / 	 G ) �� 0). Then the conver-

gence criterion is defined as

� $�� � ��A (6.3)

where � � is the value of � after one iteration and
�

is an assigned tolerance.

6.3. Performance Comparisons. In this subsection, we present performance results based
on the three data sets described earlier. In the tests, we used the KKT convergence criterion
shown in Eqn. (6.3) with

� � a U � � .
I. Test Results on ALLAML Data: Table 6.1 shows the performance comparison among NMF/NUR,
NMF/ALS, and NMF/ANLS on the ALLAML leukemia data matrix with 6 � �

. We report the
percentage of zero elements in the computed factors F and G , relative approximation error
(i.e. c + d�F-G c h � c + c h ), the number of iterations, and computing time. The results show
that to reach the same convergence criterion, NMF/NUR and NMF/ALS took much longer than
NMF/ANLS, and the NMF/ALS generated the solutions with the largest relative approximation
error among them. We believe that the overall faster performance of the NMF/ANLS is a result
of its convergence properties. In the factors F and G , the NMF/NUR produced very small non-
negative elements ( � a U � � ) in F and G , which are not necessarily zeros, while NMF/ANLS

10



FIG. 6.1. The values of � vs. the number of iterations for NMF/ANLS, NMF/NUR [21], and NMF/ALS [1] on
the leukemia ALLAML data set with � � �

. We used the KKT convergence criterion with ��� � ����� .
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FIG. 6.2. The values of � vs. the number of iterations for SNMF/R [17] with � � ��� � � and CNMF based on
multiplicative update rules [29] with � � � and ��� ��� � � on the leukemia ALLAML data set with � � �

. We used
the KKT convergence criterion with ��� � � ��� .
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generated the exact zero elements. This is an interesting property of the NMF algorithms and
illustrates that the NMF/ANLS does better at generating sparser factors, which can be helpful in
reducing computing complexity and storage requirement for handling sparse data sets.

Figure 6.1 further illustrates the convergence behavior of NMF/ANLS, NMF/NUR, and NMF/ALS
on the ALLAML data set with 6 � �

. As for NMF/ALS, we solved each least squares subprob-
lem by normal equations and set the negative values to zeros. All three algorithms began with
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the same random initial matrix of G � . An additional random initial matrix of F � was needed for
NMF/NUR. The NMF/ALS generated the smallest � � ( � value after the first iteration), whereas
NMF/NUR produced the largest � � . While NMF/NUR converged after more than 5,000 iter-
ations from relatively large � � , the final � value is still larger than those of other algorithms.
We observed that the NMF/ALS algorithm required more running time than NMF/ANLS even
though its subproblem (unconstrained least squares problem) requires less floating point opera-
tions. This slower computational time can be ascribed to the lack of convergence property of the
NMF/ALS algorithm. In this test, NMF/ANLS outperformed the others in terms of convergence
speed.

Figure 6.2 illustrates the converge behavior of SNMF/R with � � UWK�U a and CNMF with
� � U and � � UWK�U a on the ALLAML data set with 6 � �

. We used the KKT convergence
criterion corresponding to each of the objective functions for SNMF/R and CNMF. The � param-
eter in SNMF/R was set to the square of the maximal value in the ALLAML data matrix. As for
CNMF, we used the CNMF algorithm based on multiplicative update rules [29] without column
normalization of F in each iteration. Two algorithms began with a random initial matrix F � that
has columns of unit � g -norm. A random initial matrix of G � was used for only CNMF. SNMF/R
generated much smaller � than CNMF within a short time. The percentages of zero elements in
F and G obtained from SNMF/R were 2.17% and 30.70%. On the other hand, the percentages
of elements in the range of

� UWA a U � � E in F and G obtained from CNMF were 2.71% and 18.42%
and only a small number of elements in F were exactly zeros. It illustrates that the SNMF/R is
more effective in producing a sparser G .
II. Test Results on CNS Tumors Data: Table 6.2 shows the performance comparison on the
CNS tumors data set with various 6 values where NMF/ANLS was a few orders of magnitude
faster than NMF/NUR. NMF/NUR did not satisfy the KKT convergence criterion within 20,000
iterations. The relative approximation errors of NMF/NUR at the last iteration were still slightly
larger than those of NMF/ANLS after less than 200 iterations.
III. Test Results on Zero Residual Artificial Data Sets: Figure 6.3 shows the performance
of the three NMF algorithms, RNMF/ANLS, NMF/NUR, and NMF/ALS, on the first artificial
data matrix +� � F� G� of size

b UiU�
 � U where F��, . g � � 2�� and G�/,I. � 2�� � are artificial
positive matrices. The relative residuals versus iteration or computing time are shown. We used
� � � � a U � � for the RNMF/ANLS, and implemented NMF/ALS with pseudo-inverse. We
note that NMF/ALS sometimes generated ill-conditioned F and G when negative values are
set to zeros, which may happen even when we solve the least squares problem by a stable algo-
rithm. In the worst case, the entire row or column in the matrices F or G may become zero.
The RNMF/ANLS rapidly converged, while NMF/NUR did not converge to near zero residual
within 3,000 iterations. The relative residual in the middle of iterative optimization of NMF/ALS
sometimes increased.

