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SUMMARY

This dissertation focuses on solving problems for service systems improvement using

newly developed data mining methods. A large variety of problems fall under the service

systems category. Chapter 1 elucidates more on this and, also, the need of data driven

decision making for these systems. Among a large plethora of problems in this realm, this

dissertation attempts to solve three distinct and critical research problems. Chapter 1 briefly

discusses the motivation and challenges behind these problems, while Chapter 2-4 explores

each of them in detail and presents a novel solution.

In Chapter 2, a classical problem of accurately forecasting patient census, and thereby

workloads, for hospital management is studied. Majority of current literature focuses on

optimal scheduling of inpatients, but largely ignores the process of accurate estimation of

the path of patients throughout the treatment and recovery process. The result is that

current scheduling models are optimized based on inaccurate input data. We developed a

Clustering and Scheduling Integrated (CSI) approach to capture patient flows through a

network of hospital services. CSI works differently by clustering patients into groups based

on the similarity of paths, instead of admit, condition, or other physical attributes. To that

end, we develop a novel Semi-Markov model (SMM)- clustering scheme. The methodology is

validated by simulation and then applied to real patient data from a partner hospital where

we see it outperforms current methods. Further, we demonstrate that extant optimization

methods achieve significantly better results on key hospital performance measures under CSI,

compared with traditional estimation approaches, increasing elective admissions by 97% and

utilization by 22% compared to 30% and 8% using traditional estimation techniques. From

a methodological standpoint, the SMM-clustering is a novel approach applicable to any

temporal-spatial stochastic data that is prevalent in many industries and application areas.

In Chapter 3, data analysis problems in a special scenario — longitudinal data with

measurement errors but absence of replicates — is studied. Longitudinal data is commonly
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found across fields, and sometimes has measurement errors. Especially, if the data collection

has several processing stages, like MRI scans in medical fields. Multiple measurements

(replications) are often taken at the same time to gauge its error and correct the analysis.

However, obtaining replicates are sometimes not possible due to cost or associated risks,

for instance, MRI scans are taken at long intervals due to high costs. Inferences derived

from such erroneous data can be unreliable and, in medical diagnosis, can be fatal. We,

therefore, devise a new estimation approach, called as EM-Variogram, that utilizes the

autocorrelation aspect of longitudinal data to isolate the variance from measurement errors.

This estimation approach enables a more reliable data analysis and a powerful statistical test

of model parameters. Upon using this methodology on Alzheimer disease patients, we could

quickly and precisely detect any signal of decline in patients’ conditions. This can prove to

be extremely useful for providing any required treatment to the patients to improve their

conditions. Besides, other possible applications are also discussed in the chapter.

Chapter 4 works on one of the most commonly found data type – sequences. It has a

ubiquitous presence across fields, like, web, healthcare, bioinformatics, text mining, etc. This

has made sequence mining a vital research area. However, sequence mining is particularly

challenging because of an absence of an accurate and fast approach to find (dis)similarity

between sequences. As a measure of (dis)similarity, mainstream data mining methods like

k-means, kNN, regression, etc., have proved distance between data points in a euclidean

space to be most effective. But a distance measure between sequences is not obvious due to

their unstructuredness — arbitrary strings of arbitrary length. We, therefore, propose a new

function, called as Sequence Graph Transform (SGT), that extracts sequence features and

embeds it in a finite-dimensional euclidean space. It is scalable due to a low computational

complexity and has a universal applicability on any sequence problem. We theoretically

show that SGT can capture both short- and long- term patterns in sequences, and provides

an accurate distance-based measure of (dis)similarity between them. This is also validated

experimentally. Finally, we show its real world application for clustering, classification,

search and visualization on different sequence problems.

Lastly, Chapter 5 concludes the dissertation by summarizing the research contributions,

xiii



outcomes and future directions.
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CHAPTER I

INTRODUCTION

1.1 Background

A service system is a configuration of technology and organizational network or enterprise

developed and designed to deliver services that satisfy the needs, wants, or aspirations of

customers (Cardoso et al., 2014). They range from providing basic services, like, daily

consumer needs, to complex operations, like, healthcare, business, finance, weather forecast,

biological studies, etc. All service enterprises aspire to continually improve the quality of

their services for a better customer experience and gaining competitive advantages.

This urge for improvement has led to extensive investments in data collection infrastruc-

ture throughout the enterprise, primarily for the purpose of extracting useful information.

These information and knowledge are used for data-driven decision making (DDM) and

performance improvements. Economist Erik Brynjolfsson and his colleagues from MIT and

Penn’s Wharton School conclusively demonstrated the benefits of DDM. Brynjolfsson et

al., (2011) studied the effects of DDM on the performance of a system and showed that

statistically — even controlling for a wide range of possible confounding factors — the more

data-driven a system is, the higher productivity it has.

These developments have led to a significant growth in data collection for analysis. The

volume and variety of data have far surpassed the capacity of manual analysis. At the same

time, computing technology has seen tremendous developments. The convergence of these

phenomena has given a strong impetus to the development of more statistical learning and

data mining methods for application in these areas (Provost & Fawcett, 2013 and Friedman,

et al., 2001).

Over the past two decades several areas of research have focused on for system improve-

ment. Still we find critical deficiencies in performance of most service systems, providing a

large scope for new research.

1



In this dissertation, we focus on some of the important problem areas in this realm and

present our proposed statistical learning and data mining solutions to improve a system’s

performance. In the following section, we briefly explain the problems, the motivation behind

them, challenges, and our proposed solution.

1.2 Research topics

1.2.1 The Impact of Estimation: A New Method for Clustering and Trajectory
Estimation in Patient Flow Modeling

Despite of an overwhelming expenditure on healthcare, this sector is plagued with severe

inefficiencies in the U.S. There are about 37 million admissions in US hospitals every year,

however, the experiences of these patients are usually not pleasant. The wait times and

delays in service have become intrinsic and intractable in the healthcare system. A study

in 2007 shows about 1.9 million patients walk-out without treatment (Niska, et al., 2007).

Moreover, the inefficiencies sometimes lead to preventable medical errors. These medical

errors are fatal to patients, with losses estimated to be $21 billion and 10 million days of

lost productivity. In addition, there is about 20% increase in patient visits year-over-year,

which may make the situation worse if the inefficiencies are not addressed.

A cursory look on this problem would suggest a lack of adequate resources to meet

the demand, for which, an increase in healthcare resources should mitigate the problem.

However, contrary to this perception, a recent healthcare statistics survey shows an average

utilization of just 49% of hospital resources. A deeper look indicates that the fundamental

issue lies in the mismanagement of existing hospital resources.

Over last two decades, several researchers developed optimization models for optimal

resource scheduling. In fact, most current models, are efficient, scalable, and non-heuristic.

However, their performance relies primarily on the quality of patient flow estimations, for

which existing methods are still ineffective. Generally, hospital management has little or

ad-hoc knowledge about the expected patient flows at any point of time, leading to poor

utilization of their resources.

Therefore, the main challenge faced by healthcare systems is the estimation of patient

flow inside a hospital. There is a unanimous consensus among healthcare institutions, viz.

2



Joint Commission, Institute of Healthcare Improvement and Institute of Medicine, on “ac-

curate patient flow estimation as a panacea to the hospital system inefficiencies”.

Patient flow estimation is a non-trivial problem attempted by a few researchers. Sim-

ulation based methods were developed by Hancock & Walter, (1979), Hancock & Walter,

(1983), Griffith, et al., (1976), Harper & Shahani, (2002), Jacobson, et al., (2006), Konrad,

et al., (2013), Zeltyn, et al., (2011) to mimic patient flows and perform optimal resource

scheduling, but such methods are limited to specific case scenarios, and thus, difficult to

generically apply on any hospital system. Empirical patient flow distributions were used

by Helm & Van Oyen, (2015), after grouping the patients into homogeneous groups with

respect to their attributes, using methods like k-means, Diagnosis-related-groups (DRG),

classification trees, etc. (Fetter, et al., 1980 and Harper, 2005). These approaches highlight

and address a critical challenge in patient flow estimation – heterogeneity in patients. Any

general hospital witnesses a wide variety of heterogeneous mix of patients having different

age groups, genders, disease, diagnosis, nationality, etc.

However, these methodologies are built on a weak assumption: patients with same at-

tribute will exhibit similar flows inside a hospital. For example, two patients with same age

group, sex and diagnosis, are assumed to have similar flows. On the contrary, we find that

patients with same attributes can have entirely different paths — a possible reason being

inability of capturing all patient attributes that characterizes his/her path.

We, thus, develop a novel semi-Markov mixture (SMM) model clustering that groups

patients based on similarity of their paths and, also, estimates the path distributions for

each group. The proposed clustering method models a patient flow as a semi-Markov pro-

cess. A semi-Markov process is a stochastic process that satisfies the Markov property (i.e.

conditional probability distribution of future states of the process depends only upon the

present state) and has different holding time distributions for each possible transition be-

tween states. In a patient-hospital scenario, a state is the location or ward of the patient at

any point of time.

The semi-Markov assumption on patient flow has been proposed and proved in early

works by Thomas (1968), Kao (1972, 1974), and Weiss et al. (1996). Similar stochastic
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process are found in data collected for weather, human behavior (say, purchase pattern,

click streams), gambling, birth-death processes, etc. Many such problems require clustering

the flow (trajectory) data. However, despite the importance of such clustering technique,

very few research has been done to address it.

Cadez et al. (2003) developed a Markov mixture model based clustering method. Their

proposed method made a significant development in addressing the above-mentioned prob-

lem. However, their model had a critical deficiency — assuming the same holding time

distribution for all possible transition between states. If applied to our problem, this will

lead into two important shortcomings, a) grouping patients into one cluster even when their

length-of-stays (LOS) in each state are different, and b) making inaccurate temporal esti-

mation of a patient’s location (ward).

The proposed SMM clustering is, thus, a significant contribution from a methodological

and application standpoints in several ways: a) it overcomes the foregoing shortcomings, b) it

accurately clusters a data with a spatio-temporal structure, and, c) it has broad application

beyond health care including user behavior analysis in online industry, weather forecast, etc.

To implement the methodology, we incorporate a Bayesian framework with non-informative

priors to address potential occurrences of missing information (transitions between certain

wards). EM algorithm was applied and closed form update rules were derived, which guar-

antees convergence. We, then, seamlessly integrate the clustering approach with a mixed

integer programming model for optimal resource scheduling. We call this framework as Clus-

tering and Scheduling Integrated (CSI) approach. The proposed CSI approach is/addresses

• Scalable: It can be applied on a hospital system of any size, with any number of wards

and discharge states, and any complex interconnections between them.

• Generic: Any specialty, for example infants or geriatric, or multi-specialty hospital,

for example community hospital, can use the CSI approach.

• Ward interactions: Unlike several existing methods, CSI takes into account the com-

plex connections, and thus, interactions between hospital wards — performs a holistic

optimization by treating the hospital as a system.
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• Patient heterogeneity : It effectively incorporates the phenomena that different patient

types behave differently, and thus, require different hospital resources/services.

Overall, the proposed approach effectively addresses the deficiencies of existing research and

significantly outperforms them in terms of accuracy and optimization. In this dissertation,

we present and discuss the approach in detail in Chapter 2, validate it using simulation, and

demonstrate its applicability and superiority over existing methods through a case study.

1.2.2 Longitudinal MRI Data Analysis in presence of Measurement Error and
absence of Replicates

Tremendous advancements have been made in measurement systems in various fields. Anal-

ysis of data acquired by measurement systems provides a basis for decision making and

planning. Therefore, the accuracy and precision of measurement systems is of special im-

portance. However, if the measurement system leads to significant amount of measurement

errors in the collected data, the resultant data analysis will be unreliable. Impact of any such

unreliable analysis can be quite adverse. Chapter 3 works on longitudinal processes under

such circumstances with a focus on medical decision making. It must be noted that poor

inferences can be even more severe and can have fatal consequences in medical diagnosis

and treatments.

Take for example, analysis of MRI scans of brain of Alzheimer disease patients. The

MRI scans are taken over time to collect longitudinal data. The scans are, however, under-

went several stages of image and other processing to yield some tangible metric levels. For

instance, size of hippocampal, a part of the brain. This multi-stage data collection process

can lead to inclusion of measurement errors.

An accurate data analysis of such data is rather straightforward if data replicates are

available — variance among replicates provide an estimate for the measurement error. In

fact, almost all measurement system error analysis methods rely on some type of replicates in

the data, discussed in the literature review in Chapter 3. On the contrary, some longitudinal

processes do not necessarily have replicates. Such scenarios are common if the data collection

is costly or has inherent risks in acquisition. For instance, in the above MRI example, data
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is collected at long time intervals due to high cost.

Under such circumstances, it is unclear whether the observed variance is due to an actual

change or because of measurement error in data collection. Besides, measurement errors

also inflate the variance of any true underlying effect, making the effect hard to detect. For

example, due to these errors, it can be difficult to detect if a patient’s condition is declining

over time due to a disease effect, or if she is positively responding to some treatment.

Such undetected effects can be particularly harmful for patients — it can lead to a late

detection or a poor treatment. Therefore, there is a critical need of a methodology that

can isolate any measurement error in the absence of replicates and provide an accurate data

analysis.

In Chapter 3, we develop a new estimation technique, called EM-Variogram, that utilizes

autocorrelation property in longitudinal data to use a special parametric error covariance

structure in a linear mixed effect (LME) model to decouple the measurement errors from

the overall error. The developed methodology is robust to missing values, a common phe-

nomenon in longitudinal data. Besides, it provides a more powerful statistical hypothesis

test due to isolation of the measurement errors. This leads to quicker and precise detection

of any true underlying effects.

Chapter 3 further discusses this problem and explores other related methods and their

shortcomings. The methodology development is then presented, and experimentally vali-

dated. Besides, its application is shown on analysis of progression of cognitive decline in

Alzheimer disease patients. Besides, other possible applications, outside of the medical field,

are also discussed.

1.2.3 Sequence Graph Transform (SGT): A Feature Extraction Function for
Sequence Data Mining

Sequences are pervasively found around us in diverse fields like healthcare, bioinformatics,

web, marketing, text mining, social science, etc. A sequence is a series of discrete objects

or events, e.g., BAABCCADECDBBA, sometimes also called as strings. A sequence of events are

closely related to a time-series, but, represent discrete events denoted by a set of symbols

or alphabets. Some examples of sequences are, web logs, music listening history, patient
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movements through hospital wards, DNA, RNA and protein sequences in bioinformatics.

This common presence of sequence data has propelled development of new sequence

mining methods. Some of its motivating applications are, a) understanding users behavior

from their web-surfing or buying sequences data, to serve them better advertisements, prod-

uct placements, promotions, and so on, b) assessing process flows (sequences) in a hospital

to find the expected patient movement based on her diagnostic profile, to better optimize

the hospital resource and service, c) analysis of biological sequences to understand human

evolution, physiology and diseases, etc.

The main challenge for these analyses is finding similarity between sequences. This is

particularly difficult for sequences because they are made of arbitrarily ordered alphabets for

any arbitrary length. A large amount of research has been done in this area, but still there

is a lack of an efficient method that can work on any sequence data. Several methods exist

in bioinformatics, like UCLUST (Edgar, 2010), CD-HIT (Fu et al., 2012), MUSCLE (Edgar,

2004), etc., but they cannot be easily extended to sequences outside of bioinformatics. Be-

sides, more common methods work on one of the following assumptions, i) sequence process

has an underlying parametric distribution, ii) similar sequences have common substrings, or

iii) sequence evolves from hidden strings.

Parametric methods usually work on a Markovian assumption, of first-order due to high

computation otherwise (Cadez et al., 2003 and Ranjan et al., 2015). This results in over-

simplification of the problem at hand by ignoring higher order correlations. Hidden Markov

model based approaches are also developed that relaxes the first-order constraint in the

observed sequence (HHblits: Remmert et al., 2012; Helske and Helske, 2016). However,

optimizing an HMM (finding optimal hidden states) is difficult and it is computationally

intensive, thus, affecting its generality and scalability. Moreover, if the distributional as-

sumption is invalid, these methods may yield poorer result.

Common substrings (like, n-gram, Tomović et al., 2006) and evolution-from-strings (Si-

yari et al., 2016) methods attempt to match substrings derived from sequences to measure

their similarity. In the former methods, optimizing length of common substrings for compar-

ison is difficult. Besides, the latter methods require a search in an unobservable universe to

7



find the hidden evolutionary tree of substrings, causing identifiability and accuracy issues.

To sum up, the existing sequence data mining methods lack in effectiveness due to the

absence of a good measure of (dis)similarity between sequences. It is known that distance

between objects in a euclidean space proves to be an efficient (dis)similarity measure. Almost

all mainstream data mining methods use a euclidean measure, e.g., in k -means clustering

the distance between objects (data points) within a cluster are minimized while distance

between clusters are maximized, in classification models, like SVM or logistic regression, the

distance of a boundary is minimized or maximized from the objects.

Therefore, in Chapter 4, we develop a Sequence Graph Transform (SGT) function, that

performs a feature extraction of sequences in a finite-dimensional euclidean feature space.

This can also be viewed as an embedding space, where the objective is to transform a

sequence into a feature vector, such that the features capture the sequence characteristics.

Besides, by definition, the embedding space has the same dimension for all sequences in a

data corpus. This will facilitate computation of (dis)similarity between two sequences by

measuring the distance between their embeddings. Simply put, (dis)similarity computation

will be finding a euclidean distance between the two sequences’ feature vectors.

While related methods fail in at least one of the following key challenges in sequence

mining, SGT addresses all of them: a) Feature mapping: Effective extraction of sequence

characteristics into a finite-dimensional euclidean space (a vector), b) Universal applicability:

This mainly requires absence of any distributional or a domain specific assumption, and a

small number of tuning hyperparameters, and c) Scalability: It relies on the computational

complexity, which should be small with respect to sequence length, size of the database and

the alphabets set.

SGT works by quantifying the pattern in a sequence by scanning the positions of all

alphabets relative to each other. We call it a graph transform because of its inherent inter-

pretation property as a graph, where the alphabets form the nodes and a directed connection

between two nodes shows their “association”. These “associations” between all alphabets rep-

resent the characteristic features of a sequence. A Markov model transition matrix can be

compared analogously with the SGT’s feature space, however, a) the associations (graph
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edges) do not represent a probability and SGT is non-parametric, and b) SGT captures

both short- and long- term patterns.

Chapter 4 presents this approach in detail and highlights the major contributions, viz. a)

development of a new feature extraction function, SGT, for sequences, b) a theoretical and

experimental evaluation of SGT, and c) illustration through real data examples that SGT

bridges the gap between sequence mining and mainstream data mining through implemen-

tation of fundamental methods, viz. PCA, k-means, SVM and graph analysis techniques for

sequence clustering, classification, visualization and search operations.
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CHAPTER II

THE IMPACT OF ESTIMATION: A NEW METHOD FOR

CLUSTERING AND TRAJECTORY ESTIMATION IN PATIENT

FLOW MODELING

2.1 Introduction

The mismatch between demand for and supply of medical services caused by high hospital

census variability has challenged hospital managers for decades. High census variability is a

common problem in hospitals and healthcare centers around the world. This problem leads

to poor quality of care, blocking in hospital wards, increase in inpatient length of stay and

ultimately causes significant increase in cost for both patient and hospital (Helm and Van

Oyen 2015). Aiken et al. (2002) studied the effect of overloaded nursing staff induced by cen-

sus variability and showed its effect on mortality rate, nurse burnout and job dissatisfaction.

A common approach to managing census variability in practice involves hospitals procuring

excess resources including material, staff, and equipment, leading to frequent instances of

under-utilization for very expensive resources (Griffin et al. 2012). A better approach is to

optimize the utilization of available hospital resources based on patient census estimations.

This long-standing problem has been termed the Hospital Admission Scheduling and Control

(HASC) problem, which can be decomposed into two main steps: census modeling (CM)

and resource scheduling (RS). CM estimates distributional information (typically mean and

variance) on patient census at the ward level, which is used as an input to the RS to find

the optimal resource allocation plans and schedules for elective inpatient admissions.

A significant body of work addresses the RS through a variety of optimization approaches,

however research on effective census models that integrate with RS is less developed. In this

paper we develop a CM method that integrates well with existing RS methods to solve the

HASC. We further demonstrate the importance of the CM component with respect to the

outcomes of the RS optimization; a factor that has, to our knowledge, been unaddressed
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in the current literature. Namely, the method of CM proposed by RS optimization papers

leads to markedly inferior optimization results when compared with our new method in a

case study based on data from our industry partner. To conclude this section, we give a

short description of the current state of the hospital census forecasting and optimization

industry from the experiences of our industry co-author and CEO of a healthcare analytics

company. Then we address the challenges posed by the gaps in CM theory that represent

a major hurdle for this burgeoning industry and discuss how our approach seeks to bridge

those gaps.

2.1.1 Real-world Challenges in the Hospital Census Forecasting Industry

Predicting future hospital census levels is a key challenge in the Hospital Admission Schedul-

ing and Control (HASC) problem. Without accurate forecasting mechanisms, controlling the

variability in hospital census levels is a major barrier to low cost, high quality inpatient care.

These consequences of inadequate forecasting are drawn from real-world experience, where

our co-author has worked with clients and collaborators globally - Asia, Europe and North

America. All the hospitals he has worked with experience significant mid-week congestion

and high levels of blocking.

Current methodologies used in hospitals are ineffective to solving the HASC problem.

Almost all the hospitals have lean teams focused on process improvement and some of

the bigger hospitals have small analytics teams that use rudimentary models which are

ineffective at implementing changes made to solve the HASC problem. All the work done

at the hospital level are reactive models (predicting census levels using historical census

means, and applying control by canceling surgeries the day before) versus proactive models

(implementing control measures in advance). Recently, some hospitals have been attempting

to shift to proactive measures. This has typically involved increasing capacity and lowering

utilization, which is cost prohibitive in the long-run. The real solution is to improve the

forecasting technology. The methods outlined in this paper have proven to be effective on a

conceptual level with results shared in the later sections.

Our collaborator, company XYZ (the real name of the company is currently disguised for
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the review process), is one of the first to provide a patient level forecasting tool; i.e. predict-

ing individual flows and trajectories of each type of patient entering the hospital. A patient

level forecasting and control tool is imperative for hospitals to effectively solve the HASC

problem. While forecasting is the backbone to the solution, XYZ also provides the ability for

hospitals to create what-if scenarios by modifying admission plans and schedules and to use

optimization techniques to customize a dynamic admission plan to minimize blocking and

surgical cancellations. This type of analysis and decision support is only possible through

patient-level forecasting as it requires understanding how patient-by-patient modifications

to the admission schedule impact hospital census and blocking. This is precisely the type

of forecasting that we propose in this paper. In fact, workload forecasting is not only useful

for bed planning purposes, but is key to allocating resources to the various aspects of the

hospital. Most notably, workforce planning for front and back end staff accounts for over

50% of the hospital costs. Based on the feedback received from XYZ clients, properly allo-

cating staffing reduces various costs, like overtime, and improves staff satisfaction. Overall,

it is one key in keeping hospitals profitable and delivering top quality healthcare. After

discussing the various needs of the hospitals, it is clear that the key issues in patient flow

management, staffing, and scheduling all rely on the critical role of forecasting flexibility

and accuracy.

One ongoing challenge for XYZ is the issue of defining Patient Types (PTypes) and

estimating their probabilistic trajectories over the course of their hospital stay, both of

which have a major affect on forecast accuracy. From a computational standpoint, it requires

clustering patients into groups, where each group represents one type of patient. Currently,

XYZ employs various forms of regressions to determine factors to group similar patients

together into clusters based on patient characteristics. Many assumptions must be made to

fit data into logical PTypes that are scalable and yet give enough information to statistically

differentiate patients and enable accurate forecasting. This includes applying numerous

heuristics and unfortunately, sacrificing the accuracy of the forecast. At XYZ, this process

is currently done manually for each hospital, often requiring weeks to months of effort to

properly tailor the PTypes for accurate forecasting. These issues of scalability, repeatability,
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Figure 1: Example of sample path outcomes of a stochastic location process for patient flow.
The x-axis shows the time after admission, while the y-axis denotes the ward the patient is
in at time t; each step is a change of ward for the patient.

and demonstrated statistical accuracy represent one of the major hurdles for XYZ and other

participants in the patient-level forecasting space. The methods presented in this paper help

solve a key problem in parameterizing models for each hospital. Specifically, by clustering

patients based on trajectory (rather than extrinsic characteristics as in current practice)

this paper significantly improves upon the currently time consuming and heuristic step of

assigning PTypes. Our approach is shown to be scalable, statistically rigorous, accurate,

and repeatable. This eliminates the time consuming, gestalt guess work inherent in current

practice and has proven to significantly increase forecast accuracy in addition to improving

the results from current decision support methods for admission scheduling.

2.1.2 Failures of Traditional CM Methods.

As noted in Fetter et al. (1980) and Helm and Van Oyen (2015), an appropriate HASC

model should have three characteristics: scalable to hospital of any size, considers ward

interactions, and accounts for patient heterogeneity. Most work in the RS step assumes that

patient types are given and uses simple methods for estimating patient trajectories, then

employs analytical techniques to capture key hospital metrics in an optimization model. A

patient trajectory is characterized by the transitions between wards in a hospital and patient

Length of Stay (LOS) in each ward, and can be expressed as a stochastic function called a

location process that maps time to a set of locations — see Fig. 1 for an example of two

sample path outcomes of a location process.

While the optimization methods are generalizable, the previous approaches to CM for
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RS optimization lack scalability and are not well suited for capturing patient heterogeneity

or sufficient depth in terms of ward interactions. In this paper we address these issues by

developing new methods for clustering patient location processes based on historical patient

flow data.

As an example of how clustering impacts scalability and patient heterogeneity, consider

the following. Many traditional approaches to HASC cluster patients by their diagnosis

related group (DRG) or admitting service. However, in working with a large hospital such

as our partner hospital, there can be close to one hundred such patient types with quite a few

of them being very rare. With such a large number of patient types we have found that there

is insufficient data to properly estimate patient trajectories even with two or more years of

historical data. When further including other important factors such as gender and age,

which have been found to be important in determining a patient’s trajectory, data scarcity

becomes an even larger problem. Current solutions include combining different patient types

that are deemed "similar" in order to have sufficient historical data for trajectory estimation.

