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SUMMARY

Online social media such as Facebook and Twitter and communities such as Wikipedia

and Stackoverflow turn to become an inseparable part of today’s lifestyle. Users usually

participate via a variety of ways like sharing text and photos, asking questions, finding

friends, and favoring contents. Theses activities produce sequences of events data whose

complex temporal dynamics need to be studied and is of many practical, economic, and

societal interest. We propose a novel framework based on multivariate temporal point

processes that is used for modeling, optimization, and inference of processes taken place

over networks.

In the modeling part, we propose a temporal point process model for joint dynamics

of information propagation and structure evolution in networks. These two highly inter-

twined stochastic processes have been predominantly studied separately, ignoring their co-

evolutionary dynamics. Our model allows us to efficiently simulate interleaved diffusion

and network events, and generate traces obeying common diffusion and network patterns

observed in real-world networks. In the optimization part, we establish the fundamentals of

intervention and control in networks by combining the rich area of temporal point processes

and the well-developed framework of Markov decision processes. We use point processes

to capture both endogenous and exogenous events in social networks and formulate the

problem as a Markov decision problem. Our methodology helps finding the optimal policy

that balances the high present reward and large penalty on low future outcome in the pres-

ence of extensive uncertainties. In the inference part, we propose an intensity-free approach

for point processes modeling that transforms nuisance process to the target one. Further-

more, we train our deep neural network model using a likelihood-free approach leveraging

Wasserstein distance between point processes.

xix



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Motivation

Event sequences are becoming increasingly available in a variety of applications and do-

mains. They are asynchronously generated with random timestamps and are ubiquitous

in areas such as e-commerce, social networks, electronic health data, equipment failures,

epidemiology, and economics.

In epidemiology, we collect observations about the presence of animals, such as birds,

migrating across a wide range of geographic locations in certain time periods. In inva-

sive species management the spread of non-native species to new areas is a cause of major

concern, because they harm native species through predation, competition, disease or by

otherwise disrupting food webs and ecosystem processes. The ability to model the dynam-

ics of diffusion processes enables the development of strategies for steering them towards

desirable outcomes.

Electronic health records contain the information of diagnoses, treatments, and clinical

interventions. The progress of a disease and its influence on other diseases can be captured

via the historical admissions of different patients and events happened. Furthermore, a dis-

ease network can be constructed accordingly that captures the correlation between different

diseases.

In malware detection systems, volunteer machines report potentials malicious files. Al-

though the attacks are reported from different machines at different times, they may share

some common dynamics, for example, they can be clustered and coordinated or seasonal.

Study of these attack events will provide a glimpse into the spread of cyber threats across

the Internet.
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Social and information networks and virtual communities play a key role in every-

day’s life. People and entities share opinions, beliefs, and news updates in social medias

and engage in social interactions by commenting, liking, mentioning and following each

other. This virtual world is an ideal place for studying social behaviors and spread of cul-

tural norms, advertising and marketing, and estimating the culprit in malicious diffusions.

Among them, the study of information diffusion or more generally dynamics on the net-

work is of crucial importance and is of many practical, economic, and societal interest.

In economics, the consideration of the peculiar properties of financial transaction data,

such as the irregular spacing in time, the bid-ask bounce, and the existence of serial depen-

dence between events and markets call for developing new econometric approaches. It has

been realized that the timing of trading events, such as the arrival of particular orders and

trades, and the frequency in which the latter occur have information value for the state of

the market and play an important role in subsequent analysis.

In this thesis, we study networks and processes over them. As exemplified above, a va-

riety of real-world processes produce sequences of data whose complex temporal dynamics

need to be studied. A common property of the above problems is that, the event timestamps

can carry important information about the underlying dynamics, which otherwise are not

available from the time-series evenly sampled from continuous signals. A major line of

research has attempted to study event sequence, especially exploring the timestamp data to

model the underlying and latent dynamics of the system, whereby temporal point process

has been a powerful and elegant framework this direction. Furthermore, the interdepen-

dence between phenomena and temporal events provokes the surge of networked or multi-

dimensional modeling approaches. The developed framework leverages tools and concepts

from many related fields like machine learning, data mining, statistics, etc. Figure 1.1

shows the related fields of application and tools from computer science and mathematics.
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Figure 1.1: Tools and connections

1.2 Preliminaries

A temporal point process is a random process whose realization consists of a list of discrete

events localized in time, {ti} with ti ∈ R+ and i ∈ Z+. Many different types of data

produced in online social networks can be represented as temporal point processes, such

as the times of retweets and link creations. A temporal point process can be equivalently

represented as a counting process, N(t), which records the number of events before time

t. Let the history H(t) be the list of times of events {t1, t2, . . . , tn} up to but not including

time t. Then, the number of observed events in a small time window [t, t+ dt) of length dt

is

dN(t) =
∑

ti∈H(t)

δ(t− ti) dt, (1.1)

and hence N(t) =
∫ t

0
dN(s), where δ(t) is a Dirac delta function. More generally, given a

function f(t), we can define the convolution with respect to dN(t) as

f(t) ? dN(t) :=

∫ t

0

f(t− τ) dN(τ) =
∑

ti∈H(t)
f(t− ti). (1.2)
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The point process representation of temporal data is fundamentally different from the dis-

crete time representation typically used in social network analysis. It directly models the

time interval between events as random variables, avoids the need to pick a time window

to aggregate events, and allows temporal events to be modeled in a fine grained fashion.

Moreover, it has a remarkably rich theoretical support [1, 73].

An important way to characterize temporal point processes is via the conditional in-

tensity function — a stochastic model for the time of the next event given all the times of

previous events. Formally, the conditional intensity function λ∗(t) (intensity, for short) is

the conditional probability of observing an event in a small window [t, t + dt) given the

historyH(t), i.e.,

λ∗(t)dt := P
{

event in [t, t+ dt)|H(t)
}

= E[dN(t)|H(t)], (1.3)

where ∗ means that the function λ∗(t) may depend on the history H(t). One typically

assumes that only one event can happen in a small window of size dt and thus dN(t) ∈

{0, 1}. Then, given the observation until time t and a time t′ > t, we can also characterize

the conditional probability that no event happens until t′ as [159]:

S∗(t′) = exp

(
−
∫ t′

t

λ∗(τ) dτ

)
, (1.4)

the (conditional) probability density function that an event occurs at time t′ as

f ∗(t′) = λ∗(t′)S∗(t′), (1.5)

and the (conditional) cumulative density function, which accounts for the probability that

an event happens before time t′:

F ∗(t′) = 1− S∗(t′) =

∫ t′

t

f ∗(τ) dτ. (1.6)
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Figure 1.2: Illustration of three inter-related quantities in point processes framework: con-
ditional density function, conditional cumulative density function, and survival function.

Figure 1.2 illustrates these quantities. Moreover, we can express the log-likelihood of a list

of events {t1, t2, . . . , tn} in an observation window [0, T ) as

L =
n∑
i=1

log λ∗(ti)−
∫ T

0

λ∗(τ) dτ, T > tn. (1.7)

This simple log-likelihood will later enable us to learn the parameters of our model from

observed data.

Finally, the functional form of the intensity λ∗(t) is often designed to capture the phe-

nomena of interests. Some useful functional forms we will use are [1]:

(i) Poisson process. The intensity is assumed to be independent of the historyH(t), but

it can be a nonnegative time-varying function, i.e.,

λ∗(t) = g(t) > 0. (1.8)

(ii) Hawkes Process. The intensity is history dependent and models a mutual excitation

between events, i.e.,

λ∗(t) = µ+ ακω(t) ? dN(t) = µ+ α
∑

ti∈H(t)
κω(t− ti), (1.9)
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a) Poisson process
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b) Hawkes process
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𝑡

c) Survival process

𝜆∗ 𝑡 = 1 − 𝑁 𝑡 𝑔(𝑡)

𝑡

Figure 1.3: Three types of point processes with a typical realization

where,

κω(t) := exp(−ωt)I[t > 0] (1.10)

is an exponential triggering kernel and µ > 0 is a baseline intensity independent of

the history. Here, the occurrence of each historical event increases the intensity by a

certain amount determined by the kernel and the weight α > 0, making the intensity

history dependent and a stochastic process by itself.

In our work, we focus on the exponential kernel, however, other functional forms,

such as log-logistic function, are possible, and the general properties of our model

do not depend on this particular choice.

(iii) Survival process. There is only one event for an instantiation of the process, i.e.,

λ∗(t) = (1−N(t))g(t), (1.11)

where g(t) > 0 and the term (1 − N(t)) makes sure λ∗(t) is 0 if an event already

happened before t.

Figure 1.3 illustrates these processes. Interested reader should refer to [1] for more details
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on the framework of temporal point processes.

Similarly, we can define a multi-variate point process as:

N(t) = (N1(t), N2(t), . . . , NU(t))>

where Ni(t) is the counting process for the i-th dimension. Corresponding to each dimen-

sion there is an intensity function λ∗i (t) where in vector format it’s represented as:

λ∗(t) = (λ∗1(t), λ∗2(t), . . . , λ∗U(t))>

The dimensions can be correlated or independent. One way to define a multivariate point

process is via Hawkes process. An U -dimensional Hawkes process with the conditional

intensity for the i-th dimension is:

λ∗i (t) = µi(t) +
U∑
j=1

∫ t

0

φij(t− s) dNj(s),

φij(t) - the time-decaying kernel, captures the mutually exciting property: the effect of the

occurrence of events in dimension j on the likelihood of future events in dimension i.

To make the notation more clear we may occasionally remove ∗ from the conditional

intensity function.

1.3 Simulation

In this section, we introduce Ogata’s algorithm which is standard way to simulate mul-

tivariate point and Hawkes Processes. Consider a U -dimensional point process in which

each dimension u is characterized by a conditional intensity function λ∗u(t).

Ogata’s algorithm starts with summing the intensities, λ∗sum(τ) =
∑U

u=1 λ
∗
u(τ). Then,

assuming we have simulated up to time t, the next sample time, t′, is the first event drawn

from the non-homogenous Poisson process with intensity λ∗sum(τ) which begins at time t.

7



The algorithm exploits that, given a fixed history, the Hawkes Process is a non-homogenous

Poisson process, which runs until the next event happens. Then, the new event will result

in an update of the intensities and a new non-homogenous Poisson process starts.

It can be shown that the waiting time of a non-homogeneous Poisson process is an

exponentially distributed random variable with rate equal to integral of the intensity [167],

i.e. s ∼ Exponential
(∫ t+s

t
λ∗sum(τ) dτ

)
. Thus, the next sample time can be computed as

t′ = t︸︷︷︸
current time

+ s.︸︷︷︸
waiting time for the first event

(1.12)

Sampling from a non-homogenous Poisson process is not straight-forward, therefore, Ogata’s

algorithm uses rejection sampling with a homogenous Poisson process as the proposal dis-

tribution. More in detail, given λ̂ = maxt≤τ≤T λ
∗
sum(τ), t′ is the time of first event of ho-

mogenous Poisson Process with rate λ̂. Then, we accept the sample time with probability

λ∗sum(t′)/λ̂. Finally, the dimension firing the event is determined by sampling proportion-

ally to the contribution of the intensity of that user to the total intensity, i.e., λ∗u(t
′)/λ∗sum(t′)

for 1 ≤ u ≤ U . This procedure is iterated until we reach the end of simulation time T .

Algorithm 1 presents the complete procedure.

Ogata’s algorithm would scale poorly with the dimension of the process, because, af-

ter each sample, we would need to re-evaluate the affected intensities and find the upper

bound. As a consequence, a naive implementation to draw n samples require O(Un2) time

complexity, where U is the number of dimensions. This is because for each sample we

need to find the new summation of intensities, which involves O(U) individual ones, each

taking O(n) time to accumulate over this history. In our social networks application, we

havem2−m point processes for link creation andm2 ones for retweeting, i.e., U = O(m2).

Therefore, Ogata’s algorithm takes O(m2n2) time complexity.
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Algorithm 1 Ogata’s Algorithm
Input: U dimensional Hawkes process

{
λ∗u(t)

}
u=1...U

, Due time: T
2: Output: Set of events: H =

{
(t1, u1), . . . , (tn, un)

}
t← 0

4: i← 0 t < T
λ∗sum(τ)←

∑U
u=1 λ

∗
u(τ)

6: λ̂← maxt≤τ≤T λ
∗
sum(τ)

s ∼ Exponential(λ̂)
8: t′ ← t+ s t′ ≥ T

break
10: λ̄← λ∗sum(t′)

d ∼ Uniform(0, 1) d× λ̂ > λ̄
12: t← t′

Goto 5
14: S ← 0

d ∼ Uniform(0, 1) u← 1 to U
16: S ← S + λ∗u(t

′) S ≥ d
i← i+ 1

18: ui ← u
ti ← t′

20: t← t′

Goto 5
22: Given the new event just sampled update intensity functions λ∗u(τ)

Sampling next
event time

Rejection test

Attribution test

1.4 EM-type Parameter Learning Algorithm

Since the log-likelihood is concave one can simply take any convex optimization method to

find the parameters. However, these methods usually require hyper parameters like conver-

gence rate or their performance is dependent to the initial point. Alternatively, Expectation

Maximization algorithms could be useful in the case that they are parameter free and are

not that sensitive to initialization. However, they are prone to local minima.

In our experiments, we adopt an efficient algorithm inspired by the previous work [55,

229, 228]. Our algorithm is an EM-type algorithm that enjoys parameter-less property of

EM and at the same time is guaranteed to find the global optimum. The structure of our

problem allows us to develop such algorithms.

For brevity let’s assume we have U -dimensional Hawkes process represented by its
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conditional intensity function. For simplicity we develop an algorithm for learning the

parameters of the most basic form of Hawkes Process. It will easily be adapted to other

forms of point processes we used in this thesis.

Starting from Equation (1.9) the intensity for the u-th dimension is

λ∗u(t) = µu +
∑
ti<t

auuig(t− ti) (1.13)

whereA = (auv)u,v=1...U and µ = (µ1, . . . , µU)> are endogenous and exogenous intensity

parameters, respectively [55] and g() is the decaying kernel.

Having observed a cascade of events we can learn the influence networkA = (auv)u,v=1...U

and the exogenous intensity λ0 = (λ1, . . . , λU)>. Assume n events (ti, ui)i=1...n are ob-

served in the interval [0, T ].

The log-likelihood is

L(A,µ) =
n∑
i=1

log
(
µui(ti) +

i−1∑
j=1

auiujg(ti − tj)
)

−
U∑
u=1

Tµu −
U∑
u=1

n∑
j=1

auujG(T − tj)

(1.14)

where G(t) =
∫ t

0
g(τ) dτ . The logarithm of the same is the term causing problem. We can

use Jensen inequality to break lower bound the log-sum. We define auxiliary variables νij

for all pairs of events (1 ≤ j ≤ i ≤ n) such that

i∑
j=1

νij = 1 ∀ i : 1 ≤ i ≤ n

νij ≥ 0 ∀ i : 1 ≤ j ≤ i ≤ n

(1.15)
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Then, according to Jensen inequality we have

L(A,µ) ≥
n∑
i=1

(
νii log

(
µui(ti)

)
+

i−1∑
j=1

νij log
(
auiujg(ti − tj)

)
−

i∑
j=1

νij log(νij)
)

−
U∑
u=1

Tµu −
U∑
u=1

n∑
j=1

auujG(T − tj) , L′(A,µ,
{
νij
}

)

(1.16)

Now, by taking gradient of the lower-bound with respect to parameters we can find the

close form updates as follows:

∂L
∂µu

=
n∑

i:ui=u

νii
µui
− T =⇒ µu =

∑n
i:ui=u

νii

T
(1.17)

∂L
∂auv

=
∑
i:ui=u

∑
j<i:uj=v

νij log(auv)−
∑
j:uj=v

auvG(T − tj) =⇒ auv =

∑
i:ui=u

∑
j<i:uj=v

νij∑
j:uj=v

G(T − tj)

(1.18)

The lower bound is valid for every choice of
{
νij
}

which satisfies constraints in (1.15).

However, by maximizing the lower bound with respect to auxiliary variables we can make

sure that the lower bound sticks to the actual value [218, 191].

maximize{νij} L
′(A,µ,

{
νij
}

)

subject to
∑i

j=1 νij = 1 ∀ i : 1 ≤ i ≤ n

νij ≥ 0 ∀ i : 1 ≤ j ≤ i ≤ n

(1.19)

The above constrained optimization problem can be solved easily via Lagrange multipliers

which will result in:

ηii =
µui

µui +
∑i−1

j=1 auiujg(ti − tj)
1 ≤ i ≤ n (1.20)

ηij =
auiujg(ti − tj)

µui +
∑i−1

j=1 auiujg(ti − tj)
1 ≤ j < i ≤ n (1.21)

11



In contrast to the above algebraic argument [126] propose a probabilistic point of view

to parameter learning problem by introducing latent variables indicating the branching

structure of events.

1.5 Related Works

In this section, we briefly overview the related works in the domain of networks and pro-

cesses over them, and point processes.

1.5.1 Temporal Networks

Much effort has been devoted to modeling the evolution of social networks [153, 45, 202,

146, 15]. Of the proposed methods in characterizing link creation, triadic closure [79] is

a simple but powerful principle to model the evolution based on shared friends. Modeling

timing and rich features of social interactions has been attracting increasing interest in

the social network modeling community [68]. However, most of these models use timing

information as discrete indices. The dynamics of the resulting time-discretized model can

be quite sensitive to the chosen discretization time steps; Too coarse a discretization will

miss important dynamic features of the process, and too fine a discretization will increase

the computational and inference costs of the algorithms. In contrast, the events we try to

model tend to be asynchronous with a number of different time scales. [96] used rule-based

methods to model the evolution of the graph over time. [66] analyzed community structure

over time and [121] studied the interaction of the friendship graph among group members

and group growth. Recently, [181] used a Cox-intensity Poisson model with exponential

random graphs to model friendship dynamics. [27] extended this model to the temporal

sequence of interactions that take place in the social network, but with insufficient model

flexibility, and limited scalability. Modeling temporal dynamics of interactions in this way

provides new opportunities for identifying network topology at multiple scales [65] and

for early detection of popular resources [98, 120]. However, these works largely fail to
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model the interdependency between events generated by different users, which is one of

the focuses of our proposed framework. Most of this line of work is summarized in a

recent survey [99], with a short section devoted to point process based approaches.

1.5.2 Information Diffusion

The presence of timing information in event data and the ability to model such informa-

tion bring up the interesting question of how to use the learned model for time-sensitive

inference or decision making. Furthermore, the development of online social networks

has attracted a lot of empirical studies of the online influence patterns of online commu-

nities [3, 83, 184, 86], micro blogs [207, 14] and so on. However, these works usually

consider only relatively simple models for the influence, which may not be very predictive.

For more mathematically oriented works, based on information cascades (a special case of

asynchronous event data) from social networks, discrete-time diffusion models have been

fitted to the cascades [170, 77] and used for decision making, such as identifying influ-

encer [3], maximizing information spread [111, 165], and marketing planing [161, 44, 17,

19]. Several recent experimental comparisons on both synthetic and real world data showed

that continuous-time models yield significant improvement in settings such as recovering

hidden diffusion network topologies from cascade data [51, 70, 218], predicting the tim-

ings of future events [50, 164], finding source of information cascades [56]. Besides this,

Point process modeling of activity in network is becoming increasingly popular [130, 150,

89]. These time-sensitive modeling and decision making problems can usually be framed

into optimization problems and are usually difficult to solve. This brings up interesting

optimization problems, such as efficient submodular function optimization with provable

guarantees [78, 111], sampling methods [129, 85, 132] for inference and prediction, and

convex framework proposed in [55] to make decisions to shape the activity to a variety of

objectives. Furthermore, the high dimensional nature of modern event data makes the eval-

uation of objective function of the optimization problem even more expensive. Therefore,
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more accurate modeling and sophisticated algorithm needed to be designed to tackle the

challenges posed by modern event data applications.

1.5.3 Point Processes

Multivariate point processes are mathematical frameworks for modeling multidimensional

event data [1]. However, only very recently machine learning community are starting to

use it for modeling practical problems. For instance, these mathematical tools has been

applied to analyze human actions in emergency situations [28], to model citations between

scholarly works [200], and information diffusion process in social networks [144, 72, 70]

and complex networks [142]. Point processes, in particular, have been shown to provide ef-

fective tools for in a number of applications [40, 178, 158, 2, 200]. However, the limitation

of these previous works is that they do not model the interdependency between different

users and can only be applied to relatively small dimensions. In the case of high dimen-

sional multivariate point processes, the dependency structures parameters between the di-

mensions are often unknown. It is an interesting and challenging question whether we can

uncover these dependency structures based on the time stamps and features of the events.

This problem has been addressed only by a paucity of recent studies in the literature [144,

72, 70]. Furthermore, there is a whole range of other unsupervised learning and inference

tasks which have not been addressed by previous work. In our proposed framework, we

propose to solve the problem by explicitly modeling the interaction between dimensions

and investigate unsupervised learning and novel inference tasks for large-scale datasets.

Point processes [40] are proposed to model event sequences in the continuous obser-

vation domain. Typical temporal point processes like self exciting processes [94, 34] and

Self-correcting processes [105, 38] have been used for financial analysis [11], social net-

work modeling [228] and bioinformatics [160], knowledge graph dynamics [192]. Spatial-

temporal point processes can be viewed as an extension of temporal point processes from

time domain to spatial-temporal domain. Classical applications of them include seismic
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analysis [149], transportation analysis [52], and invasive species management [88].

Most of existing work uses parametric models to describe the dynamics of observed

events [55, 225]. To enhance the flexibility, nonparametric models and learning algorithms

of point processes have been explored from different viewpoints, e.g., the method based

on ordinary differential equation [160, 90, 126], the methods based on basis representa-

tion [119, 216], and those based on Bayesian nonparametrics [134, 130, 172], and online

nonparametric algorithms [219]

One way to model the temporal dependency between event data, such as self- or mutual-

excitation effects, can be carried out via Hawkes processes [93]. This continuous-time point

processes has been applied to a wide range of applications such as market modeling [190],

earth quake prediction [135], crime modeling [183], wireless network analysis [141]. The

maximum likelihood estimation of one-dimensional Hawkes process is studied in [126]

under the EM framework. Additionally, [178] models cascades of events using marked

Poisson processes with marks representing the types of events while [22] propose a model

based on Hawkes process that models events between pairs of nodes. However, most ex-

isting work focuses on model a small number of dimensions, our proposed work try to

develop a more general framework which will address a broader range of problems arising

from asynchronously generated interdependent event data. For learning point processes

one can refer to [215, 214, 229, 228]. Point process models have been applied to many

tasks in networks such as fake news mitigation [59], recommendation systems [100], out-

lier detection [128], disease propagation [112], activity shaping in social networks [55],

verifying crowd-generated data [186], sequence modeling using deep recurrent neural net-

works [212], campaigning in networks [60], preventive maintenance [29].

1.6 Contributions and Organization of the Thesis

This thesis is a collection of work to explore and develop a set of robust machine learning

methods for modeling and optimizing large real-world networks and processes that take
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Figure 1.4: Sub-fields of the point processes framework in social networks and the contri-
butions of the author.

place over them. We propose a novel framework based on multivariate temporal point pro-

cesses (e.g. Poisson Process and Hawkes Process) and survival analysis which explicitly

model the rate of event occurrence as a function of timing and features of previous events

for temporal networks. Furthermore, our modeling framework can explicitly take into ac-

count latent variables, low intrinsic dimensionality, and sparsity of the datasets (Figure

1.1).

Modeling networks and processes over them consists of the broad span of sub-problems

which can be roughly categorized into several classes: (I) Models and algorithms of social

networks and information diffusion and their simulation; (II) Parameter learning and net-

work inference; (III) Event stream clustering and segmentation; (IV) Sub-network identifi-

cation from event dynamics; (V) Recommendation; (VI) Influence estimation and network

inference; and (VII) Control and management for temporal networks for more desirable

network outcomes. Refer to Figure 1.4 for the resultant publication on this thesis by the

author. Our research covers this span and will make a coherent framework which can si-

multaneously model the timing and event features. It can make predictions in a setting

where conventional machine learning techniques are incapable of, such as the ”who will

do what and when” question critical to event stream modeling. In contrast to traditional
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event history analysis methods based on static networks, our coevolution models address

the complex dependent aspects of such event datasets in the context of novel challenging

problems arising from real-world applications. Furthermore, our research topics are driven

by real-world event stream modeling problems in social networks, health informatics and

micro-finance.

The proposed research on social media, health informatics, cyber-security and P2P fi-

nance will have strong societal and environmental impacts. As a broader impact, our frame-

work systematically bring together several research areas, such as point processes, theory

and algorithms, statistics, and sparsity recovery theory, in a common platform to study

social networks, social media, micro-finance, and health informatics and EHR-driven phe-

notyping (Figure 1.1). In social media, It brings practical values to Internet industry by

better understanding and modeling of user behaviors.

Our first contribution is a joint model of co-evolution dynamics of information diffu-

sion and network structure. Traditionally, information diffusion in online social networks is

affected by the underlying network topology, but it also has the power to change it. Online

users are constantly creating new links when exposed to new information sources, and in

turn these links are alternating the way information spreads. However, these two highly

intertwined stochastic processes, information diffusion and network evolution, have been

predominantly studied separately, ignoring their co-evolutionary dynamics. In chapter 2,

we propose a temporal point process model, for such joint dynamics, allowing the intensity

of one process to be modulated by that of the other. This model allows us to efficiently

simulate interleaved diffusion and network events, and generate traces obeying common

diffusion and network patterns observed in real-world networks. Furthermore, we also de-

velop a convex optimization framework to learn the parameters of the model from historical

diffusion and network evolution traces. We experiment with both synthetic data and data

gathered from Twitter, and show that our model provides a good fit to the data as well as

more accurate predictions than alternatives.
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In chapters 3, 4, and 5 we, step by step, build our point process intervention framework.

Given that we can learn accurately the model in temporal networks, we now consider the

possibility of actively manage the network structure to achieve more desirable network

outcomes. For example, in the era of precision medicine, can we alter the disease network

with new medical treatment in order to achieve more favorable health outcomes preferred

by individual patients? Can we model and exploit social network data to steer the online

community to a desired activity level? Specifically, can we drive the overall usage of a ser-

vice to a certain level (e.g., at least twice per day per user) by incentivizing a small number

of users to take more initiatives? What about maximizing the overall service usage for a

target group of users? Furthermore, these activity shaping problems need to be addressed

by taking into account budget constraints, since incentives are usually provided in the form

of monetary or credit rewards. In this thesis, we model social events using multivariate

Hawkes processes, which can capture both endogenous and exogenous event intensities,

and derive a time dependent linear relation between the intensity of exogenous events and

the overall network activity. We develop a convex framework for determining the required

level of external drive in order for the network to reach a desired activity level. We ex-

periment with large event data gathered from Twitter, and show that our method can steer

the activity of the network more accurately than alternatives. In chapter 3 we formulate

the problem as a single stage optimization algorithm where all the intervention actions are

decided at the beginning of the process. In chapter 4, we allow the intervention to be done

at several stages where the associated Markov Decision problem is solved via approximate

dynamic programming. Here, we evaluate the effectiveness of the proposed point process

intervention procedure on social campaigning task. Next, in chapter 5 we formulate a re-

inforcement learning solution for a process who is going to mitigate the effects of a fake

news propagation processes.

Point processes are often characterized via intensity function which limits model’s ex-

pressiveness due to unrealistic assumptions on its parametric form used in practice. Fur-
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thermore, they are learned via a maximum likelihood approach which is prone to failure

in multi-modal distributions of sequences. In chapter 6, we propose an intensity-free ap-

proach for point processes modeling that transforms nuisance processes to a target one.

Furthermore, we train the model using a likelihood-free leveraging Wasserstein distance

between point processes. Experiments on various synthetic and real-world data substanti-

ate the superiority of the proposed point process model over conventional ones.

Finally, the thesis is concluded in chapter 7 and a few future directions are discussed.
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CHAPTER 2

POINT PROCESS MODELING OF INFORMATION DIFFUSION AND

NETWORK EVOLUTION

Information diffusion in online social networks is affected by the underlying network topol-

ogy, but it also has the power to change it. Online users are constantly creating new links

when exposed to new information sources, and in turn these links are alternating the way

information spreads. However, these two highly intertwined stochastic processes, informa-

tion diffusion and network evolution, have been predominantly studied separately, ignoring

their co-evolutionary dynamics.

In this chapter, we propose a temporal point process model, COEVOLVE, for such joint

dynamics, allowing the intensity of one process to be modulated by that of the other. This

model allows us to efficiently simulate interleaved diffusion and network events, and gen-

erate traces obeying common diffusion and network patterns observed in real-world net-

works. Furthermore, we also develop a convex optimization framework to learn the param-

eters of the model from historical diffusion and network evolution traces. We experimented

with both synthetic data and data gathered from Twitter, and show that our model provides

a good fit to the data as well as more accurate predictions than alternatives.

2.1 Introduction

Online social networks, such as Twitter or Weibo, have become large information networks

where people share, discuss and search for information of personal interest as well as break-

ing news [116]. In this context, users often forward to their followers information they are

exposed to via their followees, triggering the emergence of information cascades that travel

through the network [36], and constantly create new links to information sources, triggering

changes in the network itself over time. Importantly, recent empirical studies with Twitter
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data have shown that both information diffusion and network evolution are coupled and

network changes are often triggered by information diffusion [6, 208, 145].

While there have been many recent works on modeling information diffusion [72, 70,

49, 36, 56] and network evolution [31, 123, 124], most of them treat these two stochastic

processes independently and separately, ignoring the influence one may have on the other

over time. Thus, to better understand information diffusion and network evolution, there

is an urgent need for joint probabilistic models of the two processes, which are largely

inexistent to date.

In this chapter, we propose a probabilistic generative model, COEVOLVE, for the joint

dynamics of information diffusion and network evolution. Our model is based on the frame-

work of temporal point processes, which explicitly characterizes the continuous time inter-

val between events, and it consists of two interwoven and interdependent components, as

shown in Figure 2.1:

I. Information diffusion process. We design an “identity revealing” multivariate Hawkes

process [133] to capture the mutual excitation behavior of retweeting events, where

the intensity of such events in a user is boosted by previous events from her time-

varying set of followees. Although Hawkes processes have been used for informa-

tion diffusion before [22, 106, 229, 228, 55, 131, 48, 195], the key innovation of our

approach is to explicitly model the excitation due to a particular source node, hence

revealing the identity of the source. Such design reflects the reality that informa-

tion sources are explicitly acknowledged, and it also allows a particular information

source to acquire new links in a rate according to her “informativeness”.

II. Network evolution process. We model link creation as an “information driven”

survival process, and couple the intensity of this process with retweeting events. Al-

though survival processes have been used for link creation before [102, 201], the key

innovation in our model is to incorporate retweeting events as the driving force for

such processes. Since our model has captured the source identity of each retweet-
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Figure 2.1: Illustration of how information diffusion and network structure processes inter-
act

ing event, new links will be targeted toward information sources, with an intensity

proportional to their degree of excitation and each source’s influence.

Our model is designed in such a way that it allows the two processes, information

diffusion and network evolution, unfold simultaneously in the same time scale and exercise

bidirectional influence on each other, allowing sophisticated coevolutionary dynamics to

be generated, as illustrated in Figure 2.2.

Importantly, the flexibility of our model does not prevent us from efficiently simulating

diffusion and link events from the model and learning its parameters from real world data:

• Efficient simulation. We design a scalable sampling procedure that exploits the spar-

sity of the generated networks. Its complexity isO(nd logm), where n is the number

of events, m is the number of users and d is the maximum number of followees per

user.

• Convex parameters learning. We show that the model parameters that maximize

the joint likelihood of observed diffusion and link creation events can be efficiently

found via convex optimization.

Then, we experiment with our model and show that it can produce coevolutionary dynam-

ics of information diffusion and network evolution, and generate retweet and link events

that obey common information diffusion patterns (e.g., cascade structure, size and depth),
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Figure 2.2: Illustration of information diffusion and network structure co-evolution:
David’s tweet at 1:00 pm about a paper is retweeted by Sophie and Christine respectively
at 1:10 pm and 1:15 pm to reach out to Jacob. Jacob retweets about this paper at 1:20
pm and 1:35 pm and then finds David a good source of information and decides to follow
him directly at 1:45 pm. Therefore, a new path of information to him (and his downstream
followers) is created. As a consequence, a subsequent tweet by David about a car at 2:00
pm directly reaches out to Jacob without need to Sophie and Christine retweet.

static network patterns (e.g., node degree) and temporal network patterns (e.g., shrinking

diameter) described in related literature [125, 124, 67]. Finally, we show that, by model-

ing the coevolutionary dynamics, our model provides significantly more accurate link and

diffusion event predictions than alternatives in large scale Twitter dataset [6].

The remainder of this chapter is organized as follows. We introduce our joint model

of information diffusion and network structure co-evolution in Section 2.2. Sections 2.3

and 2.4 are devoted to answer two essential questions: how can we generate data from the

model? and how can we efficiently learn the model parameters from historical event data?

Any generative model should be able to answer the above questions. In Sections 2.5, 2.6,

and 2.7 we perform empirical investigation of the properties of the model, we evaluate the

accuracy of the parameter estimation in synthetic data, and we evaluate the performance

of the proposed model in real-world dataset, respectively. Finally, section 2.8 reviews the

related work.
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Figure 2.3: Events as point and counting processes. Panel (a) shows a trace of events
generated by a tweet from David followed by new links Jacob creates to follow David and
Sophie. Panel (b) shows the associated points in time and the counting process realization.

2.2 Generative Model of Information Diffusion and Network Evolution

In this section, we use the above background on temporal point processes to formulate

COEVOLVE, our probabilistic model for the joint dynamics of information diffusion and

network evolution.

