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Abstract

Operating system kernels typically offer a fixed set of mechanisms and primitives.
However, recent research shows that the attainment of high performance for a variety
of parallel applications may require the availability of variants of existing primitives
or additional low-level mechanisms best suited for specific applications. One ap-
proach to addressing this need is to offer an adaptable and extensible operating
system kernel. In this paper, we present a model for adaptive objects and asso-
clated mechanisms which may be used for the development of high performance
operating system kernels for parallel and distributed systems. We use the model to
implement a class of multiprocessor locks namely, adaptive locks which adapt them-
selves according to user-provided adaptation policies to suit any application locking
pattern. Using a well-known multiprocessor application, the Travelling Sales Person
program, we demonstrate the performance advantage of adaptive locks over existing

locks.
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1 Introduction

Past research with parallel and distributed machines has demonstrated that the attainment
of high performance requires the customization of operating system mechanisms and policies
to suit each class of application programs. For example, for real-time applications execut-
ing on shared memory multiprocessors, the object-based operating system kernels described
in [SGB87] must offer several representations of objects and object invocations to support the
different degrees of coupling, task granularities, and invocation semantics existing in real-time
applications[GS]. Such experiences in the real-time domain are mirrored by work in multi-
processor scheduling[ CCLP83, BLL88] that demonstrates the importance of using application-
dependent information or algorithms while making scheduling decisions. Similarly, for scien-
tific applications executing on distributed memory machines, the support of multiple seman-
tics of task communication by low-level operating system mechanisms[SB90] or by compiler-
generated communication libraries] SBW91] has been shown to enhance application program
performance significantly. Lastly, recent research addressing eflicient memory models for shared
memory[SJG92] and for distributed memory[HA90] machines has made it clear that the support
of multiple semantics of memory consistency can result in improvements in parallel program
efficiency.

This paper explores the support of application programs by kernel-level assembly of program-

specific mechanisms and policiesf WLH81]. We address the following questions:

e How an operating system kernel’s abstractions be represented so that they can detect
changes in application requirements and adjust to suit such changes?

e Are the runtime costs incurred by some dynamic adaptation justified by the possible
performance gains?

e What basic mechanisms are required for dynamic kernel adaptation?

In this paper, we present a model for adaptive objects. We use this model to implement a
class of multiprocessor locks, adaptive locks. Adaptive lock objects detect changes in application
defined lock attributes at runtime, and adjust to such changes by using application specific
adaptation policies. In this paper, we demonstrate that the added runtime cost of dynamic
adaptation is outweighed by the ensuing performance gains, using measurements on a 32 node
BBN Butterfly GP1000 multiprocessor.

The next section lists a few related results from our previous research to motivate the use

of adaptive objects. Section 3 introduces the notions of reconfigurable and adaptive objects.



Section 4 demonstrates the utility of such objects for multiprocessor synchronization using three
implementations of a well-known multiprocessor application, Travelling Sales Person(TSP) pro-
gram. The implementation of adaptive locks and some basic measurements demonstrating the
performance penalties due to monitoring of lock parameters and reconfigurability are discussed
in section 5. Section 6 compares our work with related research and finally, section 7 concludes

the paper and presents some future directions.

2 Previous Work

In [MS93], we investigate the advantages of dynamic configuration for a specific class of operat-
ing system primitives: those used for task or thread synchronization. Using artificial work-loads
on a NUMA multiprocessor, we demonstrate that:

e In NUMA machines, spin locks consistently outperform blocking locks when the number
of processors exceeds the number of threads. This is due to the reduced latencies of critical
section access for spin vs. blocking locks.

¢ When multiple threads on each processor are capable of making progress, the use of
blocking is preferred even for fairly small critical sections, since spinning prevents the
progress of other threads not currently waiting on a critical section.
Furthermore, the experiments show that any locking mechanism offered by an operating system
kernel should permit the mixed use of spinning, back-off spinning, and blocking as waiting
strategies. The design of a reconfigurable lock object is presented in [MS93] offering such
multiple waiting strategies.

A reconfigurable lock object permits the explicit alteration (statically and/or dynamically)
of its waiting and scheduling! behaviors. Experiments with reconfigurable locks with a work-
load generator on a 32 node BBN Butterfly multiprocessor (using a multiprocessor version of
Cthreads[Muk91] as the basis) demonstrate that the application performance gains due to dy-
namic reconfiguration outweigh any performance penalties caused by the added runtime costs.
Furthermore, several commonly held beliefs regarding multiprocessor synchronization are veri-
fied:

e For improved performance, an application requires lock schedulers that are most appro-
priate for the locking patterns exhibited by its threads. One experiment compares the
performance of three lock schedulers — FCFS, Priority, and Handoff using a common class
of multiprocessor applications: applications structured as client-server programs. For such
applications, priority locks exhibit the best performance whereas FCFS locks exhibit the
worst, thus demonstrating the importance of application-specific lock schedulers|MS93].