This is a clustering problem. Deciding how to combine patient types, however, is a non-

trivial effort considering the entire location process (time and location) must be compared

to ensure an accurate pairing of two patient types. For example, two patient types may have

the same average length of stay (LOS) in the hospital but visit different wards. Another

example is if two patients visit similar locations with similar mean LOS, but one has a

skewed LOS distribution and the other does not. These factors can all have a significant

impact on census forecast accuracy (see Littig and Isken 2007). Because different hospitals

have different methods for categorizing patients (different admitting services, DRGs served,

etc.), this requires a lengthy and ad-hoc procedure to be performed at each new hospital,

significantly impacting scalability. For example, our industry co-author has indicated that

this process of clustering under current methods is unique to each hospital and can take

months to adequately determine patient types in large hospitals.

A second problem is that once the patient types have been identified, trajectories are

assigned based solely on what patient type the patient is identified as. For example, if

the patient is a bladder cancer surgery patient their cluster will be bladder cancer surgery.
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However, other factors that may impact the patient’s trajectory and LOS, such as age and

gender, cannot be considered after the patient types are defined. This approach is only

as good as the granularity of each cluster. However, the clusters are not defined based

on the shape of patients’ location functions, but rather on other factors available in the

data that are believed to be associated with the shape of the location function, but have

not been statistically validated. Finally, clusters cannot be too granular or data will be

insufficient. This phenomenon impacts both the ability to capture patient heterogeneity

and to accurately estimate patient paths because patients are forced into predefined groups

rather than assigned a type that most closely matches their projected trajectory.

In contrast, in this paper we develop a new clustering approach that clusters patients

directly according to similarity of their trajectories (which is what we want to estimate)

in a statistically rigorous manner, rather than using these ad-hoc proxies (e.g. DRG, age,

gender). Specifically, we seek to close the gap in the literature by developing new methods

for the CM step that provide more effective and scalable clustering of patient types, and

a better estimation of the patient trajectories for each patient type. The proposed model,

which we call clustering and scheduling integration (CSI) is scalable, captures the interactions

between hospital wards, and is capable of handling patient heterogeneity. CSI begins with

the CM module in which heterogeneous patients are clustered based on the similarity of

their trajectories. This provides patient types for accurate estimation of patient trajectories

and patient census distributions at the ward level. Finally, these estimates serve as inputs

to the RS module to find an optimal hospital resource schedule, which is then shown to

outperform the same optimization model using traditional CM methods.

For CM, we propose a novel semi-Markov mixture model (SMM) that integrates the

mixture clustering method and semi-Markov models accurately describing stochastic location

processes of patient trajectory. To the best of our knowledge, this SMM clustering technique

has not been proposed before in the literature, either for the HASC problem or any other

problem. The SMM not only clusters patients based on their trajectory, but also provides

accurate estimates for the trajectory distribution of each group of patients. In the RS

module, the output of the CM is fed into an MIP model similar to the model proposed by
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Helm and Van Oyen (2015) to find the optimal resource schedule for hospitals.

We further show through a case study using real data from a partner hospital that

system performance is significantly impacted by the quality of the input from the CM

step. In fact, using CSI to parametrize the optimization can enable up to a 50% increase in

elective admissions while maintaining the same level of blocking and internal congestion when

compared with the same optimization using the traditional estimation approach. Similarly,

it is possible to have higher ward utilization compared with traditional CM approaches

holding all other metrics constant.

The remainder of this chapter is organized as follows. We first review the literature

and position the paper in Sec. 2.2. Next, we develop the new CSI methodology in Sec. 2.3,

in which the SMM clustering method for CM is discussed in detail, followed by a brief

description of the MIP model used for RS. Then in Sec. 2.4 we use simulation to validate

the proposed CSI model in terms of the accuracy of estimates and the optimality of solutions.

Finally, in Sec. 2.5, we apply our CSI methodology in a case study based on historical data

from a partner hospital.

2.2 Literature

Most existing research in the HASC area has focused on either CM or RS, separately, and

little work can be found on integrating CM and RS in a cohesive framework. Additionally,

existing HASC approaches lack at least one of the aforementioned characteristics of an

effective HASC model. The aim of this paper is to develop an HASC framework that is

scalable, accounts for patient heterogeneity, and considers ward interactions through effective

integration of CM and RS.

In the HASC literature, various stochastic and deterministic models have been devel-

oped for RS. Green (2006) and Armony et al. (2011) used queuing models for patient

arrival to optimize resource scheduling. Ward interactions were not taken into account in

either of these models. Unlike the queuing models, simulation models developed for RS are

more flexible and consider the interaction between wards, mostly by using patient pathways

between wards in a hospital. Examples of simulation-based models include Hancock and
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Walter (Hancock and Walter (1979, 1983)), Griffith et al. (1976), Jacobson et al. (2006),

Harper and Shahani (2002), Zeltyn et al. (2011), and Konrad et al. (2013). However, simu-

lation models are case-specific, cannot be easily generalized or scaled, and rely on the same,

less effective PType and path estimation techniques mentioned earlier. Adan et al. (2009),

Bekker and Koeleman (2011), and Zhang et al. (2009) used Mixed Integer Programming

(MIP) models for optimal RS. These works, however, only focus on either one ward or an

isolated feed-forward subset of the hospital, ignoring ward interactions. To address this

issue, Helm and Van Oyen (2015) proposed a non-heuristic MIP scheduling model that also

used patient pathways to model ward interactions of an entire hospital. Although the RS

portion of the model is scalable and considers ward interactions, it does not properly handle

patient heterogeneity. Moreover, an empirical method (similar to the traditional method

described above) was used to estimate the patient census at the ward level, which we show

can degrade the value of the optimal solution.

For RS optimization to be maximally effective, an accurate CM is required to estimate

patient arrival rates, their trajectory through the hospital, and, by combining arrival and

trajectory, the patient census at both the ward and hospital levels. Regression analysis

and time-series modeling have been widely used for forecasting inpatient admissions and

hospital occupancy (Channouf et al. (2007), Earnest et al. (2005) and Jones et al. (2002)).

Abraham et al. (2009) reviewed and compared several models for forecasting daily emergency

inpatient admissions and occupancy. They found that the admissions are largely random

and hence non-predictable, whereas occupancy can be forecasted using a model combining

regression and ARIMA, or a seasonal ARIMA, for up to a week ahead. Their model is

capable of forecasting the overall hospital occupancy, but not the occupancy at the ward

level. Consequently, it does not take the ward interaction into account. These approaches

are also incapable of capturing what-if scenarios or optimization with respect to inpatient

admission decisions mentioned previously as a demonstrated need in the census forecasting

and decision support industry. Littig and Isken (2007) used occupancy flow equations to

estimate occupancy at different units or wards of a hospital. They predicted patient in- and

out-flow using time series and multinomial logistic regression models. They combined these
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predictions and fed them into a set of flow equations to find the net estimate of the number

of patients in a given ward. However, implementing this model in real time presents a major

challenge, as even a simple model requires coordination between a variety of real time data

sources and the computational burden of the method is high, so scaling this model to large

hospital would be difficult.

To model patient trajectory and LOS, Irvine et al. (1994) and Taylor et al. (2000)

proposed a continuous time Markov model for geriatric patients. This model, however, was

developed for few wards and lacks scalability. Moreover, the assumption that the LOS at

each ward follows the same exponential distribution is not often a good model of reality.

Faddy and McClean (2000) used Phase-type distributions for patient flow modeling. They

interpreted phase-type distributions as a mixture of components (phases) characterized by

the severity of patient’s illness. Marshall and McClean (2003) extended this idea and de-

veloped a model based on Conditional Phase-type distributions combined with a Bayesian

Network to be able to include a network of inter-related variables representing causality.

In phase-type methods, it is assumed that the process begins in the first phase and may

either progress through the phases sequentially or enter an absorbing state (see Fig. 2a).

Consequently, these methods cannot be extended to capture patient trajectories, where pa-

tients revisit a ward several times or transition from any ward to any other ward, which is a

significant feature according to our data. Thomas (1968) and Kao (1972, 1974) proposed a

semi-Markov model to predict recovery progress of coronary patients. This can model any

hospital system with complicated ward interactions in any direction (See Fig. 2b). Thus,

this model has scalability and can fully model ward interactions but is built only for a

“homogenous” mix of patients, i.e. coronary.

Patient heterogeneity is another challenge in CM and, consequently, patient trajectory

estimation. To address this challenge, Helm and Van Oyen (2015) partitioned patients

into homogeneous clusters with respect to their diagnosis using diagnosis related groups

(DRGs). DRGs have been also used by Fetter et al. (1980) for regional planning. Harper

(2005) provided a comprehensive review on clustering techniques, including CART, k-means,

neural network, etc. that use more patient attributes (e.g., age, sex, diagnosis) to find more
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(a) Phase-type model: Patients can transition in a sequential order or
leave the system

(b) Semi-Markov model: Any back and forth transition from any ward to
any ward is possible

Figure 2: Illustration of patient trajectory models for a hospital system

homogeneous clusters. The main assumption of the DRG and attribute-based methods is

that patients who belong to a cluster, follow similar trajectory and thus have similar expected

services. However, this is not necessarily true, because although patients in a cluster share

similar attributes (e.g., age, sex, diagnosis, etc.), they often have different trajectories as

pointed out by Littig and Isken (2007). As an example from the hospital data used for our

case study in Sec. 2.5, Fig. 8a shows that although two patients shared the same age, sex,

and diagnosis, their trajectories were very different.

In conclusion, the problem of trajectory estimation from a heterogeneous cohort of pa-

tients is important. Still, to our knowledge, existing literature lacks in addressing at least

one or more challenges among: scalability, ward interaction, and heterogeneity. In the next

section, we propose and develop our methodology to solve the problem and address all three

challenges.

2.3 Clustering and Scheduling Integrated (CSI) Model for HASC

Fig. 11 provides a high level overview of our methodology. First, historical patient flow data,

taken from admit-discharge-transfer (ADT) records, is used to group the patients based on

their trajectory using a semi-Markov Mixture (SMM) model based clustering approach. The

parameters for the semi-Markov processes that model patients’ stochastic location processes

(trajectories through the hospital) for each patient cluster are estimated as a part of the
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Figure 3: Clustering and Scheduling Integrated (CSI) Model overview

clustering process. These stochastic location processes are then combined with a model of

the non-stationary patient arrival process to form a stochastic process (a Poisson arrival-

location model or PALM, see Massey and Whitt (1993)) that captures the ward-network

census levels. Estimation of this stochastic network census process enables the derivation

of three important products for hospital managers: (1) Descriptive: accurate census fore-

casting, (2) what-if scenarios regarding potential modifications to admission schedules, and

(3) Prescriptive: a Mixed Integer Programming (MIP) based elective admission scheduling

optimization.

2.3.1 Novel Semi-Markov Mixture (SMM) Clustering for Modeling Patient
Trajectories

When a new patient arrives to the hospital, they are initially assigned a bed in a hospi-

tal ward. The patient will stay at that ward for a stochastic duration and then may be

transferred to another ward or be discharged from the hospital. This process repeats if the

patient is transferred to another ward of the hospital.

A general hospital serves a cohort of many different types of patients. Each type of

patient requires different services (or resources) which can be identified by the trajectory

they follow during their hospital stay. The first task is to identify patient types through

clustering. As mentioned previously, conventional clustering methods are not applicable

to this problem due to the fact two patients with the same observed attributes often have

different trajectories.

To manage the heterogeneous mix of patients in a hospital, we develop a semi-Markov

mixture model for clustering based on patient trajectory rather than predefined groupings

based on patient attributes. Patients in each cluster are assumed to follow a semi-Markovian
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trajectory through the hospital, which has been validated in the literature (e.g. Hancock

et. al. 1983). The SMM produces three important products that significantly improve

the generality and scalability of our method: (1) appropriate patient groupings based on

trajectory, (2) the optimal number of patient types, and (3) accurate trajectories for each

patient type. In Sec. 2.5, we show that this approach yields more efficient patient clusters

and more accurate trajectory estimations than traditional approaches.

Moreover, to the best of our knowledge, there is no existing approach for developing

a semi-Markov mixture model and using it for clustering spatio-temporal data. In this

section, we formulate a semi-Markov mixture model, and develop new EM-algorithm steps

for clustering and estimating the semi-Markov process parameters.

2.3.1.1 SMM Model Structure

Let K be the set of unknown patient types, where each patient type’s trajectory follows

a unique semi-Markov process. The population of patient trajectory data, thus, follows a

mixture of an unknown number of semi-Markov processes equal to |K|. Each mixture com-

ponent, which we call a cluster henceforth, has a different semi-Markov process distribution.

The first step is to determine the set of clusters ( ' K) and estimate their corresponding

trajectory distributions.

Consider a sample of trajectory data for N patients observed over a maximum time

period of length T . Time is measured by discrete units, for example, a day, quarter of day,

hour, to be chosen depending on the desired granularity. Thus, the set of possible length of

stays is denoted by T , where the maximum of T corresponds to T . Let U = {U , Ū} denote

the set of all states (wards) where U is the set of all transient states and Ū is the set of

all absorbing states. The first state when the patient enters the system (hospital) is called

the initial state and the last state, which is an absorbing state, indicates a patient’s end of

stay in the form of discharge or death. All the states during the patient’s hospital stay are

transient states. The set of initial and transient states are the same, as a patient may enter

the hospital at any arbitrary location.

A patient’s trajectory is denoted by a random variable Y . An observed patient trajectory
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with L−1 transitions is represented as y = ({u1, ν1}, . . . , , {uL, νL}), where ul ∈ U indicates

the visited ward, νl ∈ T is the length of stay at the corresponding ward and subscript

l, l = 1, 2, .., L, indicates the sequence of ward visits (state and ward are used synonymously

in this paper). This model can capture general network behavior, as there is no restriction

on the number of times a patient can visit any particular ward.

We formulate the problem by defining a set of parameters, Θ = {Θ(k)}, k ∈ K.

Each Θ(k) is comprised of the mixture weight, π(k), and semi-Markov process parameters,

{ρ(k), P (k), H(k)}, for the k-th mixture. The mixture weight, π(k), denotes the probability

of a patient belonging to cluster k. Letting Z be a hidden variable representing the cluster

index, then the mixture weight can be expressed as, π(k) = pΘ(Z = k). Also,
∑

k∈K π
(k) = 1.

Of the remaining mixture parameters, ρρρ(k) = {ρ(k)
i }, i ∈ U , denotes the initial state

probability. It can be expressed as ρ(k)
i = pΘ(u1 = u|Z = k), the probability of the first state

of a patient trajectory from cluster k being at ward u. The matrix P(k) = [Pij ], i, j ∈ U , is

the transition probability matrix, where P (k)
ij = pΘ(ul = i|ul−1 = j, Z = k), the probability

of transitioning from ward j to i for a patient in cluster k. Finally, H(k) = [H
(k)
ij (ν)], i, j ∈

U , ν ∈ T , is a three-dimensional tensor representing the holding mass distribution, where

H
(k)
ij (ν) = pΘ(νl = ν|ul = i, ul−1 = j, Z = k) gives the probability of a patient in cluster k

spending ν time units in ward i, after transitioning to ward j from i. As {ρ(k), P (k), H(k)}

are probability distributions, the following hold:

∑
i∈U

ρ
(k)
i = 1,

∑
j∈U

P
(k)
ij = 1, and

∑
ν∈T

H
(k)
ij (ν) = 1 (1)

Using this parameterization, we represent the conditional probability of any patient i’s

trajectory, y(i), given it is generated by cluster k, in Eq. 2. The first part of the equation

is the initial state probability. The terms inside the product is the transition probability

times the holding time probability corresponding to the transition the patient made, and

the amount of time the patient spent at the ward before transitioning.
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pΘ(Y = y(i)|Z = k) = p(u
(i)
1 |ρ(k))

L∏
l=2

p(u
(i)
l |u

(i)
l−1; P(k))p(ν

(i)
l |u

(i)
l , uil−1; H(k))

= ρ
(k)

u
(i)
1

L∏
l=2

{
P

(k)

u
(i)
l−1,u

(i)
l

·H(k)

u
(i)
l−1,u

(i)
l

(ν
(i)
l )

}
. (2)

Consequently, by considering the probability of belonging to each cluster, k, the probability

distribution function (pdf) of the SMM model with K components is written as

p(y(i)|Θ) =
∑
k∈K

pΘ(Z(i) = k)pΘ(y(i)|Z(i) = k)

=
∑
k∈K

π(k)

[
ρ
(k)

u
(i)
1

L∏
l=2

{
P

(k)

u
(i)
l−1,u

(i)
l

·H(k)

u
(i)
l−1,u

(i)
l

(ν
(i)
l )

}]
. (3)

Given an i.i.d. sample of N patient trajectories, Y = {y(1), . . . ,y(N)}, the likelihood func-

tion is, thus, given by

pΘ(Y) =

N∏
i=1

p(y(i)|Θ) =

N∏
i=1

∑
k∈K

π(k)

[
ρ
(k)

u
(i)
1

L∏
l=2

{
P

(k)

u
(i)
l−1,u

(i)
l

·H(k)

u
(i)
l−1,u

(i)
l

(ν
(i)
l )

}]
. (4)

The parameters of the SMM mixture model, Θ, can be estimated by maximizing the

(log)likelihood function in Eq. 4. However, if there is no observed transition between any two

states or no instance of any particular length of stay, the likelihood function becomes zero.

To avoid this issue, we use a Bayesian approach that assigns very small prior probabilities

to all model parameters, denoted by p(Θ). Thus, according to Bayes rule, the posterior

probability for Θ can be expressed as p(Θ|Y) = p(Y|Θ)p(Θ)
p(Y) . Since p(Y) is independent of

Θ, it suffices to maximize the non-normalized posterior log-likelihood in Eq. 5 to obtain the

optimal Θ∗, also known as the maximum a posteriori (MAP) estimates of Θ.

Θ∗ = arg max
Θ

log {p(Y|Θ)p(Θ)} (5)

The optimization problem in Eq. 5 does not have a closed-form solution. Further, the

non-normalized posterior log-likelihood is a non-convex function and thus, the optimization

problem in Eq. 5 cannot be solved using standard convex optimization methods. As a result,

we develop an iterative expectation-maximization (EM) procedure in the following section

to obtain the parameter estimates.
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2.3.1.2 Parameter Estimation via Expectation-Maximization (EM) Algorithm

An Expectation-Maximization (EM) algorithm is an effective approach for learning maxi-

mum likelihood or maximum a posteriori (MAP) estimates, where the likelihood is a function

of unobserved latent variables (in our case, Z). It is an iterative approach comprising of

an Expectation (E-step) and Maximization (M-step) in each iteration. In the E-step of any

iteration p, we obtain a lower bound on the objective function by taking its expectation at

the current parameter estimate, Θ(p). Then, in the M-step, we re-estimate the parameters

(update), to obtain Θ(p+1), that maximizes the expectation from E-step. This procedure

results in an increase of the likelihood function, guaranteed convergence under some weak

regularity conditions that are satisfied in most practical situations (Wu 1983). The specific

EM algorithm we develop for the SMM mixture model is as follows:

E-step

We find the expected value of the maximum a posteriori function in Eq. 5 with respect

to the current parameter estimate, Θ(p), denoted by Q(Θ|Θ(p)) in Eq. 6.

Q(Θ|Θ(p)) = EΘ(p) [log(p(Y|Θ)p(Θ)] (6)

For a simpler expression of the Q function in Eq. 6, we define a membership probability

distribution. Membership probability, denoted by Ωik, is the probability of observing any

patient i’s trajectory, y(i), generated by cluster k, given parameters Θ (see Eq. 7).

Ωik(Θ) =
π(k)pΘ(y(i)|Z(i) = k)∑

k′∈K π
(k′)pΘ(y(i)|Z(i) = k′)

Ω(Θ) = [Ωik(Θ)], i = 1, . . . , N, k ∈ K (7)

The Q function, can thus be expressed as,

Q(Θ|Θ(p)) = EΘ(p) [log(p(Y|Θ)p(Θ)]

=
N∑
i=1

∑
k∈K

Ωik(Θ
(p)) log

[
π(k)pΘ(y(i)|Z(i) = k)

]
+ log p(Θ) (8)
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M-step

In the maximization step, the parameters that maximize the Q function are estimated.

The updated parameters are, thus,

Θ(p+1) = arg max
Θ

{
Q(Θ|Θ(p))

}
(9)

To solve Eq. 9, we will estimate the posterior of the parameters using a Dirichlet prior

probability distribution for Θ, p(Θ). The Dirichlet distribution is chosen because 1) the

parameters of a first-order semi-Markov mixture are in the form of multinomial probabilities,

which are suitably represented by Dirichlet distribution, and 2) the conjugate of Dirichlet

is also a Dirichlet distribution, thus posterior computation is straightforward.

For any set of multinomial parameters, x = (x1, . . . , xm), such that
∑m

i=1 xi = 1, 0 ≤

xi ≤ 1, a Dirichlet distribution is given by,

p(x1, . . . , xm|a1, . . . , am) =
1

B(a)

m∏
i=1

xai−1
i (10)

where ai’s are hyperparameters for x, and B(a) =

∏m
i=1 Γ(ai)

Γ (
∑m

i=1 ai)
, a constant factor for the

Dirichlet probability distribution function.

Using the prior probability distributions, assumption of independence of parameters,

and plugging Eq. 2 into Eq. 8, we obtain the posterior distributions. We show in Online

Appendix A, the posterior distributions are Dirichlet, and how to update parameters to

maximize Eq. 8.

The developed EM algorithm procedure is summarized in Table 1. We, first, initial-

ize each parameter. Then, for any iteration p, we compute the membership probabilities,

Ω(Θ(p)), given in Eq. 7 (E-step), followed by updating each parameter (M-step). Thereafter,

we compute the Q function. The E- and M-step are repeated until there is no significant

relative change in the Q function, to obtain the optimal estimates, Θ̂ = {Θ̂(k)}, k ∈ K.

As also mentioned before, the EM algorithm guarantees convergence to a local maxima.

Different initializations can be used to search for the global maxima.
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Table 1: Semi-Markov model (SMM) based clustering algorithm.

Given a value for number of clusters K and trajectory data of size N .

1 Initialization: Randomly assign a cluster to each data point and
compute the initial values of Θ(0) = {Θ(k)(0)} for k ∈ K based on it.

For iteration, p = 0, 1, 2, . . .

2.1 Compute the membership Ω(p)(Θ(p)) =
[
Ωik(Θ

(p))
]
for

i = 1, . . . N, k ∈ K using Eq. 7 by plugging in the values of Θ(p) in
Eq. 2.

2.2 The values of the parameters in Θ(k) =
{
π(k), ρρρ(k),P(k),H(k)

}
is

updated as per following equations (from Online Appendix A)

π(k)(p+1) =

∑N
i=1 Ωik(Θ

(p)) + a
(k)
π∑

k′∈K

[∑N
i=1 Ωik(Θ(p)) + a

(k′)
π

] for k ∈ K.
ρ

(k)(p+1)
u =

∑N
i=1 Ωik(Θ

(p))κ(u
(i)
1 , u) + a

(k)
ρ,u∑

u′∈U

[∑N
i=1 Ωik(Θ(p))κ(u

(i)
1 , u′) + a

(k)
ρ,u′

] for k ∈ K and

u ∈ U . κ(x, y)is an indicator function equal to 1 if x = y.

P
(k)(p+1)
uj =

∑N
i=1 Ωik(Θ

(p))κ̄uj(y
(i)) + a

(k)
P,uj∑

j′∈U

[∑N
i=1 Ωik(Θ(p))κ̄uj′(y(i)) + a

(k)
P,uj′

] for k ∈ K and

(u, j) ∈ U . κ̄uj(y(i)) is the count function equal to the number of times
transition was made from state u to j in trajectory y(i).

H
(k)
uj (ν)(p+1) =

∑N
i=1 Ωik(Θ

(p))κ̃uj,ν(y(i)) + a
(k)
H,uj(ν)∑

ν′∈T

[∑N
i=1 Ωik(Θ(p))κ̃uj,ν′(y(i)) + a

(k)
H,uj(ν

′)
] for

k ∈ K; (u, j) ∈ U and ν ∈ T . κ̃uj,ν(y(i)) is the count function equal to
the number of times transition was made from state u to j, in
trajectory y(i), when length of stay at state u was ν time units.

a ∈ (0, 1) denotes the hyperparameter of the corresponding Dirichlet
prior distribution.

3 Compute Q(p+1) using Eq. 8.

4 Repeat 2-3 until convergence, to obtain the optimal estimates,
Θ̂ = {Θ̂(k)}, k ∈ K.
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2.3.1.3 Determining the number of clusters

To determine the appropriate number of clusters, we estimate the SMM model and compute

theQ function, which is analogous to the likelihood. We then increase the number of clusters,

|K|, stopping when there is no obvious change in the Q function (popularly known as the

elbow method). To ensure that redundant clusters are not created we perform pairwise

hypothesis tests with controlled type-I error for the identified clusters. We use the Chi-

square hypothesis test developed by Billingsley (1961a, 1961b) for comparing transition

probabilities and Kolmogorov-Smirnov for comparing the distributions on the initial state

and the holding time. We merge any clusters that are found similar by these tests and

then perform the tests again in iterative fashion until no redundant clusters are detected. A

similar approach for removing redundant clusters was used by Weiss et. al (1982).

2.3.1.4 Trajectory estimation for each cluster

After parameter estimation, the next step is to estimate the patient trajectory distribu-

tions which are characterized by the visited wards and length of stay at each ward. Using

the selected number of clusters and corresponding semi-Markov process estimates from the

previous step, we compute the probability distribution of patient trajectory, denoted by

Γ(d) = [γ
(k)
u (d)]; u ∈ U , k ∈ K and d = 1, 2, . . ., where γ(k)

u (d) is the probability that a pa-

tient of cluster k is in ward u after d days (we use a day as a time unit, ν). This distribution

is one of the key inputs to the scheduling optimization.

