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Abstract. We study the persistence of lower dimensional tori in Hamilton-
ian systems of the form H(x, y, z) = 〈ω, y〉 + 1

2
〈z, M(ω)z〉 + εP (x, y, z, ω),

where (x, y, z) ∈ T n × Rn × R2m , ε is a small parameter, and M(ω) can be
singular. We show under a weak Melnikov non-resonant condition and cer-
tain singularity-removing conditions on the perturbation that the majority
of unperturbed n-tori can still survive from the small perturbation. As an
application, we will consider persistence of invariant tori on certain resonant
surfaces of a nearly integrable, properly degenerate Hamiltonian system for
which neither the Kolmogorov nor the g-non-degenerate condition is satisfied.

1. Introduction and Main Results

We consider the Melnikov persistence problem of lower dimensional, possibly
degenerate, invariant tori for Hamiltonian of the form

H = e(ω) + 〈ω, y〉 +
1

2
〈z,M(ω)z〉 + εP (x, y, z, ω, ε),(1.1)

where (x, y, z) ∈ T n × Rn × R2m, ω is a parameter in a bounded closed region
O ⊂ Rn, ε ∈ (0, 1) is a small parameter, M is a real analytic, matrix-valued
function on some complex neighborhood O(r) = {ω : |Im ω| < r} of O taking
values in the space of 2m × 2m symmetric matrices, and P is real analytic in a
complex neighborhood D(r, s) ×O(r) ×∆ of T n × {0}× {0}×O × (0, 1) for some
D(r, s) = {(x, y, z) : |Im x| < r, |y| < s2, |z| < s}. The HamiltonianH is associated
with the standard symplectic form

(1.2)

n
∑

i=1

dxi ∧ dyi +

m
∑

j=1

dzj ∧ dzm+j .

Clearly, the unperturbed system associated to (1.1) admits a family of invariant
n-tori Tω = Tn × {0}× {0} with linear flows which are parameterized by the toral
frequency ω ∈ O.

The Melnikov persistence problem, initiated by Melnikov in [24, 25], concerns
the persistence of the majority of the unperturbed n-tori Tω under certain cou-
pling non-resonance conditions, called Melnikov conditions, between the tangen-
tial frequencies ω and the normal ones associated to the eigenvalues of M(ω).
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Such persistence problem has been extensively studied in various non-degenerate
cases (i.e. M is non-singular over O), and also in infinite dimensional setting (see
[3, 4, 5, 6, 7, 9, 11, 12, 14, 15, 16, 17, 19, 21, 28, 29, 30, 31, 33, 35, 36] and references
therein).

A similar persistence problem was posted by Kuksin in [18] for the degener-
ate case when M(ω) becomes singular. The problem was studied in [21] under
tangential non-degeneracy, i.e., the quadratic term in (1.1) has the form

1

2
〈
(

y

z

)

,M(ω)

(

y

z

)

〉

and M(ω) is non-singular over O. The aim of this paper is to consider the de-
generate case without assuming tangential non-degeneracy. More precisely, we will
study the Hamiltonian (1.1) and show that some non-degenerate conditions on the
perturbation can remove the singularity and hence yield the persistence of the ma-
jority of invariant, quasi-periodic n-tori under a suitable non-resonance condition
of Melnikov type.

For simplicity, we will use the same symbol | · | to denote an equivalent vector
norm (and its induced matrix norm) in an Eucleadian space, absolute value of
numbers, Lebesgue measure of sets, and l1 norm of integer-valued vectors. Also,
| · |D will be used to denote the sup-norm of a function on a domain D.

Let λ1(ω), · · · , λ2m(ω) be eigenvalues of JM(ω), where J denotes the standard
2m× 2m symplectic matrix. We assume the following conditions for (1.1):

H1) The set

{ω ∈ O :
√
−1〈k, ω〉 − λi(ω) − λj(ω) 6= 0, ∀k ∈ Zn\{0}, 1 ≤ i, j ≤ 2m}

admits full Lebesgue measure relative to O.
H2) There exists a real analytic family zε : O(r) → D(s) = {z : |z| < s} such

that

M(ω)zε(ω) + ε∂z[P ](0, zε(ω), ω, 0) = 0,

for all ω ∈ O(r), where [P ](y, z, ω) =
∫

Tn P (x, y, z, ω, 0)dx.
H3) There exists a constant N1 > 0 such that the minimum λεmin(ω) among the

absolute values of all eigenvalues of Mε(ω) = M(ω) + ε∂2
z [P ](0, zε(ω), ω)

satisfies λεmin(ω) > N1ε for all ω ∈ O(r).

Our main result states as the following.

Theorem 1. Assume H1) - H3). Then there is an ε0 > 0 and Cantor sets Oε ⊂ O,

0 < ε < ε0, with |O \ Oε| → 0 as ε → 0 such that for each 0 < ε < ε0 the

Hamiltonian system (1.1) admits a Whitney smooth family of real analytic, quasi-

periodic n-tori T εω, ω ∈ Oε, which also varies smoothly in ε.

We note that if M(ω) is non-singular over O, then conditions H2) H3) are au-
tomatically satisfied. In the case that M(ω) becomes singular, invariant n-tori can
be destroyed if the condition H2) fails. For example, it is easy to see that the
Hamiltonian

H(x, y, u, v) = 〈ω, y〉 ± 1

2
u2 ± εv, (x, y, u, v) ∈ T n ×Rn ×R1 ×R1

admits no invariant n-tori for any ε > 0 and H2) is not satisfied for this Hamiltonian.
The condition H3) is of course not optimal for the persistence of invariant n-tori
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of Hamiltonian (1.1). In general, it should be possible to replace H3) by a weaker
non-degenerate condition. This is certainly an interesting problem worthy for a
further study.

The condition H1) is stronger than the first Melnikov non-resonance condition
but is weaker than the second Melnikov non-resonance condition by allowing mul-
tiple normal eigenvalues of JM(ω). This condition was first introduced in [36] and
has been employed in various studies on the persistence of lower dimensional tori
in Hamiltonian systems (see [9, 21]).