! The scheduling component of a lock object determines the delay in lock acquisition experienced by a thread, and
consists of three disjoint components — registration, acquisition, and release[MS93]
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Figure 1: Length of critical section Vs. Application execution time

e Second experiment compares the performance of some implementation-specific lock con-
figurations (centralized vs. distributed locks, passive vs. active locks), thereby demon-
strating the advantages of changing implementations to re-target such objects to different
architectural platforms (e.g., from UMA to NORMA, for different processor partitions,
etc. ).

e The optimal waiting policy for a lock depends on the application’s locking pattern and
can be improved by dynamic configuration. A third set of experiments alters selected
attributes of reconfigurable locks to effect different waiting policies demonstrating the
effect of different waiting policies on performance. Furthermore, these experiments suggest
that a speculative or advisory lock? performs well for variable length critical sections.

We repeat one result of our previous research in Figure 1 which suggests that a waiting
policy based on dynamic feedback (reporting the state of an object) is essential for improved
application performance. The figure compares the performance of an application using com-
bined locks® vs. pure spin and blocking locks. The figure shows the performance of three
combined locks — one that spins 10 times initially before blocking, one that spins 50 times be-
fore blocking, and one that spins only once before blocking. The results demonstrate that the
lock spinning 10 times performs better than that spinning once for certain lengths of critical
sections. However, the lock spinning 50 times performs worse than the lock spinning 10 times
for critical sections of the same length. The results of this experiment suggest that the optimal

number of initial spins of combined locks will depend on various application characteristics such

2The owner of such a lock advises other requesting threads whether to spin or sleep while waiting, dynamically
changing some attributes of its internal state during different phases of computation[MS93]
? A thread waiting for a combined lock spins as well as sleeps while waiting according to a user-defined policy[MS93]
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as its locking pattern, length of critical sections etc. Furthermore, the optimal waiting policy for
a lock might differ during different phases of a computation. These results give credence to the
main contribution of this paper. Namely, a waiting policy based on dynamic feedback (report-
ing the state of an object) should lead to improved performance for a large number of shared
memory multiprocessor applications (especially important for applications with unknown lock
patterns, applications with frequently changing lock patterns etc. ). The contribution of our

work is twofold:

e presenting a structure for adaptive objects which can be used to build different operating
system abstractions for parallel and distributed systems.

e applying the structure to implement multiprocessor locks to investigate the usefulness of
adaptability. Specifically, although the mechanisms required for gathering information
and for dynamic lock reconfiguration introduce additional overheads, we show that these
overheads are outweighed by performance gains due to adaptability using a well-known
multiprocessor application — Travelling Sales Person program.

3 Adaptive Objects

In a typical thread-object model of computation, threads are treated as active entities whereas
objects are treated as passive entities. Objects are primarily used to encapsulate code and data,
whereas computation results from a thread’s invocation of a method/procedure defined by an
object.

The object model is important to our research because the encapsulation property of objects
hide their implementation from other program components, thereby permitting the alteration
of an object implementation without changing its interface. PRESTO[BLL88] system and
the CHAOS[GS, GS89, SGZ90], use this property of objects to construct configurable paral-
lel programming environments. CHAOS also captures differences in object implementation
by introduction of explicit object attributes that may be used for static or dynamic object
configuration. With respect to configurability of objects, we classify objects into three types:

non-configurable, reconfigurable and adaptive.

Non-configurable objects: Such objects are mainly used to encapsulate code and data.
Specifically, an instance of an object is uniquely described by its names and methods, the latter
implementing the object’s functionality. Objects are used by invocation of their methods,
where both the semantics of invocation and the representation of objects may be class-specific.

Namely, each method has some internal implementation that may range from being passive (i.e.,
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the method’s code is executed by the invoker), to active threads executed on one or multiple
processors[GS, SGB87] asynchronously to the invoker. Each object also contains global centrally
stored or distributed[SB90], static and dynamic internal state accessible to all methods as well

as state local to each method.