To estimate Γ(d) we use interval transition probabilities, Φ(k) = [φ
(k)
ij (d)]; (i, j) ∈ U , k ∈

K and d = 1, 2, . . ., where φ(k)
ij (d) is the probability that a patient in cluster k is in ward j

on day d, given that the patient entered the hospital in ward i. Recalling that, for a type k

patient, H(k)
ij (d) is the holding time probability distribution in ward i before transitioning to

ward j and P (k)
ij is the probability of transitioning from ward i to j, then φ(k)

ij (d) is computed

as
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φ
(k)
ij (d) = P

(k)
ij H

(k)
ij (d) + δij

∑
l∈U\{i}

∞∑
d′=d+1

P
(k)
il H

(k)
il (d′) +

∑
l∈U\{j}

d∑
d′=1

P
(k)
il H

(k)
il (d′)φ

(k)
lj (d− d′),

(11)

where δij =


1, i = j

0, i 6= j

and φ
(k)
ij (0) =


1, i = j

0, i 6= j

. A patient starting in state i can be

in state j on day d either if the patient stays in ward i for d days before transitioning to

ward j (the first term of Eq. 11), or i = j and they never left i during the period [0, d] (the

second term of Eq. 11), or the patient left i at least once and finally reached j by day d (the

third term of Eq. 11). Consequently, γ(k)
u (d) can be expressed as sum-product of all possible

initial states to ward u (Eq. 12).

γ(k)
u (d) =

∑
i∈U

ρ
(k)
i φ

(k)
iu (d) (12)

γ computed here is used as an input to the scheduling model explained in next section.

The semi-Markov process estimates, Θ̂(k), can be used for finding the length-of-stay distri-

bution of each patient type as well as the expected mean length of stay in each ward and

its variance. Equations to compute these are given in the following subsection as they may

be useful for other research objectives or purposes.

2.3.1.5 Computing Patient length-of-stay distributions

Length-of-stay in a ward (V ).

For a patient of type k, we estimate the expected days spent by the patient in each

ward using the indicator function approach on the interval transition probability Φ(k). Let

V̄ (k) =
[
v̄

(k)
ij

]
; i, j ∈ U ; k ∈ K, where v(k)

ij denotes the number of days the patient will spend

in j given their initial state was in ward i. The mean of v(k)
ij can be computed using Eq. 13

given below.

v̄
(k)
ij =

∞∑
d=1

φ
(k)
ij (d) (13)
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The second moment of v(k)
ij is given by

v̄
2(k)
ij = v̄

(k)
ij (2v̄

(k)
ij − 1) (14)

Thus, the variance of the days spent by a patient in a state can be given by

v̌
(k)
ij = v̄

2(k)
ij − (v̄

(k)
ij )2 ∀i, j ∈ U . (15)

Total hospital length-of-stay (LOS).

To get the distribution for LOS for entire hospital stay, we will use first-passage-time

probabilities, denoted by F . F (k) =
[
f

(k)
ij (d)

]
, i, j ∈ U ; ν = 1, 2, . . . ; k ∈ K, where f (k)

ij (d)

is the probability that the first passage from state i to j will take exactly d days for patients

of type k. This event can occur if a patient makes a direct transition from i to j on day d, or

the patient transitions to any other state l on any day before d and then takes first passage

from l to j. The second component is recursive and thus takes into account any number of

transitions between any states (except the absorbing state) to reach from i to j in d days.

f
(k)
ij (d) = P

(k)
ij H

(k)
ij (d) +

∑
l∈U\{j}

∑d
d′=1 P

(k)
il H

(k)
il (d′)f

(k)
lj (d− d′). (16)

Using f (k)
iA , where A ∈ Ū , and the initial state probability ρ we can get the distribution

for LOS. f (k)
iA denotes the first-passage-probability for a patient’s flow from any initial state

i to a discharge state A. If the initial state is unknown then we use Eq. 17 . Otherwise if

the initial state is known, say l, then the distribution is given by f (k)
iA itself.

L(k)(d) =
∑
i∈U

ρ
(k)
i f

(k)
iA (d) d = 1, 2, . . . (17)

2.3.1.6 Elective and emergency inpatient census model

In this section, we describe how we integrate the semi-Markov stochastic location processes

generated from our SMM method with different arrival processes to create a stochastic
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ward census process. This section, as well as Sec. 2.3.2, present an elective scheduling

optimization approach focused on hospital patient throughput (i.e. admission volume) and

congestion (e.g. bed block, off-ward placement of patients) that is based on the work by

Helm and Van Oyen (2015). The purpose of these sections is to provide relevant background

for possible applications of our CM method in the hospital census forecasting industry as

described by our industry co-author. We use the aforementioned optimization approach

as a proof of concept to test the value of our improved CM method. These sections are,

therefore, intentionally brief and not intended to present new research in the area of resource

optimization. The focus of this paper is on the development and analysis of a CM method

(patient type clustering and trajectory estimation) that is designed to integrate with existing

optimization approaches such as the one presented herein.

There are two broad categories of patients that a hospital serves, elective (EL) and

emergency (EM). In developing our census model we separate the two because in the opti-

mization in Sec. 2.3.2, emergency arrivals are considered uncontrollable while the scheduled

elective arrivals become the primary decision variable. To integrate our SMM clustering

and trajectory estimates with the optimization as well as the what-if scenarios of interest to

the industry, we run the clustering method on EL and EM patients separately. Hence each

stream, EL and EM, will have its own set of patient types, K, with their own trajectories

determined by our SMM.

As explained in previous sections (2.3.1.1-2.3.1.3), we cluster the EL patients into ho-

mogeneous groups with similar trajectories. Trajectory estimates, one for each patient type

(cluster), are computed using Eqs. 11 and 12. Combining the EL arrival pattern with the

semi-Markov trajectory distributions for each patient type, discussed in Sec. 2.3.1.4, creates

a stochastic census process that can be used to calculate the distribution on patient demand

for beds at each ward at any time, t. The exact distribution depends on the arrival process.

For EL admissions we consider a deterministic arrival process, which, when combined

with the semi-Markovian patient trajectories, yields a Poisson-Binomial distribution on bed

demand at fixed time point t. The deterministic assumption is an approximation of reality,

but has been widely used in the literature due to the fact that elective arrivals are controlled
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and scheduled in advance. Therefore it is (1) theoretically possible to achieve close to a

deterministic arrival stream, (2) it is highly beneficial to patient flow for hospital managers

to work toward a deterministic elective arrival stream and should be a management priority,

(3) deviations from the deterministic arrivals can be incorporated for certain distributions

and approximated for others — particularly if the variance of the arrival pattern can be

adequately approximated as a linear function of the mean.

The uncontrollable arrival of emergency patients are taken into account by assuming

that their arrival pattern follows a non-homogeneous Poisson process that varies by day of

week. Combining these Poisson arrivals with the semi-Markov stochastic location processes

yields a Poisson-arrival-location model (PALM) of emergency census, (see Massey and Whitt

(1993) for more details). One feature of a PALM model is that the distribution on demand

for beds in any ward for fixed t follows a Poisson distribution.

Having defined the distribution on demand for beds for emergency and elective pa-

tients, we now briefly describe an optimization model from the literature (Helm and Van

Oyen (2015)) that is subsequently used to demonstrate the importance of a rigorous patient

trajectory estimation procedure. We designed our estimation approach to integrate with

optimization and what-if scenarios, with this particular optimization being used as a proof

of concept that (1) our method integrates well with current optimization approaches, and

(2) our method significantly improves the outcome of the optimization when compared with

traditional approaches proposed for use with these types of models.

2.3.2 Resource Scheduling (RS) MIP model for Elective Admission Scheduling

As mentioned above (Sec. 2.3.1.6), the schedule of EL admissions can be controlled while

EM arrivals are not in hospital’s control. The RS model we use as proof of concept inte-

grates both EM and EL census models to capture metrics such as blocking and off-ward

placement of patients. The two common objectives from the literature that we focus on are:

1) maximizing the number of elective admissions while constraining congestion metrics and

2) minimizing the congestion (e.g. blocking) while maintaining patient throughput. From a

management perspective, the first objective allows for increased revenue, while the second
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objective provides better access and consequently better outcomes for patients. For ease of

reference, we present this optimization model in Online Appendix B.

This concludes the presentation of our CSI approach that develops an optimal design of

patient types and trajectory estimations for integration into an inpatient admission schedul-

ing optimization model. In the next section we develop a simulation to validate the accuracy

of the SMM approach for patient clustering and trajectory estimation and to determine the

impact of the SMM on optimal solutions to the MIP model.

2.4 SMM Validation and Impact on Optimal Scheduling Solutions

In this simulation study, we considered a hospital system with four transient states (analo-

gous to wards), U = {u1, . . . , u4} and one absorbing state (analogous to discharge or death)

Ū = {D}. Flow sequences for 1000 patients were generated from four different semi-Markov

models (corresponding to four different patient types), denoted by C(1)
s , . . . , C

(4)
s . As two

clusters could be different in P, H, and/or both, we used the following setting that covers all

possible scenarios. In the data generating model, C(1)
s and C(2)

s have different P but same H,

C
(3)
s and C(4)

s have same P and different H, while C(2)
s and C(3)

s have different P and H. A

pictorial representation of the transition probability matrix combined with the initial state

probability is shown in Fig. 4a. In these plots, the darker the color, the higher the prob-

ability. The component mixture weights, π, of the four clusters are {0.17, 0.33, 0.25, 0.25}

respectively. Additionally, the assignment probabilities in the generating distributions were

set less than 0.7 to ensure that the simulation output would be similar to that of a general

hospital scenario.

2.4.1 Evaluating the accuracy of the SMM method

The proposed SMM mixture model was applied to the generated data for various numbers

of clusters and the Q function was plotted against the number of clusters, |K| as shown in

Fig. 5. As can be seen from the figure, the absolute slope of the Q estimates significantly

drops at |K| = 4 with estimated π̂ = {0.169, 0.332, 0.253, 0.246}, which indicates that the

true number of clusters and mixture weights were accurately identified by the SMM esti-

mation model. No similar clusters were found by the pairwise hypothesis tests discussed
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(a) Data generating transition probabilities (b) Estimated cluster’s transition probabilities

Figure 4: Pictorial representation of transition probabilities as a gray scale heat-map; with
higher intensity of gray for higher probability. The heat-map for generating and estimated
cluster transition probabilities are shown side-by-side for visual comparison.

Figure 5: Q function estimates against number of clusters for the simulated data. The
improvement in Q estimate becomes insignificant after 4 clusters.

in Sec. 2.3.1.3. To assess the accuracy of the estimated parameters π̂(j), ρ̂(j), P̂(j), Ĥ(j) for

each of the estimated clusters, we compared them with the parameters of the data gener-

ating model. The pictorial representation of estimated and true probabilities is shown in

Figures 4a and 4b, respectively. The high degree of similarity between the plots in these

two figures implies a highly accurate estimation of initial state and transition probabilities.

Additionally, we conducted Chi-square and Kolmogorov-Smirnov tests to verify the equality

of estimated and true parameters. The p-values of these tests reported in Table 2 are all

greater than 0.05, indicating that the equality of estimated and true parameters (null hy-

pothesis) cannot be rejected, i.e., they are statistically the same at 95% confidence level. In

summary, all the results show a clear one-to-one mapping between estimated and generating

(true) cluster parameters, demonstrating the effectiveness of our SMM clustering model at

identifying the underlying parameters of the patient flow system.
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Table 2: p-values for matched cluster parameters. Higher p-values compared to the signifi-
cance level indicates that the two compared distributions were same.

i j ρ P H

1 2 0.99 0.54 0.99
2 3 0.99 0.17 0.83
3 4 0.99 0.23 0.98
4 1 0.99 0.29 0.99

As discussed in Sec. 2.3.1.4 and 2.3.1.6, the MIP-scheduling model for RS uses the

estimated trajectory distribution of each patient type as an input. We, now study the

effect of the SMM estimates’ accuracy on the value of the optimal MIP solution. The MIP

scheduling model will give the true ‘optimal’ schedule, if it is given the true trajectory

distribution of all patient types. From the data generating model, we know the true number

of patient types and their underlying trajectory distributions. This is used to obtain the

optimal schedule and corresponding utilization (i.e., the scheduled ward workload over ward

maximum capacity). We use this optimal schedule as the baseline and compare it with the

MIP solutions obtained from estimated trajectories. Specifically, we compare the increase

in elective admissions and resource utilization under the optimal schedule when using the

true trajectories as input against that of, a) our CSI approach that utilizes the trajectory

estimates from SMM in the MIP model, and b) traditional approach that uses empirical

trajectory estimates to find the MIP solutions.

2.4.2 Estimation using the traditional approach

In the traditional approach, patient attributes including age, gender and diagnosis are used

to identify patient types using a conventional clustering method (e.g. k-means clustering).

Then, the trajectory distribution is empirically estimated for each patient type and these

estimates are used in the MIP model. Data generation and estimation for the traditional

approach is described in the following Sec. 2.4.2.1 and Sec. 2.4.2.2. First, attributes were

assigned to each patient according to the method presented in Sec. 2.4.2.1. Next, we used k-

means clustering, with four clusters, to perform the attribute-based clustering. This should

yield a conservative estimate of the benefits of our method, since we are giving the traditional

method the correct number of clusters to begin with. In general, the traditional method
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will not choose the same number of clusters as the SMM method. For example, in our case

study of Sec. 2.5 our SMM found 32 clusters, where our industry co-author noted that,

using age and DRG the traditional method would have found over 100 clusters. Finally, the

traditional approach from the literature for empirical estimation of patient trajectories is

applied to each cluster, the method for which is summarized in Sec. 2.4.2.2.

2.4.2.1 Assigning Patient Attributes to Clusters

In the data generation step, after patient trajectories were generated from four semi-Markov

processes, three attributes, viz. age, gender and diagnosis (with three diagnoses being D1,

D2, D3), were assigned to the patients such that any attribute triplet has the possibility of

being in any cluster; e.g. a 30 year old female with diagnosis D1 could potentially be from

any of the four clusters. This resembles real-world challenges involved in patient trajectory

estimation by simulating the fact that two patients with the same attributes may have

different trajectories; i.e. the attributes are not adequately capturing patient heterogeneity.

In practice, patient attributes are capable of capturing some of the patient heterogeneity so

we ensure that clusters contain patients whose attributes are mostly similar by adhering to

a near-Pareto principle (see the three attribute generating tables in Online Appendix C).

That is, clusters are composed mostly of similar patient attributes with a mix of patients

who have different attributes. This distribution of attributes is designed to be fair to the

traditional approach and capture the reality that attributes do have differentiating power,

but cannot completely specify a patients likely trajectory. More details are provided in

Online Appendix C.

2.4.2.2 Empirical Estimation of Patient Trajectories

Once the clusters have been formed using k-means clustering, the trajectory distribution

is computed for each cluster independently by normalizing the frequency of transitions of

patients between wards as follows:

1. ρ(k)
j =

∑N
i=1 κ(y

(i)
1 ,j)∑

j′∈U

[∑N
i=1 κ(y

(i)
1 ,j′)

] for k ∈ K and j ∈ U .

2. P (k)
jl =

∑N
i=1 κ̄jl(y

(i))∑
l′∈U [

∑N
i=1 κ̄jl′ (y

(i))]
for k ∈ K; j ∈ U and l ∈ U .
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3. H(k)
jl (ν) =

∑N
i=1 κ̃jl,ν(y(i))∑

ν′∈T [
∑N
i=1 κ̃jl,ν′ (y

(i))]
for k ∈ K, j ∈ U , l ∈ U and ν ∈ T .

2.4.3 Analyzing the value of the SMM approach to Census Modeling

In this section, we solve the maximum elective admission formulation presented in Sec. 2.3.2

and Online Appendix B. The figure shows the percentage improvement in the optimal model

setup, the proposed CSI method and the traditional method for two important performance

metrics, viz. elective patient admissions and ward utilization. As can be seen, the results

of CSI are very close to the optimum while the traditional method for patient typing and

trajectory estimation provides significantly less benefit in both performance metrics. As can

be seen in Fig. 6a, the improvement in elective patient admissions for the CSI was 81%,

which is close to the optimum (85%), while the improvement only reached 24% with the

traditional method. Also, for ward utilization, the CSI performed as well as the optimal

solution with an increase of 49%, while the traditional method shows an increase of only

24% (Fig. 6b). This improvement can be attributed to the accurate estimation of the patient

types and their trajectories which leads to better understanding of their flow between wards

and corresponding resource requirements for the MIP model.

The results of the simulation study indicate that our proposed CSI approach not only

accurately estimates the patient types and their trajectories for CM, but it also yields a

schedule in RS that is very near the true optimal, and significantly outperforms existing

HASC methods. This study is the first, to our knowledge, to quantify the impact of es-

timation approach on elective inpatient optimization solutions, and further demonstrates

the importance of effective estimation techniques (e.g. our SMM method) on patient flow

optimization.

2.5 Case study on real hospital data

In this section, we will study the impact of our integrated framework (CSI) on hospital

resource optimization at a partner hospital, and as a holistic tool for HASC problem. In

particular, we focus on validating the trajectory estimation and RS models, as forecasting

arrival streams is out of the scope of this paper. Hence, we take the arrival stream as given
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(a) Percentage increase in elective (EL) patients admis-
sion

(b) Percentage increase in ward utilization

Figure 6: Service level improvements for the three model setups: optimal, CSI and tradi-
tional. The improvement is measured for two metrics: number of elective patient admissions
and the ward workload. The results of CSI is very close to the optimal.

in order to independently evaluate the accuracy and impact of trajectory estimation on the

HASC problem.

We use historical data of patient admission and transitions in a hospital with 55 wards

including surgical, ICU/CCU, medicine, neurology, oncology, obstetrics, etc. This system is

a good example of a complex hospital system with general ward network structure, transfers

and blocking/congestion. We obtained one year of data from 2012, with about 11,000

patients who stayed at least one night in the hospital. The data set includes the patient

trajectory data, length-of-stay at each ward, and patient attribute data, for e.g. age, sex,

diagnosis, etc. The ratio of elective and emergency patients in the data is almost equal.

Patients have an average of 4.1 transfers before leaving the hospital through discharge/death.

We compare the performance of the CSI model with that of the traditional estimation model

to demonstrate the impact of our approach.

We begin with the CM step by applying SMM-based clustering on patient trajectory data

to identify patient types. From Fig. 7, we can infer that there are 32 patient types. Again, no

redundant clusters were found from pairwise hypothesis testing. The trajectory probability

distributions for each of these patient types are computed using Eq. 12. Simultaneously a

conventional partition based clustering, k-means, method is used to cluster patients based

on the patient’s attribute data. Since the criteria for finding the optimal number of clusters
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Figure 7: The estimated Q function against increasing number of clusters for the real data
in Case Study. It is observed that the improvement in Q function is not significant after 32
clusters.

with k-means are rather subjective and in order to have a fair comparison, we use the same

number of clusters as chosen by SMM (i.e., 32 clusters). This does not affect the optimization

in RS even if we have a few redundant clusters, but prevents the risk of suboptimal results

due to under-estimation of the number of clusters. Therefore, the benefits demonstrated

by this case study represent a conservative estimate of the true potential benefits when

compared to an application to a hospital in the real world. After performing k-means

clustering, empirical trajectory distributions are estimated for each patient cluster.

To verify our claims that two patients with similar attributes may not follow the same

trajectory, we observed two patients who were put into the same cluster using the k-means;

they were both male, aged between 55-65 years and were diagnosed for heart disease. Their

trajectories within hospital are shown in Fig. 8a. In this figure, patient#1 enters the cardiol-

ogy ward, transitions to the angiography center then to the neurology ward and finally back

to cardiology before leaving the hospital. Patient#2, on the other hand, begins their stay

in the surgical ward, transitions to the heart clinic, then the ICU, then the operating the-

ater, then to the ICU again and finally back to the surgical ward before getting discharged.

Although the observed attributes for both patients show similar profiles and a heart disease

diagnosis, the trajectories followed by these patients were very different. Observing their tra-

jectories more closely, one can see that patient#2 might have had a severe heart condition,

while patient#1 had a relatively milder heart condition only requiring angiography.

40



(a) Patient trajectories from a k-means cluster (b) Patient trajectories from a SMM based cluster

Figure 8: Trajectories of patients belonging to same cluster. It is observed that patients in
SMM based clusters follow more similar trajectories than k-means.

When employing our SMM-clustering method, we do not see such dissimilarity in patient

trajectories within one cluster. As an example, Fig. 8b shows trajectories of a few patients

from one of the clusters identified by the SMM approach. Most of the patients in this cluster

enter the hospital either in surgical or cardiology wards, then transition to the heart clinic,

ICU, operating theater and finally cardiology before leaving the hospital. There is one case

of patient#6 who entered the hospital in ortho and spine center, but then followed similar

trajectory of going to heart clinic, ICU, operating theater and finally cardiology. This could

be caused by a heart condition developing during an orthopedic admission, or possibly due

to initial off-ward placement (because the cardiology ward was full). It is interesting to see

that if we would have used the conventional attribute based clustering this patient would

have been put into a orthopedic related cluster, while the SMM approach was able to identify

the patient’s “true” cluster.

To test the impact of our SMM approach for improved clustering and trajectory estima-

tion on the RS optimization, we use the maximum elective admission formulation given in

Sec. 2.3.2 and Online Appendix B. The goal is to increase the volume of patients served,

thereby increasing revenues, while maintaining the same level of service and access. The

results are shown in Fig. 9, with Fig. 9a and Fig. 9b showing the percentage increase in

elective admissions and ward utilization, respectively, for the CSI and traditional methods

relative to the baseline current elective admission schedule of the partner hospital. Our CSI

method demonstrates a potential increase in elective admissions of 97%, while the tradi-

tional method can only achieve a 30% increase. As further validation that we are making
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(a) Percentage increase in elective (EL) patients
admission

(b) Percentage increase in ward utilization

Figure 9: Comparing the improvement in elective admissions and ward workload for pro-
posed CSI and the traditional method with respect to the current service and workload
levels using real hospital data.

the correct comparison, the 30% increase in elective admissions is comparable with increases

reported in other elective admission optimization papers in the literature. Moreover, ward

utilization improved by 22% for CSI, but only improved by 8% using the traditional method.

This case study of an actual partner hospital demonstrates the importance of an accurate

patient clustering and trajectory estimation method, as using our CSI not only provides a

more accurate forecast of the hospital stochastic workload process, but also dramatically

improves optimization solutions. Further, to the best of our knowledge, our CSI method is

the only approach in the extant literature that has all the properties required for effective

integration with admission scheduling optimization approaches: scalable to hospital of any

size, considers ward interactions, and accounts for patient heterogeneity.

2.6 Appendices

2.6.1 Appendix A: Derivation of SMM-clustering update expressions for EM
algorithm

In this appendix, we present the derivation of parameter update expressions for the EM

algorithm in Sec. 2.3.1.2. As mentioned in the section, we have to obtain the posterior

distributions of the parameters to find their optimal estimates that maximizes Eq. 8.

We use Dirichlet prior distributions, given in Eq. 10, for the parameters. The Dirich-

let hyperparameters for parameters in Θ = {π(k), ρρρ(k),P(k),H(k)}, k ∈ K are denoted by

{a(k)
π , a

(k)
ρ , a

(k)
P , a

(k)
H }, k ∈ K, respectively. For each model parameter, the hyperparameters
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can be set to equal values, if there is no specific prior knowledge (non-informative prior).

Besides, we assume the parameters are independent. Using it with the conditions on proba-

bility sums equal to 1 in Eq. 1 and parameter independence assumptions gives the following

expressions for prior probabilities,

p(π) ∝
∏
k∈K

(
π(k)

)a(k)π −1

p(ρρρ) ∝
∏
k∈K

∏
u∈U

(
ρ(k)
u

)a(k)ρ,u−1

p(P) ∝
∏
k∈K

∏
u∈U

∏
j∈U

(
P

(k)
uj

)a(k)P,uj−1

p(H) ∝
∏
k∈K

∏
u∈U

∏
j∈U

(
P

(k)
uj

)a(k)P,uj−1
(18)

Furthermore, using the parameter independence, the prior distribution for Θ is,

p(Θ) = p(π)p(ρρρ)p(P)p(H) (19)

Plugging Eq. 19 and Eq. 2 into Eq. 8, and using the hyperparameters mentioned in

Sec. 2.3.1.2, we get,
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Q(Θ|Θ(p)) = EΘ(p) [log(p(Y|Θ)p(Θ)]

=
N∑
i=1

∑
k∈K

Ωik(Θ
(p)) log

[
π(k)pΘ(y(i)|Z(i) = k)

]
+ log p(Θ)

=

N∑
i=1

∑
k∈K

Ωik(Θ
(p)) log

[
π(k)ρ

(k)

u
(i)
1

L∏
l=2

{
P

(k)

u
(i)
l−1,u

(i)
l

·H(k)

u
(i)
l−1,u

(i)
l

(ν
(i)
l )

}]
+ log p(π)p(ρρρ)p(P)p(H)

=

N∑
i=1

∑
k∈K

log

[(
π(k)

)Ωik(Θ(p))
(
ρ

(k)

u
(i)
1

)Ωik(Θ(p))

·

L∏
l=2

{(
P

(k)

u
(i)
l−1,u

(i)
l

)Ωik(Θ(p))

·
(
H

(k)

u
(i)
l−1,u

(i)
l

(ν
(i)
l )

)Ωik(Θ(p))
}]

+ log p(π)p(ρρρ)p(P)p(H)

∝ log

[∏
k∈K

(
π(k)

)(∑N
i=1 Ωik(Θ(p))+a

(k)
π −1

)]
+

∑
k∈K

log

[∏
u∈U

(
ρ(k)
u

)(∑N
i=1 Ωik(Θ(p))κ(u

(i)
1 ,u)+a

(k)
ρ,u−1

)]
+

∑
k∈K

∑
u∈U

log

∏
j∈U

(
P

(k)
uj

)(∑N
i=1 Ωik(Θ(p))κ̄uj(y

(i))+a
(k)
P,uj−1

)+

∑
k∈K

∑
u∈U

∑
j∈U

log
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(
H

(k)
uj (ν)

)(∑N
i=1 Ωik(Θ(p))κ̃uj,ν(y(i))+a

(k)
H,uj(ν)−1

)]

∝ log

[
π(k) ∼ Dirichlet(

N∑
i=1

Ωik(Θ
(p)) + a(k)

π )

]
+

log

[
ρ(k)
u ∼ Dirichlet(

N∑
i=1

Ωik(Θ
(p))κ(u

(i)
1 , u) + a(k)

ρ,u)

]
+

log

[
P

(k)
uj ∼ Dirichlet(

N∑
i=1

Ωik(Θ
(p))κ̄uj(y

(i)) + a
(k)
P,uj)

]
+

log

[
H

(k)
uj (ν) ∼ Dirichlet(

N∑
i=1

Ωik(Θ
(p))κ̃uj,ν(y(i)) + a

(k)
H,uj(ν))

]
(20)

where, κ(x, y) is an indicator function equal to 1 if x = y, κ̄uj(y(i)) is the count function

equal to the number of times transition was made from state u to j in trajectory y(i), and

κ̃uj,ν(y(i)) is the count function equal to the number of times transition was made from state

u to j, in trajectory y(i), when length of stay at state u was ν time units.

