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SUMMARY 

Conventionally, phase diagrams serve as the road maps for the synthesis and 

processing of metals and alloys. However, the bulk phase diagrams oftentimes become not 

predictive in the synthesis of nanostructures of metals and alloys owing to the significant 

contribution of surface energy in the total energy. How the surface energy varies the total 

energy, and therefore alters the relative stability at nanometer scale, yet remain to be 

explored. Theoretical and systematic understanding on the formation of metal/alloy 

nanostructures and establishment of experiment-based nanometric phase diagrams are 

much desired.  

To systematically understand and predict the stable polymorphic phases of metals 

and alloys, a combined computational and experimental approach was employed. Metallic 

Cobalt (Co) was chosen as a model system, where the two polymorphs, fcc and hcp phases, 

can be selectively formed in a solvothermal reaction with 100% selectivity, controlled by 

the addition of different capping agents that significantly vary and tune the surface energy 

of the two phases. It was found that despite the hexagonal close-packed (hcp) phase is the 

thermodynamically stable phase in bulk phase diagram, at nanometer scale, face-centered 

cubic (fcc) Co is a more favorable phase under neutral or acidic conditions (pH<8), while 

hcp Co is only more stable under basic condition (pH >8), due to the change of surface 

energy with the capping of OH- with different concentrations. First-principles Density 

Functional Theory (DFT) computations were used to theoretically explain and understand 

this observation. The computational results not only agreed with the experiments extremely 

well, but also indicated this surface-dependent polymorphism can be generally applicable 



 xv 

in more material systems. A state-of-the-art in situ synchrotron X-ray Diffraction (XRD) 

platform was built at the synchrotron sources (Advanced Photon Source and National 

Synchrotron Light Source) to track the solvothermal reaction in real-time, which was rarely 

reported previously. The results confirmed that the phase selectivity is truly due to the 

surface induced relative thermodynamic stability change, instead of reaction kinetics.  

Based on the above results, we further explored the polymorphs formation of Co 

through electrodeposition, for that electrodeposition offers more precisely tunable 

thermodynamic driving force than that in the solvothermal reactions. A novel synchrotron 

-based in situ electrodeposition platform was built to track the reaction process, where both 

pH of the electrolyte and over-potential can be easily tuned to control the nanoscale phase 

selection of Co upon nucleation. Aside from the pH effect, it was found that high over-

potential expedites the kinetics of the reaction and yields both the metastable phase and 

stable phase concurrently in certain pH ranges.  

Based on the aforementioned work on simple substance metal, we further explored 

the polymorphism and formation of binary alloys with using Cobalt (Co) -Nickel (Ni) as 

the model system, for that Co and Ni have similar reduction potential, atomic radius, and 

a binary phase diagram composing of hcp and/or fcc solid solution for entire composition. 

A series of electrodeposition experiments and ex situ and in situ characterizations were 

carried out to investigate the polymorph formation. It was found that the polymorphs 

formation of Co-Ni is determined by a number of key factors, including the composition 

(elementary ratio), the pH of electrolyte and the over-potential. These factors together 

impact the surface energy and the thermodynamics of the nanometric alloy particles, as 

well as the kinetics of reaction, and thus alternate phase boundaries in the phase diagram. 



 xvi 

The formation and polymorph selection of alloys are far more complicated than simple 

metals in both solvothermal and electrodeposition conditions. This work revealed some 

fundamental insights of the binary alloys and opens the door towards a better understanding 

on the formation of more complicated alloys system through advanced in situ technique. 

Inspired by the new findings in above fundamental research, we also conducted 

research closely related to applications. We explored the potential application of using 

electrodeposited metals for electrochemical energy storage. Recent progresses of using 

copper (Cu) or carbon as current collectors of lithium metal batteries inspired us to 

investigate using electrodeposited 3-D nano-structured Cu layer as the current collector 

with controlled morphology that can effectively suppress the formation Li dendrites. 

Herein, we developed a facile one-step electrodeposition process for low-cost, scalable 

fabrication of copper current collectors with 3-D architected nano-porous structures 

composed of interconnected nanoparticles of Cu. Li anode deposited onto this porous 

current collector exhibits good cycling stability of >340 hours in symmetric cells without 

short-circuit. When tested in full cells with either liquid or solid-state electrolyte, the Li 

anode hosted in the 3-D Cu current collector demonstrated excellent cycling performance 

with no dendrites formation. This electrodeposition processing is extremely simple and 

scalable and can be easily incorporated into current roll-to-roll manufacturing of Li-ion 

batteries, which may have immediate and significant impact on the battery industry.  

 The results presented in this dissertation revealed unprecedented fundamental 

insights on the surface-controlled formation and polymorph selectivity of metals and binary 

alloys in both chemical and electrochemical potential driven solution reactions and opens 

the door towards the establishment of predictive nanometric phase diagrams for other metal 



 xvii 

and complex alloys. The development of the state-of-the-art in situ XRD systems for 

solvothermal and electrodeposition reactions enabled real-time observation of nucleation, 

crystal growth and ripening of metal/alloy nanoclusters in solution, which not only 

provided solid experimental evidence of this research, but also offered a powerful 

characterization method to research on other materials and could impact multiple fields in 

solid-state chemistry, electrochemistry, and materials engineering.  
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CHAPTER 1. INTRODUCTION 

1.1 Formation of materials in nanometer scale 

Nanometric materials are generally defined as the materials that have at least one 

dimension of size within 1 and 100 nanometers (nm)1 and usually contain several hundreds 

to 105 atoms.2 Many important applications require that the materials must be synthesized 

in nanostructures instead of bulk to have desired properties. For example, LiFePO4 as a 

popular cathode material for lithium ion batteries can only demonstrate ultrahigh ionic 

conductivity in nanoparticles form.3 As shown in Figure 1, the ratio of unblocked 

conducting channel rapidly declines with increasing size of particles, resulting in 

deteriorating ionic conductivity when used as an electrode material. In addition, various 

applications of nanoparticles, including optical, magnetic devices, and catalysts, show size 

dependence,4,5 as the relaxation of the crystal lattice with limited number of unit cells in 

the fine nanoparticles induces different bond length, bond angle, and periodicity of the 

crystal field than those in bulk crystals, therefore changes the electronic structures.  
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Figure 1 (a) Crystal structure of LiFePO4 along [010] direction; (b) Schematic 

illustration of Li+ diffusion impeded by immobile point defects in 1D channel; (c) 

Expected unblocked capacity vs channel length in LiFePO4. Adapted from [3]. 

At nanometric scale, many meta-stable phases and polymorphs may be favored over 

the thermodynamically stable phase in the phase diagram. Thus, the phase diagrams built 

upon bulk phase thermodynamics provide limited guidance for synthesizing materials at 

nanometer scale. This deviation from conventional phase diagrams is mainly due to the 

significant contribution of surface energy into the total energy of the nanometric crystal.6–

8 How the surface exactly varies the total energy and thus alters the phase diagram at 

nanometric scale is the fundamental question necessary for understanding and guiding the 

synthesis of nanomaterials.  
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Methods have been demonstrated in a wide range of nanomaterials to tune the 

physical features, such as the particle size,9,10 morphology,11–14 and exposing facets,15,16 to 

obtain enhanced properties that are useful for certain applications.  The final structure of 

the nanoparticles is determined by a combination of factors during both nucleation and 

growth stages,17 including kinetic factors18,19 and thermodynamic factors,20,21 which are 

affected by the surface energy and the thermodynamic formation energy of the bulk 

materials. According to Gibbs-Curie-Wulff theorem,22 the shape of a single crystal is a 

result of minimizing the surface energies of all facets.23 The prevailing methods to tune the 

size and morphology of certain functional materials is to use capping agents to control the 

growth kinetics for the different exposing surfaces. For example, Xia et al.24 reported that 

the surfactant, polyvinylpyrrolidone (PVP) has selective interaction with different facets 

of silver nanoparticles, resulting in a change of the growth rate ratio along <100> and 

<111> directions of the fcc silver nanoparticles. Alivisatos et al.12 reported the formation 

of twinned CdSe tetrahedron as quantum dots with using hexyl-phosphonic acid (HPA, 

C6H15PO3) added to pure trioctylphosphine oxide (TOPO) as surfactant to tune the growth 

kinetics. However, most of such pervious works focused on tuning and controlling the 

geometric features of a given material with the same phase/crystal structure.25–27 It is rare 

to see the crystal structure or the space group of the material can be completely changed 

depending on the capping status or particle size.  

Some previous investigations did demonstrate that possibility of such dependence.6-

8,28–30 Navrotsky et al.31 (Figure 2a) demonstrated experimentally of the polymorphs of 

TiO2, with using both adsorbed water molecule and particle size as tuning factors to control 

the formation of the nanoscale polymorphs (e.g., rutile and anatase). According to the 
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result, with increasing portion of surface area per mole (indicating reducing size of primary 

particle), the more stable phase changes from rutile, to brookite, and eventually, anatase, 

demonstrating apparent deviation from stable bulk phase diagram.  Ceder et al.7 (Figure 

2b) reported a computational study on calcite mineral with using solution capping ion 

(Mg2+) as the tuning factor to obtain metastable aragonite nanophase. The absorbed Mg2+ 

alters the stable Wulff shape and thereafter changes the surface energy of particles. As a 

result, the bulk metastable aragonite phase can be synthesized. And in recent research, K+ 

8 and Mg2+ 30 was used to tune the formation of different polymorphs of MnO2 in solution, 

respectively. However, in the three later cases, the composition of the polymorphs was not 

exactly the same, due to incorporation of the doping cations. In a parallel effort, we aim to 

explore the interplay of bulk lattice energy and surface energy in a system with constant 

composition to reveal and quantitatively evaluate the polymorphism induced solely by 

surface energy contributions. It would be worthy trying to establish a thorough approach 

using a model system that can be generalized to other similar or more complicated systems. 

To address this question, a proper nanoparticle compound with relatively small ground-

state-energy difference of various polymorphs is preferred. 
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Figure 2 (a) Energetics of nano-titania. Solid line shows energetic stability regions of 

different phases, adapted from [31]; (b) Morphology-averaged surface energies for 

hydrated Mg-calcite and aragonite as a function of Mg2+ uptake in calcite, adapted 

from [7]. Colors correspond to facet-specific surface energies. Aragonite does not 

incorporate Mg2+
.  

1.2 Selection of model material systems 

For this reason, metallic cobalt was chosen as the model system to begin with. Cobalt 

is known to have two common polymorphs, the hexagonal close-packed (hcp) phase and 

the face-centered cubic (fcc) phase. In the bulk material, the hcp phase is 

thermodynamically more stable at lower temperatures while the fcc phase is more stable 

above 450 ℃. 32 Nanometric Co is widely used as magnetic, electrical, and catalytic 

materials, warranting the importance of understanding it polymorphism in nanometer 

scales.33 In previous efforts to synthesize Co nanoparticles, the results varied depending on 

different synthesis conditions. Some syntheses yield fcc,34,35 some yield hcp,36,37 and some 

yield the mixture of the two.38 There is a lack of systematic and fundamental understanding 

why these phases selectively form and how to control the selectivity. Based on these 

considerations, we for the first time identified a method that could tune the formation of 

fcc and hcp Co with 100% selectivity and conducted DFT computations to identify the 
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energy contribution from the surfaces and its critical role in determining the formation of 

different polymorphs.   

Furthermore, based on the results obtained from Co, we extend the investigation to 

Co-based bimetallic nanoparticles with interesting magnetic, mechanical, or 

electrochemical properties. The principals of selecting an appropriate system is that the 

two elements should have similar 1) electrode potential, 2) atomic radius, and have less 

complicated phase complexity. Nickel (Ni) is one of the elements that meet with the 

aforementioned criteria, for that: 1) its standard electrode potential39 is -0.25 V (Co: -

0.28V); 2) its empirically measured covalent radius40 is 135 pm (Co: ~135 pm); and 3) it 

forms hcp phase with Co below 25% a.t. Ni, and fcc phase with Co above 35% a.t. Ni41 (as 

shown in Figure 3). Solid solution Co-Ni is formed over the whole atomic ratio range. Co-

Ni alloy nanoparticles are known to be efficient catalysts for hydrazine fuel cells,42 alkaline 

water electrolysis,43 and perpendicular magnetic recording.44  Therefore, we have selected 

Co-Ni as the alloy system to start with. With introducing another key factor, composition 

(elementary ratio), how the nanometric polymorphs would be tuned with contribution from 

surface energy remains unknown and challenging. We believe that using Co-Ni bimetallic 

system would be a good example to explore multiple elements and future extend to the 

better understanding on phase formation of high-entropy-alloy (HEA). 



 7 

 

Figure 3 Cobalt – Nickel bulk phase diagram. Reproduced from [41]. 

 

1.3 Solvothermal and electrodeposition methods 

There are two methods that we applied in this dissertation, a polyol-based 

solvothermal method and an electrodeposition method.  

Solvothermal method is a commonly used approach to produce chemical in 

laboratory through reaction in a stainless steel autoclave. The schematic set up is shown in 

Figure 4a.45 The difference of solvothermal reaction with hydrothermal is that the former 

one uses organic solvent as reactant while the latter one uses water. Using solvothermal 

route gains one the benefits of both the sol-gel46 and hydrothermal routes47 - allowing for 

the precise control over the size, shape distribution, and crystallinity of nanoparticles under 

a milder conditions. The advantages48 of polyol-based wet-chemistry synthesis are: 1) 
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environmentally benign; 2) it avoids other problems encountered by high-temperature 

processes such as poor stoichiometric control due to volatilization of components or stress-

induced defects; 3) it offers more factors to tune the surface energy by applying different 

possible capping ions/functional groups, compared to all solid-state reactions or physical 

metallurgy. Therefore, solvothermal synthesis has been widely used in laboratory to make 

nanostructured metals49, titanium dioxide,50 graphene,51 carbon,52 and other functional 

materials. 

Electrodeposition, on the other hand, is a more facile, economic, and easy-to-upscale 

or downscale room-temperature approach for practical application.53 The schematic set up 

is shown in Figure 4b.54 Typical electrodeposition could be three-electrode based or two 

electrode-based. In Figure 4b, a 3-electrode system is demonstrated, with working 

electrode (WE), counter electrode (CE), and reference electrode (RE) immersed in 

electrolytic solution which contains the deposited metal ions. During the process, an 

electric current is applied to reduce the dissolved metal ions cations at the interface between 

the solution and working electrode substrate and forms a layer of metal coating. 