Theorem 1 has no restriction on the invariant tori type, i.e., the perturbed tori
can be normally hyperbolic, elliptic or of mixed type. However, unlike the non-
degenerate cases considered in [21, 36], an unperturbed, persisted torus of (1.1) can
change its type after perturbation in the case of normal degeneracy. Consider the
following two Hamiltonians:

H1 = 〈ω, y〉 + u2 + εu− εv2 + εP̄1(x, y, u, v),

≡ 〈ω, y〉 + εP1(x, y, z)

H2 = 〈ω, y〉 + εu+ εv + εu2 + εv2 + εP̄2(x, y, u, v),

≡ 〈ω, y〉 + εP2(x, y, z)

where x, y, ω are as in (1.1), z = (u, v) ∈ R2, and [P̄i] = 0, i = 1, 2. Clearly,

M =

(

2 0
0 0

)

for H1 and M =

(

0 0
0 0

)

for H2. Hence the unperturbed n-tori

in both cases are of degenerate elliptic types.
Since M are constant matrices in both cases, H1) is satisfied for both H1 and

H2. Moreover, it is easy to see that zε = (−ε
2
, 0) for H1 and zε = (−1

2
,−1

2
) for

H2, i.e., H2) is satisfied in both cases. Since Mε equals
(

2 0
0 −2ε

)

and
(

2ε 0
0 2ε

)

for H1 and H2 respectively, and λεmin = 2ε in both cases, H3) is also satisfied for
both H1 and H2. Hence Theorem 1 is applicable to both H1 and H2 to yield the
persistence of two respective families of invariant, quasi-periodic n-tori.

However, for H1,

JMε =

(

0 −2ε
−2 0

)

has eigenvalues λ± = ±2
√
ε, and, for H2,

JMε =

(

0 2ε
−2ε 0

)

has eigenvalues λ± = ±2
√
−1ε. Thus the perturbed n-tori are all (non-degenerate)

hyperbolic for H1 and are all (non-degenerate) elliptic for H2.
Normal degeneracy naturally occurs in a nearly integrable, properly degenerate

Hamiltonian system. As an application of Theorem 1, we consider the following
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properly degenerate Hamiltonian

(1.3) H(I, θ, ε) = H00(I1, · · · , Ir) + εP (θ, I, ε)

associated to the symplectic form

d
∑

i=1

dθi ∧ dIi,

where (I, θ) = (I1, · · · , Id, θ1, · · · , θd) ∈ G×T d, G ⊂ Rd is a bounded closed region,
r < d, H00, P are real analytic, and H00 satisfies the Kolmogorov non-degenerate
condition on G̃ = {(I1, · · · , Ir) : I ∈ G}, i.e.,

H3) the Hessian ( ∂
2H00

∂Ii∂Ij
)ri,j=1 is non-singular on G̃.

The unperturbed system associated to (1.3) admits a family of invariant, res-
onant d-tori TI parametrized by I ∈ G. Under the condition H3) and certain
condition on the perturbation which removes the degeneracy of the unperturbed
Hamiltonian, it was shown by Arnold ([2]) that there is a large subset of the phase
space which is filled by invariant, quasi-periodic d-tori of the perturbed system
exhibiting both fast and slow oscillations. However, if the perturbation fails to
completely remove the degeneracy of the unperturbed Hamiltonian, then in general
the unperturbed d-tori are expected to break up but some non-degenerate frictions
or sub-tori of them can persist under certain Poincaré non-degenerate conditions
on the perturbation. An extreme case is when r-dimensional sub-tori are consid-
ered. Let y = (I1, · · · , Ir), u = (Ir+1, · · · , Id), φ = (θ1, · · · , θr), ψ = (θr+1, · · · , θd),
z = (u, ψ), and [P ](y, z) =

∫

T r P (φ, ψ, y, u, 0)dφ in (1.3). We assume the following
Poincaré non-degenerate condition that

H4) [P ](y, ·) has a real analytic family of non-degenerate critical points, i.e.,

there exists a real analytic function z∗ : G̃ → R2m, where m = d− r, such
that ∂z [P ](y, z∗(y)) = 0, det∂2

z [P ](y, z∗(y)) 6= 0, y ∈ G̃.

Now, for each I = (y, u) ∈ G̃, the unperturbed, resonant d-torus TI is foliated

into invariant r-tori TψI = T r × {ψ} with frequencies ω0(y) = ∂yH00(y), parame-
terized by ψ ∈ Tm.

The following result is a corollary of Theorem 1.

Theorem 2. Assume H3) and H4). Then there is an ε0 > 0 and Cantor sets

G̃ε ⊂ G̃, 0 < ε < ε0, with |G̃ \ G̃ε| → 0 as ε → 0 such that for each 0 < ε < ε0
the Hamiltonian system (1.3) admits a Whitney smooth family of real analytic,

quasi-periodic r-tori T εy , y ∈ G̃ε, which also varies smoothly in ε.

The persistence of sub-tori split from resonant tori of a nearly integrable Hamil-
tonian system has been studied in [10, 22, 20, 32] on any g-resonant surface under
Poincaré non-degenerate conditions of the perturbation and Kolmogorov or g-non-
degenerate condition of the unperturbed Hamiltonian. For the properly degenerate,
nearly integrable Hamiltonian (1.3), Theorem 2 gives a result along the same line
when neither the Kolmogorov nor the g-non-degenerate condition of the unper-
turbed Hamiltonian is satisfied. We note in the present case that the resonance
group g is simply {0} × Zm, where 0 is the zero vector in Zr, and G̃ is the r-
dimensional g-resonant surface.
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To prove Theorem 1, we will first reduce the Hamiltonian system (1.1) to the
following normal form:

H(x, y, z) = eδ(ω) + 〈Ωδ(ω), y〉 +
1

2
〈z,Mδ(ω)z〉 + δP (x, y, z, ω, δ)(1.4)

associated to the symplectic form (1.2), where (x, y, z) ∈ T n × Rn × R2m and
ω ∈ O and δ ∈ [0, 1) are parameters with O ⊂ Rn being a bounded closed region,
Ωδ = id + O(δ), and Mδ(ω) is a 2m × 2m symmetric matrix for each δ and ω.
Moreover, for some complex neighborhoods ∆ of [0, 1), O(r) = {ω : |Im ω| < r}
of O, D(r, s) = {(x, y, z) : |Im x| < r, |y| < s2, |z| < s} of T n × {0} × {0} ⊂
Tn ×Rn × R2m, e, Ω, M are real analytic on ∆ ×O(r), and P is real analytic on
D(r, s) ×O(r) × ∆. We assume the following condition:

H5) There is a constant σ > 0 such that

inf
0<δ<1

|det
1

δ
Mδ| ≥ σ > 0.