2.2.1 Event Representation

We model the generation of two types of events: tweet/retweet events, er, and link creation

events, el. Instead of just the time t, we record each event as a triplet, as illustrated in

Figure 2.3(a):

er or el := ( u
↑

destination

,
source
↓
s, t

↑
time

). (2.1)

For retweet event, the triplet means that the destination node u retweets at time t a

tweet originally posted by source node s. Recording the source node s reflects the real

world scenario that information sources are explicitly acknowledged. Note that the occur-

rence of event er does not mean that u is directly retweeting from or is connected to s. This
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event can happen when u is retweeting a message by another node u′ where the original

information source s is acknowledged. Node u will pass on the same source acknowledge-

ment to its followers (e.g., “I agree @a @b @c @s”). Original tweets posted by node u are

allowed in this notation. In this case, the event will simply be er = (u, u, t). Given a list

of retweet events up to but not including time t, the history Hr
us(t) of retweets by u due to

source s is

Hr
us(t) =

{
eri = (ui, si, ti)|ui = u and si = s

}
. (2.2)

The entire history of retweet events is denoted as

Hr(t) := ∪u,s∈[m]Hr
us(t) (2.3)

For link creation event, the triplet means that destination node u creates at time t a link

to source node s, i.e., from time t on, node u starts following node s. To ease the exposition,

we restrict ourselves to the case where links cannot be deleted and thus each (directed) link

is created only once. However, our model can be easily augmented to consider multiple

link creations and deletions per node pair. We denote the link creation history asHl(t).

2.2.2 Joint Model with Two Interwoven Components

Given m users, we use two sets of counting processes to record the generated events, one

for information diffusion and another for network evolution. More specifically,

I. Retweet events are recorded using a matrix N (t) of size m×m for each fixed time

point t. The (u, s)-th entry in the matrix, Nus(t) ∈ {0} ∪ Z+, counts the number of

retweets of u due to source s up to time t. These counting processes are “identity

revealing”, since they keep track of the source node that triggers each retweet. The

matrix N (t) is typically less sparse than A(t), since Nus(t) can be nonzero even

when node u does not directly follow s. We also let dN (t) :=
(
dNus(t)

)
u,s∈[m]

.

II. Link events are recorded using an adjacency matrixA(t) of sizem×m for each fixed

time point t. The (u, s)-th entry in the matrix, Aus(t) ∈ {0, 1}, indicates whether u is
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directly following s. Therefore, Aus(t) = 1 means the directed link has been created

before t. For simplicity of exposition, we do not allow self-links. The matrix A(t)

is typically sparse, but the number of nonzero entries can change over time. We also

define dA(t) :=
(
dAus(t)

)
u,s∈[m]

.

Then, the interwoven information diffusion and network evolution processes can be char-

acterized using their respective intensities

E[dN (t) |Hr(t) ∪Hl(t)] = Γ∗(t) dt (2.4)

E[dA(t) |Hr(t) ∪Hl(t)] = Λ∗(t) dt, (2.5)

where,

Γ∗(t) = ( γ∗us(t) )u,s∈[m] (2.6)

Λ∗(t) = ( λ∗us(t) )u,s∈[m]. (2.7)

The sign ∗ means that the intensity matrices will depend on the joint history,Hr(t)∪Hl(t),

and hence their evolution will be coupled. By this coupling, we make: (i) the counting

processes for link creation to be “information driven” and (ii) the evolution of the linking

structure to change the information diffusion process. In the next two sections, we will

specify the details of these two intensity matrices.

2.2.3 Information Diffusion Process

We model the intensity, Γ∗(t), for retweeting events using multivariate Hawkes process [133]:

γ∗us(t) = I[u = s] ηu + I[u 6= s] βs
∑

v∈Fu(t)
κω1(t) ?

(
Auv(t) dNvs(t)

)
, (2.8)

where I[·] is the indicator function and Fu(t) :=
{
v ∈ [m] : Auv(t) = 1

}
is the current

set of followees of u. The term ηu > 0 is the intensity of original tweets by a user u

on his own initiative, becoming the source of a cascade, and the term βs
∑

v∈Fu(t) κω(t) ?(
Auv(t) dNvs(t)

)
models the propagation of peer influence over the network, where the
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triggering kernel κω1(t) models the decay of peer influence over time.

Note that the retweeting intensity matrix Γ∗(t) is by itself a stochastic process that de-

pends on the time-varying network topology, the non-zero entries in A(t), whose growth

is controlled by the network evolution process in Section 2.2.4. Hence the model design

captures the influence of the network topology and each source’s influence, βs, on the in-

formation diffusion process. More specifically, to compute γ∗us(t), one first finds the current

set Fu(t) of followees of u, and then aggregates the retweets of these followees that are due

to source s. Note that these followees may or may not directly follow source s. Then, the

more frequently node u is exposed to retweets of tweets originated from source s via her

followees, the more likely she will also retweet a tweet originated from source s. Once

node u retweets due to source s, the corresponding Nus(t) will be incremented, and this in

turn will increase the likelihood of triggering retweets due to source s among the followers

of u. Thus, the source does not simply broadcast the message to nodes directly follow-

ing her but her influence propagates through the network even to those nodes that do not

directly follow her. Finally, this information diffusion model allows a node to repeatedly

generate events in a cascade, and is very different from the independent cascade or linear

threshold models [111] which allow at most one event per node per cascade.

2.2.4 Network Evolution Process

In our model, each user is exposed to information through a time-varying set of neigh-

bors. By doing so, information diffusion affects network evolution, increasing the practical

application of our model to real-world network datasets. The particular definition of ex-

posure (e.g., a retweet’s neighbor) depends on the type of historical information that is

available. Remarkably, the flexibility of our model allows for different types of diffusion

events, which we can broadly classify into two categories.

In the first category, events corresponds to the times when an information cascade hits

a person, for example, through a retweet from one of her neighbors, but she does not
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explicitly like or forward the associated post. Here, we model the intensity, Λ∗(t), for link

creation using a combination of survival and Hawkes process:

λ∗us(t) = (1− Aus(t))

µu + αu
∑

v∈Fu(t)

κω2(t) ? dNvs(t)

 , (2.9)

where the term 1−Aus(t) effectively ensures a link is created only once, and after that, the

corresponding intensity is set to zero. The term µu > 0 denotes a baseline intensity, which

models when a node u decides to follow a source s spontaneously at her own initiative.

The term αuκω2(t) ? dNvs(t) corresponds to the retweets by node v (a followee of node

u) which are originated from source s. The triggering kernel κω2(t) models the decay of

interests over time.

In the second category, the person decides to explicitly like or forward the associated

post and influencing events correspond to the times when she does so. In this case, we

model the intensity, Λ∗(t), for link creation as:

λ∗us(t) = (1− Aus(t))(µu + αu κω2(t) ? dNus(t)), (2.10)

where the terms 1 − Aus(t), µu > 0, and the decaying kernel κω2(t) play the same role

as the corresponding ones in Equation (2.9). The term αuκω2(t) ? dNus(t) corresponds

to the retweets of node u due to tweets originally published by source s. The higher the

corresponding retweet intensity, the more likely u will find information by source s useful

and will create a direct link to s.

In both cases, the link creation intensity Λ∗(t) is also a stochastic process by itself,

which depends on the retweet events, be it the retweets by the neighbors of node u or the

retweets by node u herself, respectively. Therefore, it captures the influence of retweets

on the link creation, and closes the loop of mutual influence between information diffusion

and network topology. Figure 2.4 illustrates these two interdependent intensities.

Intuitively, in the latter category, information diffusion events are more prone to trigger

new connections, because, they involve the target and source nodes in an explicit interac-

tion, however, they are also less frequent. Therefore, it is mostly suitable to large event
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Figure 2.4: The breakdown of conditional intensity functions for 1) information diffusion
process of Jacob retweeting posts originated from David NJD(t); 2) information diffusion
process of David tweeting on his own initiative NDD(t); 3) link creation process of Jacob
following David AJD(t)

datasets, as the ones we generate in our synthetic experiments. In contrast, in the for-

mer category, information diffusion events are less likely to inspire new links but found in

abundance. Therefore, it is more suitable for smaller datasets, as the ones we use in our

real-world experiments. Consequently, in our synthetic experiments we used the latter and

in our real-world experiments, we used the former. More generally, the choice of exposure

event should be made based on the type and amount of available historical information.

2.3 Efficient Simulation of Coevolutionary Dynamics

We could simulate samples (link creations, tweets and retweets) from our model by adapt-

ing Ogata’s thinning algorithm [148], originally designed for multidimensional Hawkes

processes. However, a naive implementation of Ogata’s algorithm would scale poorly, i.e.,

for each sample, we would need to re-evaluate Γ∗(t) and Λ∗(t). Thus, to draw n sample

events, we would need to perform O(m2n2) operations, where m is the number of nodes.

Figure 2.5(a) schematically demonstrates the main steps of Ogata’s algorithm. Please refer

to section 1.3 for further details.
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(a) Ogata’s algorithm (b) Proposed algorithm

Figure 2.5: Ogata’s algorithm vs our simulation algorithm in simulating U interdependent
point processes characterized by intensity functions λ1(t), . . . , λU(t). Panel (a) illustrates
Ogata’s algorithm, which first takes a sample from the process with intensity equal to sum
of individual intensities and then assigns it to the proper dimension proportionally to its
contribution to the sum of intensities. Panel (b) illustrates our proposed algorithm, which
first draws a sample from each dimension independently and then takes the minimum time
among them.

Here, we design a sampling procedure that is especially well-fitted for the structure of

our model. The algorithm is based on the following key idea: if we consider each intensity

function in Γ∗(t) and Λ∗(t) as a separate point process and draw a sample from each, the

minimum among all these samples is a valid sample for the multidimensional point process.

As the results of this section are general and can be applied to simulate any multi-

dimensional point process model we abuse the notation a little bit and represent U (possi-

bly inter-dependent) point processes by U intensity functions λ∗1, . . . , λ
∗
U . In the specific

case of simulating coevolutionary dynamics we have U = m2 + m(m − 1) were the first

and second terms are the number information diffusion and link creation processes, respec-

tively. Figure 2.5 illustrates the way in which both algorithms differ. The new algorithm

has the following steps:

1. Initialization: Simulate each dimension separately and find their next sampled event
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time.

2. Minimization: Take the minimum among all the sampled times and declare it as the

next event of the multidimensional process.

3. Update: Recalculate the intensities of the dimensions that are affected by this ap-

proved sample and re-sample only their next event. Then go to step 2.

To prove that the new algorithm generates samples from the same distribution as Ogata’s

algorithm does we need the following Lemma. It justifies step 2 of the above outline.

Lemma 1. Assume we have U independent non-homogeneous Poisson processes with in-

tensity λ∗1(τ), . . . , λ∗U(τ). Take random variable τu equal to the time of process u’s first

event after time t. Define τmin = min1≤u≤U {τu} and umin = argmin1≤u≤U {τu}. Then,

(a) τmin is the first event after time t of the Poisson process with intensity λ∗sum(τ). In

other words, τmin has the same distribution as the next event (t′) in Ogata’s algorithm.

(b) umin follows the conditional distribution P(umin = u|τmin = x) =
λ∗U (x)

λ∗sum(x)
. I.e.

the dimension firing the event comes from the same distribution as the one in Ogata’s

algorithm.

Proof. (a) The waiting time of the first event of a dimension u is exponentially distributed1

random variable [167]; i.e., τu − t ∼ Exponential
(∫ t+τu

t
λ∗u(τ) dτ

)
. We have:

P(τmin ≤ x|x > t) = 1− P(τmin > x|x > t) = 1− P(min (τ1, . . . , τU) > x|x > t)

= 1− P(τ1 > x, . . . , τU > x|x > t) = 1−
U∏
u=1

P(τu > x|x > t)

= 1−
U∏
u=1

exp

(
−
∫ t+x

t

λ∗u(τ) dτ

)
= 1− exp

(
−
∫ t+x

t

λ∗sum(τ) dτ

)
.

(2.11)

1 If random variable X is exponentially distributed with parameter r, then fX(x) = r exp(−rx) is its
probability distribution function and FX(x) = 1− exp(−rx) is the cumulative distribution function.
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Therefore, τmin− t is exponentially distributed with parameter
∫ τmin
t

λ∗sum(τ) dτ which can

be seen as the first event of a non-homogenous poisson process with intensity λ∗sum(τ) after

time t.

(b) To find the distribution of umin we have

P(umin = u|τmin = x) = λ∗u(x) exp

(
−
∫ t+x

t

λ∗u(τ) dτ

)∏
v 6=u

exp

(
−
∫ t+x

t

λ∗v(τ) dτ

)

= λ∗u(x)
∏
v

exp

(
−
∫ t+x

t

λ∗v(τ) dτ

)
.

(2.12)

After normalization we get P(umin = u|τmin = x) =
λ∗U (x)

λ∗sum(x)
.

Given the above Lemma, we can now prove that the distribution of the samples gener-

ated by the proposed algorithm is identical to the one generated by Ogata’s method.

Theorem 2. The sequence of samples from Ogata’s algorithm and our proposed algorithm

follow the same distribution.

Proof. Using the chain rule the probability of observing HT =
{

(t1, u1), . . . , (tn, un)
}

is

written as:

P
{

(t1, u1), . . . , (tn, un)
}

=
n∏
i=1

P
{

(ti, ui)|(ti−1, ui−1), . . . , (t1, u1)
}

=
n∏
i=1

P
{

(ti, ui)|Hti

}
(2.13)

By fixing the history up to some time, say ti, all dimensions of multivariate Hawkes process

become independent of each other (until next event happens). Therefore, the above lemma

can be applied to show that the next sample time from Ogata’s algorithm and the proposed

one come from the same distribution, i.e., for every i, P
{

(ti, ui)|Hti

}
is the same for both

algorithms. Thus, the multiplication of individual terms is also equal for both. This will

prove the theorem.

This new algorithm is specially suitable for the structure of our inter-coupled processes.
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Algorithm 2 Simulation Algorithm for COEVOLVE

Initialization:
Initialize the priority queue Q ∀ u, s ∈ [m]
Sample next link event elus from Aus (Algorithm 4)
Q.insert(elus)
Sample next retweet event erus from Nus (Algorithm 4)
Q.insert(erus)
General Subroutine:
t← 0 t < T
e← Q.extract min() e = (u, s, t′) is a retweet event
Update the historyHr

us(t
′) = Hr

us(t) ∪ {e} ∀ v s.t. u v
Update event intensity: γvs(t′) = γvs(t

′−) + β
Sample retweet event ervs from γvs (Algorithm 4)
Q.update key(ervs) NOT s v
Update link intensity: λ∗vs(t

′) = λ∗vs(t
′−) + α

Sample link event elvs from λvs (Algorithm 4)
Q.update key(elvs)
Update the historyHl

us(t
′) = Hl

us(t) ∪ {e}
λ∗us(t)← 0 ∀ t > t′

t← t′

Since social and information networks are typically sparse, every time we sample a new

node (or link) event from the model, only a small number of intensity functions in the

local neighborhood of the node (or the link), will change. This number is of O(d) where

d is the maximum number of followers/followees per node. As a consequence, we can

reuse most of the individual samples for the next overall sample. Moreover, we can find

which intensity function has the minimum sample time in O(logm) operations using a

heap priority queue. The heap data structure will help maintain the minimum and find it

in logarithmic time with respect to the number of elements therein. Therefore, we have

reduced an O(nm) factor in the original algorithm to O(d logm).

Finally, we exploit the properties of the exponential function to update individual in-

tensities for each new sample in O(1). For simplicity consider a Hawkes process with

intensity λ∗(t) = µ+
∑

ti∈Ht αω exp(−ω(t− ti)). Note that both link creation and infor-

mation diffusion processes have this structure. Now, let ti < ti+1 be two arbitrary times,
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Algorithm 3 Efficient Intensity Computation
Global Variabels:
Last time of intensity computation: t
Last value of intensity computation: I
Initialization:
t← 0
I ← µ
function get intensity(t′)
I ′ ← (I − µ) exp(−ω(t′ − t)) + µ
t← t′

I ← I ′

return I
end function

Algorithm 4 1-D next event sampling
Input: Current time: t
Output: Next event time: s
s← t
λ̂← λ∗(s) (Algorithm 3) s < T
g ∼ Exponential(λ̂)
s← s+ g
λ̄← λ∗(s) (Algorithm 3)
Rejection test:
d ∼ Uniform(0, 1) d× λ̂ < λ̄
return s
λ̂ = λ̄
return s

we have

λ∗(ti+1) = (λ∗(ti)− µ) exp(−ω(ti+1 − ti)) + µ. (2.14)

It can be readily generalized to the multivariate case too. Therefore, we can compute the

current intensity without explicitly iterating over all previous events. As a result we can

change an O(n) factor in the original algorithm to O(1). Furthermore, the exponential

kernel also facilitates finding the upper bound of the intensity since it always lies at the

beginning of one of the processes taken into consideration. Algorithm 3 summarizes the

procedure to compute intensities with exponential kernels, and Algorithm 4 shows the pro-

cedure to sample the next event in each dimension making use of the special property of

exponential kernel functions.
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The simulation algorithm is shown in Algorithm 2. By using this algorithm we reduce

the complexity from O(n2m2) to O(nd logm), where d is the maximum number of fol-

lowees per node. That means, our algorithm scales logarithmically with the number of

nodes and linearly with the number of edges at any point in time during the simulation.

Moreover, events for new links, tweets and retweets are generated in a temporally inter-

twined and interleaving fashion, since every new retweet event will modify the intensity

for link creation and vice versa.

2.4 Efficient Parameter Estimation from Coevolutionary Events

In this section, we first show that learning the parameters of our proposed model reduces

to solving a convex optimization problem and then develop an efficient, parameter-free

Minorization-Maximization algorithm to solve such problem.

2.4.1 Concave Parameter Learning Problem

Given a collection of retweet events E = {eri} and link creation events A = {eli} recorded

within a time window [0, T ), we can easily estimate the parameters needed in our model

using maximum likelihood estimation. To this aim, we compute the joint log-likelihood L

of these events using Equation (1.7), i.e.,

L({µu} , {αu} , {ηu} , {βs}) =
∑
eri∈E

log
(
γ∗uisi(ti)

)
−
∑

u,s∈[m]

∫ T

0

γ∗us(τ) dτ

︸ ︷︷ ︸
tweet / retweet

+
∑
eli∈A

log
(
λ∗uisi(ti)

)
−
∑

u,s∈[m]

∫ T

0

λ∗us(τ) dτ

︸ ︷︷ ︸
links

.

(2.15)

For the terms corresponding to retweets, the log term sums only over the actual observed

events while the integral term actually sums over all possible combination of destination

and source pairs, even if there is no event between a particular pair of destination and

source. For such pairs with no observed events, the corresponding counting processes have
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essentially survived the observation window [0, T ), and the term −
∫ T

0
γ∗us(τ)dτ simply

corresponds to the log survival probability. The terms corresponding to links have a similar

structure.

Once we have an expression for the joint log-likelihood of the retweet and link creation

events, the parameter learning problem can be then formulated as follows:

minimize{µu},{αu},{ηu},{βs} −L({µu} , {αu} , {ηu} , {βs})

subject to µu ≥ 0, αu ≥ 0 ηu ≥ 0, βs ≥ 0 ∀u, s ∈ [m].

(2.16)

Theorem 3. The optimization problem defined by Equation (2.16) is jointly convex.

Proof. We expand the likelihood by replacing the intensity functions into Equation (2.15):

L =
∑
eri∈E

log

(
I[ui = si] ηui + I[ui 6= si] βsi

∑
v∈Fui(ti)

(
κω1(t) ?

(
Auiv(t) dNvsi(t)

))∣∣∣∣
t=ti

)

−
∑

u,s∈[m]

I[u = s] ηu

∫ T

0

dt+ I[u 6= s] βs
∑

v∈Fu(t)

∫ T

0

κω1(t) ?
(
Auv(t) dNvs(t)

)
dt

+
∑
eli∈A

log

µui + αui
∑

v∈Fui (ti)

(
κω2(t) ? dNvs(t)

)∣∣∣
t=ti


−
∑

u,s∈[m]

µu

∫ T

0

(1− Aus(t)) dt+ αu

∫ T

0

(1− Aus(t))
( ∑
v∈Fu(t)

κω2(t) ? dNvs(t)
)
dt

(2.17)

If we stack all parameters in a vector x = ({µu} , {αu} , {ηu} , {βs}), one can easily notice

that the log-likelihood L can be written as
∑

j log(a>j x) −
∑

k b
>
k x, which is clearly a

concave function with respect to x [24], and thus −L is convex. Moreover, the constraints

are linear inequalities and thus the domain is a convex set. This completes the proof for

convexity of the optimization problem.

It’s notable that the optimization problem decomposes in m independent problems, one

per node u, and can be readily parallelized.
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2.4.2 Efficient Minorization-Maximization Algorithm

Since the optimization problem is jointly convex with respect to all the parameters, one

can simply take any convex optimization method to learn the parameters. However, these

methods usually require hyper parameters like step size or initialization, which may signifi-

cantly influence the convergence. Instead, the structure of our problem allows us to develop

an efficient algorithm inspired by previous work [229, 228], which leverages Minorization

Maximization (MM) [103] and is parameter free and insensitive to initialization.

Our algorithm utilizes Jensen’s inequality to provide a lower bound for the second log-

sum term in the log-likelihood given by Equation (2.15). More specifically, consider a set

of arbitrary auxiliary variable νij , where 1 ≤ i ≤ nl, j = 1, 2 and nl is the number of link

events, i.e., nl = |A|. Further, assume these variables satisfy

∀ 1 ≤ i ≤ nl : νi1, νi2 ≥ 0, νi1 + νi2 = 1 (2.18)

Then, we can lower bound the logarithm in Equation (2.17) using Jensen’s inequality as

follows:

log

µui + αui
∑

v∈Fui (ti)

(
κω2(t) ? dNvs(t)

)∣∣∣
t=ti


= log

νi1µui
νi1

+ νi2
αui
νi2

∑
v∈Fui (ti)

(
κω2(t) ? dNvs(t)

)∣∣∣
t=ti


≥ νi1 log

(
µui
νi1

)
+ νi2 log

αui
νi2

∑
v∈Fui (ti)

(
κω2(t) ? dNvs(t)

)∣∣∣
t=ti


≥ νi1 log(µui) + νi2 log(αui) + νi2 log

 ∑
v∈Fui (ti)

(
κω2(t) ? dNvs(t)

)∣∣∣
t=ti


− νi1 log(νi1)− νi2 log(νi2).

(2.19)
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Now, we can lower bound the log-likelihood given by Equation (2.17) as:

L ≥ L′ =
∑
eri∈E

I[ui = si] log
(
ηui
)

+
∑
eri∈E

I[ui 6= si] log(βsi)

+
∑
eri∈E

I[ui 6= si] log
(∑

v∈Fui(ti)

(
κω1(t) ?

(
Auiv(t) dNvsi(t)

))∣∣∣∣
t=ti

)
−
∑

u,s∈[m]

ηuT + βs
∑

v∈Fu(t)

∫ T

0

κω1(t) ?
(
Auv(t) dNvs(t)

)
dt

+
∑
eli∈A

νi1 log(µui) + νi2 log(αui) + νi2 log
( ∑
v∈Fui (ti)

(
κω2(t) ? dNvs(t)

)∣∣∣
t=ti

)
−
∑
eli∈A

νi1 log(νi1) + νi2 log(νi2)

−
∑

u,s∈[m]

µu

∫ T

0

(1− Aus(t)) dt+ αu

∫ T

0

(1− Aus(t))(κω2(t) ? dNus(t)) dt

(2.20)

By taking the gradient of the lower-bound with respect to the parameters, we can find

the closed form updates to optimize the lower-bound:

ηu =

∑
eri∈E

I[u = ui = si]

T
(2.21)

βs =

∑
eri∈E

I[s = si 6= ui]∑
u∈[m] I[u 6= s]

∑
v∈Fu(t)

∫ T
0
κω1(t) ?

(
Auv(t) dNvs(t)

)
dt

(2.22)

µu =

∑
eli∈A

I[u = ui] νi1∑
s∈[m]

∫ T
0

(1− Aus(t)) dt
(2.23)

αu =

∑
eli∈A

I[u = ui] νi2∑
s∈[m]

∫ T
0

(1− Aus(t))(κω2(t) ? dNus(t)) dt
. (2.24)

Finally, although the lower bound is valid for every choice of νij satisfying Equa-

tion (2.18), by maximizing the lower bound with respect to the auxiliary variables we can

make sure that the lower bound is tight:

maximize{νij} L
′({µu} , {αu} , {ηu} , {βs} ,

{
νij
}

)

subject to νi1 + νi2 = 1 ∀ i : 1 ≤ i ≤ nl

νi0, νi1 ≥ 0 ∀ i : 1 ≤ i ≤ nl.

(2.25)

Fortunately, the above constrained optimization problem can be solved easily via Lagrange
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Algorithm 5 MM-type parameter learning for COEVOLVE

Input: Set of retweet events E = {eri} and link creation events A = {eli} observed in
time window [0, T )
Output: Learned parameters {µu} , {αu} , {ηu} , {βs}
Initialization: u← 1 to m
Initialize µu and αu randomly u← 1 to m

ηu =

∑
er
i
∈E I[u=ui=si]

T
s← 1 to m

βs =

∑
er
i
∈E I[s=si 6=ui]∑

u∈[m] I[u6=s]
∑
v∈Fu(t)

∫ T
0 κω1 (t)?(Auv(t) dNvs(t)) dt

not converged i← 1 to nl

νi1 =
µui

µui+αui
∑
v∈Fui (ti)

(
κω2 (t)?dNvs(t)

)∣∣∣∣
t=ti

νi2 =
αui

∑
v∈Fui (ti)

(
κω2 (t)?dNvs(t)

)∣∣∣∣
t=ti

µui+αui
∑
v∈Fui (ti)

(
κω2 (t)?dNvs(t)

)∣∣∣∣
t=ti

u← 1 to m

µu =

∑
el
i
∈A I[u=ui] νi1∑

s∈[m]

∫ T
0 (1−Aus(t)) dt

αu =

∑
el
i
∈A I[u=ui]νi2∑

s∈[m]

∫ T
0 (1−Aus(t))(κω2 (t)?dNus(t)) dt

multipliers, which leads to closed form updates:

νi1 =
µui

µui + αui
∑

v∈Fui (ti)
(
κω2(t) ? dNvs(t)

)∣∣∣
t=ti

(2.26)

νi2 =
αui
∑

v∈Fui (ti)
(
κω2(t) ? dNvs(t)

)∣∣∣
t=ti

µui + αui
∑

v∈Fui (ti)
(
κω2(t) ? dNvs(t)

)∣∣∣
t=ti

. (2.27)

Algorithm 5 summarizes the learning procedure. It is guaranteed to converge to a global

optimum [103, 229]

2.5 Properties of Simulated Co-evolution, Networks and Cascades

In this section, we perform an empirical investigation of the properties of the networks

and information cascades generated by our model 2. In particular, we show that our model

can generate co-evolutionary retweet and link dynamics and a wide spectrum of static and

temporal network patterns and information cascades.

2The code is available at https://github.com/farajtabar/coevolution
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Figure 2.6: Coevolutionary dynamics for synthetic data. a) Spike trains of link and retweet
events. b) Link and retweet intensities. c) Cross covariance of link and retweet intensities.

2.5.1 Simulation Settings

Throughout this section, if not said otherwise, we simulate the evolution of a 8,000-node

network as well as the propagation of information over the network by sampling from our

model using Algorithm 2. We set the exogenous intensities of the link and diffusion events

to µu = µ = 4× 10−6 and ηu = η = 1.5 respectively, and the triggering kernel parameter

to ω1 = ω2 = 1. The parameter µ determines the independent growth of the network –

roughly speaking, the expected number of links each user establishes spontaneously before

time T is µT . Whenever we investigate a static property, we choose the same sparsity level

of 0.001.

2.5.2 Retweet and Link Coevolution

Figures 2.6(a,b) visualize the retweet and link events, aggregated across different sources,

and the corresponding intensities for one node and one realization, picked at random. Here,

it is already apparent that retweets and link creations are clustered in time and often fol-

low each other. Further, Figure 2.6(c) shows the cross-covariance of the retweet and link

creation intensity, computed across multiple realizations, for the same node, i.e., if f(t)

and g(t) are two intensities, the cross-covariance is a function h(τ) =
∫
f(t + τ)g(t) dt.

It can be seen that the cross-covariance has its peak around 0, i.e., retweets and link cre-

ations are highly correlated and co-evolve over time. For ease of exposition, we illustrated

co-evolution using one node, however, we found consistent results across nodes.
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Figure 2.7: Degree distributions when network sparsity level reaches 0.001 for different β
(α) values and fixed α = 0.1 (β = 0.1).

2.5.3 Degree Distribution

Empirical studies have shown that the degree distribution of online social networks and mi-

croblogging sites follow a power law [31, 116], and argued that it is a consequence of the

rich get richer phenomena. The degree distribution of a network is a power law if the ex-

pected number of nodes md with degree d is given by md ∝ d−γ , where γ > 0. Intuitively,

the higher the values of the parameters α and β, the closer the resulting degree distribu-

tion follows a power-law. This is because the network grows more locally. Interestingly,

the lower their values, the closer the distribution to an Erdos-Renyi random graph [53],

because, the edges are added almost uniformly and independently without influence from

the local structure. Figure 2.7 confirms this intuition by showing the degree distribution for

different values of β and α.

2.5.4 Small (shrinking) Diameter

There is empirical evidence that the diameter of online social networks and microblogging

sites exhibit relatively small diameter and shrinks (or flattens) as the network grows [10,

31, 125]. Figures 2.8(a-b) show the diameter on the largest connected component (LCC)

against the sparsity of the network over time for different values of α and β. Although at
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Figure 2.8: Diameter and clustering coefficient for network sparsity 0.001. Panels (a)
and (b) show the diameter against sparsity over time for fixed α = 0.1, and for fixed
β = 0.1 respectively. Panels (c) and (d) show the clustering coefficient (CC) against β and
α, respectively.

the beginning, there is a short increase in the diameter due to the merge of small connected

components, the diameter decreases as the network evolves. Moreover, larger values of α

or β lead to higher levels of local growth in the network and, as a consequence, slower

shrinkage. Here, nodes arrive to the network when they follow (or are followed by) a node

in the largest connected component.

2.5.5 Clustering Coefficient

Triadic closure [79, 123, 166] has been often presented as a plausible link creation mecha-

nism. However, different social networks and microblogging sites present different levels

of triadic closure [194]. Importantly, our method is able to generate networks with diffe-

rent levels of triadic closure, as shown by Figure 2.8(c-d), where we plot the clustering

coefficient [206], which is proportional to the frequency of triadic closure, for different

values of α and β.

2.5.6 Network Visualization

Figure 2.9 visualizes several snapshots of the largest connected component (LCC) of two

300-node networks for two particular realizations of our model, under two different values

of β. In both cases, we used µ = 2 × 10−4, α = 1, and η = 1.5. The top two rows

correspond to β = 0 and represent one end of the spectrum, i.e., Erdos-Renyi random

network. Here, the network evolves uniformly. The bottom two rows correspond to β = 0.8
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Figure 2.9: Evolution of two networks: one with β = 0 (1st and 2nd rows) and another one
with β = 0.8 (3rd and 4th rows), and spike trains of nodes A and B (5th row).

and represent the other end, i.e., scale-free networks. Here, the network evolves locally, and

clusters emerge naturally as a consequence of the local growth. They are depicted using a
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combination of forced directed and Fruchterman Reingold layout with Gephi3. Moreover,

the figure also shows the retweet events (from others as source) for two nodes, A and B,

on the bottom row. These two nodes arrive almost at the same time and establish links

to two other nodes. However, node A’s followees are more central, therefore, A is being

exposed to more retweets. Thus, node A performs more retweets than B does. It again

shows how information diffusion is affected by network structure. Overall, this figure

clearly illustrates that by careful choice of parameters we can generate networks with a

very different structure.

Figure 2.10 illustrates the spike trains (tweet, retweet, and link events) for the first

140 nodes of a network simulated with a similar set of parameters as above and Figure

2.11 shows three snapshots of the network at different times. First, consider node 6 in the

network. After she joins the network, a few nodes begin to follow him. Then, when she

starts to tweet, her tweets are retweeted many times by others (red spikes) in the figure and

these retweets subsequently boost the number of nodes that link to her (Magenta spikes).

This clearly illustrates the scenario in which information diffusion triggers changes on

the network structure. Second, consider nodes 46 and 68 and compare their associated

events over time. After some time, node 46 becomes much more active than node 68. To

understand why, note that soon after time 137, node 46 followed node 130, which is a very

central node (i.e. following a lot of people), while node 68 did not. This clearly illustrates

the scenario in which network evolution triggers changes on the dynamics of information

diffusion.

2.5.7 Cascade Patterns

Our model can produce the most commonly occurring cascades structures as well as heavy-

tailed cascade size and depth distributions, as observed in historical Twitter data reported in

[67]. Figure 2.12 summarizes the results, which provide empirical evidence that the higher

3http://gephi.github.io/
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Figure 2.10: Coevolutionary dynamics of events for the network shown in Figure 2.11.
Information Diffusion−→Network Evolution: When node 6 joins the network a few nodes
follow her and retweet her posts. Her tweets being propagated (shown in red) turning her
to a valuable source of information. Therefore, those retweets are followed by links created
to her (shown in magenta). Network Evolution −→ Information Diffusion: Nodes 46 and
68 both have almost the same number of followees. However, as soon as node 46 connects
to node 130 (which is a central node and retweets very much) her activity dramatically
increases compared to node 68.
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Figure 2.12: Distribution of cascade structure, size and depth for different α (β) values and
fixed β = 0.2 (α = 0.8).

the α (β) value, the shallower and wider the cascades.

2.6 Experiments on Model Estimation and Prediction on Synthetic Data

In this section, we first show that our model estimation method can accurately recover the

true model parameters from historical link and diffusion events data and then demonstrate

that our model can accurately predict the network evolution and information diffusion over

time, significantly outperforming two state of the art methods [208, 6, 145] at predicting

new links, and a baseline Hawkes process that does not consider network evolution at

predicting new events.
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Figure 2.13: Performance of model estimation for a 400-node synthetic network.