Meanwhile, the oxidation reaction will take place at CE. The reference electrode, including 

commonly used saturated calomel electrode (SCE) or Ag/AgCl electrode, is one that has a 

stable and well-known electrode potential.55 The high stability of the reference electrode 

potential is usually reached by employing a redox system with constant (buffered or 

saturated) concentrations of each participant of the redox reaction. 56 It is used to accurately 

measure the potential of working electrode during reaction.  

Electrodeposition is an approach that the thickness and morphology of the 

nanostructures can be precisely controlled by adjusting the electrochemical parameters. 
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Among them, overpotential is an important one that would impact the reaction kinetics. It 

is defined as the potential difference (voltage) between a half-reaction's thermodynamically 

determined reduction potential and the potential at which the redox reaction is 

experimentally observed.56 The quantity of overpotential is specific to the design of cell 

and varies across operation condition and cells, even for the same reaction. It is 

experimentally determined by measuring the potential at which a given current density is 

achieved. By increasing over-potential, the reaction kinetics would be tuned, which would 

impact morphology of the as-synthesized materials. The controllable factors of 

electrodeposition, e.g., over-potential, time, additives, and substrate, could make it possible 

to realize step synthesis and achieve multi-layer structures. It is also the approach that can 

accommodate elements with various reducing potential by adjusting the applied potential. 

Therefore, in the following section, the results on Co model system using both 

solvothermal method and electrodeposition method will be discussed.  Regarding Co-Ni 

system, due to the fact that polyol-based reaction has a fixed reducing potential, determined 

by reducing agent, thus limits its capability to tune the polymorphs, thereafter, 

electrodeposition approach will be used.   
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Figure 4 Schematic set up of (a) Teflon-lined, stainless autoclave used for 

solvothermal reaction (reproduced from [45]); (b) three-electrode electrodeposition 

bath (reproduced from [54]).  

1.4 In situ synchrotron X-ray diffraction 

A key question remaining unclear is that, by far, most of the works focus on 

discussing structure upon completion of the reaction. However, it is possible that the 

polymorphs convert during the reaction leading to different initial and final phases. As 

some reactions, e.g., solvothermal or molten salt, take a long time to be cooled down, it is 

impossible to prove or rule out such transformations with postmortem or ex situ 

investigations, therefore calling for the need for in situ observation and characterization. In 

situ synchrotron X-ray Diffraction (XRD) offers such possibility. Synchrotron XRD is an 

extremely powerful source of X-rays. The X-rays are produced by high energy electrons 

as they circulate around the synchrotron. It builds on the physical phenomenon that a 

moving electron emits energy when it changes direction. If the electron is moving fast 

enough, the emitted energy, called synchrotron radiation, is at X-ray wavelength.57  

 In particular, in situ synchrotron X-ray Diffraction (XRD) offers unique advantage 

because of its high flux (6 x 1013 photons/sec at NSLS II 28-ID-2 and 6 x 1010 photons/sec 
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@27 keV at APS 17BM-B) and fast 2D detectors (as low as 1 second per exposure) to 

observe materials as a function of process parameters such as temperature, pH, pressure, 

etc. with atomic precision. As shown in Figure 5, the high-energy e-beam is generated from 

e-gun and enters booster ring to accelerate the energy. Typically, booster rings work a few 

times per day, when the storage ring is refilled. The storage ring is a tube where the 

electrons circle for hours close to the speed of light. By passing through different magnets 

when traveling around the ring, the electrons produce x-rays. Afterwards, they enter the 

individual beam line hutch for specific applications. A series of auxiliary components 

including bending magnets, slits, mirrors, and monochromator in the hutch are used to 

select the beam with specific wavelength and beam shape for end use.58 

 

 

Figure 5 Illustration of how synchrotron works. Adapted from work supported by 

the National Science Foundation under Grant No. 0237162. Courtesy: Canadian 

Light Source. 
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Regarding operation for the aforementioned two synthesis approaches, the main 

hurdles are :1) For solvothermal reaction, the high pressure generated by the solution at 

elevated temperatures (r.t. to a few hundreds of Celsius) conventionally requires using 

thick-walled press vessels made of high strength metals, which makes it impossible to 

detect the reaction inside in real time with any characterization tools; 2) For 

electrodeposition, the reaction takes place within seconds upon nucleation yet the weak 

signal is very hard to be detected by ex situ techniques. To address these issues and take 

advantage of the capability of in situ synchrotron XRD, we have successfully developed 

two unique platforms on beam lines at NSLS (I and II) and APS, making it possible to track 

the whole process throughout nucleation to phase growth either in high-pressure 

solvothermal system or fast-reaction electrodeposition system. The setups will be 

discussed in the following chapters. The endeavor also paves the way for future study on 

more complicated systems (alloys, oxides etc.) regarding phase formation in solutions 

under nanoscale.  
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CHAPTER 2. GUIDING SYNTHESIS OF POLYMORPHS OF 

MATERIALS USING NANOMETRIC PHASE DIAGRAMS 

2.1 Introduction 

 Conventionally, phase diagrams serve as road maps for the design and synthesis of 

materials. However, bulk phase diagrams are often not as predictive for the synthesis of 

nanometric materials, mainly due to the increased significance of surface energy. The 

change of surface energy can drastically alter the total energy of the nanocrystals thus yield 

a polymorph or meta-stable phase different than the stable phase in bulk, providing a means 

for controlling the synthesis of metastable phases. To achieve a theoretical and systematical 

understanding on the polymorphism of nanomaterials, metallic cobalt was chosen as a 

model system, where the two polymorphs, fcc and hcp phases, can be tuned with 100% 

selectivity in a solvothermal reaction. Advanced in situ synchrotron X-ray diffraction 

(XRD) technique and density functionals theory (DFT) were complementary employed to 

reveal the size and surface dependent polymorphism at nanometer scale. The nanometric 

phase diagram provides a general predictive approach to guide the synthesis of metastable 

materials. 

2.2 Methods 

2.2.1 Solvothermal synthesis. 

As a typical protocol for the synthesis of Co nanoparticles, 3mmol cobalt hydroxide 

(Co(OH)2) (99.9%, Alfa Aesar) and a certain amount of potassium hydroxide (KOH) (85%, 

Alfa Aesar), varying from 0 g, 1 g, 2 g to 4 g, were dissolved in 12 g ethylene glycol (EG) 
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(99+%, Alfa Aesar) at room temperature to form solutions with various pH values. Then 

the slurry was transferred into polytretrafluoroethylene(PTFE) lined 23ml stainless steel 

hydrothermal autoclaves (Parr Instrument). The autoclaves were put into an oven at the 

desired temperature and for desired reaction time. After the completion of the reaction, the 

autoclaves were cooled down to room temperature. The solid products were separated from 

the solution by centrifugation at 4000 rpm (Centrifuge, Eppendorf 5804R), washed three 

times with distilled water and one time with acetone, and finally dried in an oven in air at 

60 ℃ for 2-3 hours.  

2.2.2 Computational methods. 

The ground-state bulk and surface energies of fcc and hcp Co were calculated using 

DFT with the projector augmented-wave approach (PAW)59 as implemented in the Vienna 

ab initio simulation package (VASP).60 The generalized gradient approximation (GGA) of 

Perdew, Burke, and Ernzerhof (PBE) was used for the exchange-correlation energy.61 The 

plane-wave energy cutoff and k-point mesh were consistent with parameters used by the 

Materials Project (MP).62 Surface calculations were performed using supercells of Co 

metal slabs with vacuum regions on both sides of the slab. H+, OH-, and H2O adsorbates 

were added in several locations and concentrations while maintaining the symmetry of the 

slab surfaces. Surface energies, as dependent on adsorbates and pH, were calculated using 

the following expression: 

𝛾 =
1

2A
(𝐸𝑠𝑙𝑎𝑏 − 𝑛𝐶𝑜𝐸𝑏𝑢𝑙𝑘 − 𝑛𝑎𝑑𝑠𝜇𝑎𝑑𝑠) 
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where A is the area of the surface in the slab supercell model, Eslab is the total energy of the 

slab-vacuum supercell, Ebulk is the energy of the bulk phase, and 𝜇ads  depends on the 

adsorbate type. For example, for OH- adsorbates, 𝜇OH = ∆GH2O
f + 𝜇H

0 + 𝜇O
0 +

kT𝑙𝑛(10)pH.63 Using the lowest energy configurations for each surface index, the Wulff 

shapes of Co nanoparticles in different pH conditions were constructed. The Wulff shapes 

were used to determine the bulk and surface energy of a nanoparticle as dependent on 

particle size. The total energy was found as a sum of the bulk and surface energy terms. 

The total energy difference between nanoparticles of each polymorph was calculated to 

generate the fcc-hcp phase diagram as a function of particle size and pH. The total energies 

neglected the contribution of the PV term and the entropy term, which are expected to 

largely cancel out in calculating the energy differences between the two solid phases.64  

2.2.3 In situ synchrotron X-ray diffraction for the solvothermal synthesis. 

The in situ synchrotron XRD experiments on cobalt nanoparticles were done at 

beam line X14A (wavelength=0.7793 Å), the National Synchrotron Light Source (NSLS) 

at Brookhaven National Laboratory and at beam line 17-BM-B (wavelength=0.7277 Å), 

Advanced Photon Source (APS) at Argonne National Laboratory with slightly different 

setups. Co(OH)2, KOH, and EG were mixed to form a pinkish slurry with various pH 

values with a procedure similar as described above. An in situ solvothermal cell was used 

to collect XRD pattern during the solvothermal reaction, as schematically illustrated in 

Figure 6. The solution/slurry in the quartz tube with 1 mm inner diameter was heated up to 

desired temperature with an air blower heater at NSLS and with a ceramic heating cell at 

APS, respectively.  
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Figure 6 In situ solvothermal cell set-up at X14A at NSLS. 

The temperature of heating cell was calibrated with using a thermal couple placed 

at the tip of the capillary and with using a thermal couple inserted into an empty quartz 

tube. The calibrations from the two methods have negligible deviations. The quartz tube 

was spun during heating for the purposes of stirring the solution and averaging the 

orientations of the powder. XRD patterns were collected with a step size of 10 or 20 ℃ till 

the desired temperature was reached.  Each XRD scan typically took 5-15 minutes, 

depending on the concentration of the solution. At each step, two-minute idling time was 

used to allow the reaction and temperature to stabilize and then the temperature was held 

during the XRD scan. When the desired reaction temperature was reached, such as 200 or 

250 ℃, the temperature was held for a few hours to allow the reaction fully complete. 

During this period, XRD scans were taken every 5-30 minutes, depending on the kinetics 

of each batch of reaction. Finally, the tube was cooled down to room temperature after the 

scans were done.  
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2.2.4 Other Characterizations.   

An X-ray Diffractometer (D8 Advanced, Bruker) with a Molybdenum radiation 

(λKα1=0.709Å) was used to examine the crystalline phase of the synthesized compound 

from 2θ between 8° to 40°. Rietveld refinement was done to determine the ratio of the 

polymorphs in the mixture as well as to obtain the lattice parameters with using GSAS 

software.65 High resolution transmission electron microscopy (HRTEM) and scanning 

transmission electron microscopy (STEM) were performed to reveal the morphology and 

crystal structure of as-synthesized Co nanoparticles under various conditions using the 

double aberration-corrected JEOL-ARM200CF microscope with a cold-field emission gun 

and operated at 200 kV.    

2.3 Results and Discussion 

2.3.1 Selective formation of hcp and fcc Co. 

Based on the hypothesis that the surface energy may significantly vary the total 

energy of nanometric crystals, it would be easiest to observe this effect at the nucleation 

stage as then the surface atoms take the largest fraction of the total number of atoms. To 

control the formation of different polymorphs via tuning of surface energy, a natural 

thought is to use different absorbents/capping agents. Experimentally, we choose to use a 

polyol-based solvothermal reduction method to synthesize Co nanoparticles as wet-

chemistry synthesis allows more possible capping ions/functional groups, compared to 

synthesis with all solid-state reactions or physical metallurgy.66 In the solvothermal 

synthesis of Co, it turns out that even a very simple capping agent, OH-, could vary the 

surface energy enough to change the relative stability of the two polymorphs. In our 
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solvothermal synthesis, Co(OH)2 was used as the cobalt source, while ethylene glycol (EG) 

was used as both the solvent and the reducing agent, and 0 to 4 g of KOH was used as the 

additive. Co(OH)2 is slightly soluble in basic EG solution. The reduction reaction takes 

place typically at temperature >180 ℃ as follows: 

Co(OH)2Co2+ + 2OH-       (1) 

Co2+ + CH2OH-CH2OH Co + CH3COOH + 2H+    (2) 

With this solution reaction, the newly formed Co0 nucleates in very small clusters. 

Because this reaction requires basic or neutral solution to go forward, as implied in reaction 

(2), and because metallic Co reacts with acids, therefore, acidic solution was not tested.  

Table 1 summarizes the synthesis conditions of different samples. Samples obtained from 

batches with different amount of KOH (4 g, 2 g, 1 g, and 0 g) are denoted as S1, S2, S3 

and S4, respectively. Figure 7 shows the XRD patterns of each sample. For S1, with 4 g 

KOH added to obtain a high concentration of OH-, which almost reaches the solubility limit 

of KOH in EG solvent, the product is pure hcp Co (PDF#05-0727). This result is in 

accordance with the bulk phase diagram in that hcp Co is the stable phase below 450 °C. 

However, for S4, where no KOH is added and the solution is neutral, the reaction yields 

pure fcc Co phase (PDF#15-0806). This result clearly deviates from the bulk phase 

diagram, as the temperature that converts bulk hcp Co to fcc Co is 450 ℃ while our reaction 

temperature is only 200 ℃. With intermediate amount of KOH (1 g) adding in the solution, 

the product is a mixture of approximately equal amount of hcp and fcc phases. With 

increasing amount of KOH to 2 g, sample S2 yields more hcp phase than fcc phase. The 

relative ratio of the two phases in S2 and S3 phases are extracted by using two-phase whole-

pattern fitting on the XRD patterns of these samples. The refinement results and parameters 
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of all four samples are shown in Table 2 and Figure 8.  In S2 and S3, the fraction of hcp 

Co is determined to be 79% and 64%, respectively. This gradual change in the composition 

of product from pure hcp to the mixture and then to pure fcc shows obvious dependence on 

the concentration of OH-
 in the solvothermal solution.  

Table 1 Synthesis conditions of Co(OH)2 in EG with different KOH amounts. 