As shown in Eq. 20, the posteriors of the model parameters are Dirichlet distribu-

tions with updated hyperparameters. The posterior of any Dirichlet variable, x1, . . . , xm ∼
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Dirichlet(a1, . . . , am) is maximized at E[xi] =
ai∑m
i′=1 ai′

, ∀i. Thus, the parameter estimates

to maximize Eq. 8 are,

π(k)(p+1) =

∑N
i=1 Ωik(Θ

(p)) + a
(k)
π∑

k′∈K

[∑N
i=1 Ωik(Θ(p)) + a

(k′)
π

] , ∀k ∈ K.
ρ(k)(p+1)
u =

∑N
i=1 Ωik(Θ

(p))κ(u
(i)
1 , u) + a

(k)
ρ,u∑

u′∈U

[∑N
i=1 Ωik(Θ(p))κ(u

(i)
1 , u′) + a

(k)
ρ,u′

] , ∀k ∈ K, u ∈ U
P

(k)(p+1)
uj =

∑N
i=1 Ωik(Θ

(p))κ̄uj(y
(i)) + a

(k)
P,uj∑

j′∈U

[∑N
i=1 Ωik(Θ(p))κ̄uj′(y(i)) + a

(k)
P,uj′

] , ∀k ∈ K, (u, j) ∈ U
H

(k)
uj (ν)(p+1) =

∑N
i=1 Ωik(Θ

(p))κ̃uj,ν(y(i)) + a
(k)
H,uj(ν)∑

ν′∈N

[∑N
i=1 Ωik(Θ(p))κ̃uj,ν′(y(i)) + a

(k)
H,uj(ν

′)
] ,∀k ∈ K, (u, j) ∈ U , ν ∈ T

2.6.2 Appendix B: Elective Scheduling Optimization MIP Formulation

In this appendix we present, an optimization model from the literature (Helm and Van

Oyen (2015)). that is used to demonstrate the importance of a rigorous patient trajectory

estimation procedure. We designed our estimation approach to integrate with optimization

and what-if scenarios, with this particular optimization being used as a proof of concept that

(1) our method integrates well with current optimization approaches, and (2) our method

significantly improves the outcome of the optimization when compared with traditional

approaches proposed for use with these types of models. We begin by describing the model

parameters and then present the optimization model with brief description of the objective

and constraints. For a more detailed description of the optimization approach we refer the

readers to Helm and Van Oyen (2015).
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Sets

K set of all patient types

U set of hospital wards

Hospital parameters

ζ vector of ward capacities

η vector of total cancellations attributed for each ward

b limit on the average number of blockages per week

o vector of limit on the average number of off-unit patients allowed for each ward

µ
(k)
d current elective admission volume of type k patients on day d

µ̄
(k)
d maximum number of elective admissions of type k allowed on day d

R reward vector where Rk is the reward for admitting patient of type k

Patient trajectory and census distributions

γ
(k)
u (d1) probability that an elective patient of type k requires a bed in ward u, d1 days after

admission (trajectory distribution)

pu,d(n) probability that there are n emergency patients demanding a bed in ward u on day d

p̄d(n) probability that there are n emergency patients demanding a bed in the hospital on day d

Decision Variables

Ψ
(k)
d number of type k ∈ K patients scheduled on day d

δd,n number of blockages if there are n emergency patients in the hospital on day d

ό
u
d,n number of ward u off-unit patients on day d if there are n emergency patients in ward u

The patient trajectory and census distribution parameters are computed offline as ex-

plained earlier in this section. Since the PALM model for emergency patient bed demand is

exogenous to the decision variable, this too is calculated off-line, with the results captured

as pu,d(n) and p̄d(n). We consider a weekly planning horizon that repeats itself every week,
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generating a cyclo-stationary system that varies by day of week. The objective is to maxi-

mize the throughput of the sum of elective patient admissions (over the planning horizon)

of each type weighted by a "reward" vector R (1 denotes a column vector of all ones). The

reward vector gives flexibility to allow the model to treat one patient type differently from

another, for example, the model can prioritize one patient type over another with respect to

patient criticality, projected revenue generated by the admission, or other strategic priority.

The formulation is as follows:

max
Θ,δ,δ̂

R ·Ψ · 1 (21)

s.t.

δd1,n ≥ n−
∑
u∈U

(ζu −
7∑

d2=1

∑
k∈K

Ψ
(k)
d2
·
∞∑
n′=0

γ(k)
u (7n′ + d1 − d2)), (22)

d1 = 1, . . . , 7; n = 1, 2, . . .

7∑
d=1

∞∑
n=0

p̄d(n)δd,n ≤ b (23)

δd,n+1 ≥ δd,n d = 1, . . . , 7; n = 1, 2, . . . (24)

ό
u
d1,n ≥ n+

7∑
d2=1

∑
k∈K

Ψ
(k)
d2
·
∞∑
n′=0

γ(k)
u (7n′ + d1 − d2)− ζu − ηu

7∑
d=0

∞∑
n′=0

δd,n′ · p̄d(n′)

(25)

∀u ∈ U ; d1 = 1, . . . , 7; n = 1, 2, . . .

∞∑
n=0

pu,d(n)όud,n ≤ ou ∀u ∈ U ; d = 1, . . . , 7 (26)

ό
u
d,n+1 ≥ όud,n d = 1, . . . , 7; n = 1, 2, . . . (27)

7∑
d=1

Ψ
(k)
d ≥

7∑
d=1

µ
(k)
d ∀k ∈ K (28)

Ψ
(k)
d ≤ µ̄

(k)
d ∀k ∈ K; d = 1, . . . , 7 (29)

Ψ
(k)
d , δd,n, ό

u
d,n ∈ Z+
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The constraints of this model are primarily for constraining the blockages faced by the

patients, limiting off-ward placement, and respecting the hospital resource limits. Since the

purpose of this work is to demonstrate how CM can be improved by developing methods

that integrate with optimization, and not to provide new optimization methods, we briefly

describe the optimization presented here. Greater detail regarding this approach can be

found in Helm and Van Oyen (2015). Constraints 22 calculate the number of blocked

patients at the hospital level if n emergency patients are in the hospital on day d1. This

sets the helper variable, δd,n which is subsequently used to calculate expected blockages

according to the distribution on the emergency patient bed demand stochastic process in

the left hand side (LHS) of Constraints 23 by multiplying the indicator of whether the nth

patient would be blocked by the probability of seeing n emergency patients in the hospital.

The right hand side constrains the expected blocked patients to be less than some target

level, b, which can be chosen by management. Constraint 24 is a cut that is added to the

formulation that significantly improves model solution speed.

Similar to the constraints (Eq. 22-24) for blockages, we have constraints in Eq. 25-27

for approximating and limiting expected off-unit census. An additional term in Eq. 25,

ηu
∑7

d=0

∑∞
n′=0 δd,n′ · p̄d(n′), subtracted from the otherwise expected number of off-unit

census gives patients who were blocked and not able to be admitted to the hospital in

the first place.

Constraints in Eq. 28 ensures that the proper mix of patients is respected. Specifically,

it ensures that each patient type has at least as many admissions each week as they did

prior to optimization. Constraints 29 ensure that the model respects the hospital resource

capacity for a day. For example, hospitals frequently avoid admitting elective patients on

Sundays, which could be achieved by setting µ̄(k)
Sunday = 0.

2.6.3 Appendix C: Distributions for assigning attributes to patients in simula-
tion study

In Sec. 2.4.2.1, we assign physical attributes to patient for our simulation study. We perform

a conservative assignment, in favor of traditional patient clustering method, by giving higher

chance of patients within a true cluster having similar attributes. Table 3 below shows the
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Cluster Age
1 N(20, 3)

2 N(30, 3)

3 N(40, 3)

4 N(50, 3)

(a) Normal Distributions for
patient age

Sex
Cluster M F

1 80% 20%
2 20% 80%
3 70% 30%
4 30% 70%

(b) Uniform distribution for
patient sex within clusters

Diagnosis
Cluster D1 D2 D3

1 70% 20% 10%
2 20% 70% 10%
3 10% 20% 70%
4 80% 10% 10%

(c) Uniform distribution for patient di-
agnosis

Table 3: Generating distributions for patient attributes within true clusters

generating distributions for the patient attributes within each cluster. As shown in the table,

age is taken from a normal distribution with different means (Table 3a), sex and diagnosis

(Table 3b-3c) are taken according to a Bernoulli random variable with different success

probabilities. The distribution parameters are chosen such that there is high attribute

similarity (dissimilarity) between patients within (between) clusters.
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CHAPTER III

LONGITUDINAL MRI DATA ANALYSIS IN PRESENCE OF

MEASUREMENT ERROR AND ABSENCE OF REPLICATES

Longitudinal data, commonly found in healthcare and medical applications, contains a series

of measurements/data collected for a subject at different points in time. Several important

drug efficacy analysis such as assessment of effectiveness of a drug delivery system to cancer

cells and progress of patients’ condition on administering a drug, is done with the help of

such longitudinal data. Another application of longitudinal data is found in the area of

patient monitoring and diagnosis using magnetic resonance imaging (MRI). It is a medical

imaging technique that captures the anatomy and the physiological processes of a subject.

MRI scans are generally repeated over a period of time to yield a longitudinal data.

Such longitudinal data is analyzed to assess improvement or deterioration in patient’s con-

dition over time. MRI is commonly used in diagnosis of neurological cancers, dementia,

cerebrovascular disease, heart diseases, oncology, etc. The analysis of MRI data and their

extracted features have been widely studied in several disciplines. However, these analyses

often rely on a complete sanctity of the data, meaning the collected data has no inherent

error or corruptness. Contrary to this belief, it is very common that a measurement system

brings inherent errors in the recorded data. This is more common when the measurement

system has a multi-stage procedure. For example, MRI scanning entails a visual scan by

an MRI machine followed by steps for post-processing the image to obtain levels of vari-

ous biological markers. In each stage, the measurements/data can be contaminated by, for

example, patient movement while scanning, incorrect image processing, etc.

The presence of measurement errors in longitudinal data hampers an adequate assess-

ment of patients. As also stated by Carroll et al. (2006), it results in inflated variance of

signal estimates — which in patient diagnosis is translated to treatment effect on progress

of patient condition. This may sometimes mask the true effect or indicate a false effect.
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Despite its importance, the existence of measurement errors in longitudinal data analysis is

often ignored, leading to misguided conclusions. The impact of such inadequate assessments

can be extremely severe.

For example, consider a longitudinal MRI data of older patients to detect symptoms of

any cognitive decline (which leads to Alzheimer’s disease). Presence of measurement errors

in the collected data will inflate its variance. This can mask a true declining trend in a

patient’s condition, leading to delayed treatment, and possibly to Alzheimer disease, which

is the sixth leading cause of death among senior citizens in the U.S. Besides, in the other

scenarios, it may cause false signal detection on patients’ condition resulting in unnecessary

medications and cost burden.

To address this issue, it is imperative to estimate and isolate measurement errors for an

accurate data analysis. In the presence of replicates, this is rather straightforward — the

within-replicates variation can be easily estimated and considered as the result of measure-

ment errors. However, it becomes particularly challenging when there are no replicates.

The scenario of unreplicated data is quite common in longitudinal processes found in

medical applications. This can be attributed to high cost or potential health hazards (to

patients or operators) in acquisition of data, or to the limited availability of patients. For the

same reasons, the time intervals between two measurements are long. For example, the time

intervals between MRI scans of potential Alzheimer patients (used in this chapter as a case

study) is about 6 months or more depending on the patient’s availability. In such situations,

any observed variations can be due to either an actual change in the condition of the subject

of interest, or inherent measurement errors in the system. In addition, another challenge in

medical data analysis is missing values due to patients unavailability or dropouts. Although

several existing methods have tackled this issue, they all assume either measurement errors

do not exist or they are so small that can be neglected.

In this chapter, we propose a new methodology to accurately model a longitudinal pro-

cess in the presence of measurement errors in the data and the absence of replicates. The

outcomes and salient features of the proposed methodology are (1) the estimation of the
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measurement system variation and its separation from the process variation, (2) being ro-

bust to missing values, (3) the accurate pattern analysis of longitudinal data by removing

measurement variations, and (4) providing precise confidence interval for model parameters

leading to more powerful statistical testing. To achieve this, we utilize the fact that longi-

tudinal data are autocorrelated to decompose the overall error variance into measurement

errors, autocorrelation and random noises. This is done developing a new estimation method

that integrates a variogram estimation with an EM framework for mixed-effect regression.

The remainder of this chapter is organized as follows: In Section 3.1, we review the

relevant methods in the literature and discuss their drawbacks. Section 3.2 begins with

formulating the problem using mixed-effect regression. Then, we present the proposed EM-

Variogram technique for model parameter estimation under the absence of replication. Fur-

ther, we validate the methodology using extensive experimental simulations in Section 3.3.

As most longitudinal studies have missing values due to subject drop-outs, mistimed visits,

premature study termination, etc., we will also preform a sensitivity analysis on missing data

in this section. In Section 3.4, a case study of analyzing progression in Alzheimer’s disease

using longitudinal MRI is presented to illustrate the efficacy of the proposed methodology

in real applications.

3.1 Related Work

Longitudinal data analysis is a classical problem on which extensive research has been done

over past decades. Among this research, the commonly used methods can be listed as, mixed-

effect models, generalized estimating equations (GEE), and transitional models. Mixed-

effect models incorporate between-individual variations and within-individual correlations

in longitudinal data. GEE models the mean structure and correlation structure separately

without distributional assumptions for the data, while transitional models considers Markov

structures for within-individual correlations.

As Chaganty and Joe (2004) indicated the choices of valid working correlation matrices

can be very limited in GEE approach, restricting its applicability for modeling measure-

ment errors. Besides, the parameters in GEE have population average interpretations, and
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thus, does not capture the influence of explanatory variables on responses for heterogeneous

units. Moreover, transitional models can be mathematically and computationally challeng-

ing to incorporate measurement errors (Carroll et al., 2006). Mixed-effect models, however,

have been widely used for modeling longitudinal data with measurement errors. Carroll

et al. (2006) provided an overview of these models. They also pointed out the possibil-

ity of unreplicated data that makes a direct estimation of the measurement error variance

challenging. For illustration, a simple example of a data series with replicates is shown

in Fig. 10a. The total variation of the data, σ2
Total, can be decomposed into the variation

caused by the functional mean and the gauge variation. In this case, one can easily use a

traditional mixed-effect regression model (Laird and Ware, 1982) to estimate all variation

components including the gauge variation (caused by measurement system errors) as well

as the functional mean. However, as we can see in Fig. 10b, when replicated measurements

are not available, these variations are confounded and cannot be separated. To address this

issue, Carroll et al. (2006) proposed to use an instrumental variable (IV). An IV can be seen

as an additional covariate with some properties such as having no measurement errors or

being uncorrelated with other variables. However, in practice, such IVs may not be present

and a falsely assumed IV can lead to erroneous inferences.

Another significant body of literature focuses on measurement errors in the regressors

(covariates) in a longitudinal study. For example, Wang, et al. (1998) developed a gener-

alized linear mixed measurement error model that assumes a classical additive error on the

regressors. Higgins et al. (1997) and Wu (2002) describe a mixed-effects model where the

random effects depend on covariates measured with error. Contrary to this, in our prob-

lem the variable of interest, i.e. the response variable, potentially has measurement errors.

Although Abrevaya and Hausman (2004) stated that measurement errors in the response

variable can be ignored because it gets absorbed into the model residuals, it adversely affects

the signal detection power of the model. Carroll et al., 2006, studied the effect of these errors

on response variables and concluded that it increases the variability of the estimates, and

thus decreases the detection power. Buonaccorsi (1991, 1996) and Buonaccorsi and Toste-

son (1993) discussed some methods to address this problem. These methods relied on a
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error-free validation data and/or at least two independent unbiased replicate measurements

of response, which may not be available in practice.

Carroll et al. (2006), also mentions the use of repeated and reproduced measurements

for gauging the measurement error in the data modeling. This approach is part of a broader

gauge repeatability and reproducibility (GRR) analysis methods in the area of Measurement

System Analysis (MSA). Repeatability is referred to as the variation in measurements when

a characteristic is measured multiple times by the same measurement instrument (gauge),

appraiser and procedure, while reproducibility is defined as the variation of measurements

when a characteristic is measured by multiple measurement instrument (gauges), appraisers,

and/or procedures. The measurement system variability can be estimated using either or

both repeatability and reproducibility variations. There exists extensive research on GRR

analysis and several methods have been developed for estimating the measurement system

variability. Statistical control charts, e.g., X̄ and R charts, are commonly used for estimating

repeatability and reproducibility, in which X̄ chart provides a means for estimating the

reproducibility and R chart measures the consistency of each appraiser that pertains to

repeatability (MSA Manual, 2010). Analysis of variance (ANOVA) with random effects

is another GRR method widely used to estimate the components of measurement systems

variability (see Montgomery, 2001, Montgomery and Runger, 1993a, b, Borror et al., 1997,

Burdick and Larson, 1997, and Burdick et al., 2007 for more detail). Other GRR methods

include correlation coefficients analysis (Halligan, 2002), intra-class correlation (Bland and

Altman, 1986), measure of agreements (Barnhart et al., 2007) and repeatability coefficient

(Lexell and Downham, 2005, and Bland and Altman, 2003). GRR requires replicates of data

under stationary conditions, that is, when the distribution of the measured characteristic is

constant during the measurements. However, in longitudinal data, where the measurements

are taken over time, often the mean and variance of the measured characteristic are not

necessarily constant. Besides, as mentioned before, measurements may not be repeated or

reproduced at the same observation time (or in a very short interval) due to cost and/or

risk considerations. Thus, the existing GRR methods cannot be applied on this problem.
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(a) Replicated measurements at stationary in-
tervals. Measurement system error can be com-
puted from replicated measurements and decou-
pled from total error variance.

(b) Unreplicated measurements at stationary in-
tervals. Computation of measurement system er-
ror is challenging in such cases.

Figure 10: Longitudinal data with replicated and unreplicated measurements, respectively,
at stationary intervals.

3.2 EM-Variogram Variance Decomposition for Measurement Error Anal-
ysis in Longitudinal Data

As discussed earlier, this chapter focuses on measurement error analysis for longitudinal

data. In longitudinal studies, the variable of interest is measured over time on a randomly

selected sample of subjects. We formulate the longitudinal data analysis problem by using

linear mixed-effect models in which the total variation of a longitudinal dataset is comprised

of the functional mean (fixed effects), subject-specific (random) effects, measurement system

errors and autocorrelated noises. Although (restricted) maximum likelihood methods can be

used to fit a linear mixed-effect model and estimate fixed and random effects, these methods

only provide a confounded variance estimate and cannot decouple the measurement system

variance from the noise variance in case of unreplicated measurements (to be discussed in the

following subsection). To cope with this problem, we develop a new estimation approach by

integrating EM algorithm and Variogram. Our main assumptions in the proposed approach

are, 1) the modeling error caused by model mis-specification is negligible, and 2) noises are

autocorrelated, which is a valid assumption for most longitudinal data.

3.2.1 Problem formulation

Suppose we have a sample of longitudinal data measured over a random sample of units

of size N . The measurements are made at discrete observation times. The length of the
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longitudinal data and observation times can vary across units. This is because of missing

values resulting from unavailability or different availability times of a unit. We denote the set

of all discrete measurement times for all units in the sample as T , and Ti ⊂ T , i = 1, . . . , N

will denote the measurement times of unit i. We use a linear mixed effect (LME) model to

model the sample of longitudinal data as follows:

yi = Xiβ + Zibi + εεεi, (30)

where yi is the response vector for subject i consisting of |Ti| observations; β is a p×1 vector

of unknown fixed-effect parameters; and Xi is a |Ti| × p known design matrix for subject i.

The random effect parameters are unit specific and denoted by bi for subject i where bi is

a q × 1 vector of unknown random individual effects, assumed to be normally distributed

with zero mean and covariance Q, i.e., bi ∼ N(0, Q). Corresponding to bi, Zi ⊆ Xi is an

|Ti| × q known design matrix. εεεi is an |Ti| × 1 vector of error terms, assumed to be normally

distributed with N(0,Ωi) where Ωi is a |Ti| × |Ti| positive-definite covariance matrix.

Therefore, the conditional distribution of yi can be written as

yi|β,bi ∼ N(Xiβ + Zibi,Ωi) (31)

In the LME model in Eq. 30, the first term describes the overall trend over time, the

second term represents the deviations from the mean due to unit-to-unit differences, and the

error term, εεεi, includes both measurement system error and autocorrelated noises. Although

in theory, it is possible to assume a general (unconstrained) structure for the covariance

matrix of εεεi, in practice, the number of parameters are too large to estimate, and hence one

should assume a constrained structure such as autoregressive, exponential, gaussian, etc.

The elements of Ωi lump together the variance caused by measurement system error and the

variance of autocorrelated noises. We, therefore, use the following decomposed covariance

structure to decouple them (Diggle et al., 2002).

Ωi = τ2Ii + σ2Φφ(Ui), (32)
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where τ2 is the variance of the measurement system error; σ2 is the variance of random

noises; and Φφ(Ui) is a |Ti| × |Ti| autocorrelation matrix for the lag matrix U. Typically

an exponential or gaussian autocorrelation function, represented by Φφ(u) = e−φu and

Φφ(u) = e−φu
2 respectively, are used (see Diggle et al. (2002) for further detail). This

autocorrelation function, along with the factor of σ2, and the measurement system error

gives the covariance of error for subject i.

To simplify the model representation, we denote the vector of variance parameters by

θ = (ααα,Q), where, ααα = {τ2, σ2, φ}, and the vector of fixed and random effects by B = (β,b).

A restricted maximum likelihood (REML) method is traditionally used for estimating the

parameters of an LME (Laird and Ware, 1982). However, due to the decomposed structure

of the error covariance matrix in Eq. 30, REML cannot be used directly because, a) it is

easy to show that there is no analytical (closed-form) update expressions for the variance

parameters, ααα, for the REML’s EM estimation approach, b) numerically solving the REML

likelihood function with the decomposed variance structure can give inconsistent results

due to a complex objective function, and c) computing an unconstrained variance and then

fitting Eq. 32 to estimate ααα is not possible, as it will require estimating an Ωi for each unit

i = 1, . . . , N , which is very difficult with typically few data for each unit. Other estimation

methods, that solves for a linear mixed-effect model using either maximum likelihood or

REML objective function, for example, parameter expanded EM, will also suffer from the

same problems.

Another class of methods uses a full Bayesian approach with Gibbs sampling for estima-

tion, see for example, Zeger and Karim (1991) and Gilks et al.(1993). But a full Bayesian

formulation would require computation of posteriors or conditional posterior functions. This

is difficult if the underlying parametric model does not have a linear or log-linear structure,

as in Eq. 32. The conditional dependency of εεεi and its non-linear covariance structure, makes

development of a full Bayesian formulation unclear.

Therefore, in the following section (Â§3.2.2), we propose a new estimation technique,

called EM-Variogram, that can model the decomposed covariance structure and estimate

both the mean and variance parameters.
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Figure 11: The overview of estimation procedure

3.2.2 EM-Variogram for Estimating LME Model Parameters

A high level overview of the procedure is given in Figure 11. As shown in the figure, the

ultimate goal is to estimate θ = (ααα,Q) and B = {β,b}. We develop an EM framework, that

combines EM algorithm with Variogram estimation technique to solve for Model 30, yielding

θ̂ and B̂. The developed method is an iterative approach that takes in a longitudinal data,

and an initial value of variance parameters in θ as inputs. Within each iteration, update

rules derived from REML and Variogram estimation are used for updating θ and B, until

convergence. In the following, we will explain each part of the procedure in detail.

Unlike MLE, the restricted maximum likelihood (REML) approach yields smaller bias,

and hence, typically, used for LME parameter estimation. In REML, we construct a likeli-

hood that depends only on θ, to remove the effect of degrees of freedom lost in the estimation

of β. We use a Bayesian formulation where the fixed effect, β, and random effect, b’s, are con-

sidered as random variables. We take a flat prior distribution for β, p(β) ∼ N(β∗,Γ),Γ→∞,

which is a non-informative density and the choice of β∗ is immaterial. The prior for b is

chosen as p(b) ∼ N(0, Q).

Using the prior densities and assuming priors are independent, we can express the joint

log-likelihood as,
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log pθ(Y,B) = log pθ(Y |B)p(β)p(b)

= log pΩ(ααα)(Y |B) + log pQ(b) (33)

= G1(Ω(ααα)) +G2(Q)

where, G1(Ω(ααα)) = log pΩ(ααα)(Y |B) and G2(Q) = log pQ(b).

Using the distributional assumptions, we can further express G1 and G2 as,

G1(Ω(ααα)) = −
1

2

N∑
i=1

log det(Ωi(ααα))−
1

2

N∑
i=1

(yi − (Xiβ + Zibi))
TΩ−1

i (ααα)(yi − (Xiβ + Zibi))(34)

G2(Q) = −
1

2
N log det(Q)−

1

2

N∑
i=1

bTi Q
−1bi. (35)

Our objective is to solve,

arg max
θ

log pθ(Y,B). (36)

Since the objective function in Eq. 36 is non-convex with respect to θ, an expectation-

maximization (EM) algorithm is used to learn the parameters. The EM algorithm is an

iterative approach, where in each iteration, the expectation of the (log)likelihood is computed

(E-step), and parameters that maximize the expectation are estimated (M-step). By working

on the expectation of the likelihood, an EM algorithm becomes robust to the presence of

missing values, a common phenomenon in longitudinal studies.

In the following, we develop an EM approach for parameter estimation and show that

the EM approach alone is not suitable to estimate and decouple the components of Ω(ααα).

We, thus, use a Variogram estimation approach to estimate ααα and integrate it with the EM

algorithm to develop the proposed EM-Variogram estimation technique.

E-step

In the expectation step we find the expected value of the (log)likelihood in Eq. 33 with

respect to the “current” parameter estimate, θ(p) = {Ω(ααα(p)), Q(p)}, for any iteration index
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p, denoted by O(θ|θ(p)) and is given by O(θ|θ(p)) = Eθ(p) [log pθ(Y,B)] = Eθ(p) [G1(Ω(ααα))] +

Eθ(p) [G2(Q)].