Reconfigurable objects: Reconfigurable objects provide mechanisms to alter the implemen-
tation of one or more of their methods dynamically (at execution time) without changing their
interface. Figure 2 illustrates the structure of configurable objects presented in [MS93]. In the
figure, “Configurable Methods” include the non-configurable object methods, the configurable
object methods (possibly configured using attributes) and the methods implemented by the
reconfiguration mechanism.

Reconfiguration concerns the dynamic alteration of components of parallel programs[BS91].
Such reconfiguration is possible only if the components being changed offer an immutable inter-
face to the remainder of the application program. However, for reconfiguration and for attain-
ment of high performance, application programs must be aware of additional object properties.
These properties may be represented as object atiributes that may be specified and changed
orthogonally to the object’s class determined by its methods. We use an attribute-based specifi-
cation to investigate a class of dynamically changeable attributes. Specifically, we are concerned
with object attributes that characterize an object’s internal implementation.

Similar to the restricted definition of the object model used by Bihari for on-line adaptation

of real-time programs [BS91], we assume that changes in object attributes may be performed
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both synchronously or asynchronously with method invocations[GS]. This requires the intro-
duction of two additional time-dependent properties of object attributes: (1) mutability and (2)
ownership. An attribute is mutable whenever its current value may be changed. Since attribute
mutability is subject to change over time, the implementation of a reconfigurable lock object
possesses an internal mechanism to enact the object’s reconfiguration. This policy makes use
of object state describing its ownership by invokers. Such ownership of an object attribute is
acquired in one of the two ways — implicitly, when an object method belonging to a specific
set of methods is invoked, explicitly when the “acquisition” method is invoked by an external

agent (typically, a thread monitoring the state of the object)[MS93].

Adaptive objects: In addition to the components of a reconfigurable object, an adaptive
object contains built-in monitoring mechanism that provides information about its attributes
and a user-provided adaptation policy. The information from the monitor module may be
used implicitly or explicitly to tune an object for improved performance. Figure 3 shows the
structure of such an object.

The monitor module senses changes in those object characteristics that are required for re-
configuration of the mutable attributes and of the method implementations. The implementa-
tion of this module needs to be efficient to avoid extra overhead associated with the adaptation.
Section 5 presents an implementation of such a monitoring mechanism. In a configurable ob-
ject, the monitor information is normally fed to an external agent (possibly a thread belonging

to the same application) for interpretation so that the external thread senses the current state



of an object, and dynamically configures it. However, if the adaptation module is included as
a part of the object, then the object is referred to as an adaptive object. An adaptive object
implements a feedback loop consisting of the monitor mechanism, the adaptation policy, and
the reconfiguration mechanism.

We have identified a few issues and tradeoffs regarding adaptive objects which control their

performance and are mentioned briefly in the remaining part of this section.

Monitoring Cost vs. Amount of Information: The quality of monitored data depends

on two factors:

Diversity Factor: The diversity factor of monitored information captures the range of data
monitored. The quality of information improves as the variety of “useful” monitored data
increases.

Sampling Rate: The sampling rate specifies the frequency of information monitoring (i.e., how
often a state variable is monitored). A higher sampling rate improves the information
quality, however, an over-abundance of data causes “information overload”.

The overall cost of monitoring object state depends on the cost of the underlying monitor
mechanism, the diversity factor, and the sampling rate. As the diversity factor and the sampling

rate increase, the quality of adaptation improves but monitoring overhead increases.

Adaptation Cost vs. Quality of Adaptation: The overall cost of adaptation increases as
the quality of adaptation decreases which depends on the user-defined adaptation algorithm,
diversity factor of the monitored data (how many different data to consider to take a decision),

and the sampling rate (how often does the policy execute).

Coupling of the feedback loop: The coupling between the monitor module and the adap-
tation module, and between the adaptation module and the reconfiguration mechanism affect
the performance of adaptive objects. If the adaptation module lags the monitor module by a
large amount, overflow of information may cause the adaptation module to make a reconfigu-
ration decision based on a past object state rather than the current state. The adaptation lag
becomes even more pronounced if the reconfiguration mechanism also lags the adaptation mod-
ule. Therefore, to avoid such lags an adaptive object implements a “closely-coupled” feedback

loop.