2.6.1 Experimental Setup

Throughout this section, we experiment with our model considering m=400 nodes. We set

the model parameters for each node in the network by drawing samples from µ∼U(0, 0.0004),

α∼U(0, 0.1), η∼U(0, 1.5) and β∼U(0, 0.1). We then sample up to 60,000 link and infor-

mation diffusion events from our model using Algorithm 2 and average over 8 different

simulation runs.

2.6.2 Model Estimation

We evaluate the accuracy of our model estimation procedure via two measures: (i) the

relative mean absolute error (i.e., E[|x − x̂|/x], MAE) between the estimated parameters

(x) and the true parameters (x̂), (ii) the Kendall’s rank correlation coefficient between each

estimated parameter and its true value, and (iii) test log-likelihood. Figure 2.13 shows

that as we feed more events into the estimation procedure, the estimation becomes more

accurate.

2.6.3 Link Prediction

We use our model to predict the identity of the source for each test link event, given the

historical events before the time of the prediction, and compare its performance with two

state of the art methods, which we denote as TRF [6] and WENG [208]. TRF measures

the probability of creating a link from a source at a given time by simply computing the
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Figure 2.14: Prediction performance for a 400-node synthetic network by means of average
rank (AR) and success probability that the true (test) events rank among the top-1 events
(Top-1).

proportion of new links created from the source over all total created links up to the given

time. WENG considers several link creation strategies and makes a prediction by combin-

ing these strategies.

Here, we evaluate the performance by computing the probability of all potential links

using our model, TRF and WENG and then compute (i) the average rank of all true (test)

events (AvgRank) and, (ii) the success probability that the true (test) events rank among the

top-1 potential events at each test time (Top-1). Figure 2.14 summarizes the results, where

we trained our model with an increasing number of events. Our model outperforms both

TRF and WENG for a significant margin.

2.6.4 Activity Prediction

We use our model to predict the identity of the node that generates each test diffusion event,

given the historical events before the time of the prediction, and compare its performance

with a baseline consisting of a Hawkes process without network evolution. For the Hawkes

baseline, we take a snapshot of the network right before the prediction time, and use all

historical retweeting events to fit the model. Here, we evaluate the performance via the

same two measures as in the link prediction task and summarize the results in Figure 2.14

against an increasing number of training events. The results show that, by modeling the

network evolution, our model performs significantly better than the baseline.
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2.7 Experiments on Coevolution and Prediction on Real Data

In this section, we validate our model using a large Twitter dataset containing nearly

550,000 tweet, retweet and link events from more than 280,000 users [6]. We will show that

our model can capture the co-evolutionary dynamics and, by doing so, it predicts retweet

and link creation events more accurately than several alternatives.

2.7.1 Dataset Description & Experimental Setup

We use a dataset that contains both link events as well as tweets/retweets from millions of

Twitter users [6]. In particular, the dataset contains data from three sets of users in 20 days;

nearly 8 million tweet, retweet, and link events by more than 6.5 million users. The first

set of users (8,779 users) are source nodes s, for whom all their tweet times were collected.

The second set of users (77,200 users) are the followers of the first set of users, for whom all

their retweet times (and source identities) were collected. The third set of users (6,546,650

users) are the users that start following at least one user in the first set during the recording

period, for whom all the link times were collected.

In our experiments, we focus on all events (and users) during a 10-day period (Sep 21

2012 - 30 Sep 2012) and used the information before Sep 21 to construct the initial social

network (original links between users). We model the co-evolution in the second 10-day

period using our framework. More specifically, in the coevolution modeling, we have 5,567

users in the first layer who post 221,201 tweets. In the second layer 101,465 retweets are

generated by the whole 77,200 users in that interval. And in the third layer we have 198,518

users who create 219,134 links to 1978 users (out of 5567) in the first layer.

We split events into a training set (covering 85% of the retweet and link events) and a

test set (covering the remaining 15%) according to time, i.e., all events in the training set

occur earlier than those in the test set. We then use our model estimation procedure to fit

the parameters from an increasing proportion of events from the training data.
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Figure 2.15: Link and retweet behavior of 4 typical users in the real-world dataset. Panels
(a,c,e,g) show the spike trains of link and retweet events and Panels (b,d,f,h) show the
estimated link and retweet intensities

2.7.2 Retweet and Link Coevolution

Figures 2.15 visualizes the retweet and link events, aggregated across different targets, and

the corresponding intensities given by our trained model for four source nodes, picked at

random. Here, it is already apparent that retweets (of his posts) and link creations (to him)

are clustered in time and often follow each other, and our fitted model intensities success-

fully track such behavior. Further, Figure 2.16 compares the cross-covariance between the

empirical retweet and link creation intensities and between the retweet and link creation

intensities given by our trained model, computed across multiple realizations, for the same

nodes. For all nodes, the similarity between both cross-covariances is striking and both has

their peak around 0, i.e., retweets and link creations are highly correlated and co-evolve

over time. For ease of exposition, as in Section 2.5, we illustrated co-evolution using four

nodes, however, we found consistent results across nodes.

To further verify that our model can capture the coevolution, we compute the average

value of the empirical cross covariance function, denoted by mcc, per user. Intuitively, one
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Figure 2.16: Empirical and simulated cross covariance of link and retweet intensities for 4
typical users.
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Figure 2.17: Empirical cross covariance and learned model parameters for 1,000 users,
picked at random

could expect that our model estimation method should assign higher α and/or β values to

users with high mcc. Figure 2.17 confirms this intuition on 1,000 users, picked at random.

Whenever a user has high α and/or β value, she exhibits a high cross covariance between

her created links and retweets.

2.7.3 Link Prediction

We use our model to predict the identity of the source for each test link event, given the

historical (link and retweet) events before the time of the prediction, and compare its perfor-

mance with the same two state of the art methods as in the synthetic experiments, TRF [6]

and WENG [208].

We evaluate the performance by computing the probability of all potential links using

different methods, and then compute (i) the average rank of all true (test) events (AvgRank)

and, (ii) the success probability (SP) that the true (test) events rank among the top-1 poten-

tial events at each test time (Top-1). We summarize the results in Figure 2.18(a-b), where

we consider an increasing number of training retweet/tweet events. Our model outperforms
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Figure 2.18: Prediction performance in the Twitter dataset by means of average rank (AR)
and success probability that the true (test) events rank among the top-1 events (Top-1).

TRF and WENG consistently. For example, for 8 · 104 training events, our model achieves

a SP 2.5x times larger than TRF and WENG.

2.7.4 Activity Prediction

We use our model to predict the identity of the node that generates each test diffusion event,

given the historical events before the time of the prediction, and compare its performance

with a baseline consisting of a Hawkes process without network evolution. For the Hawkes

baseline, we take a snapshot of the network right before the prediction time, and use all

historical retweeting events to fit the model. Here, we evaluate the performance the via the

same two measures as in the link prediction task and summarize the results in Figure 2.18(c-

d) against an increasing number of training events. The results show that, by modeling the

co-evolutionary dynamics, our model performs significantly better than the baseline.

2.7.5 Model Checking

Given all the subsequent event times generated using a Hawkes process, i.e., ti and ti+1,

according to the time changing theorem [40], the intensity integrals
∫ ti+1

ti
λ(t) dt should

conform to the unit-rate exponential distribution. Figure 2.19 presents the quantiles of the

intensity integrals computed using intensities with the parameters estimated from the real

Twitter data against the quantiles of the unit-rate exponential distribution. It clearly shows

that the points approximately lie on the same line, giving empirical evidence that a Hawkes

process is the right model to capture the real dynamics.
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Figure 2.19: Quantile plots of the intensity integrals from the real link and retweet event
time

2.8 Related Work

In machine learning and several other communities, both the dynamics on the network and

the dynamics of the network have been extensively studied, and combining the two is a

natural next step. For example, [20] claimed that content generation in social networks

is influenced not just by their personal features like age and gender, but also by their so-

cial network structure. Furthermore, research has been done to address the co-evolution

problems, for example, in the complex network literature, under the name of adaptive sys-

tem [80, 82, 174]. The main premise is that the evolution of the topology depends on

the dynamics of the nodes in the network, and a feedback loop can be created between

the two, which allows dynamical exchange of information. It has been shown that adap-

tive networks are capable of self-organizing towards dynamically critical states, like phase

transitions by the interplay between the two processes on different time scales [23]. In a

different context, epidemiologists have found that nodes may rewire their links to try to

avoid contact with the infected ones [81, 221]. Co-evolutionary models have been also de-

veloped for collective opinion formation, investigating whether the coevolutionary dynam-

ics will eventually lead to consensus or fragmentation of the population [230]. However,

this line of research tends to be less data-driven.Moreover, although the general nonlin-

ear dynamic-system based methods usually address co-evolutionary phenomena that are

macroscopic in nature, they lack the inference power of statistical generative models which

are more adapted to teasing out microscopic details from the data. Finally, we would also
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like to mention a different line of research exemplified by the actor-oriented models devel-

oped by [180], where a continuous-time Markov chain on the space of directed networks

is specified by local node-centric probabilistic link change rules, and MCMC and method

of moments are used for parameter estimation. Hawkes processes we used are generally

non-Markovian and making use of event history far into the past.

The work most closely related to ours is the empirical study of information diffusion

and network evolution [80, 179, 208, 6, 145]. Among them, [208] was the first to show ex-

perimental evidence that information diffusion influences network evolution in microblog-

ging sites both at system-wide and individual levels. In particular, they studied Yahoo!

Meme, a social micro-blogging site similar to Twitter, which was active between 2009 and

2012, and showed that the likelihood that a user u starts following a user s increases with

the number of messages from s seen by u. [6] investigated the temporal and statistical char-

acteristics of retweet-driven connections within the Twitter network and then identified the

number of retweets as a key factor to infer such connections. [145] showed that the Twitter

network can be characterized by steady rates of change, interrupted by sudden bursts of

new connections, triggered by retweet cascades. They also developed a method to predict

which retweets are more likely to trigger these bursts. Finally, [191] utilized multivariate

Hawkes process to establish a connection between temporal properties of activities and the

structure of the network. In contrast to our work they studied the static properties, e.g.,

community structure and inferred the latent clusters using the observed activities.

However, there are fundamental differences between the above-mentioned studies and

our work. First, they only characterize the effect that information diffusion has on the

network dynamics, but not the bidirectional influence. In contrast, our probabilistic gen-

erative model takes into account the bidirectional influence between information diffusion

and network dynamics. Second, previous studies are mostly empirical and only make bi-

nary predictions on link creation events. For example, the work of [208, 6] predict whether

a new link will be created based on the number of retweets; and, [145] predict whether a
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burst of new links will occur based on the number of retweets and users’ similarity. How-

ever, our model is able to learn parameters from real world data, and predict the precise

timing of both diffusion and new link events.

2.9 Summary and Conclusion

We proposed a joint continuous-time model of information diffusion and network evo-

lution, which can capture the coevolutionary dynamics, mimics the most common static

and temporal network patterns observed in real-world networks and information diffusion

data, and predicts the network evolution and information diffusion more accurately than

previous state-of-the-arts. Using point processes to model intertwined events in informa-

tion networks opens up many interesting future modeling work. Our current model is just

a show-case of a rich set of possibilities offered by a point process framework, which

have been rarely explored before in large scale social network modeling. For example,

we can generalize our model to support link deletion by introducing an intensity matrix

Ξ∗(t) modeling link deletions as survival processes, i.e., Ξ∗(t) = (g∗us(t)Aus(t))u,s∈[m], and

then consider the counting process A(t) associated with the adjacency matrix to evolve as

E[dA(t)|Hr(t)∪Hl(t)] = Λ∗(t) dt−Ξ∗(t) dt. We also can consider the number of nodes

varying over time. Furthermore, a large and diverse range of point processes can also be

used in the framework without changing the efficiency of the simulation and the convexity

of the parameter estimation, e.g., condition the intensity on additional external features,

such as node attributes.

The content presented in this chapter are mostly based on papers [58, 57]. However

the author has applied the framework of point processes to other modeling tasks as well.

For example, paper [191] considered the problem of clustering not from static links but

from activities over the social network. The author has applied it to model cooperation and

competition between information cascades too [223]. Also, he co-authored a paper on us-

ing Hawkes process for recommendation systems where there is a peer influence between
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users [100]. In another work, he and his colleagues tackle the problem of anomaly/change

detection in social network by looking at activities over it [128]. The framework of point

processes has been used by the author to model content addition and edition times and dy-

namics in crowd-generated data like Wikipedia and Stackoverflow too [186] and to model

temporal knowledge graphs between real-world entities [192]. Last but not least, is the

work of the author with his colleagues for invasive species management in epidemiology

where Hawkes process is used to model the dissemination of species in a landscape [88].
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CHAPTER 3

OPTIMIZATION FOR SINGLE STAGE INTERVENTION

Events in an online social network can be categorized roughly into endogenous events,

where users just respond to the actions of their neighbors within the network, or exogenous

events, where users take actions due to drives external to the network. How much external

drive should be provided to each user, such that the network activity can be steered towards

a target state? In this chapter, we model social events using multivariate Hawkes processes,

which can capture both endogenous and exogenous event intensities, and derive a time de-

pendent linear relation between the intensity of exogenous events and the overall network

activity. Exploiting this connection, we develop a convex optimization framework for de-

termining the required level of external drive in order for the network to reach a desired

activity level. We experimented with event data gathered from Twitter, and show that our

method can steer the activity of the network more accurately than alternatives.

3.1 Introduction

Online social platforms routinely track and record a large volume of event data, which may

correspond to the usage of a service (e.g., url shortening service, bit.ly). These events can

be categorized roughly into endogenous events, where users just respond to the actions of

their neighbors within the network, or exogenous events, where users take actions due to

drives external to the network. For instance, a user’s tweets may contain links provided by

bit.ly, either due to his forwarding of a link from his friends, or due to his own initiative to

use the service to create a new link.

Can we model and exploit these data to steer the online community to a desired activity

level? Specifically, can we drive the overall usage of a service to a certain level (e.g.,

at least twice per day per user) by incentivizing a small number of users to take more
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initiatives? What if the goal is to make the usage level of a service more homogeneous

across users? What about maximizing the overall service usage for a target group of users?

Furthermore, these activity shaping problems need to be addressed by taking into account

budget constraints, since incentives are usually provided in the form of monetary or credit

rewards.

Activity shaping problems are significantly more challenging than traditional influence

maximization problems, which aim to identify a set of users, who, when convinced to

adopt a product, shall influence others in the network and trigger a large cascade of adop-

tions [111, 161]. First, in influence maximization, the state of each user is often assumed to

be binary, either adopting a product or not [111, 35, 165, 49]. However, such assumption

does not capture the recurrent nature of product usage, where the frequency of the usage

matters. Second, while influence maximization methods identify a set of users to provide

incentives, they do not typically provide a quantitative prescription on how much incentive

should be provided to each user. Third, activity shaping concerns about a larger variety of

target states, such as minimum activity requirement and homogeneity of activity, not just

activity maximization.

In this chapter, we will address the activity shaping problems using multivariate Hawkes

processes [133], which can model both endogenous and exogenous recurrent social events,

and were shown to be a good fit for such data in a number of recent works (e.g., [22, 229,

228, 106, 131, 195]). More importantly, we will go beyond model fitting, and derive a novel

predictive formula for the overall network activity given the intensity of exogenous events

in individual users. Based on this relation, we propose a convex optimization framework to

address a diverse range of activity shaping problems given budget constraints. Compared

to previous methods for influence maximization, our framework can provide more fine-

grained control of network activity, not only steering the network to a desired steady-state

activity level but also do so in a time-sensitive fashion. For example, our framework allows

us to answer complex time-sensitive queries, such as, which users should be incentivized,
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and by how much, to steer a set of users to use a product twice per week after one month?

In addition to the novel framework, we also develop an efficient gradient based opti-

mization algorithm, where the matrix exponential needed for gradient computation is ap-

proximated using the truncated Taylor series expansion [4]. This algorithm allows us to

validate our framework in a variety of activity shaping tasks and scale up to networks with

tens of thousands of nodes. We also conducted experiments on a network of 60,000 Twitter

users and more than 7,500,000 uses of a popular url shortening service. Using held-out

data, we show that our algorithm can shape the network behavior much more accurately.

3.2 Modeling Endogenous-Exogenous Recurrent Social Events

We model the events generated bym users in a social network as am-dimensional counting

process N (t) = (N1(t), N2(t), . . . , Nm(t))>, where Ni(t) records the total number of

events generated by user i up to time t. Furthermore, we represent each event as a tuple

(ui, ti), where ui is the user identity and ti is the event timing. Let the history of the

process up to time t be Ht :=
{

(ui, ti) | ti 6 t
}

, and Ht− be the history until just before

time t. Then the increment of the process, dN (t), in an infinitesimal window [t, t + dt] is

parametrized by the intensity λ(t) = (λ1(t), . . . , λm(t))> > 0, i.e.,

E[dN (t)|Ht−] = λ(t) dt. (3.1)

Intuitively, the larger the intensity λ(t), the greater the likelihood of observing an event

in the time window [t, t + dt]. For instance, a Poisson process in [0,∞) can be viewed

as a special counting process with a constant intensity function λ, independent of time

and history. To model the presence of both endogenous and exogenous events, we will

decompose the intensity into two terms

λ(t)︸︷︷︸
overall event intensity

= λ(0)(t)︸ ︷︷ ︸
exogenous event intensity

+ λ∗(t)︸ ︷︷ ︸
endogenous event intensity

, (3.2)

where the exogenous event intensity models drive outside the network, and the endogenous

event intensity models interactions within the network. We assume that hosts of social

59



platforms can potentially drive up or down the exogenous events intensity by providing

incentives to users; while endogenous events are generated due to users’ own interests or

under the influence of network peers, and the hosts do not interfere with them directly.

The key questions in the activity shaping context are how to model the endogenous event

intensity which are realistic to recurrent social interactions, and how to link the exogenous

event intensity to the endogenous event intensity. We assume that the exogenous event

intensity is independent of the history and time, i.e., λ(0)(t) = λ(0).

3.2.1 Multivariate Hawkes Process

Recurrent endogenous events often exhibit the characteristics of self-excitation, where a

user tends to repeat what he has been doing recently, and mutual-excitation, where a user

simply follows what his neighbors are doing due to peer pressure. These social phenom-

ena have been made analogy to the occurrence of earthquake [136] and the spread of epi-

demics [218], and can be well-captured by multivariate Hawkes processes [133] as shown

in a number of recent works (e.g., [22, 229, 228, 106, 131, 195]).

More specifically, a multivariate Hawkes process is a counting process who has a partic-

ular form of intensity. More specifically, we assume that the strength of influence between

users is parameterized by a sparse nonnegative influence matrix A = (auu′)u,u′∈[m], where

auu′ > 0 means user u′ directly excites user u. We also allow A to have nonnegative

diagonals to model self-excitation of a user. Then, the intensity of the u-th dimension is

λ∗u(t) =
∑

i:ti<t
auui g(t− ti) =

∑
u′∈[m]

auu′

∫ t

0

g(t− s) dNu′(s), (3.3)

where g(s) is a nonnegative kernel function such that g(s) = 0 for s ≤ 0 and
∫∞

0
g(s) ds <

∞; the second equality is obtained by grouping events according to users and use the fact

that
∫ t

0
g(t − s) dNu′(s) =

∑
ui=u′,ti<t

g(t − ti). Intuitively, λ∗u(t) models the propagation

of peer influence over the network — each event (ui, ti) occurred in the neighbor of a user

will boost her intensity by a certain amount which itself decays over time. Thus, the more

frequent the events occur in the user’s neighbor, the more likely she will be persuaded to
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(a) An example social network (b) Branching structure of events

Figure 3.1: (a) An example social network where each directed edge indicates that the
target node follows, and can be influenced by, the source node. The activity in this network
is modeled using Hawkes processes, which result in branching structure of events in (b).
Each exogenous event is the root node of a branch (e.g., top left most red circle at t1), and
it occurs due to a user’s own initiative; and each event can trigger one or more endogenous
events (blue square at t2). The new endogenous events can create the next generation of
endogenous events (green triangles at t3), and so forth. The social network in (a) will
constrain the branching structure of events in (b), since an event produced by a user (e.g.,
user 1) can only trigger endogenous events in the same user or one or more of her followers
(e.g., user 2 or user 3).

generate a new event.

For simplicity, we will focus on an exponential kernel, g(t − ti) = exp(−ω(t − ti))

in the reminder of the chapter. However, multivariate Hawkes processes is independent of

the kernel choice and can be extended to other kernels such as power-law, Rayleigh or any

other long tailed distribution over nonnegative real domain. Furthermore, we can rewrite

equation (3.3) in vectorial format

λ∗(t) =

∫ t

0

G(t− s) dN (s), (3.4)

by defining a m × m time-varying matrix G(t) = (auu′g(t))u,u′∈[m]. Note that, for mul-

tivariate Hawkes processes, the intensity, λ(t), itself is a random quantity, which depends

on the historyHt. We denote the expectation of the intensity with respect to history as

µ(t) := EHt−
[
λ(t)

]
(3.5)
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3.3 Linking Exogenous Event Intensity to Overall Network Activity

We will develop a closed form relation between the expected intensity µ(t) = EHt−
[
λ(t)

]
and the intensity, λ(0)(t), of the exogenous events. This relation will form the basis of our

activity shaping framework.

Theorem 4. µ(t) = Ψ(t)λ(0) =
(
I +A(A− ωI)−1(e(A−ωI)t − I)

)
λ(0).

Proof. Let u(t) refer to step function 1.

µ(t) = EHt [λ] = λ(0)u(t) +

∫ t

−∞
g(t− τ)AEHt [dN (τ)] (3.6)

= λ(0)u(t) +

∫ t

−∞
g(t− τ)AEHdτ [dN (τ)] (3.7)

= λ(0)u(t) +

∫ t

−∞
g(t− τ)AEHτ [λ(s)] dτ (3.8)

= λ(0)u(t) +

∫ t

0

g(t− τ)Aµ(τ) dτ (3.9)

= λ(0)u(t) + (Ag)(t) ∗ µ(t). (3.10)

Taking the Laplace transform of the above relation, results in

µ̂(s) = λ(0)û(s) +A ĝ(s) µ̂(s). (3.11)

Solving the above equation for µ̂ we have:

µ̂(s) = (I −Aĝ(s))−1λ(0)û(s) (3.12)

= (I +Aĝ(s) +A2ĝ2(s) +A3ĝ3(s) + · · · )λ(0)û(s). (3.13)

Now, by taking the inverse Laplace we find the expectation of intensity.

µ(t) = (Iδ(t) +Ag(t) +A2g∗2(t) +A3g∗3(t) + · · · ) ∗ (λ(0)u(t)), (3.14)

where, g∗k(t) is the inverse Laplace transform of ĝk(s). For our g(t) = e−ωt u(t) we have

ĝ(s) = 1
s+ω

, therefore,

g∗k(t) = L−1{ĝk(s)} = L−1

{
1

(s+ ω)k

}
=

1

(k − 1)!
tk−1e−ωtu(t) (3.15)

1Thanks to Ali Zarezade for the discussion on the proof.
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The transformer function is then equal to

ψ(t) =
(
Iδ(t) +

∞∑
k=1

1

(k − 1)!
Aktk−1e−ωt

)
u(t) (3.16)

=
(
Iδ(t) +A e−ωt

∞∑
k=0

1

k!
Aktk

)
u(t) (3.17)

=
(
Iδ(t) +A e(A−ωI)t

)
u(t) (3.18)

To find µ(t) for the constant base intensity λ(0) applied at time t = 0 we have:

µ(t) = ψ(t) ∗ (λ(0)u(t)) =

∫ ∞
−∞

(
Iδ(τ) +A e(A−ωI)τ

)
u(τ)λ(0)u(t− τ) dτ (3.19)

=
(
I +

∫ t

0

A e(A−ωI)τ dτ
)
λ(0) =

(
I +A(A− ωI)−1(e(A−ωI)t − I)

)
λ(0). (3.20)

Therefore, µ(t) = Ψ(t)λ(0) with Ψ(t) =
(
I +A(A− ωI)−1(e(A−ωI)t − I)

)
.

Theorem 4 provides us a linear relation between exogenous event intensity and the

expected overall intensity at any point in time but not just stationary intensity. The signifi-

cance of this result is that it allows us later to design a diverse range of convex programs to

determine the intensity of the exogenous event in order to achieve a target intensity.

In fact, we can recover the previous results in the stationary case as a special case of our

general result. More specifically, a multivariate Hawkes process is stationary if the spectral

radius

Γ :=

(∫ ∞
0

g(t) dt

)(
auu′

)
u,u′∈[m]

=
A

ω
(3.21)

is strictly smaller than 1 [133]. In this case, the expected intensity is µ = (I − Γ)−1λ(0)

independent of the time. We can obtain this relation from theorem 4 if we let t→∞.

Corollary 5. µ = (I− Γ)−1 λ(0) = limt→∞Ψ(t)λ(0).

Proof. If the process is stationary, the spectral radius of Γ = A
w

is smaller than 1, which

implies that all eigenvalues of A are smaller than ω in magnitude. Thus, all eigenvalues

of A − ωI are negative. Let PDP−1 be the eigenvalue decomposition of A − ωI , and

all the elements (in diagonal) of D are negative. Then based on the property of matrix
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exponential, we have e(A−ωI)t = P eDtP−1. As we let t → ∞, the matrix eDt → 0

and hence e(A−ωI)t → 0. Thus limt→∞Ψ(t) =
(
I + A(A − ωI)−1

)
which is equal to

(I − Γ)−1, and completes the proof.

3.4 Convex Activity Shaping Framework

Given the linear relation between exogenous event intensity and expected overall event

intensity, we now propose a convex optimization framework for a variety of activity shaping

tasks. In all tasks discussed below, we will optimize the exogenous event intensityλ(0) such

that the expected overall event intensity µ(t) is maximized with respect to some concave

utility U(·) in µ(t), i.e.,

maximizeµ(t),λ(0) U(µ(t))

subject to µ(t) = Ψ(t)λ(0), c>λ(0) 6 C, λ(0) > 0
(3.22)

where c = (c1, . . . , cm)> > 0 is the cost per unit event for each user and C is the total

budget. Additional regularization can also be added to λ(0) either to restrict the number of

incentivized users (with `0 norm ‖λ(0)‖0), or to promote a sparse solution (with `1 norm

‖λ(0)‖1, or to obtain a smooth solution (with `2 regularization ‖λ(0)‖2). We next discuss

several instances of the general framework which achieve different goals (their constraints

remain the same and hence omitted).

Capped Activity Maximization. In real networks, there is an upper bound (or a cap)

on the activity each user can generate due to limited attention of a user. For example, a

Twitter user typically posts a limited number of shortened urls or retweets a limited number

of tweets [71]. Suppose we know the upper bound, αu, on a user’s activity, i.e., how much

activity each user is willing to generate. Then we can perform the following capped activity

maximization task

maximizeµ(t),λ(0)

∑
u∈[m] min

{
µu(t), αu

}
(3.23)
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Minimax Activity Shaping. Suppose our goal is instead maintaining the activity of

each user in the network above a certain minimum level, or, alternatively make the user

with the minimum activity as active as possible. Then, we can perform the following

minimax activity shaping task

maximizeµ(t),λ(0) minu µu(t) (3.24)

Least-Squares Activity Shaping. Sometimes we want to achieve a pre-specified target

activity levels, v, for users. For example, we may like to divide users into groups and desire

a different level of activity in each group. Inspired by these examples, we can perform the

following least-squares activity shaping task

maximizeµ(t),λ(0) −‖Bµ(t)− v‖2
2

(3.25)

where B encodes potentially additional constraints (e.g., group partitions). Besides Eu-

clidean distance, the family of Bregman divergences can be used to measure the difference

between Bµ(t) and v here. That is, given a function f(·) : Rm 7→ R convex in its ar-

gument, we can use D(Bµ(t)‖v) := f(Bµ(t)) − f(v) −
〈
∇f(v),Bµ(t)− v

〉
as our

objective function.

Activity Homogenization. Many other concave utility functions can be used. For

example, we may want to steer users activities to a more homogeneous profile. If we

measure homogeneity of activity with Shannon entropy, then we can perform the following

activity homogenization task

maximizeµ(t),λ(0) −
∑

u∈[m] µu(t) lnµu(t) (3.26)

3.5 Scalable Algorithm

All the activity shaping problems defined above require an efficient evaluation of the in-

stantaneous average intensity µ(t) at time t, which entails computing matrix exponentials

to obtain Ψ(t). In small or medium networks, we can rely on well-known numerical meth-
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ods to compute matrix exponentials [69]. However, in large networks with sparse graph

structureA, the explicit computation of Ψ(t) quickly becomes intractable.

Fortunately, we can exploit the following key property of our convex activity shap-

ing framework: the instantaneous average intensity only depends on Ψ(t) through matrix-

vector product operations. In particular, we start by using Theorem 4 to rewrite the mul-

tiplication of Ψ(t) and a vector v as Ψ(t)v. We then get a tractable solution by having

e(A−ωI)tv and a sparse linear system of equations, (A − ωI)x = y, for some x and y.

Next, we elaborate on two very efficient algorithms for computing the product of matrix

exponential with a vector and for solving a sparse linear system of equations.

For the computation of the product of matrix exponential with a vector, we rely on the

iterative algorithm by Al-Mohy et al. [4], which combines a scaling and squaring method

with a truncated Taylor series approximation to the matrix exponential.

For solving the sparse linear system of equation, we use the well-known GMRES

method [169], which is an Arnoldi process for constructing an l2-orthogonal basis of Krylov

subspaces. The method solves the linear system by iteratively minimizing the norm of the

residual vector over a Krylov subspace. In detail, consider the nth Krylov subspace for

the problem Cx = b asKn = span{b,Cb,C2b, . . . ,Cn−1b}. GMRES approximates the

exact solution ofCx = b by the vector xn ∈Kn that minimizes the Euclidean norm of the

residual rn = Cxn−b. Because the span consists of orthogonal vectors, the Arnoldi itera-

tion is used to find an alternative basis composing rows ofQn. Hence, the vector xn ∈Kn

can be written as xn = Qnyn with yn ∈ Rn. Then, yn can be found by minimizing the

Euclidean norm of the residual rn = H̃nyn − βe1, where H̃n is the Hessenberg matrix

produced in the Arnoldi process, e1 = (1, 0, 0, . . . , 0)T is the first vector in the standard

basis of Rn+1, and β = ‖b − Cx0‖. Finally, xn is computed as xn = Qnyn. The whole

procedure is repeated until reaching a small enough residual.

Perhaps surprisingly, we will now show that it is possible to compute the gradient

of the objective functions of all our activity shaping problems using the algorithm de-
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veloped above for computing the average instantaneous intensity. We only need to de-

fine the vector v appropriately for each problem, as follows: (i) Activity maximization:

g(λ(0)) = Ψ(t)>v, where v is defined such that vj = 1 if αj > µj , and vj = 0,

otherwise. (ii) Minimax activity shaping: g(λ(0)) = Ψ(t)>e, where e is defined such

that ej = 1 if µj = µmin, and ej = 0, otherwise. (iii) Least-squares activity shap-

ing: g(λ(0)) = 2Ψ(t)>B>
(
BΨ(t)λ(0) − v

)
. (iv) Activity homogenization: g(λ(0)) =

Ψ(t)> ln (Ψ(t)λ(0)) + Ψ(t)>1, where ln(·) on a vector is the element-wise natural loga-

rithm. The activity maximization and the minimax activity shaping tasks require only one

evaluation of Ψ(t) times a vector. However, computing the gradient for least-squares ac-

tivity shaping and activity homogenization is slightly more involved and it requires to be

careful with the order in which we perform the operations.

For the gradient in the least-squares activity shaping task B is usually sparse and it

includes two multiplications of a sparse matrix and a vector, two matrix exponentials mul-

tiplied by a vector, and two sparse linear systems of equations. The gradient computation

in the activity homogenization task consists of two multiplication of a matrix exponential

and a vector and two sparse linear systems of equations.

Equipped with an efficient way to compute of gradients, we solve the corresponding

convex optimization problem for each activity shaping problem by applying the projected

gradient descent [24] optimization framework with the appropriate gradient2.

3.6 Experimental Evaluation

We evaluate our activity shaping framework using both simulated and real world held-out

data, and show that our approach significantly outperforms several baselines 3.

3.6.1 Experimental Setup

Here, we briefly present our data, evaluation schemas, and settings.
2For nondifferential objectives, subgradient algorithms can be used instead.
3The code is available at https://www.cc.gatech.edu/ mfarajta/resources/activity-shaping-code.zip
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Table 3.1: Number of adopters and usages for each URL shortening service.
Service # adopters # usages
Bitly 55,883 5,046,710

TinyURL 46,577 1,682,459

Isgd 28,050 596,895

TwURL 15,215 197,568

SnURL 4,462 41,823

Doiop 88 643

Dataset description and network inference. We use data gathered from Twitter as

reported in [30], which comprises of all public tweets posted by 60,000 users during a 8-

month period, from January 2009 to September 2009. For every user, we record the times

she uses any of the following six url shortening services: Bitly , TinyURL, Isgd, TwURL,

SnURL, Doiop. Table 3.1 shows the number of adopters and usages for the six different

URL shortening services. It includes a total of 7,566,098 events (adoptions) during the

8-month period.

We evaluate the performance of our framework on a subset of 2,241 active users, linked

by 4,901 edges, which we call 2K dataset, and we evaluate its scalability on the overall

60,000 users, linked by ∼ 200,000 edges, which we call 60K dataset. The 2K dataset

accounts for 691,020 url shortened service uses while the 60K dataset accounts for ∼7.5

million uses. Finally, we treat each service as independent cascades of events.

In the experiments, we estimated the nonnegative influence matrixA and the exogenous

intensity λ(0) using maximum log-likelihood, as in previous work [229, 228, 195]. We

used a temporal resolution of one minute and selected the bandwidth ω = 0.1 by cross

validation. Loosely speaking, ω = 0.1 corresponds to loosing 70% of the initial influence

after 10 minutes, which may be explained by the rapid rate at which each user’ news feed

gets updated.