Sample 

number 
Co(OH)2/mmol EG/g KOH/g Temperature/℃ 

Reaction 

time/h 

S1 3 12 4 200 20 

S2 3 12 2 200 20 

S3 3 12 1 200 20 

S4 3 12 0 200 20 

 

 

Figure 7 XRD patterns of S1, S2, S3 and S4, synthesized in solvothermal solutions 

with addition of 4 g, 2 g, 1 g, and 0 g KOH in 12g EG solvent, respectively.  
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Table 2 Refinements parameters of S1-S4. 

Sample 

number 
CHI2 wRp Rp hcp % 

hcp cell 

parameters/ Å 

fcc cell 

parameters/ Å 

S1 5.049 0.0396 0.0265 100 
a=b=2.51(3) 

c=4.08(5) 
N/A 

S2 5.170 0.0471 0.0329 78.5 
a=b=2.52(5) 

c=4.10(9) 

a=b=c=3.56(0) 

S3 5.401 0.0580 0.0418 64.1 
a=b=2.53(1) 

c=4.12(9) 

a=b=c=3.57(0) 

S4 5.781 0.0944 0.0788 0 N/A a=b=c=3.56(0) 

 

 

Figure 8 Refinements results of S1 (a), S2 (b), S3 (c), and S4 (d). 
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As solvothermal reactions using a statics Parr Instrument vessel without stirring 

take hours to reach the desired temperature and the reaction is slow and inhomogeneous, it 

is very difficult to collect samples at the nucleation stage. We collected samples with the 

shortest reaction time that yields a pure phase for microscopic investigations.  Figure 9 

shows the TEM images of Co nanoparticles that yield pure fcc (a,b,c) and pure hcp (d,e,f) 

phases, collected from a 9-hour and a 5-hour reaction, respectively.  The particles show 

severe agglomeration but it could be seen that the primary particles are small single crystals 

with rather uniform sizes. No fused secondary particles were observed. The average size 

of fcc Co is around 2-4 nm, while for hcp Co it is about 3-5 nm. From the high-resolution 

images in Figure 9c and 9f, it could be seen that the particles are well-crystallized. The d-

spacing of (111) faces in fcc Co is about 0.203 nm, while the d-spacing between (002) faces 

in hcp Co is about 0.206 nm, which agree with the values extracted from Rietveld 

refinement of the XRD patterns. The morphology and the exposing facets of the particles, 

however, is difficult to clearly identify due to the strong agglomeration of the particles, 

which is very common for nanoparticles.  
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Figure 9 TEM (a,c) and STEM high angle annular dark field (HAADF) (b) images 

of pure fcc Co nanoparticles, with scale bars of 20 nm, 2nm, and 5 nm, respectively; 

TEM (d,f) and STEM-HAADF (e) images of pure hcp Co nanoparticles, with scale 

bars of 50 nm, 2nm, and 5 nm, respectively. 

2.3.2 Surface energy of Co nanoparticles. 

To understand how surface energy governs the formation of polymorphs of Co 

nanoparticles, DFT calculations were performed to evaluate the surface structures and 

surface energy of several low-index facets of fcc and hcp Co phases with various surface 

adsorbents. According to the Gibbs-Curie-Wulff theorem,67 the shape of a single crystal is 

a result of minimizing the facets with lowest surface energies.68 Calculations were 

performed for the (100), (110), and (111) surfaces of the fcc phase, and the (11̅00), (0001), 

(21̅1̅0) surfaces of the hcp phase. The surface energies of surfaces with different adsorbents 

such as H+, OH-, and H2O, with varying surface coverage were evaluated. The OH- 

terminated surfaces were found to have the lowest surface energies for all fcc and hcp 

surfaces over a wide range of pH values (see Figure 10). It should be noted that the acidic 
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pH is only used in computation for the sake of covering a wide range of OH- concentration, 

while in experiments acidic pH cannot be tested because Co reacts with acid to form 

hydrogen gas. 

 

Figure 10 Comparison of surface energy of various facets of fcc and hcp Co with 

adsorbents OH- and H+ (a); and OH- and H2O (b) over pH range of 0 to 14. 

The calculated surface energies from the lowest-energy surfaces were used to 

construct Wulff shapes of fcc and hcp Co phases, which show the equilibrium morphology 

of a particle. Since the calculated surface energy varies with pH (i.e. the concentration of 

OH-), the Wulff shapes also changed as pH was increased (Figure 11). For all pH levels, 

the dominant facet in fcc Co was (110). The energy of the (110) surfaces decreased more 

rapidly than the (111) and (100) facets as the solution became more alkaline. As a result, 

with increasing pH, the fraction of the (110) facets in the Wulff shape increased, as shown 

in Figure 11a and 11b. The Wulff shape of hcp Co is a hexagonal prism, made of the (21̅1̅0) 

and (0001) facets in all pH conditions (Figure 11c and 11d). In summary, the surface 

energies and Wulff shapes of both fcc and hcp Co vary with pH values. This variation 

impacts the total energies of the Co nanoparticles and their preferences for fcc versus hcp 

phases as a function of pH (the concentration of OH- in solution).   
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Figure 11 Wulff shapes of fcc Co in acidic condition (a) and basic condition (b); 

Wulff shapes of hcp Co in acidic condition (c) and basic condition (d). The color bar 

indicates the calculated surface energy of each facet. 

2.3.3 Phase selectivity of Co nanoparticles. 

To understand how the thermodynamically favored phase is influenced by the 

surface energy, the total energy of hcp and fcc Co nanoparticles was calculated and 

compared to construct a phase diagram as a function of particle size and pH values. The 

total energy of Co nanoparticles (in both hcp and fcc phases) as a function of particle size 

was calculated as the sum of the bulk energy and the total surface energy contributed from 

each facet present (see details in Methods). The phase diagram with respect to particle size 

and solution pH was constructed by comparing the total energies of Co nanoparticles in 

hcp and fcc phases (Figure 12). In short, the pH value determines the morphology of the 

nuclei and thus also determines the stable polymorph phase in this condition. The total 

energy difference between the two nanoparticle polymorphs describes the thermodynamic 
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driving force for the formation of a given phase. The larger the energy difference, the more 

one phase is favored over the other. As the phase diagram indicates, the fcc phase of Co is 

favored to nucleate in acidic pH conditions and for smaller particle sizes, and the hcp phase 

is favored under more basic conditions and favored as the Co particle becomes larger. 

These calculations could therefore explain the observed formation of hcp Co under high 

pH and formation of fcc Co under neutral pH at nanometer scale as the result of surface 

energy contribution. The formation of a mixture of hcp and fcc Co in samples S2 and S3 

can be explained because at these intermediate pH values, the total energies of hcp and fcc 

nanoparticles are very similar. Therefore, the thermal fluctuations allow for the nucleation 

of both phases, but with statistical probabilities that are determined by the differences in 

their total energy (i.e. more hcp phase yields in S2 than in S3 due to the higher pH).  

 

Figure 12 Phase diagram of fcc versus hcp Co nanoparticles with respect to varying 

particle size and pH level of the solution. The color bar shows the energy differences 

between the nanoparticles of the two phases. The black dashed line demonstrates 
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the trend of nanoscale polymorph formation under increasing pH environment, as 

observed in this work.  

2.3.4 In situ XRD investigation. 

By far, we have demonstrated that the ex situ experiments and computations agree 

with each other well on the observations that high concentration of OH- coverage on the 

surface of the nuclei lowers the energy of the hcp phase as the stable polymorph. However, 

one could argue that what computation captures is the energy of the nuclei or the 

nanoclusters with size of a few nanometers, while the XRD patterns, as well as the TEM 

images, were taken from samples with a few tens of nanometers or micrometer sized 

sample. It is possible that the polymorphs may convert during the reaction therefore the 

initial and final phases are different. As it is rather slow to heat up and cool down the 

solvothermal reactor, it is impossible to rule out such transformations with postmortem or 

ex situ observations. Therefore, in situ observation and characterization is essentially 

necessary.  One outstanding challenge is that solvothermal synthesis, and similar 

hydrothermal synthesis, is previously considered as a black box. Because of the high 

pressure generated by the solution at elevated temperatures (r.t. to a few hundreds of 

Celsius), conventionally the solvothermal/hydrothermal reactions have to be carried out in 

thick-walled press vessels made of high strength metals, which made it impossible to detect 

the reaction inside in real time with any characterization tools. One can only guess the 

reactions inside by varying the starting materials and analyzing the products.  In this study, 

we developed a unique platform that allowed us to in situ track the solvothermal reaction 

with high transmitting synchrotron X-ray, as elaborated in Methods. We were able to track 
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the full path of this solvothermal reaction in real time from starting materials to the 

nucleation state and the following crystal growth and ripening processes.   

Solutions with same starting materials as used in the lab synthesis were used in the 

in situ XRD observations in the sealed quartz tube, namely S4, S3 and S1, as previous 

denoted. (See Table S3). Figure 13a, 13b, and 13c show the results of in situ solvothermal 

reactions done at beam line X14A at the National Synchrotron Light Source (NSLS) and 

at 17-BM-B at the Advanced Photon Source (APS). The reaction starts from room 

temperature, with a heating step of 10 ℃. As denoted in Figure 5, each reaction starts with 

Co(OH)2, and gradually shows the nucleation and growth of Co phases while consuming 

the starting materials. As expected, S4 yields pure fcc Co phase, S3 yields a mixture of hcp 

and fcc phases, and S1 yields pure hcp Co phase. No phase cross-over was observed in any 

of these experiments, which confirms that the formation of the polymorphs starts directly 

from nucleation stage. Using Scherrer equation:69 

τ =  
𝑏𝜆

𝛽𝑐𝑜𝑠𝜃
 

where: 

τ is the average size of the crystallites as if they were cubes, monodisperse in size. 

b is a shape factor, typically ranging from 0.89 to 0.94 depending on the function used to 

fit the peak. 

β is the line broadening at half the maximum intensity (FWHM), after subtracting the 

instrumental line broadening, in radians. 
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θ is the Braggs angle in radians.  

The particle size of fcc phase in S4 and hcp phase in S1 and S3 at the nucleation stage is 

estimated to be around 2 nm, 4 nm, and 3 nm, respectively. The particle size and phase 

composition of the samples are schematically labeled with the dashed line in Figure 12. 

Again, it shows that the computation and experiments well agree each other. It should be 

noted that in experiments, the hcp phase always shows larger particle size in the in situ 

XRD observation, either in the pure hcp product or in hcp-fcc mixed products. It is mainly 

because the thermodynamic driving force for the formation of hcp phase in high pH 

environments is greater than that of fcc phase in neutron pH, as indicated by the color in 

Figure 12. With the greater driving force, the particles of hcp phase grow faster and result 

in larger size than the fcc phase, under the same heating program in the in situ XRD 

experiments. 

Table 3 Synthesis conditions of in situ synthesis of Co(OH)2 in EG with different 

KOH amounts. 

Sample 

number 
Co(OH)2/mmol EG/g KOH/g Temperature/℃ 

Temperature 

Step/℃ 

S1 
3 12 4 200 10 

S3 
3 12 1 200 10 

S4 
3 12 0 200 10 
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Figure 13 (a) In situ XRD patterns of S4 without KOH addition, (b) S3 with 1g KOH 

addition, and (c) S1 with 4g KOH addition in 12 g EG solvent.   

By now, it can be concluded based on both experimental and computational results 

that the concentration of OH- in solution, or say the pH level of the solution, is a critical 

factor that influence the stable phase obtained for Co nanoparticles via changing the surface 

energy by the capping effects of OH-. Hcp Co is more favorable under higher pH 

conditions, while fcc Co is more stable under neutral condition. This interplay between 

surface energy and total energy is expected to be general.  It would be interesting to see 

such surface-controlled polymorphism can be observed with other capping agents other 

than OH-. Therefore, we designed experiments to use dioctyl sulfosuccinate sodium salt 

(AOT) (See Figure 14 for chemical structure of AOT) as an alternative capping agent to 

observe the polymorphism of Co. In situ solvothermal synthesis with using same Co source 

(Co(OH)2) and solvent (EG) but without adding any KOH was carried out on the beam 

lines. The results, as shown in Figure 15, clearly show that with adding just 1 mmole AOT, 

which is a far lower concentration than that of KOH used in previous experiments, the 

synthesis yields pure hcp Co phase from nucleation stage. This clearly indicates that AOT 

has the same capability of varying the surface energy of Co clusters. Due to the selectively 
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bonding of AOT ligands with Co facets that lowers the surface energy, it results in an hcp 

phase formation and growth. This experiment provides another proof of the feasibility and 

effectiveness of tuning surface energy to vary the total energy and thus tune the 

polymorphs.  

 

Figure 14 Chemical structure of AOT. 

 

 

Figure 15 In situ XRD pattern of sample with 1 mmol AOT addition in 12 g EG 

solvent. 
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In this work we demonstrate that tuning the surface energy via capping ions can 

completely change the yielding polymorph for Co nucleation in solution. This tuning of 

polymorph is purely due to the change of surface energy and does not involve any 

stoichiometry change as Co is simple substance, which is different from previous works 

where such tuning is realized through changes in stoichiometry and composition. This 

indicates that surface energy by itself could be significant enough to vary the relative 

stability of different polymorphs. The tuning ability of the surface capping agents depends 

on both the energetics of the materials as well as the bonding/adsorption ability of the 

capping agents.  One may expect that, if the difference in bulk energy of the polymorphs 

is too large, it would be difficult to alter the stable phase by solely changing the surface 

energy. However, surface energy may become significant as at the nucleation stage the 

particle size is very small. In this case, the difference between the ground state energy of 

the two polymorphs of Co capped with OH- is at the scale of 0.25 kJ/mol70 (corresponding 

to the transition temperature of 450 ℃), while the surface energy for a 1 nm nucleus under 

neutral condition (pH = 7), as computed, is 0.76 kJ/mol, which is more than three times 

higher. This implies that this surface energy tuning strategy may be effective for many 

other materials with even more significantly different energy among the polymorphs (i.e. 

higher polymorph cross-over temperature in simple heat treatment), considering using 

capping agents such as AOT with stronger surface bonding effect than OH-. Polymorphism 

is very common in many important functional materials, such as TiO2 (anatase, rutile, 

brookite), CaCO3 (calcite, aragonite), and many electrode materials for alkaline metal ion 

batteries.71,72 Synthesis of nanometric materials may benefit systematically considering the 

contribution of surface energy and controlling it accordingly. In fact, we have attempted to 
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tune the polymorphs of alloys. Similar tuning effects can be realized and will be published 

elsewhere. Such tuning method in principle can be applied to many more complicated 

crystalline materials, although the tuning factors may not necessarily be pH or AOT. Other 

factors such as the solvent or other ligands may be more sensitive and effective.     