Clearly, when P = 0, the unperturbed system of (1.4) admits a family of invariant
n-tori Tω = Tn × {0} × {0} parametrized by the toral frequency ω ∈ O.

We will prove the following result from which Theorem 1 follows.

Theorem 3. Assume H5) and that H1) holds for eigenvalues of JM0(ω). Then

there are µ = µ(r, s) > 0, δ > 0, γ > 0 sufficiently small such that if

(1.5) |P |D(r,s)×O(r) < γ4m2

s2µ,

then there exists a Cantor set O∗ ⊂ O, with |O \O∗| → 0 as γ, δ → 0, for which the

following holds. For each δ and ω ∈ O∗, the unperturbed torus Tω persists and gives

rise to a slightly deformed, analytic, quasi-periodic, invariant torus of the perturbed

system (1.4), and moreover, these perturbed tori form a Whitney smooth family.

The rest of paper is organized as follows. Section 2 is devoted to the proof of
Theorem 3 via KAM method, in which we will give details for one KAM step,
prove an iteration lemma, show convergence of KAM iterations, and conduct mea-
sure estimate. We will prove Theorems 1 in Section 3 by making a normal form
reduction to (1.1) in order to remove the singularity of M and to improve the order
of perturbation. Theorem 2 will also be proved in this section as a corollary of
Theorem 1.

2. Proof of Theorem 3

We will prove Theorem 3 in this section by using KAM method, i.e., we will con-
struct a symplectic transformation, consisting of infinitely many successive steps,
called KAM steps, of iterations, so that the x-dependent terms are pushed into
higher order perturbations after each step.

Initially, we set e0 = eδ, Ω0 = Ωδ, M
0 = Mδ, P0 = P , O0 = O, r0 = r, s0 = s,

µ∗ = µ, γ0 = γ, and

N0 = e0 + 〈Ω0(ω), y〉 +
1

2
〈z,M0(ω)z〉

H0 = N0 + δP0.

For simplicity, we suspend the dependence of all quantities on δ in the rest of the
section.
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By (1.5) and Cauchy’s estimate, we have that

|∂lωP0|D0×O0 < c0γ
4m2

0 s20µ∗, |l| ≤ 4m2

for some constant c0 > 0 only depending on r0. Let µ0 = c0µ∗. Then

|∂lωP0|D0×O0 < γ4m2

0 s20µ0, |l| ≤ 4m2.

Suppose that after a νth KAM step, we arrive at a real analytic, parameter-
dependent Hamiltonian

H = Hν = N + δP,(2.1)

N = Nν = e(ω) + 〈Ω(ω), y〉 +
1

2
〈z,M(ω)z〉,

where (x, y, z) ∈ D = Dν = D(r, s), r = rν ≤ r0, s = sν ≤ s0, ω ∈ O = Oν ⊂ O0,
e(ω) = eν(ω),Ω(ω) = Ων(ω),M(ω) = Mν(ω), P = Pν(x, y, z, ω) are real analytic
in all their arguments and also depend on δ ∈ [0, 1) analytically, and moreover,

|∂lωP |D×O < γ4m2

s2µ, |l| ≤ 4m2,

for some 0 < γ = γν ≤ γ0, 0 < µ = µν ≤ µ0.
We will construct a symplectic transformation Φ+ = Φν+1, which, in smaller

frequency and phase domains, carries the above Hamiltonian into the next KAM
cycle. Thereafter, quantities (domains, normal form, perturbation, etc.) in the
next KAM cycle will be simply indexed by + (= ν+1). Also, all constants c1 − c9
below are positive and independent of the iteration process.

2.1. One step of KAM iteration. Below, we will show detailed constructions of
the KAM iteration for the Hamiltonian (2.1).

First, we expand the perturbation P into Taylor-Fourier series

P =
∑

k∈Zn,i∈Zn
+,j∈Zm

+

Pkijy
izje

√
−1〈k,x〉

and let

R =
∑

|k|≤K+

(Pk00 + 〈Pk10, y〉 + 〈Pk01, z〉 + 〈z, Pk02z〉)e
√
−1〈k,x〉,(2.2)

I =
∑

|k|>K+

∑

i,j

Pkijy
izje

√
−1〈k,x〉,(2.3)

II =
∑

|k|≤K+

∑

2|i|+|j|≥3

Pkijy
izje

√
−1〈k,x〉,(2.4)

where

K+ =

([

log
1

µ

]

+ 1

)3

.

Then

P −R = I + II.

Let

r+ =
r

2
+
r0

4
.
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We now estimate ∂lω(P − R), ω ∈ O, |l| ≤ 4m2, on a smaller complex domain
D(r∗, αs), where α = µ1/3 and

r∗ = r+ +
3

4
(r − r+).

For each ω ∈ O, |l| ≤ 4m2, since

|
∑

i∈Zn
+,j∈Zm

+

∂lωPkijy
izj | ≤ |∂lωP |De−|k|r

for all |y| ≤ s2, |z| ≤ s, we have

|∂lωI |D(r∗,s) ≤
∑

|k|>K+

|∂lωP |D(r,s)e
− |k|(r−r+)

4

≤ γ4m2

s2µ
∑

l>K+

lne−
l(r−r+)

4

≤ γ4m2

s2µ

∫ ∞

K+

λne−
λ(r−r+)

4 dλ

≤ γ4m2

s2µ2,(2.5)

provided that

C1)

∫ ∞

K+

λne−
λ(r−r+)

4 dλ ≤ µ.