Figure 6.4 shows the comparison between the truncated SVD [9] and NMF/ANLS on the sec-
ond artificial data matrix + � � F�� G�� of size 2,500 
 28, where F �3,�. g Z � � � 2 � and G�� ,�. � 2 g �
are artificial non-negative matrices. We presented � k and � k

� 	
k obtained from the truncated

SVD ( +�� H�� k � k
� 	
k ) with 6 � �

. We also illustrated F and G obtained from NMF/ANLS
( +�� H F-G s.t. FQARG S U ) with 6 � �

. Although the approximation error of NMF/ANLS
was larger than that of the truncated SVD, it surprisingly recovered F � and G�� factors much
better. Our NMF algorithm can be utilized for blind source separation when basis vectors are
non-negative and observations are non-subtractive combinations of basis vectors.
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TABLE 6.2
Performance comparison between NMF/NUR [21] and NMF/ANLS on the CNS tumors data set. We report the

percentages of zero elements in
�

and
�

, relative approximation error, the number of iterations, and computing
time (in seconds).

m
For NMF/NUR, the computed

�
and

�
factors were not sparse, so the percentages of the

number of the non-negative elements that are smaller than ��� ��� in
�

and
�

are shown instead.

Algorithm NMF/NUR

Reduced rank 6 3 4 5

#( �NF�� , � � a U � � ) (%) 8.70%
�

9.05%
�

12.32%
�

#( � G � , � � a U � � ) (%) 18.63%
�

25.00%
�

25.29%
�

c +edfF-G c h � c + c h 0.40246175083 0.37312046970 0.35409585961

# of iterations 20000 20000 20000

Computing time 1310.0 sec. 1523.0 sec. 1913.9 sec.

Algorithm NMF/ANLS

Reduced rank 6 3 4 5

#( F � U ) (%) 8.69% 9.03% 12.07%

#( G � U ) (%) 18.63% 25.00% 27.06%

c +edfF-G c h � c + c h 0.40246175028 0.37312046948 0.35409574992

# of iterations 150 130 130

Computing time 14.8 sec. 16.6 sec. 20.4 sec.

6.4. Summary of Experimental Results. In our tests, the convergence of NMF/NUR was
slower and, due to this, the algorithm was often prematurely terminated before it reaches a con-
vergence criterion, whether it was based on the relative residual or KKT residual. The NMF/ALS
does not provide a solution in a least squares sense for each non-negativity constrained subprob-
lem although the problem is formulated as a least squares problem. Therefore, its convergence is
difficult to analyze and exhibits non-monotonic changes in the objective function value through-
out the iterations. On the other hand, NMF/ANLS generated solutions with satisfactory accuracy
within a reasonable time. An algorithm for non-negativity constrained least squares is an essen-
tial component of NMF/ANLS. There are several ways to solve the NLS problem with multiple
right hand sides and we chose Van Benthem and Keenan’s NLS algorithm [35]. This algorithm is
based on the active set method that is guaranteed to terminate in a finite number of steps, unlike
other NLS algorithms that are based on nonlinear optimization techniques.

7. Summary and Discussion. We have introduced the NMF algorithms based on alternat-
ing non-negativity constrained least squares, for which every limit point is a stationary point.
The core of our algorithm is the non-negativity constrained least squares algorithm for multiple
right hand sides based on the active set method, which terminates in a finite number of steps.
We applied the well known convergence theory for block coordinate descent methods in bound
constrained optimization and built a rigorous convergence criterion based on the KKT conditions.

We have established a framework of NMF/ANLS, which is theoretically sound and practi-
13



FIG. 6.3. The relative residuals vs. the number of iterations for RNMF/ANLS with � � ��� � � ��� , NMF/NUR
[21], and NMF/ALS [1] with � ��� for 3,000 iterations on the first artificial data matrix ��� � �

�
�
� of size 200 �

50, where
�
� � �����	�O��
 and

�
� � ��
D���� are artificial positive matrices, and ����% � �"� � ' ��� .
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cally efficient. This framework was utilized to design formulations and algorithms for sparse
NMFs and regularized NMF. Some theoretical characteristics of our proposed algorithms explain
their superior behavior shown in the test results. The NMF algorithms based on gradient descent
method exhibit slow convergence. Thus, it is possible to undesirably use premature solutions for
data analysis owing to termination before convergence, which may sometimes lead to unreliable
conclusions. The inexact NMF/ALS algorithm [1] sets the negative components in the uncon-
strained least squares solution to zeros. Although the inexact method may solve the subproblems
faster, its convergence behavior is problematic. On the other hand, our algorithm satisfies the
non-negativity constraints exactly in each subproblem and shows faster overall convergence. The
converged solutions obtained from our algorithms make it possible to reach more physically reli-
able conclusions in many applications of NMF. The NMF/ANLS can be applied to a wide variety
of practical problems in the fields of text data mining, image analysis, bioinformatics, computa-
tional biology, and so forth, especially when preserving non-negativity is beneficial to meaningful
interpretation.

Acknowledgments. We would like to thank Prof. Chih-Jen Lin and Prof. Luigi Grippo for
discussions on the convergence properties.
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