Evaluation schemes. We focus on three tasks: capped activity maximization, minimax

activity shaping, and least square activity shaping. We set the total budget to C = 0.5,

which corresponds to supporting a total extra activity equal to 0.5 actions per unit time,
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and assume all users entail the same cost. In the capped activity maximization, we set the

upper limit of each user’s intensity, α, by adding a nonnegative random vector to their

inferred initial intensity. In the least-squares activity shaping, we set B = I and aim to

create three groups of users, namely less-active, moderate, and super-active users. We use

three different evaluation schemes, with an increasing resemblance to a real world scenario:

Theoretical objective: We compute the expected overall (theoretical) intensity by ap-

plying Theorem 4 on the optimal exogenous event intensities, λ(0)
opt, to each of the three

activity shaping tasks, as well as the learned A and ω. We then compute and report the

value of the objective functions.

Simulated objective: We simulate 50 cascades with Ogata’s thinning algorithm [148],

using the optimal exogenous event intensities, λ(0)
opt, to each of the three activity shaping

tasks, and the learned A and ω. We then estimate empirically the overall event intensity

based on the simulated cascades, by computing a running average over non-overlapping

time windows, and report the value of the objective functions based on this estimated over-

all intensity.

Held-out data: The most interesting evaluation scheme would entail carrying out real

interventions in a social platform. However, since this is very challenging to do, instead, in

this evaluation scheme, we use held-out data to simulate such process, proceeding as fol-

lows. We first partition the 8-month data into 50 five-day long contiguous intervals. Then,

we use one interval for training and the remaining 49 intervals for testing. Suppose interval

1 is used for training, the procedure is as follows:

1. We estimate A1, ω1 and λ(0)
1 using the events from interval 1. Then, we fix A1 and

ω1, and estimate λ(0)
i for all other intervals, i = 2, . . . , 49.

2. Given A1 and ω1, we find the optimal exogenous event intensities, λ(0)
opt, for each of

the three activity shaping task, by solving the associated convex program. We then

sort the estimated λ(0)
i (i = 2, . . . , 49) according to their similarity to λ(0)

opt, using the

Euclidean distance ‖λ(0)
opt − λ

(0)
i ‖2.

69



3. We estimate the overall event intensity for each of the 49 intervals (i = 2, . . . , 49), as

in the “simulated objective” evaluation scheme, and sort these intervals according to

the value of their corresponding objective function.

4. Last, we compute and report the rank correlation score between the two orderings

obtained in step 2 and 3.4 The larger the rank correlation, the better the method.

We repeat this procedure 50 times, choosing each different interval for training once, and

compute and report the average rank correlations.

It is beneficial to emphasize that the held-out experiments are essentially evaluating

prediction performance on test sets. For instance, suppose we are given a diffusion network

and two different configuration of incentives. We will shortly show our method can predict

more accurately which one will reach the activity shaping goal better. This means, in turn,

that if we incentivize the users according to our method’s suggestion, we will achieve the

target activity better than other heuristics.

Alternatively, one can understand our evaluation scheme like this: if one applies the

incentive (or intervention) levels prescribed by a method, how well the predicted outcome

coincides with the reality in the test set? A good method should behavior like this: the

closer the prescribed incentive (or intervention) levels to the estimated base intensities in

test data, the closer the prediction based on training data to the activity level in the test data.

In our experiment, the closeness in incentive level is measured by the Euclidean distance,

the closeness between prediction and reality is measured by rank correlation.

In the following, we describe the considered baselines proposed to compare to our

approach for i) the capped activity maximization; ii) the minimax activity shaping; and iii)

the least-squares activity shaping problems.

For capped activity maximization problem, we consider the following four heuristic

baselines:

• XMU allocates the budget based on users’ current activity. In particular, it assigns the

4rank correlation = number of pairs with consistent ordering / total number of pairs.
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budget to each of the half top-most active users proportional to their average activity,

µ(t), computed from the inferred parameters.

• WEI assigns positive budget to the users proportionally to their sum of out-going

influence (
∑

u auu′). This heuristic allows us (by comparing its results to CAM) to

understand the effect of considering the whole network with respect to only consider

the direct (out-going) influence.

• DEG assumes that more central users, i.e., more connected users, can leverage the

total activity, therefore, assigns the budget to the more connected users proportional

to their degree in the network.

• PRK sorts the users according to the their pagerank in the weighted influence network

(A) with the damping factor set to 0.85%, and assigns the budget to the top users

proportional their pagerank value.

In order to show how network structure leverages the minimax activity shaping we

implement following four baselines:

• UNI allocates the total budget equally to all users.

• MINMU divides uniformly the total budget among half of the users with lower aver-

age activity µ(t), which is computed from the inferred parameters.

• LP finds the top half of least-active users in the current network and allocates the

budget such that after the assignment the network has the highest minimum activity

possible. This method uses linear programming to learn exogenous activity of the

users, but, in contrast to the proposed method, does not consider the network and

propagation of adoptions.

• GRD finds the user with minimum activity, assigns a portion of the budget, and

computes the resulting µ(t). It then repeats the process to incentivize half of users.
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We compare least-square activity shaping with the following baselines:

• PROP shapes the activity by allocating the budget proportional to the desired shape,

i.e., the shape of the assignment is similar to the target shape.

• LSGRD greedily finds the user with the highest distance between her current and

target activity, assigns her a budget to reach her target, and proceeds this way to

consume the whole budget.

Each baseline relies on a specific property to allocate the budget (e.g. connectedness

in DEG). However, most of them face two problems: The first one is how many users to

incentivize and the second one is how much should be paid to the selected users. They

usually rely on heuristics to reveal these two problems (e.g. allocating an amount propor-

tional to that property and/or to the top half users sorted based on the specific property).

In contrast, our framework is comprehensive enough to address those difficulties based on

well-developed theoretical basis. This key factor accompanied with the appropriate prop-

erties of Hawkes process for modeling social influence (e.g. mutually exciting) make the

proposed method the best.

3.6.2 Temporal Properties

For the experiments on simulated objective function and held-out data we have estimated

intensity from the events data. In this section, we will see how this empirical intensity re-

sembles the theoretical intensity. We generate a synthetic network over 100 users. For each

user in the generated network, we uniformly sample from [0, 0.1] the exogenous intensity,

and the endogenous parameters auu′ are uniformly sampled from [0, 0.1]. A bandwidth

ω = 1 is used in the exponential kernel. Then, the intensity is estimated empirically by

dividing the number of events by the length of the respective interval.

We compute the mean and variance of the empirical activity for 100 independent runs.

As illustrated in Figure 3.2, the average empirical intensity (the blue curve) clearly follows
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the theoretical instantaneous intensity (the red curve) but, as expected, as we are further

from the starting point (i.e., as time increases), the standard deviation of the estimates

(shown in the whiskers) increases. Additionally, the green line shows the average stationary

intensity. As it is expected, the instantaneous intensity tends to the stationary value when

the network has been run for sufficient long time.
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Figure 3.2: Evolution in time of empirical and theoretical intensity.

3.6.3 Activity Shaping Results

In this section, the results for three activity shaping tasks evaluated on the three schemas

are presented.

Capped activity maximization (CAM). The first row of Figure 3.3 summarizes the

results for the three different evaluation schemes. We find that our method (CAM) consis-

tently outperforms the alternatives. For the theoretical objective, CAM is 11 % better than

the second best, DEG. The difference in overall users’ intensity from DEG is about 0.8

which, roughly speaking, leads to at least an increase of about 0.8×60×24×30 = 34, 560

in the overall number of events in a month. In terms of simulated objective and held-out

data, the results are similar and provide empirical evidence that, compared to other heuris-

tics, degree is an appropriate surrogate for influence, while, based on the poor performance

of XMU, it seems that high activity does not necessarily entail being influential. To elab-

orate on the interpretability of the real-world experiment on held-out data, consider for

example the difference in rank correlation between CAM and DEG, which is almost 0.1.
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Figure 3.3: Row 1: Capped activity maximization. Row 2: Minimax activity shaping. Row
3: Least-squares activity shaping. * means statistical significant at level of 0.01 with paired
t-test between our method and the second best

Then, roughly speaking, this means that incentivizing users based on our approach accom-

modates with the ordering of real activity patterns in 0.1 × 50×49
2

= 122.5 more pairs of

realizations.

Minimax activity shaping (MMASH). We compare to a number of alternatives. UNI:

heuristic based on equal allocation; MINMU: heuristic based onµ(t) without optimization;

LP: linear programming based heuristic; GRD: a greedy approach to leverage the activity.

The second row of Figure 3.3 summarizes the results for the three different evaluation

schemes. We find that our method (MMASH) consistently outperforms the alternatives.

For the theoretical objective, it is about 2× better than the second best, LP. Importantly,
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the difference between MMASH and LP is not trifling and the least active user carries out

2 × 10−4 × 60 × 24 × 30 = 4.3 more actions in average over a month. As one may

have expected, GRD and LP are the best among the heuristics. The poor performance of

MINMU, which is directly related to the objective of MMASH, may be because it assigns

the budget to a low active user, regardless of their influence. However, our method, by

cleverly distributing the budget to the users whom actions trigger many other users’ actions

(like those ones with low activity), it benefits from the budget most. In terms of simulated

objective and held-out data, the algorithms’ performance become more similar.

Least-squares activity shaping (LSASH). We compare to two alternatives. PROP:

Assigning the budget proportionally to the desired activity; LSGRD: greedily allocating

budget according the difference between current and desired activity. The third row of Fig-

ure 3.3 summarizes the results for the three different evaluation schemes. We find that our

method (LSASH) consistently outperforms the alternatives. Perhaps surprisingly, PROP,

despite its simplicity, seems to perform slightly better than LSGRD. This is may be due to

the way it allocates the budget to users, e.g., it does not aim to strictly fulfill users’ target

activity but benefit more users by assigning budget proportionally.

In all three tasks, longer times lead to larger differences between our method and the

alternatives. This occurs because the longer the time, the more endogenous activity is

triggered by network influence, and thus our framework, which models both endogenous

and exogenous events, becomes more suitable.

3.6.4 Sparsity and Activity Shaping

In some applications there is a limitation on the number of users we can incentivize. In our

proposed framework, we can handle this requirement by including a sparsity constraint on

the optimization problem. In order to maintain the convexity of the optimization problem,

we consider a l1 regularization term, where a regularization parameter γ provides the trade-
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off between sparsity and the activity shaping goal:

maximizeµ(t),λ(0) U(µ(t))− γ||λ(0)||1

subject to µ(t) = Ψ(t)λ(0), c>λ(0) 6 C, λ(0) > 0
(3.27)

Tables 3.2 and 3.3 demonstrate the effect of different values of regularization parame-

ter on capped activity maximization and minimax activity shaping, respectively. When γ

is small, the minimum intensity is very high. On the contrary, large values of γ imposes

large penalties on the number of non-zero intensities which results in a sparse and appli-

cable manipulation. Furthermore, this may avoid using all the budget. When dealing with

unfamiliar application domains, cross validation may help to find an appropriate trade-off

between sparsity and objective function.

Table 3.2: Sparsity properties of capped activity maximization.
γ # Non-zeros Budget consumed Sum of activities

0.5 2101 0.5 0.69
0.6 1896 0.46 0.65
0.7 1595 0.39 0.62
0.8 951 0.21 0.58
0.9 410 0.18 0.55
1.0 137 0.13 0.54

Table 3.3: Sparsity properties of minimax activity shaping.
γ(×10−3) # Non-zeros Budget Consumed umin(×10−3)

0.6 1941 0.49 0.38
0.7 881 0.17 0.22
0.8 783 0.15 0.21
0.9 349 0.09 0.16
1.0 139 0.06 0.12
1.1 102 0.04 0.11

3.6.5 Scalability

The most computationally demanding part of the proposed algorithm is the evaluation of

matrix exponentials, which we scale up by utilizing techniques from matrix algebra, such as

GMRES and Al-Mohy methods. As a result, we are able to run our methods in a reasonable
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Figure 3.4: Scalability of least-squares activity shaping.

amount of time on the 60K dataset, specifically, in comparison with a naive implementation

of matrix exponential evaluations. The naive implementation of the algorithm requires

computing the matrix exponential once, and using it in (non-sparse huge) matrix-vector

multiplications, i.e.,

Tnaive = TΨ + kTprod.

Here, TΨ is the time to compute Ψ(t), which itself comprised of three parts; matrix ex-

ponential computation, matrix inversion and matrix multiplications. Tprod is the time for

multiplication between the large non-sparse matrix and a vector plus the time to compute

the inversion via solving linear systems of equation. Finally, k is the number of gradient

computations, or more generally, the number of iterations in any gradient-based iterative

optimization. The dominant factor in the naive approach is the matrix exponential. It is

computationally demanding and practically inefficient for more than 7000 users.

In contrast, the proposed framework benefits from the fact that the gradient depends on

Ψ(t) only through matrix-vector products. Thus, the running time of our activity shaping

framework will be written as

Tour = kTgrad,

where Tgrad is the time to compute the gradient which itself comprises the time required to

solve a couple of linear systems of equations and the time to compute a couple of exponen-

tial matrix-vector multiplication.
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Figure 3.5: Activity shaping on the 60K dataset.

Figure 3.4 demonstrates Tour and Tnaive with respect to the number of users. For better

visualization we have provided two graphs for up to 10,000 and 50,000 users, respectively.

We set k equal to the number of users. Since the dominant factor in the naive computation

method is matrix exponential, the choice of k is not that determinant. The time for com-

puting matrix exponential is interpolated for more than 7000 users; and the interpolated

total time, Tnaive, is shown in red dashed line. These experiments are done in a machine

equipped with one 2.5 GHz AMD Opteron Processor. This graph clearly shows the signif-

icance of designing an scalable algorithm.

Figure 3.5 shows the results of running our large-scale algorithm on the 60K dataset

evaluated via theoretical objective function. We observe the same patterns as 2K dataset.

Especially, the proposed method consistently outperforms the heuristic baselines. Heuris-

tic baselines provide similar performance as for the 2K dataset. DEG shows up again

as a reasonable surrogate for influence, and the poor performance of XMU on activity

maximization shows that high activity does not necessarily mean being more influential.

For minimax activity shaping we observe MMASH is superior to others in 2 × 10−5 ac-

tions per unit time, which means that the person with minimum activity uses the service

2 × 10−5 × 60 ∗ 24 ∗ 30 = 0.864 times more compared to the best heuristic baseline. An

increase in the activity per month of 0.864 is not a big deal itself, however, if we consider

the scale at which the network’s activity is steered, we can deduce that now the service is

guaranteeing, at least in theory, about 60000×0.864 = 51840 more adoptions monthly. As
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shown by the experiments on real-world held-out data, our approach for activity shaping

outperforms all the considered heuristic baselines.

3.6.6 Visualization of Least-squares Activity Shaping

To get a better insight on the the activity shaping problem we visualize the least-squares

activity shaping results for the 2K and 60K datasets. Figure 3.6 shows the result of activity

shaping at t = 1 targeting the same shape as in the experiments section. The red line is the

target shape of the activity and the blue curve correspond to the activity profiles of users

after incentivizing computed via theoretical objective. It is clear that the resulted activity

behavior resembles the target shape.
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Figure 3.6: Activity shaping results.

3.7 Summary and Conclusions

In this chapter, based on two categories of social events, exogenous and endogenous, we

propose a framework for activity shaping. More especially, we derive an instantaneous

activity measure which can be utilized in general networks to fulfill queries regarding to

the activity at a particular time. Fortunately, the instantaneous activity linearly depends

on exogenous activity which helps us build an intuitive activity shaping framework by

incentivizing users to act more. Several convex instantiations of activity shaping problem

is proposed along with an scalable algorithm to solve them. By running experiments on a
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twitter dataset consisting of 60000 users we have shown that our model can shape activities

to our desire better than some heuristics. It suggests that considering network structure will

help shape the activity better. For future work, one can study the effect of manipulating

the links between users on the their behavior. Exploring other possible kernel functions or

learning it using non-parametric methods is an interesting problem. We have used point

processes framework in intervention in other contexts as well. For example in [109] we

find the best time to post in social networks in order to maximize the visibility of a post to

followers. Furthermore, in [88] we tackle invasive species management problem in which

a few cells of landscape are going to be chosen for complete removal of invasive plant.
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CHAPTER 4

MULTI STAGE OPTIMIZATION IN POINT PROCESSES

We establish theoretical foundations of optimal campaigning over social networks where

the user activities are modeled as a multivariate Hawkes process, and we derive a time de-

pendent linear relation between the intensity of exogenous events and several commonly

used objective functions of campaigning. We further develop a convex dynamic program-

ming framework for determining the optimal intervention policy that prescribes the re-

quired level of external drive at each stage for the desired campaigning result. The dynamic

programming framework is employed to balance the high present reward and large penalty

on low future outcome in the presence of extensive uncertainties. We utilize the developed

framework in optimizing campaigns over social networks. Experiments on both synthetic

data and the real-world MemeTracker dataset show that our algorithm can steer the user

activities for optimal campaigning much more accurately than baselines.

4.1 Introduction

The key factor differentiating social networks from traditional media is peer influence. In

fact, events in an online social network can be categorized roughly into two types: endoge-

nous events where users just respond to the actions of their neighbors within the network,

and exogenous events where users take actions due to drives external to the network. Then

it is natural to raise the following fundamental questions regarding optimal campaigning

over social networks: can we model and exploit those event data to steer the online com-

munity to a desired exposure level? More specifically, can we drive the overall exposure to

a campaign to a certain level (e.g., at least twice per week per user) by incentivizing a small

number of users to take more initiatives? What about maximizing the overall exposure for

a target group of people?
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More importantly, those exposure shaping tasks are more effective when the interven-

tions are implemented in multiple stages. Due to the inherent uncertainty in social behav-

ior, the outcome of each intervention may not be fully predictable but can be anticipated to

some extent before the next intervention happens. A key aspect of such situations is that

interventions can’t be viewed in isolation since one must balance the desire for high present

reward with the penalty of low future outcome.

In this chapter, the dynamic programming framework [16] is employed to tackle the

aforementioned issues. In particular, we first establish the fundamental theory of optimal

campaigning over social networks where the user activities are modeled as a multivariate

Hawkes process (MHP) [40, 228] since MHP can capture both endogenous and exogenous

event intensities. We also derive a time dependent linear relation between the intensity of

exogenous events and the overall exposure to the campaign. Exploiting this connection, we

develop a convex dynamic programming framework for determining the optimal interven-

tion policy that prescribes the required level of external drive at each stage in order for the

campaign to reach a desired exposure profile. We propose several objective functions that

are commonly considered as campaigning criteria in social networks.

We will use the proposed multi-stage intervention procedure to tackle campaigning

problem. Obama was the first US president in history who successfully leveraged on-

line social media in presidential campaigning, which has been popularized and become

a ubiquitous approach to electoral politics (such as in the on-going 2016 US presidential

election) in contrast to the decreasing relevance of traditional media such as TV and news-

papers [209, 197, 162]. The power of campaigning via social media in modern politics

is a consequence of online social networking being an important part of people’s regular

daily social lives. It has been quite common that individuals use social network sites to

share their ideas and comment on other people’s opinions. In recent years, large organiza-

tions, such as governments, public media, and business corporations, also start to announce

news, spread ideas, and/or post advertisements in order to steer the public opinion through
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social media platform. There has been extensive interest for these entities to influence the

public’s view and manipulate the trend by incentivizing influential users to endorse their

ideas/merits/opinions at certain monetary expenses or credits. To obtain most cost-effective

trend manipulations, one needs to design an optimal campaigning strategy or policy such

that quantities of interests, such as influence of opinions, exposure of a campaign, adoption

of new products, can be maximized or steered towards the target amount given realistic

budget constraints.

Experiments on both synthetic data and real world network of news websites in the

MemeTracker dataset show that our algorithms can shape the exposure of campaigns much

more accurately than baselines.

4.2 Illustrative Example

Next sections will define the campaigning problem formally. However, we found it benefi-

cial to formulate it more intuitively. Next section will define all the concepts appeared here

rigorously.

Figure 4.1-a shows a hypothetical social network highlighting 4 users and their influ-

ence on each other. They have their own set of followers which for simplicity are consid-

ered disjoint and being influenced equally. Our objective in this toy example is to maximize

the minimum exposure on the followers. For the ease of exposition, we only consider 2

stages which in the beginning we can intervene. Hypothetically, we are going to advertise

iPhone 7 on behalf of Apple Inc.

Now, we intuitively proceed to find the optimum intervention. At the first stage, where

the state is zero (no exposure from the past), intervention through Jacob and Christine

would not be part of the solution (or their share would be negligible), because the outcome

would be small due to the low number of total followers and the small amount of influence.

Between Bob and Sophie, we would select her. Note that Sophie has a high influence on

Bob and if she is incentivized to make a blog post for the campaign, she can make Bob
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Figure 4.1: A social network and multi-stage campaigning to maximize the minimum ex-
posure.

interested too. Therefore, the procedure will assign most budget to Sophie. Furthermore,

Bob has a high influence on Jacob and will probably inspire him to do an activity. Let’s

follow a hypothetical scenario. Sophie makes her post at 9:35am about apple’s new phone.

Bob is notified about her post and will make an inspiring post about the phone’s camera.

However, Jacob will not respond to this campaign well, e.g., he may be traveling that day.

This phenomenon is perfectly captured via the probabilistic framework for event analy-

sis [1, 40]. On the other hand, Christine who is not a big fan of Bob’s post compared to

Jacob will respond to Bob’s post by writing a comparison between Apple and Samsung’s

product at 3:47pm. This will reinforce Bob to make a separate post explaining the features

of Apple’s new product. These events are illustrated in Figure 4.1-b.
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The cascade of events at the first stage will expose followers of Sophia, Bob, and Chris-

tine to the new product. However, all things do not go according to our expectation. Jacob

happens to be out of his office that day and his followers are not aware of the news. Con-

sidering the MEM as the objective function, this is quite disappointing that there are people

who are exposed to the campaign 0 times. Exposures of followers are demonstrated in Fig-

ure 4.1-b. This is the point where multi-stage dynamic campaigning helps. Considering the

exposure intensity of followers in Figure 4.1-c, Christine’s, Bob’s, and even Sophia’s fol-

lowers are still under the influence. Furthermore, they may follow their initial posts by new

ones. Then, in the next stage, it looks reasonable to invest on Jacob. At least his followers

will notify about the campaign and also as Jacob has an influence on Sophie, his posts may

inspire Sophie again and this may increase the exposure intensity of followers of Sophie as

well. Therefore, thanks to a second chance in intervention, Jacob will get the most budget

at the second stage to advertise the product.

4.3 Notations

Users in the social network are represented by a point processN (t) = (N 1(t), . . . ,N n(t))>.

Here, N i(t) records the number of events user i performs before time t for 1 ≤ i ≤ n, and

her intensity is:

λi(t)dt := P
{

user i performs event in [t, t+ dt) |H(t)
}

= E[dN i(t) |H(t)], (4.1)

where one typically assumes that only one event can happen in a small window of size dt.

Figure 4.1-b and Figure 4.1-c show the events and intensity function of the activities of

the 4 users in the social network respectively. Furthermore, these two can be seen as the

exposure events and the exposure intensity function to their followers since for simplicity

we are just considering the activities of these 4 users in the network. The functional form

of the intensity λi(t) is often designed to capture the phenomena of interests.
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The Hawkes process [93] is a class of self and mutually exciting point process models,

λi(t) = µi(t) +
∑
k:tk<t

φidk(t, tk) = µi(t) +
n∑
j=1

∫ t

0

φij(t, s)dN j(s), (4.2)

where the intensity is history dependent. φij(t, s) is the impact function capturing the

temporal influence of an event by user j at time s to the future events of user j at time

t > s. Here, the first term µi(t) is the exogenous event intensity modeling drive outside the

network and indecent of the history, and the second term
∑

k:tk<t
φidk(t, tk) is the endoge-

nous event intensity modeling interactions within the network [55]. Defining Φ(t, s) =

[φij(t, s)]i,j=1...n, and λ(t) = (λ1(t), . . . , λn(t))>, and µ(t) = (µ1(t), . . . , µn(t))> we can

compactly rewrite Eq 4.2 in matrix form:

λ(t) = µ(t) +

∫ t

0

Φ(t, s)dN (s). (4.3)

In practice it is standard to employ shift-invariant impact function, i.e., Φ(t, s) = Φ(t− s).

Then, by using notation of convolution f(t) ∗ g(t) =
∫ t

0
f(t− s)g(s)ds we have

λ(t) = µ(t) + Φ(t) ∗ dN (t). (4.4)

4.4 From Intensity to Average Activity

In this section we will develop a closed form relation between the expected total inten-

sity E[λ(t)] and the intensity µ(t) of exogenous events. This relation establish the basis

of our campaigning framework. First, define the mean function as M(t) := E[N (t)] =

EH(t)[E(N (t)|H(t))]. Note thatM(t) is history independent, and it gives the average num-

ber of events up to time t for each of the dimension. Similarly, the rate function η(t) is given

by η(t)dt := dM(t). On the other hand,

dM(t) = dE[N (t)] = EH(t)[E(dN (t)|H(t))] = EH(t)[λ(t)|H(t)]dt = E[λ(t)]dt. (4.5)

Therefore η(t) = E[λ(t)] which serves as a measure of activity in the network. In what

follows we will find an analytical form for the average activity.

Lemma 6. Suppose Ψ : [0, T ] → Rn×n is a matrix function, then for every fixed constant
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intensity µ(t) = c ∈ Rn
+, ηc(t) := Ψ(t)c solves the semi-infinite integral equation

η(t) = c+

∫ t

0

Φ(t− s)η(s)ds, ∀t ∈ [0, T ], (4.6)

if and only if Ψ(t) satisfies

Ψ(t) = I +

∫ t

0

Φ(t− s)Ψ(s)ds, ∀t ∈ [0, T ]. (4.7)

In particular, if Φ(t) = Ae−ωt1≥0(t) = [aije
−ωt1≥0(t)]ij where 0 ≤ ω /∈ Spectrum(A),

then

Ψ(t) = I + A(A− ωI)−1(e(A−ωI)t − I) (4.8)

for t ∈ [0, T ], where, 1≥0(t) is an indicator function for t ≥ 0.

Proof. Suppose that Ψ(t)c solves (4.6) for every c, then substituting η(t) by ηc(t) := Ψ(t)c

in (4.6) we obtain
[
Ψ(t)− I −

∫ t
0

Φ(t− s)Ψ(s)ds
]
c = 0. Since c ∈ Rn

+ is arbitrary, we

know that Ψ(t) − I −
∫ t

0
Φ(t − s)Ψ(s)ds = 0 for all t, and hence (4.7) follows. The

converse is trivial to verify. Furthermore, one can readily check that (4.8) satisfies (4.7) for

Φ(t) = Ae−ωt1≥0(t).

Let µ : [0, T ]→ Rn
+ be a right-continuous piecewise constant function

µ(t) =
M∑
m=1

cm1[τm−1,τm)(t), (4.9)

where 0 = τ0 < τ1 < · · · < τM = T is a finite partition of time interval [0, T ] and function

1[τm−1,τm)(t) indicates τm−1 ≤ t < τm. The next theorem shows that if Ψ(t) satisfies (4.7),

then one can calculate η(t) for piecewise constant intensity µ : [0, T ] of form (4.9).

Theorem 7. Let Ψ(t) satisfy (4.7) and µ(t) be a right-continuous piecewise constant in-

tensity function of form (4.9), then the rate function η(t) is given by

η(t) =
m∑
k=0

Ψ(t− τk)(ck − ck−1), (4.10)

for all t ∈ (τm−1, τm] and m = 1, . . . ,M , where c−1 := 0 by convention.

Proof. We prove this result by induction on partition size M . The previous lemma shows

(4.10) for constant µ(t) = c1[0,T ](t) (i.e., M = 1). Suppose (4.10) is true for any given
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piecewise constant µ(t) of form (4.9) with M partitions. If we impose a constant control

c ∈ Rn
+ (different from original cM ) since time τ ∈ (τM−1, T ], namely the piecewise

constant intensity function is updated to µ̂(t) := µ(t) + (c− cM)1(τ,T ](t), then we need to

show that the updated rate function η̂(t) is

η̂(t) = η(t) + Ψ(t− τ)(c− cM)1(τ,T ](t), (4.11)

for all t ∈ [0, T ]. This result can by verified easily for t ∈ [0, τ ]. If t ∈ (τ, T ], then

µ̂(t) = µ(t) + (c− cM)1(τ,T ](t) = µ(t) + (c− cM) and

µ̂(t) +

∫ t

0

Φ(t− s)η̂(s)ds

= µ(t) + (c− cM) +

∫ t

0

Φ(t− s)[η(s) + Ψ(s− τ)(c− cM)1(τ,T ](s)]ds

= η(t) + (c− cM) +

∫ t

0

Φ(t− s)Ψ(s− τ)(c− cM)1(τ,T ](s)ds (4.12)

= η(t) +

[
I +

∫ t−τ

0

Φ(t− τ − u)Ψ(u)du

]
(c− cM)

= η(t) + Ψ(t− τ)(c− cM) = η̂(t),

where we used the fact that η(t) is the rate function for intensity µ(t) to get the second

equality, applied change of variables u = s−τ to obtain the third equality, and the property

(4.7) of Ψ(t) to get the fourth equality. This implies that the rate function is η̂(t) given in

(4.11) for the updated piecewise constant intensity µ̂(t) with M + 1 partitions, and hence

completes the proof.

Using the above lemma, for the first time, we derive the average intensity for a general

exogenous intensity. Section 4.7 includes a few experiments to investigate these results

empirically.

Theorem 8. If Ψ ∈ C1([0, T ]) and satisfies (4.7), and exogenous intensity µ is bounded

and piecewise absolutely continuous on [0, T ] where µ(t+) = µ(t) at all discontinuous
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points t, then µ is differentiable almost everywhere, and the semi-indefinite integral

η(t) = µ(t) +

∫ t

0

Φ(t− s)η(s)ds, ∀t ∈ [0, T ], (4.13)

yields a rate function η : [0, T ]→ Rn
+ given by

η(t) =

∫ t

0

Ψ(t− s)dµ(s). (4.14)

Proof. It suffices to show (4.14) for absolutely continuous µ(t) on [0, T ) since extending

the proof to piecewise absolutely continuous function is straightforward. We first define

µ(T ) = µ(T−) and obtain a continuous µ(t) on [0, T ]. Since [0, T ] is compact, we know

µ(t) is uniformly continuous, and hence there exists a sequence of piecewise constant func-

tions {µk}∞k=1 such that µk → µ uniformly on [0, T ], i.e., limk→∞ sup0≤t≤T |µk(t)−µ(t)| =

0 [97, theorem 2.3.6] This also implies that {µk} is uniformly bounded. For every k, piece-

wise constant function µk has bounded variation, therefore we have by [61, theorem 3.36]

that

ηk(t) :=

∫ t

0

Ψ(t− s)dµk(s) =

∫ t

0

Ψ′(t− s)µk(s)ds+ Ψ(0)µk(t)−Ψ(t)µk(0), (4.15)

for all t ∈ [0, T ]. Since Ψ ∈ C1 we know Ψ′ is continuous and bounded on [0, T ]. By

Lebesgue’s bounded convergence theorem we know∫ t

0

Ψ′(t− s)µk(s)ds→
∫ t

0

Ψ′(t− s)µ(s)ds. (4.16)

Furthermore, using the uniform convergence of {µk} to µ, we know the right hand side

(4.15) converges to
∫ t

0
Ψ′(t− s)µ(s)ds+ Ψ(0)µ(t)−Ψ(t)µ(0). Then integration by parts

for piecewise absolutely continuous function µ which has bounded variation implies that

η(t) =
∫ t

0
Ψ(t− s)dµ(s) for all t ∈ [0, T ].

Corollary 9. Suppose Ψ and µ satisfy the same conditions as in theorem 8, and define

ψ = Ψ′, then the rate function is η(t) = (ψ ∗µ)(t). In particular, if Φ(t) = Ae−ωt1≥0(t) =

[aije
−ωt1≥0(t)]ij then the rate function η(t) = µ(t) + A

∫ t
0
e(A−wI)(t−s)µ(s)ds.

Proof. Note that both ψ and µ have supports in R+, therefore integration by parts and the

property of derivative of convolution [25, p. 126] imply that η(t) =
∫ t

0
Ψ′(t− s)µ(s)ds =
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(ψ ∗ µ)(t). If Φ(t) = Ae−ωt1≥0(t) = [aije
−ωt1≥0(t)]ij , then Ψ(t) is given in (4.8), and

hence ψ(t) = Ae(A−wI)t and the closed form of η(t) follows as in the claim.

4.5 Multi-stage Closed-loop Control Problem

Given the analytical relation between exogenous intensity and expected overall intensity

(rate function), one can solve a single one-stage campaigning problem to find the optimal

constant intervention intensity [55]. Alternatively, the time window can be partitioned into

multiple stages and one can impose different levels of interventions in these stages. This

yields an open-loop optimization of the cost function where one selects all the intervention

actions at initial time 0. More effectively, we tackle the campaigning problem in a dy-

namic and adaptive manner where we can postpone deciding the intervention by observing

the process until the next stage begins. This is called the closed-loop optimization of the

objective function.

In this section, we establish the foundation to formulate the problem as a multi-stage

closed-loop optimal control problem. We assume that n users are generating events accord-

ing to multi-dimensional Hawkes process with exogenous intensity µ(t) ∈ Rn and impact

function Φ(t, s) ∈ Rn×n.