Hence

|∂lω(P − I)|D(r∗,s) ≤ |∂lωP |D(r,s) + |∂lωI |D(r∗,s) ≤ 2γ4m2

s2µ

for all ω ∈ O.
By Cauchy’s estimate, we also have

|∂lωII |D(r∗,αs) = |
∫

∂|i|+|j|

∂yi∂zj

∑

|k|≤K+|2i|+|j|≥3

∂lωPkije
√
−1〈k,x〉yizjdydz|D(r∗,αs)

= |
∫

∂|i|+|j|

∂yi∂zj
∂lω(P − I)dydz|D(r∗,αs)

≤
∫

| ∂
|i|+|j|

∂yi∂zj
∂lω(P − I)|D(r∗,αs)dydz

≤ c1γ
4m2

α3s2µ ≤ c1γ
4m2

s2µ2,(2.6)

for all ω ∈ O and |l| ≤ 4m2, where |2i| + |j| = 3 and
∫

=
∫ y

0 · · ·
∫ y

0

∫ z

0 · · ·
∫ z

0 is the
2|i|+ |j|-fold integral. Thus by (2.5), (2.6),

|∂lω(P −R)|D(r∗,αs)×O ≤ |∂lωI |D(r∗,s)×O + |∂lωII |D(r∗,αs)×O

≤ c2γ
4m2

s2µ2, |l| ≤ 4m2.(2.7)

It follows that

|∂lωR|D(r∗,αs)×O ≤ c3γ
4m2

s2µ, |l| ≤ 4m2.(2.8)

Next, we construct a Hamiltonian F of the form

F =
∑

0<|k|≤K+,2|i|+|j|≤2

Fkijy
izje

√
−1〈k,x〉 + 〈F001, z〉.(2.9)
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such that the time 1-map Φ = Φ1
F generated by the Hamiltonian vector field XF =

(Fy,−Fx, JFz)> carries H into the Hamiltonian in the next KAM cycle.

Denote [R] =
∫

Tn R(x)dx and R̃ = R − [R]. We let F be such that

{N,F}+ δR̃+ δ〈P001, z〉 = 0.(2.10)

Then

H+ ≡ H ◦Φ = H ◦ Φ1
F = (N + δR) ◦ Φ1

F + δ(P −R) ◦ Φ1
F

= N + δ[R] − δ〈P001, z〉 + δ

∫ 1

0

{Rt, F} ◦ΦtF dt+ δ(P −R) ◦ Φ1
F

= e+ + 〈Ω+, y〉 +
1

2
〈z,M+z〉 + δP+

≡ N+ + δP+,(2.11)

where

e+ = e+ δP000,(2.12)

Ω+ = Ω + δP010,(2.13)

M+ = M + δP002,(2.14)

Rt = (1 − t)([R] −R− 〈P001, z〉) +R,(2.15)

P+ =

∫ 1

0

{Rt, F} ◦ ΦtF dt+ (P −R) ◦ Φ1
F .(2.16)

Substituting (2.2) and (2.9) into (2.10) yields

−
∑

0<|k|≤K+

√
−1〈k,Ω〉(Fk00 + 〈Fk10, y〉 + 〈Fk01, z〉+ 〈z, Fk02z〉)e

√
−1〈k,x〉

+
∑

0<|k|≤K+

(〈Mz, JFk01〉 + 2〈Mz, JFk02z〉)e
√
−1〈k,x〉 + 〈Mz, JF001〉

= − δ
∑

0<|k|≤K+

(Pk00 + 〈Pk10, y〉 + 〈z, Pk01〉 + 〈z, Pk02z〉)e
√
−1〈k,x〉 − δ〈P001, z〉.

By comparing coefficients above, we obtain the following linear homological equa-
tions

√
−1〈k,Ω〉Fk00 = δPk00,(2.17) √
−1〈k,Ω〉Fk10 = δPk10,(2.18)

A1kFk01 = δPk01,(2.19)

A2kFk02 = δPk02,(2.20)

M>JF001 = −δP001,(2.21)

where

A1k =
√
−1〈k,Ω〉I2m −MJ,

A2k =
√
−1〈k,Ω〉I4m2 − (MJ) ⊗ I2m − I2m ⊗ (MJ).

Hereafter ⊗ denotes the tensor product of two matrices.
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It is clear that the equations (2.17)-(2.20) are uniquely solvable on the new
frequency domain

O+ =

{

ω ∈ O : |〈k,Ω(ω)〉| > γ

|k|τ , |detA1k(ω)| > γ2m

|k|2τm ,

|detA2k(ω)| > γ4m2

|k|4τm2 , 0 < |k| ≤ K+

}

(2.22)

to yield the desired function F .
To estimate the transformation, we let

D∗ = D(r∗, s),

D i
2α

= D(r+ +
i(r − r+)

2
,
αs

2
), i = 1, 2.

For each ω ∈ O+ and |l| ≤ 4m2, since by Cauchy’s estimate,

|∂lωPkij | ≤ |∂lωP |D×Os
−(2i+j)e−|k|r ≤ γ4m2

s2−2i−jµe−|k|r, 0 ≤ 2i+ j ≤ 2,

we have by (2.17)-(2.21) that

|1
δ
∂lωFk00| ≤ c4|k|τs2µe−|k|r,

|1
δ
∂lωFk10| ≤ c4|k|τµe−|k|r,

|1
δ
∂lωFk01| ≤ c4|k|2τmsµe−|k|r,

|1
δ
∂lωFk02| ≤ c4|k|4τm

2

µe−|k|r,

|∂lωF001| ≤ sµe−|k|r ≤ c5sµ.

By direct differentiation, we have

|∂ix∂j(y,z)∂
l
ωF |D∗ ≤ c6µΓ(r − r+) + c6µ, |i| + |j| ≤ 2, |l| ≤ 4m2(2.23)

for all ω ∈ O+, where

Γ(r − r+) =
∑

k∈Zn

|k|4τm2+2e−
|k|(r−r+)

4 .