Another important factor is the bonding ability of the capping agents. When tuning 

the polymorph of Co with OH-, at least 4g (or 70 mmol) of KOH was required to form pure 

hcp phase. However, use of only 0.016g (1 mmol) AOT yielded same pure hcp product in 

a 12 g EG solution. That is because the bonding between the surface Co atom and OH- is 

relatively weak and very dynamic. A high concentration of OH- is necessary to achieve 

enough coverage that can effectively change the energetics. As a contrast, the SO3
- 

functional group in AOT has much stronger bonding with surface Co, due to the induction 

effect of sulfur.73 Meanwhile, the much higher mass of AOT makes the adsorption much 

less dynamic and more stable. As a result, much lower concentration of AOT is needed to 

yield pure hcp Co. It is also worth noting, the use of capping agent in wet-chemistry 

syntheses is very common for the purpose of tuning the morphology of nanoparticles and 

nanowires. Yet in those cases, only the growth kinetics was varied due to the selective 

adsorption of the capping agent on different facets of the material. However, in this case, 

the formation of different phase-pure polymorphs was governed by thermodynamics, as 

demonstrated by the computational results and the in situ XRD observation.  

More importantly, the nanometric phase diagram with particle size parameter has 

been established from DFT computation to evaluate and predict the stable phase in 

nucleation, and is demonstrated with accuracy and effectiveness in the case of Co. 

Although in more complicated solutions, more factors such as the competing effect of 
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different ligands and possible stoichiometry change and defects in the crystal need to be 

considered. As a grand vision, a database of nanometric phase diagrams as the function of 

particle size, chemical environment, and the concentration of the capping agent can be 

constructed to guide the synthesis of nanometric polymorphic materials.  

2.4 Conclusion 

In summary, we combined both experimental results and computational work to 

generalize an approach to understand the phase selection mechanism of Co polymorphs 

under solvothermal conditions. It was found that the surface energy was largely affected 

by the adsorbents, namely OH-, from the solution. In competing with the bulk energy of 

particles, the surface energy plays an important role in determining the overall energy of 

the polymorphs for nanometric Co particles, resulting in the formation of various phases 

under different pH levels. The proposed driving force landscape of fcc and hcp Co could 

serve as a reference for selective synthesis of various polymorphs of nanoscale Co for 

specific applications. This method may be extended to other functional materials besides 

simple elemental materials, such as alloys, oxides, or carbonates.   
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CHAPTER 3. AN IN SITU SYNCHROTRON X-RAY 

DIFFRACTION STUDY ON PHASE FORMATION OF COBALT 

NANOPARTICLES THROUGH ELECTRODEPOSITION 

METHOD 

3.1 Introduction 

Nanostructures have gained significant importance due to their numerous potential 

applications in various areas such as electronics, magnetism, biomedical engineering, 

energy storage, electrochemistry and beyond. A widely applied approach to synthesize 

various type of nanomaterials is electrodeposition, for that it is less expensive,74 easier to 

scale up for mass production,75 capable of producing uniform and dense film on complex 

shape substrate or templates within short time,76 and more importantly, it has more 

parameters77 (composition, pH, concentration, temperature, current density etc.) that can 

be controlled to produce different polymorphs or morphologies of nanoclusters. However, 

due to the fact that electrodeposition process involves multiple tunable parameters, and the 

fact that nanomaterials often deviates from their stable bulk phases resulting from the 

significant contribution from surface energy, a systematic understanding of how to 

synthesize desired polymorph using electrodeposition method is needed.  

Another black-box that has been rarely explored is the polymorphism throughout 

nucleation till phase ripening during electrodeposition. Since the reaction is complicated 

in nature, which involves local pH change at working electrode with the proceeding of 

reaction,78 which phase forms upon nucleation and what changes take place during ripening 
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process is of our great interests. Considering the technical difficulties that: (1) 

electrodeposition takes place very fast (usually within few seconds); and (2) the newly 

formed Co film has very weak signal that cannot be detected by in-house XRD; thereafter, 

we designed an in situ electrolytic cell made from acrylic glass, as shown in Figure 16, and 

use high-energy synchrotron in situ X-ray diffraction to enable real-time observation of 

polymorph formation throughout the reaction. 

 

Figure 16 (a) Front view of electrolytic cell. A platinum mesh with a hole to let beam 

pass through was used as the counter electrode (CE); (b) Back view of electrolytic 

cell. A piece of copper foil was used as the working electrode (WE); (c) Schematic 

view of electrolytic cell. The outer dimension of the cell is 50 mm x 50 mm x 6.35 

mm, with thickness of 2.175 mm and diameter of the hole is 5 mm; (d) Overview of 

final setup on beam line. 
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The advanced in situ X-ray diffraction (XRD) technique was employed to study the 

phase selection of Cobalt (Co) under various conditions including pH of the solution and 

over-potential. The metastable polymorph obtained in lower pH region and low over-

potential was primarily driven by the surface energy contribution, which was theoretically 

quantified by DFT in our previous work (Chapter 2). On the other hand, due to higher 

kinetics of the reaction driven by over-potential, the metastable phase in lower pH region 

(i.e., hcp Co) can be obtained concurrently with the stable polymorph (i.e., fcc Co) upon 

nucleation. Therefore, we proposed the theory that the key drivers for phase selection of 

Co through electrodeposition include both thermodynamic factor - surface energy of the 

nanoclusters, and kinetic factor - over-potential. By tuning the condition, it is controllable 

to obtain the desired phase. We furthermore proved the feasibility of the theory by tuning 

phases selectively and forming layer-by-layer (LBL) Co revealed by in situ XRD 

observation. This work opens up opportunities for the design of functional electrodeposited 

materials rationally and introduce a new in situ technique for electrodeposition to track 

phase formation upon nucleation till phase ripening for the first time.  

3.2  Methods 

3.2.1 Electrodeposition synthesis 

The base cobalt electrodeposition bath was composed of 0.5M cobalt sulfate 

pentahydrate (99.9%, GFS Chemicals) in 20 mL deionized water. 0.1M boric acid (99.5%, 

BDH Chemicals) and 0.1M sulfate acid (95-98%, BDH Chemicals) was added to the bath 

to examine the effect of pH on phase formation of Co. The chemical compositions are listed 

in Table 4. Four types of samples are investigated, including Co synthesized under neutral 
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condition (without adding boric acid and diluted sulfate acid, denoted as “N”); Co 

synthesized under mild acidic condition (adding boric acid but not diluted acid, denoted as 

“MA”); Co synthesized under acidic but low over-potential condition (adding boric acid 

and diluted sulfate acid, operating under low over-potential – with current density ranging 

below 15 mA/cm2, denoted as “HA-LV”); and Co synthesized under acidic but high over-

potential condition (adding boric acid and diluted sulfate acid but operating under high 

over-potential – with current density higher than 60 mA/cm2, denoted as “HA-HV”). 

Table 4 Chemical composition of cobalt electrodeposition bath. 

Bath Name  CoSO4•5H2O/M H3BO3/M H2SO4/M 
Current 

density/mA•cm-2 

Deposition 

time/min 

N 0.5 - - ~10 20 

MA 0.5 0.1 - ~12 20 

HA-LV 0.5 0.1 0.1 ~6 20 

HA-HV 0.5 0.1 0.1 ~65 20 

 

A two-electrode system was used with a constant voltage electrodeposition process 

using a battery cycler (Arbin, BT2043). Copper foil with thickness of 0.005 inch and area 

of 2.5 cm2 was used as the working electrode, while platinum plate with area of 0.25 cm2 

was used as the counter electrode. The current density between 6 to 65 mA/cm2 of working 

electrode was controlled to investigate the effect of over-potential on phase formation.  

3.2.2 Ex situ and in situ X-ray diffraction for the electrodeposition reaction. 

Ex-situ laboratory XRD measurement was performed using a D8 Advance X-ray 

Diffractometer (Bruker AXS, Germany) with a Molybdenum radiation (λ Kα1=0.7093Å). 

An in situ electrolytic cell was designed to study phase evolution under various conditions. 
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As mentioned previously, the samples are denoted as neutral (N), mild acid (MA), high 

acid low over-potential (HA-LV), and high acid high over-potential (HA-HV). Each of the 

sample was deposited for 20 min to form a homogeneous Co film with thickness around 

25-30 µm to avoid the role of substrate in inducing topotaxial growth. In situ synchrotron 

XRD was conducted at 28-ID-2, National Synchrotron Light Source II and 17-BM-B, 

Argonne National Laboratory. The microstructure of Co nanoclusters, which were obtained 

after 1 min deposition to better visualize the primary particle morphology, was observed 

by Scanning Electron Microscope (Hitachi SU8010). All the electrochemical deposition 

and XRD measurements were conducted under room temperature (25 ℃).  

3.3  Results and Discussion 

3.3.1 Ex situ study on selective phase formation of fcc and hcp Co.  

Among all the external factors that would affect phase selection of Co, pH of the 

solution and over-potential are two main factors that have been reported by a few works, 

yet with a conclusive theorem.79,80 Therefore, a series of samples were prepared with 

various pH (0-1, 4-5, 6) and different applied voltage. The pH of the solution is adjusted 

by adding boric acid and diluted sulfate acid. Over-potential is controlled by adjusting the 

external voltage and therefore changes the current density applied at working electrode. 

The reactions at working electrode are: 

Co2+ + 2e = Co,  2H+ + 2e = H2 

The reaction at counter electrode is:  

4OH- - 4e = O2 + 2H2O 
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Figure 17 shows the ex situ X-ray diffraction (XRD) patterns of the samples. The 

strong peak around 19.8°is Cu substrate. When comparing the patterns of N, MA, and 

HA-LV samples that are obtained under low current density which minimizes the effect of 

over-potential, there is a clear trend that hcp Co is formed under relatively higher pH 

condition, while fcc Co forms under very low pH condition. The low intensity of fcc Co 

might result from the relatively thinner film obtained for HA-LV sample, which results 

from the lower current density, as shown in Table 4. However, if applying a high over-

potential, which is 10 times higher than HA-LV in current density, there’s a clear sign that 

hcp Co forms concurrently upon completion of the electrodeposition. It should be noted 

that the hcp (101) peak is not as strong as N and MA samples, suggesting that there’s a 

preferred orientation for the hcp phase obtained from HA-HV sample. The co-deposition 

of fcc and hcp Co affect the orientation of hcp Co.  

To understand why pH and over-potential could affect phase selection, the DFT 

study introduced in last chapter was applied to help reveal key factoring contributing to the 

overall energy of a single Co nanoparticle under various pH conditions by accounting for 

both bulk energy and surface energy, which is greatly affected by the pH of solution (Figure 

10). It should be noted that the calculation is a more theoretical idealization, without 

considering the bulk defects, or the off – stoichiometry from particle segregation or 

agglomeration.  

Figure 12 shows the energy difference between the two polymorphs accounting for 

pH effect only, which can be regarded as one of the main driving forces of phase formation. 

There is a clear trend that hcp Co is the more stable polymorph under relatively higher pH 
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for the nuclei with the size above 10 Å. On the other hand, the over-potential is closely 

related with reaction kinetics. According to Butler-Volmer equation,81  

 

the rate constant k depends exponentially on the over-potential ( ). Thereafter, it is 

possible to obtain concurrently of both metastable phase (hcp) under high acidic condition 

and the stable polymorph (fcc) with large enough over-potential, which further expediates 

the reaction. As a result, both stable polymorph (fcc) and metastable polymorph (hcp) can 

be obtained simultaneously under high over-potential condition.   

 

Figure 17 Ex situ XRD pattern of N, MA, HA-LV, and HA-HV samples under 

various pH conditions and different over-potential. 
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3.3.2 In situ study on phase formation of fcc and hcp Co.  

The ex situ XRD results demonstrate the effect of pH and over-potential on phase 

selection of Co upon completion of phase formation and ripening. But a critical issue 

remains unsolved. What we have observed is the results after 20 min electrodeposition. 

Whether there is a phase transition during the process remains unknown. Therefore, it calls 

for the in situ observation to reveal the polymorph formation throughout the reaction. 

However, due to the challenge that electrodeposition happens within seconds, the in-house 

in situ XRD cannot serve the purpose to track the signal with satisfactory intensity. 

Thereafter, we design an electrolytic cell to be tested by in situ synchrotron XRD, of which 

one key advantage is the real-time observation by the 2D detector.  

Figure 18 shows the in situ XRD patterns of N, MA, HA-LV, and HA-HV samples. 

As expected, the stable polymorphs concluded from previous discussion formed upon 

nucleation and no phase transition took place along the ripening process. There are two 

things should be noted: (1) The relative peak intensities of N and MA differ. For the latter 

case, the (002) peak of hcp Co, which locates around 6.6°, is much higher than the other 

two peaks, (100) at 6.2° and (101) at 7.1°. This preferred orientation phenomenon is likely 

to be correlated with the addition of boric acid,82 which results in a different morphology 

– the needle-like primary particles (see Figure 19). However, the function of either additive 

is primarily affecting the morphology of nanoparticles, but won’t affect phase formation; 

(2) The XRD pattern of HA-LV show that at the later stage of ripening, a minor hcp phase 

appear. It could be explained by our theory as well. With the gradual consumption of H+ 

near working electrode, the local pH rises and results in the tendency of more hcp Co 
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nucleation. In comparison, the appearance of hcp Co of HA-HV sample forms upon 

nucleation, which can be explained by the kinetic impact of the over-potential. Using 

Scherrer equation, the particle size upon nucleation for hcp Co is 2 nm, while that for fcc 

Co is 1 nm. It should be noted that electrodeposition starts immediately upon charging, yet 

the peak signal at very early stage has much weaker signal so there are inevitable errors 

associated with full width at half maximum (FWHM), which is one factor for determining 

nucleation size.  

 

Figure 18 In situ XRD of N (a), MA (b), HA-LV (c), and HA-HV (d) samples from 

nucleation to ripening process.  
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Figure 19 SEM images of N sample (a); MA sample (b); HA-LV sample (c); and 

HA-HV sample (d) after 1 min deposition. The blank substrate is copper foil. Scale 

bars are 5 μm. Insets are the zoom-in view with scale bars of 1 μm.   