4.5.1 Event Exposure

Event exposure is the quantity of major interests in campaigning. The exposure process is

mathematically represented as a counting process, E(t) = (E1(t), . . . , En(t))>: Here, E i(t)

records the number of times user i is exposed (she or one of her neighbors performs an

activity) to the campaign by time t. Let B be the adjacency matrix of the user network, i.e.,

bij = 1 if user i follows user j or equivalently user j influences user i. We assume bii = 1

for all i. Then the exposure process is given by E(t) = BN (t).
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4.5.2 Stages and Interventions

Let [0, T ] be the time horizon and 0 = τ0 < τ1 < . . . < τM−1 < τM = T be a partition into

the M stages. In order to steer the activities of network towards a desired level (criteria

given below) at these stages, we impose a constant intervention um ∈ Rn to the existing

exogenous intensity µ during time [τm, τm+1) for each stage m = 0, 1, . . . ,M − 1. The

activity intensity at them-th stage is λm(t) = µ+um+
∫ t

0
Φ(t, s) dN (s) for τm ≤ t < τm+1

whereN (t) tracks the counting process of activities since t = 0. Note that the intervention

itself exhibits a stochastic nature: adding uim to µi is equivalent to incentivizing user i to

increase her activity rate but it is still uncertain when she will perform an activity, which

appropriately mimics the randomness in real-world campaigning.

4.5.3 States and State Evolution

Note that the Hawkes process is non-Markov and one needs complete knowledge of the

history to characterize the entire process. However, the conditional intensity λ(t) only

depends on the state of process at time t when the standard exponential kernel Φ(t, s) =

Ae−ω(t−s)1≥0(t− s) is employed. In this case, the activity rate at stage m is

λm(t) = µ+ um +

∫ τm

0

Ae−ω(t−s) dN (s)︸ ︷︷ ︸
from previous stages

+

∫ t

τm

Ae−ω(t−s) dN (s)︸ ︷︷ ︸
current stage

(4.17)

Define xm := λm−1(τm) − um−1 − µ (and x0 = 0 by convention) then the intensity due

to events of all previous m stages can be written as
∫ τm

0
Ae−ω(t−s) dN (s) = xme

−ω(t−τm).

In other words, xm is sufficient to encode the information of activity in the past m stages

that is relevant to future. This is in sharp contrast to the general case where the state space

grows with the number of events.
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4.5.4 Objective Function

For a sequence of controls u(t) =
∑M−1

m=0 um1[τm,τm+1)(t), the activity counting process

N (t) is generated by intensity λ(t) = µ+u(t)+
∫ t

0
Ae−ω(t−s) dN (s). For each stagem from

0 to M − 1, xm encodes the effects from previous m stages as above and um is the current

control imposed at this stage. Let E im(t;xm, um) := B
∫ t
τm
dN i(s) be the number of times

user i is exposed to the campaign by time t ∈ [τm, τm+1) in stagem, then the goal is to steer

the expected total number of exposure Ē im(xm, um) := E[E im(τm+1;xm, um)] to a desired

level. In what follows, we introduce several instances of the objective function g(xm, um)

in terms of {Ē im(xm, um)}ni=1 in each stage m that characterize different exposure shaping

tasks. Then the overall control problem is to find u(t) that optimizes the total objective∑M−1
m=0 gm(xm, um).

• Capped Exposure Maximization (CEM): In real networks, there is a cap on the exposure

each user can tolerate due to the limited attention of a user. Suppose we know the upper

bound βim , on user i’s exposure tolerance over which the extra exposure is not counted

towards the objective. Then, we can form the following capped exposure maximization

gm(xm, um) =
1

n

n∑
i=1

min
{
Ē im(xm, um), βim

}
(4.18)

• Minimum Exposure Maximization (MEM): Suppose our goal is instead to maintain the

exposure of campaign on each user above a certain minimum level, at each stage or,

alternatively to make the user with the minimum exposure as exposed as possible, we

can consider the following cost function:

gm(xm, um) = min
i
Ē im(xm, um) (4.19)

• Least-squares Exposure Shaping (LES): Sometimes we want to achieve a pre-specified

target exposure levels, γm ∈ Rn, for the users. For example, we may like to divide

users into groups and desire a different level of exposure in each group. To this end, we

can perform least-squares campaigning task with the following cost function where D
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encodes potentially additional constraints (e.g., group partitions):

gm(xm, um) = − 1

n
‖DĒm(xm, um)− γm‖2 (4.20)

4.5.5 Policy and Actions

By observing the counting process in previous stages (summarized in a sequence of xm)

and taking the future uncertainty into account, the control problem is to design a policy

π = {πm : Rn → Rn : m = 0, . . . ,M − 1} such that the controls um = πm(xm) can

maximize the total objective
∑M−1

m=0 gm(xm, um). In addition, we may have constraints on

the amount of control. For example, a budget constraint on the sum of all interventions to

users at each stage, or, a cap over the amount of intensity a user can handle. A feasible

set or an action space over which we find the best intervention is represented as Um :={
um ∈ Rn|c>mum ≤ Cm, 0 6 um 6 αm

}
. Here, cm ∈ Rn

+ contains the price of each person

per unit increase of exogenous intensity and Cm ∈ R+ is the total budget at stage m. Also,

αm ∈ Rn
+ is the cap on the amount of activities of the users.

To summarize, the following problem is formulated to find the optimal policy π:

maximizeπ
∑M−1

m=0 gm(xm, πm(xm)),

subject to πm(xm) ∈ Um, for m = 0, . . . ,M − 1.
(4.21)

4.6 Closed-loop Dynamic Programming Solution

We have formulated the control problem as an optimization in (4.21). However, when con-

trol policy πm is to be implemented, only xm is observed and there are still uncertainties

in future {xm+1, . . . , xM−1}. For instance, when πm is implemented according to xm start-

ing from time τm, the intensity xm+1 := f(xm, πm(xm)) at time τm+1 depends on xm and

the control πm(xm), but is also random due to the stochasticity of the process during time

[τm, τm+1). Therefore, the design of π needs to take future uncertainties into considerations.

Suppose we have arrived at stage M at time τM−1 with observation xM−1, then the op-
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timal policy πM−1 satisfies gM−1(xM−1, πM−1(xM−1)) = maxu∈UM−1
gM−1(xM−1, u) =:

JM−1(xM−1). We then repeat this procedure for m from M − 1 to 0 backward to find the

sequence of controls via dynamic programming such that the control πm(xm) ∈ Um yields

optimal objective value

Jm(xm) = max
um∈Um

E[gm(xm, um) + Jm+1(f(xm, um))] (4.22)

4.6.1 Approximate Dynamic Programming

Solving (4.22) for finding Jm(xm) analytically is intractable. Therefore, we will adopt an

approximate dynamic programming scheme. In fact approximate control is as essential

part of dynamic programming as the optimization is usually intractable due to curse of di-

mensionality except a few especial cases [16]. Here we adopt a suboptimal control scheme,

certainty equivalent control (CEC), which applies at each stage the control that would be

optimal if the uncertain quantities were fixed at some typical values like the average behav-

ior. It results in an optimal control sequence, the first component of which is used at the

current stage, while the remaining components are discarded. The procedure is repeated

for the remaining stages. Algorithm 6 summarizes the dynamic programing steps. This

algorithm has two parts: (i) certainty equivalence which the random behavior is replaced

by its average; and (ii) the open-loop optimization. Let’s assume we are at the beginning

of stage l of the algorithm 6 with state vector xl at τl.

4.6.2 Certainty Equivalence

We use the machinery developed in Sec. 4.4 to compute the average of exposure at any

stage m = l, l + 1, . . . ,M − 1.

Ēm(xm, um) = BE[N (τm+1)−N (τm)] = BE

[∫ τm+1

τm

dN (s)

]
= B

∫ τm+1

τm

ηm(s) ds

(4.23)
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Algorithm 6 Closed-loop Multi-stage Dynamic Programming
Input: Intervention constraints: c0 . . . cM−1, C0 . . . CM−1, α0 . . . αM−1,
Input: Objective-specific constraints: β0 . . . βM−1 for CEM and γ0 . . . γM−1 for LES
Input: Time: T , Hawkes parameters: A, ω
Output: Optimal intervention u0 . . . uM−1, Optimal cost: Cost
Set x0 ← 0
Set Cost← 0
for l← 0 : M − 1 do

(vl . . . vM−1) = open loop(xl) (Problems (4.33), (4.34), (4.35) for CEM, MEM, LES
respectively)

Set ul ← vl
Drop vl+1 . . . vM−1

Update next state xl+1 ← fl(xl, ul)
Update Cost← Cost+ gl(xl, ul)

end for

where ηm(t) = E[λm(t)] and λm(t) = µ + um + xle
−ω(t−τl) +

∫ t
τl
Ae−ω(t−s)dN (s) for t ∈

[τm, τm+1). Now, we use the superposition property of point processes [40] to decompose

the process as N (t) = N c(t) + N v(t) corresponding to λm(t) = λcm(t) + λvm(t) where

the first λcm(t) = µ + um +
∫ t
τl
Ae−ω(t−s)dN c(s) consists of events caused by exogenous

intensity at current stage m and the second λvm(t) = xle
−ω(t−τl) +

∫ t
τl
Ae−ω(t−s)dN v(s) is

due to activities in previous stages. According to theorem 7 we have

ηcm(t) := E[λcm(t)] = Ψ(t− τl)µ+ Ψ(t− τl)ul +
m−1∑
k=l+1

Ψ(t− τk)(uk − uk−1), (4.24)

and according to theorem 8 we have

ηvm(t) := E[λvm(t)] =

∫ t

τl

Ψ(t− s) d(xle
−ω(s−τl)1[τl,∞)(s)). (4.25)

From now on, for simplicity, we assume stages are based on equal partition of [0, T ] to M

segments where each has length ∆M . Combining Eq. (4.23) and ηm(t) = ηcm(t) + ηvm(t)

yields:

Ēm(xm, um) =Γ((m− l + 1)∆M)ul + Γ((m− l)∆M)(ul+1 − ul) + . . .

+ Γ(∆M)(um − um−1) + Γ((m− l + 1)∆M)µ+ Υ((m− l + 1)∆M)xl

(4.26)
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where Γ(t) and Υ(t) are matrices independent of um’s and are defined as:

Υ(t) = B

∫ t

0

e(A−ωI)s ds = B(A− ωI)−1(e(A−ωI)t − I) (4.27)

Γ(t) = B

∫ t

0

Ψ(s) ds = BIt+BA(A− ωI)−1(Υ(t)− It); (4.28)

Note the linear relation between average exposure Ēm(xm, um) and interventions ul, . . . , um−1.

Let Γ(k∆M) = Γk and Υ(k∆M) = Υk. Then for every m ≥ l, Eq. (4.26) is rewritten:

Ēm(xm, um) =
m−1∑
k=l

(Γm−k+1 − Γm−k)uk + Γ1um + Γm−l+1µ+ Υm−l+1xl. (4.29)

4.6.3 Open-loop Optimization

Having found the average exposure at stages m = l, . . . ,M − 1 we formulate an open-

loop optimization to find optimal ul, ul+1, . . . , uM−1. Defining ûl = (ul; . . . ;uM−1) and

Êl = (Ēl(xl, ul); . . . ; ĒM−1(xM−1, uM−1)) we can aggregate Aggregating these linear forms

for all l ≥ m yields to the following matrix equation for finding Êl:

Ēl(xl, ul)

Ēl+1(xl+1, ul+1)

Ēl+2(xl+2, ul+2)

...

ĒM−1(xM−1, uM−1)


︸ ︷︷ ︸

Êl

=



Γ1 0 0 . . . 0

Γ2 − Γ1 Γ1 0 . . . 0

Γ3 − Γ2 Γ2 − Γ1 Γ1 . . . 0

...
...

... . . . ...

ΓM−l − ΓM−l−1 ΓM−l−1 − ΓM−l−2 . . . Γ2 − Γ1 Γ1


︸ ︷︷ ︸

Xl



ul

ul+1

ul+2

...

uM−1


︸ ︷︷ ︸

ûl

+



Γ1

Γ2

Γ3

...

ΓM−l


︸ ︷︷ ︸

Yl

µ+



Υ1

Υ2

Υ3

...

ΥM−l


︸ ︷︷ ︸

Wl

xl

(4.30)
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Defining the expanded form of constraint variables as ĉl = (cl; . . . ; cM−1), Ĉl =

(Cl; . . . ;CM−1), and α̂l = (αl; . . . ;αM−1) we have

c>l . . . 0>

... . . . ...

0> . . . c>M−1

I . . . 0

... . . . ...

0 . . . I

−I . . . 0

... . . . ...

0 . . . −I


︸ ︷︷ ︸

Zl



ul

ul+1

ul+2

...

uM−1


︸ ︷︷ ︸

ûl

≤



Cl
...

CM−1

αl
...

αM−1

0

...

0


︸ ︷︷ ︸

z

. (4.31)

In summary, the following equation states the relation between intervention intensities

given the constrains:

Xlûl + Ylµ+Wlxl = Êl where Zlûl ≤ zl (4.32)

Then, we provide the optimization from of the above exposure shaping tasks.

For CEM consider β̂l = (βl; . . . , βM−1). Then the problem

maximizeĥ,ûl
1
n
1>ĥ

subject to Xlûl + Ylµ+Wlxl ≥ ĥ, β̂l ≥ ĥ, Zlûl ≤ zl,
(4.33)

solves CEM where ĥ is an auxiliary vector of size n(M − l).

For MEM consider the auxiliary h as a vector of size M − l and ĥ a vector of size

n(M − 1). ĥ = (h(1); . . . ;h(1);h(2); . . . , h(2); . . . , h(M − l); . . . ;h(M − l)) where each

h(k) is repeated n times. Then MEM is equivalent to

maximizeĥ,ûl1
>ĥ

subject to Xlûl + Ylµ+Wlxl ≥ ĥ, β̂l ≥ ĥ, Zlûl ≤ zl

(4.34)
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For LES let γ̂l = (γl; . . . ; γM−1) and D̂l = diag(D, . . . , D), then

minimizeûl
1
n
‖D̂l(Xlûl + Ylµ+Wlxl)− γ̂l‖2

subject to Zlûl ≤ zl

(4.35)

All the three tasks involve convex (and linear) objective function with linear constraints

which impose a convex feasible set. Therefore, one can use the rich and well-developed

literature on convex optimization and linear programming to find the optimum intervention.

4.6.4 Scalable Optimization

All the exposure shaping problems defined above require an efficient evaluation of average

intensity η(t) at all stages, which entails computing matrices Xl, Yl, Wl, and Zl. This

leads to work with matrix exponentials and inverse matrices to obtain Υm, and Γm for

m = 1, . . . ,M − 1. In small or medium networks, we can rely on well-known numerical

methods to compute matrix exponentials and inverse. However, in large networks, the

explicit computation of Xl, Yl, Wl, and Zl becomes intractable. Fortunately, we can exploit

the following key property of our convex campaigning framework: the average intensity

itself and the gradient of the objective functions only depends on Xl, Yl, Wl, and Zl (and

consequently on Υm, and Γm) through matrix-vector product operations. Similar to [55] for

the computation of the product of matrix exponential with a vector, one can use the iterative

algorithm by Al-Mohy et al. [4], which combines a scaling and squaring method with a

truncated Taylor series approximation to the matrix exponential. For solving the sparse

linear system of equation, we use the well-known GMRES method, which is an Arnoldi

process for constructing an l2-orthogonal basis of Krylov subspaces. The method solves

the linear system by iteratively minimizing the norm of the residual vector over a Krylov

subspace. For details please refer to [55]. Last but not least, we don’t need to explicitly

build Xl, Yl, Wl, and Zl. At each step of gradient computation all the operations involving

them are multiplication ofΥ1, . . . ,ΥM , and Γ1, . . . ,ΓM to vectors such as u0, . . . , uM−1

and µ.
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Figure 4.2: Empirical investigation of theoretical results in theorem 7. blue: theoretical
average intensity; red: empirical average intensity and sample standard deviation; orang:
piecewise-constant exogenous intensity (interventions)

4.7 Temporal Properties

In this section we empirically study the theoretical results of section 4.4. The empirical

mean and standard deviation of the intensity averaged over multiple number of cascades is

compared theoretical mean. Besides this, the other purpose of the experiment is to advocate

verification process in the synthetic experiments when we used simulation to evaluate the

merits of the proposed algorithm and compare to the baselines. In other words, we show

that the empirical activity (and hence the average exposure) is very close to its theoretical

value and it is justifiable to be used for the comparison.
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Figure 4.3: Empirical investigation of theoretical results in theorem 8. blue: theoretical
average intensity; red: empirical average intensity and sample standard deviation; orang:
general time-varying intensity (interventions)

Figure 4.2 demonstrates the activity profile of 3 random users picked in a network of

300 ones simulated 100 times to investigate theorem 7. The setting is similar to main

synthetic experiment. Piecewise exogenous intensity (interventions) are picked randomly

in [0.1, 0.2] with a slight noise. We consider 5 stages for changing the exogenous intensity.

The empirical average and standard deviation is compared to theoretical average intensity

for 3 different number of runs namely, 5, 20, and 100 times. Also, Figure 4.3 demonstrate

the general case where the exogenous intensity is a time-varying function in theorem 8.

We take 3 sample functions to investigate this case; a sinusoidal function; an exponential

decaying function with added noise; and a quadratic function.
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We observe a couple of interesting facts. Firstly, it’s apparent that by increasing the

number of averages the empirical intensity tends to theoretical one very fast. Secondly,

as the mean becomes more accurate by increasing the number of cascades the standard

deviation increases; e.g., compare the standard deviation in first and third column. Thirdly,

the standard deviation is increasing with time. This is due to the fact that as time passes

random elements are aggregated more and this increases variance.

4.8 Experiments

We evaluate our campaigning framework using both simulated and real world data and

show that our approach significantly outperforms several baselines.

4.8.1 Synthetic Data Generation

The network is generated synthetically using varying number of nodes. Initial exogenous

intensity is set uniformly at random, uim ∼ U [0, 0.1]. Endogenous intensity coefficients

(influence matrix elements) are set similarly, aij ∼ U [0, 0.1]. To mimic sparse real net-

works half of the elements are set to 0 randomly. The matrix is scaled appropriately such

that the spectral radius of the coefficient matrix is a random number smaller than one and

the stability of the process is ensured.

The upper bound for the intervention intensity is set randomly from interval αi ∼

U [0, 0.1]. The price of each person is set cim = 1, and the total budget at stage m is

randomly generated as Cm ∼ (n/10)U [0, 0.1]. For the capped exposure maximization case

the upper bound is set αim ∼ U [0, 1] and target in least-squares exposure shaping is set simi-

larly vim ∼ (n/10)U [0, 1]. Furthermore, the shaping matrixD is set to I . In all the synthetic

experiments ω = 0.01 which roughly means loosing 63 % of influence after 100 units of

time (minutes, hours, etc). Furthermore, the exposing matrix is set to the unweighted adja-

cency matrix i.e., Bij = 1 if and only if Aij ≥ 10−4. This way the results are reported in

terms of the exact number of exposures and are easily interpretable. In general applications
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any B can be used for example using the influence matrix A yields to a wighted exposure

count. In all the synthetic and real experiments the above settings are assumed unless it is

explicitly mentioned.

4.8.2 Real Data Description and Network Inference

In real data, we use a temporal resolution of one hour and selected the bandwidth ω = 0.001

by cross validation. Roughly speaking, it corresponds to loosing almost 50 % of the initial

influence after 1 month. The upper bound for intervention intensity is set uniformly at

random with mean equal to empirical intensity learned from data. The upper bound for

the cap and target exposure are set similarly. For the 10 pairs of cascades we used first 3

months of data to learn the network parameters. We then drop the exogenous intensity µ,

and keep the influence network parametersA. By fixingAwe use the next 6 months of data

to learn the exogenous intensity of sites in the two cascades at each of the M stages and

name them µc1m and µc2m. Given A we find the optimal intervention intensity uoptm stage by

stage, for each of the three exposure shaping tasks assuming µ = 0. Then, our prediction is:

cascade c1 will reach a better objective value at stage m if dist(uoptm , µc1m) < dist(uoptm , µc2m)

and vice versa measured by cosine similarity. The prediction accuracy is then reported as a

performance measure.

4.8.3 Baselines

In this section, we describe several baselines we compare our approach. Most often, these

baseline methods utilize a property to prioritize users for budget assignment.

For the capped exposure maximization problem, we consider the following four base-

lines:

• OPL: It allocates the budget according to the solution to the dynamic programming

in an open loop setting, i.e., the decisions on the allocation policy are made once and

for all at the initial intervention points at initial time t = 0. This is very important
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baseline to which comparison quantify the so called value of information in the con-

text of dynamic programming and optimal control. As the name suggests it indicates

how much knowing what happened so far helps making decisions for future. For

the minimum and capped exposure maximization creasing n the objective function

is normalized by the size of network.

• RND: It assigns a random point in the convex space of feasible solutions.

• PRK: At each stage it subtracts the previous state (xim) from the cap (αim) and mul-

tiply by the page rank score of the the node (ri) computed with damping factor 0.85

and allocates the budget proportional to this value, i.e., uim ∝ max
(
(αim − xim)ri, 0

)
.

The proposed solution is then projected to the feasible set of actions in that stage and

the extra amount is redistributed similarly. The process is iterated until all the bud-

get are allocated. This baseline assumes that more central users can leverage the

total activity, therefore, assigns the budget dynamically to the more connected users

proportional to their page rank score.

• WEI: This baseline uses sum of out-going influence ( qi =
∑

j aji) as a measure

of centrality of users. Similar to the previous one it assigns budget dynamically to

the users proportionally to uim ∝ max
(
(αim − xim) qi, 0

)
. This heuristic allows us to

understand the effect of considering the whole network and the propagation layout

with respect to only consider the direct (out-going) influence.

For the max-min exposure shaping problem, we implement the following four base-

lines:

• OPL: Similar to the previous objective it represents the open loop solution.

• RND: Similar to the previous objective it allocates the budget randomly within the

feasible set.

103



• WFL: It takes a water filling approach. It sorts the users in ascending order of the

exposure in the previous stage. Then allocates budget to the first users until the

the summation of its previous exposure and the allocated budget reaches the second

lowest value or it violates a constraint. Then, assigns the budget to these two until

they reach the third user with lowest exposure or a constraint is violated. This process

is continued until the budget is allocated.

• PRP: It allocates the budget inversely proportional to the the exposure at the previous

stage.

For the least-square exposure shaping problem, we compare our method with four base-

lines:

• OPL: Similar to the previous objective it represents the open loop solution.

• RND: Similar to the previous objective it allocates the budget randomly within the

feasible set.

• GRD: It finds the difference between the exposure at previous stage (xim and the

target from v and sorts them decreasingly. Then, allocates budget one at a time until

a constraint is violated. It iterates over the users until the budget is fully allocated.

• REL: Similar to the above finds the difference from the target but allocates the budget

proportionally, i.e., uim ∝ max
(
(vi − xim), 0

)
for all users. If one allocation violates

a constraint the extra amount is reallocated in the same manner.

4.8.4 Campaigning Results on Synthetic Networks

In this section, we experiment with a synthetic network of 300 nodes. We focus on three

tasks: capped exposure maximization, minimax exposure shaping, and least square ex-

posure shaping. To compare the methods we simulate the network with the prescribed
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Figure 4.4: The objective on simulated events and synthetic network; n = 300, M = 6,
T = 40

intervention intensity and compute the objective function based on the events happened

during the simulation. The mean and standard deviation of the objective function out of 10

runs are reported.

Figure 4.4 summarizes the performance of the proposed algorithm (CLL) and 4 other

baselines on different campaigning tasks. For CEM, our approach consistently outperforms

the others by at least 10. This means it exposes each user to the campaign at least 10

times more than the rest consuming the same budget and within the same constraints. The

extra 20 units of exposures of over OPL or value of information shows how much we

gain by incorporating a dynamic closed-loop solution as opposed to open-loop one-time

optimization over all stages. For MEM, the proposed method outperforms the others by a

smaller margin, however, the 0.1 exposure difference with the second best method is not

trifling. This is expected as lifting the minimum exposure is a difficult task [55]. For LES,

results demonstrate the superiority of CLL by a large margin. The 103 difference with

the second best algorithm aggregated over 6 stages roughly is translated to
√

103/6 ∼ 13

difference in the number of exposures per user. Given the heterogeneity of the network

activity and target shape, this is a significant improvement over the baselines.

4.8.5 Campaigning Results on Real World Networks

We also evaluate the proposed framework on real world data. To this end, we utilize the

MemeTracker dataset [122] which contains the information flows captured by hyperlinks
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Figure 4.5: real world dataset results; n = 300, M = 6, T = 40

between different sites with timestamps during 9 months. This data has been previously

used to validate Hawkes process models of social activity [228, 218]. For the real data, we

utilize two evaluation procedures. First, similar to the synthetic case, we simulate the net-

work, but now on a network based on the learned parameters from real data. However, the

more interesting evaluation scheme would entail carrying out real intervention in a social

media platform. Since this is very challenging to do, instead, in this evaluation scheme we

used held-out data to mimic such procedure. Second, we form 10 pairs of clusters/cascades

by selecting any 2 combinations of 5 largest clusters in the Memetracker data. Each is a

cascade of events around a common subject. For any of these 10 pairs, the methods are

faced to the question of predicting which cascade will reach the objective function better.

They should be able to answer this by measuring how similar their prescription is to the real
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exogenous intensity. The key point here is that the real events happened are used to evaluate

the objective function of the methods. Then the results are reported on average prediction

accuracy on all stages over 10 runs of random constraint and parameter initialization on 10

pairs of cascades.

Figure 4.5, left column illustrates the performance with respect to increasing the num-

ber of users in the network. The performance drops slightly with the network size. This

means that prediction becomes more difficult as more random variables are involved. The

middle panel shows the performance with respect to increasing the number of intervention

points. Here, a slight increase in the performance is apparent. As the number of interven-

tion points increases the algorithm has more control over the outcome and can reach the

objective function better.

Figure 4.5 top row summarizes the results of CEM. The left panel demonstrates the

predictive performance of the algorithms. CLL consistently outperforms the rest. With

65-70 % of accuracy in predicting the optimal cascade. The right panel shows the objective

function simulated 10 times with the learned parameters for network of n = 300 users on

6 intervention points. The extra 2.5 extra exposure per user compared to the second best

method with the same budget and constraint would be a significant advertising achieve-

ment. Among the competitors OPL and RND seem to perform good. If there where no cap

over the resultant exposure, all methods would perform comparably because of the linearity

of sum of exposure. However, the successful method is the one who manage to maximize

exposure considering the cap. Failure of PRK and WEI indicates that structural properties

are not enough to capture the influence. Compared to these two, RND performs better in

average, however exhibits a larger variance as expected.

Figure 4.5 middle row summarizes the results for MEM and shows CLL outperforms

others consistently. CLL still is the best algorithm and OPL and RND are the significant

baselines. Failure of WFL and PRP shows the network structure plays a significant role in

the activity and exposure processes.

107



CLL OPL RND PRK WEI
50

100

150

s
u

m
 o

f 
e

x
p

o
s
u

re

CLL OPL RND PRK WEI
50

100

150

200

250

s
u

m
 o

f 
e

x
p

o
s
u

re

CLL OPL RND PRK WEI
100

150

200

250

300

s
u

m
 o

f 
e

x
p

o
s
u

re

CLL OPL RND PRK WEI
100

150

200

250

300

350

s
u

m
 o

f 
e

x
p

o
s
u

re

a) n = 150 b) n = 200 c) n = 250 d) n = 300

CLL OPL RND PRK WEI
0

50

100

150

200

250

s
u

m
 o

f 
e

x
p

o
s
u

re

CLL OPL RND PRK WEI
50

100

150

200

250

s
u

m
 o

f 
e

x
p

o
s
u

re

CLL OPL RND PRK WEI
50

100

150

200

250

s
u

m
 o

f 
e

x
p

o
s
u

re

CLL OPL RND PRK WEI
50

100

150

200

250

s
u

m
 o

f 
e

x
p

o
s
u

re

e) M = 4 f) M = 6 g) M = 8 h) M = 10

CLL OPL RND PRK WEI
40

60

80

100

120

140

s
u

m
 o

f 
e

x
p

o
s
u

re

CLL OPL RND PRK WEI

100

120

140

160

180

200

s
u

m
 o

f 
e

x
p

o
s
u

re

CLL OPL RND PRK WEI

100

150

200

250

300

s
u

m
 o

f 
e

x
p

o
s
u

re

CLL OPL RND PRK WEI
100

150

200

250

300

350

s
u

m
 o

f 
e

x
p

o
s
u

re

i) ∆ = 5 j) ∆ = 6.66 k) ∆ = 8.33 l) ∆ = 10

Figure 4.6: Caped exposure maximization results on synthetic data; top row: n varies,
M = 6, T = 40; middle row: M varies, T = 40, n = 200; bottom row: T varies, n = 200,
M = 6

The bottom row in Figure 4.5 demonstrates the results of LES. CLL is still the best

method. Among the competitors, OPL is still strong but RND is not performing well for

this task. The objective function is summation of the square of the gap between target and

current exposure. This explains why GRD is showing a comparable success, since, it starts

with the highest gap in the exposure and greedily allocates the budget.

4.9 Extended Synthetic Results

For the synthetic case we can freely evaluate the properties of the proposed algorithm un-

der several conditions. We assess the performance of the algorithm and compare to the

baselines in three settings: i) increasing size of the network; ii) increasing number of in-

tervention points; iii) increasing the time window (or equivalently the stage duration). The
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Figure 4.7: Minimum exposure maximization results on synthetic data; top row: n varies,
M = 6, T = 40; middle row: M varies, T = 40, n = 200; bottom row: T varies, n = 200,
M = 6

results are reported while keeping other parameters fixed. To compare it to the others we

simulate the network with the prescribed intervention intensity and compute the objective

function. The mean and standard deviation of the objective function out of 10 runs are

reported.

Figures 4.6, 4.7, and 4.8 shows the results for CEM, MEM, and LES respectively. In

each figure, the first row is for varying number of nodes, the second row is for varying

number of intervention points, and the third row is for varying duration of stages. The

proposed method is consistently better than the baselines. The trends and facts reported

before are observed in this extended experiment. Additionally, we want to refer the high

variance of baseline methods especially RND and OPL which is what we expect.
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Figure 4.8: Least-squares exposure shaping results on synthetic data; top row: n varies,
M = 6, T = 40; middle row: M varies, T = 40, n = 200; bottom row: T varies, n = 200,
M = 6

4.10 Related Work

Using Markov Decision Processes and Contextual Bandits in influence maximization, ad-

vertising, and campaigning in social network is becoming a hot trend in machine learning

community [63, 196, 203, 92, 220, 118]. Exposure shaping problems are significantly more

challenging than traditional influence maximization problems, which aim to identify a set

of users who influence others in the network and trigger a large cascade of adoptions [161,

111]. First, in influence maximization, the state of each user is often assumed to be binary.

However, such assumption does not capture the recurrent nature of social activity. Second,

while influence maximization methods identify a set of users to provide incentives, they do

not typically provide a quantitative prescription on how much incentive should be provided
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to each user. Third, exposure shaping concerns about a larger variety of target states, such

as minimum exposure requirement and homogeneity, not just maximization.

Existing work in stochastic optimal control includes jump diffusion stochastic differen-

tial equations (SDE) [91, 101] which focuses on controlling the SDEs with the jump term

driven by Poisson processes not for Hawkes processes. Inspired by the opinion dynamics

model proposed in [41], the authors in [204] proposes a multivariate jump diffusion process

framework for modeling opinion dynamics over networks and determining the control over

such networks.

In [21], a continuous action iterated prisoners’ dilemma was used to model the inter-

actions in a social network and extended by incorporating a mechanism for external influ-

ence on the behavior of individual nodes. Markov Decision Process (MDP) framework is

proposed to develop several scheduling algorithms for optimal control of information epi-

demics with susceptible-infected (SI) model on Erdős-Rényi and scale-free networks [108].

In [33], the authors provided an analytically tractable model for information dissemination

over networks and solved the optimal control signal distribution time for minimizing the

accumulated network cost via dynamic programming. Furthermore, [110] formulated the

maximization of spread of a given message in the population within the stipulated time as

continuous-time deterministic optimal control problem.

In contrast, our work has been built on the well-developed theory of point processes [1,

40]. Their usage in modeling activity in social network is becoming increasingly popular

[130, 150, 89, 56, 151]. More specifically, we utilizes the Hawkes process [93] which its

self-exciting property has been proved to be an appropriate choice in modeling processes

of and on the networks: [131, 228, 106, 218, 22] model and infer the social activity in

networks Based on Hawkes process assumption of activity in social networks [58, 191,

37, 216, 95, 195] study one or several phenomena in the social network. In [109] authors

proposed a broadcasting algorithm to maximize the visibility of posts in Twitter. It only

consider the direct followers and does not involve peer influence in propagation process.
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Our work is closely related to [55], which is extended in two significant directions here:

First, we generalize their result on driving a time-dependent average intensity in the case

where the exogenous intensity is not constant. Second, instead of one-shot optimization

we pose the problem as a multi-stage optimal control problem which is more fit to real

world applications. Then we propose a dynamic programming solution to the multi-stage

optimization problem.

4.11 Summary and Conclusion

In this chapter, we introduced the optimal multistage campaigning problem, which is a

generalization of the activity shaping and influence maximization problems, and it allows

for more elaborate goal functions. Our model of social activity is based on multivariate

Hawkes process, and for the first time, we manage to derive a linear connection between

a time-varying exogenous intensity (i.e., the part that can be easily manipulated via incen-

tives) and the overall network exposure of the campaign. The multistage optimal control

problem is introduced and an approximate closed-loop dynamic programming approach is

proposed to find the optimal interventions. This linear connection between exogenous in-

tensity and campaign’s exposure enables developing a convex optimization framework for

exposure shaping, deriving the necessary incentives to reach a global exposure pattern in

the network. The method is evaluated on both synthetic and real-world held-out data and

is shown to outperform several heuristics.

Experiments on synthetic and real world datasets reveal a couple of interesting facts:

• Most notable lesson is the presence of the so-called value of information. We have

witnessed, both in synthetic and real dataset, it is possible to achieve lower cost,

essentially by taking advantage of extra information. If the information was not

available the controller couldn’t adapt appropriately to the unexpected behavior and

consequently the cost could have been adversely affected.
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• What we have empirically observed is that the performance, measured in achieving

the lower cost and accurate prediction, improves with increasing the number of in-

tervention points. The more control over social network the better one can steer the

campaign towards a goal.