For a simpler expression of the expectations, we first obtain parameters in B = {β,b}.

For a given variance parameters, θ(p), the marginal distribution of yi can be found by

yi = Xiβ + εεε∗i , where, εεε
∗
i = Zibi + εεεi are normally distributed as εεε∗i ∼ N(0,Σi(θ)) with

Σi(θ) = Ωi(ααα) + ZiQZ
T
i = τ2Ii + σ2Φφ(Ui) + ZiQZ

T
i .

Therefore, marginally, yi ∼ N(Xiβ,Σi(θ)). Consequently, the current estimate of β

given θ(p) can be computed as,

β(p) =

(
N∑
i=1

XT
i Σ−1

i (θ(p))Xi

)−1 N∑
i=1

XT
i Σ−1

i (θ(p))yi (37)

Also, the estimate for random effects, bi, will be the posterior mean, given below (see

Appendix A).

b
(p)
i = E [bi|yi] = Q(p)ZTi Σ−1

i (θ(p))
(
yi −Xiβ

(p)
)

(38)

The expectations of G1 and G2, derived in Appendix B, is thus expressed using β(p) and

b(p) as

Eθ(p) [G1(Ω(ααα))] = −
1

2

N∑
i=1

log det(Ωi(ααα))−

1

2

N∑
i=1

[
(e

(p)
i )TΩ−1

i (ααα)e
(p)
i + tr

(
Ω−1
i (ααα)cov(εεεi|yi; θ(p))

)]
, (39)

Eθ(p) [G2(Q)] = −
1

2
N log det(Q)−

1

2

N∑
i=1

[
(b

(p)
i )TQ−1b

(p)
i + tr

(
Q−1cov(bi|yi; θ(p))

)]
,(40)

where, e
(p)
i = yi − (Xiβ

(p) + Zib
(p)
i ), i = 1, . . . , N .

The above equations, Eq. 39-40, give the objective function O(θ|θ(p)) to be maximized

in the next step.

M-step
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In the maximization step, our objective is to estimate the parameters that maximize

O(θ|θ(p)). As shown earlier, this function is separated into two independent components,

Eθ(p) [G1(Ω(ααα))] and Eθ(p) [G2(Q)]. Therefore, we can maximize them independently to

obtain the updated parameter estimates. Direct maximization of Eq. 39 and Eq. 40 gives

the following parameter estimates (see Appendix C), also called the REML robust estimates,

Ω
(p+1)
i = e

(p)
i (e

(p)
i )T + cov(εi|yi; θ(p)), i = 1, . . . , N (41)

Q(p+1) =
1

N

N∑
i=1

[
b

(p)
i (b

(p)
i )T + cov(bi|yi; θ(p))

]
(42)

We use the update expression for Q in Eq. 42. However, as explained in Sec. 3.2.1,

we require a parametric structure of Ω to isolate the measurement error, rendering the

unconstrained estimate in Eq. 41 not useful. Although, one approach would be to estimate

Ωi’s from Eq. 41, plug the estimates in Eq. 32, and solve for the variance components,

but from a computational point of view, estimation of unconstrained covariance is difficult

because, a) given set of Ti measurements for a unit i, we require 1
2 |Ti|(|Ti|+1) parameters that

should be estimated from the data, and b) the presence of many missing values. Therefore,

REML robust estimates for Ω is not applicable in our problem.

We, thus, use a Variogram approach for estimating the covariance parameters in ααα. A

Variogram represents the difference variance of a stochastic process at two spatially or tem-

porally separated locations and can effectively model various covariance structures (Diggle

et. al., 2002). Variogram methods are popularly used in the field of Geostatistics to fit a

model with temporal or spatial correlations (Dutter, 2012). In the following, Variogram is

used to estimate the variance parameters from given residuals in the M-step of any iteration

p .

Variogram

For a given longitudinal data, we assume, E[εεε(t)] = 0, var(εεε(t)) = σ2
ε <∞, andcov(εεε(tj), εεε(tk)) ∝

|tj − tk|. Thus, εεε is weakly or second order stationary. A variogram for such processes is

defined by 2γ(νjk) = var(εεε(tj) − εεε(tk)) = E[(εεε(tj) − εεε(tk))2], where, νjk = |tj − tk| and

(tj , tk) ∈ V (νjk). Here V (νjk) = {(tj , tk) : |tj − tk| = νjk; tj , tk ∈ T }, which is the
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set of all combinations of observation times (tj , tk) such that they are apart by vjk (or

lag difference). A sample estimate of variogram for a lag ν is obtained from residuals as

2γ̂(νjk) =
1

|V (νjk)|
∑

V (νjk) [e(tj)− e(tk)]
2. For the decomposed covariance structure, de-

fined in this chapter, a theoretical expression for the variogram (Diggle et. al., 2002) is

γααα(ν) = τ2 + σ2(1− Φφ(ν)), (43)

where, τ2, σ2 and φ are the measurement error variance, autocorrelated noise variance

and autocorrelation effect parameters, respectively. In the context of a variogram, τ2 is

also known as nugget, σ2 as sill, and the autocorrelation effect corresponds to the range.

Figure 12 shows example of a variogram and illustrates the notations. From Eq. 43, it can

be seen that the theoretical variogram can be used to model the covariance parameters in

ααα used in Eq. 32. Therefore, estimating the theoretical variogram by sample variogram will

yield the set of estimates for covariance parameters. Two types of fitting techniques are used

for variogram: maximum likelihood methods and least squares methods. The least squares

methods are more suitable due to their non-parametric nature, geometric interpretation,

and simple framework. More specifically, we use weighted least squares method, which is

also more robust to outliers and missing values.

Estimation of ααα

For a given sample variogram estimates, γ̂ααα(p)(ν), and the theoretical variogram, γααα(ν),

we minimize the weighted least squares function, Hααα(p)(ααα) = lT
ααα(p)(ααα)W (ααα)lααα(p)(ααα), where

lααα(p)(ααα) = [f(2γ̂ααα(p)(νjk))−f(2γααα(νjk))]; ∀{(j, k); tj , tk ∈ T }, f is a transformation function

and W (ααα) is a weight matrix. As shown in Cressie (1985), and Das et. al. (2012), the

variance of logarithmic transformation of 2γ̂(ν) is proportional to
2

|V (ν)|
. Thus, we use this

transformation function and
2

|V (ν)|
as the inverse weight. This will result in

Hααα(p)(ααα) =
∑

∀{(j,k); tj ,tk∈T }

[log(2γ̂ααα(p)(νjk))− log(2γααα(νjk))]
2
|V (νjk)|

2
(44)
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Figure 12: Illustration of components of a Variogram

As shown in Das et. al. (2012) the estimates obtained from Eq. 44 is asymptotically

unbiased and has a smaller asymptotic variance. To summarize the variogram estimation, as

part of the EM-Variogram integrated approach, for any iteration p, we compute the sample

variogram, γ̂ααα(p) , from the given residuals e(p) and to estimate covariance parameters ααα by

ααα(p+1) = arg minαααHααα(p)(ααα). We use interior point method (Mehrotra, 1992) to obtain the

minima of Eq. 44. Other methods, like Newton-Raphson, Nelder Mead, etc. can also be

used for the minimization.

As can be seen, the variogram approach can effectively estimate the covariance of errors,

and decouple the measurement system variance, τ2, from the noise variance, σ2. In the

next subsection, we will summarize the overall algorithm for the EM-Variogram estimation

method.

3.2.3 Algorithm

The proposed EM-Variogram algorithm is given in Table 4. The estimation procedure is

initiated with initial values for variance parameters in θ, given as θ(0). Thereafter, for any

iteration, p, we first estimate the fixed and random effects in B(p) = (β(p),b(p)) using the

variance parameters in θ(p). The residuals and conditional covariance of random effects

(computed using B(p)) are used to estimate the model covariance parameters in θ = {ααα,Q}

to yield θ(p+1). For estimating θ(p+1), a Variogram approach for ααα(p+1) and a robust REML

estimate for Q(p+1) are used. Using the estimated θ(p+1), we re-estimate the fixed and

random in the next iteration, B(p+1). This process is repeated until convergence.
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Table 4: EM-Variogram integrated algorithm

1 Initialization, θ(0) = {ααα(0), Q(0)}

For iteration, p = 0, 1, 2, . . .

2.1 Compute, B(p) = (β(p),b
(p)
1 , . . . ,b

(p)
N ) from Eq. 37 and 38 using the

current estimates of variance-covariance components

θ(p) = (ααα(p), Q(p)).

2.2 Get model residuals, e
(p)
i = yi −Xiβ

(p) − Zib(p)
i and posterior

covariances

cov(bi|yi; θ(p)) = Q(p) −Q(p)ZTi (Ωi(ααα
(p)) + ZiQ

(p)ZTi )−1ZiQ
(p)

where, Ωi(ααα
(p)) is given in Eq. 32.

3.1 Compute Q(p+1) as

Q(p+1) =
1

N

∑N
i=1[b

(p)
i (b

(p)
i )T + cov(bi|yi; θ(p))]

3.2 Compute {ααα(p+1)} using variogram by solving Eq. 44 as explained in

Â§3.2.2

4 Repeat 2-3 until convergence.

3.2.4 Missing values

The proposed methodology is robust to missing values in data. This property is due to the

EM-Variogram technique used for estimation. Suppose we partition yi into two vectors, yi =

(W
(i)
1 ,W

(i)
2 ), where W (i)

1 is observed and W (i)
2 is missing. For parameter estimation in such

situations, maximum likelihood method on yi cannot be used. Although one alternative is to

maximize the likelihood of the observed data,W1, the likelihood becomes intractable. This is
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because, the likelihood estimation requires integration (or summation, if discrete variable)

over the range of W2, which becomes complex in many cases due to multidimensionality

(Dempster et al., 1977). The EM approach addresses this issue by maximizing a lower

bound on the likelihood, estimating the latent model parameter and repeatedly constructing

a closer lower bound (See Wu, 1983).

Besides, in the proposed methodology, as part of the EM algorithm, we utilize a Var-

iogram approach for estimating the variance components in θ. We use a weighted least

squares (WLS) method for the Variogram fitting, which is also robust to missing values.

Therefore, the proposed EM-Variogram estimation technique proves to be effective, accu-

rate and extremely robust to missing values in the data. In the next section, Sec. 3.3, we

will show the efficacy of the methodology and it’s robustness to missing values.

3.3 Experimental Validation

In this section, we will validate the proposed methodology using simulated data. The ac-

curacy of the model estimates is compared with the known true values for the correspond-

ing simulated scenarios. Several scenarios are simulated to study the proposed method-

ology’s accuracy and sensitivity with respect to the following parameters: (a) different

underlying models, namely, linear and quadratic models, (b) number of subjects (units),

N ∈ {30, 50, 100}, (c) length of observations, |T | ∈ {10, 30, 60}, (d) the ratio of measure-

ment system error variance, τ2, and random noise variances, σ2, in {0.1, 0.2, 0.4, 0.6} and

(e) the percentage of missing values in the data, M ∈ {0, 10, 20, 30}. This results in 288

simulation scenarios. Moreover, to mimic the real world in simulating the longitudinal data,

we place missing values, a) towards the end of patients’ study representing patients drop-

outs or premature study termination, and b) in between few observations corresponding to

missed tests or mis-timed observations. In addition to computing the point estimates of

the LME parameters using the EM-Variogram method, we use bootstrapping to study the

dispersion of these estimates by resampling the simulated data 100 times for each scenario.

As example the results of two simulation scenarios corresponding to one linear and one

quadratic model with 10% and 30% missing values for sample size of N = 50 and the
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(a) Linear trend

(b) Quadratic trend

(c) True parameter values for above linear and quadratic (in paren-
theses) simulation

Figure 13: Estimation results for experimental evaluation of the proposed EM-Variogram
method. The box plot shows the parameter estimates over bootstrapped samples, and its
true value is indicated by a green diamond. The true value falls within the confidence limits
of each parameter estimations – indicating the accuracy of the methodology.
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(a) Slope parameter, β1

(b) Measurement system error variance, τ2

(c) Autocorrelation noise variance, σ2

Figure 14: Sensitivity analysis of the methodology using various simulated scenarios. Each
plot shows the average relative accuracy of the estimated parameter over various simulations.
The results indicate high accuracy and the methodology’s robustness to missing values.

length of observation times |T | = 30, are shown in Figure 13a and Figure 13b. In these

figures, the box plots of estimated parameters by using the EM-Variogram method from

the bootstrapped simulated data along with the true value of each parameter, marked with

a diamond, are plotted. As can be seen from the figures, in all cases (except for one)

the interquartile range (IQR) of the estimates includes the true value of the corresponding

parameters, indicating the high accuracy. The IQR of estimates for β and τ2 are smaller

than that of other parameters, which implies more precise estimates. The box plot results

for other scenarios also indicated similar estimation accuracy and precision.
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Finally, we summarize the EM-Variogram’s accuracy and sensitivity for the critical pa-

rameters, viz. slope coefficient, β1, the measurement system variance, τ2, and the noise

variance, σ2, in Figures 14a - 14c, respectively. Each subplot corresponding to a parameter

has different plots for different sample sizes, N , and legends correspond to different length

of observations, T . The relative accuracy is plotted against increasing amounts of missing

values. Besides, the several sets of true values for the fixed effect and variance parameters

were used for this analysis (and not limited to the set given in Fig. 13c).

From these figures, as expected, the accuracy decreases with increasing amount of missing

values, however, the rate of the accuracy decline in most cases is low — showing robustness of

the proposed method. With regard to the slope parameter, β1, the accuracy is always high.

For the adverse scenario with small sample size of N = 30, shorter length of observations,

and higher amount of missing values, its accuracy goes below 95% but stays above 90%.

In all other scenarios, its accuracy is always greater than 95%, irrespective of the length of

observation and amount of missing values. Similarly, the accuracy of τ2 goes slightly less

than 90% under the same adverse scenario mentioned above. However, its accuracy is close

to 95% or higher in other situations. The accuracy of σ2, in general, is lower than β1 and

τ2 (between ~70-90%), but follows similar behavior in sensitivity.

In short, the simulation results show the validity of the proposed EM-Variogram in ac-

curately estimating the LME parameters fitted on longitudinal data with inherent measure-

ment system error in various scenarios. They also indicate the robustness of the estimation

method amount of missing values. In the next section, we demonstrate how the applications

of the proposed methodology can impact the real world.

3.4 Case study

3.4.1 Problem Statement

In this case study, we used the data obtained from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as

a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The

primary goal of ADNI has been to test whether serial MRI, positron emission tomography
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(PET), other biological markers, and clinical and neuropsychological assessment can be com-

bined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s

disease (AD). For up-to-date information, see www.adni-info.org. MCI is a neurological

condition that causes cognition decline. MCI can eventually convert to AD, a neurodegen-

erative disease. Both MCI and AD affect the brain structure and function. Hippocampus

is an important neuroanatomical structure that is affected by both. It is associated mainly

with memory, in particular long-term memory, and the decline in its volume is associated

with disease progression. Thus, longitudinal hippocampal volume analysis is important in

studying MCI and AD.

MRI devices can detect some of the structural changes, including hippocampal vol-

ume, caused by the diseases by scanning patients’ brain. In this study, we use such MRI

data, collected by ADNI. Given a set of longitudinal scans, we process the data using the

FreeSurfer (Fischl, 2002, Dale, 1999, Fischl et. al., 1999), Longitudinal Stream (Reuter

et. al., 2012, Reuter and Fischl, 2011) to automatically obtain hippocampal volume es-

timates for each hemisphere. The longitudinal stream creates an unbiased within-subject

template space and image (Reuter et. al., 2012) using an inverse consistent registration

method (Reuter et. al. 2010). This template is a robust representation of the average

subject anatomy. Several processing steps of the FreeSurfer pipeline are then initialized for

each time point with common information from the subject template to increase reliability

of the automated measurements.

In addition, as subjects have different head sizes, we normalized the hippocampal volumes

to account for different intra-cranial volume (ICV), where the ICV estimate is kept constant

across time. The entire process involves several image processing steps that may contribute

to the measurement system error. In addition, the image acquisition step may also introduce

some variability (due to patient motion, hydration, etc.) and contribute to the measurement

system error. This increases the variance of the observations, which can make it challenging

to find statistically significant trends. Better statistical estimation and powerful hypothesis

testing on the hippocampal atrophy can be made by isolating the variance of measurement

system error. Therefore, in this study, we use the proposed methodology on the longitudinal
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(a) Male-female ratio (b) Age distribution

Figure 15: Patient demographics

hippocampus volumes, and compare the results with the traditional LME method.

3.4.2 Data

A set of 741 patients (59% males, 41% female, age 75±6.9) with MCI and 215 control subjects

(OC) are selected for this study. A subset of MCI patients (N = 140) eventually developed

AD, which are called MCI converters (MCI-C). The rest of MCI subjects (N = 217) are

called MCI non-converters (MCI-NC). The patient demographics are shown in Figure 15.

As can be seen in Figure 15b, the majority of patients are above 70 years old. The length of

observations on the patients goes up to 4 years, with observations made at approximately

6-month intervals. There is about 35% missing observations. Normalized left and right

hippocampal volumes are generated and used to distinguish between MCI-C, MCI-NC, and

OC.

3.4.3 Results

Hippocampal volume reduction

Hippocampal volume reduction rates (slopes) are estimated for the OC, MCI-NC and

MCI-C groups separately. We, then, test the statistical significance of the slopes and report

the (log) p-values in Figure 16. When computing the p-values using the traditional LME

method, the confounded variance estimates are used, while the proposed EM-Variogram

method allows us to decouple and remove the measurement system variance from the con-

founded variance, resulting in a more accurate (smaller) estimate for the noise variance. As

can be seen in Figure 16, the (log) p-values of proposed methodology is significantly smaller

than the traditional LME method. Since multiple comparisons are frequently performed
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Figure 16: Comparison of p-values of degeneration rate estimation from proposed and tra-
ditional LME method.

in such studies, the significance level of the hypothesis testing is accordingly adjusted (re-

duced) in practice. In such cases, the proposed methodology will be more capable in finding

statistically significant estimates.

This increased sensitivity is due to the isolation of measurement system variance. An-

other benefit of such increased sensitivity is that it allows to reduce the sample size and,

thus, the costs of longitudinal studies. Furthermore, it enables to detect more subtle ef-

fects, which is necessary during treatment assessment or to quantify early changes during

pre-symptomatic phases, where disease modifying interventions may be most effective.

Comparison of degeneration effects

Next, we analyze differences in degeneration rates of MCI-NC patients with MCI-C,

and OC patients. Figure 17 shows the (log) p-values of their differences. We can see that

the proposed method detects the difference with much higher confidence compared to the

traditional LME method. These results demonstrate that hippocampal volume loss is an

excellent marker for disease progression, as it is capable of differentiating the various groups

at different stages. Finding these markers is important as they can then be used to quantify

effects of disease modifying therapies or for computer-aided diagnosis. Overall, these results

are quite useful for medical studies, like, differentiating various groups at different stages.

Degeneration estimation

Finally, we take a subset of the data containing only the first five observations. We, then,
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Figure 17: Comparison of degeneration effects

(a) Left-Hippocampus (b) Right-Hippocampus

Figure 18: Degeneration rate estimates with confidence intervals

filter patients with MCI-NC who are less than 65 years in age (N = 28). In a typical real

world scenario, we have such smaller data samples to detect degeneration. We want to see if

the proposed methodology is capable of early detection of the degeneration. Figures 18a-18b

show the degeneration rate estimates with its 95% confidence intervals for left and right hip-

pocampus. The confidence intervals are obtained by using the bootstrap method with 100

resampling. We can see that the traditional method gives a wider confidence interval, thus,

there is no statistically significant degeneration (null hypothesis, H0, cannot be rejected).

On the other hand, the proposed methodology isolates and remove the measurement er-

ror, and hence, gives narrower confidence intervals indicating that hippocampal atrophy is

statistically significant (H0 is rejected).

This implies that the methodology can do early detection of Alzeihmer disease. This

early detection of disease effects can potentially lead to initiation of timely treatment and,

thus, help patients to postpone dementia effects or remain functioning for a longer period.
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In this case study, we performed a real data analysis to demonstrate the superior perfor-

mance of the proposed method over traditional LME in detecting a statistically significant

effect, and detecting differences between disease conditions. We also show that it allows

us to make accurate inferences from a smaller dataset, which can help in reducing costs of

study and early detection.

3.5 Discussion and Conclusion

Existing methods rely on a complete sanctity of data for analyzing them and drawing in-

ferences. This can be problematic if the available data has measurement errors, especially

in medical decision making. This research focused on analysis of longitudinal data in a

challenging scenario, when there are measurement errors but replicates are not available.

Our major contribution was development of a new EM-Variogram technique for estimat-

ing an extended linear mixed effect model with a parametric covariance structure. The

parametric covariance expression decouples the measurement error variance from the overall

variance. The developed estimation technique, thus, isolates the measurement error, and

hence, provides a more accurate effect estimation and statistical inferences.

The performance of the model was experimentally validated via simulations for various

scenarios. We find that the methodology is effective and accurate in modeling, and is robust

to missing values, commonly found in a longitudinal data. The methodology was also applied

to a longitudinal MRI dataset for evaluation of hippocampal volume in (potential) Alzheimer

disease patients with mild cognitive impairment (MCI). The measurement error variance was

accurately decoupled from the noise variance. After isolating the measurement error, we were

able to obtain more precise (narrower) confidence interval for the effect estimates, leading

to more powerful statistical tests. Moreover, it can also detect more subtle effects with

less data and, thus, can a) do an early detection of a patient’s condition allowing necessary

treatment assessment and diagnosis at early stages of the disease, and b) reduce costs of

longitudinal studies.

Besides, the numerical experiments show that the proposed method may have relatively

poor performance in random effect variance estimations if the random noise in the model is
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relatively high. However, this situation typically indicates that the selected model is much

different from the true underlying model, and thus, can be resolved with a better model

selection. In practical applications, one can find a proper choice for the underlying model

by trying a wide range of model and comparing them using a model selection criterion,

like, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), etc. More-

over, an effective model selection is also necessary to keep the modeling error minimal, an

underlying assumption of the developed approach.

In conclusion, the experimental and the case study results indicate that the proposed

methodology can effectively address the analysis problem for longitudinal data where repli-

cated measurement are very costly or difficult to take, for example drug efficacy tests,

destructive tests, etc. Besides, the proposed method is flexible and can be used in cases

where other covariates (e.g., sex, age, etc.) besides time are included in the model.

In this chapter, we make assumptions on the homogeneity of measurement device condi-

tions over time, which makes the reproducibility analysis irrelevant. However, the extension

of the proposed methodology for a simultaneous gauge repeatability and reproducibility

(GRR) analysis would be a topic of interest for future research. Another potential direction

for future research, is to develop methods for GRR study of multivariate longitudinal data

streams.

3.5.1 Acknowledgement

This work was supported in part by the National Institutes of Health under Advanced

Multimodal Neuroimaging Training Program under Grant R90-DA023427.

Support for this research was also provided in part by the National Cancer Institute

(1K25-CA181632-01), the Genentech Foundation, the National Science Foundation (NSF-

CMMI 1451088), and the NVIDIA corporation. Further support was provided by the A.A.

Martinos Center for Biomedical Imaging (P41RR014075, P41EB015896, U24RR021382),

and was made possible by the resources provided by Shared Instrumentation Grants 1S10RR023401,

1S10RR019307, and 1S10RR023043.

The collection and sharing of the MRI data used in the group study based on ADNI was

77



funded by the Alzheimer’s Disease Neuroimaging Initiative (National Institutes of Health

Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-

12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of

Biomedical Imaging and Bioengineering, and through generous contributions from the fol-

lowing: Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; BioClinica, Inc.;

Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.;

Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech,

Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy

Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Develop-

ment LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Re-

search; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc

Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research

is providing funds to support ADNI clinical sites in Canada. Private sector contributions

are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The

grantee organization is the Northern California Institute for Research and Education, and

the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of

California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging

at the University of Southern California.

3.6 APPENDICES

3.6.1 Appendix A: Posterior mean and covariances

Here we will derive the posterior mean and covariance of bi and posterior covariance of εεεi.

We will require the following identity for the derivation.

For any random variables, w1 and w2, such that their joint distribution is normal as

Eq. 45,

 w1

w2

 ∼ N


 µ1

µ2

 ,
 Σ11 Σ12

Σ21 Σ22


 (45)

then, the conditional distribution is given as,
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w2|w1 ∼ N
(
µ2 + Σ21Σ−1

11 (w1 − µ1),Σ22 − Σ21Σ1
11Σ12

)
(46)

We use Eq. 30 and drop the index i for a simpler expression, as,

y = Xβ + Zb + εεε (47)

Note that we can jointly express y and b as,

 y

b

 =

 Xβ

0

+

 Z I

I 0


 b

εεε

 (48)

where I and 0 are identity and zero matrices, respectively.

Also,

cov


 b

εεε


 =

 Q 0

0 Ω

 (49)

Therefore, from Eqs. 48-49,

 y

b

 ∼ N


 Xβ

0

 ,
 Z I

I 0


 Q 0

0 Ω


 Z I

I 0


T

=d N


 Xβ

0

 ,
 ZQZT + Ω ZQ

QZT Q


 (50)

Thus, from the identity in Eq. 46

E[b|y] = 0 +QZT (ZQZT + Ω)−1(y −Xβ)

= QZTΣ−1(y −Xβ) (51)

where, Σ = Ω + ZQZT , also used in E-Step of Sec. 3.2.2.
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The covariance is similarly found using the identity as,

cov(b|y) = Q−QZT (ZQZT + Ω)−1ZQ (52)

The covariance of εεε can be similarly found by jointly expressing y and εεε as,

 y

εεε

 =

 Xβ

0

+

 Z I

0 I


 b

εεε

 (53)

 y

εεε

 ∼ N


 Xβ

0

 ,
 Z I

0 I


 Q 0

0 Ω


 Z I

0 I


T

=d N


 Xβ

0

 ,
 ZQZT + Ω Ω

Ω Ω


 (54)

Thus, using identity Eq. 46 again on Eq. 54, we get,

cov(εεε|y) = Ω− Ω(ZQZT + Ω)−1Ω (55)

3.6.2 Appendix B: Expectations for EM algorithm

In this appendix, we will derive the expectations of G1 and G2 for the E-step in Sec. 3.2.2.

For deriving the expectations of G1 and G2, we will require the following identity:

E
[
xTAx

]
= mTAm + tr(AΣ) (56)

where, x is a stochastic vector with E[x] = m and cov(x) = Σ, and A is a symmetric

matrix.