3.3.3 In situ study on phase tuning to get layer-by-layer (LBL) Co.  

To further prove the applicable importance of our previous work, we conducted 

layer-by-layer deposition of Co by tuning over-potential on a single system. To avoid the 

side-effect from local pH change, we chose neutral sample under low over-potential 

(current density 10 mA/cm2) as a starting point. After 5 min deposition, we switched the 

external voltage to high over-potential (current density 80 mA/cm2) to see if the concurrent 

deposition can be achieved manually. Figure 20 shows the in situ XRD pattern of the two-

step process. The hcp Co forms first, as expected. After switching to high over-potential 

around 5 min, the fcc phase starts to appear. Though the signal of minor fcc phase is weak, 



 44 

there are two signs that show the co-deposition of fcc Co. First, the peak around 7.6° is a 

signature peak of fcc Co (200). The broad width of the peak suggests that the size of the 

fcc nanocluster is relatively small, which is due to the fact that acidic condition would 

reduce the amount and slows down the rate of Co reduction as H+ has higher reduction 

potential than Co2+. Second, the relative peak intensity near 6.6° is much higher than the 

other two hcp peaks (100) and (101), at 6.2° and 7.1° respectively, if we compare the 

previous in situ XRD pattern of neutral sample (Figure 18a). This peak is the overlapping 

of hcp (002) and fcc (111) of Co. The relative peak intensity suggests the coexistence of 

the two phases.   

By far, we have used one example to demonstrate the feasibility of tuning Co phases 

through electrodeposition by changing the conditions. It is reasonable to claim that other 

multilayer structures with interesting mechanical or magnetic properties can be obtained 

by referring to the phase selection theory we have proposed in this work.  
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Figure 20 (a) In situ XRD pattern of layer-by-layer Co neutral sample. The first 5 

min is under low over-potential while the next 5 min is under high over-potential; 

(b) The zoom-in of patterns. The blue color blocks indicate the time when high over-

potential is applied. 
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3.4 Conclusion 

In this work, we have demonstrated the phase selection mechanism of Co through 

electrodeposition by combining both ex situ, in situ XRD and DFT computation. It was 

found that hcp Co prefers to form under higher pH condition, while fcc Co prefers to form 

under lower pH condition. The key driver for this pH-control phase selection is that surface 

energy is highly pH sensitive and it contributes drastically to the overall ground state 

energy. Over-potential is another factor affecting phase selection by boosting the kinetics 

of the polymorph formation, resulting in co-deposition of both stable and meta-stable 

polymorphs. The aforementioned mechanism can serve as a foundation for the synthesis 

of multi-layer Co structure, as we have demonstrated using over-potential control.  
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CHAPTER 4. A STUDY ON PHASE SELECTIVITY OF 

COBALT-NICKEL ALLOY NANOPARTICLES THROUGH AN 

IN SITU ELECTRODEPOSITION METHOD. 

4.1 Introduction 

Binary alloys have always been an important component in industrial application. 

Nowadays, more than 200 binary alloys are used in industry.83 Among them, magnetic 

alloys are important functional materials that are fundamental in microelectronics, 

computer technology, coating industry, biotechnology application etc.84,85 Cobalt (Co) – 

Nickel (Ni) is one magnetic alloy that is widely used not only as functional coating for its 

corrosive and resistance property, but also plays an important role in microelectronics for 

its magnetic properties.86 Co and Ni can alloy at all composition, according to their phase 

diagram, resulting in a tunable property that could be useful for both hard and soft 

magnetics.  

Electrodeposition is a common approach to obtain Co-Ni alloy due to its high degree 

of control obtainable by varying the experimental conditions. Many previous work have 

synthesized Co-Ni under different electrolytes (pH, surfactant, pH buffer etc.) and varying 

deposition condition (current density, time etc.) to obtain desired property.87,88 However, 

we rarely see a systematic study on the fundamental of phase formation for Co-Ni, which 

is the key controlling factor of their properties.  

In this work, we applied the same in situ synchrotron X-ray diffraction (XRD) 

technique to study phase formation under nanometer scale for bimetallic system through 
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electrodeposition, as the second step based on the findings through single element system. 

By studying Cobalt (Co) – Nickel (Ni) system, we found out that there are 3 factors 

contributing to phase formation. Intrinsically, the composition of starting materials affects 

the stable polymorph obtained; extrinsically, the pH of the electrodeposition solution and 

over-potential could alter the stable polymorph to some extent by tuning surface energy or 

kinetics of the reaction. For the same composition, the lower pH of the solution, the more 

likely hcp phase is to be obtained; the higher over-potential, the more likely unstable 

polymorph is to concurrently form. However, we also found out due to the complexity of 

bimetallic system, the extent to externally tune the polymorph varies with different 

composition. The compositions that lie within hcp and mixture (hcp & fcc) in the original 

bulk Co-Ni phase diagram can be tuned easier. Overall, all the reactions were observed 

through in situ synchrotron XRD and it was found out that no phase transition occurred 

during the reaction, suggesting the phase tuning strategy was effective from nucleation 

stage.  This work opens up opportunities for the study of more complex system, by 

demonstrating the three key factors contributing to polymorph formation. It also justifies 

the broad applicability of in situ electrodeposition method we developed to study multi-

element systems in the future.  

4.2 Methods 

4.2.1 Electrodeposition synthesis 

The electrolyte composes of 0.5 M cobalt sulfate pentahydrate (99.9%, GFS 

Chemicals) and nickel chloride hexahydrate (98%, Sigma-Aldrich) in total with various 

starting molar ratio in 20 mL aqueous solution (i.e., CoNi6040, CoNi5050, CoNi4060, 
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CoNi3070). The pH control of Co-Ni5050 and CoNi6040 were obtained through the 

addition of 0.5 M boric acid, and 0.1 M diluted sulfate acid into the 0.5 M starting material 

solution. The overpotential variable was investigated by using CoNi4060, CoNi5050, and 

CoNi6040 to see the effect of kinetic factor on phase selection, with the current density 

ranging from 10 – 110 mA cm-2. 

4.2.2 Ex situ and in situ X-ray diffraction for the electrodeposition reaction. 

Ex-situ laboratory XRD measurement was performed using a D8 Advance X-ray 

Diffractometer (Bruker AXS, Germany) with a Molybdenum radiation (λ Kα1=0.7093Å). 

An in situ electrolytic cell was designed to study phase evolution under various 

composition, under various pH condition for different sample, or under various over-

potential condition for different samples. Each of the sample was deposited for 20 min to 

form a homogeneous Co-Ni film with thickness around 25-30 µm to avoid the role of 

substrate in inducing topotaxial growth. In situ synchrotron XRD was conducted at 28-ID-

2, National Synchrotron Light Source II and 17-BM-B, Advanced Photon Source. All the 

electrochemical deposition and XRD measurements were conducted under room 

temperature (25 ℃).  

4.2.3 Composition characterization 

Inductively coupled plasma mass spectrometry (ICP-MS) (Agilent 7500a series) was 

used to determine the actual composition of post-deposited Co-Ni samples with various 

starting ratio. Aliquots were diluted in 2% trace metal grade HNO3 (Fisher Scientific, Inc.) 

containing 20 ppb indium as an internal standard to correct for instrument drift. Calibration 

standards were prepared with a certified stock solution (SPEX CertiPrep) in 2% HNO3 
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containing the internal standard and measured approximately every 15–20 samples as 

quality controls. Energy-dispersive X-ray spectroscopy (EDX, Zeiss Ultra 60) was used to 

map out Co-Ni elemental distribution and their relative ratio of CoNi5050 samples under 

different pH and over-potential conditions.  

4.3 Results and Discussion 

4.3.1 Ex situ results on electrodeposited Co-Ni alloy with various starting composition.  

There are 3 key factors for investigation, i.e., composition, pH, and overpotential. 

Thereafter, a serial of laboratory synthesis with using control-factor approach was 

conducted as a fundamental to understand the polymorph formation mechanism at room 

temperature. The electrolyte composes of 0.5 M cobalt sulfate pentahydrate (99.9%, GFS 

Chemicals) and nickel chloride hexahydrate (98%, Sigma-Aldrich) in total with various 

starting molar ratio in 20 mL aqueous solution (i.e., CoNi6040, CoNi5050, CoNi4555, 

CoNi4060, CoNi3070). The pH control of one composition, Co-Ni5050 was obtained 

through the addition of 0.5 M boric acid, and 0.1 M diluted sulfate acid. The overpotential 

variable was investigated by using CoNi4060, CoNi5050, and CoNi6040 as examples to 

see the effect of kinetic factor on phase selection, with the current density ranging from 10 

– 110 mA cm-2. The detailed composition is summarized and shown in Table 5. Each 

reaction takes 20 min to ensure getting a uniform film with good-quality x-ray signals.  
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Table 5 Summary of various ex situ laboratory synthesis of Co-Ni alloy 

nanoparticles. 

 CoSO4/M NiCl2/M Co:Ni 
Boric 

acid/M 
Diluted 

Sulfate/M 

Current 
density/ 
mA cm-2 

Notes 

1 0.3 0.2 60:40 - - 10 

Composition 
Control 

2 0.25 0.25 50:50 - - 10 

3 0.2 0.3 40:60 - - 10 

4 0.15 0.35 30:70 - - 10 

5 0.25 0.25 50:50 0.5 - 12 
pH control 

6 0.25 0.25 50:50 0.5 0.1 13 

7 0.25 0.25 50:50 - - 25 

Overpotential 
control 

8 0.25 0.25 50:50 - - 40 

9 0.25 0.25 50:50 - - 110 

 

Figure 21 shows the trend of varying composition of Co-Ni alloy while keeping the 

electrolyte pH as neutral and overpotential low to minimize the influence of surface energy 

and kinetic factor, respectively. It can be seen clearly that with increasing amount of Ni, 

the bimetallic nanoparticles gradually change from pure hcp phase to a mixture of hcp and 

fcc, then eventually, to pure fcc phase. Interestingly, the peak (002) (2θ  = 20.5°) of 

CoNi6040 has the lowest intensity, suggesting a possible preferred orientation in this case. 

The trend indicates that with increasing amount of Ni in the composite, the more tendency 

it has towards formation of fcc phase, for that hcp Ni is a metastable phase and can only be 

synthesized under certain condition.89,90 However, a key question for this batch of tests is 

that whether the as-synthesized composite has the same ratio as starting materials, for that 

Co and Ni have slightly different reduction potential and according to anomalous co-

deposition theory,91 there is a difference in kinetics as well. Therefore, we conducted ICP-

MS tests for this batch, to elucidate the composition of as-synthesized samples (Table 6). 
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Rietveld refinements was carried out on pure phase samples (e.g., CoNi6040, CoNi5050, 

and CoNi3070) to further prove whether the as-synthesized composites are solid-solution, 

and the results are summarized in Table 7. It was found that for the pure phases we 

obtained, hcp or fcc, all of which are solid-solution with less than 0.4% error when 

comparing the refinement value with the one applying Vegard’s law:92  

𝑎𝐴(1−𝑥)𝐵𝑥
= (1 − 𝑥)𝑎𝐴 + 𝑥𝑎𝐵 

where: 

aA and aB are the lattice parameters of the pure elements, A and B.  

x is the molar ratio of B in the solid solution.  

𝑎𝐴(1−𝑥)𝐵𝑥
 is the lattice parameter of the solid solution. 

In summary, we have concluded that under nanoscale neutral condition, the rough 

boundary limit of hcp Co-Ni is Co 77% (a.t.) and the boundary of fcc Co-Ni is Co 64% 

(a.t.), in accordance with Co-Ni bulk phase diagram (Figure 3). 
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Figure 21 XRD patterns of Co-Ni with various composition under neutral, and low-

overpotential condition. 

 

Table 6 ICP results of various composition of CoNi samples 

Sample 

type 

Dilution 

Factor 
Standard Co/ppb Ni/ppb Co:Ni 

Actual 

Composition 
Polymorph 

60:40 2 19975970.0 235.63 54.06 4.359 

Co85Ni15 hcp 60:40 2 19963330.0 230.55 53.71 4.292 

60:40 4 19826390.0 247.49 57.61 4.296 

50:50 50 20482140.0 2411.05 918.11 2.626 
Co77Ni23 hcp 

50:50 100 20702700.0 2719.84 1022.33 2.660 

40:60 50 20162390.0 2758.43 1189.12 2.320 

Co75Ni25 

hcp + fcc 

(very 

minor) 

40:60 20 19895130.0 2459.50 1087.82 2.261 

40:60 100 20607740.0 1854.41 789.86 2.348 

30:70 50 19854520.0 2574.17 1861.76 1.383 Co64Ni36 fcc 
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Table 7 Rietveld Refinement results of CoNi with various composition 

Sample 
Type 

Actual 
Composition 

wRp Rp CHI2 a,b/Å Error c/Å Error 

60:40 Co85Ni15 0.1278 0.0971 1.913 2.517 0.32% 4.095 0.32% 

50:50 Co77Ni23 0.099 0.0727 1.853 2.531 0.23% 4.116 0.24% 

30:70 Co64Ni36 0.1019 0.0787 2.459 3.546 0.31% 3.546 0.31% 

 

4.3.2 In situ results on electrodeposited Co-Ni alloy with various starting composition.  

The ex situ results on various composition demonstrates the “intrinsic” factor that 

have impacting phase formation of Co-Ni system. Based on the previous work, it is 

necessary to observe the phase formation process starting from nucleation upon phase 

ripening to confidently discuss other factors that might affect phase formation, without 

considering phase transition during reaction. Therefore, we conducted two in situ tests of 

CoNi5050 and CoNi3070 samples at 17-BM-B, APS, by using the in situ electrolytic set 

up discussed in Chapter 3. Figure 22 shows the results we obtained, with Figure 22a and 

Figure 22b demonstrate CoNi5050 while that of Figure22c and d show the result of 

CoNi3070. As can be seen, the reactions, regardless of producing hcp or pure fcc solid 

solution, start from nucleation. The signal can be observed starting from about 2-3 min, 

and the intensity keeps increasing afterwards. For CoNi5050 sample, (002) peak 

demonstrates the highest intensity from nucleation, suggesting that the preferred 

orientation is not affected by later kinetic factor but from the beginning stage. With these 

two polymorphs’ results, we could speculate that other Co-Ni series sample would have 
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similar mechanism, which is forming the final phase upon nucleation, without phase 

transition.  