Since

ΦtF = id+

∫ t

0

JDF ◦ ΦλFdλ,(2.24)

DΦtF = I2(n+m) +

∫ t

0

J(D2F )DΦλF dλ,(2.25)

we have by (2.23) that

ΦtF : D 1
2α

→ Dα,

for each ω ∈ O+, 0 < t ≤ 1, provided that

C2) c6µΓ(r − r+) ≤ r−r+
2 ,

C3) c6µΓ(r − r+) ≤ 1
4α.
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Moreover,

(2.26) |∂lωDi(ΦtF − id)|D 1
2

α
×O+ ≤ c7µΓ(r − r+) + c7µ, |l| ≤ 4m2, i = 0, 1,

for all 0 < t ≤ 1.
We now estimate the new Hamiltonian. It is clear from (2.12)-(2.14) that

|∂lω(e− e+)|O+ ≤ c8δγ
4m2

s2µ,(2.27)

|∂lω(Ω − Ω+)|O+ ≤ c8δγ
4m2

sµ,(2.28)

|∂lω(M −M+)|O+ ≤ c8δγ
4m2

s2µ(2.29)

for all |l| ≤ 4m2.
To estimate the new frequency domain, we let

γ+ =
γ0

4
+
γ

2
.

If we choose µ sufficiently small such that

C4) 3c8δµK
4m2τ+4m2

+ < min{γ−γ+γ0
,
γ2m−γ2m

+

γ2m
0

,
γ4m2−γ4m2

+

γ4m2
0

},

then by (2.13), (2.14),

|〈k,Ω+〉| ≥ |〈k,Ω〉| − δ|〈k, P010〉|
≥ γ

|k|τ − δc8γ
4m2

µ|K+| ≥
γ+

|k|τ ,(2.30)

|detA+
1k | ≥ |detA1k| − |

√
−1〈k, δP010〉I2m + δP002J |

>
γ2m

|k|2mτ − (δc7γ
4m2

µK+)2m − δc8γ
4m2

µ

>
γ2m

|k|2mτ − 2c8δγ
4m2

µK2m
+ >

γ2m
+

|k|2mτ ,(2.31)

|detA+
2k | ≥ |detA2k| − |

√
−1〈k, δP010〉I4m2

− (δP002J) ⊗ I2m − I2m ⊗ (δP002J)|

>
γ4m2

|k|4m2τ
− (δc7γ

4m2

µK+)4m
2 − 2(δc8γ

4m2

µ)2m

>
γ4m2

|k|4m2τ
− 3c8δγ

4m2

µK4m2

+ >
γ4m2

+

|k|4m2τ
(2.32)

for all 0 < |k| ≤ K+, ω ∈ O+.
To estimate the new perturbation, we let

s+ =
1

2
αs,

D+ = D(r+, s+).
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Then by (2.7),(2.8),(2.15),(2.16),(2.23) and Cauchy’s estimate, we have

|∂lωP+|D+×O+ ≤ |
∫ 1

0

∂lω{Rt, F} ◦ ΦtF dt| + |∂lω(P −R) ◦ Φ1
F |D+×O+

= |
∫ 1

0

∂lω(
∂Rt

∂x

∂F

∂y
− ∂Rt

∂y

∂F

∂x
+
∂Rt

∂z
J
∂F

∂z
) ◦ ΦtF dt|D+×O+

+ |∂lω(P −R) ◦ Φ1
F |D+×O+ ≤ cγ4m2

s2µ2

r − r+
(Γ(r − r+) + 1)4m

2+1

≤ c9s
2
+γ

4m2

+ (Γ(r − r+) + 1)4m
2+1µ

4
3(2.33)

for all |l| ≤ 4m2.
Finally, let

µ+ = (16c0α)
1
6 µ,

where

c0 = max{c1, · · · , c9}.

If

C5) c9µ
4
3 (Γ(r − r+) + 1)4m

2+1 ≤ µ+,

then

|∂lωP+|D+×O+ ≤ γ4m2

+ s2+µ+, |l| ≤ 4m2.(2.34)

This completes one step of KAM iterations.

2.2. Iteration lemma. For each ν = 1, 2, · · · , we index all index-free quantities
above by ν and index all ‘+’-indexed quantities above by ν + 1. This yields the
following sequences

rν , γν , , sν , αν , µν , Hν , Nν , Pν , e
ν ,Ων ,Mν , Dν ,Kν ,Oν ,Φν .
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In particular,

rν = r0(1 −
ν

∑

i=1

1

2i+1
),

γν = γ0(1 −
ν

∑

i=1

1

2i+1
),

sν =
1

4
αν−1sν−1,

αν = µ
1
3
ν ,

µν = (16c0αν−1)
1
6 µν−1,

Hν = Nν + δPν ,

Nν = eν + 〈Ων , y〉 +
1

2
〈z,Mνz〉,

Dν = D(rν , sν),

Kν =

([

log
1

µν−1

]

+ 1

)3

,

Oν =

{

ω ∈ Oν−1 : |〈k,Ω〉| > γν

|k|τ , |detAν1k(ω)| > γ2m
ν

|k|2τm ,

|detAν2k(ω)| > γ4m2

ν

|k|4τm2 , 0 < |k| < Kν

}

,

where

Aν1k =
√
−1〈k,Ων〉I2m −MνJ,

Aν2k =
√
−1〈k,Ων〉I4m2 − (MνJ) ⊗ I2m − I2m ⊗ (MνJ)

for 0 < |k| < Kν .
The following iteration lemma ensures the validity of the KAM iteration for all

steps.

Lemma 2.1. If µ0 = µ0(r0, s0, γ0) is sufficiently small, then the following holds

for all |l| ≤ 4m2 and ν = 1, 2, · · · .
1) Φν : Dν → Dν−1 are real analytic, symplectic, and C4m2

depend on ω ∈ Oν .