80



Eθ(p) [G1(Ω(ααα))] = Eθ(p)

−1

2

N∑
i=1

log det(Ωi(ααα))−
1

2

N∑
i=1

(yi − (Xiβ + Zibi))
TΩ−1

i (ααα)(yi − (Xiβ + Zibi))


= −

1

2

N∑
i=1

Eθ(p) [log det(Ωi(ααα))]−
1

2

N∑
i=1

Eθ(p)
[
(yi − (Xiβ + Zibi))

TΩ−1
i (ααα)(yi − (Xiβ + Zibi))

]

= −
1

2

N∑
i=1

log det(Ωi(ααα))−
1

2

N∑
i=1

Eθ(p)
[
(yi − (Xiβ + Zibi))

TΩ−1
i (ααα)(yi − (Xiβ + Zibi))

]
(57)

We have,

εεεi = yi − (Xiβ + Zibi) (58)

with,

Eθ(p) [εεεi] = yi − (Xiβ
(p) + Zib

(p)
i ) = e

(p)
i (59)

Using Eq. 56 and Eq. 58-59 in Eq. 57, we get,

Eθ(p) [G1(Ω(ααα))] = −
1

2

N∑
i=1

log det(Ωi(ααα))−
1

2

N∑
i=1

Eθ(p)
[
εεεTΩ−1

i (ααα)εεε
]

= −
1

2

N∑
i=1

log det(Ωi(ααα))−

1

2

N∑
i=1

[
(e

(p)
i )TΩ−1

i (ααα)e
(p)
i + tr

(
Ω−1
i (ααα)cov(εεεi|yi; θ(p))

)]
(60)

Similarly, for finding expectation of G2we have,

Eθ(p) [bi] = b
(p)
i (61)

where b
(p)
i = Q(p)ZTi Σ−1

i (θ(p))(yi −Xiβ
(p)) as given in Sec. 3.2.2.

The expectation of G2 is, thus,
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Eθ(p) [G2(Q)] = −
1

2
N log det(Q)−

1

2

N∑
i=1

[
(b

(p)
i )TQ−1b

(p)
i + tr

(
Q−1cov(bi|yi; θ(p))

)]
(62)

3.6.3 Appendix C: REML robust estimates

In this appendix, we will derive the REML robust estimates for EM algorithm shown in

Eq. 41-42. We will require the following identities for the derivation.

For any vector a,b, a square and invertible matrix X, and any matrix B,

∂

∂X
log |det(X)| = (X−1)T = (XT )−1 (63)

∂

∂X
aTX−1b = −(X−1)TabT (X−1)T (64)

∂

∂X
tr(X−1B) = −(X−1BX−1)T (65)

We maximize Eq. 39 in Sec. 3.2.2 to obtain the REML robust estimate for covariance of

unit i. This is done by differentiating Eq. 39 and equating it to 0. Moreover, the covariance

here is unconstrained, thus, we do not use the parameter ααα for representing Ω.

∂

∂Ωi
Eθ(p) [G1(Ω)] =

∂

∂Ωi

−1

2

N∑
i=1

log det(Ωi)−

1

2

N∑
i=1

[
(e

(p)
i )TΩ−1

i e
(p)
i + tr

(
Ω−1
i cov(εεεi|yi; θ(p))

)] (66)

Using identity in Eq. 63 and Ωi being square, invertible and symmetric matrix, we get,

∂

∂Ωi
log det(Ωi) = Ω−1

i (67)

Furthermore, using identity in Eq. 64, we get,
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∂

∂Ωi

(
(e

(p)
i )TΩ−1

i e
(p)
i

)
= −Ω−1e

(p)
i (e

(p)
i )TΩ−1 (68)

Finally, we use identity in Eq. 65 to get,

∂

∂Ωi
tr
(

Ω−1
i cov(εεεi|yi; θ(p))

)
= −

(
Ω−1
i cov(εεεi|yi; θ(p))Ω−1

i

)T
= −Ω−1

i cov(εεεi|yi; θ(p))Ω−1
i(69)

Plugging in results in Eq. 67-69 into Eq. 66, and equating it to 0,

−
1

2
Ω−1
i +

1

2

[
Ω−1
i

(
e

(p)
i (e

(p)
i )T + cov(εεεi|yi; θ(p))

)
Ω−1
i

]
= 0

we obtain the estimate for Ωi as,

Ω̂i = e
(p)
i (e

(p)
i )T + cov(εεεi|yi; θ(p)) (70)

Moreover, it is straightforward to show
∂2

∂Ω2
i

Eθ(p) [G1(Ω)] < 0 to prove Ω̂i gives the

maxima.

Similar to above, we maximize Eq. 40 to obtain the estimate for Q.

∂

∂Q
Eθ(p) [G2(Q)] =

∂

∂Q

−1

2
N log det(Q)−

1

2

N∑
i=1

[
(b

(p)
i )TQ−1b

(p)
i + tr

(
Q−1cov(bi|yi; θ(p))

)]
= −

1

2
NQ−1 +

1

2
Q−1

[
N∑
i=1

(
b

(p)
i (b

(p)
i )T + cov(bi|yi; θ(p))

)]
Q−1 = 0

Thus,

Q̂ =
1

N

N∑
i=1

(
b

(p)
i (b

(p)
i )T + cov(bi|yi; θ(p))

)
(71)
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CHAPTER IV

SEQUENCE GRAPH TRANSFORM (SGT): A FEATURE

EXTRACTION FUNCTION FOR SEQUENCE DATA MINING

4.1 Introduction

A sequence can be defined as a contiguous chain of discrete alphabets, where an alphabet

can be an event, a value or a symbol, sequentially tied together in a certain order, for

eg., BAABCCADECDBBA. Sequences are one of the most common data types found in diverse

fields like social science, web, healthcare, bioinformatics, marketing, text mining etc. Some

examples of sequences are, web logs, music listening history, patient movements through

hospital wards, DNA, RNA and protein sequences in bioinformatics.

This ubiquitous presence of sequence data has made development of new sequence anal-

ysis methods important. Few of its motivating applications are, a) understanding users

behavior from their web-surfing and buying sequences data, to serve them better advertise-

ments, product placements, promotions, and so on, b) assessing process flows (sequences) in

a hospital to find the expected patient movement based on her diagnostic profile, to better

optimize the hospital resource and service, c) analysis of biological sequences to understand

human evolution, physiology and diseases, etc.

However, the existing sequence data mining methods lack in their effectiveness due to

absence of a good measure of (dis)similarity between sequences. For a (dis)similarity mea-

sure, almost every mainstream data mining methods use a distance between objects in a

Euclidean space. For example, in k -means clustering the distance between objects (data

points) within a cluster are minimized while distance between clusters are maximized, in

classification models, like SVM or logistic regression, the distance of a boundary is mini-

mized or maximized from the objects. Moreover, in deep learning realm as well, objects are

transformed into euclidean vectors for comparisons. It has been commonly accepted that a

euclidean space distance between objects is one of the best measures for (dis)similarity.
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But, since sequences are an unstructured data — made of arbitrarily placed alphabets for

any arbitrary length —, their representation in a euclidean space is not obvious. This devoid

sequence data analysis from the mainstream data mining methods, and causing sequence

mining methods to be less effective, in terms of accuracy, complexity and interpretability.

To that end, feature extraction of sequences in a finite-dimensional euclidean feature

space is necessary. This can also be viewed as an embedding space, where the objective is

to transform a sequence into a feature vector, such that the features capture the sequence

characteristics. Besides, by definition, the embedding space has the same dimension for all

sequences in a data corpus. This will facilitate computation of (dis)similarity between two

sequences by measuring the distance between their embeddings.

Several researchers proposed some feature set or function (see references in Kumar et al.,

2012) based on a fundamental premise: a sequence is characterized by the patterns formed

due to the alphabets’ positions relative to others. However, to work with this premise some

of them make strong assumptions, which are not always valid. For example, Markovian

models (Ranjan et al., 2015) typically make a first-order Markov assumption on sequence

generation process. On the other hand, some methods perform information abstraction by

taking n-grams or substrings, that can potentially lead to loss of information or inclusion of

noise. The existing methods and their shortcomings are elaborated further in the subsequent

subsection (Sec. 4.1.1).

We, therefore, developed a new feature extraction approach, which we call Sequence

Graph Transform (SGT), that works on the same fundamental premise but without any

restrictive assumption. Importantly, it effectively captures the sequence features and embeds

it into a finite-dimensional euclidean space that leads to an accurate comparison of sequences

by measuring the distance between them in the feature space.

In the following, we discuss the related work (Sec. 4.1.1) and then give the problem

specifications, viz. the sequence mining challenges, types of problems and the scope of

proposed approach, in Sec. 4.1.2.
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4.1.1 Related Work

There are several literature in the sequence mining realm; a detailed survey can be found

in Kumar et al. (2012), Gaber (2009), Dong and Pei (2007), and references therein. In this

section, we will briefly go through the broad categories of the literature and mention their

shortcomings.

Early research works used to find edit-distances between sequences after alignment.

Methods for global alignment, local alignment, with or without overlapping were devel-

oped by Needleman and Wunsch, 1970, Smith and Waterman, 1981. Subsequently, a few

heuristic approaches were proposed based on alignment techniques that can work on a larger

dataset (BLAST, Altschul et al., 1997, and FASTA, Pearson, 1990). More recently, mul-

tiple sequence alignment techniques were developed (UCLUST, Edgar, 2010; CD-HIT, Fu

et al., 2012; and MUSCLE, Edgar, 2004). These methods were developed with a focus on

bioinformatics sequence problems, and severely lack in their general applicability (general-

ity) due to difficulty in tuning, high computational complexity, and inability to work on

sequences with significantly varying lengths. Besides, these methods do not provide any

feature representation of sequences.

Few researchers worked on sequence features extraction for an embedding in the Eu-

clidean space (Linial et al., 1997, Ding and Dubchak, 2001). But their methods are ad-hoc

feature spaces developed for protein sequences with no theoretical support, thus, difficult to

extend to a general problem.

More universally applicable and relatively powerful methods work on one of the following

broad assumptions, i) sequence process has an underlying parametric distribution, ii) similar

sequences have common substrings, and iii) sequence evolves from hidden strings.

The parametric methods typically make a Markovian distribution assumptions, more

specifically a first-order Markov property, on the sequence process (Cadez et al., 2003 and

Ranjan et al., 2015). However, such distributional assumption is not always valid. A general

n-order Markov model were also proposed but not popular in practise due to high computa-

tion. Beyond Markov models, Hidden Markov model based approaches are popular in both

bioinformatics and general sequence problems (HHblits: Remmert et al., 2012; Helske and
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Helske, 2016). It assumes a hidden layer of latent states which results into the observed se-

quence. These hidden states have a first-order Markov transition assumption, but due to the

multi-layer setting the first-order assumption is not transmitted to the observed sequence.

However, tuning HMM (finding optimal hidden states) is difficult and it is computationally

intensive, thus, effecting its generality and scalability.

N -gram methods (also known as k -mer methods in bioinformatics realm) are the most

popular approaches that work on the second assumption (Tomović et al., 2006; Hauser et

al., 2013). Although the pretext of this assumption seems appropriate, the optimal selection

of substring length, i.e. n in n-gram or k in k -mer, is difficult. In sequence mining, selection

of a small value for n can lead to inclusion of noise but increasing it severely increases the

computation. Some other variants, like spaced-words and adaptive n, is more difficult to

optimize (Didier et al., 2012; Comin and Verzotto, 2012).

Another class of methods hypothesize that sequences are generated from some evolu-

tionary process where a sequence is produced by reproducing complex strings from simpler

substrings (Siyari et al., 2016, and references therein). This method solves a NP-hard op-

timization problem to identify the underlying evolution hierarchy and the corresponding

substrings. These substrings can also be used as features for sequence data mining. How-

ever, the estimation algorithms for this, and similar, methods are heuristics that usually

do not guarantee optimality. The algorithms can also lead to several solutions which will

cause identifiability and ambiguity issues. Moreover, the evolutionary assumption may not

be always true.

Besides these methods, sequence mining problem have also been given attention by the

deep learning research community. Embedding spaces for sequences have been proposed

using Recurrent Neural Networks (RNN) and Long Short Term Memory (Graves, 2013).

However, the dimension of these embeddings are typically large, and is a rigorous tuning

problem in a deep learning network. Training such model is computationally intensive,

sometimes not interpretable and requires large amount of training data.
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4.1.2 Problem Specification

As discussed above, the related methods fail to address at least one of the following chal-

lenges, a) Feature mapping: Effective extraction of sequence characteristics into a finite-

dimensional euclidean space (a vector), b) Universal applicability: This mainly requires

absence of any distributional or a domain specific assumption, and a small number of tun-

ing hyperparameters, and c) Scalability: It relies on the computational complexity, which

should be small with respect to sequence length, size of the database and alphabets set.

We propose a new sequence feature extraction function, called Sequence Graph Trans-

form (SGT), that addresses all of the above challenges and is shown to outperform existing

state-of-the-art methods in sequence data mining. SGT works by quantifying the pattern

in a sequence by scanning the positions of all alphabets relative to each other. We call

it a graph transform because of its inherent property of interpretation as a graph, where

the alphabets form the nodes and a directed connection between two nodes shows their

“association”. These “associations” between all alphabets represent the characteristic fea-

tures of a sequence. A Markov model transition matrix can be compared analogously with

the SGT’s feature space, however, among other differences (explored further in the paper),

the associations (graph edges) do not represent a probability and SGT is non-parametric.

The non-parametric property also makes it robust to any underlying sequence generation

distribution.

In addition, sequence analysis problems can be broadly divided into: i) length-sensitive:

the inherent patterns as well as the sequence lengths should match to render two sequences

as similar, for eg., in protein sequence clustering, and ii) length-insensitive: the inherent

patterns should be similar, irrespective of the lengths, for eg., weblog comparisons. In

contrast with the existing literature, SGT provides a solution for both scenarios. Advantage

of this property becomes more pronounced when we have to perform both types of analysis

on the same data, and implementing different methods for each becomes cumbersome.

In this chapter, our major contributions are, a) development of a new feature extraction

function, SGT, for sequences, b) a theoretical and experimental evaluation of SGT, and c)

illustration through real data examples that SGT bridges the gap between sequence mining
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Figure 19: Illustration of effect of elements on each other. In this example, we show effect
of presence of A on B.

and mainstream data mining through implementation of fundamental methods, viz. PCA,

k-means, SVM and graph visualization on sequence data analysis via SGTs.

In the following, we first present the overview and intuition behind SGT, its formal defini-

tion and development, in Sec. 4.2. We also discuss its characteristics, theoretical properties,

extensions, and implementation algorithms in this section. Thereafter, we experimentally

validate the efficacy of SGT via clustering, and compare it with other state-of-the-art meth-

ods. We also show its capability of performing alphabet clustering as an extension. After

the validation, we illustrate some real world applications, viz. clustering, visualization, clas-

sification and search, using four different datasets in Sec. 4.5. Finally, we discuss the results

and performance aspects of SGT in Sec. 4.6.

4.2 Sequence Graph Transform (SGT)

4.2.1 Overview and Intuition

Sequence Graph Transform works on the same fundamental premise — relative positions

of alphabets in a sequence characterizes it — to extract the sequence characteristic pattern

features. This premise holds true for any sequence problem, because similarity in sequences

are measured based on the similarities in their pattern. For commonly occurring feed forward

sequences, this premise is equivalent to: the relative position of an alphabet instance is

a result of its interactions with all other alphabet instances prior to it. For a simpler

terminology, we will call an alphabet instance as an event. A feed-forward sequence example

can be a clickstream sequence for a user, where any subsequent click event depends on the

prior links she clicked. In the following, we will illustrate and develop the feature extraction

approach for feed-forward sequences, and later show its extension to “undirected” (no forward

or reverse directional relationship between consecutive events) sequences.

In an illustrative example in Fig. 19, showing a feed-forward sequence, the presence of
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(a) Feature extracted as a vector with a graph interpretation.

(b) Use of sequences’ SGT features for data mining

Figure 20: Overview of SGT feature extraction and data mining procedure.

alphabet B at positions 5 and 8 should be seen in context with or as a result of all other

predecessors. To extract the sequence features, we take relative positions of an alphabet pair

at a time. For example, the relative positions for pair (A,B) are {(2,3),5} and {(2,3,6),8},

where the position set for A are the ones preceding B. In the SGT procedure defined and

developed in the following sections (Sec. 4.2.3-4.2.4), we assay these position informations

to extract the sequence features.

These extracted features are “association” between A and B, which can be interpreted as

a connection feature representing “A leading to B”. We should note that “A leading to B”

will be different from “B leading to A”. This is similar to the Markov probabilistic models,

where transition probabilities of going from A to B is estimated. However, it is different

because the connection feature , 1) is not a probability, and 2) takes into account all orders

of relationship without any increase in computation.

The extracted association between A and B can also be interpreted as a measure of

separation (or closeness) between A to B. Again, the separation going from A to B will be
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different from B to A. The associations between all alphabets in alphabet set, denoted as V,

can be extracted similarly, to obtain sequence features in a |V|2-dimensional feature space.

Besides, in contrast to the evolutionary or hidden layer models, SGT will not require search

for any hidden states or strings.

The SGT features also make it easy to visualize the sequence as a directed graph, with

sequence alphabets in V as graph nodes and the edge’s weights equal to the directional

association between nodes. Hence, we call it a sequence graph transform. Moreover, we

show that under certain conditions the SGT also allows node clustering, thus, the alphabet

clustering.

A high level overview of our approach is given in Fig. 20a-20b. In Fig. 20a we show

that applying SGT on a sequence, s, yields a finite-dimensional feature vector, Ψ(s), for the

sequence, also interpreted and visualized as a directed graph. For a general sequence data

analysis, SGT can be applied on each sequence in a data corpus, as shown in Fig. 20b, to

yield a finite- and equal-dimensional representation corresponding to each sequence. This

provides a direct distance-based comparison between sequences, and thus, makes application

of mainstream data mining methods for sequence analysis rather straightforward.

4.2.2 Notations

Suppose we have a dataset of sequences denoted by S. Any sequence in the dataset, denoted

by s, are made of alphabets in set V. A sequence can have instances of one or many

alphabets from V. For example, sequences from a dataset, S, made of alphabets in, V =

{A, B, C, D, E}(suppose), can be S = {AABAAABCC, DEEDE, ABBDECCABB, . . .}. As we can see,

the sequences in the set have instances of {A, B, C}, {D, E}, {A, B, C, D, E}⊆ V, respectively.

The length of a sequence, s, denoted by L(s), is equal to the number of events in it. In the

sequence, sl will denote the alphabet at position l, where l = 1, . . . , L(s) and sl ∈ V.

As mentioned in the previous section, we extract sequence features in the form of “associ-

ations” between the alphabets, represented as ψ(s)
uv , where (u, v) ∈ V, are the corresponding

alphabets. Note that ψ(s)
uv 6= ψ

(s)
vu for feed-forward sequences. The connection features,

Ψ(s) = [ψ
(s)
uv ], (u, v) ∈ V, can be interpreted as a directed “graph”, with edge weights, ψ, and
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nodes in V, or is vectorized to a |V|2-vector denoting the sequence s in the feature space.

Each sequence, s ∈ S, is transformed to this feature space to get Ψ(s), ∀s ∈ S.

Finally, we use a developer function, φκ(d), where d is a “distance” variable, and κ is a

tuning parameter to regulate φ. The developed function is used to obtain ψ, i.e. ψ = f(φ).

The function f will be developed in the following subsection.

4.2.3 SGT Definition

As also explained in Sec. 4.2.1, the sequence graph transform extracts the features from the

relative positions of events (alphabet instances). A quantification for an “effect” from relative

positions of two events in a sequence is given by φ(d(l,m)), where l,m are the positions of

the events and d(l,m) is a distance (or gap) measure. This quantification is a directional

effect of the preceding event on the later event. For example, see Fig. 21a, where A and B

are at positions l and m, and the directed arc denotes the effect of A on B.

For developing SGT, we require following conditions on φ, 1) Strictly greater than 0:

φκ(d) > 0; ∀κ > 0, d > 0; 2) Strictly decreasing with d:
∂

∂d
φκ(d) < 0; and 3) Strictly

decreasing with κ:
∂

∂κ
φκ(d) < 0

The first condition is to keep the extracted feature, ψ = f(φ), easy to analyse and

interpret. The second condition strengthens the effect of closer neighbors. The last condition

helps in tuning the procedure, allowing us to change the effect of neighbors.

There are several functions that satisfies the above conditions, for eg., Gaussian, Inverse,

and Exponential. Also, d(l,m) can be chosen as absolute: |m − l|, quadratic: (m − l)2,

lagged gap: (|m − l| − constant), etc. In this paper, we choose d(l,m) = |m − l| and φ

as an exponential function as they will yield interpretable results for the SGT properties

(Sec. 4.2.4). Thus,

φκ(d(l,m)) = e−κd(l,m) = e−κ|m−l|, ∀κ > 0, d > 0 (72)

In a general sequence, we will have several instances of an alphabet pair. For example,

see Fig. 21b, where there are five (A, B) pairs, and an arc for each pair shows effect of A on
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(a) (b)

Figure 21: Visual illustration of effect of alphabets’ relative positions.

B. Therefore, the first step is to find the number of instances of each alphabet pair. The

instances of alphabet pairs are stored in a |V| × |V| asymmetric matrix, Λ. Here, Λuv will

have all instances of alphabet pairs (u, v), such that in each pair instance, v’s position is

after u.

Thus,

Λuv(s) = {(l,m) : sl = u, sm = v, l < m, (l,m) ∈ 1, . . . , L(s)} (73)

In the sequence, φ from each (u, v) pair instance will contribute to the “association”

feature, ψuv. Thus, we aggregate individual contributions from each pair instance and

normalize it, as shown below in Eq. 74a-74b, to give ψuv. Here, |Λuv| is the size of the set Λuv,

which is equal to the number of (u, v) pair instances. Eq. 74a gives the feature expression

for a length-sensitive sequence analysis problem because it also contains the sequence length

information within it (proved with a closed-form expression under certain conditions in the

following, Sec. 4.2.4). In Eq. 74b, the length effect is removed by standardizing |Λuv| with

the sequence length L(s) for length-insensitive problems.

ψuv(s) =

∑
∀(l,m)∈Λuv(s) e

−κ|m−l|

|Λuv(s)|
; length sensitive (74a)

ψuv(s) =

∑
∀(l,m)∈Λuv(s) e

−κ|m−l|

|Λuv(s)|/L
; length insensitive (74b)

and Ψ(s) = [ψuv(s)], (u, v) ∈ V is the SGT feature representation of sequence s.

The developed SGT effectively extracts the pattern features of a sequence leading to an

accurate comparison of different sequences. In the next section, we will prove this efficacy.

4.2.4 SGT properties

In this section, we derive closed-form expressions for the SGT feature, ψuv, under some

mild assumptions. These closed-form expressions help in better understanding of the SGT’s
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Figure 22: Illustration of notations used for SGT properties derivation

properties and proving its efficacy. However, in practice, SGT will work even without the

assumptions made here.

Suppose we have a sequence, as shown in Fig. 22, in which the inherent pattern is “alpha-

bet v occurs closely after u”. Assuming the relative gap-distances between alphabet instances

follow a normal distribution, the relative distances between u and its first-neighboring v is

X ∼ N(µα, σ
2
α), and between two consecutive u’s is Y ∼ N(µβ, σ

2
β). Since v is supposed

to occur closer to u, we will have µα < µβ . Besides, although the relative gap distances

between alphabets are positive integers, it is safe to assume them to follow a continuous

normal distribution.

As also mentioned before, and can be seen in Fig. 22, there will be several (u, v) pairs. To

easily denote them, we use a term, m-th neighboring pair, a generalization of first-neighbor

used above, where the m-th neighbor pair for (u, v) will have m− 1 other u’s in between. A

first neighbor, is thus, the immediate (u, v) neighboring pairs, while the 2nd-neighbor has

one other u in between, and so on.

We further assume that the marginal probability of the number of occurrences of each

element in the sequence is uniform, i.e., Ps[u] = Ps[v] = p;u, v ∈ V. Therefore, the expected

number of first neighboring pairs (u, v), denoted by M , is

M = pL (75)

where L is the sequence length. Consequently, it is easy to show that the expected number

of m-th neighboring (u, v) pairs is (M −m+ 1), i.e., second neighboring (u, v) pairs will be

(M − 1), (M − 2) for the third, so on and so forth, till one instance for the M th neighbor

(see Fig. 22 for an example). The gap distance for an mth neighbor is given as,
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Z1 = X ; Zm = X +

m∑
i=2

Yi,m = 2, . . . ,M (76)

Besides, the total number of (u, v) pair instances will be
∑M

m=1m = M(M+1)
2 (= |Λuv|,

by definition). Suppose, we define a set that contains distances for each possible (u, v) pairs,

as D = {Zim, i = 1, . . . ,m;m = 1, . . . ,M}. We can note that |D| = M(M+1)
2 .

Thus, putting these into Eq. 74a, the feature, ψuv can also be expressed as, ψuv =∑
di∈D φκ(di)

|Λuv|
.

Also, if d ∼ N(µd, σ
2
d), the developer function φκ(d) becomes a lognormal distribution.

φκ(d) ∼ lognormal(κµκ, κ2σ2
κ) (77)

On deriving the expected value (see Appendix B) for the length-sensitive feature, ψuv,

we get,

Ep[ψuv] ≈
2

Lp+ 1
γ (78)

where,

γ =

∣∣∣∣∣∣∣
e−µ̃α

1− e−µ̃β

∣∣∣∣∣∣∣ (79)

and, µ̃α = κµα − κ2

2 σ
2
α; µ̃β = κµβ − κ2

2 σ
2
β .

As we can see in Eq. 78, the expected value has the length, L, of the sequence. Besides,

within γ, both short and long pattern information of the sequence is embedded. The numer-

ator of γ embeds the information on the short distance relative positions of the alphabets

(u, v), while the denominator embeds the distant relative positions.

This property allows SGT to effectively capture the overall patterns from the relative

positions of alphabets, and sets it apart from other methods. Besides, if the variances, σ2
· ,

are small, a higher value of κ will reduce the effect of distantly separated alphabets and

vice-versa. Thus, it can easily regulate the effect of preceding events without any increase

in computation.
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Moreover, the variance of ψuv in this case approaches to 0 with L (see Appendix B),

making the SGT features more precise.