3.1 Formal Characterization

Let V; be a state variable with value v; in domain D; (v; € D;). Let IV be the set of variables
that constitute the internal state and C'V be the set of variables constituting the mutable

attributes. Then, the object state SV is represented as:

SV =1V UCV where,
IV ={V;,V5,...,V,} and
vV = {Lrla Uzyoons Lrn}

The actual values of the variables in C'V determine an implementation-dependent portion of

object configuration. Let C'V; be an instance of the sub-state C'V of the object, i.e.
cVv, = {.TZ | Ui=ax; NU; e CV Na; € Di}

Then, the set of policies specified by object attributes are represented as

¢ ={CV,;|CV; is an instance of C'V}

Let I' be the set of methods implementing the object interface. Then, the set C' of possible

object configurations is:

C=I'x®

The configurable methods consist of:

1. T : T is a state transition operation and is formally expressed by a variation of axiomatic
rules:

SVipre : Tt SV pout [1]

Where, SV, and SV .5 refer to the object states before and after the operation respec-
tively. YT modifies only the internal state of an object, therefore, can be more precisely

defined as:
T: 1V, — 1V,

t specifies the cost of the specified operation and is expressed in terms of number of
memory reads and writes :

t = niRnyW, where ny > 0Ang >0

2. ¥ : ¥ is a reconfiguration operation and is formally expressed as:

Cpre + Ut Cpost [1]

Where, (), and C)p,4¢ refer to the object configurations before and after a reconfiguration
operation respectively. A configuration C; is a tuple (I';, ®;) where I'; € I' and ¢; € . ¥
refers to the requested configuration action and is expressed as:



v <F“(I)Z> — <F]',(I)j>

As mentioned above, ¢ specifies the cost of the configuration operation and is expressed
in terms of number of memory reads and writes. A complex reconfiguration of an object
happens by a collection of primitive operations. The cost of such a reconfiguration is
obtained by adding costs of the individual operations.

3. I : I is an initialization operation and is defined as:
I:1V;UCV;Ul'; — IVouU CVyU Ty where,

IVy, C'Vy, and I'g are the initial values of IV, C'V, and I' respectively.

The feedback loop is implemented by the monitor module(M ), the adaptation policy(P)

and the reconfiguration mechanisms:

M pie g

where, v; is the value of a state variable and d. is a reconfiguration decision.

4 Experimentation With TSP Application

An adaptive lock object, used for task or thread synchronization in multiprocessor operating
system kernels and/or user-level thread libraries, detects changes in application request (lock-
ing) pattern and adapts itself for improved performance. Adaptation concerns altering the
waiting and scheduling policies of locks to suit application requirements. Section 5 presents the
implementation of such locks in detail. In this section, we discuss the performance advantage
of using such locks in TSP application.

A wide class of parallel applications work by construction of search trees from an initial
problem (possibly a graph). Branch-and-bound algorithms, which are commonly used in opti-
mization problems, are members of this class. We studied a specific application belonging to
the class of branch-and-bound algorithms called the travelling sales person problem.

This specific algorithm is the LMSK branch and bound algorithm for finding the shortest
tour of a fully connected graph. The algorithm [SBBG89] proceeds by dynamic construction
of a search tree, at the root of which is a description of the initial problem. Independent
subproblems are generated by selection of some edges from the graph and creation of children
of the root. The algorithm continues to choose leaf nodes and expand them until a tour is
found. Once a tour is found for any subproblem, the search space may be pruned by deletion
of some unnecessary branches and leaf nodes. When all leaf nodes have been expanded and

pruned, the lowest tour is the minimum tour of the graph.



We have used a Thread library[Muk91] to implement the TSP algorithm as a collection of
asynchronous cooperating threads[CS93]. The threads cooperate through two shared abstrac-
tions: (1) a shared work queue of subproblems which stores the search-space tree, and (2) a
shared value representing the current best tour found so far. To start a computation, the main
thread of the program first enqueues the node of the initial problem (the root node) in the work
queue, it then forks a number of searcher threads and finally waits until all of them terminate.
A searcher terminates when at least one tour has been found and there is no more node in the
work queue.

We implemented the above algorithm in three different ways by varying the implementation
of the shared abstractions from centralized to distributed, with and without a load balancing
strategy. All implementations use four synchronization locks — qlock for mutual exclusion of
the shared queue, glob-act-lock for mutual exclusion of the variable containing the number of
active slaves, glob-low-1lock for mutual exclusion of the lowest tour value (for the distributed
representation, each processor keeps its own local copy of the value), and globlock which is
a multi-purpose lock to keep the global data structure consistent. After studying the locking
patterns for all the locks, we found that glob-low-lock and globlock do not suffer from
any contention. The lock adaptation policy (as presented in this section) identifies such no-
contention locks and configures them to low-latency spin-locks. qlock and glob-low-lock,
on the other hand, exhibit considerable lock contention (shown later in this section for each
implementation). As expected, these patterns demonstrate that the distributed implementation
(Figure 6) exhibits a much lower lock contention for qlock than the centralized implementation
(Figure 4).