Moreover,

Hν = Hν−1 ◦ Φν = Nν + δPν ,

|∂lωDi(Φν − id)|Dν×O+ ≤ µ
1
8
0

2ν
, |l| ≤ 4m2, i = 0, 1.(2.35)

2) On Dν ×Oν ,

|∂lω(eν − e0)|, |∂lω(Ων − Ω0)|, |∂lω(Mν −M0)| ≤ c0δγ
4m2

0 µ0,(2.36)

|∂lω(eν − eν−1)|, |∂lω(Ων − Ω0)|, |∂lω(Mν −Mν−1)| ≤ c0δγ
4m2

0

2ν
µ0,(2.37)

|∂lωPν | ≤ γ4m2

ν s2νµν , |l| ≤ 4m2.(2.38)
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3) Oν = Oν−1 \
⋃

Kν−1<|k|≤Kν

Rνk(γ0), where

Rνk(γ0) =

{

ω ∈ Oν−1 : |〈k,Ων−1(ω)〉| ≤ γν−1

|k|τ ,

or |detAν−1
1k (ω)| ≤ γ2m

ν−1

|k|2τm , or |detAν−1
2k (ω)| ≤ γ4m2

ν−1

|k|4τm2

}

for all k ∈ Zn \ {0}.

Proof. We need to verify the conditions C1)-C5) for all ν = 0, 1, · · · .
First, we choose µ0 sufficiently small such that

1

2ν+2
log

1

µν
> 1.

Then

log(n+ 1)! + n(ν + 2) log 2 + n logKν+1 −Kν+1
1

2ν+2

= log(n+ 1)! + n(ν + 2) log 2 + 3n log(log[
1

µν
] + 1) − 1

2ν+2
(log[

1

µν
] + 1)3

≤ log(n+ 1)! + n(ν + 2) log 2 + 3n log(log
1

µν
+ 2) − (log

1

µν
)2

≤ − log
1

µν
.

Hence
∫ ∞

Kν+1

λne−λ(rν−rν+1)dλ ≤ (n+ 1)!
Kn
ν+1

(rν − rν+1)n
e−Kν+1(rν−rν+1) ≤ µν ,

i.e., C1) holds.
Next, we note that

Γ(rν − rν+1) = Γ(
1

2ν+2
) ≤

∞
∫

1

λn+4τm2+2e
−λ 1

2ν+5 dλ

≤ (n+ 4τm2 + 2)!2(ν+5)(n+4τm2).(2.39)

Thus, to prove C2), it is sufficient to show that

c0µν(n+ 4τm2 + 2)!2(ν+5)(n+4τm2) ≤ 1

2ν+2
,(2.40)

which clearly holds for ν = 0 if µ0 is sufficiently small. We now consider ν ≥ 1.
Since

µν = (16c0αν−1)
1
6µν−1 = (16c0)

ν−1
6 µ

19(ν−1)
18

0 ,

(2.40) is equivalent to

(2
5
3+n+4τm2+2c

1
6
0 µ

19
18
0 )ν−1c0(n+ 4τm2 + 2)!25(n+4τm2) ≤ 1,(2.41)

which also holds if µ0 sufficiently small. This proves C2).
C3) follows from (2.39) and a similar argument as above.
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To prove C4), we note that for any constant β > 0, ξ > 1, µβ(log 1
µ + 1)ξ → 0

as µ→ 0. Hence as µ0 (hence µν) sufficiently small, we have

3c0δµK
4m2τ+4m2

ν+1 = 3c0δµν([log
1

µν
] + 1)3(4m

2τ+4m2) < (1 − 1

24m2 ),

i.e. C4) holds.
Note that C5) is equivalent to

(2.42) µ
5
18
ν (Γ(rν − rν+1) + 1)4m

2+1 <
1

16
(16c0)

1
6 .

Since, by (2.39),

(Γ(rν − rν+1) + 1)4m
2+1 ≤ ((n+ 4τm2 + 2)!2(ν+5)(n+4τm2)+1)4m

2+1,

it is sufficient to show that

µ
5
18
ν (n+ 4τm2 + 2)!2(ν+5)(n+4τm2+2)+1 <

c
1

6(4m2+1)

0

16
7

6(4m2+1)

.(2.43)

Let λ � 1 be such that

µ0 <
1

(16c0λ
6×18

5 )3
≤ 1.

Then by induction

(2.44) µν = (16cµ
1
3
ν−1)

1
6µν−1 < · · · < 1

(λ
18
5 )ν

µ0.

Hence (2.43) holds if µ0 is sufficiently small.
It follows that the KAM step is valid for all ν = 0, 1, · · · , from which 1) follows.

In particular, (2.35) follows from (2.26), (2.42) and (2.44). Moreover, 2) follows
from (2.27)-(2.29) and (2.44), and, 3) follows from (2.30)-(2.32). �

2.3. Convergence and measure estimate. Applying Lemma 2.1 inductively we
obtain the following sequences:

Ψν = Φ0 ◦ Φ1 ◦ · · · ◦ Φν : Dν ×Oν → D0,

H0 ◦ Ψν = Hν = Nν + δPν ,

Nν = eν(ω) + 〈Ων(ω), y〉 +
1

2
〈z,Mν(ω)z〉, ν = 1, 2, · · · .

By (2.38) and Cauchy’s estimate, we also have

(2.45) |DPν |D(rν ,
sν
2 )×Oν

≤ 2γ4m2

ν µν , ν = 1, 2, · · · .
Let

O∗ =
∞
⋂

ν=0

Oν .

Then by Lemma 2.1 and (2.45), Ψν , Hν , Nν , e
ν , Ων , Mν , Pν converge uniformly on

D( r02 , 0)×O∗, say, to Ψ∞, H∞, N∞, e∞, Ω∞, M∞, P∞ respectively, and moreover,

H∞ = N∞ = e∞(ω) + 〈Ω∞(ω), y〉 +
1

2
〈z,M∞(ω)z〉.

Since H0 ◦ Ψν = Hν ,

ΦtH0
◦ Ψν = Ψν ◦ ΦtHν

.
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It follows that

ΦtH0
◦ Ψ∞ = Ψ∞ ◦ ΦtH∞

,

on D(
r0

2
, 0) ×O∗. This implies for each ω ∈ O∗ and 0 < δ < 1, (1.4) admits an

invariant, quasi-periodic n-torus with the Diophantine frequency ω. The Whitney
smoothness of these tori follows from a standard argument using the Whitney
extension theorem (see [21, 27] and references therein).