Next, for the length-insensitive SGT, the expected value for ψuv is,

Ep[ψuv] ≈
2L

Lp+ 1
γ (80)

Therefore, as sequence length, L, increases, the (u, v) “association” feature approaches a

constant,

lim
L→∞

Ep[ψuv] =
2

p

∣∣∣∣∣∣∣
e−µ̃α

1− e−µ̃β

∣∣∣∣∣∣∣ =
2

p
γ (81)

Again, the variance of ψuv in length-insensitive case also goes to 0 with L (see Appendix

B). Thus,

lim
L→∞

Pr{ψuv =
2

p
γ} → 1 (82)

Therefore, the effect of sequence length is removed in this SGT variant. This makes the

resulting features invariant to the sequence length, and thus, enables a length insensitive

sequence analysis.

4.2.5 Extensions of SGT

4.2.5.1 Undirected sequences

SGT can be further extended to work on undirected sequences. In such sequences, the

directional pattern or directional relationships (like in feed-forward) is not important. In

other words, it is immaterial whether B occurs before or after A, occurring closely (or farther)

is important. Here we are interested in overall proximity of events in either direction to

characterize a sequence’s pattern. From SGT operation standpoint, we have to remove the

condition, l < m, from Eq. 73, giving us,

Λ̃uv(s) = {(l,m) : sl = u, sm = v, (l,m) ∈ 1, . . . , L(s)} (83)

Thus, the SGT for undirected sequences can be computed, and denoted as Ψ̃.
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It is easy to show that.

Λ̃ = Λ + ΛT (84)

and (see Appendix C for proof),

Ψ̃ =
|Λ|Ψ + |ΛT |ΨT

|Λ|+ |ΛT |
(85)

where, Λ and Ψ are given in Eq. 73 and Eq. 74a-74b, respectively.

Moreover, for sequences with uniform marginal distribution of occurrence of elements,

v ∈ V, Λ will be close to symmetric, thus, the undirected sequence graph can be approxi-

mated as,

Ψ̃ ≈
Ψ + ΨT

2
(86)

In practice, this approximation is useful in most cases.

4.2.5.2 Alphabet clustering

Node clustering in graphs is a classical problem, with various techniques, like, spectral

clustering, graph partitioning, and others. SGT’s graph interpretation facilitates grouping

of alphabets that occur closely via any of these node clustering methods.

This will effectively require the SGT to give larger weights to the edges, ψuv, corre-

sponding to alphabet pairs that occur closely. For instance, consider a sequence in Fig. 23a,

in which v occurs closer to u than w, also implying E[X] < E[Y ]. Therefore, in this se-

quence’s SGT representation, edge weight for u→v should be greater than for u→w, i.e.

ψuv > ψuw. Note that the feature ψuv is same as the edge weight for arc u→ v in the graph

interpretation.

Using same assumption of uniform marginal probability of alphabet occurrences (as in,

Sec. 4.2.4), we will have, E[|Λuv|] = E[|Λuw|]. Therefore, ψuv ∝ E[φ(X)] and ψuw ∝

E[φ(Y )], and due to Condition 2 on φ given in Sec. 4.2.3,
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(a) u, v are closer than u,w. (b) Corresponding
SGT’s Graph view.

Figure 23: Illustrative sequence example for alphabet clustering.

if E[X] < E[Y ]

=⇒ E[φ(X)] > E[φ(Y )]

=⇒ E[ψuv] > E[ψuw]

Moreover, for an easier clustering, it is important to bring the “closer” alphabets more

close in the euclidean space and vice-versa. In the SGT’s graph interpretation for the above

example, it implies ψuv should go as high as possible to bring v closer to u in the graph and

vice-versa for (u,w). Thus, effectively, ∆ = E[ψuv − ψuw] should be increased.

As proved in Appendix D, ∆ will increase with the hyperparameter κ, if we select κ

such that κd > 1 holds for any value of d. Since, d in this case is the relative gap-distance

between sequence events, it is always a positive integer. Therefore, the criteria on κ should

hold for any d ∈ N.

Thus, a SGT can represent a sequence as a graph with its alphabets connected with

weighted edges, which enables clustering of closely occurring alphabets using graph node

clustering methods.

4.3 SGT Algorithm

In this section, we provide two algorithms for SGT computation. Both algorithms are de-

signed for a feed-forward sequence defined in Eq. 74a-74b and developed with an exponential

function for φ given in Eq. 72. The two algorithms are for the following two cases to achieve

faster computation: 1) Algorithm-1 when the sequence lengths are smaller than the feature
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Algorithm 1 Parsing a sequence to extract the SGT features
Input: A sequence, s ∈ S , alphabet set, V , and hyperparameter, κ.

1: Initialize:
W(0),W(κ) ← 0V×V , and sequence length, L← 1

2: for i ∈ {1, . . . , (length(s)− 1)} do
3: for j ∈ {(i+ 1), . . . , length(s)} do
4: W

(0)
si,sj ←W

(0)
si,sj + 1

5: W
(κ)
si,sj ←W

(κ)
si,sj + exp(−κ|j − i|)

6: where, si, sj ∈ V
7: end for
8: L← L+ 1
9: end for

10: if length-sensitive is True then
11: W(0) ←W(0)/L
12: end if

Output ψuv(s)←
(
W (κ)
u,v

W
(0)
u,v

) 1
κ

;Ψ(s) = [ψuv(s)], (u, v) ∈ V

space, i.e. L < |V|2, and 2) Algorithm-2 when L > |V|2. However, the second algorithm will

require an additional pre-processing of a sequence.

The algorithms take in a sequence, s, from the corpus of sequence database, S, alphabet

set, V, and the SGT hyperparameter, κ. We initialize two V ×V matrices, W(0) and W(κ) ,

with zero values, where a V ×V matrix is a square matrix of dimension |V| and the row and

column index names are same as the set V. Besides, the sequence length, L, is initialized as

1 in Algorithm-1, while 0 for Algorithm-2. Post computation, W(0) will correspond to the

denominator and W(κ) to the numerator in Eq. 74a-74b.

Algorithm-1 parses the input sequence across its length using a nested loop and up-

dates W(0) and W(κ). Thereafter, if the problem is length insensitive, each cell in W(0)

is normalized by dividing with L. Finally, an element-wise division of W(κ) by W(0) gives

the SGT defined in Eq. 74a-74b. However, we output the κth root of it as the final SGT

features, because although the κth root is not necessary theoretically, it keeps the SGTs

easy-to-interpret and comparable for any value of κ.

In Algorithm-2, instead of parsing the sequence length, we perform a nested loop on all

alphabets in V to update W(0) and W(κ). For that, we pre-process the sequence to obtain
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a list containing the positions for each alphabet, by using the defined function GetAlpha-

betPositions. Thereafter, for any pair of alphabets (u, v) we take the set of their positions

in the sequence, U and V . We, then, assign a set C as the cartesian product of sets U and

V with a condition that in any resulting pair the position value from set V should be higher

than the one from set U . Thus, the cell (u, v) for W(0) will be equal to the number of

tuples in set C, and for W(κ) will be the sum over all results of function φκ on the difference

between elements of each tuple in C. The remaining steps are same as Algorithm-1.

For the SGT extension to undirected sequences in Sec. 4.2.5.1, the loop range in line 3

in Algorithm-1 should be changed to j ∈ {1, . . . , length(s)} and the set assignment in line

13 in Algorithm-2 should change to C ← U × V = {(i, j)|i ∈ U, j ∈ V }.

The outputted SGT for the sequence, s, will be a |V|×|V|matrix, which can be vectorized

(size, |V|2) for use in distance-based data mining methods, or can be used as is for visualiza-

tion and interpretation purposes. Moreover, for a sequence dataset, S, the algorithm should

be repeated for all sequences to obtain their feature representations.

The time complexity of Algorithm-1 is O(NL2), where N is the number of sequences

(= |S|) and L is the average sequence length, and O(N |V|2) for Algorithm-2, if the pre-

processing step is excluded. The space complexity for both is O(N |V|2). However, in most

datasets, not all alphabets in V are present in a sequence, resulting into a sparse SGT

features representation. In such cases, the complexities reduce by factor of the sparsity

level. Moreover, as also evident from Fig. 20b, the SGT operation on any sequence in a

dataset is independent of other. This means, we can easily parallelize the SGT operation

on the sequences in S to significantly reduce the runtime.

The optimal selection of the hyperparameter κ will depend on the problem in hand. If

the end objective is building a supervised learning model, methods like cross-validation can

be used. For unsupervised learning, any goodness-of-fit criteria can be used for the selection.

In cases of multiple parameter optimization, for eg. the number of clusters (say, nc) and

κ together in an unsupervised learning, we can use random search procedure. In such a

procedure, we randomly initialize nc, compute the best κ based on some goodness-of-fit

measure, then fix κ to find the best nc, and repeat until there is no change. From our
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Algorithm 2 Extract SGT features by scanning alphabet positions of a sequence
Input: A sequence, s ∈ S , alphabet set, V , and hyperparameter, κ.

1: function GetAlphabetPositions(s,V)
2: positions← {∅}
3: for v ∈ V do
4: positions(v)← {i : si = v, i = 1, . . . , length(s)}
5: end for
6: return positions
7: end function

8: Initialize:
W(0),W(κ) ← 0V×V , and sequence length, L← 0
positions ← GetAlphabetPositions(s,V)

9: for u ∈ V do
10: U ← positions(u)
11: for v ∈ V do
12: V ← positions(v)
13: C ← (U × V )+ = {(i, j)|i ∈ U, j ∈ V, & j > i}
14: W

(0)
u,v ← length(C)

15: W
(κ)
u,v ← sum(exp(−κ|C:,u − C:,v|))

16: end for
17: L← L+ length(U)
18: end for
19: if length-sensitive is True then
20: W(0) ←W(0)/L
21: end if

Output SGT: ψuv(s)←
(
W (κ)
u,v

W
(0)
u,v

) 1
κ

; Ψ(s) = [ψuv(s)], (u, v) ∈ V

experiments on real and synthesized data, the results of SGT based data mining are not

sensitive to minor differences in κ. In our implementations, we typically selected κ from

{1, 5, 10}.

4.4 Experimental Analysis

In this section, we perform an experimental analysis to assess the performance of the pro-

posed SGT. The most important motivation behind SGT is the need for an accurate method

to find (dis)similarity between sequences. Therefore, to test SGT’s efficacy in finding se-

quence (dis)similarities, we built sequence clustering experimental setup. Clustering opera-

tion requires accurate computation of (dis)similarity between objects, thus, is a good choice

for efficacy assessment.
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Table 5: Experimentation settings

Sequence
length, µ, σ

Noise
level

#clusters,
nc

Exp-1 424.6, 130.6 45-50% 5
Exp-2 116.4, 47.7 35-65% 5
Exp-3 98.2, 108.3 – 5
Exp-4 103.9, 33.6 30-50% 3

We perform four types of experiment, a) Exp-1: length-sensitive, b) Exp-2: length-

insensitive with non-parametric sequence pattern, c) Exp-3: length-insensitive with para-

metric sequence pattern, and d) Exp-4: alphabet clustering. The settings for each of them

are given in Table 5. Alphabet set is, V = {A, B . . . , Z}, for all sequences. Besides, except for

Exp-3, clustered sequences were generated, such that sequences within a cluster share com-

mon patterns. Here two sequences having a common pattern primarily means the sequences

have some common subsequences of any length, and these subsequences can be present any-

where in the sequence. The sequences also comprise of other events, which can be either

noise or some other pattern. This setting is non-parametric, however, the subsequences can

also bring some inherent parametric properties, like a mixture of Markov distribution of

different orders. In Exp-3, clustered sequences were generated from a mixture of parametric

distributions, like Markov and Hidden Markov models. In all the experiments, k-means with

manhattan distance was applied on SGT representations of the sequences.

In Exp-1, we compare SGT with length-sensitive algorithms, viz. MUSCLE, UCLUST

and CD-HIT, which are popular in bioinformatics. These methods are hierarchical in nature,

and thus, itself finds the optimal number of clusters. For SGT-clustering, the number of

clusters are found using the random search procedure recommended in Sec. 4.3. Besides,

other methods, like Optimal Matching (for eg. Needleman-Wunsch) or sequence alignment

(for eg. Smith-Waterman), are not considered due to their high time complexity, which

makes them inappropriate for most large sequence datasets.

Fig. 24 shows the results, where the y-axis is the ratio of the estimated optimal number

of clusters, n̂c, and the true number of clusters, nc. On the x-axis, it shows the clustering

accuracy, i.e. the proportion of sequences assigned to a same cluster given that they were
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Figure 24: Exp-1 on length-sensitive sequence problem.

actually from the same cluster. For a best performing algorithm, both metrics should be

close to 1. As shown in the figure, CD-HIT overestimated the number of clusters by about

twice, while UCLUST severely overestimated by 5 times, but both had a 100% accuracy.

MUSCLE accurately estimated nc but had about 95% accuracy. On the other hand, SGT

could accurately estimate nc, as well as, it has a 100% accuracy.

In Exp-2, we compare SGT with commonly used sequence or string analysis techniques,

viz. n-gram, mixture Hidden Markov model (HMM), Markov model (MM) and semi-Markov

model (SMM) based clustering. For n-gram, we take n = {1, 2, 3}, and their combinations.

Note that 1-gram is equivalent to bag-of-words method. For these methods, we provided

the known nc to the algorithms. We use F1-score as the accuracy metric. It considers both

the precision1 and the recall2 of the test to compute the score by taking a weighted average

of both, where its best value is 1 and worst at 0.

Besides, in this experiment, we set different scenarios such that the overlap of clusters’

“centroid” are increased. A high overlap between clusters implies the sequences, belonging to

these clusters, have higher amount of common patterns. Thus, separating them for clustering

becomes difficult, and clustering accuracy is expected to be lower.

Fig. 25a shows the accuracy results for the above experimentation. As shown in the

figure, SGT-clustering always has a higher accuracy (F1-score) and is significantly higher

than MM and SMM. This is due to the fact that both MM and SMM work on a first-order

Markov distribution assumption on sequences. On the other hand, although HMM has a

1Precision is the number of correct positive results divided by the number of all positive results
2Recall is the number of correct positive results divided by the number of positive results that should

have been returned
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(a) (b)

Figure 25: Experimentation results for general sequence datasets to compare the efficiency
of Sequence clustering methods. Higher overlap implies the sequences, belonging to different
clusters, share many patterns and, therefore, are harder to separate.

first-order Markov assumption on the hidden states, the observed sequence events do not

require such condition. Therefore, in comparison to the MM and SMM, HMM’s accuracy

is relatively more robust to the strict distribution assumptions on a sequence. As a result,

we see its F1-score to be comparable to SGT. The n-gram methods lie in between. An

interesting finding is, while higher order n-grams performed better in general, the 1-gram

method is better when overlapping was high. This shows higher order n-grams inability to

distinguish between sequences when patterns are very similar.

Besides, in Fig. 25b the runtimes of the methods are compared. The smaller order n-

grams have very low runtime. Among others, HMM has significantly higher runtime while

SGT has lowest.

Furthermore, we did Exp-3 to see the performance of SGT in sequence datasets having an

underlying mixture of parametric distributions, viz. mixture of HMM, MM and SMM. The

objective of this experimentation is to test SGT’s efficacy on parametric datasets against

parametric methods. In addition to obtaining datasets from mixed HMM, and first-order

mixed MM and SMM distributions, we also get second-order Markov (MM2) and third-order

Markov (MM3) datasets. As expected, the mixture clustering method corresponding to the

underlying distribution is performing the best. Note that SMM is slightly better than MM

in the MM setting because of its over-representative formulation, i.e. a higher dimensional

model to include a variable time distribution. However, the proposed SGT’s accuracy is
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Figure 26: Efficacy validation of proposed SGTmethod on experimental datasets synthesized
from different parametric distributions. For each parametric dataset, all parametric and
proposed SGT methods are compared.

always close to the best. This shows SGT’s robustness to underlying distribution and its

universal applicability. Besides, again its runtime is smaller than all others.

Finally, we validate the efficacy of the extensions of SGT given in Sec. 4.2.5 in Exp-

4. Our main aim in this validation is to perform alphabet clustering (Sec. 4.2.5.2). We

setup a test experiment such that across different sequence clusters some alphabets occur

closer to each other. We create a dataset which has sequences from three clusters and

alphabets belonging to two clusters (alphabets, A-H in one cluster and I-P in another).

There are common patterns between sequences in a cluster and the patterns are such that

alphabets from same alphabet cluster will be closer. For eg. a cluster can have patterns

like {EFEACDAA, FGGCA, NNKLI, KJJOOLLPM, . . .}, where a pattern maintains the closeness of

alphabets imposed from their underlying true group.

This emulates a biclustering scenario where sequences in different clusters will have

distinct patterns, however, the pattern of closely occurring alphabets is common across all

sequences. This is a complex scenario where clustering both sequences and alphabets can

be challenging. In a typical real world problem, the alphabet clusters can be expected to

be distinct in different sequence clusters, where the bi-clustering can be done in two stages,

1) cluster sequences, 2) for each sequence cluster, cluster the alphabets. Nevertheless, in

this experiment we show that the developed SGT can be used to perform the bi-clustering

together on a complex dataset.

In this experiment, we assume that it is required to group the alphabets by, a) finding
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Figure 27: Heat-map showing alphabets’ association via SGT edge-weights.

closeness between distinct alphabets, and b) irrespective of their directional pattern. For

the former, we include SGT extension in Sec. 4.2.5.2 and the extension in Sec. 4.2.5.1 for

the latter. This setup will validate the SGT extensions together. However, the accuracy

will remain unaffected even if the analysis is done without the above two assumptions and,

in turn, extensions.

Upon clustering the sequences, the F1-score is found as 1.0. . For alphabets clustering, we

applied spectral clustering on the aggregated SGT’s of all sequences, which yielded a accurate

result with only one alphabet as mis-clustered. Moreover, a heat-map in Fig. 27 clearly

shows that alphabets within same underlying clusters have significantly higher associations.

Thus, it validates that SGT can accurately cluster alphabets together with clustering the

sequences.

In this section, we showed that SGT outperforms existing methods in terms of both

accuracy and runtime. This validates the premise that SGT is an effective representation

of sequences, that precisely characterizes a sequence’s patterns, and thus, provides accurate

distance-based (dis)similarities for sequence data mining.

4.5 Applications

In this section we show few applications of SGT based sequence mining on real world

datasets. We use four datasets, two from protein databases, one computer network log

data and a user web navigation data. We show that SGT facilitates use of mainstream

data mining for sequences and, indeed, outperforms the commonly used sequence mining
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methods.

4.5.1 Clustering

Sequence clustering is an important application area across various fields. One important

problem in this area is clustering user activity on web (web log sequences) to understand

their behavior. This analysis helps in better service, design, advertisements and promotions.

We take a user navigation data3 on msnbc.com collected during a 24-hour period. The

navigation data are weblogs that correspond to page views of each user. The alphabets of

these sequences are the events corresponding to a user’s page request. These requests are

recorded at a higher abstract level of page category, which are representative of the structure

of the website. The categories are: frontpage, news, tech, local, opinion, on-air,

misc, weather, health, living, business, sports, summary, BBS (bulletin board

service), travel, MSN-news, and MSN-sports. The dataset comprises of 989,818 we-

blogs (sequences), of which we use a random sample of 100,000 sequences for our analysis.

As expected, the distribution of sequence lengths (shown in Fig. 28, the distribution of log

of sequence lengths) is found to be skewed and multi-modal. Their average length is 6.9 and

standard deviation is 27.3, with range between 2 and 7440.

Our objective is to group the users with similar navigation patterns, irrespective of dif-

ferences in their session lengths, into clusters. We, therefore, take the length-insensitive

SGT version and use the random search procedure suggested in Sec. 4.3 to determine the

optimal number of user clusters. In the procedure, we used k-means clustering with man-

hattan distance, and the goodness-of-fit criterion as db-index (Davies and Bouldin, 1979).

The optimal point is found for the tuning parameter, κ = 9, and the number of clusters,

nc = 104.

The frequency distribution of number of members in each cluster is shown in Fig. 29.

Again, as expected, the frequency distribution is like Pareto — majority of users belong to a

small set of clusters. Nevertheless, it is important to understand distinct behaviors of both

majority and minority users for better personalized services. Although most clusters have

3archive.ics.uci.edu
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Figure 28: Sequences log-length distribution on msnbc.com

Figure 29: Frequency distribution of number of members in msnbc.com user clusters.

small memberships, but with huge amount of user sessions everyday, optimizing advertise-

ments, marketing or design strategies, personalized to each group of users types (by their

behavior) can bring significant improvement in returns.

In Cadez et al. (2000), the optimal number of clusters for a sample of same size was

found to be 100, close to our finding. However, the overall clustering results from Cadez et

al. may have inconsistencies due to a first-order Markovian assumption. We ran hypothesis

tests on the sequence data for verifying the assumption. The Markov tests result show

majority of the data, about 67.9%, could not be tested, either due to the sequence’s short

length or presence of single event throughout the sequence. Of the remaining, about 27%

follows first order Markov property, and the rest has second or higher orders. Thus, applying

Markov model based clustering on such data can be ineffective, on the other hand, proposed

SGT based clustering does not depend on any distributional assumptions, hence, is better

capable in identifying similar sequences.
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4.5.2 Visualization

Effective visualization is a critical need for easy interpretation of a data and underlying

properties. For example, in the above msnbc.com navigation data analysis, interpreting

behavior of different user clusters is as important. The SGT’s graph equivalence provides

an appropriate visualization technique.

In the following (Fig. 30a-30f), we show graph visualization of some clusters’ centroids,

because a centroid represents the behavior of users present in the cluster. We have filtered

edges with small weights for a better visualization. Thus, weakly connected nodes, i.e.

infrequently visited pages, are seen as isolated.

The representative SGT for the first cluster is shown in Fig. 30a. This cluster contains

the highest membership (∼12%), thus, indicates the “most” general behavior. The behavior

graph in this group is centered around frontage and misc, with users tendency to navigate

between frontpage, misc, weather, opinion, news, travel and business. Besides,

users also tend to go to on-air, health, sports and msn-news/sports before leaving the

website.

Fig. 30b shows another majority cluster with about 7.5% membership. This group of

users seem to have a liking for sports. They primarily visit sports related pages (the box

around sports node indicate a self-visiting edge), and also move back-and-forth from sports

to frontpage, travel, misc, msn-sports/news, weather, news, business, and local.

Further, in Fig. 30c and 30d, we show two clusters with memberships of about 1%. The

user behavior in both clusters are slightly similar yet significantly different. In cluster-25,

the users primary interest is centered around living and business, while in cluster-31, it

is centered around living and travel. Thus, it can be interpreted that users having the

former behavior are involved in more business and visit living pages for general daily and

local living information, while the latter behavior indicates the users are interested in travel

and living information of different places (not local).

The clusters shown in Fig. 30e and 30f have memberships smaller than 1%. The users

navigation behaviors in these clusters are centered around frontpage. The users in cluster-

73 navigate frequently between the frontpage, msn-sports and living; while the users
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(a) Cluster# 1 (b) Cluster# 3

(c) Cluster# 25 (d) Cluster# 31

(e) Cluster# 73 (f) Cluster# 85

Figure 30: Graphical visualization of cluster representatives, showing general behavior of
the cluster’s members.
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Figure 31: General navigation behavior of users on msnbc.com.

in cluster-85 go between frontpage, news, business and weather. This indicates these

users are either casual browsers or new users of msnbc.com, who navigate around the front-

page more often than surfing any specific category.

Thus, while the clustering approach provided us with cluster of users, the visualization

aided in understanding the user behavior in a group. Besides, we did another analysis on

the data, by considering the entire sample as one cluster (unit). This analysis will give us

a general picture of user navigation behavior (see Fig. 31). It is observed that summary is

the least visited category followed by BBS and tech. The tech category is mostly visited

from frontpage and news, and counter-intuitively significantly often from opinion than

business.

4.5.3 Classification

At many occasions we have labeled sequence data where it is required to build a classification

model that can accurately assign a new sequence to the right class. Here we show that SGT

representation can be used for building sequence classifiers. We use two datasets, a) protein

sequences and its function as labels, and b) network intrusion data containing audit logs

and attack labels.
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The protein dataset is a sample of 2113 sequences taken from www.uniprot.org, where a

sequence is from 20 alphabets (amino acids). Each sequence has one of two functions, viz.

“Might take part in the signal recognition particle (SRP) pathway” and “Binds to DNA and

alters its conformation”. These functions are treated as the sequence labels, and have almost

a balanced distribution (∼46.4% for the first function). Besides, the sequence lengths in this

dataset are similar, in the range of (289, 300). For this problem we use the length-insensitive

SGT.

Another real world problem considered here is detection of intrusion in a computer

network from the audit data. We use a sample of audit data with labels for an attack

(positive class) or a normal event from MIT Lincoln Laboratory4. The dataset contains a

BSM log file with about 400,000 lines, after post-processing gives event sequences for 115

sessions. There are 49 event types, corresponding to the alphabets set. The session lengths

vary over a wide range of (12, 1773) with mean and standard deviation of (179, 192). Besides,

since network intrusions are a rare event, the class distribution is significantly unbalanced

with just 11.3% positive class datapoints.

In this problem, we consider the sequence lengths as important (a length-sensitive prob-

lem), because sequences with similar pattern but different lengths can have different la-

bels. Take a simple example of following two sessions: {login, password, login, password,

mail,...} and {login, password,...(repeated several times)..., login, password}, while

the first session can be a regular user mistyping the password once, the other session is pos-

sibly an attack to guess the password. Thus, the sequence lengths are as important as the

patterns.

For both datasets, we first transformed the sequences to vectors using SGT, length-

insensitive and -sensitive for protein (κ = 1) and network intrusion (κ = 10) data, re-

spectively. For the network intrusion data, the sparsity of SGTs were high. Therefore, we

performed principal component analysis (PCA) on it, and kept the top 10 PCs as sequence

features, we call it SGT-PC, for further modeling.

After obtaining the SGT (-PC) features, we trained a SVM classifier on them. For

4https://www.ll.mit.edu/ideval/data/1998data.html
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Table 6: Classification accuracy (F1-score) based on 10-fold cross validation results. #
Features is dimension of input data to SVM, and SVs is the number of support vectors
selected.