The customized lock monitor for the adaptive locks, used in the following experiments,
senses the number of waiting threads (sampled once during every other unlock operation) to be
used by the adaptation module. The adaptation policy used by the adaptation module is very

simple and straightforward as given below:

FUNCTION simple-adapt() <input: no-of-waiting-threads> IS

IF no-of-waiting-threads = 0
Configure the lock to be pure spin;

ELSE IF no-of-waiting-threads < Waiting-Threshold
Increase no-of-spins by n;

ELSE IF no-of-waiting-threads > Waiting- Threshold
Decrease no-of-spins by 2%n;

10
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Figure 4: Locking Pattern for “QLOCK?” in the Centralized Implementation

IF no-of-spins < 0
Configure the lock to be pure blocking;

END

In the above algorithm, Waiting- Threshold specifies the threshold of the number of waiting
threads for a lock which determines when the number of spins should be raised and n is a
lock-specific constant. The threshold and n are different for different locks and depend on the
locking pattern and the length of the critical section. The constants Waiting- Threshold and n
need to be varied to get the optimized adaptation policy for a specific lock. The next step of
our research focusses on finding the exact relationship between Waiting-Threshold, n, and the
length of the protected critical section.

The remaining part of this section briefly discusses each implementation focussing on the
application locking patterns, and the effect of adaptive locks on the performance of these im-
plementations. The measurements shown in this section are taken using 10 processors with
one thread per processor (each searcher thread executes on a dedicated processor) on a BBN
Butterfly NUMA multiprocessor for a problem of size 32 (i.e., the number of cities of the initial
TSP problem is 32).
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Sequential Blocking Lock Adaptive Lock Percentage Improvement
(milliseconds)  (milliseconds)  (milliseconds)

| 20666 3207 2636 17.8% |

Table 1: Performance of the Centralized Implementation using blocking lock vs. adaptive lock

GLOB_ACT_LOCK —

No. of waiting threads

0
0 500 1000 1500 2000 2500 3000 3500
Time elapsed from start (milliseconds)

Figure 5: Locking Pattern for “GLOB-ACT-LOCK?” in the Centralized Implementation

Centralized Implementation: This implementation uses a global centralized (located on
one physical node) tour value and a global centralized work queue. As a result, the best tour
value and the work sharing queue are consistent (global ordering is strictly maintained in the
work sharing queue) and pruning of the search-space tree is optimal[CS93]. However, as shown
in Figure 4 and Figure 5, the lock contention (especially for qlock) is high for both the locks.
Table 1 compares the execution time of the centralized parallel implementation using block-
ing locks running on 10 processors with the sequential implementation showing a 6.5 times
speedup. However, when the blocking locks were replaced by adaptive locks (using the sim-
ple adaptation policy listed above), the same application shows up-to 17.8% performance im-
provement over the centralized implementation using blocking lock. This performance gain is
attributed to two factors: Firstly, the adaptive lock identifies the no-contention locks and alter
them to the lowest-latency lock, and secondly, the adaptation policy varies the waiting policy

by varying the spin time and blocking time depending on the monitor input to decrease the

12
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Figure 6: Locking Pattern for “QLOCK?” in the Distributed Implementation

average waiting time of each thread.

Distributed Implementation without Load balancing: The distributed implementation
of TSP uses a distributed work sharing queue and a distributed best tour value. Each processor
maintains a local work queue; the local queues are connected by a ring. When the local
queue is empty, a searcher thread gets work from the next non-empty remote queue along the
ring. Similarly, each processor maintains a local copy of the tour value and once a new best
tour is found, propagates it to the rest of the processors. As a consequence, the distributed
implementation may suffer from useless node expansions due to an inconsistent tour value and
partially ordered work sharing queues. However, as shown by Figure 6 and 7, lock contention
is lower compared to that of the centralized implementation.

Table2 compares the performance of this implementation using blocking lock vs. adaptive
locks, and demonstrates up-to 12.7% performance improvement in favor of the latter. The
distributed implementation performs better than the centralized implementation because most

of the work is performed locally reducing the number of remote memory accesses.