For measure estimate, we need the following lemma from ([21]).

Lemma 2.2. Let M(ω), ω ∈ O, be a family of symmetric, 2m × 2m matrices

and λ1(ω), · · · , λ2m(ω) be the eigenvalues of JM(ω) satisfying the Melnikov non-

resonant condition H1). Denote

A1k(ω) =
√
−1〈k, ω〉I2m −M(ω)J,

A2k(ω) =
√
−1〈k, ω〉I4m2 − (M(ω)J) ⊗ I2m − I2m ⊗ (M(ω)J), ω ∈ O, k ∈ Zn \ {0}.

Then the following hold.

1) For every k ∈ Zn \ {0},

detA1k =

2m
∏

i=1

(
√
−1〈k, ω〉 − λi),

detA2k =

2m
∏

i,j=1

(
√
−1〈k, ω〉 − λi − λj).

2) The set

{ω ∈ O : 〈k, ω〉 6= 0, detA1k(ω) 6= 0, detA2k(ω) 6= 0, ∀k ∈ Zn \ {0}}

admits full Lebesgue measure relative to O.

We are now ready to estimate the measure |O \ O∗|. Since

Oν+1 = Oν\
⋃

Kν<|k|≤Kν+1

Rν+1
k (γ), ν = 0, 1, · · · ,

we have

O \O∗ =

∞
⋃

ν=0

⋃

Kν<|k|≤Kν+1

Rν+1
k (γ).

By (2.36), we have that

|∂2m
ω Aν1k(ω)| = |k|2m((2m)! +O(

1

|k| + 1
) +O(δ + µ)),

|∂4m2

ω Aν2k(ω)| = |k|4m2

((4m2)! +O(
1

|k| + 1
) +O(δ + µ)),

where O( 1
|k|+1 ) and O(δ + µ) are independent of ν, ω. It follows from ([34]),

Lemma 2.2 that there is a positive integer n0 and a positive constant c such that

|Rν+1
k (γ)| ≤ c

γ

|k|τ ,
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for all ν and |k| ≥ n0. Let ν0 be such that Kν > n0 as ν ≥ ν0. Then

|
∞
⋃

ν=ν0

⋃

Kν<|k|≤Kν+1

Rν+1
k (γ)| ≤ cγ

∞
∑

ν=ν0

∑

Kν<|k|≤Kν+1

1

|k|τ = O(γ).(2.46)

To estimate Rν+1
k for 0 < |k| ≤ Kν , ν ≤ n0, we let γ, δ be sufficiently small such

that

Rν+1
k (γ) ⊂ R∗

k(γ) = {ω ∈ Oν : |〈k, ω〉| ≤ 2γν
|k|τ , or |detA0

1k(ω)| ≤ 2γ2m
ν

|k|2τm ,

or |detA0
2k(ω)| ≤ 2γ4m2

ν

|k|4τm2 }

for all 0 < |k| ≤ Kν , ν ≤ n0. Then by H1) and Lemma 2.2, |Rν+1
k (γ)| ≤ |R∗

k(γ)|
→ 0 as γ, δ → 0, uniformly for all 0 < |k| ≤ Kν , ν ≤ n0. Consequently,

|
ν0
⋃

ν=0

⋃

0<|k|≤Kν

Rν+1
k (γ)| → 0,

as γ, δ → 0. Combining this with (2.46), we have that

|O0 \ O∗| ≤ |
ν0
⋃

ν=0

⋃

0<|k|≤Kν

Rν+1
k (γ)| + |

∞
⋃

ν=ν0

⋃

Kν<|k|≤Kν+1

Rν+1
k (γ)| → 0,

as γ, δ → 0.
The proof of Theorem 3 is now completed.

3. Proof of Theorems 1 and 2

3.1. Reduction to normal form. Consider Hamiltonian (1.1). In order to apply
Theorem 3, we need to first remove the singularity of M(ω) by considering Mε(ω)
as in H3).

Let zε(ω) be as in H2) and consider the translation φ : x = x, y = y, z → z + zε.
Then

H̃ = H ◦ φ(x, y, z)

= ẽε(ω) + 〈Ωε, y〉 +
1

2
〈z,Mε(ω)〉 + εP̃ (x, y, z, ω),(3.1)

where

ẽε(ω) = ε[P ](0, zε(ω)),

Ωε(ω) = ω + ε∂y[P ](0, zε(ω)),

Mε(ω) = M(ω) + ε∂2
z [P ](0, zε(ω)),

P̃ (x, y, z, ω) = O((|y| + |z|)2) +
∑

k 6=0

∑

i,j

Pkijy
izje

√
−1〈k,x〉,

where O((|y| + |z|)2) is independent of x.

The Hamiltonian (3.1) is in the form (1.4) when δ = ε but the order of P̃ needs
to be improved in order for the condition (1.5) to satisfy. To improve the order
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of P̃ , a crucial idea is to perform one step of KAM iteration similar to that in
Section 2. Write

R =
∑

0<|k|<K1,2|i|+|j|≤2

Pkijy
izje

√
−1〈k,x〉,

I =
∑

0<|k|<K1,2|i|+|j|≥3

Pkijy
izje

√
−1〈k,x〉,

II =
∑

|k|≥K1,i,j

Pkijy
izje

√
−1〈k,x〉

for some K1 > 0 to be determined later. Then

P̃ = O((|y| + |z|)2) +R+ I + II.