 

Figure 22 In situ XRD of CoNi5050 (a) & (b) and CoNi3070 (c) & (d) samples from 

nucleation to ripening process. 

4.3.3 Ex situ results on electrodeposited Co-Ni alloy with different pH of the solution. 

The composition mainly determines the stable polymorph (the one with lowest bulk 

energy) without impact of external factors. A natural thought to explore as next step is to 

study external factors that might potentially tune the Co-Ni polymorph, including 

thermodynamic and kinetic factors.  
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In Chapter 2 and 3, we discussed how surface energy of Co would affect the total 

energy for nanometric particles. Based on this, we conducted an experiment on CoNi5050 

to see if that also works for the bimetallic system. As can be shown in Figure 23, under 

neutral condition, the stable phase is hcp solid solution, as expected. However, under highly 

acidic condition, the only phase we observed is fcc, suggesting that the pH of the solution 

might affect the alloy in the similar way as with Co system. Under acidic condition, the 

stable polymorph for Co is fcc, for the reason that the surface energy of fcc is much lower 

under that pH regime. Since Co-Ni will alloy together instead of separate as two phases, 

and Ni fcc is the more stable phase compared with hcp Ni, therefore, we could speculate 

that the fcc bimetallic system has a much lower total energy under this condition. This also 

demonstrates another approach to obtain fcc Co-Ni starting from metastable fcc 

composition regime.  

 

Figure 23 Ex situ XRD patterns of CoNi5050 sample under various pH conditions. 
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4.3.4 In situ results on electrodeposited Co-Ni alloy with different pH of the solution. 

Two starting compositions were chosen to study the pH effect of phase formation, 

CoNi6040 and CoNi5050. Since Co(OH)2 and Ni(OH)2 has little solubility in aqueous 

solution, therefore, our strategy is to tune the pH to lower range and see how this would 

affect the obtained polymorphs.  

As can be seen in Figure 24, both CoNi6040 and CoNi5050 samples show the 

appearance of fcc phase, which is the metastable polymorph without introducing external 

factors for this composition. Furthermore, CoNi6040 shows a little mixture of fcc within 

the majority of hcp phase, while CoNi5050 can be fully tuned to fcc solid solution. We 

think this is mainly due to the competing effect of bulk energy of Co-Ni system and the 

change in surface energy. For the former case, the bulk phase of hcp is more stable, as it is 

farther away from the two-phase region on Co-Ni phase diagram. Therefore, tuning the 

surface energy would have less effect compared with the latter case. However, these two 

examples still show that pH could be one external factor that help tuning the phase in Co-

Ni system.  
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Figure 24 In situ XRD of CoNi6040 (a) & (b) and CoNi5050 (c) & (d) samples under 

acidic condition from nucleation to ripening process. 

4.3.5 Ex situ results on electrodeposited Co-Ni alloy with different over-potential. 

Aside from external thermodynamic factor, another key factor that might come into 

play for electrodeposition is over-potential. By changing the kinetics of electrodeposition, 

it is possible to obtain metastable phase concurrently with the stable one under certain 

composition regime. Therefore, we conducted two tests on CoNi5050 and CoNi4060 under 

neutral condition but with various over-potential, as shown in Figure 25. For CoNi5050, 

the stable phase is hcp, however, with increasing over-potential, there is a gradual 

appearance of the metastable fcc phase. In comparison, for the case of CoNi4060, which 

locates in the regime that is closer to fcc solid solution in bulk phase diagram, the trend is 
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more obvious than CoNi5050. By increasing current density of about 4 time, a pure fcc 

phase could be obtained, suggesting that fcc phase grows faster in this case, and kinetics 

factor surpass the thermodynamic factor. As a conclusion, over-potential could be another 

approach to control the phase formation, and the impact it has on different composition 

varies, depending on the regime of the starting material composition.  

 

Figure 25 Ex situ XRD patterns of CoNi5050 (a) and CoNi4060 (b) samples under 

various over-potential conditions. 

4.3.6 In situ results on electrodeposited Co-Ni alloy with different over-potential. 

A series of in situ XRD tests were done on multiple composition, including 

CoNi6040, CoNi5050, and CoNi4060. It is necessary to track if the concurrent formed 

phase occurred in later stage during the process. In addition, by studying compositions that 

span across different regime on Co-Ni phase diagram, the impact of over-potential could 

be revealed as well. As shown in Figure 26, CoNi6040 shows the appearance of fcc 

metastable phase upon nucleation and eventually takes quite a portion in the final product. 

CoNi5050 is following the similar trend, yet with even higher ratio of fcc phase. In the case 

of CoNi4060, the final product is almost pure fcc phase. All of which demonstrate the effect 
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of over-potential on the final product of the system, which increases with approaching fcc 

regime on bulk phase diagram. No phase transition takes place during the reaction.   

 

Figure 26 In situ XRD of CoNi6040 (a) & (d), CoNi5050 (b) & (e), and CoNi4060 (c) 

& (f) samples under high over-potential from nucleation to ripening process. 

4.3.7 Composition of CoNi5050 samples under different pH and current density. 

EDX was conducted for CoNi5050 sample under acidic condition and high current 

density to reveal the new actual composition after reaction. As shown in Figure 27, the 

distribution of Co and Ni is homogeneous without any segregation, suggesting a solid-

solution alloy. According to the analysis, the CoNi5050 under acidic condition has a 

composition of Co62Ni38 while that under high current density has a composition of 

Co62Ni38 as well. The standard deviation of the above elemental analysis is 0.3% and 0.2%, 

respectively. The results are in accordance with the XRD observations: with reduction in 

pH of solution or higher current density, the ratio of fcc solid solution would increase. And 

based on the previous results, the fcc is Ni-rich phase. Therefore, the shift from Co77Ni23 
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to Co62Ni38 for these two samples suggesting the possibility of tuning post reaction 

composition of Co-Ni alloy.  

 

Figure 27 EDX results of CoNi5050 sample under acidic condition (a-c) and high 

current density condition (d-f).  

4.4 Conclusion 

In this work, we take one step further and explore phase formation of Co-Ni 

bimetallic system through ex situ and in situ electrodeposition. By introducing another 

element, there are three key factors that would affect phase formation. Internally, the initial 

starting ratio of Co and Ni would affect the bulk energy of obtained phase, so as to obtain 

solid solution that are in accordance with bulk phase diagram. Externally, the pH of the 
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solution and over-potential would tune phase formation as well. By reducing pH of the 

solution, the metastable fcc phase of CoNi at stable hcp dominant phase diagram region 

would form, mainly due to the contribution of surface energy. By increasing over-potential, 

the metastable phase could be concurrently obtained by expediated kinetics, and the effect 

is more severe as the composition moves more towards mixture region. In situ XRD was 

conducted to reveal that the different phase formation behavior originates from nucleation 

upon phase ripening. Therefore, it could be concluded that, by selectively tuning the factors 

for CoNi system, as an example, the final deposited phase could be tuned accordingly. This 

work paves the way for exploring other bimetallic system or even multi-element system.  
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CHAPTER 5. FACILE AND SCALABLE 

ELECTRODEPOSITION OF COPPER CURRENT COLLECTORS 

FOR HIGH-PERFORMANCE LI-METAL BATTERIES 

5.1 Introduction 

One key advantage of electrodeposition is that it could tune the morphology of as-

synthesized particles through the appropriate addition of additives. This particularly shed 

light on material synthesis for energy storage application (e.g., lithium ion batteries), for 

that the electrochemical performance of electrodes is closely related with its 

morphology.93,94 A recent popular trend on modification of Copper (Cu) current collector 

of lithium metal batteries inspires us to investigate a synthesis of 3-D Cu current collector 

with suitable morphology that can effectively suppress the formation Li dendrite through 

electrodeposition. 

With the growing needs for rechargeable batteries with ultrahigh energy densities for 

portable electronics, electric vehicles, and electrical grids, research efforts beyond 

conventional Li-ion batteries, such as Li-S,95 Li-O2,
96 and solid-state batteries97,98 have 

been thriving in the last decade. Among the approaches, Li-metal batteries attract a lot of 

attention, where Li-metal is used as the anode while the cathodes of Li-ion batteries are 

still used.99,100 This approach adapts the mature cathode technology from Li-ion batteries 

and focuses on solving the problems in Li-metal anode, e.g., the dendrite growth and low 

cyclability.101–103 This approach not only has the potential for very high energy density, 

benefiting from the high capacity of Li-metal anode (3840 mAh g-1), but also has the 
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advantage that it does not need to address the problems in cathode side as Li-S or Li-O2 

batteries do.  

The problems of Li-anode are, however, very challenging. Besides the well-known 

safety problem,104 stripping of Li from the root of the dendrites also results in electrical 

isolation of some small Li metal pieces (i.e., the “dead Li”105) and thus low Coulombic 

efficiency. A widely accepted model for Li dendrite growth is the space charge model.106 

When the local current density J at the anode exceeds the diffusion-limited value J*, 

limitation in mass transport results in depletion of ions near the surface of the electrode, 

creating a space charge layer and a strong local electric field, which accelerates a local 

deposition or dendritic growth of Li. The space charge theory, however, cannot explain the 

occasional dendrite growth in low current below J*. Another model107 indicates dendrites 

can also grow at nucleation sites where local resistivity is low, i.e. areas with good SEI or 

defects.  

Tremendous efforts have been made to address the challenges regarding suppression 

of Li dendrite and stabilization of SEI, including 1) electrolyte engineering;108–112 2) 

interfacial engineering;113–120 3) use of solid electrolyte,121–123 and 4) use 3-D structured 

current collectors.124-137 Among these promising approaches, interfacial engineering and 

the use of 3-D current collector represent some new promise. Compared to flat foil current 

collectors, 3-D structured current collectors have much larger active surfaces area, thus 

effectively reduce the actual current density J for the same apparent current and lower the 

possibility of stimulating dendritic growth. Many 3-D structures of current collectors have 

been demonstrated to have positive effects to mitigate Li dendrite growth (as shown in 

Figure 28), such as 3D submicron Copper (Cu) skeleton,124 free-standing Cu nanowires 
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(NW),125 hollow carbon fibers,126 graphitized carbon fibers,127 de-alloyed 3D porous Cu,128 

vertically aligned Cu microchannels,129 crumbled graphene balls,130 pie-like porous Cu 

NW/graphene,131 carbon fiber papers,132 nitrogen doped graphene,133 nitrogen doped 

graphitic carbon foams,134 direct growth of 3-D carbon host135, compact 3-D copper 

paper136, and oriented graphene foams.137 Interfacial modification is usually realized by 

introducing heterogeneous nucleation sites by coating conductive materials (e.g., hollow 

carbon spheres with nanoparticles seeds inside,138 Li-rich composite alloy films139) or 

insulating layers (e.g., glass fiber cloth,140 poly(dimethylsiloxane)141) to facilitate the 

simultaneous plating of Li on the modified surface.   

 

Figure 28 Selected examples of 3-D current collectors. (a) 3-D submicron Cu [124]; 

(b) Cu nanowires [125]; (c) de-alloyed 3-D porous Cu [128]; (d) vertically-aligned 

Cu microchannels [129]; (e) 3-D Cu obtained through electrochemically etched Cu-

Zn tape [136]; (f) hollow carbon fibers [126]; (g) crumbled graphene balls [130]; (h) 

oriented graphene foam current collectors [137]; (i) carbon-host on Cu current 

collector[135]; (j) carbon nanofiber film on Cu current collector [132]. 

Inspired by the reported work and our previous efforts on electrodeposition, we 

propose a facile and scalable method to produce a 3-D Copper (Cu) current collector that 

could be applied in large scale of the current roll-to-roll battery manufacturing process. 

The aforementioned 3D current collector strategies demonstrate promise by increasing 

nucleation sites, yet most of these successes are in lab-scale with coin cells and most of the 
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methods are sophisticated and expensive, not scalable and not compatible with mass 

manufacturing processes of current Li-ion battery industry. For example, the synthesis of 

Cu nanowire or nanoparticles requires multi-step wet chemistry reaction and following 

heat treatment.125 The carbonaceous current collectors, although having excellent 

performance, do not have high enough mechanical strength to be used as the current 

collectors for roll-to-roll processing, and it is difficult to bind the carbon films tightly onto 

any metal foils. Therefore, our strategy of utilizing electrodeposition demonstrate practical 

advantage over most of the reported work. Furthermore, the morphology could be further 

improved through controlling deposition current density, time, and co-deposition of other 

elements, all of which are worthy to explore as next step.  

Lithium metal is a promising anode for high-energy-density batteries owing to its 

large theoretical capacity and highly negative electrochemical potential. However, its 

commercial application is stalled by the undesired dendritic growth of lithium during 

cycling.  Among the approaches to address this critical issue, designing a 3-D current 

collector is a promising strategy, as the increasing nucleation sites introduced by the 3-D 

structure could effectively reduce local current density, and thus lower the possibility of 

stimulating dendritic growth. 

As discussed in Chapter 1, the major categories of reported 3-D current collectors 

include copper-based and carbon-based materials. Methods that have been adopted 

including chemical synthesis, dealloying, laser micro-processing, linear sweep 

voltammetry, thermal oxidizing etc. Many of which involves long time (longer than 12 

hours) and high temperature reaction. Considering the practical manufacturing process and 

the advantages associated with electrodeposition, as we discussed previously in Chapter 1, 
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we designed a 3-D Cu-based structure by fabricating favorable morphology that could 

provide sufficient amount of nucleation sites for Li.  

In this work, we discuss a facile one-step electrodeposition process for low-cost, 

scalable fabrication of copper current collectors with 3-D architected porous structures 

composed of interconnected nanoparticles of Cu. Li anode deposited into this porous 

current collector exhibits good cycling stability of >340 hours in symmetric cells without 

short-circuit. When tested in full cells with liquid or solid-state electrolyte, the Li anode 

hosted in the 3-D Cu current collector demonstrates excellent cycling performance with no 

dendrites formation. This process is extremely simple and scalable for mass production of 

dendrite-free and high capacity current collector for Li-batteries, which can be easily 

incorporated into the roll-to-roll manufacturing processes of battery industries.  