Distributed Implementation with Load Balancing of Work Queues: This implemen-
tation uses distributed work sharing queue and best tour value with a specific load balancing

strategy among the local work queues to improve the global ordering. Each time a searcher
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Figure 7: Locking Pattern for “GLOB-ACT-LOCK?” in the Distributed Implementation

Blocking Lock Adaptive Lock Percentage Improvement
(milliseconds)  (milliseconds)

| 2973 2596 12.7% ||

Table 2: Performance of the Distributed Implementation using blocking lock vs. adaptive lock

QLOCK —

No. of waiting threads

10

0 500 1000 1500 2000 2500
Time elapsed from start (milliseconds)

Figure 8: Locking Pattern for “QLOCK” in the Distributed Implementation(with Load Balancing)
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Blocking Lock Adaptive Lock Percentage Improvement
(milliseconds)  (milliseconds)

| 2054 1921 6.5% |

Table 3: Performance of the Distributed Implementation (with load balancing) using blocking lock
vs. adaptive lock

T
GLOB_ACT_|LOCK —

No. of waiting threads

O | | | |
0 500 1000 1500 2000 2500
Time elapsed from start (milliseconds)

Figure 9: Locking Pattern for “GLOB-ACT-LOCK?” in the Distributed Implementation (with Load
Balancing)

gets a node, it gets a sub-problem from the queue of the next processor, puts this sub-problem
into the local queue, and gets the best sub-problem from the local queue. As expected, lock
contention for this implementation (Figure 8 and 9) is lower than the centralized implementa-
tion.

Table 3 compares the performance of this implementation using blocking lock vs. adaptive
locks showing a 6.5% performance advantage in favor of adaptive locks. The performance ad-

vantage is low compared to the centralized version because of reduced synchronization activities.

The results in this section demonstrate that the locking patterns are different for different
locks and for different applications. It is important to take such patterns under consideration
with other related factors (e.g., length of critical sections, assignment of threads to processors)

to determine the waiting policy for a lock. The experiments with TSP showed the utility of
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“closely-coupled” adaptation in synchronization. The performance improvement is significant
for both the centralized and distributed implementations. Since, the TSP application was
programmed using one thread per processor, this performance enhancement is attributed mainly
to finding the most suitable waiting policy for a lock (causing a minimum locking cycle). For
massively parallel applications we expect the gain to be even higher because the effect of blocking
vs. spinning (useful processing vs. wasted processor cycles) is more pronounced. This topic
will be addressed in our future research, where we will study a massively parallel application

to see the effect of adaptive locks.

5 Adaptive Locks

We used the adaptive object structure to implement a few operating system abstractions on a
32 node BBN Butterfly GP1000 multiprocessor. This section first describes the model and the
implementation of adaptive multiprocessor locks, then lists some basic measurements demon-

strating the performance penalties due to lock adaptability.

5.1 Implementation

An adaptive lock object, used for task or thread synchronization in multiprocessor operating
system kernels and/or user-level thread libraries, senses changes in application request (locking)
pattern and adapts itself for improved performance. The structure of such locks are quite similar

to that of reconfigurable locks presented in [MS93] and consists of the following components:
Internal state: current lock state, current lock owner, registration information, etc.

Mutable attributes: specify the waiting policy of the lock (the policy that governs the manner
in which a thread is delayed while attempting to acquire the lock). Table 5.1 lists a few
such attributes, the possible values for those attributes and the resulting locks for a simple
adaptive lock.

Configurable methods: Lock and Unlock operations are reconfigured by alteration of the lock
scheduling policy. Each configurable lock scheduling component determines the delay in
lock acquisition experienced by the thread and may be divided into three sub-components:
(a) a registration component logging all threads desiring lock access, (b) an acquisition
component determining the waiting mechanism and policy to be applied to each registered
thread (without registration the lock cannot apply different waiting policies to individual
threads), and (c) a release component that grants new threads access to the lock upon its
release.

Monitor module: A monitor module implementing a customized lock monitor to sense appli-
cation locking patterns.

16



H spin-time delay-time sleep-time timeout resulting lock H

n 0 0 0 pure spin
n n 0 0 spin (back-off)
0 0 n 0 pure sleep
X n conditional sleep/spin
n n n X mixed sleep/spin

Adaptation policy: A user-provided adaptation policy that takes input from the monitor mod-
ule, and alters the mutable attributes and the scheduling sub-components for improved
performance. A simple adaptation policy for the locks in TSP application is presented in
Section 4.