• The performance slightly decreases with increasing the number of nodes. That might

be due to the increased dimensionality of the optimization problem.

We acknowledge that our method has indeed limitations. For the networks at the scale of

web or large social networks faster and scalable methods need to be explored and developed

which remains as future works. There are many other interesting venues for future work

too. For example, considering competing/collaborating campaigns and their equilibria and

interactions, a continuous-time intervention scheme, and exploring other approximate dy-

namic programming approaches remain as future work.
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CHAPTER 5

REINFORCEMENT LEARNING FOR OPTIMAL INTERVENTION

We propose a multistage intervention framework that combines reinforcement learning

with a point process network activity model. We develop a policy iteration method unique

to the multivariate networked point process, with the goal of optimizing the actions for

maximal total reward under budget constraints. We then instantiate the proposed model in

the task of mitigating fake news. The spread of fake news and mitigation events within the

network is modeled by a multivariate Hawkes process with additional exogenous control

terms. By choosing a feature representation of states, defining mitigation actions and con-

structing reward functions to measure the effectiveness of mitigation activities, we map the

problem of fake news mitigation into the reinforcement learning framework. Our method

shows promising performance in real-time intervention experiments on a Twitter network

to mitigate a surrogate fake news campaign, and outperforms alternatives on synthetic

datasets.

5.1 Introduction

In our path to develop an intervention framework for point processes we formulate a rein-

forcement learning approach to find the best policy that steers the network activities towards

a desired profile. We give the first derivation of second-order statistics of random exposure

counts in the non-stationary case, which is essential in policy evaluation and improvement.

The optimal policy is learnt in an offline manner using the observed cascades and then

deployed on the network.

In this chapter, we evaluate the intervention problem in the task of fake news mitiga-

tion. The recent proliferation of malicious fake news in social media has been a source

of widespread concern. Given that more than 62% of U.S. adults turn to social media for
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news, with 18% doing so often, fake news can have potential real-world consequences on

a large scale [76]. For example, within the final three months of the 2016 U.S. presidential

election, news stories that favored either of the two nominees–later proved to be fake–were

shared over 37 million times on Facebook, and over half of those who recalled seeing fake

news stories believed them [5]. An analysis by Buzzfeed News shows that the top 20 false

election stories from hoax websites generated nearly 1.5 million more user engagement

activities on Facebook than the top 20 stories from reputable major news outlets [177]. So,

there is an urgent call to develop effective strategies to mitigate the impact of fake news.

Policies to counter fake news can be categorized by the level of manual oversight and

the aggressiveness of action required. Aggressively acting on fake news has various draw-

backs. For example, Facebook’s strategy allows users to report stories as potential fake

news, sends these stories to fact-checking organizations, and flags them as disputed in

users’ newsfeed [143]. Such direct action on the offending news requires a high degree

of human oversight, which can be costly and slow, and also may violate civil rights. The

report-and-flag mechanism is also open to abuse by adversaries who maliciously report real

news. Given these disadvantages, we consider an alternative strategy: optimizing the per-

formance of real news propagation over the network, ensuring that people who are exposed

to fake news are also exposed to real news, so that they are less likely to be convinced by

fake news.

We face several key modeling and computational issues. For example, how to quan-

tify the uncertainty of user activities and news propagation within the network? How to

measure the effect of mitigation incentives and activities? Is it possible to steer the spon-

taneous user mitigation activities by an intervention strategy? To address these questions,

we model the temporal randomness of fake news and mitigation events (“valid news”) as

multivariate point processes with self and mutual excitations, in which the control incen-

tivizes more spontaneous mitigation events by contributing to the exogenous activity of

campaigner nodes. The influence of fake news and mitigation activities is quantified using
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event exposure counts (i.e. the number of times that a user is exposed to fake or real news

posts from other users whom she follows).

Our key contributions are as follows. We present the first formulation of fake news

mitigation as the problem of optimal point process intervention in a network. The goal is

to optimize the activity policy of a set of campaigner nodes to mitigate a fake news process

stemming from another set of nodes. This framework enables one to design a variety

of objectives to quantify the meaning of ”mitigation”, such as minimizing the number of

users who see fake news but were not reached by real news. We give the first derivation

of second-order statistics of random exposure counts in the non-stationary case, which is

essential in policy evaluation and improvement. By defining a state space for the network,

formulating actions as exogenous intensity, and defining reward functions, we map the

fake news mitigation problem to an optimal policy problem in a Markov decision process

(MDP), which is solved by model-based least-squares temporal difference learning (LSTD)

specific to the context of point processes. Furthermore, to the best of our knowledge, we

are the first to conduct a real-time point process intervention experiment. Figure 5.1 shows

the overall architecture.

5.2 Problem Formulation

Network activities. We model both fake news and mitigation processes as Multivariate

Hawkes Process (MHP) over the network. Conceptually, MHP is a networked point process

model with dependent dimensions (nodes), and can capture the underlying network struc-

ture and node interactions [22, 217, 87]. For example, an event by one user (a node) can

trigger more events at other connected users. Define F (t) =
(
F1(t), . . . , Fn(t)

)> ∈ Nn
0 ,

where Fi(t) counts the number of times user i shares a piece of news from the fake cam-

paign up to time t. Similarly, define M(t) =
(
M1(t), . . . ,Mn(t)

)> ∈ Nn
0 for the mitigation

process. Correspondingly, we have 2 intensity functions: λM(t) = (λM1 (t), . . . , λMn (t))>

and λF (t) = (λF1 (t), . . . , λFn (t))> and two sets of exogenous intensities µM and µF .
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Figure 5.1: The framework of point process based intervention for countering fake news.
(1-3) Offline learning of value function approximation weight vector using LSTD from
transition samples generated from model. (4-7) Real-time intervention loop that uses fea-
ture representation of network state to choose optimal exogenous incentive for mitigator
nodes.

Goal. Given that both F (t) andM(t) are modeled by the Hawkes processes, our goal is

to find the optimal mitigation strategy that specifies how to adjust the exogenous intensity

of a few mitigator nodes, such that an objective function (rigorously defined in sec. 5.3.1)

can be maximized under budget constraints. To this end, we measure the influence of fake

news and mitigation activities using event exposures, describe the mechanism of mitigation

interventions, and quantify the effect of interventions mathematically.

Event exposure. Event exposure is a quantitative measure of campaign influence, and

is represented as a counting process, E(t) =
(
E1(t), . . . , En(t)

)>. Here, Ei(t) records the

number of times user i is exposed to a campaign N(t) by time t, where the exposure count

increases whenever the user or a neighbor performs an activity. Let B be the adjacency

matrix of the user network, i.e., bij = 1 if user i follows user j, and assume bii = 1 for

all i. Then the exposure process is given by E(t) = BN(t). We define F(t) = BF (t)
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and M(t) = BM(t) as the fake news and mitigation exposure processes, respectively.

Note that the MHP allows cascades of mutual excitations to occur among many nodes, so

that non-adjacent users can also contribute to one another’s exposure counts, if there is a

directed path between them.

Intervention. To maximize objectives defined for fake news mitigation in section 5.3.1,

suppose we can perform intervention by incentivizing a subset of users in the k-th stage

during time [τk, τk+1) to trigger real news events. For simplicity, we consider uniform

time duration τk+1 − τk = ∆T for k = 0, 1, . . . , since generalization to nonuniform time

durations is trivial. We model the incentive by a constant intervention uki ≥ 0 added to the

exogenous intensity µi during time [τk, τk+1) for each stage k = 0, 1, . . . . The mitigation

activity intensity at the k-th stage is

λM(t) = µ+ uk +

∫ t

0

Φ(t− s) dM(s), (5.1)

for t ∈ [τk, τk+1). Note that the intervention itself exhibits a stochastic nature: adding uki

to µi is equivalent to incentivizing user i to increase her activity rate, but it is still uncertain

when she will perform an activity, which appropriately mimics the randomness of the real

world.

Reward function. For each stage k, let xk (defined in section 5.3.3) be the state of the

whole MDP that encodes all the information from previous stages, and let uk be the current

control imposed at this stage. Let Mk
i (t;x

k, uk) :=
∑

j bij
∫ t
τk

dMj(s) be the number of

times user i is exposed to the mitigation campaign by time t ∈ [τk, τk+1) within stage k,

and define Fki (t;xk, uk) similarly for the fake news exposure process. The reward function

R(xk, uk) can then be designed as a composite function ofM and F (section 5.3.1).

Problem statement. By observing the counting process in previous stages (summa-

rized in a sequence of xk) and taking the future uncertainty into account, the control prob-

lem is to design a policy π such that the controls uk = π(xk) can maximize the total
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discounted objective

E[
∞∑
k=0

γkRk], (5.2)

where γ ∈ (0, 1] is the discount rate and Rk is the observed reward at stage k. In addition,

we may have constraints on the amount of control, such as a budget constraint on the sum

of all interventions to users at each stage, or a cap over the amount of intensity a user

can handle. A feasible set or an action space over which we find the best intervention is

represented as

Uk :=
{
u ∈ Rn|u>ck ≤ Ck, 0 ≤ u ≤ αk

}
. (5.3)

Here, cki is the price per unit increase of exogenous intensity of user i and Ck ∈ R+ is the

total budget at stage k. Also, αki is the cap on the amount of activities of the user i.

5.3 Proposed Method

In this section, we present the formulation of reward functions in terms of event exposures

of fake news and mitigation activities. Then we derive the key statistics of the MHP re-

quired for reward function evaluation, followed by the policy iteration scheme to find the

optimal intervention.

5.3.1 Fake News Mitigation

As we discussed above, the total reward of policy π is defined by the value function

V π(x0) = E
[ ∞∑
k=0

γkRk

∣∣∣∣x0

]
(5.4)

for the initial state x0 of fake and mitigation processes, where the observed reward R quan-

tifies the effect of mitigation activities M(t) in each stage and γ ∈ (0, 1] is the discount

rate. We consider two types of reward functions R(x, u):

1) Correlation Maximization: One possible way is to require correlation between mitigation

exposures and fake news exposures: people exposed more to fake news should also be
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exposed more to the true news, so that they are less likely to believe completely in fake

news. Therefore, we can design the reward function R in stage k to be:

R(xk, uk) =
1

n
Mk(τk+1;xk, uk)>Fk(τk+1;xk, uk).

2) Difference Minimization: Suppose the goal is to minimize the number of unmitigated

fake news events, then we can form a reward function R in stage k as the least squares of

unmitigated numbers:

R(xk, uk) =
−1

n

∥∥∥Mk(τk+1;xk, uk)−Fk(τk+1;xk, uk)
∥∥∥2

These are two candidate reward functions in the MHP-MDP context, among others. To

solve the policy optimization problem argmaxπ V
π(x0) for V π defined in (5.4), we need to

evaluate the value function V π for any given policy π, which requires the first and second

order statistics (moments) of any multivariate Hawkes processes N(t), as we derive next.

5.3.2 Second Order Statistics of Non-stationary Process

For an n-dim MHP N(t) with standard exponential kernel Φ(t), the following proposition

provides closed-form solution of the mean intensity η(t) := E[λ(t)] for both constant and

time-varying exogenous intensity µ(t):

Proposition 10 (lemma 6 and theorem 4 ). Let N(t) be an n-dimensional MHP defined

in sec. 5.2 with exogenous intensity µ(t) and Hawkes kernel Φ(t) = Ae−ωth(t), then the

mean intensity η(t) is given by

η(t) =
[
I + A(A− ωI)−1

(
e(A−ωI)t − I

)]
µ(t). (5.5)

Let Λ(t) =
∫ t

0
λ(s) ds be the compensator of N(t), then by the Doob-Meyer decompo-

sition theorem,N(t)−Λ(t) is a zero mean martingale. This implies that the first order statis-

tics E[N(t)] can be obtained by E[N(t)] = E[Λ(t)] = E[
∫ t

0
λ(s) ds] =

∫ t
0
E[λ(s)] ds =∫ t

0
η(s) ds using eq. (5.5).

To evaluate the reward function R defined previously, we need to derive second order
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statistics of multivariate Hawkes process N(t) in its non-stationary stage. The following

theorem states the key ingredients for the second order statistics.

Theorem 11. Let N(t) be an n-dim MHP with exogenous intensity µ and Hawkes kernel

Φ defined in sec. 5.2, then the second order statistics of N(t) for t, t′ ≥ 0 is given by

E
[
dN(t) dN(t′)>

]
= G(t′, t)>Σ(t′) dt dt′+

δ(t− t′)Σ(t′) dt dt′ + η(t)η(t′)> dt dt′
(5.6)

where η(t) = E[λ(t)] is given in (5.5), Σ(t) = diag([ηi(t)]) is diagonal, and G is the

unique solution of

G(t′, t) = G(t′, t) ∗ Φ(t) + Φ(t− t′)− δ(t− t′)I. (5.7)

Moreover G(t′, t)>Σ(t′) = Σ(t)G(t, t′) for all t, t′ ≥ 0.

Proof. Fix node index j and t′ ≥ 0, define gji(t′, t) for all node i and t such that

gji(t
′, t) dt = E

[
dNi(t)| dNj(t

′) = 1
]
− δijδ(t− t′) dt− ηi(t) dt (5.8)

Since the conditional intensity of Ni(t) is λi(t), we have

gji(t
′, t) dt = E

[
dNi(t)| dNj(t

′) = 1
]
− δijδ(t− t′) dt− ηi(t) dt

= E
[
λi(t)| dNj(t

′) = 1
]

dt− δijδ(t− t′) dt− ηi(t) dt

Furthermore, we have λi(t) = µi(t) +
∑n

k=1

∫ t
0
φki(t− s) dNk(s) and hence

E
[
λi(t)| dNj(t

′) = 1
]

= µi(t) +
n∑
k=1

∫ t

0

φki(t− s)E[dNk(s)| dNj(t
′) = 1]

= µi(t) +
n∑
k=1

∫ t

0

φki(t− s)
[
gjk(t

′, s) ds+ δkjδ(s− t′) ds+ ηk(s) ds
]

= µi(t) +
n∑
k=1

∫ t

0

φki(t− s)gjk(t′, s) ds+ φji(t− t′)

+
n∑
k=1

∫ t

0

φki(t− s)ηk(s) ds

where we applied the definition of gjk in (5.8) to obtain the second equality. Combining

the two equations above and using the fact that ηi(t) = µi(t) +
∑n

k=1

∫ t
0
φki(t− s)ηk(s) ds,
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we obtain that

gji(t
′, t) =

n∑
k=1

∫ t

0

φki(t− s)gjk(t′, s) ds+ φji(t− t′)− δijδ(t− t′)

Since j and t′ are arbitrary, we let G(t′, t) be the matrix such that the (j, i)-th entry of

G(t′, t) is gji(t′, t), then we have

G(t′, t) = G(t′, t) ∗ Φ(t) + Φ(t− t′)− δ(t− t′)I (5.9)

Note that the Wiener-Hopf equation (5.9) determines the unique solution G(t′, t) for all

t ≥ t′. Moreover, since MHP is simple and that dNi(t) = 0 or 1 a.s. for all i, we have

E[dNi(t) dNj(t
′)] = Pr

(
dNi(t) = 1, dNj(t

′) = 1
)

= Pr
(
dNi(t)| dNj(t

′) = 1
)

Pr
(
dNj(t

′) = 1
)

= E[dNi(t)| dNj(t) = 1]E[dNj(t
′)] (5.10)

= E[dNi(t)| dNj(t) = 1]E[λj(t
′)] dt′

= E[dNi(t)| dNj(t) = 1]ηj(t
′) dt′

= gji(t
′, t)ηj(t

′) dt dt′ + δijδ(t− t′)ηj(t′) dt dt′ + ηi(t)ηj(t
′) dt dt′

Similarly, we can switch i and j, and t and t′ to obtain

E[dNi(t) dNj(t
′)] = gij(t, t

′)ηi(t) dt dt′+δijδ(t−t′)ηi(t) dt dt′+ηi(t)ηj(t
′) dt dt′ (5.11)

Combining (5.10) and (5.11) we have that

gji(t
′, t)ηj(t

′) = gij(t, t
′)ηi(t)

i.e., G(t′, t)>Σ(t′) = Σ(t)G(t, t′), from which G(t′, t) for t < t′ is also uniquely deter-

mined. We therefore have

E
[
dN(t) dN(t′)>

]
= G(t′, t)>Σ(t′) dt dt′+δ(t−t′)Σ(t′) dt dt′+η(t)η(t′)> dt dt′ (5.12)

This completes the proof.

Based on Theorem 11, we can compute second order statistics such as E[Ni(t)Nj(t
′)]

for all i, j and t, t′ ≥ 0.
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5.3.3 State Representation

Hawkes process is non-Markovian and one needs complete knowledge of the history to

characterize the entire process. However, when the standard exponential kernel Φ(t, s) =

Ae−ω(t−s)h(t− s) is employed, the effect of history up to time τk on the future t > τk can

be cleverly summarized by one scalar per dimension [178, 60]. For 1 ≤ i ≤ n, define

yki := λk−1
i (τk) − uk−1

i − µi, (and yi0 = 0 by convention), then the intensity due to events

of all previous k stages can be written as
∫ τk

0
Ae−ω(t−s) dN(s) = yke−ω(t−τk). In other

words, yk is sufficient to encode the information of activities in the past k stages that are

relevant to future. Note that we have two separate ykM and ykF to track the dynamics of both

mitigation and fake processes.

In order to tackle objectives over multiple stages, we add aggregated number of events

at L previous ∆f -time intervals over all dimensions. Define a vector zk ∈ RnL where

zk(l−1)n+i =
∫ τk−(l−1)∆f

τk−l∆f
dNi(s) for 1 ≤ i ≤ n and 1 ≤ l ≤ L. In other words, zk(l−1)n+i

records the number of events of i-th dimension in the l-th interval of length ∆f prior to time

τk. For example, choosing ∆f = ∆T and setting L = 2 means that events from the two

most recent stages are counted. Similarly, we have two separate zkM and zkF corresponding

to the two processes. Now, the state vector xk ∈ R2nL+2n is the concatenation of the above

four vectors xk = [ykM ; ykF ; zkM ; zkF ].

5.3.4 Least Squares Temporal Difference

The optimal value function satisfies the Bellman equation:

V π(x) = E[R(x, π(x))] + γE[V π(x′)], (5.13)

where x′ is the next state after taking action based on policy π at state x. Least squares

temporal difference learning (LSTD) is a sample-efficient procedure for policy evaluation,

which subsequently facilitates policy improvement. The value function is approximated

by V̂ π(x) =
∑D

d=1w
π
dψd(x), where ψd is the d-th feature of state x and wπd is its coef-
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Algorithm 7 LSTD policy iteration in point processes
Input: set of samples S , feature ψ(·), discount γ
repeat

Initialize Aπ = 0 and bπ = 0.
for each state x ∈ S do
Aπ ← Aπ + ψ(x)(ψ(x)− γψ(x′))>

bπ ← bπ + ψ(x)rπ

end for
wπ ← (Aπ)−1bπ

for each state x ∈ S do
π(x)← argmax

u
{E[R(x, u)] + γE[V π(x′)|u,wπ]}

end for
until ‖∆wπ‖ < 0.1
return wπ

ficient for policy π. This can be compactly represented as V̂ π(x) = ψ(x)>wπ, where

ψ(x) = (ψ1(x), . . . , ψD(x))>. The following presents our choice of features and the policy

evaluation and improvement steps of LSTD(0) [185].

Features. The number of events in a few recent consecutive intervals of point pro-

cesses have been used as a reliable feature to parameterize point processes [150, 156,

130]. Following their work we take L prior intervals of length ∆f for each dimension

of the fake news process and record the number of events in that period as one feature.

ψk(l−1)n+i = zk(l−1)n+i for 1 ≤ i ≤ n and 1 ≤ l ≤ L. This will count for nL features.

Similarly we take nL features from the mitigation process. Finally, we add a last feature

ψk2nL+1 = 1 as the bias term. Therefore, ψk = [zkM ; zkF ; 1] and the feature space has dimen-

sion D = 2nL+ 1.

Policy Evaluation. Substituting the approximation into the Bellman equation, we have:

ψ(x)>wπ = E[R(x, π(x))] + γE[ψ(x′)>]wπ. (5.14)

To find the best fit ofwπ we have to consider all possible x; however, since the state space is

infinite-dimensional, enumerating all states is impossible and we utilize a set S of samples

S = {x1, . . . , xS}.

Let ψ(xs) = ψs ∈ RD, E[ψ(x′s)] = ψ′s ∈ RD, and rπs = E[R(xs, π(xs))] ∈ R.
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Then define matrices of current features Ψ = [ψ>1 ; . . . ;ψ>S ]> ∈ RS×D and next features

Ψ′ = [ψ′>1 ; . . . ;ψ′>S ]> ∈ RS×D, the rewards rπ = [rπ1 , . . . , r
π
S]> ∈ RS , and the sample

value functions as vπ = [V π(x1), . . . , V π(xS)]> ∈ RS . Given the above definition, the

Bellman optimality of eq. (5.14) can be written in matrix format:

vπ = Ψwπ = rπ + γΨ′wπ , T πvπ, (5.15)

where T π is the Bellman optimality operator. A way to find a good estimate is to force the

approximate value function to be a fixed point of the optimality equation under the Bell-

man operator, i.e., T πv̂π ≈ v̂π. [117]. For that, the fixed point has to lie in the space of

approximate value functions, spanned by the basis functions Ψ. v̂π lies in that space by

definition, but T πv̂π may have an orthogonal component and must be projected. This is

achieved by the orthogonal projection operator (Ψ(Ψ>Ψ)−1Ψ>). Therefore the approxi-

mate value function v̂π must be invariant under one application of the Bellman operator T π

followed by orthogonal projection:

v̂π = Ψ(Ψ>Ψ)−1Ψ>(T πv̂π). (5.16)

By substituting the linear approximation Ψwπ = vπ into the above equation and some

manipulations, we get a D × D linear systems of equations Aπωπ = bπ, where Aπ =

Ψ>(Ψ− γΨ′) and bπ = Ψ>rπ, and whose solution is the fitted coefficients wπ. It has been

shown that the estimated wπ converges to the best w∗ as the available number of samples

tends to infinity [26]. Details are as follows.

We seek an approximate value function v̂π that is invariant under one application of the

Bellman operator T π followed by orthogonal projection:

v̂π = Ψ(Ψ>Ψ)−1Ψ>(T πv̂π) (5.17)
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By replacing the linear approximation, Ψwπ = vπ , and some manipulations we get:

Ψ(Ψ>Ψ)−1Ψ>(rπ + γΨ′wπ) = Ψwπ

Ψ
(

(Ψ>Ψ)−1Ψ>(rπ + γΨ′wπ)− wπ
)

= 0

(Ψ>Ψ)−1Ψ>(rπ + γΨ′wπ)− wπ = 0

(Ψ>Ψ)−1Ψ>(rπ + γΨ′wπ) = wπ

Ψ>(rπ + γΨ′wπ) = (Ψ>Ψ)wπ

Ψ>(Ψ− γΨ′)︸ ︷︷ ︸
D×D

wπ = Ψ>rπ︸ ︷︷ ︸
D×1

Defining Aπ = Ψ>(Ψ− γΨ′) and bπ = Ψ>rπ the estimated coefficients are the solution of

a D ×D linear systems of equation: Aπωπ = bπ.

Policy Improvement. The second part of the algorithm implements policy improve-

ment, i.e., getting an improved policy π′ via one-step look-ahead as follows:

π′(x) = argmax
u

E[R(x, u) + γV π(x′)]. (5.18)

LSTD(0) alternates between the policy improvement and policy evaluation iteratively

until wπ converges [26]. Algorithm 7 summarizes this procedure.

LSTD in Hawkes context. LSTD is particularly suitable to the problem we are in-

terested in. It learns the value function V π(x), and as such, policy improvement can be

challenging without knowing the model. Because of this, methods that aim to learn the

Q-function Qπ(x, u), such as LSPI [117], are widely applied. The downside of Q-function

based methods is that they typically require more samples than value-function based meth-

ods, because they require a large collection of state-action pairs {(s, a)} for sufficient ex-

ploration of both state and action spaces. Yet, in our setup, learning the value function is

sufficient, by writing the action-value function as Qπ(x, u) = E[R(x, u) + V π(x′)], and

observing that the learned model of the multivariate Hawkes process enables analytical
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computation of the expectation

E[V π(x′)] =
n∑
i=1

L−1∑
l=1

wπln+iz
k−1
M,(l−1)n+i + wπnL+ln+iz

k−1
F,(l−1)n+i

+
n∑
i=1

wiE[zkM,i] + wnL+iE[zkF,i] + wπ2nL+1,

E[R(x, u)] =
1

n
E[zkM ]>B>B E[zkF ], % correlation

E[R(x, u)] = − 1

n
E[zkM

>
B>B zkM ]− 1

n
E[zkF

>
B>B zkF ]

+
2

n
E[zkM ]>B>B E[zkF ]. % difference

The above are derived as a result of the following computations. Assume we are at the

beginning of stage k. The expected feature vector for the next state x′ is comprised of L

intervals per process, out of which L− 1 are observed. Only the most recent interval is not

observed and needs to be re-evaluated in expectation sense. To compute E[V π(x′)] have:

E[V π(x′)] =E[
D∑
d=1

wπdψd(x
′)] (5.19)

=E[
∑

i=1...n,l=1...L

wπ(l−1)n+iz
k
M,(l−1)n+i (5.20)

+ wπnL+(l−1)n+iz
k
F,(l−1)n+i + wπ2nL+1] (5.21)

=
∑

i=1...n,l=1...L−1

wπln+iz
k−1
M,(l−1)n+i + wπnL+ln+iz

k−1
F,(l−1)n+i (5.22)

+
∑
i=1...n

wiE[zkM,i] + wnL+iE[zkF,i] + wπ2nL+1 (5.23)

Then, following chapter 4, we obtain

E[zkM ] = Γ (µM + uk) + Υ ykM (5.24)

E[zkF ] = ΓµF + Υ ykM (5.25)

where

Υ = (A− ωI)−1(e(A−ωI)∆ − I) (5.26)

Γ = I∆ + A(A− ωI)−1(Υ− I∆); (5.27)
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To find E[R(x, u)] for the two different reward functions we have defined

• Correlation Maximization

E[R(xk, uk)] =
1

n
E[Mk(τk+1;xk, uk)>Fk(τk+1;xk, uk) (5.28)

=
1

n
E[zkM

>
B>B zkF ] (5.29)

=
1

n
E[zkM ]>B>B E[zkF ] (5.30)

=
1

n

(
Γ(µM + uk) + ΥykM

)>
B>B

(
ΓµF + ΥykF

)
(5.31)

Here the second line is due to the fact that mitigation campaign and fake news process

are independent of each other (given the network model). Note the linear dependence

of the the objective on our intervention uk which combined with linear constraints

result in a convex optimization problem.

• Difference Minimization

E[R(xk, uk)] =− 1

n
E[
∥∥∥Mk(τk+1;xk, uk)−Fk(τk+1;xk, uk)

∥∥∥2

] (5.32)

=− 1

n
E[(BzkM −B zkF )>(BzkM −B zkF )] (5.33)

=− 1

n
E[zkM

>
B>B zkM ]︸ ︷︷ ︸

Second order moments

+
2

n
E[zkM ]>B>B E[zkF ]︸ ︷︷ ︸

First order moments

− 1

n
E[zkF

>
B>B zkF ]︸ ︷︷ ︸

Second order moments

(5.34)

The first and second order moments are computed by [55] and Theorem 11, respec-

tively.

We require much fewer samples to learn V π(x) compared to learning an approximate

Qπ(x, u), and in particular compared to LSPI, we avoid explicitly discretizing the continu-

ous action space from which the action u is chosen.

We further remark that the policy improvement step finds the optimal action u at any

state x by computing argmaxu E[R(x, u) + V π(x′)], where the action u to be optimized

appears in the calculation of both the expected current reward and the expected value at the
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Algorithm 8 Real-time fake news mitigation
Input: network A, learned wπ, feature ψ(·), discount γ
repeat

Observe state x of the network activities
u = argmaxa{E[R(x, a)] + γE[V π(x′)|a, wπ]}
Add u to base exogenous intensity µ and generate mitigation event times {ti} using

point process model
Create posts at times {ti} using campaigner accounts

until end of campaign

next state. This optimization problem is convex under our choice of reward functions and

the form of the Hawkes conditional intensity.

After learning the optimal policy (implicitly defined bywπ of the linearly-approximated

value function) we start at the real-time intervention part. Given a state observation, we find

the optimal intervention intensity by solving eq. (5.18). Algorithm 8 summarizes the real-

time mitigation procedure.

5.4 Experiments

We evaluated our fake news mitigation framework by both simulated and real-time real-

world experiments and show that our approach significantly outperforms several state-of-

the-art methods and alternatives. First we verify the theoretical second order statistics in

Figure 5.2. Then we introduce the baseline methods against which we compare our pro-

posed approach, and present the results of synthetic and real intervention experiments. The

measure of performance for all methods was how much total reward could be accumulated

by each method, where the reward function is defined via the objective functions in sec-

tion 5.3.1. We conclude by examining convergence properties and representative power of

the chosen linear features in section 5.3.4.

129



0 0.5 1 1.5 2

time

-1

0

1

2

3

2
n

d
 o

rd
e

r 
m

o
m

e
n

t

theory empirical

0 0.5 1 1.5 2

time

-2

0

2

4

2
n

d
 o

rd
e

r 
m

o
m

e
n

t

theory empirical

0 0.5 1 1.5 2

time

0

1

2

2
n

d
 o

rd
e

r 
m

o
m

e
n

t

theory empirical

0 0.5 1 1.5 2

time

-0.5

0

0.5

1

1.5

2
n

d
 o

rd
e

r 
m

o
m

e
n

t

theory empirical

Figure 5.2: Empirical and theoretical second order moments of a Hawkes process,
E[dNi(t) dNj(t

′)] for 4 random pairs (i, j) and t′ = 0 and varying t from 0 to 2.

5.4.1 Empirical Validation of Second Order Statistics

In this section, we empirically study the theoretical results of section 5.3.2. The mean and

standard deviation of the empirical second order statistics averaged over 100 simulations

was compared to the theoretical mean. This experiment helps to verify that it can be used

in simulations to evaluate the merits of our proposed algorithm and versus the baselines.

Figure 5.2 demonstrates the second order correlation profile of 4 random pairs of users

simulated 100 times. We see that the empirical average almost matches the theoretical

average. Furthermore, it is interesting to see that the standard deviation increases with

time. This is due to the aggregation of more random elements as time passes. Therefore,

one should be careful with using the empirical mean without a sufficient number of random

runs when the time interval is large.

5.4.2 Baselines

We compared our Least-squares Temporal Difference (LTD) intervention procedure with

the following baselines. Sections 5.4.3 and 5.4.4 present experimental procedures and re-

sults.

1) CEC [60]: This is a recent network intervention algorithm based on point processes.

It formulates a dynamic programming problem,

V k(x) = max
uk

E[R(xk, uk) + γV π(xk+1)], (5.35)
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and uses approximate look-ahead dynamic programming implemented via Certainly Equiv-

alence Control (CEC) [16] to find the optimum intervention.

2) OPL [55]: An open loop dynamic programming control based on convex optimiza-

tion that finds the best intervention for all stages in one shot:

max
u1,u2,...,uK

E[
∑
k

γkR(xk, uk)]. (5.36)

Open Loop (OPL) is an important baseline, because comparing it against closed-loop

strategies like CEC and LTD indicates how much feedback information helps improve fu-

ture decisions. It quantifies the value of information in the context of dynamic program-

ming and optimal control.

3) CLS: For each node i belonging to the mitigation campaign, we compute its close-

ness centrality centi = 1∑
j dis(i,j)

, where dis is the shortest distance from i to j. Then,

we assign the budget such that ui ∝ centi, meaning that budget is distributed to mitiga-

tion nodes based on their proximity to nodes according to network structure. Closeness

Centrality (CLS) has been widely used in the literature as a baseline for finding influential

nodes [32, 42, 62].

4) EXP: The CLS baseline is only structural and does not use the fake news infection

data. EXP augments it by computing an Exposure-based Closeness Centrality, centki =∑
j

∑L
l=1 F

k−l
j

dis(i,j)
, where the numerator is the total number of times node j has been exposed to

the fake news campaign in the L intervals before stage k. The more times node j has been

exposed to the fake news, the more important it is for the mitigation campaign to reach it.

EXP assigns the budget according to uki ∝ centki .

5) RND: This policy assigns a random solution in the convex space of feasible interven-

tions. It serves as a baseline and improvement over this random policy makes comparison

feasible across different settings.
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5.4.3 Synthetic Experiments

Setup. For all except the experiment over network size, the networks were generated

synthetically with n = 300 nodes. Endogenous intensity coefficients were set as aij ∼

U [0, 0.5]. To mimic real world networks, sparsity was set to 0.02, i.e., each edge was kept

with probability 0.02. The influence matrix was scaled appropriately such that the spec-

tral radius is a random number smaller than one to ensure the stability of the process. The

Hawkes kernel parameter was set to ω = 1, which means loosing roughly 63 % of influence

after 1 time unit (minutes, hours, etc). Both fake news and mitigation processes obey these

network settings. Among n nodes, we assume 20 nodes create fake news and another 20

nodes can be incentivized (via the exogenous intensity) to spread true news. Each stage has

length of ∆T = 1. The discount factor was set to γ = 0.7. For determining features, we

set L = 2 and we choose ∆f = ∆T for simplicity. The upper bound for the intervention

intensity was chosen by αi ∼ U [0, 0.5]. The price of each person was cki = 1, and the

total budget at stage k was randomly generated as Ck ∼ (n × U [0, 0.5]). 1000 randomly

sampled states were used for the LSTD algorithm. To evaluate a policy (learned by an al-

gorithm) we simulated the network under that policy 50 times and took the discounted total

reward averaged over these 50 runs as an empirical valuation of the policy. Furthermore,

each single run was simulated for 10 consecutive stages; from the eleventh stage onward,

the objectives contribute 0.02 of the total reward and can be discarded. For all experiments,

the above settings are assumed unless it is explicitly mentioned otherwise.