5.2 Methods 

5.2.1 Preparation of electrodeposited Cu film. 

A typical electrodeposition processing of copper current collector is as follows: A 

two-electrode system was used and a constant voltage electrodeposition process was 

controlled with using a battery cycler (Arbin, BT2043). Copper foil with thickness of 

0.0005 inch (MTI corp.) and area of about 6.75 cm2 was used as the working electrode, 

while a platinum plate with area of 0.25 cm2 was used as the counter electrode. The 

electrolyte consists of 0.5 M copper sulfate heptahydrate (VWR International LLC) in 20 

mL deionized water. In addition, poly(acrylic acid)-5000 (PAA-5000, 50 wt%, ACROS 

Organics) and sulfuric acid (95-98%, BDH Chemicals) were used as additives to control 

the morphology of the deposited Cu surface layer. With using 0.5 mM PAA and 0.1M 
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sulfate acid as additives, nanometer-sized clusters can be obtained. The current density of 

working electrode was controlled between 3.5 - 3.7 mA cm-2, to ensure no Cu dendrite is 

formed.142 Nanometer sized Cu was electrodeposited on Cu substrate with a constant 

potential of 2.5 V for 20 min. The reactions at the working electrode and counter electrode 

are (1) and (2) below, respectively.  

Cu2+ + 2e  Cu    (1)  

2H2O  O2 + 4e- + 4H+     (2) 

5.2.2 XRD and SEM characterization. 

Ex-situ X-ray diffraction (XRD) measurement was performed using a D8 Advance 

X-ray Diffractometer (Bruker AXS, Germany) equipped with a Molybdenum radiation 

source (λ Kα1=0.7093Å) to examine the phase of the deposited copper. Morphology of the 

surface of the Cu foils before and after electrodeposition processing, and the foils before 

and after Li plating/stripping were investigated with using a Scanning Electron Microscope 

(Hitachi SU8010). 

5.2.3 Li plating/stripping tests and cycling performance tests in liquid electrolyte. 

Standard CR2016-type coin cells were assembled in an Argon (Ar) filled glove box 

for all liquid-based electrochemical testing, including Li plating/stripping stability tests, 

Coulombic efficiency tests, electrochemical impedance spectroscopy (EIS), and full-cell 

cycling tests. For Li plating/stripping and Coulombic efficiency tests, a piece of Li foil 

with thickness of 0.25 mm was used as the counter electrode, while the electrodeposited 

Cu foil was used as the working electrode. The electrolyte was 1 M LiTFSI (99.95%, 
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Sigma-Aldrich) in DOL/DME (1,3-Dioxolane, 99%, Sigma-Aldrich/1,2-

Dimethoxyethane, 99.5%, Sigma-Aldrich) in 1:1 volume ratio. No additive was used unless 

otherwise noted. The Li plating/stripping behavior was tested under current density of 2 

and 8 mA cm-2 for 1 and 4 mAh cm-2 respectively in each cycle with using an Arbin 

BT2043 battery cycler. Bare Cu foils (b-copper) with no deposition and electrodeposited 

Cu foils with nanometer-sized structure (n-copper) were tested under the same conditions 

for comparison. In further electrochemical tests, n-copper was used. Columbic efficiency 

was calculated based on the ratio of Li stripped to Li plated. One wt% LiNO3 was added 

into the electrolyte in this test to stabilize the solid-electrolyte-interphase (SEI). The cell 

was first cycled between 0 and 1 V (versus Li+/Li) at 50 μA for 5 cycles to remove surface 

contamination and stabilize the SEI. Then, 1 mAh cm-2 of Li was plated onto the Cu current 

collector under a 1 mA cm-2 current density, followed with charging to 0.5 V under a 

current density of 0.5 mA cm-2. EIS measurement was conducted using a Bio-Logic MP3 

impedance spectrometer in the frequency range of 100 mHz and 100 kHz. For the full-cell 

tests, LiFePO4 (MTI Corp.) was blended with carbon black (Super P, MTI Corp.) and 

Polyvinylidene fluoride (PVDF) (Sigma-Aldrich) with a weight ratio of 8:1:1 as the 

cathode. The cathode film was made using a typical doctor-blade method, with using N-

Methyl-2-pyrrolidone (NMP) (J.T. Baker) as the solvent and applying the slurry onto an 

aluminum foil with an areal capacity of ~0.73 mAh cm-2. 2 mAh cm-2 Li was 

electrochemically deposited onto n-copper to be used as the anode. The full cell was 

assembled and tested under the rate of 1C between 2 and 4.2 V. One wt% LiNO3 was added 

into the electrolyte. All the reaction and measurement were conducted under room 

temperature.  
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5.2.4 Preparation of solid-state symmetric cells. 

The solid-state symmetric cells were fabricated as follows: the n/b-copper was used 

as the working electrode, as-synthesized Li6PS5Cl was used as the solid electrolyte, and Li 

foil was used as counter and reference electrode. The three components were added in order 

into a polycarbonate tube (12.7 mm inner diameter) and pressed together under a pressure 

of 50 bar. Finally, the tri-layer assembly was sandwiched between two stainless steel rods 

which were used as current collectors. The solid state symmetric cells were tested under 

the same electrochemical parameters as the symmetric coin cells. 

5.2.5 Preparation of solid-state full cells. 

The solid-state Li@Cu/ Li6PS5Cl /TiS2 full cells were fabricated as follows: a 

composite of TiS2 and Li6PS5Cl (9 mg, TiS2: Li6PS5Cl =1:2 in weight) was used as the 

cathode, with Li6PS5Cl (150 mg) as the solid electrolyte, and pre-lithiated Li@Cu as the 

anode. The anode was pre-lithiated by plating 2 mAh cm-2 of Li onto the n-copper foil in a 

symmetric coin cell and disassembled in the glove box. The tri-layer full cell was set in a 

polycarbonate tube (1.27 mm in diameter) and pressed together under 50 bars and then 

sandwiched between two stainless steel current collectors. 

5.3 Results and Discussion 

5.3.1 Processing and characterization of electrodeposited Cu current collector. 

To create more nucleation/deposition sites on the surface of the current collector, 

an electrodeposition process was used to control nanometer-sized structure of Cu on the 

surface of a conventional copper current collector foil in a 0.5 M copper sulfate 
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heptahydrate solution with PAA-5000 and sulfuric acid as additives. Figure 29a shows the 

XRD patterns of the bare and deposited samples and it can be clearly seen that only metallic 

Cu phase is formed in both electrodeposited films. The insets in Figure 29a show the 

photographs of these samples. The nanometer-structured Cu foil sample (hereby denoted 

as n-copper) shows a dark color, likely due to strong absorption of visible light by the nano-

porous film on the surface, unlike the bare copper foil (hereby denoted as b-copper). Figure 

29b and 29c show the SEM images of b-copper and n-copper respectively. The n-copper 

film has a porous 3-D nanostructure consisting of interconnecting primary particles of ~50 

nm and the porosity was estimated to be ~76% (see Table 8 for parameters). The calculation 

of porosity and maximum capacity is as follows: 

1) Measure the thickness (Ltotal) of total film (Cu substrate and deposited film) 

using a micrometer caliper by taking average of multiple positions.  

2) Calculate the thickness of electrodeposited Cu film, Lfilm = Ltotal – LCu. LCu was 

measured to be 12.7 μm. 

3) Measure the area (S) of the electrodeposited film.  

4) Calculate the total volume (Vtotal) of electrodeposited film.  

5) Use charge capacity (C) of Cu from electrodeposition to calculate the molar 

amount of deposited Cu (M=0.5*C*3600/96360) and the volume of Cu 

(VCu=63.546*M/8.9) accordingly.  

6) Calculate porous volume, Vporous = Vtotal – VCu; calculate porosity = Vporous/Vtotal 

7) Calculate maximum capacity by assuming all the porous can be utilized to 

accommodate Li during plating. Cmax = [(Surface area) / (Electrodeposited area 
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S)]* Vporous* specific capacity density of Li (2062 mAh cm-3) / surface area (0.7 

cm2). 

 Careful analysis of the microstructures indicates that the size of the primary 

particles, the porosity, and the surface morphology of the porous Cu films can be tuned in 

a wide range by the type and amount of additives used, which form intermediate complex 

at the copper substrate and function as seeds to form nanoclusters.143  The optimal condition 

of electrodeposition, including the concentration of additives and the deposition time, was 

determined by a series of tests. Both homogeneity and porosity of the deposited layer are 

critical for the subsequent electrochemical tests. We expect that the nanometer-sized 

primary particles in the n-copper sample can serve as the deposition/nucleation sites for Li 

plating and the high porosity of the deposited layer may allow more Li storage inside the 

porous Cu layer, in addition to the Li plated on the top of the Cu layer. It is worth noting 

that the deposited layers in n-copper are very robust and adhere well to the Cu substrate, 

implying a good electrical connectivity and good mechanical integrity. The deposited n-

copper layer is typically of ~5 μm thick and the copper foil is as flexible as previous and 

can be directly used as in roll-to-roll processes.  
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Figure 29 (a) XRD patterns of bare Cu (b-copper) and electrodeposited nanometer-

sized Cu (n-copper). Insets are the corresponding photographs of b-copper, and n-

copper; (b) SEM image of b-copper with a scale bar of 50 μm. Inset is the zoom-in 

view with a scale bar of 5 μm; (c) SEM image of n-copper Cu with a scale bar of 5 

μm. Inset is the zoom-in view with a scale bar of 500 nm. 

Table 8 Parameters of n-copper 

Cu film thickness Lfilm (μm) 5.2 

Electrodeposited area S (cm -2) 6.75 

Total volume Vtotal (cm -3) 0.00351 

Charge capacity of Cu C (Ah) 0.006216 

Volume of Cu VCu (cm -3) 0.000829 

Volume of porous Vporous (cm -3) 0.002681 

Porosity (%) 76.31 

Maximum capacity (mAh cm-2) 0.82 

 

5.3.2 Li metal plating/stripping behaviour. 

The performance of the n-copper current collectors in Li plating-stripping cycles in 

various areal capacities was evaluated in symmetric Li/Li@Cu cells using a Li 

counter/reference electrode and a Cu working electrode, as reported previously. For all 

cells, 2 mAh cm-2 of Li was first plated onto the electrodeposited Cu current collectors at 

a constant current density of 2 mA cm-2. Then, the symmetric cells were cycled with 

various areal capacities of 1 and 4 mAh cm-2, respectively, with both charge and discharge 

times of each cycle being set to be 0.5 h (i.e., with current density of 2 and 8 mAh cm-2, 
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respectively). The voltage profiles are shown in Figure 30. In the tests of 1 mAh cm-2, 

shown in Figure 30a, the symmetric cell with b-copper shows spiky voltage oscillations as 

large as 1 V, implying internal short-circuits, as also reported by others, likely due to the 

formation of Li dendrites. In contrast, the n-copper cell shows much better cycling stability 

with reasonably small voltage amplitude and negligible voltage fluctuations up to 340 

hours cycling, indicating significantly improved lithium plating/stripping stability. Figure 

30b shows the zoom-in voltage profiles of the three cells within 320-340 hours. The voltage 

amplitude of n-copper is ~ 50 mV, indicating low interfacial resistance and facilitated ionic 

and electronic conduction, which can be ascribed to the much larger electroactive surface 

area than those of b-copper and a more uniform SEI. The large active surface area of n-

copper foil is ascribed not only to the nanostructured top surface, but also the pores in 

which electrolyte can easily throughout percolate. The resistance to interfacial ionic 

transport is drastically reduced. In the tests with larger areal capacities of 4 mAh cm-2 

(current density 8 mA cm-2), n-copper cells also show excellent stability and far lower 

resistance than those of the b-copper, as shown in Figure 30c and 30d. In commercial Li-

ion batteries with graphite or Si-C anode, typical areal capacity ranges from 1.5 to 3 mAh 

cm-2. 144,145 The excellent reversibility and stability in a long time for the n-copper samples 

at high areal capacities of 4 mAh cm-2 demonstrates the promise for it to be used in large 

form cylindrical or pouch cells.      
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Figure 30 Voltage profiles of Li plating/stripping of the b-copper and n-copper 

symmetric cells at (a) 1 mAh cm-2 and (c) 4 mAh cm-2, respectively. (b) The detailed 

voltage profiles from 320th-340th cycle in (a). (d) The detailed voltage profiles from 

200th-220th cycle in (c). 

5.3.3 Morphology evolution of Li deposited on the current collectors. 

Careful SEM characterizations were used to understand the excellent cycling 

performance of the electrodeposited copper current collector and to explore the Li storage 

mechanism. Figure 31 shows the top view and cross-sectional view of the n-copper foil 

after Li plating and Li stripping of various capacities, respectively. In Figure 31a, the size 

of the primary particles obviously increases from ~50 nm in pristine film (Figure 29c) to 

~200 nm after 1 mAh cm-2 plating, indicating substantial amount of Li is plated onto the 

surface of Cu particles. Meanwhile, the porosity of the surface layer visually decreased 

significantly, implying that Li is also deposited into the pores. For comparison, images of 
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b-copper are also provided in Figure 32, from which large amount of Li dendrites formed 

on top of b-copper can be seen. With increasing amount of Li plated to 2 and 4 mAh cm-2, 

it can be clearly seen that the size of the primary particles further increases to ~400 nm (2 

mAh cm-2), and eventually, ~800 nm (4 mAh cm-2), yet still with a smooth and granular 

surface, as shown in Figure 31b and 31c. When the capacity increases to 6 mAh cm-2, as 

shown in Figure 31d, the individual particles are large enough to interconnect and form 

locally flat surfaces where island-like Li dendrites can grow from, same as what commonly 

occurs on the surface of Li foil. The suppression of Li dendrite growth is due to the direct 

deposition only on the highly conductive Cu both on top surface and into the pores, but not 

on the flat surface of Li.    

For Li metal anode, it is confusing to use “theoretical capacity” as the capacity 

limit, as the maximum amount of Li deposition that would not stimulate dendrites growth 

oftentimes is not as clear cut. Therefore, we suggest using “practical capacity” to refer to 

the capacity limit. In this case, the practical areal capacity of n-copper sample processed 

with current electrodeposition parameters seems to be between 4 and 6 mAh cm-2. This 

capacity is higher than the maximum amount of Li that can be stored in the pores of the 3-

D structure, indicating the structure itself could effectively reduce local current density and 

accommodate more homogeneous Li deposition on top of the structure. However, this 

value already exceeds that of commercial graphite anodes and can be further improved 

with increasing the thickness and porosity and tuning the morphology and composition of 

the deposition layer.  