F1-score (#Features/SVs)
SVM on- {γprotein; γnetwork}, c = 1 Protein data Network intrusion
SGT {0.0014; 0.1} 99.61% (400/120) 89.65%(2,401/28)
Bag-of-words {0.05; 0.02} 88.45% (20/35) 48.32% (49/48)
2-gram {0.0025; 0.00041} 93.87% (400/45) 63.12% (2,401/25)
3-gram {0.00012; 8.4e− 06} 95.12% (8,000/202) 49.09% (117,649/29)
1+2-gram {0.0012; 0.0004} 94.34% (820/28) 64.39% (2,450/26)
1+2+3-gram {4.02e− 05; 8.32e− 06} 96.89% (24,820/15) 49.74% (120,099/27)

comparison with commonly used sequence classifier techniques, we implemented bag-of-

words (1-gram), 2-, 3-, 1+2-, 1+2+3-gram methods. The SVM was built with a RBF

kernel. The cost parameter, c, is equal to 1, while the value for kernel parameter, γ, is

shown within braces in Table 6. F1-score is used as a measure of accuracy, especially due to

the network intrusion dataset where both precision and recall are important. The average

test accuracy (F1-score) from a 10-fold cross validation is reported in the Table 6. Besides,

the dimension of the data fed into SVM and the number of support vectors selected during

training are shown as, “#Features” and “SVs”, respectively.

As we can see in Table 6, the F1-scores are high for all methods in protein data, with

SGT based SVM surpassing all others, followed by 1+2+3-gram. On the other hand, the

accuracies are small for the network intrusion data. This is primarily because of, a) a small

dataset but high dimension (related to the alphabets size), leading to a weak predictive

ability of models, and b) a few positive class examples (unbalanced data) causing a poor

recall rate. Still, SGT outperformed other methods with a significant margin. Although

the accuracies of the methods can be further increased using other classifiers, like Boosting,

Random Forest, etc., it is beyond the scope of this paper. Here our purpose is to make a

simplistic comparison to highlight the superiority of SGT features in building a supervised

learning model.
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Table 7: Protein search query result from a sample dataset of size 1000.

Query, Q9ZIM1
Protein SGT-PC Identity
S9A4Q5 33.02 46.3%
S8TYW5 34.78 46.3%
A0A029UVD9 39.21 45.1%
A0A030I738 39.34 45.1%
A0A029UWE3 39.41 45.1%
A0A029TT10 39.90 45.1%
G6N1A7 44.29 45.8%
J1GZY3 44.49 45.8%
F9M004 44.58 45.8%
M2CL02 44.61 44.3%

4.5.4 Search

Most sequence databases found in real world are very large. For example, protein databases

have billions of sequences and increasing. This increasing size has made it even more chal-

lenging to search for similar sequences (homologous) for structure or function predictions.

Here we show that SGT sequence features can lead to a fast and accurate sequence search.

We collected a random sample of 1000 protein sequences from UniProtKB database on

www.uniprot.org. To incorporate the protein sequence lengths for finding similarities, we

transform them to euclidean space using length-sensitive SGT (with κ = 1). Thereafter, to

reduce the dimension we applied principal component analysis, and preserved the first 40

principal components (explaining ∼83% of variance), denoted by SGT-PC. We arbitrarily

chose a protein sequence, Q9ZIM15, as the search query. Note that here we denote a protein

by its commonly used entry IDs (for eg. Q9ZIM1 used before) in the UniProtKB database.

We compute the euclidean distance (specifically, the manhattan distance) between the

SGT-PCs of the query and each sequence in the dataset. The top 10 closest sequences

are shown with their SGT-PC distances in Table 7. As a reference, we also show the

identity between the closely found sequences and the query. An identity between two protein

sequences is the edit distance between them after alignment. Here we find identities after a

global alignment, and cost of gap-opening as 0 and gap-extension as 1. Note that alignment

5The protein sequence of Q9ZIM1 is, MSYQQQQCKQPCQPPPVCPTPKCPEPC
PPPKCPEPYLPPPCPPEHCPPPPCQDKCPPVQPYPPCQQKYPPKSK
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algorithms are approximate heuristics, thus its results should be used only as a guideline,

and not ground truth.

We find that the maximum pairwise identity (=46.3%) corresponds to the smallest SGT-

PC distance (33.02) for {Q9ZIM1 (query), S9A4Q5}. Also, the identity level decreases

with increasing SGT-PC differences, with some minor inconsistencies. Importantly, the

computation time for finding SGT-PC differences between query and the entire dataset was

0.0014 sec on a 2.2GHz Intel Core i7 processor, while identity computations took 194.4 sec.

Although, the currently in-use methods for protein databases, like BLAST, have a faster

alignment and identity computation procedure than a pairwise, it will still be higher than

finding vector differences.

If SGT-PC based search is implemented simply like above — find distance from each

datapoint in the database —, the runtime increases linearly. We saw runtime increase of

about 1000 times to 1.3 sec (from 0.0014 sec) on performing the distance computation on

1 million datapoints. In practice, advanced techniques can be employed, for eg. similar to

k-clust or HH-blits, where the sequences are clustered and a cluster has a representative

sequence or profile with which the query sequence is compared hierarchically. This reduces

the search space – significantly reducing the runtime. Moreover, a parallel architecture

can be added to divide the computation across several computing nodes. We leave these

advancements for future research.

This concludes our case study, where we showed the application of SGT based sequence

mining on real world problems and its compatibility with various distance and graph based

data mining tools. In the next section we will discuss our results from this section and

Sec. 4.4.

4.6 Discussion

As we showed in Sec. 4.2.4, SGT’s ability to capture the overall pattern — short and long

range structures — of a sequence into a fixed finite-dimensional space makes it stand out.

The n-gram models had lower performance than SGT because of this reason. N-grams cannot

explicitly capture long-range dependencies, unless n is large, in which case the feature space
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Figure 32: Percentage change in SGT feature for (A,B) with κ in presence of a noise.

becomes extremely large to handle.

Besides, the Markov models were outperformed due to their restrictive Markovian as-

sumption, which was not always true for the data. Moreover, due to this assumption, these

Markov models cannot effectively handle inherent stochasticities in a sequence and assess the

long-range patterns. For illustration, suppose we have sequences in which “B occurs closely

after A”. Consider one such example, ABCDEAB: a first-order Markov model will give a

high transition probability (a feature), equal to one, that will correspond to the inherent

pattern. But in presence of noise, for eg. a random alphabet, X, appearing in between A

and B, ABCDEAXB, the transition probability will decrease by 50% (from 1.0 to 0.5). On

the other hand, SGT is robust to such noises. As shown in Fig.32, the percentage change

in the SGT feature for (A,B), in the above case, is smaller than the Markov and decreases

with increasing κ. It also shows that we can easily regulate the effect of such stochasticity,

with a caution that sometimes the interspersed alphabets may not be noise but part of the

sequence’s pattern (thus, we should not set κ as a high value without a validation).

Furthermore, a Markov model cannot easily distinguish between these two sequences:

ABCDEAB and ABCDEFGHIJAB, from the (A,B) transition probabilities. In both sequences,

the transition probability will be equal to 1, while the SGT feature for (A,B) changes from

1.72 to 2.94 (κ = 1), showing SGT’s capability in capturing the overall pattern. On another

note, although deep learning methods can capture such overall patterns, their representations

are in an arbitrary and usually very high dimension.

Thus, SGT proves to be more proficient in capturing sequence patterns. This, aided

with the new possibility of using mainstream data mining techniques for sequence analysis,
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led to SGT outperforming other state-of-the-art sequence mining methods (see Sec. 4.4-

4.5). Moreover, SGT also performs better in runtime. This is because, although SGT’s

runtime upper bound is proportional to the square of sequence length or alphabet set size,

the actual runtime can be significantly lowered by few pre-processing. For example, on

implementing Algorithm-2, we can first pre-process a sequence to obtain the list of positions

of each alphabet, and then run a nested loop only for the alphabets present in the sequence.

In addition, SGT’s unique property of including or excluding the sequence length effect

makes it compatible for both length sensitive and insensitive sequence problems. We show

its efficacy by performing real world data analysis for both cases.

4.7 APPENDICES

4.7.1 Appendix A: Arithmetico-Geometric series

The sum of a series, where the kth term for k ≥ 1 can be expressed as,

tk = (a+ (k − 1)d) brk−1

is called as an arithmetico-geometric because of a combination of arithmetic series term

(a + (k − 1)d), where a is the initial term and common difference d, and geometric brk−1,

where b is the initial value and common ratio being r.

Suppose the sum of the series till n terms is denoted as,

Sn =

n∑
k=1

(a+ (k − 1)d) brk−1 (87)

Without loss of generality we can assume b = 1 for deriving the expression for Sn (the

sum for any other value of b can be easily obtained by multiplying the expression for Sn

with b). Expanding Eq. 87,

Sn = a+ (a+ d)r + (a+ 2d)r2 + . . .+ (a+ (n− 1)d)rn−1 (88)

Now multiplying Sn with r,

rSn = ar + (a+ d)r2 + (a+ 2d)r3 + . . .+ (a+ (n− 1)d)rn (89)
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Subtracting Eq. 89 from 88, if |r| < 1, else we subtract the latter from the former, we

get,

|(1− r)Sn| =
∣∣[a+ (�a+ d)r + (�a+ �2d)r2 + . . .+ (�a+����(n− 1)d)rn−1

]
−
[
��ar + (�a+ �d)r2 + (�a+��2d)r3 + . . .+ (a+ (n− 1)d)rn

]∣∣
=

∣∣a+ d(r + r2 + . . .+ rn−1)− (a+ (n− 1)d)rn
∣∣

=

∣∣∣∣∣∣∣a+
dr(1− rn−1)

1− r
− (a+ (n− 1)d) rn

∣∣∣∣∣∣∣ .
Therefore,

Sn =

∣∣∣∣∣∣∣
1

1− r

a+
dr(1− rn−1)

1− r
− (a+ (n− 1)d) rn


∣∣∣∣∣∣∣ (90)

or, for any value of b,

Sn = b

∣∣∣∣∣∣∣
1

1− r

a+
dr(1− rn−1)

1− r
− (a+ (n− 1)d) rn


∣∣∣∣∣∣∣ (91)

4.7.2 Appendix B: Mean and Variance of a graph tranform feature, ψuv.

Mean

Length-sensitive SGT

We first derive the expected value of ψuv for a length-sensitive SGT as,

Ep[ψuv] =

∑
di∈D Ep[φκ(di)]

M(M + 1)/2

=
MEp[φκ(Z1)] + (M − 1)Ep[φκ(Z2)] + . . .+ Ep[φκ(ZM )]

M(M + 1)/2

=

∑M
m=1(M − (m− 1))Ep[φκ(Zm)]

M(M + 1)/2
(92)

Since, X and Y are normally distributed, the pair gap-distance variable, Z in Eq. 76

will be,
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Zm ∼ N(µα + (m− 1)µβ, σ
2
α + (m− 1)σ2

β) (93)

Therefore, φκ(Zm) ∼ lognormal (see Eq. 77), and

Ep[φκ(Zm)] = e−κ(µα+(m−1)µβ)+ 1
2
κ2(σ2

α+(m−1)σ2
β)

= e−µ̃α−(m−1)µ̃β (94)

varp[φκ(Zm)] =
(
eκ

2(σ2
α+(m−1)σ2

β) − 1
)
e−2κ(µα+(m−1)µβ)+κ2(σ2

α+(m−1)σ2
β)

= e−2µ̃′α−2(m−1)µ̃′β − e−2µ̃α−2(m−1)µ̃β (95)

where,

µ̃α = κµα −
κ2

2
σ2
α ; µ̃′α = κµα − κ2σ2

α

µ̃β = κµβ −
κ2

2
σ2
β ; µ̃′β = κµβ − κ2σ2

β (96)

Substituting the results in Eq. 94 to Eq. 92 and Eq. 90 from Appendix A, we get,

Ep[ψuv] =

∑M
m=1(M − (m− 1))e−µ̃α−(m−1)µ̃β

M(M + 1)/2

=

 2

M + 1


∣∣∣∣∣∣∣
 e−µ̃α

1− e−µ̃β


1−

1

M(eµ̃β − 1)
(1− e−Mµ̃β )


∣∣∣∣∣∣∣

≈
2

M + 1

∣∣∣∣∣∣∣
e−µ̃α

1− e−µ̃β

∣∣∣∣∣∣∣
=

2

Lp+ 1

∣∣∣∣∣∣∣
e−µ̃α

1− e−µ̃β

∣∣∣∣∣∣∣ =
2

Lp+ 1
γ (97)

where,

γ =

∣∣∣∣∣∣∣
e−µ̃α

1− e−µ̃β

∣∣∣∣∣∣∣ (98)

Length-insensitive SGT
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Next, as given in Eq. 74b for the length insensitive sequence problem, Λuv is normalized

by the sequence length. Thus, the edge weight, E[ψuv] will be,

Ep[ψuv] =

∑M
m=1(M − (m− 1))e−µ̃α−(m−1)µ̃β(

M(M+1)/2
L

)
≈

2L

Lp+ 1

∣∣∣∣∣∣∣
e−µ̃α

1− e−µ̃β

∣∣∣∣∣∣∣ =
2L

Lp+ 1
γ (99)

Variance

Length-sensitive SGT

The variance of an edge feature, ψuv, can be computed as,

varp(ψuv) =

 1

M(M + 1)/2


2

M∑
m=1

(M − (m− 1))
[
e−2µ̃′α−2(m−1)µ̃′β − e−2µ̃α−2(m−1)µ̃β

]

=

 1

M(M + 1)/2


2


M∑
m=1

(M − (m− 1))e−2µ̃′α−2(m−1)µ̃′β

︸ ︷︷ ︸
V1

−

M∑
m=1

(M − (m− 1))e−2µ̃α−2(m−1)µ̃β

︸ ︷︷ ︸
V2

 (100)

Again, both V1 and V2 forms an Arithmetico-Geometric series. Solving for them, we get,

V1 =
M∑
m=1

(M − (m− 1))e−2µ̃′α−2(m−1)µ̃′β

= e−2µ̃′α

M∑
m=1

(M − (m− 1))e−2(m−1)µ̃′β

=
e−2µ̃′α

1− e−2µ̃′β

M − e−2µ̃′β

1− e−2(M−1)µ̃′β

1− e−2µ̃′β

− (M − (M − 1))e−2Mµ̃′β


=

e−2µ̃′α

1− e−2µ̃′β

M − e−2µ̃′β

1− e−2Mµ̃′β

1− e−2µ̃′β


 (101)

Similarly,
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V2 =

M∑
m=1

(M − (m− 1))e−2µ̃α−2(m−1)µ̃β

=
e−2µ̃α

1− e−2µ̃β

M − e−2µ̃β

1− e−2Mµ̃β

1− e−2µ̃β


 (102)

Therefore, plugging in Eq. 101-102 and Eq. 75 into Eq. 100, we get,

varp(ψuv) =

 1

Lp(Lp+ 1)/2


2 


e−2µ̃′α

1− e−2µ̃′β

Lp− e−2µ̃′β

1− e−2Lpµ̃′β

1− e−2µ̃′β





−


e−2µ̃α

1− e−2µ̃β

Lp− e−2µ̃β

1− e−2Lpµ̃β

1− e−2µ̃β






It is easy to show that,

lim
L→∞

varp(ψuv) = 0

Length-insensitive SGT

Besides, for length-insensitive case, the variance will be,

varp(ψuv) =

 1

p(Lp+ 1)


2 


e−2µ̃′α

1− e−2µ̃′β

Lp− e−2µ̃′β

1− e−2Lpµ̃′β

1− e−2µ̃′β





−


e−2µ̃α

1− e−2µ̃β

Lp− e−2µ̃β

1− e−2Lpµ̃β

1− e−2µ̃β






which also has limiting value of 0 as the sequence length increases.

4.7.3 Appendix C: Proof for SGT expression for undirected sequences

Proof for Eq. 85:

By definition,

Λuv(s) = {(l,m) : xl = u, xm = v, l < m, (l,m) ∈ 1, . . . , L(s)}

Similarly, Λuv can be expressed as,
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Λuv(s) = {(l,m) : xl = u, xm = v, l > m, (l,m) ∈ 1, . . . , L(s)}

= ΛTvu(s)

Next, Eq. 83 can be expanded as,

Λ̃uv(s) = {(l,m) : xl = u, xm = v, (l,m) ∈ 1, . . . , L(s)}

= {(l,m) : xl = u, xm = v, l < m, (l,m) ∈ 1, . . . , L(s)}

+{(l,m) : xl = u, xm = v, l > m, (l,m) ∈ 1, . . . , L(s)}

= Λuv(s) + ΛTuv(s)

Thus, proving Eq. 84. Next, the SGT for undirected sequence in Eq. 85, can be expressed

as,

Ψ̃uv(s) =

∑
∀(l,m)∈Λ̃uv(s) φκ(d(l,m))

|Λ̃uv(s)|

=

∑
∀(l,m)∈Λuv(s) φκ(d(l,m)) +

∑
∀(l,m)∈ΛTuv(s) φκ(d(l,m))

|Λuv(s)|+ |ΛTuv(s)|

=
|Λuv(s)|Ψuv(s) + |ΛTuv(s)|ΨT

uv(s)

|Λuv(s)|+ |ΛTuv(s)|

Thus, proving Eq. 85.

4.7.4 Appendix D: Proof for Alphabet Clustering

We have,

∂∆

∂κ
=

∂

∂κ
E[φκ(X)− φκ(Y )]

= E[
∂

∂κ
φκ(X)− ∂

∂κ
φκ(Y )] (103)

For E[X] < E[Y ], we want,
∂∆

∂κ
> 0, in turn,

∂

∂κ
φκ(X) >

∂

∂κ
φκ(Y ) (from Eq. 103).

This will hold, if
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∂2

∂d∂κ
φκ(d) > 0 (104)

that is, slope,
∂

∂κ
φκ(d) is increasing with d. For an exponential expression for φ (Eq. 72,

the condition in Eq. 104 holds true if κd > 1. Hence, under these conditions, the separation

increases as we increase the tuning parameter, κ.
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CHAPTER V

CONCLUSION AND FUTURE DIRECTIONS

This dissertation focused on developing new statistical learning and data mining methods

for service systems improvement. From a large pool of research problems in this area, three

important and challenging problems were studied and novel methodologies were developed.

Each of these methodologies is shown to have a wide variety of applications like healthcare

resource optimization, medical decision making, web data analysis, bioinformatics, business,

and more.

Novel research contributions were made in each methodology. They were experimentally

validated, and real world applications were demonstrated through case studies. In the

following, the developed research methodologies and their contributions are summarized.

Also, future research directions are suggested.

• The Impact of Estimation: A New Method for Clustering and Trajectory

Estimation in Patient Flow Modeling

The Hospital Admission Scheduling and Control problem is comprised of two main com-

ponents: census modeling and resource scheduling. Previous work on this long-standing

problem has considered one or the other, but not both. In this research, we develop a new

method based on semi-Markov model (SMM) clustering for identifying patient type clus-

ters and estimating cluster trajectory distributions that integrates seamlessly with existing

scheduling optimization approaches. This integration is proven to be extremely important,

as optimal solutions using our SMM approach dramatically outperform optimal solutions

using the traditional empirical estimation techniques.

As a theoretical contribution, our novel approach is able to model an entire hospital

of any size as a coordinated system with complex, general network of wards and patient

transitions between them. Further, the model has been shown to be scalable, accounts for

ward interactions, and for patient heterogeneity, which has not been previously achieved by
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other methods in the literature. Further, our SMM-clustering is a general purpose algorithm

applicable to any movement or sequence data having spatial and temporal dimension, for

example, clickstream data of users on a website or movement of cell-phone users among a

network of towers.

Our SMM approach was designed to integrate with resource scheduling approaches that

provide an optimal controllable schedule by patient type for each day of week. Thus, this

approach can be adopted by any specialty or multi-specialty hospital for streamlining their

procedures, stabilizing the operating environment for their personnel, efficient utilization

of hospital resources, and cost savings for both patients and hospitals. The automated,

algorithmic approach for clustering and trajectory estimation is also appealing compared to

ad-hoc, manual, and heuristic approaches currently employed in practice (which can take

months to implement and are difficult to validate statistically).

The SMM-clustering method was validated by simulating data from known generating

mixture distributions. The SMM estimated clusters and their distributions were found

to be statistically the same as the generating mixture distributions at a 95% confidence

level. We validated the efficacy of the developed Clustering and Scheduling Integrated (CSI)

method under simulated conditions based on a small hospital scenario, where we know the

true number of patient types, how they are clustered, and their trajectory distributions.

Optimizing the elective schedule based on inputs from our SMM method achieved outcomes

that were very close to the the “true optimum” (i.e. given perfect knowledge of patient flow

dynamics), while the existing traditional method gave significantly worse results.

A case study using real hospital data showed that the number of elective admissions could

be increased by 97% (with the same level of access) compared to only a 30% increase using

traditional empirical methods (which are comparable to previous optimization improvements

reported in the literature). Moreover, the average ward utilization could be improved by 22%

using our approach compared with only an 8% improvement using the traditional approach.

In conclusion, our approach develops a novel method for spatio-temporal clustering and

estimation that has a profound impact on an important patient flow problem with the

potential to improve revenues and/or cost, quality, and access to care.
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For a future research, other potential ways to model patient flow when the underlying

Markovian distribution may not hold should be explored. Besides, incorporating several

other real world factors, like patient movement blocking (patient diverted to another ward

due unavailability), effects from resource shortages, and dynamic changes due to any change

in hospital wards layout can be considered.

• Longitudinal MRI Data Analysis in presence of Measurement Error but

absence of Replicates

Existing methods rely on a complete sanctity of data for analyzing them and drawing

inferences. This can be problematic if the available data has measurement errors, especially

in medical decision making. This research focused on analysis of longitudinal data in a

challenging scenario, when there are measurement errors but replicates are not available.

Our major contribution was development of a new EM-Variogram technique for estimat-

ing an extended linear mixed effect model with a parametric covariance structure. The

parametric covariance expression decouples the measurement error variance from the overall

variance. The developed estimation technique, thus, isolates the measurement error, and

hence, provides a more accurate effect estimation and statistical inferences.

The performance of the model was experimentally validated via simulations for various

scenarios. We find that the methodology is effective and accurate in modeling, and is robust

to missing values, commonly found in a longitudinal data. The methodology was also applied

to a longitudinal MRI dataset for evaluation of hippocampal volume in (potential) Alzheimer

disease patients with mild cognitive impairment (MCI). The measurement error variance was

accurately decoupled from the noise variance. After isolating the measurement error, we were

able to obtain more precise (narrower) confidence interval for the effect estimates, leading

to more powerful statistical tests. Moreover, it can also detect more subtle effects with

less data and, thus, can a) do an early detection of a patient’s condition allowing necessary

treatment assessment and diagnosis at early stages of the disease, and b) reduce costs of

longitudinal studies.

Besides, the numerical experiments show that the proposed method may have relatively
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poor performance in random effect variance estimations if the random noise in the model is

relatively high. However, this situation typically indicates that the selected model is much

different from the true underlying model, and thus, can be resolved with a better model

selection. In practical applications, one can find a proper choice for the underlying model

by trying a wide range of model and comparing them using a model selection criterion,

like, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), etc. More-

over, an effective model selection is also necessary to keep the modeling error minimal, an

underlying assumption of the developed approach.

In conclusion, the experimental and the case study results indicate that the proposed

methodology can effectively address the analysis problem for longitudinal data where repli-

cated measurement are very costly or difficult to take, for example drug efficacy tests,

destructive tests, etc. Besides, the proposed method is flexible and can be used in cases

where other covariates (e.g., sex, age, etc.) besides time are included in the model.

In this research, we make assumptions on the homogeneity of measurement device condi-

tions over time, which makes the reproducibility analysis irrelevant. However, the extension

of the proposed methodology for a simultaneous gauge repeatability and reproducibility

(GRR) analysis would be a topic of interest for future research. Another potential direction

for future research, is to develop methods for GRR study of multivariate longitudinal data

streams.

• Sequence Graph Transform (SGT): A Feature Extraction Function for Se-

quence Data Mining

Sequence data mining is an important but challenging area due to absence of a method

to effectively quantify a sequence’s patterns characteristics in a finite-dimensional euclidean

space. We made a significant contribution in this area by developing a new function, Se-

quence Graph Transform (SGT), for this purpose. The proposed SGT has two main variants

for length-sensitive and length-insensitive sequence problems.

SGT’s ability to capture the overall pattern — short- and long0 range structures — of

a sequence into a fixed finite-dimensional space makes it stand out. To justify the claim,
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this pattern capturing ability was theoretically proved. Importantly, SGT is capable of

extracting the short- and long- term patterns with a small computational complexity.

Besides, this pattern capturing ability was further discussed and contrasted with a first-

order Markovian model. It showed that a Markov model cannot always differentiate between

two sequences from transition probabilities even when their overall patterns are different.

Also, they are not robust to presence of noises in a sequence. On the other hand, SGT is

shown to be efficient in both cases.

SGT’s performance was validated via clustering of synthesized sequence datasets under

various scenarios. A clustering operation was used as it requires an accurate comparison

of sequences. In all the scenarios, SGT is shown to markedly outperform other sequence

clustering methods, viz. n-gram, (semi, hidden)-Markov models, CD-HIT, MUSCLE and

UCLUST. Besides, SGT’s runtime is also shown to be smaller.

SGT’s application in four main sequence mining areas: clustering, classification, visual-

ization and search operations is shown, using four real datasets. Mainstream data mining

techniques could be applied on the sequence datasets via SGT. A k -means clustering is

performed on the SGT’s of sequences from msnbc.com user navigation sequence dataset.

A graph-visualization is used to interpret the k -means clustering results to understand the

user behaviors. Besides, Support Vector Machines (SVM) are fitted for classification models

on SGT’s of a protein and network intrusion sequence datasets. Lastly, a search operation

is demonstrated using principal component analysis (PCA) on SGT’s of a different protein

sequence dataset.

SGT is, thus, shown to bridge the gap between sequence mining and mainstream data

mining methods by mapping sequences in a euclidean space. Some extensions of SGT for

“undirected” sequence and alphabet clustering, are also provided, and tested. Moreover, it

has been shown to have a universal applicability to any sequence problem with various ap-

plications. Importantly, due to its low computational complexity and ease of parallelization

it can be scaled to any big sequence data problem.

For future research, we should attempt to use SGT to develop new methods for diverse

sequence problems in speech recognition, text analysis, bioinformatics etc., or use it as an
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embedding layer in deep learning architectures.
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