The lock monitor module is a customized monitor system obtained from a general purpose
thread monitor[GS93] which provides users with a mechanism to insert data collecting sensors
and probes into the target application program. The thread monitor implements a local moni-
tor using a monitor thread on a dedicated processor which receives trace data from application
threads, performs some low-level processing if necessary and sends them to a central moni-
tor (possibly running in a remote machine) or to the adaptation module. We found such an
implementation to be too loosely coupled to be used in adaptive lock objects. Therefore, the
customized lock monitor uses the application threads (executing the object methods) to perform
information collection, thus making the monitor module closely coupled with the adaptation
module.

Lock Parameters?

According to the structure of a lock object outlined above a simple adaptive lock may be

described as follows:

CLASS adapt-lock is

STATE internal state <immutable> IS
queue registration-queue;
thread-id owner;

int no-of-waiting-threads;

END

STATE mutable_attributes IS

int spin-time;

4 . oy
n represents an arbitrary number, and x represents the “do not care” condition
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int delay-time;
int sleep-time;

int timeout;
END

OPERATION registration(..);
OPERATION acquire(..);
OPERATION release(..);
OPERATION acquisition(..);
OPERATION configure(..);

MONITOR mon-specs IS

sensor no-of-waiting-threads <sampling rate: n>
END

ADAPTATION adapt-policy IS

void simple-adaptation() <input: no-of-waiting-threads>;
END

BEGIN
Initialization ..

END

Given the lock implementation outlined above, each lock access request involves the following

steps[MS93]:

Lock: A locking operation consists of the following steps:

registration: A requesting thread registers itself with the lock object. At this time, attribute
information like thread-id, priorities, ownership, etc. is processed by the lock’s policy.
The overhead of policy execution depends on the number of attributes processed and the
complexity of the processing being performed (the “registration” component of the lock

scheduler).

acquisition: If lock status indicates that the thread must wait for the lock, then the waiting
method is determined by the acquisition module of the lock object. As shown in Table
5.1, a simple implementation of adaptive lock maps requests to methods for spinning,
blocking, back-off spinning, conditional locking, and advisory locking depending on the
current state of the object and the application locking pattern.
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Lock type local lock remote lock

(micro seconds) (micro seconds)
atomior® 30.73 33.86
spin-lock 40.79 41.10
spin-with-backoff 40.79 41.15
blocking-lock 88.59 91.73
adaptive lock 40.79 41.17

Table 4: Cost of the Lock operation for different locks

Unlock: An unlock operation consists of the following step:

release: The last part of the lock object’s policy is the release module, which selects the next
thread that is granted access to the lock. The release module’s selection (scheduling)
policy may consist of a simple access to a thread-id noting the next thread to be executed
(as in handoff scheduling[Bla90]) or it may execute more complex scheduling strategies
depending on the current configuration.

5.2 Performance Evaluation

This section describes the basic costs of non-adaptive lock implementations and compares them
with the costs of the operations provided by the adaptive lock object. A formal character-
ization of reconfiguration operations and their costs is presented in [MS93]. The following
measurements are taken on a 32-node BBN Butterfly GP1000 NUMA multiprocessor using a
multiprocessor version of Cthreads as the basis[Muk91].

Table 4 lists the latencies of the lock operations for different lock implementations available
on the BBN multiprocessor (provided by the hardware, operating system and the Cthreads
library). A “local lock” refers to a lock which is located in the local physical memory whereas
a “remote lock” is located in a non-local memory module. The atomior® function, which
implements a low level atomic or operation (similar to test-and-set), is used to implement
various locks. The spin-with-backoff lock is a variation of the backoff spin lock suggested by
Anderson et al.[ALL89]. A thread requesting ownership of such a lock spins once, and if the lock
is busy, waits (back offs) for an amount of time proportional to the number of active threads
waiting for the processor. As expected, the primitive spin-lock has minimum latency, whereas
the blocking-lock exhibits a maximum. The latency of the adaptive lock is comparable to that
of a primitive spin lock because a lock operation for adaptive locks initially spins for the lock

before deciding to block the requesting thread.

provided by the BBN Butterfly multiprocessor hardware
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Lock type local lock remote lock
(micro seconds) (micro seconds)

spin-lock 4.99 7.23
spin-with-backoff 5.01 7.25
blocking-lock 62.32 73.45
adaptive lock 50.07 61.69

Table 5: Cost of the Unlock operation for different locks

Lock type local lock remote lock
(micro seconds) (micro seconds)

Spin 45.13 47.89
Spin-with-backoff 320.36 356.95
Blocking-lock 510.55 563.79

Table 6: Cost of successive Unlock and Lock operation on an already “locked” lock

The costs of unlock operations for various lock implementations are listed in Table 5. The
spin locks implement unlock operations with minimum latency, whereas, the blocking lock, as
expected, has the highest latency. The latency for the adaptive lock exceeds that of spin locks
due to the extra work required to check for currently blocked threads.