In the Li stripping tests with capacities of 1, 2, 4, and 6 mAh cm-2, the current 

densities were set at 2, 4, 8, and 12 mA cm-2, as shown in Figure 31e, f, g, and h, 
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respectively. It is shown that for the tests of 1, 2, and 4 mAh cm-2, after stripping, the 

granular morphology of n-copper is retained, yet with decreased porosity and increased 

size of primary particles, which is mainly due to the remaining SEI covering on the surface 

of Cu particles. However, after 6 mAh cm-2 deposition, as shown in Figure 31h, the 

stripping of same capacity results in a very different morphology, with irregular matrix of 

connecting large particles and some voids.  

From the cross-sectional view of Li plating/stripping in Figure 31 (i-l), there is a 

clear trend that with increasing plating capacity, the primary particle size increases 

throughout the whole thickness of the porous layer yet with little Li dendrite grown on top 

of the surface, confirming the Li storage in the pores and preferably deposit on Cu 

nanoparticle sites due to the lower local current density. Compared with bare Cu (Figure 

32), the n-copper offers more nucleation sites for Li to avoid dendrite formation. With the 

proceeding of Li stripping, the pristine porous structure can be largely retained, comparing 

with cross-sectional view image of pristine n-copper (Figure 33). In both plating and 

stripping processes, the thickness of the electrodeposited Cu layer does not change 

significantly, implying the Li deposition pathway is good for maintaining a more 

homogeneous morphology thus relatively constant volume of the anode during cycling. 

Figure 31m schematically shows the Li storage mechanism with increasing deposition 

capacities. The practical capacity limit is that all the pores are filled up and the top surface 

becomes a flat surface like Li foil, connected by deposited Li and SEI. If more Li is plated, 

the Li dendrites likely start to growth, as what occurs on pure Li foil. 
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Figure 31 Morphology of deposited Li metal characterized by SEM. Top view 

images of n-copper electrode after Li plating of (a) 1 mAh cm-2, (b) 2 mAh cm-2, (c) 4 

mAh cm-2, and (d) 6 mAh cm-2. Top view images of n-copper electrode after Li 

stripping of (e) 1 mAh cm-2, (f) 2 mAh cm-2, (g) 4 mAh cm-2, and (h) 6 mAh cm-2. 

Scale bars are 5 μm. Insets are the zoom-in view with scale bars of 1 μm; Cross-

sectional SEM images of n-copper electrode after (i) 1 mAh cm-2 and (j) 4 mAh cm-2 

of Li plating. Scale bars are 10 μm. Insets are the zoom-in views with scale bars of 2 

μm; Cross-sectional SEM images of n-copper after Li stripping of (k) 1 mAh cm-2 

and (l) 4 mAh cm-2. Scale bars are 10 μm. Insets are the zoom-in views with scale 

bars of 2 μm. The yellow dotted lines denote the boundaries between n-copper (top) 
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and Cu substrate (bottom); (m) Schematic illustration of n-copper current collector 

deposited with various amount of Li. 

 

 

Figure 32 SEM images of b-copper after Li plating for 1 mAh cm-2 (a), 2 mAh cm-2 

(b); and stripping of 1 mAh cm-2 (c), 2 mAh cm-2 (d). Scale bars are 100 μm. Insets 

are the zoom-in view with scale bars of 10 μm.   
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Figure 33 Cross-sectional view of fresh n-copper sample with a scale bar of 10 μm. 

The inset is the zoom-in view with a scale bar of 2 μm. The yellow dotted lines 

denote the boundaries between n-copper (top) and Cu substrate (bottom). 

5.3.4 Electrochemical characterization and testing. 

Electrochemical cycling tests on symmetric cells with constant-current plating (cut 

with designed capacities) and constant-current stripping (cut with 0.5 V voltage limit) were 

done and the results are shown in Figure 34. From Figure 34a to Figure 34c, the areal 

capacity for each Li plating step was fixed at 1 mAh cm-2 while the charge step was set to 

0.5 V under 0.5 mA cm-2. The voltage plateau of Li plating and stripping of b-copper 

exhibits a larger voltage hysteresis which can be attributed to the unstable Li/electrolyte 

interface of bare Cu foil. The smaller voltage hysteresis and higher amount of Li stripped 

(i.e. highest Coulombic efficiency) is demonstrated by n-copper current collector in Figure 

34b. This is due to the low interfacial resistance resulted from the stable Li/electrolyte 

interface formed in n-copper current collector. The cycling Coulombic efficiencies (CE) of 

the two types of current collectors were further examined in extended cycles. CE was 

calculated as the ratio of the amount of Li stripped versus plated in each cycle. The results 
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are shown in Figure 34c. The CE of b-copper is 60% after 80 cycles, with significant 

fluctuations. The CE of n-copper is 95% after 80 cycles. 

To evaluate the feasibility of using this electrodeposited Cu in practical battery 

systems, full-cell tests were performed. Both n-copper and b-copper were first pre-lithiated 

in a symmetric cell with 2 mAh cm-2 of Li. Then the symmetric cell was taken apart and 

the obtained lithiated n-copper was used as the anode coupled with a LiFePO4 cathode. 

Figure 35a shows the voltage-capacity profiles of the cells with b-copper and n-copper 

anodes at 0.1 C (1C=170 mA g-1) in a voltage window of 2.0 to 4.2 V. The cell with n-

copper anode delivers an initial discharge capacity of 154.6 mAh g-1, slightly higher than 

149.5 mAh g-1 for the b-copper cell. Figure 35b presents the charge/discharge curves of the 

cell with n-copper substrate in the 1st, 2nd, and 10th charge/discharge cycles at 0.1 C, 

showing good consistency of the voltage profile. In the higher rate cycling tests at 1 C 

(Figure 35c), the cell with b-copper anode presents a capacity decay from 132.6 to 92.6 

mAh g-1 in 100 cycles with a capacity retention of 69.8 %. In comparison, the cell with n-

copper anode exhibits excellent cycling performance. It delivers a capacity of 127.6 mAh 

g-1 after 100 cycles and with a capacity retention of 95 %. The Coulombic efficiency of the 

cell with electrodeposited n-copper anode is ~99.66 % at 1 C upon 100 cycles, which is 

much better than that with b-copper substrate and is comparable to high performance 

carbonaceous-based current collector material. The electrochemical performance of n-

copper used in the LiFePO4 full cell shows its potential in practical application.  
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Figure 34 Voltage profiles of Li plating/stripping on planar Cu (a), the 

electrodeposited n-copper (b), and the CE for the samples (c). 

 

Figure 35 (a) Charge/discharge profiles of the full cells with Li@b-copper and 

Li@n-copper, respectively. (b) Charge/discharge profiles at 1st, 2nd, and 10th cycle of 

the full cell with Li@n-copper electrode. (c) Cycling performance and CE of full 

cells with Li@b-copper and Li@n-copper at 1 C.  
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To explore the possibility of using this novel 3-D nanostructured current collector 

in all-solid-state batteries, which is another promising technology that requires usage of Li-

metal anodes, tests were conducted in both symmetric and full cells. The symmetric cells 

(Li/Li@Cu) used Li6PS5Cl as electrolyte, Li foil as counter electrode, and b-copper or n-

copper as working electrode. As shown in Figure 36a, cell with b-copper shows larger 

voltage fluctuations, while for the cell with n-copper, excellent cycling stability as well as 

much smaller voltage hysteresis is observed and the performance stays unchanged for more 

than 500 hours (Figure 36b), indicating good interface compatibility and stable 

plating/stripping at the solid-solid interface as well. Cycling tests at various current 

densities were also conducted to evaluate the rate performance. It is obvious that cell with 

n-copper current collector exhibits smaller voltage fluctuations than that of b-copper upon 

different areal densities (Figure 36c). An all-solid-state full cell was also assembled with 

using pre-lithiated n-copper as anode and TiS2 as cathode to explore the potential of 

applications in all-solid-state batteries. As shown in Figure 37, the solid-state full cell 

shows the typical charge and discharge curve of TiS2, which is in consistent with previous 

reports.146 As shown in Figure 36d, solid-state cell with n-copper can deliver an initial 

reversible capacity of 179 mAh g-1 at 0.2 C (1C = 239 mA g-1) at 20 °C. After 20 cycles, it 

can still maintain a reversible capacity of 156.5 mAh g-1 with a CE of 99.3%, corresponding 

to the capacity retention of 87.5 %. This result demonstrates the possible practical 

application of the electrodeposited n-copper current collector in all-solid-state battery 

systems.  
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Figure 36 (a) Voltage profiles of Li plating/stripping of the solid state symmetric 

cells (n-copper and b-copper at 1 mAh cm-2, respectively); (b) The detailed voltage 

profiles from 490th-500th cycle in (a); (c) Rate performance of Li plating/stripping of 

the solid-state symmetric cells (n-copper and b-copper at various current densities); 

(d) Cycling performance of the solid-state Li@n-copper/TiS2 full cells at 0.2C.  

 

Figure 37 Charge-discharge curves (first 3 cycles) of the Cu@Li/TiS2 all-solid-state 

cell using Li6PS5Cl as electrolyte. 
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5.4 Conclusion 

In conclusion, we have demonstrated the capability of electrodeposited Cu 3-D 

nanostructures of accommodating Li within its porous structure, which effectively 

suppresses Li dendrite formation and provides a very high practical Li storage areal 

capacity of >4 mAh cm-2. The full-cell tests with using both liquid electrolyte and solid 

electrolyte show exciting high performances. Most importantly, this facile one-step 

electrodeposition method is very scalable for mass production. One easy configuration to 

realize it in industrial scale is schematically shown in Figure 38.  The 3-D structure of Cu 

can be simultaneously deposited on both sides of standard Cu foils for bi-polar designs. As 

the deposited Cu layer is robust and has much better mechanical strength than graphite 

anode, the thickness of Cu foil substrate can be further reduced from currently used, which 

can further increase the energy density of the cell. In addition, this current collector can be 

used in not only Li-ion, but also in Li-S and Li-O2 batteries, provided cathode problems 

solved. The electrodeposition method also provides a lot of flexibility and tunability of the 

deposited structure, which suggests more Li may be accommodated and ultrahigh energy 

density batteries may be developed along this promising approach.  

 

Figure 38 A schematic picture of scale-up production of electrodeposited Cu foils as 

current collectors of Li-metal batteries. 
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CHAPTER 6. CONCLUSION AND FUTURE PERSPECTIVES 

6.1 Conclusion 

In this thesis, we study the formation of nanometric polymorphs of metal and alloy 

with using advanced in situ structure characterization techniques. To begin with, Co was 

used as a model system to build a generalized theorem of understanding phase formation. 

It was found that, in the solvothermal reaction, the surface energy was largely affected by 

the adsorbents, namely OH-, from the solution. In competing with the bulk energy of 

particles, the surface energy plays an important role in determining the overall energy of 

the polymorphs for nanometric Co particles, resulting in the formation of various phases 

under different pH levels. The in situ solvothermal platform we built at two national 

laboratories leveraged the advantage of synchrotron x-ray and enable real-time observation 

from nucleation upon phase ripening. This work could not only serve as a reference for 

selective synthesis of various polymorphs of nanoscale Co for specific applications, but 

also may be extended to other functional materials besides simple elemental materials, such 

alloys, oxides, or carbonates.   

The second part of this thesis explores factors impacting phase formation with 

another important synthesis approach – electrodeposition. Electrodeposition plays an 

important role in synthesizing functional nanometric materials for its tunable and facile 

features. It was found that aside from pH of the solution, which would change the surface 

energy of newly formed nuclei, over-potential is another factor affecting phase selection 

by boosting the kinetics of the polymorph formation, resulting in co-deposition of both 

stable and meta-stable polymorphs. In addition, based on the theorem, we successfully 
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demonstrated the feasibility of obtaining layer-by-layer Co structure with desired phase by 

choosing appropriate synthesis conditions. The in situ electrodeposition platform we built 

enable the observation for the ultra-fast reaction with high quality signal for the first time, 

and would pave the way for studying phase formation of multi elements through 

electrodeposition.  

In the third part of the thesis, we moved towards two elements system by starting 

with Co and Ni. By introducing another element, there are three key factors that would 

affect phase formation. Internally, the initial starting ratio of Co and Ni would affect the 

bulk energy of obtained phase, results in obtaining solid solution that are in accordance 

with bulk phase diagram. Externally, the pH of the solution and over-potential would tune 

phase formation as well. By reducing pH of the solution, the metastable fcc phase of CoNi 

at stable hcp dominant phase diagram region would form, mainly due to the contribution 

of surface energy. By increasing over-potential, the metastable phase could be concurrently 

obtained by expediated kinetics, and the effect is more severe as the composition moves 

more towards mixture region. This part of the work demonstrates the universal applicability 

of in situ electrodeposition approach we developed, and demonstrate the more complicated 

factors of tuning polymorphs for multi-elements system.  

In the last part, we switched gear and explored another aspect associated with 

electrodeposition – morphology tuning and its application in energy storage area. Based on 

the observation from Co electrodeposition that simply adding additives, the morphology of 

as-synthesized particle could drastically change, we developed a one-step electrodeposition 

method to obtain a 3-D Cu current collector to be used in lithium metal batteries. We have 

demonstrated the capability of electrodeposited Cu 3-D nanostructures of accommodating 
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Li within its porous structure, which effectively suppresses Li dendrite formation and 

provides a very high practical Li storage areal capacity of >4 mAh cm-2. The full-cell tests 

with using both liquid electrolyte and solid electrolyte show exciting high performances. 

Most importantly, this facile one-step electrodeposition method is very scalable for mass 

production.   

6.2 Future perspectives 

The work in this thesis propose a generalized theorem to guide synthesis of 

nanometric materials. Various potential future work could stem from this research. First, 

Co-based alloys (e.g., Fe, Zn, Cu etc.) have importance in various industries and their 

properties is closely related with the alloyed phase. By implementing the approach we 

proposed in this work, it would be interesting to study other Co-based system and 

investigate how to tune their nanometric phase selectively through electrodeposition. The 

principles would guide selective synthesis of desired phase under nanometer scale. 

Ultimately, up to 5 elements system could have interesting magnetic, electrical, or 

mechanical properties, as high-entropy-alloy has growing interests among scientific 

community. Second, the morphology tuning for 3-D Cu current collectors could still be 

improved. The current structure has a theoretic capacity of 0.82 mAh/cm2, which still has 

room to improve. Increasing porosity by either adding other additives or tuning deposition 

condition (current density or time) would be a possible way to get a structure with more 

nucleation sites for Cu to suppress Li dendrites. In addition, by incorporating another 

element, e.g., Ni, to get an alloyed 3-D current collector, would help improve conductivity 

and tune the morphology, which would benefit battery cycling.  
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