Intervention results. Figure 5.3 demonstrates the performance of different methods. Per-

formance of a policy is quantified as the ratio of the total reward achieved by running

the policy, over the total reward achieved by the random policy (RND). This allows us to

compare the effectiveness of the algorithms over a variety of settings. All the results re-

ported are averages over 10 runs with random networks generated according to the above

setup. Overall, it is clear that LTD is almost consistently the best. It improves over the
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Figure 5.3: Performance improvement of different methods over the random policy on
synthetic networks for correlation maximization

random policy by roughly 20 percent. CEC is the second best and shows the effectiveness

of multi-stage and closed loop intervention. This validates our intuition that although CEC

computes the reward from both fake news and mitigation processes, the lack of explicit

features corresponding to previous events in its value function prevents it from learning the

reason for the reward. Roughly, OPL is the third best algorithm, due to its negligence of the

state and the actual events that occurred. Next, comes the EXP algorithm followed by the

CLS. The poor performance of these (compared to others) shows that structural properties

are not sufficient to tackle the fake news mitigation problem. EXP is roughly better than

CEC because it heuristically takes into account the fake news exposure.

Figure 5.3-a shows the performance with respect to increasing network size. The dif-

ference between alternative methods and the gap between LTD and others increase with the

network size. Furthermore, the performance of all methods show an increase over random

policy when the problem size gets larger. This illustrates the fact that efficient distribution

of budget matters more when confronted with problems of increasing complexity and size.

Figure 5.3-b shows the performance with respect to increasing the mitigation campaign

size. Larger campaigns imply greater flexibility of intervention, which can be exploited by

clever algorithms to achieve higher performance.

Figure 5.3-c shows the performance with respect to increasing sparsity of the network.

Interestingly, the performance of all the algorithms move towards to the random policy as

the network becomes denser. This can be understood by considering a complete graph,
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Figure 5.4: Performance improvement of different methods over the random policy on
synthetic networks for distance minimization

so that no matter how and to whom we distribute the mitigation budget, all the nodes are

exposed to the mitigation campaign almost equally. However, since real social networks

are usually sparse, the effectiveness of the proposed method stands out.

Finally, Figure 5.3-d shows the performance with respect to the length of an stage.

Longer stage lengths increase the potential for a good policy to attain higher reward than

a random policy, and this is reflected by the sharp increase and larger performance gap

between LTD and others for longer lengths. We observe the same patterns for the distance

minimization in Figure 5.4 problem and avoid repeating them.

5.4.4 Real Experiments

In this section we explain our real-time intervention results. To the best of our knowledge,

we are the first to employ a real-time experiment to evaluate a point process based social

network intervention strategy.

Setup. Using five Twitter accounts, each of which made five posts on machine learning

topics at random times per day for a span of two months (Nov.-Dec. 2016), we accumulated

a network of 1894 real users with 23407 directed edges in total. We used this historical data

to learn the network parameters {αij, µi} using maximum likelihood (similar to related

work [228, 55]) with one hour as the time resolution and the kernel decay parameter ω set

to 0.1. As illustrated in Figure 5.1 the optimal policy was learned using LSTD and policy

improvement. Then the real-time experiment starts: Two of the accounts, interpreted as
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the source of fake news, continued to behave using the same randomized policy as they

did in the data collection stage, while the posting times of the other three accounts were

generated from (u1, u2, u3)T , produced by our LTD strategy or a competitor strategy. Each

policy was run for 10 stages of length 12 hours. Therefore, ∆T = ∆f = 12. Since both fake

news and mitigation accounts were tweeting random posts on machine learning, we assume

negligible bias in the content that can confound the performance. At the end of each stage,

all retweets–by users within the network–of the posts made during the two most recent

stages were used to construct the feature vector and compute the value function, which

was used to find the optimal intervention for the next stage. The methods CEC and OPL

belong to the same category, and it has been shown that CEC outperforms OPL in [60].

Furthermore, EXP and CLS also belong to similar families and our synthetic experiments

confirm the superiority of the former. So, to save time in real interventions, we only test

CEC from the first and EXP from the second pair, and compare them with the random

policy (RND) and with our algorithm (LTD).

Real-time intervention results. Figure 5.5 shows the performance of our results compared

to competitors. The results show that our approach outperforms the other three baselines

by a reasonable margin. As expected CEC is the second best algorithm with a margin of 5

for the correlation maximization objective. It translates to increase in amount of correlation

equal to 5, which is a noticeable amount. Furthermore, in the difference minimization task,

our approach reached around 7 in difference. This means that we decreased the difference

in exposure to the two processes to less 2.6 per user, which is considerable improvement.

For both tasks, LTD made more mitigation posts over all daytime phases than it did over

all nighttime phases, whereas the competitor strategies did the opposite. This could be a

reason for its better performance. One surprising fact is that the number of retweets by

users outside the network, which was not used for our features, can exceed the number

of retweets by users within the network. This is because the “hashtag” feature on Twitter

allows posts to be seen by a much larger set of users, who do not necessarily follow the
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Figure 5.5: Results of fake news mitigation on Twitter network

source accounts. In addition to retweets, users can also “like” a post, indicating that they

were exposed to fake or real news; while we measured this, we did not include it in the

reward. Future experiments can use these two observations to widen the experimental scope

and more accurately measure the effectiveness of a mitigation strategy. Despite having

these limitations, our experiment serves as a proof-of-concept for the applicability of point

process based intervention in networks, and–to the best of our knowledge–is the first to

verify the superiority of a method in a real-time, real-world intervention setting.

Prediction evaluation results. The previous part described the evaluation scheme of real-

time intervention in a social media platform. In this part, we used historical real data to

mimic this procedure. We extracted 12 full 10-stage trajectories of events from the 2-

month historical data under the random policy. For any of these 10 pairs, the methods

were evaluated according to how well they predict the relative ordering among these 12

trajectories (with respect to the objective function). To evaluate each method, we created a

sorted list of these 12 trajectories according to increasing objective, and created a second

list sorted by increasing closeness to the intervention method. This closeness is the mean

squared error between the prescribed intervention and actual intensity, which we inferred

using maximum likelihood. Then, by computing the rank correlation of the two sorted lists,

and repeating for each of the five methods, we can find out how well they perform on the

prediction task. A better predictor is expected to be a better mitigation strategy. Figure 5.6

shows the performance.
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Figure 5.6: Rank correlation for prediction

5.4.5 Linear Approximation Accuracy

In our LSTD algorithm we used a linear approximation for the value-function. One might

ask how accurately can linear features approximate the value-function. To this end, we

take a sample state x as a state with no prior activity and intensity ψ(x) = (0, . . . , 0, 1).

This is the the initial state assumed in our experiment runs. First we empirically found

V π(x) under the learned policy by simulating the process 100 times each with 10 stages.

We compare the empirical average and the standard deviation of the total reward with the

one estimated by the linear approximation ψ>wπ. Figure 5.7 shows the results for corre-

lation maximization and difference minimization. In both cases, by increasing the number

of samples (used in LSTD), the estimated w leads to better estimation of V π(x). First,

the figure shows that we can achieve a reasonable accuracy with a fair amount of samples.

Secondly, although it appears that the approximation is converging to the empirical value,

we notice that increasing the number of samples beyond 4000 does not improve the error,

which maintains a constant distance from 0. We believe this is because the optimal value

function does not lie in the linear span of the feature space. Employing more complex fea-

tures, such as polynomial features and deep neural network based representations, remain

as interesting avenues for future work.
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Figure 5.7: Convergence of linear approximated value function

5.5 Related Work

The emergence of social media as a prominent news source in the past few years raises

concomitant concerns about the quality, truthfulness, and credibility of information pre-

sented [139, 198, 154]. Many efforts have been made to study and analyze the dynamics

of fake news [168, 210], detect and recognize them [173, 176, 115], or assessing the nodes

vulnerability [171] over social networks. To reduce the amount of labor-intensive man-

ual fact-checking, there have been research efforts devoted to building classifiers to detect

factuality of information, predicting credibility level of posts, and detecting controversial

information from inquiry phrases [139, 224, 226]. These works mainly focused on extract-

ing linguistic features from texts to determine the credibility of news and posts. Our focus

in this chapter, however, is to design an incentive strategy so that users can spontaneously

take action to promote real news, in opposition to a real-world fake news epidemic.

Point process models have been recently used to model activities in networks [58, 150,

100, 109, 211]. More especially Hawkes process [93] is a class of self- and mutually excit-

ing point processes that has been applied to variety of problems in social networks including

cascade modeling [223], reliability of crowd generated data [186], social media popular-

ity [163], community detection [191], causal inference [216], linguistic influence [87], and

change point detection in social networks [128].

Steering user activities by adding external incentives to the exogenous intensity of

Hawkes processes was first considered in [55]. In [55], a multistage campaigning method to
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optimally distribute incentive resources based on dynamic programming was developed. In

these previous works, objective functions were designed using expected values of exposure

counts rather than the stochastic exposure process, which may reduce the accuracy of solu-

tions. Furthermore, it faced the demanding problem of computing the cost-to-go using the

Hawkes model, while we address this using linear function approximation. For stationary

Hawkes processes, second order statistics was derived in [12, 13]; however, it is essential to

compute both first and second order statistics for Hawkes processes in the non-stationary

stages due to time sensitivity of the fake news mitigation task, and we derive it for the first

time in this chapter. Recent work has also applied methods in stochastic differential equa-

tions to the context of point processes, to find the best intensity for information guiding

[204] and achieving highest visibility [222]. While these works consider networks with

only a single process, our work focuses on optimizing a mitigation process with respect

to a second competing process. Finally, although our goal is related to influence maxi-

mization problems [111, 18], our point process approach is much more general and has

greater temporal resolution, as it models continuous-time recurrent activity in networks, in

contrast to binary discrete-time infection states in traditional influence maximization ap-

proaches. Moreover, our framework enables one to consider a variety of objectives (not

only maximization) and incorporate budget constraints.

Reinforcement learning tackles the problem of finding good policies for actions to take

in MDP where exact solutions are intractable, either due to size or lack of complete knowl-

edge. Large-scale policy evaluation and iteration problems can be tackled by function

approximation, which reduces the solution dimension using feature vector basis [185]. By

adding control terms to a multivariate Hawkes process model of random network activities,

fake news mitigation can be formulated as a policy optimization problem in an MDP. To

address the randomness of Hawkes processes, batch reinforcement learning using samples

collected from the trajectory of a fixed behavior policy can be applied [7]. In particular,

linear Least Squares Temporal Difference (LSTD) uses a batch of samples to learn a linear
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approximation of the value function under a policy with provable convergence [26]. This

policy evaluation step alternates with a model-based policy improvement step in a policy

iteration to arrive at successively improved policies.

5.6 Summary and Discussion

The use of point process based intervention comes with a tradeoff: on one hand, the

stochastic nature of multivariate point processes allows it to model the uncertainty of event

occurrences in real-world networks; however, by adopting this stochastic model, the inter-

vention policy can only set the optimal conditional intensity, rather than the precise best

times, of fake news mitigation events. This can be improved in future experiments by

choosing shorter time intervals for stages in the mitigation campaign. An assumption made

in the real-world experiment is that all events by user u are seen by user v if v follows u,

meaning that fake or real news events at u are seen by v. While it is true for Twitter that all

tweets by u will appear on the home timeline of v who follows u [193], it is not necessarily

true that a follower v will see these tweets (suppose they did not access Twitter that day).

Therefore, future experiments can improve the accuracy of reward and performance mea-

surements by estimating the probability of users being online during certain time intervals

and seeing tweets from accounts they follow.

It is important to note that mitigating fake news is a vague and qualitative goal, and it

does not necessarily imply a reduction of fake news events. Matching the exposure of users

to real and fake news is one of many possible objectives for arriving at a precise quantitative

realization of mitigating fake news. One can define any objective function that accounts

for the number of exposures or events from fake and real news cascades. Furthermore,

the exposure itself can be interpreted in many different ways depending on the application.

However, whenever there are multiple dependent event sequences and the rate function of

one or many can be controlled, the point process framework naturally allows one to define

objective functions based on events and to find an optimal policy with respect to the desired
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goal.

We acknowledge that the experiments conducted in this present work do not directly

test for a reduction of fake news events, and that the content-neutral real-time experiment

does not perfectly represent fake news processes, as semantic content may also contribute

to propagation dynamics. From a modeling standpoint, introducing interactions between

the fake and real news processes may allow one to design objectives that specifically re-

ward the reduction of fake news events. Aside from subjecting real users to actual fake

news, more complex real-world experiments that are not content-neutral, involving two

competing opinions, may allow one to better measure the effectiveness of various methods

in reducing the spread of one opinion. Furthermore, for future work we would like to in-

corporate more complex features, such as quadratic and nonlinear features. Utilizing deep

neural nets is also an interesting future work for modeling complex feature set.
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CHAPTER 6

GENERATIVE POINT PROCESS MODELS VIA DEEP WASSERSTEIN

LEARNING

Point processes are often characterized via intensity function which limits model’s expres-

siveness due to unrealistic assumptions on its parametric form used in practice. Further-

more, they are learned via maximum likelihood approach which is prone to failure in multi-

modal distributions of sequences. In this chapter, we propose an intensity-free approach for

point processes modeling that transforms nuisance processes to a target one. Furthermore,

we train the model using a likelihood-free approach leveraging Wasserstein distance be-

tween point processes. Experiments on various synthetic and real-world data substantiate

the superiority of the proposed point process model over conventional ones.

6.1 Introduction

Conventional point process models often make strong unrealistic assumptions about the

generative processes of the event sequences. In fact, a point process is characterized by

its conditional intensity function – a stochastic model for the time of the next event given

all the times of previous events. The functional form of the intensity is often designed

to capture the phenomena of interests [58]. Some examples are homogeneous and non-

homogeneous Poisson processes [113], self-exciting point processes [93], self-correcting

point process models [105], and survival processes [1]. Unfortunately, they make various

parametric assumptions about the latent dynamics governing the generation of the observed

point patterns. As a consequence, model misspecification can cause significantly degraded

performance using point process models, which is also shown by our experimental results

later.

To address the aforementioned problem, the authors in [47, 213, 137] propose to learn a
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general representation of the underlying dynamics from the event history without assuming

a fixed parametric form in advance. The intensity function of the temporal point process

is viewed as a nonlinear function of the history of the process and is parameterized using

a recurrent neural network. Attentional mechanism is explored to discover the underlying

structure [212]. Apparently this line of work still relies on explicit modeling of the intensity

function. However, in many tasks such as data generation or event prediction, knowledge

of the whole intensity function is unnecessary. On the other hand, sampling sequences

from intensity-based models is usually performed via a thinning algorithm [148], which is

computationally expensive; many sample events might be rejected because of the rejection

step, especially when the intensity exhibits high variation. More importantly, most of the

methods based on intensity function are trained by maximizing log likelihood or a lower

bound on it. They are asymptotically equivalent to minimizing the Kullback-Leibler (KL)

divergence between the data and model distributions, which suffers serious issues such as

mode dropping [8, 74]. Alternatively, Generative Adversarial Networks (GAN) [75] have

seen to be a promising alternative to traditional maximum likelihood approaches [104, 187].

In this chapter, for the first time, we bypass the intensity-based modeling and likelihood-

based estimation of temporal point processes and propose a neural network-based model

with a generative adversarial learning scheme for point processes. In GANs, two models

are used to solve a minimax game: a generator which samples synthetic data from the

model, and a discriminator which classifies the data as real or synthetic. Theoretically

speaking, these models are capable of modeling an arbitrarily complex probability distri-

bution, including distributions over discrete events. They achieve state-of-the-art results on

a variety of generative tasks such as image generation, image super-resolution, 3D object

generation, and video prediction [147, 157].

The original GAN in [75] minimizes the Jensen-Shannon (JS) and is regarded as highly

unstable and prone to miss modes. Recently, Wasserstein GAN (WGAN) [9] is proposed

to use the Earth Moving distance (EM) as an objective for training GANs. Furthermore
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it is shown that the EM objective, as a metric between probability distributions [227] has

many advantages as the loss function correlates with the quality of the generated samples

and reduces mode dropping [84]. Moreover, it leverages the geometry of the space of event

sequences in terms of their distance, which is not the case for an MLE-based approach.

In this chapter we extend the notion of WGAN for temporal point processes and adopt a

Recurrent Neural Network (RNN) for training. Importantly, we are able to demonstrate

that Wasserstein distance training of RNN point process models outperforms the same ar-

chitecture trained using MLE.

In a nutshell, we make the following contributions: i) We propose the first intensity-

free generative model for point processes and introduce the first (to our best knowledge)

likelihood-free corresponding learning methods; ii) We extend WGAN for point processes

with Recurrent Neural Network architecture for sequence generation learning; iii) In con-

trast to the usual subjective measures of evaluating GANs we use a statistical and a quan-

titative measure to compare the performance of the model to the conventional ones. iv)

Extensive experiments involving various types of point processes on both synthetic and

real datasets show the promising performance of our approach.

6.2 Proposed Framework

In this section, we define Point Processes in a way that is suitable to be combined with the

WGANs.

6.2.1 Point Processes

Let S be a compact space equipped with a Borel σ-algebra B. Take Ξ as the set of counting

measures on S with C as the smallest σ-algebra on it. Let (Ω,F ,P) be a probability space.

A point process on S is a measurable map ξ : Ω→ Ξ from the probability space (Ω,F ,P)

to the measurable space (Ξ, C). Figure 6.1-a illustrates this mapping.

Every realization of a point process ξ can be written as ξ =
∑n

i=1 δXi where δ is
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the Dirac measure, n is an integer-valued random variable and Xi’s are random elements

of S or events. A point process can be equivalently represented by a counting process:

N(B) :=
∫
B
ξ(x)dx, which basically is the number of events in each Borel subset B ∈ B

of S. The mean measure M of a point process ξ is a measure on S that assigns to every

B ∈ B the expected number of events of ξ in B, i.e., M(B) := E[N(B)] for all B ∈ B.

For inhomogeneous Poisson process, M(B) =
∫
B
λ(x)dx, where the intensity func-

tion λ(x) yields a positive measurable function on S. Intuitively speaking, λ(x)dx is the

expected number of events in the infinitesimal dx. For the most common type of point

process, a Homogeneous Poisson process, λ(x) = λ and M(B) = λ|B|, where | · | is

the Lebesgue measure on (S,B). More generally, in Cox point processes, λ(x) can be a

random density possibly depending on the history of the process. For any point process,

given λ(·), N(B) ∼ Poisson(
∫
B
λ(x)dx). In addition, if B1, . . . , Bk ∈ B are disjoint, then

N(B1), . . . , N(Bk) are independent conditioning on λ(·).

For the ease of exposition, we will present the framework for the case where the events

are happening in the real half-line of time. But the framework is easily extensible to the

general space.

6.2.2 Temporal Point Processes

A particularly interesting case of point processes is given when S is the time interval [0, T ),

which we will call a temporal point process. Here, a realization is simply a set of time

points: ξ =
∑n

i=1 δti . With a slight notation abuse we will write ξ = {t1, . . . , tn} where

each ti is a random time before T . The conditional intensity (rate) function is the usual way

to characterize temporal point processes.

For Inhomogeneous Poisson process (IP), the intensity λ(t) is a fixed non-negative

function supported in [0, T ). For example, it can be a multi-modal function comprised of k

Gaussian kernels: λ(t) =
∑k

i=1 αi(2πσ
2
i )
−1/2 exp

(
−(t− ci)2/σ2

i

)
, for t ∈ [0, T ), where

ci and σi are fixed center and standard deviation, respectively, and αi is the weight (or
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importance) for kernel i.

A self-exciting (Hawkes) process (SE) is a cox process where the intensity is deter-

mined by previous (random) events in a special parametric form: λ(t) = µ+β
∑

ti<t
g(t−

ti), where g is a nonnegative kernel function, e.g., g(t) = exp(−ωt) for some ω > 0. This

process has an implication that the occurrence of an event will increase the probability of

near future events and its influence will (usually) decrease over time, as captured by (the

usually) decaying fixed kernel g. µ is the exogenous rate of firing events and α is the

coefficient for the endogenous rate.

In contrast, in self-correcting processes (SC), an event will decrease the probability of

an event: λ(t) = exp(ηt−
∑

ti<t
γ). The exp ensures that the intensity is positive, while η

and γ are exogenous and endogenous rates.

We can utilize more flexible ways to model the intensity, e.g., by a Recurrent Neural

Network (RNN): λ(t) = gw(t, hti), where hti is the feedback loop capturing the influence

of previous events (last updated at the latest event) and is updated by hti = hv(ti, hti−1
).

Here w and v are network weights.

6.2.3 Wasserstein-Distance for Temporal Point Processes

Given samples from a point process, one way to estimate the process is to find a model

(Ωg,Fg,Pg)→ (Ξ, C) that is close enough to the real data (Ωr,Fr,Pr)→ (Ξ, C). As men-

tioned in the introduction, Wasserstein distance [9] is our choice as the proximity measure.

The Wasserstein distance between distribution of two point processes is:

W (Pr,Pg) = inf
ψ∈Ψ(Pr,Pg)

E(ξ,ρ)∼ψ[‖ξ − ρ‖?], (6.1)

where Ψ(Pr,Pg) denotes the set of all joint distributions ψ(ξ, ρ) whose marginals are Pr

and Pg.

The distance between two sequences ‖ξ−ρ‖?, is tricky and need further attention. Take

ξ = {x1, x2, . . . , xn} and ρ = {y1, . . . , ym}, where for simplicity we first consider the case

m = n. The two sequences can be thought as discrete distributions µξ =
∑n

i=1
1
n
δxi and
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Figure 6.1: a) The outcome of the random experiment ω is mapped to a point in space of
count measures ξ; b) Distance between two sequences ξ = {t1, t2, . . .} and ρ = {τ1, τ2, . . .}

µρ =
∑n

i=1
1
n
δyi . Then, the distance between these two is an optimal transport problem

argminπ∈Σ〈π,C〉, where Σ is the set of doubly stochastic matrices (rows and columns sum

up to one), 〈·, ·〉 is the Frobenius dot product, and C is the cost matrix. Cij captures the

energy needed to move a probability mass from xi to yj . We take Cij = ‖xi − yj‖◦ where

‖ · ‖◦ is the norm in S. It can be seen that the optimal solution is attained at extreme points

and, by Birkhoff’s theorem, the extreme points of the set of doubly stochastic matrices is a

permutation [199]. In other words, the mass is transferred from a unique source event to a

unique target event. Therefore, we have: ‖ξ − ρ‖? = minσ
∑n

i=1 ‖xi − yσ(i)‖◦, where the

minimum is taken among all n! permutations of 1 . . . n. For the case m 6= n, without loss

of generality we assume n ≤ m and define the distance as follows:

‖ξ − ρ‖? = min
σ

∑n

i=1
‖xi − yσ(i)‖◦ +

∑m

i=n+1
‖s− yσ(i)‖, (6.2)

where s is a fixed limiting point in border of the compact space S and the minimum is

over all permutations of 1 . . .m. The second term penalizes unmatched points in a very

special way which will be clarified later. The following lemma proves that it is indeed a

valid distance measure.

Lemma 12. The defined ‖ · ‖? is a norm.

Proof. It is obvious that ‖ · ‖? is nonnegative and symmetric. If ‖ξ − ρ‖? = 0, then m = n

and there is a assignment σ such that xi = yσ(i) for all i = 1, . . . , n.

Now we prove that ‖·‖? has triangle inequality. WLOG, assume that ξ = {x1, . . . , xn},

ρ = {y1, . . . , yk} and ζ = {z1, . . . , zm} where n ≤ k ≤ m. Define the permutation σ̂ on
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{1, . . . , k} by

σ̂ := arg min
σ

n∑
i=1

‖xi − yσ(i)‖+
k∑

i=n+1

‖s− yσ(i)‖ (6.3)

Then we know that

‖ξ − ρ‖? =
n∑
i=1

‖xi − yσ̂(i)‖+
k∑

i=n+1

‖s− yσ̂(i)‖ (6.4)

Therefore, we have that

‖ξ − ζ‖? = min
σ

n∑
i=1

‖xi − zσ(i)‖+
m∑

i=n+1

‖s− zσ(i)‖

≤ min
σ

n∑
i=1

(
‖xi − yσ̂(i)‖+ ‖yσ̂(i) − zσ(i)‖

)
+

k∑
i=n+1

(
‖s− yσ̂(i)‖+ ‖yσ̂(t) − zσ(i)‖

)
+

m∑
i=k+1

‖s− zσ(i)‖ (6.5)

= ‖ξ − ρ‖? + min
σ

k∑
i=1

‖yσ̂(i) − zσ(i)‖+
m∑

i=k+1

‖s− zσ(i)‖

= ‖ξ − ρ‖? + min
σ

k∑
i=1

‖yi − zσ(σ̂−1(i))‖+
m∑

i=k+1

‖s− zσ(i)‖

= ‖ξ − ρ‖? + ‖ρ− ζ‖?

where the last equality is due to the fact that the minimization is taken over all permutations

σ of {1, . . . ,m}, and σ̂ is a fixed permutation of {1, . . . , k} where k ≤ m. This completes

the proof.

Interestingly, in the case of temporal point process in [0, T ) the distance between ξ =

{t1, . . . , tn} and ρ = {τ1, . . . , τm} is reduced to

‖ξ − ρ‖? =
∑n

i=1
|ti − τi|+ (m− n)× T −

∑m

i=n+1
τi, (6.6)

where the time points are ordered increasingly, s = T is chosen as the anchor point, and

| · | is the Lebesgue measure in the real line.
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Lemma 13. Finding the distance between sequences ξ and ρ,

‖ξ − ρ‖? = min
σ

n∑
i=1

‖xi − yσ(i)‖◦ +
m∑

i=n+1

‖s− yσ(i)‖, (6.7)

in the case of temporal point process in [0, T ), i.e., ξ = {t1 < t2 < . . . < tn} and ρ =

{τ1 < τ2 < . . . < τm}, reduces to

‖ξ − ρ‖? =
n∑
i=1

|ti − τi|+
m∑

i=n+1

(T − yi). (6.8)

Proof. Here, without loss of generality n ≤ m is assumed. The choice of s = T is basically

padding the shorter sequences with T . Given, the sequences have the same length now, we

claim that the identity permutation i.e., σ(i) = i is the minimizer in (6.7). We proceed by a

proof by contradiction. Assume that the minimizer is NOT the identity permutation. Then,

find the first i such that σ(i) 6= i. Then, Σ(i) = j where j > i. Therefore, there should be

a k > i such that σ(k) = i. Then, if you change the permutation according to σ(i) = i and

σ(k) = j the cost will change by

∆ = (|ti − τj|+ |tk − τi|)︸ ︷︷ ︸
for the old permutation

− (|ti − τi|+ |tk − τj|)︸ ︷︷ ︸
for the new permutation

(6.9)

Given i < j and i < k, it is easy to see that ∆ > 0. This means that we’ve found a better

permutation which contradicts our assumption. Therefore, the optimal permutation will

match the event points in an increasing order one by one.

This choice of distance is significant in two senses. First, it is computationally efficient

and no excessive computation is involved. Secondly, in terms of point processes, it is inter-

preted as the volume by which the two counting measures differ. Figure 6.1-b demonstrates

this intuition and justifies our choice of metric in Ξ and the following lemma contains the

proof.

Lemma 14. Equivalence of the ‖ · ‖? distance and difference in count measures.

Proof. The count measure of a temporal point process is a special case of the one defined

for point processes in general space in Section 6.2.1. For a Borel subset B ⊂ S = [0, T )
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we have N(B) =
∫
t∈B ξ(t)dt. With a little abuse of notation we write N(t) := N([0, t)) =∫ t

0
ξ(t)dt. Figure 6.1 is a good guidance through this paragraph. Starting from time 0 the

first gap in count measure starts from min(t1, τ1) and ends in max(t1, τ1). Therefore, there

is difference equal to s1 = max(t1, τ1) − min(t1, τ1) = |t1 − τ1| in the count measure.

Similarly, the second block of difference has volume of s2 = |t2 − τ2|, and so on. Finally,

for m > n the (n + i)-th block make a difference of sn+i = T − τn+i. Therefore, the area

(L1 distance) between the two sequences is a equal to S =
∑m

i=1 si. On the other hand by

looking (6.8) we observe that ‖ξ − ρ‖? =
∑m

i=1 si. Therefore, by choice of s = T as an

anchor point, the distance we have is exactly the area between the two count measures.

The distance used in our current work is the simplest yet effective distance that exhibits

high interpretability and efficient computability. More robust distance like local alignment

distance and dynamic time warping [39] should be more robust and are great venues for

future work.

Equation (6.1) is computationally highly intractable and its dual form is usually uti-

lized [9]:

W (Pr,Pg) = sup
‖f‖L≤1

Eξ∼Pr [f(ξ)]− Eρ∼Pg [f(ρ)], (6.10)

where the supremum is taken over all Lipschitz functions f : Ξ → R, i.e., functions that

assign a value to a sequence of events (points) and satisfy |f(ξ)− f(ρ)| ≤ ‖ξ − ρ‖? for all

ξ and ρ.

However, solving the dual form is still highly nontrivial. Enumerating all Lipschitz

functions over point process realizations is impossible. Instead, we choose a parametric

family of functions to approximate the search space fw and consider solving the problem

max
w∈W,‖fw‖L≤1

Eξ∼Pr [fw(ξ)]− Eρ∼Pg [fw(ρ)] (6.11)

where w ∈ W is the parameter. The more flexible fw, the more accurate will be the

approximation.

It is notable that W-distance leverages the geometry of the space of event sequences in
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terms of their distance, which is not the case for MLE-based approach. It in turn requires

functions of event sequences f(x1, x2, ...), rather than functions of the time stamps f(xi).

Furthermore, Stein’s method to approximate Poisson processes [175, 43] is also relevant as

they are defining distances between a Poisson process and an arbitrary point process.

6.2.4 WGAN for Temporal Point Processes

Equipped with a way to approximately compute the Wasserstein distance, we will look for a

model Pr that is close to the distribution of real sequences. Again, we choose a sufficiently

flexible parametric family of models, gθ parameterized by θ. Inspired by GAN [75], this

generator takes a noise and turns it into a sample to mimic the real samples. In conventional

GAN or WGAN, Gaussian or uniform distribution is chosen. In point processes, a homo-

geneous Poisson process plays the role of a non-informative and uniform-like distribution:

the probability of events in every region is independent of the rest and is proportional to

its volume. Define the noise process as (Ωz,Fz,Pz) → (Ξ, C), then ζ ∼ Pz is a sample

from a Poisson process on S = [0, T ) with constant rate λz > 0. Therefore, gθ : Ξ → Ξ

is a transformation in the space of counting measures. Note that λz is part of the prior

knowledge and belief about the problem domain. Therefore, the objective of learning the

generative model can be written as minW (Pr,Pg) or equivalently:

min
θ

max
w∈W,‖fw‖L≤1

Eξ∼Pr [fw(ξ)]− Eζ∼Pz [fw(gθ(ζ))] (6.12)

In GAN terminology fw is called the discriminator and gθ is known as the generator

model. We estimate the generative model by enforcing that the sample sequences from

the model have the same distribution as training sequences. Given L samples sequences

from real data Dr = {ξ1, . . . , ξL} and from the noise Dz = {ζ1, . . . , ζL} the two expec-

tations are estimated empirically: Eξ∼Pr [fw(ξ)] = 1
L

∑L
l=1 fw(ξl) and Eζ∼Pz [fw(gθ(ζ))] =

1
L

∑L
l=1 fw(gθ(ζl)).

To proceed with our point process based WGAN, we need the generator function gθ :

Ξ → Ξ, the discriminator function fw : Ξ → R, and enforce Lipschitz constraint on fw.
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Figure 6.2: The input and output sequences are ζ = {z1, . . . , zn} and ρ = {t1, . . . , tn}
for generator gθ(ζ) = ρ, where ζ ∼ Poisson(λz) process and λz is a prior parameter
estimated from real data. Discriminator computes the Wasserstein distance between the
two distributions of sequences ρ = {t1, t2, . . .} and ξ = {τ1, τ2, . . .}

Figure 6.2 illustrates the data flow for WGANTPP.

The generator transforms a given sequence to another sequence. Similar to [140, 64]

we use Recurrent Neural Networks (RNN) to model the generator. For clarity, we use

the vanilla RNN to illustrate the computational process as below. The LSTM is used in

our experiments for its capacity to capture long-range dependency. If the input and output

sequences are ζ = {z1, . . . , zn} and ρ = {t1, . . . , tn} then the generator gθ(ζ) = ρ works

according to

hi = φhg(A
h
gzi +Bh

ghi−1 + bhg), ti = φxg(B
x
ghi + bxg) (6.13)

Here hi is the k-dimensional history embedding vector and φhg and φxg are the activation

functions. The parameter set of the generator is

θ =

{(
Ahg

)
k×1

,
(
Bh
g

)
k×k

,
(
bhg

)
k×1

,
(
Bx
g

)
1×k

,
(
bxg

)
1×1

}
.

Similarly, we define the discriminator function who assigns a scalar value fw(ρ) =
∑n

i=1 ai
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to the sequence ρ = {t1, . . . , tn} according to

hi = φhd(A
h
dti +Bh

ghi−1 + bhg) ai = φad(B
a
dhi + bad) (6.14)

where the parameters are w =
{(
Ahd
)
k×1

,
(
Bh
d

)
k×k ,

(
bhd
)
k×1

,
(
Ba
d

)
1×k ,

(
bad
)

1×1

}
. Note

that both generator and discriminator RNNs are causal networks. Each event is only in-

fluenced by the previous events. To enforce the Lipschitz constraints the original WGAN

paper [8] adopts weight clipping. However, our initial experiments shows an inferior per-

formance by using weight clipping. This is also reported by the same authors in their

follow-up paper [84] to the original work. The poor performance of weight clipping for en-

forcing 1-Lipschitz can be seen theoretically as well: just consider a simple neural network

with one input, one neuron, and one output: f(x) = σ(wx + b) and the weight clipping

w < c. Then,

|f ′(x)| ≤ 1⇐⇒ |wσ′(wx+ b)| ≤ 1⇐⇒ |w| ≤ 1/|σ′(wx+ b)| (6.15)

It is clear that when 1/|σ′(wx + b)| < c, which is quite likely to happen, the Lipschitz

constraint is not necessarily satisfied. In our work, we use a novel approach for enforcing

the Lipschitz constraints, avoiding the computation of the gradient which can be costly and

difficult for point processes. We add the Lipschitz constraint as a regularization term to the

empirical loss of RNN.

min
θ

max
w∈W,‖fw‖L≤1

1

L

L∑
l=1

fw(ξl)−
L∑
l=1

fw(gθ(ζl))− ν
L∑

l,m=1

| |fw(ξl)− fw(gθ(ζm))|
|ξl − gθ(ζm)|?