A thread waits for a busy lock until the current lock owner releases the lock. As mentioned
earlier, the cost of a locking cycle (an unlock followed by a lock operation) on a busy (locked)
lock determines the duration of the “idle state” of the lock|[MS93]. Table 6 lists the costs of the
locking cycle for some static implementations of locks. A spin-with-backofflock has an expensive
locking cycle due to the “backofl” cost whereas the “blocking” cost adds to the locking cycle of
a pure blocking lock. As shown in Table 7, an adaptive lock has the least expensive locking cycle
when configured as a spin lock and has the most expensive locking cycle when configured as a
blocking lock. The cost of the locking cycle of an adaptive lock, configured as a combination of

spin and block, lies between these extremes.

Configured as local lock remote lock
(micro seconds) (micro seconds)

Spin 90.21 101.38
Blocking 565.16 625.63

Table 7: Cost of successive Unlock and Lock operation on an already “locked” adaptive lock
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Operation local lock remote lock
(micro seconds) (micro seconds)

acquisition 30.75 33.92
configure(waiting policy) 9.87 14.45
configure(scheduler) 12.51 20.83
monitor (one state variable)) 66.03 -

Table 8: Cost of Lock Configuration Operations

Table 8 lists the costs of the basic mechanisms associated with adaptation. As explained
earlier, the “acquisition” method is used by an external agent? to acquire exclusive ownership of
alock attribute. This operation is rarely used since reconfiguration, in most cases, is done by the
lock owner. The cost of this operation is comparable to a primitive test-and-set operation. As
shown, scheduler reconfiguration is more expensive than waiting policy reconfiguration. Simple
dynamic configuration of the waiting policy requires only one memory read and one memory
write whereas, alteration of the scheduler requires three memory writes for three submodules,
one memory write to set a flag (to implement the configuration delay), and another memory
write to reset the flag (when all the pre-registered threads are served, the old scheduler is
discarded). However, the configuration costs listed in Table 8 do not capture total configuration

delay[MS93].

6 Related Research

Some of the notions introduced in PRESTO[BLL88], CHOICES[CJR87] and CHAOS[GS, GS&9,
SGZ90] are close to this work. PRESTO uses the encapsulation property of objects to build
a configurable parallel programming environment. Structurally, PRESTO’s synchronization
object is somewhat similar to adaptive locks. However, a synchronization object does not
support dynamic attribute reconfiguration, adaptation, and object state monitoring. CHOICES
is an example of an object based reconfigurable operating system which can be tailored for a
particular hardware configuration or for a particular application. The focus of CHOICES is
to structure the operating system kernel in an object oriented way whereas, the focus of our
research is to build a configurable operating system kernel at the thread level. Even though
we use the object model at the application level, we do not use objects to build the run-time
system. CHAQS® is a family of object-based real-time operating system kernels. The family

is customizable in which existing kernel abstractions and functions can be modified easily. As

"A thread or a process which is not the current owner of the lock
8 A Concurrent, Hierarchical, Adaptable Operating System supporting atomic, real-time computations.
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opposed to CHAOS objects, an adaptive object contains its own mutable attributes, an internal

user-provided adaptation policy, and a monitoring mechanism to aid any adaptation decision.

7 Conclusion and Future Work

The contribution of our work is twofold: First, we propose a model for adaptive objects which
can be used to build different operating system abstractions for parallel and distributed systems.
Then, we applied the model to implement adaptive multiprocessor locks, and demonstrated
their utility using various implementations (ranging from centralized to distributed) of the TSP
application. We showed that “closely-coupled” adaptations can be used in operating system
kernels for improved performance.

In this paper, we show that locking patterns are different for different locks and for different
applications. For high performance applications and operating system kernels, it is essential
to take these patterns into consideration to build an efficient waiting policy for a particular
lock. Our future research focuses in part on studying the effect of applying “closely-coupled”
adaptation to alter lock schedulers in different phases of a computation.

Next, we will study a massively parallel application to see the effect of adaptive locks.
Finally, we will use the concept of “closely-coupled” adaptation in other operating system com-
ponents as well to construct an adaptable operating system kernel for parallel and distributed

systems to satisfy application requirements.
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