Consider re-scaling y → ε
1
3 y, z → ε

1
6 z, H̃ → ε

1
3 H̃ . Then the re-scaled Hamiltonian

reads

H̄ =
H̃(x, ε

1
3 y, ε

1
6 z)

ε
1
3

= N̄ + P̄

N̄ = ēε + 〈Ωε, y〉 +
1

2
〈z,Mε(ω)z〉

P̄ = ε
7
6O((|y| + |z|)2) + ε

2
3 R̄ + ε

7
6 Ī + ε

2
3 ĪI,

where ēε, R̄, Ī , ĪI are obtained from their respective terms above via re-scaling. We
choose K1 such that

|ĪI |D(r,s)×O(r) ≤ ε.(3.2)

Then there is a constant c > 0 such that

|P̄ − ε
2
3 R̄|D(r,s)×O(r) ≤ cε

7
6(3.3)

for some constant c > 0. We note that K1 → ∞ as ε→ 0.
Next, similar to Section 2, we eliminate ε

2
3 R̄ by the symplectic transformation

Φ1
F , where

F (x, y, z) =
∑

0<|k|<K1,2|i|+|j|≤2

Fkijy
izje

√
−1〈k,x〉(3.4)

satisfies

{N̄, F} + ε
2
3 R̄ = 0.(3.5)

Similar to (2.17)-(2.20), the equation (3.5) is equivalent to the following system of
homological equations

√
−1〈k,Ωε〉Fk00 = ε

2
3 P̄k00,√

−1〈k,Ωε〉Fk10 = ε
2
3 P̄k10,

Aε1kFk01 = ε
2
3 P̄k01,

Aε2kFk02 = ε
2
3 P̄k02,
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which can be uniquely solved on the open domain

O0 =

{

ω ∈ O : |〈k,Ωε(ω)〉| > γ

|k|τ , |detAε1k(ω)| > γ2m

|k|2τm ,

|detAε2k(ω)| > γ4m2

|k|4τm2 , 0 < |k| ≤ K1

}

,

where

Aε1k =
√
−1〈k,Ωε〉I2m −MεJ,

Aε2k =
√
−1〈k,Ωε〉I4m2 − (MεJ) ⊗ I2m − I2m ⊗ (MεJ).

This yields a real analytic function F of the form (3.4) which also depends on ω

real analytically. We note by H1) and Lemma 2.2 that |O \ O0| → 0 as ε→ 0.
Similar to (2.23), we also have

|∂ix∂j(y,z)F |D( 3r
4 ,s)×O0(

r
4 ) ≤ c(r)

ε
2
3

γ4m2 , |i| + |j| ≤ 2,(3.6)

for some continuous function c(r) > 0. It follows from (2.24), (2.25) that if ε is
sufficiently small, then

φtF : D(
r

4
,
s

2
) ×O0(

r

4
) → D(

3r

4
, s), 0 < t ≤ 1,

and moreover,

|{R,F}|D(3r
4 ,s)×O0(

r
4 ) ≤ c

ε
2
3

s2γ4m2(3.7)

for some constant c > 0.
Now,

(3.8) H0 ≡ H̄ ◦ Φ1
F = N0 + εP0,

where

N0 = N̄

P0 =
1

ε
1
3

∫ 1

0

{tR, F} ◦ φtF dt+ (P̄ − ε
2
3R) ◦ φ1

F .

If we let δ = ε, r0 = r
4 , s0 = s

2 , then (3.8) is in the normal form (1.4), and by (3.3),
(3.7),

|P0|D(r0,s0)×O0(r0) ≤ c(ε
1
6 +

ε
1
3

s20γ
4m2 )

for some constant c > 0.

3.2. Proof of Theorem 1. Let 0 < a < 1
12 , 0 < b < 1

6 − 2a, 0 < β < 1
6 − 2a− b

be fixed constants and let ε be small such that s0 ≥ εa. Define γ = ε
b

4m2 and
µ = 2cεβ. Then

|P0|D(r0,s0)×O0(r0) ≤ γ4m2

s20µ.

Since H3) implies H5), all conditions of Theorem 3 are satisfied. Applying Theo-
rem 3, we obtain a subset O∗ of O0, with |O0\O∗| → 0 as ε→ 0, which parametrizes
a Whitney smooth family of quasi-periodic n-tori of (1.1). Since |O \ O0| → 0 as
ε→ 0, we have |O \ O∗| → 0 as ε→ 0. This proves Theorem 1.
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3.3. Proof of Theorem 2. Let

y = (I1, · · · , Ir),
x = (θ1, · · · , θr),
z = (Ir+1, · · · , Id, θr+1, · · · , θd).

We associate ω ∈ O with y0 ∈ G by ω = ∂yH00(y0) through the diffeomorphism
between G and O ≡ ∂yH00(G). Then up to a constant the Hamiltonian (1.3) under
the translation y → y+y0 reads

H = 〈ω, y〉 + εP (x, y + y0, z, ε) +O(|y|2).
After re-scaling y → ε

2
3 y,H → ε

2
3H , we have

H = 〈ω, y〉 + ε
1
3P (x, y, ω, ε),

where

P (x, y, ω, ε) = P (x, ε
2
3 y + y0, z, ε) + ε

2
3O(|y|2).

Replacing ε
1
3 by a parameter, again called ε, we obtain the Hamiltonian

H = 〈ω, y〉 + εP (x, y, ω, ε),

P (x, y, ω, ε) = P (x, ε2y + y0, z, ε) + ε2O(|y|2)
which is in the form (1.1) with M ≡ 0. Hence the Melnikov condition H1) holds
automatically, and H2), H3) are implied by H4), H5) respectively. Applying Theo-
rem 1, Theorem 2 follows.
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[22] Y. Li and Y. Yi, On Poincaré - Treshchev tori in Hamiltonian systems, Proc. Equadiff 2003,

to appear
[23] Z. Liang and J. You, Quasi–periodic solutions for 1D Schrödinger equation with higher order

nonlinearity, SIAM J. Math. Anal., to appear

[24] V. K. Melnikov, On some cases of the conservation of conditionally periodic motions under
a small change of the Hamiltonian function. Sov. Math. Dokl. 6(1965), 1592-1596

[25] V. K. Melnikov, A family of conditionally periodic solutions of a Hamiltonian system, Sov.

Math. Dokl. 9 (1968), 882-886
[26] J. Moser, On invariant curves of area preserving mapping of an annulus, Nachr. Akad. Wiss.
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