− 1|

(6.16)

We can take each of the
(

2L
2

)
pairs of real and generator sequences, and regularize based on

them; however, we have seen that only a small portion of pairs (O(L)), randomly selected,

is sufficient.

Remark. The significance of Lipschitz constraint and regularization (or more generally

any capacity control) is more apparent when we consider the connection of W-distance

and optimal transport problem [199]. Basically, minimizing the W-distance between the
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empirical distribution and the model distribution is equivalent to a semidiscrete optimal

transport [199]. Without capacity control for the generator and discriminator, the optimal

solution simply maps a partition of the sample space to the set of data points, in effect,

memorizing the data points. We would like to highlight some recent efforts on defining

distances and optimal transport for point process and sequential dynamic data [107, 39,

205, 138]. Interested reader is referred to [114, 182, 152] too for computational aspects of

optimal transport and their application.

6.3 Experiments

In this section we provide experimental results 1. The current work aims at exploring the

feasibility of modeling point process without prior knowledge of its underlying generating

mechanism. To this end, most widely-used parametrized point processes, e.g., self-exciting

and self-correcting, and inhomogeneous Poisson processes and one flexible neural network

model, neural point process are compared. In this work we use the most general forms for

simpler and clear exposition to the reader and propose the very first model in adversarial

training of point processes in contrast to likelihood based models.

6.3.1 Datasets and Protocol

Synthetic datasets. We simulate 20,000 sequences over time [0, T ) where T = 15, for

inhomogeneous process (IP), self-exciting (SE), and self-correcting process (SC), recur-

rent neural point process (NN). We also create another 4 (= C3
4 ) datasets from the above

4 synthetic data by a uniform mixture from the triplets. The new datasets IP+SE+SC,

IP+SE+NN, IP+SC+NN, SE+SC+NN are created to testify the mode dropping problem of

learning a generative model. The parameter setting follows:

i) Inhomogeneous process. The intensity function is independent from history and

given in Sec. 6.2.2, where k = 3, α = [3, 7, 11], c = [1, 1, 1], σ = [2, 3, 2].

1The code is available https://github.com/xiaoshuai09/Wasserstein-Learning-For-Point-Process
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ii) Self-exciting process. The past events increase the rate of future events. The condi-

tional intensity function is given in Sec. 6.2.2 where µ = 1.0, β = 0.8 and the decaying

kernel g(t− ti) = e−(t−ti).

iii) Self-correcting process. The conditional intensity function is defined in Sec. 6.2.2. It

increases with time and decreases by events occurrence. We set η = 1.0, γ = 0.2.

iv) Recurrent Neural Network process. The conditional intensity is given in Sec. 6.2.2,

where the neural network’s parameters are set randomly and fixed. We first feed random

variable from [0,1] uniform distribution, and then iteratively sample events from the inten-

sity and feed the output into the RNN to get the new intensity for the next step.

Real datasets. We collect sequences separately from four public available datasets,

namely, health-care MIMIC-III, public media MemeTracker, NYSE stock exchanges, and

publications citations. The time scale for all real data are scaled to [0,15], and the details

are as follows:

i) MIMIC. MIMIC-III (Medical Information Mart for Intensive Care III) is a large,

publicly available dataset, which contains de-identified health-related data during 2001 to

2012 for more than 40,000 patients. We worked with patients who appear at least 3 times,

which renders 2246 patients. Their visiting timestamps are collected as the sequences.

ii) Meme. MemeTracker tracks the meme diffusion over public media, which contains

more than 172 million news articles or blog posts. The memes are sentences, such as ideas,

proverbs, and the time is recorded when it spreads to certain websites. We randomly sample

22,000 cascades.

iii) MAS. Microsoft Academic Search provides access to its data, including publication

venues, time, citations, etc. We collect citations records for 50,000 papers.

iv) NYSE. We use 0.7 million high-frequency transaction records from NYSE for a stock

in one day. The transactions are evenly divided into 3,200 sequences with equal durations.
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6.3.2 Experimental Setup

Details. We can feed the temporal sequences to generator and discriminator directly. In

practice, all temporal sequences are transformed into time duration between two consec-

utive events, i.e., transforming the sequence ξ = {t1, . . . , tn} into {τ1, . . . , τn−1}, where

τi = ti+1 − ti. This approach makes the model train easily and perform robustly. The

transformed sequences are statistically identical to the original sequences, which can be

used as the inputs of our neural network. To make sure we that the times are increasing we

use elu + 1 activation function to produce positive inter arrival times for the generator and

accumulate the intervals to get the sequence. The Adam optimization method with learning

rate 1e-4, β1 = 0.5, β2 = 0.9, is applied.

Baselines. We compare the proposed method of learning point processes (i.e., mini-

mizing sample distance) with maximum likelihood based methods for point process. To

use MLE inference for point process, we have to specify its parametric model. The used

parametric model are inhomogeneous Poisson process (mixture of Gaussian), self-exciting

process, self-correcting process, and RNN. For each data, we use all the above solvers to

learn the model and generate new sequences, and then we compare the generated sequences

with real ones.

Evaluation metrics. Although our model is an intensity-free approach we will evaluate

the performance by metrics that are computed via intensity. For all models, we work with

the empirical intensity instead. Note that our objective measures are in sharp contrast with

the best practices in GANs in which the performance is usually evaluated subjectively, e.g.,

by visual quality assessment. We evaluate the performance of different methods to learn

the underlying processes via two measures: 1) The first one is the well-known QQ plot of

sequences generated from learned model. The quantile-quantile (q-q) plot is the graphical

representation of the quantiles of the first data set against the quantiles of the second data

set. From the time change property [113] of point processes, if the sequences come from

the point process λ(t) , then the integral Λ =
∫ tt+1

ti
λ(s)ds between consecutive events
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should be exponential distribution with parameter 1. Therefore, the QQ plot of Λ against

exponential distribution with rate 1 should fall approximately along a 45-degree reference

line. The evaluation procedure is as follows: i) The ground-truth data is generated from a

model, say IP; ii) All 5 methods are used to learn the unknown process using the ground-

truth data; iii) The learned model is used to generate a sequence; iv) The sequence is used

against the theoretical quantiles from the model to see if the sequence is really coming from

the ground-truth generator or not; v) The deviation from slope 1 is visualized or reported as

a performance measure. 2) The second metric is the deviation between empirical intensity

from the learned model and the ground truth intensity. We can estimate empirical intensity

λ′(t) = E(N(t + δt) − N(t))/δt from sufficient number of realizations of point process

through counting the average number of events during [t, t + δt], where N(t) is the count

process for λ(t). The L1 distance between the ground-truth empirical intensity and the

learned empirical intensity is reported as a performance measure.

6.3.3 Results and Discussion

Synthetic data. Figure 6.3 presents the learning ability of WGANTPP when the ground-

truth data is generated via different types of point process. We first compare the QQ plots

in the top row from the micro perspective view, where QQ plot describes the dependency

between events. Red dots legend-ed with Real are the optimal QQ distribution, where the

intensity function generates the sequences are known. We can observe that even though

WGANTPP has no prior information about the ground-truth point process, it can estimate

the model better except for the estimator that knows the parametric form of data. This is

quite expected: When we are training a model and we know the parametric form of the

generating model we can find it better. However, whenever the model is misspecified (i.e.,

we don’t know the parametric from a priori) WGANTPP outperforms other parametric

forms and RNN approach. The middle row of figure 6.3 compares the empirical intensity.

The Real line is the optimal empirical intensity estimated from the real data. The estimator
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Figure 6.3: Performance of different methods on various synthetic data. Top row: QQ plot
slope deviation; middle row: intensity deviation in basic conventional models; bottom row:
intensity deviation in mixture of conventional processes.

can recover the empirical intensity well in the case that we know the parametric form where

the data comes from. Otherwise, estimated intensity degrades considerably when the model

is misspecified. We can observe our WGANTPP produces the empirical intensity better

and performs robustly across different types of point process data. For MLE-IP, different

number of kernels are tested and the empirical intensity results improves but QQ plot results

degrade when the number of kernels increases, so only result of 3 kernels is shown mainly

for clarity of presentation. The fact that the empirical intensity estimated from MLE-IP

method are good and QQ plots are very bad indicates the inhomogeneous Poisson process

can capture the average intensity (Macro dynamics) accurately but incapable of capturing

the dependency between events (Micro dynamics). To testify that WGANTPP can cope

with mode dropping, we generate mixtures of data from three different point processes

and use this data to train different models. Models with specified form can handle limited

types of data and fail to learn from diverse data sources. The last row of figure 6.3 shows
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Table 6.1: Deviation of QQ plot slope and empirical intensity for ground-truth and learned
model

Data Estimator
MLE-IP MLE-SE MLE-SC MLE-NN WGAN

Q
Q

P.
D

ev
. IP 0.035 (8.0e-4) 0.284 (7.0e-5) 0.159 (3.8e-5) 0.216 (3.3e-2) 0.033 (3.3e-3)

SE 0.055 (6.5e-5) 0.001 (1.3e-6) 0.086 (1.1e-6) 0.104 (6.7e-3) 0.051 (1.8e-3)
SC 3.510 (4.9e-5) 2.778 (7.4e-5) 0.002 (8.8e-6) 4.523 (2.6e-3) 0.070 (6.4e-3)
NN 0.182 (1.6e-5) 0.687 (5.0e-6) 1.004 (2.5e-6) 0.065 (1.2e-2) 0.012 (4.7e-3)

In
t.

D
ev

. IP 0.110 (1.9e-4) 0.241 (1.0e-4) 0.289 (2.8e-5) 0.511 (1.8e-1) 0.136 (8.7e-3)
SE 1.950 (4.8e-4) 0.019 (1.84e-5) 1.112 (3.1e-6) 0.414 (1.6e-1) 0.860 (6.2e-2)
SC 2.208 (7.0e-5) 0.653 (1.2e-4) 0.006 (9.9e-5) 1.384 (1.7e-1) 0.302 (2.2e-3)
NN 1.044 (2.4e-4) 0.889 (1.2e-5) 1.101 (1.3e-4) 0.341 (3.4e-1) 0.144 (4.28e-2)

In
t.

D
ev

. IP+SE+SC 1.505 (3.3e-4) 0.410 (1.8e-5) 0.823 (3.1e-6) 0.929 (1.6e-1) 0.305 (6.1e-2)
IP+SC+NN 1.178 (7.0e-5) 0.588 (1.3e-4) 0.795 (9.9e-5) 0.713 (1.7e-1) 0.525 (2.2e-3)
IP+SE+NN 1.052 (2.4e-4) 0.453 (1.2e-4) 0.583 (1.0e-4) 0.678 (3.4e-1) 0.419 (4.2e-2)
SE+SC+NN 1.825 (2.8e-4) 0.324 (1.1e-4) 1.269 (1.1e-4) 0.286 (3.6e-1) 0.200 (3.8e-2)

the learned intensity from mixtures of data. WGANTPP produces better empirical intensity

than alternatives, which fail to capture the heterogeneity in data. To verify the robustness of

WGANTPP, we randomly initialize the generator parameters and run 10 rounds to get the

mean and std of deviations for both empirical intensity and QQ plot from ground truth. For

empirical intensity, we compute the integral of difference of learned intensity and ground-

truth intensity. Table 6.1 reports the mean and std of deviations for intensity deviation. For

each estimators, we obtain the slope from the regression line for its QQ plot. Table 6.1

reports the mean and std of deviations for slope of the QQ plot. Compared to the MLE-

estimators, WGANTPP consistently outperforms even without prior knowledge about the

parametric form of the true underlying generative point process. Note that for mixture

models QQ-plot is not feasible.

Real-world data. We evaluate WGANTPP on a diverse real-world data process from

health-care, public media, scientific activities and stock exchange. For those real world

data, the underlying generative process is unknown, previous works usually assume that

they are certain types of point process from their domain knowledge. Figure 6.4 shows the

intensity learned from different models, where Real is estimated from the real-world data

itself. Table 6.2 reports the intensity deviation. When all models have no prior knowledge
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Figure 6.4: Performance of different methods on various real-world datasets.

Table 6.2: Deviation of empirical intensity for real-world data.
Data Estimator

MLE-IP MLE-SE MLE-SC MLE-NN WGAN
MIMIC 0.150 0.160 0.339 0.686 0.122
Meme 0.839 1.008 0.701 0.920 0.351
MAS 1.089 1.693 1.592 2.712 0.849
NYSE 0.799 0.426 0.361 0.347 0.303

about the true generative process, WGANTPP recovers intensity better than all the other

models across the data sets.

Analysis. We have observed that when the generating model is misspecified WGANTPP

outperforms the other methods without leveraging the a priori knowledge of the parametric

form. However, when the exact parametric form of data is known and when it is utilized

to learn the parameters, MLE with this full knowledge performs better. However, this

is generally a strong assumption. As we have observed from the real-world experiments

WGANTPP is superior in terms of performance. Somewhat surprising is the observation

that WGANTPP tends to outperform the MLE-NN approach which basically uses the same

RNN architecture but trained using MLE. The superior performance of our approach com-

pared to MLE-NN is another witness of the the benefits of using W-distance in finding a

generator that fits the observed sequences well. Even though the expressive power of the

estimators is the same for WGANTPP and MLE-NN, MLE-NN may suffer from mode

dropping or get stuck in an inferior local minimum since maximizing likelihood is asymp-

totically equivalent to minimizing the Kullback-Leibler (KL) divergence between the data

and model distribution. The inherent weakness of KL divergence [9] renders MLE-NN

160



perform unstably, and the large variances of deviations empirically demonstrate this point.

6.4 Summary and Conclusion

We have presented a novel approach for Wasserstein learning of deep generative point

processes which requires no prior knowledge about the underlying true process and can

estimate it accurately across a wide scope of theoretical and real-world processes. For

the future work, we would like to explore the connection of the WGAN with the optimal

transport problem. We will also explore other possible distance metrics over the realizations

of point processes, and more sophisticated transforms of point processes, particularly those

that are causal. Extending the current work to marked point processes and processes over

structured spaces is another interesting venue for future work.
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CHAPTER 7

CONCLUSION

In this chapter, we conclude the thesis with extensions, discussions, and future works.

7.1 Point Process Modeling

The basic model presented in chapter 2 is just a show-case of the potential of point pro-

cesses in modeling networks and processes over them. In this section, we extend point

process models of information diffusion and network evolution in a variety of ways. More

specifically, we explain how the model can be augmented to support link removal, node

birth and death, and connection specific parameters. We did not perform experiments with

these extensions because our real-world dataset does not contain information regarding to

link removal and node birth and death. Curating a comprehensive dataset that can be used

in modeling all these aspects of networks is left as interesting future work. The more our

models are reflective of the real social networks, the better we can utilize them in prediction

and optimization tasks. To do so, a model could incorporate the followings:

7.1.1 Link Deletion

We can generalize our model to support link deletion by introducing an intensity matrix

Ξ∗(t) =
(
ξ∗us(t)

)
u,s∈[m]

and model each individual intensity as a survival process. Assume

A+(t) is the previously defined counting matrix A(t), which indicates the existence of an

edge at time t. Then, we introduce a new counting matrix A−(t) =
(
A−us(t)

)
u,s∈[m]

, which

indicates the lack of an edge at time t, and we define it via its intensity function as

E[dA−(t) |Hr(t) ∪Hl(t)] = Ξ∗(t) dt, (7.1)
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Then, we define the intensity as

ξ∗us(t) = A+
us(t)(ζu + νs

∑
v∈Fu

κω3(t) ? dA
−
vs(t)), (7.2)

where the termA+
us(t) guarantees that the link has positive intensity to be removed only if it

already exists, just like the term 1−Aus(t) in Equation (2.10), the parameter ζu is the base

rate of link deletion and νs
∑

v∈Fu κω3(t) ? dA
−
vs(t) is the increased link deletion intensity

due to increased number of followees of u who decided to unfollow s. This is an excitation

term due to deleted links to source s; given s is unfollowed by some followees of u, then u

may find s not a good source of information too.

Given a pair of nodes (u, s), the process starts with A+
us(t) = 0. Whenever a link is

created this process ends and a removal process A−us(t) starts. Similarly, when the removal

process fires, the connection is removed and a new link creation process is instantiated.

These two processes interleave until the end.

7.1.2 Node Birth and Death

We can augment our model to consider the number of nodes m(t) to change over time:

m(t) = mb(t)−md(t) (7.3)

wheremb(t) andmd(t) are counting processes modeling the numbers of nodes that join and

left the network till time t, respectively. The way we construct mb(t) and md(t) guarantees

that m(t) is always non-negative.

The birth process, mb(t), is characterized by a conditional intensity function φ∗(t):

E[dmb(t) |Hr(t) ∪Hl(t)] = φ∗(t) dt, (7.4)

where

φ∗(t) = ε+ θ
∑

u,s∈[m(t)]

κω4(t) ? dNus(t), (7.5)

Here, ε is the constant rate of arrival and θ
∑

u,s∈[m(t)] κω4(t) ? dNus(t) is the increased rate

of node arrival due to the increased activity of nodes. Intuitively, the higher the overall
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activity in the existing network, the larger the number of new users.

The construction of the death process, md(t), is more involved. Every time a new user

joins the network, we start a survival process that controls whether she leaves the network.

Thus, we can stack all these survival processes in a vector, l(t) =
(
lu(t)

)
u∈[m]

, character-

ized by a multidimensional conditional intensity function σ∗(t) =
(
σu(t)

)
u∈[mb(t)]

:

E[dl(t)|Hr(t) ∪Hl(t)] = σ∗(t) dt, (7.6)

Intuitively, we expect the nodes with lower activity to be more likely to leave the net-

work and thus its conditional intensity function to adopt the following form:

σ∗u(t) = (1− lu(t))

 J∑
j=1

πjgj(t) +

h(t)−
∑

s∈[m(t)]

κω5(t) ? dNus(t)


+

 , (7.7)

where the term
(
1− lu(t)

)
ensures that a node is deleted only once,

∑J
j=1 πjgj(t) is the

history-independent typical rate of death, shared across nodes, which we represent by a

grid of known temporal kernels,
{
gj(t)

}
with unknown coefficients,

{
πj
}

, and the second

term is capturing the effect of activity on the probability of leaving the network. More

specifically, if a node is not active, we assume its intensity is upper bounded by h(t) and

the most active she becomes, the lower its probability of leaving the network and the larger

the term
∑

s∈[m(t)] κω5(t) ? dNus(t). The hinge function (·)+ guarantees the intensity is

always positive.

Then, given the individual death processes the total death process is

md(t) =

mb(t)∑
u=1

lu(t), (7.8)

which completes the modeling of the time-varying number of nodes.

7.1.3 Incorporating Features

One can simply enrich the model by taking into account the longitudinal or static infor-

mation of the networked data, e.g., by conditioning the intensity on additional external

features, such as node attributes or edge types. Let us assume each user u comes with a K-
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dimensional feature vector xu including properties such as her age, job, location, number

of followers, number of tweets, etc.

Then, we can augment the information diffusion intensity as follows. We introduce

a K-dimensional link intensity parameter ηu in which each dimension reflects the contri-

bution of the corresponding element in the feature vector to the intensity and replace the

baseline rate ηu by η>u xu. Similarly, we introduce a K-dimensional vector βs where each

dimension has a corresponding element in the feature vector xs and substitute βs by βsxs.

Therefore, one can rewrite the information diffusion intensity as:

γ∗us(t) = I[u = s]η>u xu + I[u 6= s]β>s xs
∑

v∈Fu(t)
κω1(t) ?

(
Auv(t) dNvs(t)

)
, (7.9)

Similarly, we can parameterize the coefficients of the link creation intensity by a K-

dimensional vector and write it with incorporating features of the node for computing the

intensity:

λ∗us(t) = (1− Aus(t))(µ>uxu +α>uxu
∑

v∈Fu(t)

κω2(t) ? dNvs(t)). (7.10)

Surprisingly enough, all the results for convexity for parameter learning, and efficient

simulation techniques are still valid for this case too. As far as the features contribute to the

intensity linearly, the log-likelihood is concave and we can simulate the model as efficiently

as the original model.

7.1.4 Connection Specific Parameters

Up to this point, the parameters of the link creation and removal, node birth and death and

the information diffusion intensities depend on one end point of the interactions. For exam-

ple βs and ηu in the information diffusion intensity given by Equation (2.8) only depend on

the source and the actor, respectively. However, proceeding with this example, parameters

can be made connection specific, i.e., Equation (2.8) can be restated as

γ∗us(t) = I[u = s] ηus + I[u 6= s] βus
∑

v∈Fu(t)
κω1(t) ?

(
Auv(t) dNvs(t)

)
, (7.11)
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where ηus is the base intensity of u retweeting a tweet by s and βus is the coefficient of

excitement of u to retweet s when one of her followees retweets something from s.

Given enough computational resources and large amounts of historical data, one can

take into account more complex scenarios and larger and more flexible models. For ex-

ample, the middle user, say v, who is along the path of diffusion and forwards the tweet

originated from s to u can also be taking into consideration, i.e., defining βsvu as the amount

of increase in intensity of user u retweeting from s when user v has just retweeted a post

from s. All desirable properties of simulation algorithm and parameter estimation method

still hold.

7.1.5 Future Works

In this thesis, we proposed a joint continuous-time model of information diffusion and net-

work evolution, which can capture the coevolutionary dynamics, can mimic the most com-

mon static and temporal network patterns observed in real-world networks and information

diffusion data, and can predict the network evolution and information diffusion more accu-

rately than previous state-of-the-arts. Using point processes to model intertwined events in

information and social networks opens up many interesting venues for future. Our current

model is just a show-case of a rich set of possibilities offered by a point process framework,

which have been rarely explored before in large scale social network modeling. There are

quite a few directions that remain as future work and are very interesting to explore. For

example:

• A large and diverse range of point processes can also be used instead in the frame-

work and augment the current model without changing the efficiency of simulation

and the convexity of parameter estimation.

• We can incorporate features from previous state of the diffusion or network struc-

ture. For example, one can model information overload by adding a nonlinear trans-

fer function on top of the diffusion intensity, or model peer pressure by adding a
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nonlinear transfer function depending on the number of neighbors.

• There are situations that the processes are naturally evolve in different time scales.

For example, link dynamics is meaningful in the scale of days, however, the reso-

lution in which information propagation occurs is usually in hours or even minutes.

Developing an efficient mechanism to account for heterogeneity in time resolution

would improve the model’s ability to predict.

• We may augment the framework to allow time-varying parameters. The simulation

would not be affected and the estimation of time-varying interaction can still be car-

ried out via a convex optimization problem [228].

• Alternatively, one can use different triggering kernels for the Hawkes processes and

learn them to capture finer details of temporal dynamics.

7.2 Point Process Intervention

Intervention and control is a well-studied problem in many application areas, however,

three things set our work apart from most of the existing literature. First, although point

processes have shown success in modeling social networks and health studies, however,

less work has been done in order to steer the processes to a desired target. This urged for

building an intervention paradigm for them. Second, the existence of the network and peer

influence between nodes (e.g. social network users or disease) raises difficult challenges.

An intervention not only can affect the direct node but has influence on neighboring nodes

via propagation. The spread of influence can include directly connected nodes as well as

a broader span. Third, the problem of scale and curse of dimensionality in multi dimen-

sional point processes make inference and optimization very difficult, especially when the

size of the mark space is large or even infinite. In such cases, we impose a latent structure

(e.g. community structure, mixed membership and LDA models) or regularization con-

straints (e.g. sparsity, smoothing), or approximation methods (function approximation like
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Q-learning) to tackle the problem. It’s notable that, we have used point processes frame-

work in intervention in other contexts as well. For example in [109] we find the best time

to post in social networks in order to maximize the visibility of a post to followers. Fur-

thermore, in [88] we tackle invasive species management problem in which a few cells of

landscape are going to be chosen for complete removal of invasive plant.

7.2.1 Topology Management

Activity shaping can also be achieved by manipulating the topology of the diffusion net-

works. From the relation η(t) = Ψ(t)µ, we observe that the matrix Ψ(t) which stands

for the network topology plays an important role. It is natural to manage the topology by

optimizing the overall activities. More specifically, we can formulate minimizeA(t) U(η)

subject to η(t) = Ψ(t)µ. Note that the induced problem will not necessarily be convex,

however, we can impose structural constraints such sparsity and low-rank constraints to

simplify the learning process. On the other hand, we can manipulate the topology to opti-

mize the influence of a networked system, e.g., bring a flu under control and propel a video

to popularity. Specifically, the influence can be defined by the expected number of active

entities via influence function:

σ(A,A, T ) = E[
∑
i∈V

I{ti ≤ T}] =
∑
i∈V

Pr(gi(A,A)) ≤ T,

where, A is a set of source entities, A is the infectivity matrix, and the transformation

gi(·) is the value of shortest-path minimization. The influence maximization problem can

be formulated as maximizeA σ(A,A, T ). The influence optimization problem can lead to

a submodular optimization problem and be approximately solved using randomized algo-

rithms with error bounds. Similarly, we can formulate influence minimization problems

as well. Furthermore, structural constraints such as sparsity and low-rank constraints can

be imposed on Ψ to satisfy certain manipulation requirements. For topology management

with evolving networks, it is more important to learn a time-dependent infectivity matrix

change ∆A(t). Under either activity shaping or influence optimization framework, ∆A(t)

168



can be modeled using either parametric or nonparametric approaches. For example, we can

parametrize ∆Ajj′(t) = γTxjj′(t), where xjj′(t) is a known time-varying feature vector

of dimension j and j′ at time t. The nonparametric modeling can be achieved by assume

∆Ajj′(t) =
∑L

`=1 λ
`
jj′σ`(t), where {σ`(t)} is a set of nonparametric basis functions that

needs to be learned from cascade data. In addition, structural constraints such as sparsity

and low-rank constraints can be imposed on ∆A(t).

7.2.2 Model-Free Intervention Models

When the dynamics of the environment (random functions f and g) is unknown reinforce-

ment learning (RL) [185, 46] framework needs to be adapted for the point process setting

we consider. In what follows we propose a few cases and algorithms we are considering in

the development of the point process intervention framework.

Q-LEARNING. The idea is to approximate the expected cost by a linear term and use

the regression algorithms to learn the parameters. Define the action-value function

Qπ(s, a) = E[
∑
k=1

γkgk(sk, π(sk))|s0 = s, a0 = a].

Finding the optimal policy then reduces to finding the optimum value function. Since the

state and action space both are (infinity) large we use approximation:

Qθ(s, a) = θ1h1(s, a) + θ2h2(s, a) + . . .+ θdhd(s, a),

where, hi(s, a) is a feature extracted from states and actions and θ = (θ1, . . . , θd) is a set of

parameters. θk is the estimate of θ at the kth stage. To update it we first find the temporal

difference:

δk+1(Qθk) = gk+1(sk+1, ak+1) + γQθk(sk+1, a
′
k+1)−Qθk(sk, ak),

and then

θk+1 = θk + αkδk+1(Qθk)∇θQθk(sk, ak).

The features capture the interaction of intervention for mark m and state of mark m′ with
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an offset of l, e.g., hi(s, a) = amk−ls
m′

k . Also one can consider the effect of time delay di-

rectly hi(s, a) = amk−ls
m′

k e
−ωl. Related to Q-Learning is the class of off-policy evaluation

algorithms [155, 189]. Developing efficient and robust off-policy evaluation methods [54]

for intervention policies is an interesting direction for point processes networks. Better

evaluation, besides providing a safe transition for deploying new policies, can lead to bet-

ter policy optimization through policy iteration and has demonstrated promising results in

advertisement and marketing too [127, 188].

POLICY GRADIENT. In the policy gradient methods instead of working with the ex-

pected reward or value functions we parameterize the policy and learn it directly: ak(t) =

µ +
∫ t

0
Φ(t, s)θdN(s) where θ is vector of size M . The point process is then evolves with

intensity λ(t) = u(ak(t)) at the kth stage. The parameters are learned

dθi(t)

dt
= α(gk − b)δ(t− ti)ei(t),

where, ei is updated by

dei(t)

dt
= −ei

τ
+
u′

u
(Ni(t)− ak(t)).

Policy gradient methods are beneficial in the continuous action space where Q-learning

might fail.

SEMI-MARKOV PROCESSES. An intermediate step from discrete MDP to continuous

MDP is the class of Semi-Markov Decision Processes (SMDP). They generalize MDPs by

(1) modeling the user/patient’s status evolution in continuous time; (2) allowing time spent

in a particular state to follow an arbitrary distribution; and (3) state transitions happening

following a process different form the process governing the treatment/decision epochs.

Instead of a simple transition function f(s, a) we assert that if the next state is s′, the waiting

time t, until the transition from s occurs follows the distribution Fss′(t, a). Furthermore, the

probability of transition from state s ∈ S to another state s′ ∈ S is Pss′(a) when treatment
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a ∈ A is applied. For the policy learning we again define

V π = E
[∫ ∞

0

e−αtg(s(t), π(t)) dt

]
,

where e−αt is a discount factor that manages the trade off the importance of the immediate

and the delayed reward. A POSMDP with patient state space S = {s1, s2, s3} and 2

treatment actionsA = {a1, a2} and two observation types {o1, o2}. For action a1 transition

probabilities are depicted in orange while for a2 they are depicted in green. For each state

and observation type there is an associated intensity function governing how events happen.

A value-function equation and a continues version of Bellman optimality conditions

referred to as Bellman-Hamilton-Jacobi tailored to our framework will be derived. Tem-

poral Difference algorithm is one possibility to find the optimal policy. Having observed a

transition from s to s′ with sample reward r(s, s′, π(s)) it updates

V (k+1)(s) = V (k)(s) + βk

(
1− e−ατ

α
r(s, s′, π(s)) + e−ατV (k)(s′)− V (k)(s)

)
,

where τ is waiting time and βk is the learning rate.

PARTIAL OBSERVATION. The point process intervention framework assumes we have

direct knowledge of the user and patient state. In many realistic situations, however, one

can not directly access the state, but receives an observation that stochastically depends

on it. In this case, the patient’s health or social network user status can be modeled as a

Partially Observable Semi-Markov Decision Process (POSMDP). This paradigm extends

the point process intervention framework by incorporating a set of observations O, and an

observation model defined by p(o|s, v) which is the probability that o is observed when the

patient with feature vector v is in state s. Especially, the discrete nature of observations

calls for a rich framework of point processes. Consider the point process with intensity

function λs,o(t). User/patient features can also be incorporated into the model as covariate,

e.g., λs,o(t) = v>µs,o. Here is a proposed scheme for a solution. We need to infer the

state of the patient/user from the received observations and execute treatments/actions. A

usual representation for the knowledge about the system state is the so called belief value,
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Figure 7.1: Partially Observable Semi Markov Decision Process for Point Processes

b, that is a probability distribution over the state space. The updated belief after executing

treatment a and observing o is:

ba,o(s′) = p(s′|b, a)
p(o|s′, v)

p(o|b, a)
,

in which p(s′|b, a) is the propagation of the belief b through the transition model. One can

think of this as an MDP with the pair of belief-state as the new state representation with a

transition p(b′|b, a) = p(o|b, a) if b′ = ba,o and 0 otherwise. The new policy value function

is:

V ∗(b) = max
a∈A

∑
o∈O

p(o|b, a)

∫ ∞
0

∫ t

0

e−αt
′
g(s, a) dt′ dηb(t, a)+ (7.12)

∑
o∈O

p(o|b, a)

∫ ∞
0

e−αtV ∗(ba,o) dηb(t, a), (7.13)

where ηb(t, a) is the posterior of the waiting time for state transition estimated after the

observation. The full framework is illustrated in Figure 7.1. These are potential ideas for

future work in this area.
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7.3 Generative Models of Point Process

Implicit generative models don’t need any likelihood functions and provide samples that

are are sharp and sufficiently representative of the population. Furthermore, they allow

building highly accurate neural network classifiers. Wasserstein learning of deep generative

point processes is a show-case of how can one learn a generative model for point processes

indirectly via feedbacks from samples. This approach requires no prior knowledge about

the underlying true process and can estimate it accurately across a wide scope of theoretical

and real-world processes. Basically, the framework of optimal transport [199] could be

leveraged to learn the implicit generative model via a variety of distance measures. For

the future work, one can explore the connection of the WGAN with the optimal transport

problem. Other possible distance metrics over the realizations of point processes, and

more sophisticated transforms of point processes, particularly those that are causal, are also

interesting venues for future work. Extending the current work to marked point processes

and over structured spaces are other interesting ones.

This thesis focused on developing novel machine learning methodology and algorithms

for high-dimensional asynchronous and interdependent event data arising from modern

applications. Our premises are that asynchronous event temporal dynamics and observation

features carry a great deal of information about the behavior of entities and their interactions

we care about modeling, and a deeper understanding of the interplay between the dynamics

of the events and the dynamics of the network structures will allow us to address the “who

will do what and when?” question with time-varying exploratory and predictive models

capable of solving real-world problems. Specifically, we proposed a framework based on

point processes which explicitly model the rate of event occurrence as a function of timing

and features of previous events for evolving diffusion networks. Furthermore, our modeling

framework can explicitly take into account latent variables, low intrinsic dimensionality

and sparsity of the datasets, and support subsequent decision making where the effects of
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the decisions are assessed within a time upper bound. The flexibility and strength of point

process combined with efficient learning and inference procedures turn it to an outstanding

tool to analyze network event sequences.
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